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Preface 

The central aim of many studies in the physical, behavioral, social, and biological sciences 
is the elucidation of cause-effect relationships among variables or events. However, the 
appropriate methodology for extracting such relationships from data - or even from the- 
ories - has been fiercely debated. 

The two fundamental questions of causality are: (1) What empirical evidence is re- 
quired for legitimate inference of cause-effect relationships? (2) Given that we are will- 
ing to accept causal information about a phenomenon, what inferences can we draw from 
such information, and how? These questions have been without satisfactory answers in 
part because we have not had a clear semantics for causal claims and in part because we 
have not had effective mathematical tools for casting causal questions or deriving causal 
answers. 

In the last decade, owing partly to advances in graphical models, causality has under- 
gone a major transformation: from a concept shrouded in mystery into a mathematical 
object with well-defined semantics and well-founded logic. Paradoxes and controver- 
sies have been resolved, slippery concepts have been explicated, and practical problems 
relying on causal information that long were regarded as either metaphysical or unman- 
ageable can now be solved using elementary mathematics. Put simply, causality has been 
mathematized. 

This book provides a systematic account of this causal transformation, addressed pri- 
marily to readers in the fields of statistics, artificial intelligence, philosophy, cognitive 
science, and the health and social sciences. Following a description of the conceptual 
and mathematical advances in causal inference, the book emphasizes practical methods 
for elucidating potentially causal relationships from data, deriving causal relationships 
from combinations of knowledge and data, predicting the effects of actions and policies, 
evaluating explanations for observed events and scenarios, and - more generally - iden- 
tifying and explicating the assumptions needed for substantiating causal claims. 

Ten years ago, when I began writing Probabilistic Reasoning in Intelligent Systems 
(1988), I was working within the empiricist tradition. In this tradition, probabilistic re- 
lationships constitute the foundations of human knowledge, whereas causality simply 
provides useful ways of abbreviating and organizing intricate patterns of probabilistic re- 
lationships. Today, my view is quite different. I now take causal relationships to be the 
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fundamental building blocks both of physical reality and of human understanding of that 
reality, and I regard probabilistic relationships as but the surface phenomena of the causal 
machinery that underlies and propels our understanding of the world. 

Accordingly, I see no greater impediment to scientific progress than the prevailing 
practice of focusing all of our mathematical resources on probabilistic and statistical infer- 
ences while leaving causal considerations to the mercy of intuition and good judgment. 
Thus I have tried in this book to present mathematical tools that handle causal rela- 
tionships side by side with probabilistic relationships. The prerequisites are startlingly 
simple, the results embarrassingly straightforward. No more than basic skills in proba- 
bility theory and some familiarity with graphs are needed for the reader to begin solving 
causal problems that are too complex for the unaided intellect. Using simple extensions 
of probability calculus, the reader will be able to determine mathematically what effects 
an intervention might have, what measurements are appropriate for control of confound- 
ing, how to exploit measurements that lie on the causal pathways, how to trade one set 
of measurements for another, and how to estimate the probability that one event was the 
actual cause of another. 

Expert knowledge of logic and probability is nowhere assumed in this book, but some 
general knowledge in these areas is beneficial. Thus, Chapter 1 includes a summary of the 
elementary background in probability theory and graph notation needed for the under- 
standing of this book, together with an outline of the developments of the last decade 
in graphical models and causal diagrams. This chapter describes the basic paradigms, 
defines the major problems, and points readers to the chapters that provide solutions to 
those problems. 

Subsequent chapters include introductions that serve both to orient the reader and to 
facilitate skipping; they indicate safe detours around mathematically advanced topics, 
specific applications, and other explorations of interest primarily to the specialist. 

The sequence of discussion follows more or less the chronological order by which 
our team at UCLA has tackled these topics, thus re-creating for the reader some of our 
excitement that accompanied these developments. Following the introductory chapter 
(Chapter I), we start with the hardest questions of how one can go about discovering 
cause-effect relationships in raw data (Chapter 2) and what guarantees one can give 
to ensure the validity of the relationships thus discovered. We then proceed to ques- 
tions of identifiability - namely, predicting the direct and inlrect effects of actions and 
policies from a combination of data and fragmentary knowledge of where causal relation- 
ships might operate (Chapters 3 and 4). The implications of these findings for the social 
and health sciences are then discussed in Chapters 5 and 6 (respectively), where we ex- 
amine the concepts of structural equations and confounding. Chapter 7 offers a formal 
theory of counterfactuals and structural models, followed by a discussion and a unifi- 
cation of related approaches in philosophy, statistics, and economics. The applications 
of counterfactual analysis are then pursued in Chapters 8-10, where we develop meth- 
ods of bounding causal relationships and illustrate applications to imperfect experiments, 
legal responsibility, and the probability of necessary, sufficient, and single-event causa- 
tion. We end this book (Epilogue) with a transcript of a public lecture that I presented at 
UCLA, which provides a gentle introduction of the historical and conceptual aspects of 
causation. 
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Readers who wish to be first introduced to the nonmathematical aspects of causation 
are advised to start with the Epilogue and then to sweep through the other historical1 
conceptual parts of the book: Sections 1.1.1, 3.3.3,4.5.3,5.1, 5.4.1, 6.1,7.2, 7.4,7.5, 8.3, 
9.1, 9.3, and 10.1. More formally driven readers, who may be anxious to delve directly 
into the mathematical aspects and computational tools, are advised to start with Sec- 
tion 7.1 and then to proceed as follows for tool building: Section 1.2, Chapter 3, Sections 
4.2-4.4, Sections 5.2-5.3, Sections 6.2-6.3, Section 7.3, and Chapters 8-10. 

I owe a great debt to many people who assisted me with this work. First, I would like 
to thank the members of the Cognitive Systems Laboratory at UCLA, whose work and 
ideas formed the basis of many of these sections: Alex Balke, Blai Bonet, David Chick- 
ering, Adnan Darwiche, Rina Dechter, Hector Geffner, Dan Geiger, MoisCs Goldszrnidt, 
Jin Kim, Jin Tian, and Thomas Verma. Tom and Dan have proven some of the most basic 
theorems in causal graphs; Hector, Adnan, and MoisCs were responsible for keeping me 
in line with the logicist approach to actions and change; and Alex and David have taught 
me that counterfactuals are simpler than the name may imply. 

My academic and professional colleagues have been very generous with their time 
and ideas as I began ploughing the peaceful territories of statistics, economics, epidemi- 
ology, philosophy, and the social sciences. My mentors-listeners in statistics have been 
Phil Dawid, Steffen Lauritzen, Don Rubin, Art Dempster, David Freedman, and David 
Cox. In economics, I have benefited from many discussions with John Aldrich, Kevin 
Hoover, James Heckrnan, Ed Leamer, and Herbert Simon. My forays into epidemiol- 
ogy resulted in a most fortunate and productive collaboration with Sander Greenland and 
James Robins. Philosophical debates with James Woodward, Nancy Cartwright, Brian 
Skynns, Clark Glymour, and Peter Spirtes have sharpened my thinking of causality in 
and outside philosophy. Finally, in artificial intelligence, I have benefited from discus- 
sions with and the encouragement of Nils Nilsson, Ray Reiter, Don Michie, Joe Halpern, 
and David Heckerrnan. 

The National Science Foundation deserves acknowledgment for consistently and 
faithfully sponsoring the research that led to these results, with special thanks to H. Moraff, 
Y. T. Chien, and Larry Reeker. Other sponsors include Abraham Waksman of the Air 
Force Office of Scientific Research, Michael Shneier of the Office and Naval Research, 
the California MICRO Program, Northrop Corporation, Rockwell International, Hewlett- 
Packard, and Microsoft. 

I would like to thank Academic Press and Morgan Kaufmann Publishers for their 
kind permission to reprint selected portions of previously published material. Chapter 3 
includes material reprinted from Biometrikcc, vol. 82, Judea Pearl, "Causal Diagrams 
for Empirical Research," pp. 669-710, Copyright 1995, with permission from Oxford 
University Press. Chapter 5 includes material reprinted from Sociological Methods and 
Research, vol. 27, Judea Pearl, "Graphs, Causality, and Structural Equation Models," 
pp. 226-84, Copyright 1998, with permission from Sage Publications, Inc. Chapter 7 in- 
cludes material reprinted from Foundations of Science, vol. 1, David Galles and Judea 
Pearl, "An Axiomatic Characterization of Causal Counterfactuals," pp. 151-82, Copyright 
1998, with permission from Kluwer Academic Publishers. Chapter 7 also includes mate- 
rial reprinted from Artificial Intelligence, vol. 97, David Galles and Judea Pearl, "Axioms 
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of Causal Relevance," pp. 9-43, Copyright 1997, with permission from Elsevier Science. 
Chapter 8 includes material modfied from Journal of the American Statistical Associ- 
ation, vol. 92, Alexander Balke and Judea Pearl, "Bounds on Treatment Effects from 
Studies with Imperfect Compliance," pp. 1171-6, Copyright 1997, with permission from 
the American Statistical Association. 

The manuscript was most diligently typed, processed, and illustrated by Kaoru Mul- 
vihill. Jin Tian and Blai Bonet helped in proofing selected chapters. Matt Darnell did a 
masterful job of copyediting these pages. Alan Harvey has been my consoling ombuds- 
man and virtual editor throughout the production process. 

Finally, my humor and endurance through the writing of this book owe a great debt to 
my family - to Tarnmy, Danny, Michelle, and Leora for filling my heart with their smiles, 
and to my wife Ruth for surrounding me with so much love, support, and meaning. 
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Los Angeles 
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CHAPTER ONE 

Introduction to Probabilities, Graphs, and 
Causal Models 

Chance gives rise to thoughts, 
and chance removes them. 

Pascal (1670) 

1.1 INTRODUCTION TO PROBABILITY THEORY 

1.11 Why Probabilities? 

Causality connotes lawlike necessity, whereas probabilities connote exceptionality, doubt, 
and lack of regularity. Still, there are two compelling reasons for starting with, and in 
fact stressing, probabilistic analysis of causality; one is fairly straightforward, the other 
more subtle. 

The simple reason rests on the observation that causal utterances are often used in sit- 
uations that are plagued with uncertainty. We say, for example, "reckless driving causes 
accidents" or "you will fail the course because of your laziness" (Suppes 19701, knowing 
quite well that the antecedents merely tend to make the consequences more likely, not 
absolutely certain. Any theory of causality that aims at accommodating such utterances 
must therefore be cast in a language that distinguishes various shades of likelihood - 
namely, the language of probabilities. Connected with this observation, we note that 
probability theory is currently the official mathematical language of most disciplines that 
use causal modeling, including economics, epidemiology, sociology, and psychology. In 
these disciplines, investigators are concerned not merely with the presence or absence 
of causal connections but also with the relative strengths of those connections and with 
ways of inferring those connections from noisy observations. Probability theory, aided 
by methods of statistical analysis, provides both the principles and the means of coping 
with - and drawing inferences from - such observations. 

The more subtle reason concerns the fact that even the most assertive causal expres- 
sions in natural language are subject to exceptions, and those exceptions may cause major 
difficulties if processed by standard rules of deterministic logic. Consider for example 
the two plausible premises: 

1. My neighbor's roof gets wet whenever mine does. 

2. If I hose my roof it will get wet. 

Taken literally, these two premises imply the implausible conclusion that my neighbor's 
roof gets wet whenever I hose mine. 
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Such paradoxical conclusions are normally attributed to the finite granularity of our 
language, as manifested in the many exceptions that are implicit in premise 1. Indeed, the 
paradox disappears once we take the trouble of explicating those exceptions and write, 
for instance: 

I*. My neighbor's roof gets wet whenever mine does, except when it is covered 
with plastic, or when my roof is hosed, etc. 

Probability theory, by virtue of being especially equipped to tolerate unexplicated ex- 
ceptions, allows us to focus on the main issues of causality without having to cope with 
paradoxes of this kind. 

As we shall see in subsequent chapters, tolerating exceptions solves only part of 
the problems associated with causality. The remaining problems - including issues of 
inference, interventions, identification, ramification, confounding, counterfactuals, and 
explanation - will be the main topic of this book. By portraying those problems in the 
language of probabilities, we emphasize their universality across languages. Chapter 7 
will recast these problems in the language of deterministic logic and will introduce prob- 
abilities merely as a way to express uncertainty about unobserved facts. 

1.1.2 Basic Concepts in Probability Theory 

The bulk of the discussion in this book will focus on systems with a finite number of dis- 
crete variables and thus will require only rudimentary notation and elementary concepts 
in probability theory. Extensions to continuous variables will be outlined but not elabo- 
rated in full generality. Readers who want additional mathematical machinery are invited 
to study the many excellent textbooks on the subject - for example, Feller (1950), Hoe1 
et al. (1971), or the appendix to Suppes (1970). This section provides a brief summary of 
elementary probability concepts, based largely on Pearl (1988b), with special emphasis 
on Bayesian inference and its connection to the psychology of human reasoning under 
uncertainty. Such emphasis is generally missing from standard textbooks. 

We will adhere to the Bayesian interpretation of probability, according to which prob- 
abilities encode degrees of belief about events in the world and data are used to strengthen, 
update, or weaken those degrees of belief. In this formalism, degrees of belief are as- 
signed to propositions (sentences that take on true or false values) in some language, and 
those degrees of belief are combined and manipulated according to the rules of prob- 
ability calculus. We will make no distinction between sentential propositions and the 
actual events represented by those propositions. For example, if A stands for the state- 
ment "Ted Kennedy will seek the nomination for president in year 2000," then P(A I K) 
stands for a person's subjective belief in the event described by A given a body of knowl- 
edge K, which might include that person's assumptions about American politics, specific 
proclamations made by Kennedy, and an assessment of Kennedy's past and personality. 
In defining probability expressions, we often simply write P(A), leaving out the symbol 
K. However, when the background information undergoes changes, we need to identify 
specifically the assumptions that account for our beliefs and explicitly articulate K (or 
some of its elements). 

In the Bayesian formalism, belief measures obey the three basic axioms of probabil- 
ity calculus: 
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P(sure proposition) = I, 

P(A or B) = P(A) + P(B) if A and B are mutually exclusive. 

The third axiom states that the belief assigned to any set of events is the sum of the be- 
liefs assigned to its nonintersecting components. Because any event A can be written as 
the union of the joint events (A A B) and (A A I B ) ,  their associated probabilities are 
given by1 

where P(A, B) is short for P(A A B). More generally, if Bi, i = 1,2, . . . , n, is a set 
of exhaustive and mutually exclusive propositions (called a partition or a variable), then 
P(A) can be computed from P(A, B i ) ,  i = 1,2, . . . , n ,  by using the sum 

which has come to be known as the "law of total probability." The operation of sum- 
ming up probabilities over all Bi is also called "marginalizing over B"; and the resulting 
probability, P ( A  j, is called the marginal probability of A.  For example, the probability 
of A, "The outcomes of two dice are equal," can be computed by summing over the joint 
events (A A Bi), i = 1,2,  . . . , 6 ,  where Bi stands for the proposition "The outcome of 
the first die is i." This yields 

A direct consequence of (1.2) and (1.4) is that a proposition and its negation must be 
assigned a total belief of unity, 

because one of the two statements is certain to be true. 
The basic expressions in the Bayesian formalism are statements about conditional 

probabilities -for example, P(A 1 B) - which specify the belief in A under the assump- 
tion that B is known with absolute certainty. If P(A I B) = P(A), we say that A and B 
are independent, since our belief in A remains unchanged upon learning the truth of B.  
If P(A I B, C) = P(A I C), we say that A and B are conditionally independent given 
C; that is, once we know C, learning B would not change our belief in A. 

Contrary to the traditional practice of defining conditional probabilities in terms of 
joint events, 

The symbols A,  v, 7 denote the logical connectives and, or, and not, respectively. 
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Bayesian philosophers see the conditional relationship as more basic than that of joint 
events - that is, more compatible with the organization of human knowledge. In this 
view, B serves as a pointer to a context or frame of knowledge, and A I B stands for an 
event A in the context specified by B (e.g., a symptom A in the context of a disease B). 
Consequently, empirical knowledge invariably will be encoded in conditional probabil- 
ity statements, whereas belief in joint events (if it is ever needed) will be computed from 
those statements via the product 

which is equivalent to (1.8). For example, it was somewhat unnatural to assess 

directly in (1.6). The mental process underlying such assessment presumes that the two 
outcomes are independent, so to make this assumption explicit the probability of the joint 
event (equality, Bi) should be assessed from the conditional event (equality I Bi) via the 
product 

P(equa1ity I Bi) P(Bi) = P(outcome of second die is i I Bi) P(Bi) 

As in (IS), the probability of any event A can be computed by conditioning it on any 
set of exhaustive and mutually exclusive events Bi, i = 1,2, . . . , n ,  and then summing: 

This decomposition provides the basis for hypothetical or "assumption-based" rea- 
soning. It states that the belief in any event A is a weighted sum over the beliefs in all the 
distinct ways that A might be realized. For example, if we wish to calculate the probabil- 
ity that the outcome X of the first die will be greater than the outcome Y of the second, 
we can condition the event A : X > Y on all possible values of X and obtain 

It is worth reemphasizing that formulas like (1.10) are always understood to apply in 
some larger context K, which defines the assumptions taken as common knowledge (e.g., 
the fairness of dice rolling). Equation (1.10) is really a shorthand notation for the statement 
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P(A I K)  = P(A I Bi, K)P(Bi I K). 

This equation follows from the fact that every conditional probability P(A ( K) is itself 
a genuine probability function; hence it satisfies (1.10). 

Another useful generalization of the product rule (equation (1.9)) is the chain rule for- 
mula. It states that if we have a set of n events, E l ,  E2,  . . . , En,  then the probability of 
the joint event ( E l ,  E 2 ,  . . . , En)  can be written as a product of n conditional probabilities: 

This product can be derived by repeated application of (1.9) in any convenient order. 
The heart of Bayesian inference lies in the celebrated inversion formula, 

which states that the belief we accord a hypothesis H upon obtaining evidence e can be 
computed by multiplying our previous belief P(H)  by the likelihood P(e I H )  that e will 
materialize if H is true. This P (H  I e) is sometimes called the posterior probability (or 
simply posterior), and P(H) is called the prior probability (or prior). The denominator 
P(e) of (1.13) hardly enters into consideration because it is merely a normalizing con- 
stant P(e) = P(e ( H )  P(H)  + P(e ) 1 H )  P ( l H ) ,  which can be computed by requiring 
that P(H ( e )  and P ( 1  H I e) sum to unity. 

Whereas formally (1.13) might be dismissed as a tautology stemming from the defi- 
nition of conditional probabilities, 

P(A I B) = 
P ( A ,  B )  

and P(B ( A) = 
P(A, B )  

P(B) P(A) ' 

the Bayesian subjectivist regards (1.13) as a normative rule for updating beliefs in re- 
sponse to evidence. In other words, although conditional probabilities can be viewed as 
purely mathematical constructs (as in (1.14)), the Bayes adherent views them as primi- 
tives of the language and as faithful translations of the English expression ". . . , given that 
I know A ." Accordingly, (1.14) is not a definition but rather an empirically verifiable re- 
lationship between English expressions. It asserts, among other things, that the belief a 
person attributes to B after discovering A is never lower than that attributed to A A B be- 
fore discovering A. Also, the ratio between these two beliefs will increase proportionally 
with the degree of surprise [P(A)]-' one associates with the discovery of A. 

The importance of (1.13) is that it expresses a quantity P (H  ( e )  - which people of- 
ten find hard to assess - in terms of quantities that often can be drawn directly from our 
experiential knowledge. For example, if a person at the next gambling table declares the 
outcome "twelve," and we wish to know whether he was rolling a pair of dice or spin- 
ning a roulette wheel, our models of the gambling devices readily yield the quantities 
P(twe1ve 1 dice) and P(twe1ve I roulette): 1/36 for the former and 1/38 for the latter. 
Similarly, we can judge the prior probabilities P(dice) and P(rou1ette) by estimating the 
number of roulette wheels and dice tables at the casino. Issuing a direct judgment of 
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P(dice I twelve) would have been much more difficult; only a specialist in such judg- 
ments, trained at the very same casino, could do it reliably. 

In order to complete this brief introduction, we must discuss the notion of proba- 
bilistic model (also called probability space). A probabilistic model is an encoding of 
information that permits us to compute the probability of every well-formed sentence S 
in accordance with the axioms of (1.1)-(1.3). Starting with a set of atomic propositions 
A, B, C, . . . , the set of well-formed sentences consists of all Boolean formulas involving 
these propositions, for example, S = (A A B) v 1 C .  The traditional method of speci- 
fying probabilistic models employs a joint distribution function, which is a function that 
assigns nonnegative weights to every elementary event in the language (an elementary 
event being a conjunction in which every atomic proposition or its negation appears once) 
such that the sum of the weights adds up to 1. For example, if we have three atomic propo- 
sitions, A, B, and C, then a joint distribution function should assign nonnegative weights 
to all eight combinations - (A A B A C) ,  (A A B A l C ) ,  . . . , (1A A 1 B  A 1 C )  - such 
that the eight weights sum to 1. 

The reader may recognize the set of elementary events as the sample space in 
probability textbooks. For example, if A, B, and C correspond to the propositions that 
coins 1, 2, and 3 wiIl come up heads, then the sample space will consist of the set 
{HHH, HHT, HTH, . . . , TTT}. Indeed, it is sometimes convenient to view the conjunc- 
tive formulas corresponding to elementary events as points (or worlds or conjgurations), 
and to regard other formulas as sets made up of these points. Since every Boolean for- 
mula can be expressed as a disjunction of elementary events, and since the elementary 
events are mutually exclusive, we can always compute P ( S )  using the additivity axiom 
(equation (1.3)). Conditional probabilities can be computed the same way, using (1.14). 
Thus, any joint probability function represents a complete probabilistic model. 

Joint distribution functions are mathematical constructs of great importance. They 
allow us to determine quickly whether we have sufficient information to specify a com- 
plete probabilistic model, whether the information we have is consistent, and at what 
point additional information is needed. The criteria are simply to check (i) whether the 
information available is sufficient for uniquely determining the probability of every ele- 
mentary event in the domain and (ii) whether the probabilities add up to 1. 

In practice, however, joint distribution functions are rarely specified explicitly. In the 
analysis of continuous random variables, the distribution functions are given by algebraic 
expressions such as those describing normal or exponential distributions; for discrete vari- 
ables, indirect representation methods have been developed where the overall distribution 
is inferred from local relationships among small groups of variables. Graphical models, 
the most promising of these representations, provide the basis of discussion through- 
out this book. Their use and formal characterization wilI be discussed in the next few 
sections. 

1.1.3 Combining Predictive and Diagnostic Supports 
The essence of Bayes's rule (equation 1.13)) is conveniently portrayed using the odds and 
likelihood ratio parameters. Dividing (1.13) by the complementary form for P ( 1 H  I e), 
we obtain 
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Defining the prior odds on H as 

and the likelihood ratio as 

the posterior odds 

are given by the product 

Thus, Bayes's rule dictates that the overall strength of belief in a hypothesis H, based on 
both our previous knowledge K and the observed evidence e, should be the product of 
two factors: the prior odds O(H) and the likelihood ratio L(e I H ) .  The first factor mea- 
sures the predictive or prospective support accorded to H by the background knowledge 
alone, while the second represents the diagnostic or retrospective support given to H by 
the evidence actually observede2 

Strictly spealung, the likelihood ratio L(e I H )  might depend on the content of the 
tacit knowledge base K. However, the power of Bayesian techniques comes primarily 
from the fact that, in causal reasoning, the relationship P(e ( H) is fairly local: given that 
H is true, the probability of e can be estimated naturally since it is usually not dependent 
on many other propositions in the knowledge base. For example, once we establish that 
a patient suffers from a given disease H, it is natural to estimate the probability that she 
will develop a certain symptom e .  The organization of medical knowledge rests on the 
paradigm that a symptom is a stable characteristic of the disease and should therefore be 
fairly independent of other factors, such as epidemic conditions, previous diseases, and 
faulty diagnostic equipment. For this reason the conditional probabilities P(e I H),  as 
opposed to P ( H  1 e ) ,  are the atomic relationships in Bayesian analysis. The former pos- 
sess modularity features similar to logical rules. They convey a degree of confidence in 
rules such as "If H then e," a confidence that persists regardless of what other rules or 
facts reside in the knowledge base. 

Example 1.1.1 Imagine being awakened one night by the shrill sound of your bur- 
glar alarm. What is your degree of belief that a burglary attempt has taken place? For 

In epidemiology, if H stands for exposure and e stands for disease, then the likelihood ratio L is 
called the "risk ratio" (Rothman and Greenland 1998, p. 50). Equation (1.18) would then give the 
odds that a person with disease e was exposed to H. 
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illustrative purposes we make the following judgments: (a) There is a 95% chance 
that an attempted burglary will trigger the alarm system - P(a1arm I burglary) = 
0.95; (b) based on previous false alarms, there is a slight (1%) chance that the alarm 
will be triggered by a mechanism other than an attempted burglary - P(a1arm I 
no burglary) = 0.01; (c) previous crime patterns indicate that there is a one in ten thou- 
sand chance that a given house will be burglarized on a given night - P(burg1ary) = 
10-4. 

Putting these assumptions together using (1.19), we obtain 

O(burg1ary I alarm) = L(a1arm ( burglary) O(burg1ary) 

So, from 

we have 

0.0095 
Y(burg1ary 1 alarm) = = 0.00941. 

1 + 0.0095 

Thus, the retrospective support imparted to the burglary hypothesis by the alarm 
evidence has increased its degree of belief almost a hundredfold, from one in ten 
thousand to 94.1 in ten thousand. The fact that the belief in burglary is still below 1% 
should not be surprising, given that the system produces a false alarm almost once 
every three months. Notice that it was not necessary to estimate the absolute values 
of the probabilities P(a1arm ( burglary) and P(a1arm I no burglary). Only their ratio 
enters the calculation, so a drect estimate of this ratio could have been used instead. 

1.1.4 Random Variables and Expectations 
By a variable we will mean an attribute, measurement or inquiry that may take on one of 
several possible outcomes, or values, from a specified domain. If we have beliefs (i.e., 
probabilities) attached to the possible values that a variable may attain, we will call that 
variable a random variabk3 For example, the color of the shoes that I will wear tomor- 
row is a random variable named "color," and the values it may take come from the domain 
{yellow, green, red, . . . ). 

Most of our analysis will concern a finite set V of random variables (also called par- 
titions) where each variable X E V may take on values from a finite domain Dx. We 
will use capital letters (e.g., X, Y, Z) for variable names and lowercase letters (x, y ,  z )  

This is a minor generalization of textbook definition, according to which a random variable is a 
mapping fiom the sample space (e.g., the set of elementary events) to the real line. In our defini- 
tion, the mapping is from the sample space to any set of objects called "values," which may or may 
not be ordered. 
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as generic symbols for specific values taken by the corresponding variables. For exam- 
ple, if X stands for the color of an object, then x will designate any possible choice of an 
element from the set (yellow, green, red, . . . ). Clearly, the proposition X = yellow de- 
scribes an event, namely, a subset of possible states of affair that satisfy the proposition 
"the color of the object is yellow." Likewise, each variable X can be viewed as a parti- 
tion of the states of the world, since the statement X = x defines a set of exhaustive and 
mutually exclusive sets of states, one for each value of x. 

In most of our discussions, we will not make notational distinction between variables 
and sets of variables, because a set of variables essentially defines a compound variable 
whose domain is the Cartesian product of the domains of the individual constituents in 
the set. Thus, if Z stands for the set {X, Y )  then z stands for pairs (x, y)  such that x E 

Dx and y E Dy. When the distinction between variables and sets of variables requires 
special emphasis, indexed letters (say, XI, X2, . . . , X, or Vl, V2, . . . , V,) will be used to 
represent individual variables. 

We shall consistently use the abbreviation P(x)  for the probabilities P(X = x), x E 
Dx. Likewise, if Z stands for the set {X, Y), then P(z) will be defined as 

a 
P(z) = p ( z  = 2) = p ( x  = X, Y = y), x E Dx, y Dy 

When the values of a random variable X are real numbers, X is called a real random 
variable; one can then define the mean or expected value of X as 

and the conditional mean of X, given event Y = y, as 

The expectation of any function g of X is defined as 

In particular, the function g ( X )  = (X - E(x))* has received much attention; its expec- 
tation is called the variance of X, denoted a;; 

The conditional mean E(X ( Y = y) is the best estimate of X ,  given the observation 
Y = y, in the sense of minimizing the expected square error C x ( x  - i12p(x I y) over 
all 2. 

The expectation of a function g(X, Y )  of two variables, X and Y, requires the joint 
probability P(x,  y) and is defined as 
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(cf. equation (1.23)). Of special importance is the expectation of the product ( g ( X ,  Y) = 
(X - E ( X ) ) ( Y  - E ( Y ) ) ,  which is known as the covariance of X and Y, 

and which is often normalized to yield the correlation coe@cient 

and the regression coe@cient 

The conditional variance, covariance, and correlation coefficient, given Z = z ,  are 
defined in a similar manner, using the conditional distribution P(x,  y I z) in taking expec- 
tations. In particular, the conditional correlation coeficient, given Z = z, is defined as 

Additional properties, specific to normal distributions, will be reviewed in Chapter 5 
(Section 5.2.1). 

The foregoing definitions apply to discrete random variables - that is, variables that 
take on finite or denumerable sets of values on the real line. The treatment of expectation 
and correlation is more often applied to continuous random variables, which are charac- 
terized by a densityfunction f ( x )  defined as follows: 

for any two real numbers a and b with a c b. If X is discrete then f (x) coincides with 
the probability function P(x), once we interpret the integral through the translation 

CO lm f (x) dx * P ( x ) .  
X 

Readers accustomed to continuous analysis should bear this translation in mind when- 
ever summation is used in this book. For example, the expected value of a continuous 
random variable X can be obtained from (1.21), to read 

with analogous translations for the variance, correlation, and so forth. 
We now turn to define conditional independence relationships among variables, a 

central notion in the analysis of causal models. 
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1.1.5 Conditional Independence and Graphoids 

Definition 1.1.2 (Conditional Independence) 
Let V = { V,, Vz, . . . ) be ajnite set of variables. Let P(.) be a joint probability function 
over the variables in V,  and let X, Y, Z stand for any three subsets of variables in V The 
sets X and Yare said to be conditionally independent given Z if 

P(x I y, z) = P(x 1 z )  whenever P(y, z) > 0. 

In words, learning the value of Y does not provide additional infomation about X, once 
we know Z. (Metaphorically, Z "screens ofl" X from Y.) 

Equation (1.26) is a terse way of saying the following: For any configuration x of the 
variables in the set X and for any configurations y and z of the variables in Y and Z sat- 
isfying P(Y = y, Z = z) > 0, we have 

We will use Dawid's (1979) notation (X 11 Y I Z ) p  or simply (X L Y I Z)  to denote 
the conditional independence of X and Y given Z; thus, 

(X IL Y I Z)P iff P(x I y, z )  = P(x. I z) 

for all values x,  y, z such that P(y, z) > 0. Unconditional independence (also called 
marginal independence) will be denoted by (X IL Y 1 0); that is, 

(X Jl Y I 0) iff P(x I y) = P(x) whenever P( y) > 0 

("iff" is shorthand for "if and only if"). Note that (X IL Y ] Z) implies the conditional 
independence of all pairs of variables V, E X and V, 6 Y, but the converse is not neces- 
sarily true. 

The following is a (partial) list of properties satisfied by the conditional independence 
relation (X IL Y I 2 ) .  

Symmetry: ( X L Y  I Z)  =+ ( Y L X  12) .  

Decomposition: (X lL Y W I Z) (X Jl Y I Z). 

Weakunion: (XILYW I Z )  (XlLY I ZW). 

Contraction: ( X  IL Y ) 2 )  & (X IL W I ZY) + (X IL Y W 1 2) .  

Intersection: (XIL W I ZY) & ( X Y  Y I ZW) d (XIL YW I Z). 

(Intersection is valid in strictly positive probability distributions.) 
The proof of these properties can be derived by elementary means from (1.28) and the 

basic axioms of probability theory.4 These properties were called graphoid axioms by 

These properties were first introduced by Dawid (1979) and Spohn (1980) in a slightly different 
form, and were independently proposed by Pearl and Paz (1987) to characterize the relationships 
between graphs and informational relevance. 
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Pearl and Paz (1987) and Geiger et al. (1990) and have been shown to govern the concept 
of informational relevance in a wide variety of interpretations (Pearl 1988b). In graphs, 
for example, these properties are satisfied if we interpret (X lL Y I Z) to mean "all paths 
from a subset X of nodes to a subset Y of nodes are intercepted by a subset Z of nodes." 

The intuitive interpretation of the graphoid axioms is as follows (Pearl 1988b, p. 85). 
The symmetry axiom states that, in any state of knowledge Z, if Y tells us nothing new 
about X then X tells us nothing new about Y. The decomposition axiom asserts that if 
two combined items of information are judged irrelevant to X, then each separate item 
is irrelevant as well. The weak union axiom states that learning irrelevant information 
W cannot help the irrelevant information Y become relevant to X. The contraction ax- 
iom states that if we judge W irrelevant to X after learning some irrelevant information 
Y, then W must have been irrelevant before we learned Y. Together, the weak union and 
contraction properties mean that irrelevant information should not alter the relevance sta- 
tus of other propositions in the system; what was relevant remains relevant, and what 
was irrelevant remains irrelevant. The intersection axiom states that if Y is irrelevant to 
X when we know W and if W is irrelevant to X when we know Y, then neither W nor Y 
(nor their combination) is relevant to X. 

1.2 GRAPHS AND PROBABILITIES 

1.2.1 Graphical Notation and Terminology 
A graph consists of a set V of vertices (or nodes) and a set E of edges (or links) that 
connect some pairs of vertices. The vertices in our graphs will correspond to variables 
(whence the common symbol V) and the edges will denote a certain relationship that 
holds in pairs of variables, the interpretation of which will vary with the application. Two 
variables connected by an edge are called adjacent. 

Each edge in a graph can be either directed (marked by a single arrowhead on the 
edge), or undirected (unmarked links). In some applications we will also use "bidirected" 
edges to denote the existence of unobserved common causes (sometimes called con- 
founders). These edges will be marked as dotted curved arcs with two arrowheads (see 
Figure l.l(a)). If all edges are directed (see Figure l.l(b)), we then have a directed 
graph. If we strip away all arrowheads from the edges in a graph G, the resultant undi- 
rected graph is called the skeleton of G. A path in a graph is a sequence of edges (e.g., 
((W, Z), (Z, Y), (Y, X), (X, 2) )  in Figure I.l(a)) such that each edge starts with the ver- 
tex ending the preceding edge. In other words, a path is any unbroken, nonintersecting 
route traced out along the edges in a graph, which may go either along or against the ar- 
rows. If every edge in a path is an arrow that points from the first to the second vertex of 
the pair, we have a directedpath. In Figure l.l(a), for example, the path (( W, Z),  (2 ,  Y)) 
is directed but the paths ((W, Z), (2 ,  Y), (Y, X)) and ((W, Z), (2 ,  X)) are not. If there 
exists a path between two vertices in a graph then the two vertices are said to be con- 
nected; else they are disconnected. 

Directed graphs may include directed cycles (e.g., X -, Y, Y -, X), representing 
mutual causation or feedback processes, but not self-loops (e.g., X -, X). A graph (like 
the two in Figure 1.1) that contains no directed cycles is called acyclic. A graph that is 
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Figure 1.1 (a) A graph containing both di- 
rected and bidirected edges. (b) A directed acy- 
clic graph (DAG) with the same skeleton as (a). 

Y 

both directed and acyclic (Figure l.l(b)) is called a directed acyclic graph (DAG), and 
such graphs will occupy much of our discussion of causality. We make free use of the 
terminology of kinship (e-g., parents, children, descendants, ancestors, spouses) to de- 
note various relationships in a graph. These kinship relations are defined along the full 
arrows in the graph, including arrows that form directed cycles but ignoring bidirected 
and undirected edges. In Figure l.l(a), for example, Y has two parents (X and Z),  three 
ancestors (X, Z, and W) ,  and no children, while X has no parents (hence, no ancestors), 
one spouse (Z), and one child ( Y ) .  A family in a graph is a set of nodes containing a 
node and all its parents. For example, {W}, {Z, W } ,  {X}, and {Y, 2, X )  are the families 
in the graph of Figure l.l(a). 

A node in a directed graph is called a root if it has no parents and a sink if it has no 
children. Every DAG has at least one root and at least one sink. A connected DAG in 
which every node has at most one parent is called a tree, and a tree in which every node 
has at most one child is called a chain. A graph in which every pair of nodes is connected 
by an edge is called complete. The graph in Figure l.l(a), for instance, is connected but 
not complete, because the pairs (W, X) and (W, Y) are not adjacent. 

1.2.2 Bayesian Networks 
The role of graphs in probabilistic and statistical modeling is threefold: 

1. to provide convenient means of expressing substantive assumptions; 

2. to facilitate economical representation of joint probability functions; and 

3. to facilitate efficient inferences from observations. 

We will begin our discussion with item 2. 
Consider the task of specifying an arbitrary joint distribution, P(xl, . . . , x,), for n 

dichotomous variables. To store P(xl ,  . . . , x,) explicitly would require a table with Zn en- 
tries, an unthinkably large number by any standard. Substantial economy can be achieved 
when each variable depends on just a small subset of other variables. Such dependence 
information permits us to decompose large distribution functions into several small dis- 
tributions - each involving a small subset of variables - and then to piece them together 
coherently to answer questions of global nature. Graphs play an essential role in such 
decomposition, for they provide a vivid representation of the sets of variables that are 
relevant to each other in any given state of knowledge. 
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Both directed and undirected graphs have been used by researchers to facilitate such 
decomposition. Undirected graphs, sometimes called Markov nemorks (Pearl 1988b), 
are used primarily to represent symmetrical spatial relationships (Isharn 1981; Cox and 
Wermuth 1996; Lauritzen 1996). Directed graphs, especially DAGs, have been used 
to represent causal or temporal relationships (Lauritzen 1982; Wermuth and Lauritzen 
1983; Kiiveri et al. 1984) and came to be known as Bayesian networks, a term coined in 
Pearl (1985) to emphasize three aspects: (1) the subjective nature of the input informa- 
tion; (2) the reliance on Bayes's conditioning as the basis for updating information; and 
(3) the distinction between causal and evidential modes of reasoning, a distinction that 
underscores Thomas Bayes's paper of 1763. Hybrid graphs (involving both directed and 
undirected edges) have also been proposed for statistical modeling (Wermuth and Lau- 
ritzen 1990), but in this book our main interest will focus on directed acyclic graphs, with 
occasional use of directed cyclic graphs to represent feedback cycles. 

The basic decomposition scheme offered by directed acyclic graphs can be illustrated 
as follows. Suppose we have a distribution P defined on n discrete variables, which we 
may order arbitrarily as XI, X2, . . . , X,. The chain rule of probability calculus (equation 
(1.12)) always permits us to decompose P as a product of n conditional distributions: 

Now suppose that the conditional probability of some variable Xj is not sensitive to all 
the predecessors of Xi but only to a small subset of those predecessors. In other words, 
suppose that Xj is independent of all other predecessors, once we know the value of a 
select group of predecessors called PAj. We can then write 

in the product of (1.30), which will considerably simplify the input information required. 
Instead of specifying the probability of Xj conditional on all possible realizations of its 
predecessors X I ,  . . . , Xj-l, we need only concern ourselves with the possible realizations 
of the set PAj. The set PAj is called the Markovian parents of Xj, or parents for short. 
The reason for the name becomes clear when we build graphs around this concept. 

Definition 1.2.1 (Markovian Parents) 
Let V = { X I ,  . . . , X,} be an ordered set of variables, and let P ( v )  be the jointprobabil- 
ity distribution on these variables. A set of variables PAj is said to be Markovian parents 
of Xj if PAj is a minimal set of predecessors of Xi that renders Xj independent of all its 
other predecessors. In other words, PAj is any subset of {XI, . . . , Xjdl) satisfiing 

and such that no proper subset of PAj satisfies (1.32).5 

Lowercase symbols (e.g., x j ,  pa,) denote particular realizations of the corresponding variables 
(e.g., Xi ,  PA,). 
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Figure 1.2 A Bayesian network representing 
dependencies among five variables. 
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Definition 1.2.1 assigns to each variable Xj a select set PAj of preceding variables that 
are sufficient for determining the probability of Xj; knowing the values of other pre- 
ceding variables is redundant once we know the values paj of the parent set PAj. This 
assignment can be represented in the form of a DAG in which variables are represented 
by nodes and arrows are drawn from each node of the parent set PAj toward the child 
node Xj. Definition 1.2.1 also suggests a simple recursive method for constructing such 
a DAG: Starting with the pair (XI, X2), we draw an arrow from XI to X2 if and only if 
the two variables are dependent. Continuing to X3, we draw no arrow in case X3 is in- 
dependent of (XI, X2}; otherwise, we examine whether X2 screens off X3 from XI or XI 
screens off X3 from X2. In the first case, we draw an arrow from X 2  to Xj; in the second, 
we draw an arrow from X1 to X3. If no screening condition is found, we draw arrows to 
X3 from both X1 and X2. In general: at the jth stage of the construction, we select any 
minimal set of Xj's predecessors that screens off Xj from its other predecessors (as in 
equation (1.32)), call this set PAj and draw an arrow from each member in PAj to Xi. 
The result is a directed acyclic graph, called a Bayesian network, in which an arrow from 
Xi to Xj assigns Xi as a Markovian parent of Xi, consistent with Definition 1.2.1. 

It can be shown (Pearl 1988b) that the set PAj is unique whenever the distribution 
P(v) is strictly positive (i.e., involving no logical or definitional constraints), so that every 
configuration v of variables, no matter how unlikely, has some finite probability of oc- 
curring. Under such conditions, the Bayesian network associated with P(v) is unique, 
given the ordering of the variables. 

Figure 1.2 illustrates a simple yet typical Bayesian network. It describes relationships 
among the season of the year (XI), whether rain falls (Xz), whether the sprinkler is on 
(X3), whether the pavement would get wet (X4), and whether the pavement would be 
slippery (X5). All variables in this figure are binary (taking a value of either true or false) 
except for the root variable X1, which can take one of four values: spring, summer, fall, 
or winter. The network was constructed in accordance with Definition 1.2.1, using causal 
intuition as a guide. The absence of a direct link between XI and X5, for example, cap- 
tures our understanding that the influence of seasonal variations on the slipperiness of the 
pavement is mediated by other conditions (e.g., the wetness of the pavement). This intu- 
ition coincides with the independence condition of (1.32), since knowing X4 renders X5 
independent of {XI, X2, X3). 

The construction implied by Definition 1.2.1 defines a Bayesian network as a carrier of 
conditional independence relationships along the order of construction. Clearly, every dis- 
tribution satisfying (1.32) must decompose (using the chain rule of (1.30)) into the product 
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For example, the DAG in Figure 1.2 induces the decomposition 

The product decomposition in (1.33) is no longer order-specific since, given P and 
G, we can test whether P decomposes into the product given by (1.33) without making 
any reference to variable ordering. We therefore conclude that a necessary condition for 
a DAG G to be a Bayesian network of probability distribution P is for P to admit the 
product decomposition dictated by G, as given in (1.33). 

Definition 1.2.2 (Markov Compatibility) 
I f  a probability function P admits the factorization of (1.33) relative to DAG G, we say 
that G represents P, that G and P are compatible, or that P is Markov relative to G . ~  

Ascertaining compatibility between DAGs and probabilities is important in statistical 
modeling primarily because compatibility is a necessary and sufficient condition for a 
DAG G to explain a body of empirical data represented by P, that is, to describe a sto- 
chastic process capable of generating P (e.g. Pearl 1988b, pp. 210-23). If the value of 
each variable Xi is chosen at random with some probability Pi(xi I pai), based solely on 
the values pai previously chosen for PA;,  then the overall distribution P of the generated 
instances XI,  x2, . . . , X, will be Markov relative to G. Conversely, if P is Markov rela- 
tive to G then there exists a set of probabilities Pi(xi I pa;)  according to which we can 
choose the value of each variable Xi such that the distribution of the generated instances 
X I ,  xz, . . . , xn will be equal to P. (In fact, the correct choice of Pi (xi I pai) would be 
simply P(xi I pa;).) 

A convenient way of characterizing the set of distributions compatible with a DAG 
G is to list the set of (conditional) independencies that each such distribution must sat- 
isfy. These independencies can be read off the DAG by using a graphical criterion called 
d-separation (Pearl 1988b; the d denotes directional), which will play a major role in 
many discussions in this book. 

1.2.3 The d-Separation Criterion 

Consider three disjoint sets of variables, X, Y, and Z, which are represented as nodes in 
a directed acyclic graph G. To test whether X is independent of Y given Z in any distri- 
bution compatible with G, we need to test whether the nodes corresponding to variables 
Z "block" all paths from nodes in X to nodes in Y. By path we mean a sequence of con- 
secutive edges (of any directionality) in the graph, and blocking is to be interpreted as 
stopping the flow of information (or of dependency) between the variables that are con- 
nected by such paths, as defined next. 

Definition 1.2.3 (d-Separation) 
A path p is said to be d-separated (or blocked) by a set of nodes Z if and only if 

The latter expression seems to gain strength in recent literature (e.g. Spirtes et al. 1993; Lauritzen 
1996). Pearl (1988b, p. 116) used "G is an I-map of P." 
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1. p contains a chain i -+ m -+ j or a fork i + m -, j such that the middle node 
m is in Z, or 

2. p contains an inverted fork (or collider) i -, m + j such that the middle node 
m is not in Z and such that no descendant of m is in Z. 

A set Z is said to d-separate X from Y ifand only if2 blocks every path from a node in X 
to a node in Y. 

The intuition behind d-separation is simple and can best be recognized if we attribute 
causal meaning to the arrows in the graph. In causal chains i 4 m + j and causal 
forks i t m + j, the two extreme variables are marginally dependent but become in- 
dependent of each other (i.e., blocked) once we condition on (i.e., know the value of) 
the middle variable. Figuratively, conditioning on m appears to "block the flow of in- 
formation along the path, since learning about i has no effect on the probability of j, 
given m.  Inverted forks i -, m + j, representing two causes having a common effect, 
act the opposite way; if the two extreme variables are (marginally) independent, they 
will become dependent (i.e., connected through unblocked path) once we condition on 
the middle variable (i.e., the common effect) or any of its descendants. This can be con- 
firmed in the context of Figure 1.2. Once we know the season, X3 and X2 are independent 
(assuming that sprinklers are set in advance, according to the season); whereas finding 
that the pavement is wet or slippery renders X 2  and X3 dependent, because refuting one 
of these explanations increases the probability of the other. 

In Figure 1.2, X = {X2} and Y = (X3} are d-separated by Z = {XI) ,  because both 
paths connecting X2 and X3 are blocked by 2. The path X2 + XI + X3 is blocked be- 
cause it is a fork in which the middle node X1 is in 2, while the path X2 4 X4 t X3 
is blocked because it is an inverted fork in which the middle node X4 and all its descen- 
dants are outside Z. However, X and Y are not d-separated by the set 2' = {XI,  X5): the 
path X2 -C X4 - X3 (an inverted fork) is not blocked by Z' ,  since X5,  a descendant of 
the middle node X4, is in Z'. Metaphorically, learning the value of the consequence X5 
renders its causes X2 and X3 dependent, as if a pathway were opened along the arrows 
converging at X4. 

At first glance, readers might find it a bit odd that conditioning on a node not lying on 
a blocked path may unblock the path. However, this corresponds to a general pattern of 
causal relationships: observations on a common consequence of two independent causes 
tend to render those causes dependent, because information about one of the causes tends 
to make the other more or less likely, given that the consequence has occurred. This pat- 
tern is known as selection bias or Berkson Sparadoor in the statistical literature (Rerkson 
1946) and as the explaining away effect in artificial intelligence (Kim and Pearl 1983). 
For example, if the admission criteria to a certain graduate school call for either high 
grades as an undergraduate or special musical talents, then these two attributes will be 
found to be correlated (negatively) in the student population of that school, even if these 
attributes are uncorrelated in the population at large. Indeed, students with low grades 
are likely to be exceptionally gifted in music, which explains their admission to graduate 
school. 

Figure 1.3 illustrates more elaborate examples of d-separation: example (a) contains 
a bidirected arc Z1 4 - - w  Z3 and (b) involves a directed cycle X -* Z2 --, Z I  + X. In 
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Figure 1.3 Graphs illustrating d-separation. In (a), X and Y are d-separated given Z2 and d-  
connected given Z1. In (b), X and Y cannot be d-separated by any set of nodes. 

Figure 1.3(a), the two paths between X and Y are blocked when none of {Z1, Z2, Z3) is 
measured. However, the path X -F Z1 4--, Z3 e Y becomes unblocked when Z1 is 
measured. This is so because Z1 unblocks the "colliders" at both Z1 and Z3; the first 
because Z1 is the collision node of the collider, the second because Z1 is a descendant 
of the collision node Z3 through the path Z1 + Z2 + 2 3 .  In Figure 1.3(b), X and Y 
cannot be d-separated by any set of nodes, including the empty set. If we condition on 
Z2, we block the path X t Zl t Z2 t Y yet unblock the path X + Z2 + Y. If we 
condition on Z1,  we again block the path X e Z1 e Z2 t Y and unblock the path 
X -P Z2 t Y, because Z1 is a descendant of the collision node Z2. 

The connection between d-separation and conditional independence is established 
through the following theorem due to Verma and Pearl (1988; see also Geiger et al. 1990). 

Theorem 1.2.4 (Probabilistic Implications of d-Separation) 
If sets X and Yare d-separated by Z in a DAG G, then X is independent of Y conditional 
on Z in every distribution compatible with G. Conversely, ifX and Yare not d-separated 
by Z in a DAG G, then X and Yare dependent conditional on Z in at least one distribution 
compatible with G. 

The converse part of Theorem 1.2.4 is in fact much stronger - the absence of d-separation 
implies dependence in almost all distributions compatible with G. The reason is that a 
precise tuning of parameters is required to generate independency along an unblocked 
path in the diagram, and such tuning is unlikely to occur in practice (see Spirtes et al. 
1993 and Sections 2.4 and 2.9.1). 

In order to distinguish between the probabilistic notion of conditional independence 
(X IL Y I Z)p and the graphical notion of d-separation, for the latter we will use the no- 
tation (X lL Y I Z)G. We can thereby express Theorem 1.2.4 more succinctly as follows. 

Theorem 1.2.5 
For any three disjoint subsets of nodes (X, Y, Z)  in a DAG G and for allprobability func- 
tions P, we have: 

(i) (X Jl Y I Z)G a (X Jl Y 1 Z)p whenever G and P are compatible; and 

(ii) if (X IL Y I Z)p holds in all distributions compatible with G, it follows that 
( X l Y  I Z ) G -  

An alternative test for d-separation has been devised by Lauritzen et al. (1990), based on 
the notion of ancestral graphs. To test for (X lL Y I Z)G,  delete from G all nodes except 
those in {X, Y, Z) and their ancestors, connect by an edge every pair of nodes that share 
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a common child, and remove all arrows from the arcs. Then (X IL Y I Z ) G  holds if and 
only if Z intercepts all paths between X and Y in the resulting undirected graph. 

Note that the ordering with which the graph was constructed does not enter into the 
d-separation criterion; it is only the topology of the resulting graph that determines the 
set of independencies that the probability P must satisfy. Indeed, the following theorem 
can be proven (Pearl 1988b, p. 120). 

Theorem 1.2.6 (Ordered Markov Condition) 
A necessary and suficient condition for a probability distribution P to be Markov rela- 
tive a DAG G is that, conditional on its parents in G, each variable be independent of all 
its predecessors in some ordering of the variables that agrees with the arrows of G. 

A consequence of this theorem is an order-independent criterion for determining whether 
a given probability P is Markov relative to a given DAG G .  

Theorem 1.2.7 (Parental Markov Condition) 
A necessary and suficient condition for a probability distribution P to be Markov rel- 
ative a DAG G is that every variable be independent of all its nondescendants (in G ) ,  
conditional on its parents. 

This condition, which Kiiveri et al. (1984) and Lauritzen (1996) called the "local" Markov 
condition, is sometimes taken as the definition of Bayesian networks (Howard and Math- 
eson 1981). In practice, however, the ordered Markov condition is easier to use. 

Another important property that follows from d-separation is a criterion for deter- 
mining whether two given DAGs are observationally equivalent - that is, whether every 
probability distribution that is compatible with one of the DAGs is also compatible with 
the other. 

Theorem 1.2.8 (Observational Equivalence) 
Two DAGs are observationally equivalent ifand only ifthey have the same skeletons and 
the same sets of v-structures, that is, two converging arrows whose tails are not con- 
nected by an arrow (Verma and Pearl 1990).~ 

Observational equivalence places a limit on our ability to infer directionality from proba- 
bilities alone. Two networks that are observationally equivalent cannot be distinguished 
without resorting to manipulative experimentation or temporal information. For exam- 
ple, reversing the direction of the arrow between XI and X2 in Figure 1.2 would neither 
introduce nor destroy a v-structure. Therefore, this reversal yields an observationally 
equivalent network, and the directionality of the link XI -, X2 cannot be determined 
from probabilistic information. The arrows X 2  -+ X4 and X4 --, X5, however, are of 
different nature; there is no way of reversing their directionality without creating a new 
v-structure. Thus, we see that some probability functions P (such as the one responsi- 
ble for the construction of the Bayesian network in Figure 1.2), when unaccompanied 

' An identical criterion was independently derived by Frydenberg (1990) in the context of chain 
graphs, where strict positivity is assumed. 
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by temporal information, can constrain the directionality of some arrows in the graph. 
The precise meaning of such directionality constraints - and the possibility of using 
these constraints for inferring causal relationships from data - will be formalized in 
Chapter 2. 

1.2.4 Inference with Bayesian Networks 

Bayesian networks were developed in the early 1980s to facilitate the tasks of prediction 
and "abduction" in artificial intelligence (AI) systems. In these tasks, it is necessary to 
find a coherent interpretation of incoming observations that is consistent with both the 
observations and the prior information at hand. Mathematically, the task boils down to 
the computation of P(y I x), where X is a set of observations and Y is a set of variables 
that are deemed important for prediction or diagnosis. 

Given a joint distribution P, the computation of P(y I x)  is conceptually trivial and 
invokes straightforward application of Bayes's rule to yield 

where S stands for the set of all variables excluding X and Y. Because every Bayesian 
network defines a joint probability P (given by the product in (1.33)), it is clear that 
P ( y  I x) can be computed from a DAG G and the conditional probabilities P(xi ] pai)  
defined on the families of G. 

The challenge, however, lies in performing these computations efficiently and within 
the representation level provided by the network topology. The latter is important in sys- 
tems that generate explanations for their reasoning processes. Although such inference 
techniques are not essential to our discussion of causality, we will nevertheless survey 
them briefly, for they demonstrate (i) the effectiveness of organizing probabiIistic knowl- 
edge in the form of graphs and (ii) the feasibility of performing coherent probabilistic 
calculations (and approximations thereof) on such organization. Details can be found in 
the references cited. 

The first algorithms proposed for probabilistic calculations in Bayesian networks used 
message-passing architecture and were limited to trees (Pearl 1982; Kim and Pearl 1983). 
With this technique, each variable is assigned a simple processor and permitted to pass 
messages asynchronously with its neighbors until equilibrium is achieved (in a finite 
number of steps). Methods have since been developed that extend this tree propagation 
(and some of its synchronous variants) to general networks. Among the most popular are 
Lauritzen and Spiegelhalter's (1988) method of join-tree propagation and the method of 
cut-set conditioning (Pearl 1988b, pp. 204-10; Jensen 1996). In the join-tree method, we 
decompose the network into clusters (e.g. cliques) that form tree structures and then treat 
the set variables in each cluster as a compound variable that is capable of passing mes- 
sages to its neighbors (which are also compound variables). For example, the network of 
Figure 1.2 can be structured as a Markov-compatible chain of three clusters: 
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In the cut-set conditioning method, a set of variables is instantiated (given specific 
values) such that the remaining network forms a tree. The propagation is then performed 
on that tree, and a new instantiation chosen, until all instantiations have been exhausted; 
the results are then averaged. In Figure 1.2, for example, if we instantiate XI to any spe- 
cific value (say, X1 = summer), then we break the pathway between X 2  and X 3  and the 
remaining network becomes tree-structured. The main advantage of the cut-set condi- 
tioning method is that its storage-space requirement is minimal (linear in the size of the 
network), whereas that of the join-tree method might be exponential. Hybrid combina- 
tions of these two basic algorithms have also been proposed (Shachter et al. 1994; Dechter 
1996) to allow flexible trade-off of storage versus time. 

Whereas inference in general networks is "NP-hard" (Cooper 1990), the computa- 
tional complexity for each of the methods cited here can be estimated prior to actual pro- 
cessing. When the estimates exceed reasonable bounds, an approximation method such 
as stochastic simulation (Pearl 1988b, pp. 210-23) can be used instead. This method 
exploits the topology of the network to perform Gibbs sampling on local subsets of vari- 
ables, sequentially as well as concurrently. 

Additional properties of DAGs and their applications to evidential reasoning in ex- 
pert systems are discussed in Pearl (1988b), Lauritzen and Spiegelhalter (1988), Pearl 
(1993a), Spiegelhalter et al. (1993), Heckerman et al. (1995), and Shafer (1996b, 1997). 

1.3 CAUSAL BAYESIAN NETWORKS 

The interpretation of direct acyclic graphs as carriers of independence assumptions does 
not necessarily imply causation; in fact, it will be valid for any set of recursive inde- 
pendencies along any ordering of the variables, not necessarily causal or chronological. 
However, the ubiquity of DAG models in statistical and A1 applications stems (often un- 
wittingly) primarily from their causal interpretation - that is, as a system of processes, 
one per family, that could account for the generation of the observed data. It is this causal 
interpretation that explains why DAG models are rarely used in any variable ordering 
other than those which respect the direction of time and causation. 

The advantages of building DAG models around causal rather than associational in- 
formation are several. First, the judgments required in the construction of the model are 
more meaningful, more accessible and hence more reliable. The reader may appreciate 
this point by attempting to construct a DAG representation for the associations in Fig- 
ure 1.2 along the ordering (X5, XI, X3, X 2 ,  X4). Such exercises illustrate not only that 
some independencies are more vividly accessible to the mind than others but also that 
conditional independence judgments are accessible (hence reliable) only when they are 
anchored onto more fundamental building blocks of our knowledge, such as causal rela- 
tionships. In the example of Figure 1.2, our willingness to assert that X 5  is independent 
of X 2  and X g  once we know X4 (i.e., whether the pavement is wet) is defensible because 
we can easily translate the assertion into one involving causal relationships: that the in- 
Jluence of rain and sprinkler on slipperiness is mediated by the wetness of the pavement. 
Dependencies that are not supported by causal links are considered odd or spurious and 
are even branded "paradoxical" (see the discussion of Berkson's paradox, Section 1.2.3). 
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We will have several opportunities throughout this book to demonstrate the primacy 
of causal over associational knowledge. In extreme cases, we will see that people tend 
to ignore probabilistic information altogether and attend to causal information instead 
(see Section 6.1.4).' This puts into question the ruling paradigm of graphical models in 
statistics (Wermuth and Lauritzen 1990; Cox and Wermuth 1996), according to which 
conditional independence assumptions are the primary vehicle for expressing substan- 
tive kn~wledge.~ It seems that if conditional independence judgments are byproducts 
of stored causal relationships, then tapping and representing those relationships directly 
would be a more natural and more reliable way of expressing what we know or believe 
about the world. This is indeed the philosophy behind causal Bayesian networks. 

The second advantage of building Bayesian networks on causal relationships - one 
that is basic to the understanding of causal organizations - is the ability to represent and 
respond to external or spontaneous changes. Any local reconfiguration of the mechanisms 
in the environment can be translated, with only minor modification, into an isomorphic 
reconfiguration of the network topology. For example, to represent a disabled sprinkler 
in the story of Figure 1.2, we simply delete from the network all links incident to the node 
Sprinkler. To represent the policy of turning the sprinkler off if it rains, we simply add a 
link between Rain and Sprinkler and revise P(x3 1 X I ,  x2). Such changes would require 
much greater remodeling efforts if the network were not constructed along the causal 
direction but instead along (say) the order (X5, XI, X3, X2, X4). This remodeling flexi- 
bility may well be cited as the ingredient that marks the division between deliberative and 
reactive agents and that enables the former to manage novel situations instantaneously, 
without requiring training or adaptation. 

1.3.1 Causal Networks as Oracles for Interventions 
The source of this flexibility rests on the assumption that each parent-child relation- 
ship in the network represents a stable and autonomous physical mechanism - in other 
words, that it is conceivable to change one such relationship without changing the others. 
Organizing one's knowledge in such modular configurations permits one to predict the 
effect of external interventions with minimum of extra information. Indeed, causal mod- 
els (assuming they are valid) are much more informative than probability models. A joint 
distribution tells us how probable events are and how probabilities would change with 
subsequent observations, but a causal model also tells us how these probabilities would 
change as a result of external interventions - such as those encountered in policy analysis, 
treatment management, or planning everyday activity. Such changes cannot be deduced 
from a join distribution, even if fully specified. 

The connection between modularity and interventions is as follows. Instead of spec- 
ifying a new probability function for each of the many possible interventions, we specify 

The Tversky and Kahneman (1980) experiments with causal biases in probability judgment consti- 
tute another body of evidence supporting this observation. For example, most people believe that 
it is more likely for a girl to have blue eyes, given that her mother has blue eyes, than the other way 
around; the two probabilities are in fact equal. 
The author was as guilty of advocating the centrality of conditional independence as were his col- 
leagues in statistics; see Pearl (1988b, p. 79). 
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merely the immediate change implied by the intervention and, by virtue of autonomy, 
we assume that the chzlnge is local, and does not spread over to mechanisms other than 
those specified. Once we know the identity of the mechanism altered by an intervention 
and the nature of the alteration, the overall effect of an intervention can be predicted by 
modifying the corresponding factors in (1.33) and using the modified product to compute 
a new probability function. For example, to represent the action "turning the sprinkler 
On" in the network of Figure 1.2, we delete the link XI  -, X3 and assign X3 the value 
On. The graph resulting from this operation is shown in Figure 1.4, and the resulting joint 
distribution on the remaining variables will be 

in which all the factors on the right-hand side (r.h.s.), by virtue of autonomy, are the same 
as in (1.34). 

The deletion of the factor P(x3 X I )  represents the understanding that, whatever re- 
lationship existed between seasons and sprinklers prior to the action, that relationship is 
no longer in effect while we perform the action. Once we physically turn the sprinkler on 
and keep it on, a new mechanism (in which the season has no say) determines the state 
of the sprinkler. 

Note the difference between the action do(X3 = On) and the observation X 3  = 
On. The effect of the latter is obtained by ordinary Bayesian conditioning, that is, 
P(xl, x2, xq, xg I X 3  = On), while that of the former by conditioning a mutilated graph, 
with the link XI -, X 3  removed. This mirrors indeed the difference between seeing and 
doing: after observing that the sprinkler is on, we wish to infer that the season is dry, that 
it probably did not rain, and so on; no such inferences should be drawn in evaluating the 
effects of a contemplated action "turning the sprinkler On." 

The ability of causal networks to predict the effects of actions requires of course a 
stronger set of assumptions in the construction of those networks, assumptions that rest 
on causal (not merely associational) knowledge and that ensure the system would re- 
spond to interventions in accordance with the principle of autonomy. These assumptions 
are encapsulated in the following definition of causal Bayesian networks. 

Definition 1.3.1 (Causal Bayesian Network) 
Let P(v) be a probability distribution on a set V of variables, and let Pr(v) denote the 
distribution resulting from the intervention do(X = x )  that sets a subset X of variables 
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to constants x.1° Denote by P, the set of all interventional distributions Px(u), X & V, 
including P(u), which represents no intervention (i.e., X = 0).  A DAG G is said to be a 
causal Bayesian network compatible with P, ifand only if the following three conditions 
hold for every P, E P,: 

(i) P, (v) is Markov relative to G ;  

(ii) Px(vi) = 1 for all V, E X whenever ui is consistent with X = x ;  

(iii) Px(ui 1 pai) = P(ui ) pa;) for all Vi 4 X whenever pai is consistent with 
X = x .  

Definition 1.3.1 imposes constraints on the interventional space P, that permit us to en- 
code this vast space economically, in the form of a single Bayesian network G. These 
constraints enable us to compute the distribution P,(v) resulting from any intervention 
do(X = x )  as a truncated factorization 

Px(v) = n P(vi I pai)  for all u consistent with x ,  
(iIVi$XJ 

which follows from Definition 1.3.1 and justifies the family deletion procedure on G ,  as 
in (1.36). It is not hard to show that, whenever G is a causal Bayes network with respect 
to P,, the following two properties must hold. 

Property 1 
For all i, 

Property 2 
For all i and for every subset S of variables disjoint of (Vi, PAi}, we have 

Property 1 renders every parent set PAi exogenous relative to its child V;:, ensuring that 
the conditional probability P(vi ) pai) coincides with the effect (on Vi) of setting P A ,  to 
pai by external control. Property 2 expresses the notion of invariance; once we control 
its direct causes PAi ,  no other interventions will affect the probability of Vi. 

1.3.2 Causal Relationships and Their Stability 

This mechanism-based conception of interventions provides a semantical basis for no- 
tions such as "causal effects" or "causal influence," to be defined formally and analyzed 
in Chapters 3 and 4. For example, to test whether a variable Xi has a causal influence 
on another variable Xi, we compute (using the truncated factorization formula of (1.37)) 
the (marginal) distribution of Xj under the actions do(Xi = x i )  - namely, P,., (x i )  for all 

lo The notation P,(v) will be replaced in subsequent chapters with P ( v  1 d o ( x ) )  and P ( v  I i) to 
facilitate algebraic manipulations. 
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values xi of Xi - and test whether that distribution is sensitive to xi. It is easy to see from 
our previous examples that only variables that are descendants of Xi in the causal net- 
work can be influenced by Xi; deleting the factor P ( x i  I pai)  from the joint distribution 
turns X i  into a root node in the mutilated graph, and root variables (as the d-separation 
criterion dictates) are independent of all other variables except their descendants. 

This understanding of causal influence permits us to see precisely why, and in what 
way, causal relationships are more "stable" than probabilistic relationships. We expect 
such difference in stability because causal relationships are ontological, describing objec- 
tive physical constraints in our world, whereas probabilistic relationships are epistemic, 
reflecting what we know or believe about the world. Therefore, causal relationships 
should remain unaltered as long as no change has taken place in the environment, even 
when our knowledge about the environment undergoes changes. To demonstrate, con- 
sider the causal relationship S1, "Turning the sprinkler on would not affect the rain," and 
compare it to its probabilistic counterpart S2, "The state of the sprinkler is independent 
of (or unassociated with) the state of the rain." Figure 1.2 illustrates two obvious ways in 
which S2 will change while SI remains intact. First, S2 changes from false to true when 
we learn what season it is (XI).  Second, given that we know the season, S2 changes from 
true to false once we observe that the pavement is wet ( X 4  = true). On the other hand, S1 
remains true regardless of what we learn or know about the season or about the pavement. 

The example reveals a stronger sense in which causal relationships are more sta- 
ble than the corresponding probabilistic relationships, a sense that goes beyond their 
basic ontological-epistemological difference. The relationship S1 will remain invariant 
to changes in the mechanism that regulates how seasons affect sprinklers. In fact, it re- 
mains invariant to changes in all mechanisms shown in this causal graph. We thus see 
that causal relationships exhibit greater robustness to ontological changes as well; they 
are sensitive to a smaller set of mechanisms. More specifically, and in marked contrast to 
probabilistic relationships, causal relationships remain invariant to changes in the mech- 
anism that governs the causal variables ( X 3  in our example). 

In view of this stability, it is no wonder that people prefer to encode knowledge in 
causal rather than probabilistic structures. Probabilistic relationships, such as marginal 
and conditional independencies, may be helpful in hypothesizing initial causal structures 
from uncontrolled observations. However, once knowledge is cast in causal structure, 
those probabilistic relationships tend to be forgotten; whatever judgments people express 
about conditional independencies in a given domain are derived from the causal structure 
acquired. This explains why people feel confident asserting certain conditional indepen- 
dencies (e.g., that the price of beans in China is independent on the traffic in Los Angeles) 
having no idea whatsoever about the numerical probabilities involved (e.g., whether the 
price of beans will exceed $10 per bushel). 

The element of stability (of mechanisms) is also at the heart of the so-called ex- 
planatory accounts of causality, according to which causal models need not encode 
behavior under intervention but instead aim primarily to provide an "explanation" or 
"understanding" of how data are generated." Regardless of what use is eventually made 

' '  Elements of this explanatory account can be found in the writings of Dempster (1990), Cox (1992), 
and Shafer (1996a); see also King et al. (1994, p. 75). 



Introduction to Probabilities, Graphs, and Causal Models 

of our "understanding" of things, we surely would prefer an understanding in terms of 
durable relationships, transportable across situations, over those based on transitory re- 
lationships. The sense of "comprehensibility" that accompanies an adequate explanation 
is a natural byproduct of the transportability of (and hence of our familiarity with) the 
causal relationships used in the explanation. It is for reasons of stability that we regard 
the falling barometer as predicting but not explaining the rain; those predictions are not 
transportable to situations where the pressure surrounding the barometer is controlled by 
artificial means. True understanding enables predictions in such novel situations, where 
some mechanisms change and others are added. It thus seems reasonable to suggest that, 
in the final analysis, the explanatory account of causation is merely a variant of the ma- 
nipulative account, albeit one where interventions are dormant. Accordingly, we may as 
well view our unsatiated quest for understanding "how data is generated" or "how things 
work" as a quest for acquiring the ability to make predictions under wider range of cir- 
cumstances, including circumstances in which things are taken apart, reconfigured, or 
undergo spontaneous change. 

1.4 FUNCTIONAL CAUSAL MODELS 

The way we have introduced the causal interpretation of Bayesian networks represents 
a fundamental departure from the way causal models (and causal graphs) were first in- 
troduced into genetics (Wright 1921), econometrics (Haavelmo 1943), and the social 
sciences (Duncan 1975), as well as from the way causal models are used routinely in 
physics and engineering. In those models, causal relationships are expressed in the form 
of deterministic, functional equations, and probabilities are introduced through the as- 
sumption that certain variables in the equations are unobserved. This reflects Laplace's 
(1814) conception of natural phenomena, according to which nature's laws are determin- 
istic and randomness surfaces owing merely to our ignorance of the underlying boundary 
conditions. In contrast, all relationships in the definition of causal Bayesian networks 
were assumed to be inherently stochastic and thus appeal to the modern (i.e., quantum 
mechanical) conception of physics, according to which all nature's laws are inherently 
probabilistic and determinism is but a convenient approximation. 

In this book, we shall express preference toward Laplace's quasi-deterministic con- 
ception of causality and will use it, often contrasted with the stochastic conception, to 
define and analyze most of the causal entities that we study. This preference is based on 
three considerations. First, the Laplacian conception is more general. Every stochastic 
model can be emulated by many functional relationships (with stochastic inputs), but not 
the other way around; functional relationships can only be approximated, as a limiting 
case, using stochastic models. Second, the Laplacian conception is more in tune with hu- 
man intuition. The few esoteric quantum mechanical experiments that conflict with the 
predictions of the Laplacian conception evoke surprise and disbelief, and they demand 
that physicists give up deeply entrenched intuitions about locality and causality (Maudlin 
1994). Our objective is to preserve, explicate, and satisfy - not destroy - those intuitions.12 

l 2  The often heard argument that human intuitions belong in psychology and not in science or phi- 
losophy is inapplicable when it comes to causal intuition - the original authors of causal thoughts 
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Finally, certain concepts that are ubiquitous in human discourse can be defined only 
in the Laplacian framework. We shall see, for example, that such simple concepts as "the 
probability that event B occured because of event A" and "the probability that event B 
would have been diflerent if it were not for event A" cannot be defined in terms of purely 
stochastic models. These so-called counte$actual concepts will require a synthesis of 
the deterministic and probabilistic components embodied in the Laplacian model. 

1.4.1 Structural Equations 

In its general form, a functional causal model consists of a set of equations of the form 

where pai (connoting parents) stands for the set of variables judged to be immediate 
causes of Xi and where the Ui represent errors (or "disturbances") due to omitted fac- 
tors. Equation (1.40) is a nonlinear, nonparametric generalization of the linear structural 
equation models (SEMs) 

which have become a standard tool in economics and social science (see Chapter 5 for a 
detailed exposition of this enterprise). In linear models, pa; corresponds to those vari- 
ables on the r.h.s. of (1.41) that have nonzero coefficients. 

A set of equations in the form of (1.40) and in which each equation represents an au- 
tonomous mechanism is called structural model; if each mechanism determines the value 
of just one distinct variable (called the dependent variable), then the model is called a 
structural causal model or a causal model for short.l3 Mathematically, the distinction 
between structural and algebraic equations is that the latter are characterized by the set 
of solutions to the entire system of equations, whereas the former are characterized by 
the solutions of each individual equation. The implication is that any subset of struc- 
tural equations is, in itself, a valid model of reality - one that prevails under some set of 
interventions. 

To illustrate, Figure 1.5 depicts a canonical econometric model relating price and de- 
mand through the equations 

p = b2q + d2w + uz, 

where Q is the quantity of household demand for a product A ,  P is the unit price of prod- 
uct A ,  I is household income, W is the wage rate for producing product A,  and ul and 

cannot be ignored when the meaning of the concept is in question. Indeed, compliance with hu- 
man intuition has been the ultimate criterion of adequacy in every philosophical study of causation, 
and the proper incorporation of background information into statistical studies likewise relies on 
accurate interpretation of causal judgment. 

l3 Formal treatment of causal models, structural equations, and error terms are given in Chapter 5 
(Section 5.4.1) and Chapter 7 (Sections 7.1 and 7.2.5). 
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Figure 1.5 Causal diagram illustrating the relation- 
ship between price (P), demand ( Q ) ,  income (Z), 

b2 and wages ( W). 

b l  

uz represent error terms - unmodeled factors that affect quantity and price, respectively 
(Goldberger 1992). The graph associated with this model is cyclic, and the vertices asso- 
ciated with the variables Ul, U2,  I, and W are root nodes, conveying the assumption of 
mutual independence. The idea of autonomy (Aldrich 1989), in this context, means that 
the two equations represent two loosely coupled segments of the economy, consumers 
and producers. Equation (1.42) describes how consumers decide what quantity Q to buy, 
and (1.43) describes how manufacturers decide what price P to charge. Like all feedback 
systems, this too represents implicit dynamics; today's prices are determined on the ba- 
sis of yesterday's demand, and these prices will determine the demand in the next period 
of transactions. The solution to such equations represents a long-term equilibrium under 
the assumption that the background quantities, U1 and U;? , remain constant. 

The two equations are considered to be "autonomous" relative to the dynamics of 
changes in the sense that external changes affecting one equation do not imply changes 
to the others. For example, if government decides on price control and sets the price P 
at po, then (1.43) will be modified to read p = po but the relationships in (1.42) will 
remain intact, yielding q = b l p o  + dli + ul. We thus see that b,, the "demand elastic- 
ity," should be interpreted as the rate of change of Q per unit controlled change in P .  
This is different, of course, from the rate of change of Q per unit observed change in 
P (under uncontrolled conditions), which, besides bl, is also affected by the parame- 
ters of (1.43) (see Section 7.2.1, equation (7.14)). The difference between controlled and 
observed changes is essential for the correct interpretation of structural equation mod- 
els in social science and economics, and it will be discussed at length in Chapter 5. If 
we have reasons to believe that consumer behavior will also change under a price control 
policy, then this modified behavior would need to be modeled explicitly - for example, 
by treating the coefficients bl and dl  as dependent variables in auxiliary equations in- 
volving p.14 Section 7.2.1 will present an analysis of policy-related problems using this 
model. 

To illustrate the workings of nonlinear functional models, consider again the causal 
relationships depicted in Figure 1.2. The causal model associated with these relationships 
will consist of five functions, each representing an autonomous mechanism governing 
one variable: 

l4 Indeed, consumers normally react to price fixing by hoarding goods in anticipation of shortages 
(Lucas 1976). Such phenomena are not foreign to structural models, though; they simply call for 
more elaborate equations to capture consumers' expectations. 
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The error variables U1, . . . , U5 are not shown explicitly in the graph; by convention, this 
implies that they are assumed to be mutually independent. When some disturbances are 
judged to be dependent, it is customary to encode such dependencies by augmenting the 
graph with double-headed arrows, as shown in Figure l.l(a). 

A typical specification of the functions { f i ,  . . . , f5} and the disturbance terms is given 
by the following Boolean model: 

X? = [(XI = winter) v (XI = fall) v u2] A TU;, 

xg = [(XI = summer) v ( X I  = spring) v u3] A TU;, 

where xi stands for Xi = true and where ui and uf stand for triggering and inhibiting 
abnormalities, respectively. For example, u4 stands for (unspecified) events that might 
cause the pavement to get wet (x4) when the sprinkler is off ( 1 ~ ~ )  and it does not rain 
( 1 ~ ~ )  (e.g., a broken water pipe), while u(, stands for (unspecified) events that would 
keep the pavement dry in spite of the rain (x2), the sprinkler (x3), and u4 (e.g., pavement 
covered with a plastic sheet). 

It is important to emphasize that, in the two models just described, the variables 
placed on the left-hand side of the equality sign (the dependent or output variables) act 
distinctly from the other variables in each equation. The role of this distinction becomes 
clear when we discuss interventions, since it is only through this distinction that we can 
identify which equation ought to be modified under local interventions of the type "fix 
the price at po" (do(P = PO)) or "turn the sprinkler On" (do(X3 = true)).15 

We now compare the features of functional models as defined in (1.40) with those of 
causal Bayesian networks defined in Section 1.3. Toward this end, we will consider the 
processing of three types of queries: 

predictions (e.g., would the pavement be slippery if wefind the sprinkler off?); 

interventions (e-g., would the pavement be slippery if we make sure that the sprinkler 
is off?); and 

counterfactuals (e.g., would the pavement be slippery had the sprinkler been off, given 
that the pavement is in fact not slippery and the sprinkler is on?). 

We shall see that these three types of queries represent a hierarchy of three fundamentally 
different types of problems, demanding knowledge with increasing level of details. 

l5 Economists who write the supply-demand equations as {q = up + ul, q = bp + u 21, with q ap- 
pearing on the 1.h.s. of both equations, are giving up the option of analyzing price control policies 
unless additional symbolic machinery is used to identify which equation will be modified by the 
do(P  = po)  operator. 
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1.4.2 Probabilistic Predictions in Causal Models 

Given a causal model (equation (1.40)), if we draw an arrow from each member of PA 
toward X i  then the resulting graph G will be called a causal diagram. If the causal dia 
gram is acyclic, then the corresponding model is called semi-Markovian and the value 
of the X variables will be uniquely determined by those of the U variables. Under sucl 
conditions, the joint distribution P(xl, . . . , x,) is determined uniquely by the distribu 
tion P(u)  of the error variables. If, in addition to acyclicity, the error terms are mutuall; 
independent, the model is called Markovian. 

A fundamental theorem about Markovian models establishes a connection betweel 
causation and probabilities via the parental Markov condition of Theorem 1.2.7. 

Theorem 1.4.1 (Causal Markov Condition) 
Every Markovian causal model M induces a distribution P(xl, . . . , x , )  that satisfies tht 
parental Markov condition relative the causal diagram G associated with M; that is, ead 
variable Xi is independent on all its nondescendants, given its parents PAi in G (Pear 
and Verma 1991).16 

The proof is immediate. Considering that the set { PAi, Ui ) determines one unique value ol 
Xi, the distribution P(xl, . . . , x,, ul, . . . , u,) is certainly Markov relative the augmentec 
DAG G(X, U), in which the U variables are represented explicitly. The required Marko\ 
condition of the marginal distribution P(xl, . . . , x,) follows by d-separation in G(X, U). 

Theorem 1.4.1 shows that the Markov condition of Theorem 1.2.7 follows from twc 
causal assumptions: (1) our commitment to include in the model (not in the background: 
every variable that is a cause of two or more other variables; and (2) Reichenbach's 
(1956) common-cause assumption, also known as "no correlation without causation," 
stating that, if any two variables are dependent, then one is a cause of the other or there is 
a third variable causing both. These two assumptions imply that the background factors 
in U are mutually independent and hence that the causal model is Markovian. Theorem 
1.4.1 explains both why Markovian models are so frequently assumed in causal analy- 
sis and why the parental Markov condition (Theorem 1.2.7) is so often regarded as an 
inherent feature of causal models (see e.g. Kiiveri et al. 1984; Spirtes et al. 1993).17 

The causal Markov condition implies that characterizing each child-parent relation- 
ship as a deterministic function, instead of the usual conditional probability P(xi I pai), 
imposes equivalent independence constraints on the resulting distribution and leads to the 
same recursive decomposition that characterizes Bayesian networks (see equation (1.33)). 
More significantly, this holds regardless of the choice of functions (f,) and regardless 

l6 Considering its generality and transparency, I would not be surprised if some version of this theo- 
rem has appeared earlier in the literature. 

l7 Kiiveri et al.'s (1984) paper, entitled "Recursive Causal Models," provides the first proof (for 
strictly positive distributions) that the parental Markov condition of Theorem 1.2.7 follows from 
the factorization of (1.33). This implication, however, is purely probabilistic and invokes no as- 
pect of causation. In order to establish a connection between causation and probability we must 
first devise a model for causation, either in terms of manipulations (as in Definition 1.3.1) or in 
terms of functional relationships in structural equations (as in Theorem 1.4.1). 
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of the error distributions P(ui). Thus, we need not specify in advance the functional 
form of {f,) or the distributions P(ui); once we measure (or estimate) P(xi I pai), all 
probabilistic properties of a Markovian causal model are determined, regardless of the 
mechanism that actually generates those conditional probabilities. Druzdzel and Simon 
(1993) showed that, for every Bayesian network G characterized by a distribution P (as in 
(1.33)), there exists a functional model (as in (1.40)) that generates a distribution identical 
to f.18 It follows that in all probabilistic applications of Bayesian networks - includ- 
ing statistical estimation, prediction, and diagnosis - we can use an equivalent functional 
model as specified in (1.40), and we can regard functional models as just another way of 
encoding joint distribution functions. 

Nonetheless, the causal-functional specification has several advantages over the prob- 
abilistic specification, even in purely predctive (i.e. nonmanipulative) tasks. First and 
foremost, all the conditional independencies that are displayed by the causal diagram 
G are guaranteed to be stable - that is, invariant to parametric changes in the mecha- 
nisms represented by the functions J;: and the distributions P(ui). This means that agents 
who choose to organize knowledge using Markovian causal models can make reliable 
assertions about conditional independence relations without assessing numerical proba- 
bilities - a common ability among humanoids19 and a useful feature for inference. Sec- 
ond, the functional specification is often more meaningful and natural, and it yields a 
small number of parameters. Typical examples are the linear structural equations used 
in social science and economics (see Chapter 5) and the "noisy OR gate" that has be- 
come quite popular in modeling the effect of multiple dichotomous causes (Pearl 1988b, 
p. 184). Third (and perhaps hardest for an empiricist to accept), judgmental assumptions 
of conditional independence among observable quantities are simplified and made more 
reliable in functional models, because such assumptions are cast directly as judgments 
about the presence or absence of unobserved common causes (e-g., why is the price of 
beans in China judged to be independent of the traffic in Los Angeles?). In the con- 
struction of Bayesian networks, for example, instead of judging whether each variable is 
independent of all its nondescendants (given its parents), we need to judge whether the 
parent set contains all relevant immediate causes - in particular, whether no factor omit- 
ted from the parent set is a cause of another observed variable. Such judgments are more 
natural because they are discernible directly from a qualitative causal structure, the very 
structure that our mind has selected for storing stable aspects of experience. 

Finally, there is an additional advantage to basing prediction models on causal mech- 
anisms that stems from considerations of stability (Section 1.3.2). When some con- 
ditions in the environment undergo change, it is usually only a few causal mecha- 
nisms that are affected by the change; the rest remain unaltered. It is simpler then to 
reassess (judgmentally) or reestimate (statistically) the model parameters knowing that 

l8 In Chapter 9 we will show that, except in some pathological cases, there actually exist an infinite 
number of functional models with such a property. 

l9 Statisticians who are reluctant to discuss causality yet have no hesitation expressing background 
information in the form of conditional independence statements would probably be shocked to re- 
alize that such statements acquire their validity from none other but the causal Markov condition 
(Theorem 1.4.1). See note 9. 
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the corresponding symbolic change is also local, involving just a few parameters, than tc 
reestimate the entire model from scratch.20 

1.4.3 Interventions and Causal Effects in Functional Models 

The functional characterization xi = fi(pai, uj),  like its stochastic counterpart, provide? 
a convenient language for specifying how the resulting distribution would change in re. 
sponse to external interventions. This is accomplished by encoding each intervention a: 
an alteration on a select set of functions instead of a select set of conditional probabilities 
The overall effect of the intervention can then be predicted by modifying the correspond. 
ing equations in the model and using the modified model to compute a new probabilitj 
function. Thus, all features of causal Bayesian networks (Section 1.3) can be emulatec 
in Markovian functional models. 

For example, to represent the action "turning the sprinkler On" in the model of (1.44), 
we delete the equation x3 = f3 (xl, us)  and replace it with x3 = On. The modified model 
will contain all the information needed for computing the effect of the action on other vari- 
ables. For example, the probability function induced by the modified model will be equal 
to that given by (1.36), and the modified diagram will coincide with that of Figure 1.4. 

More generally, when an intervention forces a subset X of variables to attain fixed 
values x ,  then a subset of equations is to be pruned from the model in (1.40), one f o ~  
each member of X, thus defining a new distribution over the remaining variables thal 
characterizes the effect of the intervention and coincides with the truncated factorization 
obtained by pruning families from a causal Bayesian network (equation (1.37)).~~ 

The functional model's representation of interventions offers greater flexibility and 
generality than that of a stochastic model. First, the analysis of interventions can be 
extended to cyclic models, like the one in Figure 1.5, so as to answer policy-related 
questions22 (e.g.: What would the demand quantity be if we control the price at po?). 
Second, interventions involving the modification of equational parameters (like bl and 
dl in (1.42)) are more readily comprehended than those described as modifiers of condi- 
tional probabilities, perhaps because stable physical mechanisms are normally associated 
with equations and not with conditional probabilities. Conditional probabilities are per- 
ceived to be derivable from, not generators of, joint distributions. Third, the analysis of 
causal effects in non-Markovian models will be greatly simplified using functional mod- 
els. The reason is: there are infinitely many conditional probabilities P(xi I pai) but only 
a finite number of functions xi = f, (pai ,  ui) among discrete variables Xi and PAi. This 
fact will enable us in Chapter 8 (Section 8.2.2) to use linear programming techniques to 
obtain sharp bounds on causal effects in studies involving noncompliance. 

20 To the best of my knowledge, this aspect of causal models has not been studied formally; it is 
suggested here as a research topic for students of adaptive systems. 

21 An explicit translation of interventions to "wiping out" equations from the model was first pro- 
posed by Strotz and Wold (1960) and later used in Fisher (1970) and Sobel (1990). More elaborate 
types of interventions, involving conditional actions and stochastic strategies, will be formulated 
in Chapter 4. 

22 Such questions, especially those involving the control of endogenous variables, are conspicuously 
absent from econometric textbooks (see Chapter 5). 
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Finally, functional models permit the analysis of context-specific actions and poli- 
cies. The notion of causal effect as defined so far is of only minor use in practical policy 
making. The reason is that causal effects tell us the general tendency of an action to 
bring about a response (as with the tendency of a drug to enhance recovery in the over- 
all population) but are not specific to actions in a given situation characterized by a set 
of particular observations that may themselves be affected by the action. A physician is 
usually concerned with the effect of a treatment on a patient who has already been exam- 
ined and found to have certain symptoms. Some of those symptoms will themselves be 
affected by the treatment. Likewise, an economist is concerned with the effect of taxa- 
tion in a given economical context characterized by various economical indicators, which 
(again) will be affected by taxation if applied. Such context-specific causal effects can- 
not be computed by simulating an intervention in a static Bayesian network, because the 
context itself varies with the intervention and so the conditional probabilities P(xi I pa i )  
are altered in the process. However, the functional relationships xi = f, ( p a i ,  u i )  remain 
invariant, which enables us to compute context-specific causal effects as outlined in the 
next section (see Sections 7.2.1, 8.3, and 9.3.4 for full details). 

1.4.4 Counterfactuals in Functional Models 

We now turn to the most distinctive characteristic of functional models - the analysis 
of counter$uctuals. Certain counterfactual sentences, as we remarked before, cannot be 
defined in the framework of stochastic causal networks. To see the difficulties, let us con- 
sider the simplest possible causal Bayesian network consisting of a pair of independent 
(hence unconnected) binary variables X and Y. Such a network ensues, for example, in a 
controlled (i.e. randomized) clinical trial when we find that a treatment X has no effect 
on the distribution of subjects' response Y, which may stand for either recovery ( Y  = 0) 
or death (Y  = 1). Assume that a given subject, Joe, has taken the treatment and died; we 
ask whether Joe's death occurred because of the treatment, despite the treatment, or re- 
gardless of the treatment. In other words, we ask for the probability Q that Joe would 
have died had he not been treated. 

To highlight the difficulty in answering such counterfactual questions, let us take an 
extreme case where 50% of the patients recover and 50% die in both the treatment and 
the control groups; assume further that the sample size approaches infinity, thus yielding 

P ( y  I x )  = 112 for all x and y. 

Readers versed in statistical testing will recognize immediately the impossibility of an- 
swering the counterfactual question from the available data, noting that Joe, who took 
the treatment and died, was never tested under the no-treatment condition. Moreover, the 
difficulty does not stem from addressing the question to a particular inhvidual, Joe, for 
which we have only one data point. Rephrasing the question in terms of population fre- 
quencies - asking what percentage Q of subjects who died under treatment would have 
recovered had they not taken the treatment - will encounter the same difficulties because 
none of those subjects was tested under the no-treatment condition. Such difficulties have 
prompted some statisticians to dismiss counterfactual questions as metaphysical and to 
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advocate the restriction of statistical analysis to only those questions that can be answered 
by direct tests (Dawid 1997). 

However, that our scientific, legal, and ordinary languages are loaded with counter- 
factual utterances indicates clearly that counterfactuals are far from being metaphysical; 
they must have definite testable implications and must carry valuable substantive infor- 
mation. The analysis of counterfactuals therefore represents an opportunity to anyone 
who shares the aims of this book: integrating substantive knowledge with statistical data 
so as to refine the former and interpret the latter. Within this framework, the counterfac- 
tual issue demands answers to tough, yet manageable technical questions: What is the 
empirical content of counterfactual queries? What knowledge is required to answer those 
queries? How can this knowledge be represented mathematically? Given such represen- 
tation, what mathematical machinery is needed for deriving the answers? 

Chapter 7 (Section 7.2.2) presents an empirical explication of counterfactuals as claims 
about the temporal persistence of certain mechanisms. In our example, the response to 
treatment of each (surviving) patient is assumed to be persistent. If the outcome Y were a 
reversible condition, rather than death, then the counterfactual claim would translate di- 
rectly into predictions about response to future treatments. But even in the case of death, 
the counterfactual quantity Q implies not merely a speculation about the hypothetical be- 
havior of subjects who died but also a testable claim about surviving untreated subjects 
under subsequent treatment. We leave it as an exercise for the reader to prove that, based 
on (1.46) and barring sampling variations, the percentage Q of deceased subjects from 
the treatment group who would have recovered had they not taken the treatment precisely 
equals the percentage Q' of surviving subjects in the nontreatment group who will die if 
given treatment.23 Whereas Q is hypothetical, Q' is unquestionably testable. 

Having sketched the empirical interpretation of counterfactuals, our next step in this 
introductory chapter is the question of representation: What knowledge is required to an- 
swer questions about counterfactuals? And how should this knowledge be formulated so 
that counterfactual queries be answered quickly and reliably? That such representation 
exists is evident by the swiftness and consistency with which people distinguish plausi- 
ble from implausible counterfactual statements. Most people would agree that President 
Clinton's place in history would be different had he not met Monica Lewinsky, but only 
a few would assert that his place in history would change had he not eaten breakfast yes- 
terday. In the cognitive sciences, such consistency of opinion is as close as one can get to 
a proof that an effective machinery for representing and manipulating counterfactuals re- 
sides someplace in the human mind. What then are the building blocks of that machinery? 

A straightforward representational scheme would (i) store counterfactual knowledge 
in the form of counterfactual premises and (ii) derive answers to counterfactual queries 
using some logical rules of inference capable of taking us from premises to conclusions. 
This approach has indeed been taken by the philosophers Robert Stalnaker (1968) and 
David Lewis (1973a,b), who constructed logics of counterfactuals using closest-world 

23 For example, if Q equals 100% (i.e., all those who took the treatment and died would have recov- 
ered had they not taken the treatment) then all surviving subjects from the nontreatment group will 
die if given treatment (again, barring sampling variations). Such exercises will become routine 
when we develop the mathematical machinery for analyzing probabilities of causes (see Chapter 9, 
Theorem 9.2.12, equations (9.11)-(9.12)). 
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U1 Figure 1.6 (a) A causal Bayesian net- /* 

\/ 
work that represents the distribution of 
(I .47). (b) A causal diagram representing 

r '2 r '2 the process generating the distribution in 
(a), according to model 1. (c) Same, ac- 

Y Y cording to model 2. (Both U1 and U2 are 
unobserved.) 

(b) (c) 

semantics (i.e., " B  would be true if it were A" just in case B is true in the closest possi- 
ble world (to ours) in which A is true). However, the closest-world semantics still leaves 
two questions unanswered. (1) What choice of distance measure would make counterfac- 
tual reasoning compatible with ordinary conception of cause and effect? (2) What mental 
representation of interworld distances would render the computation of counterfactuals 
manageable and practical (for both humans and machines)? These two questions are an- 
swered by the structural model approach expanded in Chapter 7. 

An approach similar to Lewis's (though somewhat less formal) has been pursued 
by statisticians in the potential-outcome framework (Rubin 1974; Robins 1986; Hol- 
land 1988). Here, substantive knowledge is expressed in terms of probabilistic relation- 
ships (e.g. independence) among counterfactual variables and then used in the estimation 
of causal effects. The question of representation shifts from the closest-world to the 
potential-outcome approach: How are probabilistic relationships among counterfactuals 
stored or inferred in the investigator's mind? In Chapter 7 (see also Section 3.6.3) we 
provide an analysis of the closest-world and potential-outcome approaches and compare 
them to the structural model approach, to be outlined next, in which counterfactuals are 
derived from (and in fact defined by) a functional causal model (equation (1.40)). 

In order to see the connection between counterfactuals and structural equations, we 
should first examine why the information encoded in a Bayesian network, even in its 
causal interpretation, is insufficient to answer counterfactual queries. Consider again our 
example of the controlled randomized experiment (equation (1.46)), which corresponds 
to an edgeless Bayesian network (Figure 1.6(a)) with two independent binary variables 
and a joint probability: 

P ( y , x )  = 0.25 forall x andy. 

We now present two functional models, each generating the joint probability of (1.47) 
yet each giving a different value to the quantity of interest, Q = the probability that a 
subject who died under treatment (x = 1, y = 1) would have recovered (y = 0) had he 
or she not been heated (x = 0). 

Model 1 (Figure I. 6(b)) 
Let 

X = U], 

y = u2, 

where Ul and U2 are two independent binary variables with P(ul = 1) = P(u2 = 1) = 
1 2 (e.g., random coins). 
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Model 1 Marginal 
x = l  x = o  

y = 1 (death) 0 0 0.25 0.25 0.25 0.25 
y = 0 (recovery) 0.25 0.25 0 0 0.25 0.25 

Model 2 Marginal 
x = l  x = O  

y = 1 (death) 0 0.25 0.25 0 0.25 0.25 
y = 0 (recovery) 0.25 0 0 0.25 0.25 0.25 

Figure 1.7 Contingency tables showing the distributions P(x, y, uz) and P(x, y) for the two models 
discussed in the text. 

Model 2 (Figure 1.6(c)) 
Let 

where, as before, U1 and U2 are two independent binary variables. 

Model 1 corresponds to treatment (X) that has no effect on any of the subjects; in model 2, 
every subject is affected by treatment. The reason that the two models yield the same dis- 
tribution is that model 2 describes a mixture of two subpopulations. In one (u2 = l), each 
subject dies (y = 1) if and only if treated; in the other (u2 = 0), each subject recovers 
(y = 0) if and only if treated. The distributions P(x, y, u2) and P(x, y) corresponding 
to these two models are shown in the tables of Figure 1.7. 

The value of Q differs in these two models. In model 1, Q evaluates to zero, be- 
cause subjects who died correspond to uz = 1 and, since the treatment has no effect on 
y, changing X from 1 to 0 would still yield y = 1. In model 2, however, Q evaluates to 
unity, because subjects who died under treatment must correspond to u2 = 1 (i.e., those 
who die if treated), meaning they would recover if and only if not treated. 

The first lesson of this example is that stochastic causal models are insufficient for 
computing probabilities of counterfactuals; knowledge of the actual process behind P(  y I 
x )  is needed for the computation.24 A second lesson is that a functional causal model 
constitutes a mathematical object sufficient for the computation (and definition) of such 
probabilities. Consider, for example, model 2 of (1.48). The way we concluded that a de- 
ceased treated subject ( y  = 1, x = 1) would have recovered if not treated involved three 
mental steps. First, we applied the evidence at hand, e : {y = 1, x = 11, to the model and 
concluded that e is compatible with only one realization of U1 and U2 - namely, {ul = 1, 

24 In the potential-outcome framework (Sections 3.6.3 and 7.4.4), such knowledge obtains stochastic 
appearance by defining distributions over counterfactual variables Y1 and Yo, which stand for the 
potential response of an individual to treatment and no treatment, respectively. These hypothetical 
variables play a role similar to the functions f i(pai ,  ui) in our model; they represent the deter- 
ministic assumption that every individual possesses a definite response to treatment, regardless of 
whether that treatment was realized. 
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u2 = 1). Second, to simulate the hypothetical condition "had he or she not been treated," 
we substituted x = 0 into (1.48) while ignoring the first equation x = u l .  Finally, we 
solved (1.48) for y (assuming x = 0 and u2  = 1) and obtained y = 0, from which we 
concluded that the probability of recovery (y = 0) is unity under the hypothetical condi- 
tion considered. 

These three steps can be generalized to any causal model M as follows. Given evi- 
dence e ,  to compute the probability of Y = y under the hypothetical condition X = x 
(where X is a subset of variables), apply the following three steps to M. 

Step I (abduction): Update the probability P(u) to obtain P(u I e). 

Step 2 (action): Replace the equations corresponding to variables in set X by the equa- 
tions X = x. 

Step 3 (prediction): Use the modified model to compute the probability of Y = y. 

In temporal metaphors, this three-step procedure can be interpreted as follows. Step 1 
explains the past (U) in light of the current evidence e;  step 2 bends the course of history 
(minimally) to comply with the hypothetical condition X = x; finally, step 3 predicts the 
future (Y) based on our new understanding of the past and our newly established condi- 
tion, X = x. 

Recalling that for each value u of U there is a unique solution for Y, it is clear that 
step 3 always gives a unique solution for the needed probability; we simply sum up the 
probabilities P(u I e )  assigned to all those u that yield Y = y as a solution. Chapter 7 
develops effective procedures for computing probabilities of counterfactuals, procedures 
that are based on probability propagation in "twin" networks (Balke and Pearl 1995): one 
network represents the actual world; the other, the counterfactual world. 

Note that the hypothetical condition X = x always stands in contradiction to the pre- 
vailing values u of U in the model considered (else X = x would actually be realized 
and thus would not be considered hypothetical). It is for this reason that we invoke (in 
step 2) an external intervention (alternatively, a "theory change" or a "miracle"; Lewis 
1973b), which modifies the model and thus explains the contradiction away. In Chapter 7 
we extend this structural-interventional model to give a full semantical and axiomatic 
account both for counterfactuals and the probability of counterfactuals. In contrast with 
Lewis's theory, this account is not based on abstract notion of similarity among hypothet- 
ical worlds; rather, it rests on the actual mechanisms involved in the production of the 
hypothetical worlds considered. Likewise, in contrast with the potential-outcome frame- 
work, counterfactuals in the structural account are not treated as undefined primitives but 
rather as quantities to be derived from the more fundamental concepts of causal mecha- 
nisms and their structure. 

The three-step model of counterfactual reasoning also uncovers the real reason why 
stochastic causal models are insufficient for computing probabilities of counterfactuals. 
Because the U variables do not appear explicitly in stochastic models, we cannot apply 
step 1 so as to update P(u) with the evidence e at hand. This implies that several ubiq- 
uitous notions based on counterfactuals - including probabilities of causes (given the 
effects), probabilities of explanations, and context-dependent causal effect - cannot be 
defined in such models. For these, we must make some assumptions about the form of 
the functions J;: and the probabilities of the error terms. For example, the assumptions of 
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linearity, normality, and error independence are sufficient for computing all counterfac 
tual queries in the model of Figure 1.5 (see Section 7.2.1). In Chapter 9, we will presen 
conditions under which counterfactual queries concerning probability of causation can bt 
inferred from data when f, and P(u) are unknown, and only general features (e.g. mono 
tonicity) of these entities are assumed. Likewise, Chapter 8 (Section 8.3) will presen 
methods of bounding probabilities of counterfactuals when only stochastic models arc 
available. 

The preceding considerations further imply that the three tasks listed in the beginnini 
of this section - prediction, intervention, and counterfactuals - form a natural hierarch] 
of causal reasoning tasks, with increasing levels of refinement and increasing demand; 
on the knowledge required for accomplishing these tasks. Prediction is the simplest 0 
the three, requiring only a specification of a joint distribution function. The analysis o: 
interventions requires a causal structure in addition to a joint distribution. Finally, pro. 
cessing counterfactuals is the hardest task because it requires some information about thc 
functional relationships and/or the distribution of the omitted factors. 

This hierarchy also defines a natural partitioning of the chapters in this book. Chap. 
ter 2 will deal primarily with the probabilistic aspects of causal Bayesian networks (thougl 
the underlying causal structure will serve as a conceptual guide). Chapters 3-6 will deal 
exclusively with the interventional aspects of causal models, including the identificatior 
of causal effects, the clarification of structural equation models, and the relationship: 
between confounding and collapsibility. Chapters 7-10 will deal with counterfactuai 
analysis, including axiomatic foundation, applications to policy analysis, the bounding 
of counterfactual queries, the identification of probabilities of causes, and the explication 
of single-event causation. 

I wish the reader a smooth and rewarding journey through these chapters. But first, 
an important stop for terminological distinctions. 

1.5 CAUSAL VERSUS STATISTICAL TERMINOLOGY 

This section defines fundamental terms and concepts that will be used throughout this 
book. These definitions may not agree with those given in standard sources, so it is im- 
portant to refer to this section in case of doubts regarding the interpretation of these terms. 

A probabilistic parameter is any quantity that is defined in terms2' of a joint proba- 
bility function. Examples are the quantities defined in Sections 1.1 and 1.2. 

A statistical parameter is any quantity that is defined in terms of a joint probabil- 
ity distribution of observed variables, making no assumption whatsoever regarding the 
existence or nonexistence of unobserved variables. 

Examples: the conditional expectation E(Y I x), 
the regression coefficient r y ~ ,  

the value of the density function at y = 0, x = 1. 

25 A quantity Q is said to be defined in terms of an object of class C if Q can be computed uniquely 
from the description of any object in class C (i.e., if Q is defined by a functional mapping from C 
to the domain of Q). 
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A causalparameter is any quantity that is defined in terms of a causal model (as in 
(1.40)) and is not a statistical parameter. 

Examples: the coefficients acik in (1.41), 
whether X9 has influence on X3 for some u, 
the expected value of Y under the intervention do(X = O), 
the number of parents of variable X 7 .  

Remark: The distinction between probabilistic and statistical parameters is de- 
vised to exclude the construction of joint distributions that invoke hypothetical 
variables (e.g., counterfactual or theological). Such constructions, if permitted, 
would qualify any quantity as statistical and would obscure the distinction be- 
tween causal and noncausal assumptions. 

A statistical assumption is any constraint on a joint distribution of observed variable; 
for example, that f is multivariate normal or that P is Markov relative to a given DAG D. 

A causal assumption is any constraint on a causal model that cannot be realized by 
imposing statistical assumptions; for example, that f; is linear, that Ui and U, (unob- 
served) are uncorrelated, or that x3 does not appear in f4(pa4, u4). Causal assumptions 
may or may not have statistical implications. In the former case we say that the assump- 
tion is "testable" or "falsifiable." 

Remark: The distinction between causal and statistical parameters is crisp and 
fundamental. Causal parameters can be discerned from joint distributions only 
when special assumptions are made, and such assumptions must have causal com- 
ponents to them. The formulation and simplification of these assumptions will 
occupy a major part of this book. 

Remark: Temporal precedence among variables may furnish some information 
about (the absence of) causal relationships - a later event cannot be the cause of 
an earlier event. Temporally indexed distributions such as P (  y, I y,-1, x,), t = 
1, . . . , which are used routinely in economic analysis, may therefore be regarded 
as borderline cases between statistical and causal models. We shall nevertheless 
classify those models as statistical because the great majority of policy-related 
questions cannot be discerned from such distributions, given our commitment to 
making no assumption regarding the presence or absence of unmeasured vari- 
ables. Consequently, econometric concepts such as "Granger causality" (Granger 
1969) and "strong exogeneity" (Engle et al. 1983) will be classified as statistical 
rather than causal.26 

Remark: The terms "theoretical" and "structural" are often used interchangeably 
with "causal"; we will use the latter two, keeping in mind that some structural 
models may not be causal (see Section 7.2.5). 

26 Caution must also be exercised in labeling as "data-generating model" the probabilistic sequence 
P ( y ,  I y,-l, x,), t = 1, . . . (e.g. Davidson and MacKinnon 1993, p. 53; Hendry 1995). Causal as- 
sumptions of the type developed in Chapter 2 (see Definitions 2.4.1 and 2.7.4) must be invoked 
before applying such sequences in policy-related tasks. 



Introduction to Probabilities, Graphs, and Causal Models 

Causal versus Statistical Concepts 

The demarcation line between causal and statistical parameters extends as well to gen- 
eral concepts and will be supported by terminological distinction. Examples of statistical 
concepts are: correlation, regression, conditional independence, association, likelihood, 
collapsibility, risk ratio, odds ratio, and so on. Examples of causal concepts are: random- 
ization, influence, effect, confounding, exogeneity, ignorability, disturbance (e.g. (1.40)), 
spurious correlation, path coefficients, instrumental variables, intervention, explanation, 
and so on. The purpose of this demarcation line is not to exclude causal concepts from 
the province of statistical analysis but, rather, to encourage investigators to treat nonsta- 
tistical concepts with the proper set of tools. 

Some readers may be surprised by the idea that textbook concepts such as random- 
ization, confounding, spurious correlation, or effects are nonstatistical. Others may be 
shocked at the idea that controversial concepts such as exogeneity, confounding, and 
counterfactuals can be defined in terms of causal models. This book is written with these 
readers in mind, and the coming pages will demonstrate that the distinctions just made 
between causal and statistical concepts are essential for clarifying both. 



CHAPTER TWO 

A Theory of Inferred Causation 

I would rather discover one causal law 
than be King of Persia. 

Democritus (460-370 B .c.) 

Preface 

The possibility of learning causal relationships from raw data has been on philosophers' 
dream lists since the time of Hume (1711-1776). That possibility entered the realm of 
formal treatment and feasible computation in the mid-1980s, when the mathematical 
relationships between graphs and probabilistic dependencies came into light. The ap- 
proach described herein is an outgrowth of Pearl (1988b, chap. 8), which describes how 
causal relationships can be inferred from nontemporal statistical data if one makes cer- 
tain assumptions about the underlying process of data generation (e.g., that it has a tree 
structure). The prospect of inferring causal relationships from weaker structural assump- 
tions (e.g., general directed acyclic graphs) has motivated parallel research efforts at three 
universities: UCLA, Carnegie Mellon University (CMU), and Stanford. The UCLA and 
CMU teams pursued an approach based on searching the data for patterns of conditional 
independencies that reveal fragments of the underlying structure and then piecing those 
fragments together to form a coherent causal model (or a set of such models). On the other 
hand, the Stanford group pursued a Bayesian approach, where data are used to update 
the posterior probabilities assigned to candidate causal structures (Cooper and Herskovits 
1991). The UCLA and CMU efforts have led to similar theories and almost identical dis- 
covery algorithms, which were implemented in the TETRAD I1 program (Spirtes et al. 
1993). The Bayesian approach has since been pursued by a number of research teams 
(Singh and Valtorta 1995; Heckerman et al. 1994) and now serves as the basis for several 
graph-based learning methods (Jordan 1998). This chapter describes the approach pur- 
sued by Tom Verrna and me in the period 1988-1992, and it briefly summarizes related 
extensions, refinements, and improvements that have been advanced by the CMU team 
and others. Some of the philosophical rationale behind this development, primarily the 
assumption of minimality, are implicit in the Bayesian approach as well (Section 2.9.1). 

The basic idea of automating the discovery of causes - and the specific implementa- 
tion of this idea in computer programs - came under fierce debate in a number of forums 
(Cartwright 1995a; Humphreys and Freedman 1996; Cartwright 1999; Korb and Wallace 
1997; McKim and Turner 1997; Robins and Wasserman 1999). Selected aspects of this 
debate will be addressed in the discussion section at the end of this chapter (Section 2.9.1). 
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Acknowledging that statistical associations do not logically imply causation, this 
chapter asks whether weaker relationships exist between the two. In particular, we ask: 

1. What clues prompt people to perceive causal relationships in uncontrolled obser- 
vations? 

2. Is it feasible to infer causal models from these clues? 

3. Would the models inferred tell us anything useful about the causal mechanisms 
that underly the observations? 

In Section 2.2 we define the notions of causal models and causal structures and then de- 
scribe the task of causal modeling as an inductive game that scientists play against Nature. 
In Section 2.3 we formalize the inductive game by introducing "minimal model" seman- 
tics -the semantical version of Occam's razor - and exemplify how, contrary to common 
folklore, causal relationships can be distinguished from spurious covariations following 
this standard norm of inductive reasoning. Section 2.4 identifies a condition, called sta- 
bility (or faithfulness), under which effective algorithms exist that uncover structures of 
casual influences as defined here. One such algorithm (called IC), introduced in Sec- 
tion 2.5, uncovers the set of all causal models compatible with the data, assuming all 
variables are observed. Another algorithm (IC*), described in Section 2.6, is shown to 
uncover many (though not all) valid causal relationships when some variables are not 
observable. In Section 2.7 we extract from the IC * algorithm the essential conditions un- 
der which causal influences are identified, and we offer these as independent definitions 
of genuine influences and spurious associations, with and without temporal information. 
Section 2.8 offers an explanation for the puzzling yet universal agreement between the 
temporal and statistical aspects of causation. Finally, Section 2.9 summarizes the claims 
made in this chapter, re-explicates the assumptions that lead to these claims, and offers 
new justifications of these assumption in light of ongoing debates. 

2.1 INTRODUCTION 

An autonomous intelligent system attempting to build a workable model .... of its environ- 
ment cannot rely exclusively on preprogrammed causal knowledge; rather, it must be 
able to translate direct observations to cause-and-effect relationships. However, given 
that statistical analysis is driven by covariation, not causation, and assuming that the bulk 
of human knowledge derives from uncontrolled observations, we must still identify the 
clues that prompt people to perceive causal relationships in the data. We must also find 
a computational model that emulatcs this perception. 

Temporal precedence is normally assumed to be essential for defining causation, and 
it is undoubtedly one of the most important clues that people use to distinguish causal 
from other types of associations. Accordingly, most theories of causation invoke an ex- 
plicit requirement that a cause precedes its effect in time (Reichenbach 1956; Good 1961; 
Suppes 1970; Shoham 1988). Yet temporal information alone cannot distinguish genuine 
causation from spurious associations caused by unknown factors - the barometer falls 
before it rains yet does not cause the rain. In fact, the statistical and philosophical lit- 
erature has adamantly warned analysts that, unless one knows in advance all causally 
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relevant factors or unless one can carefully manipulate some variables, no genuine causal 
inferences are possible (Fisher 1951; Skynns 1980; Cliff 1983; Eells and Sober 1983; Hol- 
land 1986; Gardenfors 1988; Cartwright 1989).' Neither condition is realizable in normal 
learning environments, and the question remains how causal knowledge is ever acquired 
from experience. 

The clues that we explore in this chapter come from certain patterns of statistical as- 
sociations that are characteristic of causal organizations - patterns that, in fact, can be 
given meaningful interpretation only in terms of causal directionality, Consider, for ex- 
ample, the following intransitive pattern of dependencies among three events: A and B 
are dependent, B and C are dependent, yet A and C are independent. If you ask a per- 
son to supply an example of three such events, the example would invariably portray A 
and C as two independent causes and B as their common effect, namely, A -, B t C .  
(In my favorite example, A and C are the outcomes of two fair coins, and B represents 
a bell that rings whenever either coin comes up heads.) Fitting this dependence pattern 
with a scenario in which B is the cause and A and C are the effects is mathematically 
feasible but very unnatural (the reader is encouraged to try this exercise). 

Such thought experiments tell us that certain patterns of dependency, which are totally 
void of temporal information, are conceptually characteristic of certain causal direction- 
alities and not others. Reichenbach (1956) suggested that this directionality is a charac- 
teristic of Nature, reflective of the temporal asymmetries associated with thc second law 
of thermodynamics. In Section 2.8 we offer a more subjective explanation, attributing 
the directionality to choice of language and to certain assumptions (e.g., Occam's ra- 
zor and stability) prevalent in scientific induction. The focus of our investigation in this 
chapter is to explore whether this directionality provides a significant source of causal 
information and whether this information can be given formal characterization and an 
algorithmic implementation. 

We start by introducing a model-theoretic semantics that gives a plausible account for 
how causal models could coherently be inferred from observationsJLsing this seman- 
tics we show that, subject to certain plausible assumptions, genuine causal iauences can 
in many cases be distinguished from spurious covariations and, moreover, thedirection 
of causal influences can often be determined without resorting to chronological infor- 
mation. (Although, when available, chronological information can significantly simplify 
the modeling task.) 

2.2 THE CAUSAL MODELING FRAMEWORK 

We view the task of causal modeling as an induction game that scientists play against Na- 
ture. Nature possesses stable causal mechanisms that, on a detailed level of descriptions, 
are deterministic functional relationships between variables, some of which are unob- 
servable. These mechanisms are organized in the form of an acyclic structure, which the 
scientist attempts to identify from the available observations. 

' Some of the popular quotes are: "No causation without manipulation" (Holland 1986), "No causes 
in, no causes out" (Cartwright 1989), "No computer program can take account of variables that are 
not in the analysis" (Cliff 1983). 
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Definition 2.2.1. (Causal Structure) 
A causal structure of a set of variables V is a directed acyclic graph (DAG) in which each 
node corresponds to a distinct element of V ,  and each link represents direct functional 
relationship among the corresponding variables. 

A causal structure serves as a blueprint for forming a "causal model" - a precise speci- 
fication of how each variable is influenced by its parents in the DAG, as in the structural 
equation model of (1.40). Here we assume that Nature is at liberty to impose arbitrary 
functional relationships between each effect and its causes and then to perturb these rela- 
tionships by introducing arbitrary (yet mutually independent) disturbances. These distur- 
bances reflect "hidden" or unmeasurable conditions and exceptions that Nature chooses 
to govern by some undisclosed probability function. 

Definition 2.2.2 (Causal Model) 
A causal model is a pair M = ( D ,  OD) consisting of a causal structure D and a set ofpa- 
rameters OD compatible with D. The parameters OD assign a function xi = J;:(pai, u i )  
to each Xi E V and a probability measure P(ui) to each ui ,  where PAi are the parents 
of Xi in D and where each Ui is a random disturbance distributed according to P(ui), 
independently of all other u. 

As we have seen in Chapter 1 (Theorem 1.4.1), the assumption of independent distur- 
bances renders the model Markovian in the sense that each variable is independent of all 
its nondescendants, conditional on its parents in D. This Markov assumption is more a 
convention than an assumption, for it merely defines the granularity of the models we 
wish to consider as candidates before we begin the search. We can start in the deter- 
ministic extreme, where all variables are explicated in microscopic details and where the 
Markov condition certainly holds. As we move up to macroscopic abstractions by aggre- 
gating variables and introducing probabilities to summarize omitted variables, we need 
to decide at what stage the abstraction has gone too far and where useful properties of 
causation are lost. Evidently, the Markov condition has been recognized by our ancestors 
(the authors of our causal thoughts) as a property worth protecting in this abstraction; cor- 
relations that are not explained by common causes are considered spurious, and models 
containing such correlations are considered incomplete. The Markov condition guides 
us in deciding when a set of parents PAi is considered complete in the sense that it in- 
clude all the relevant immediate causes of variable Xi. It permits us to leave some of 
these causes out of PAi (and be summarized by probabilities), but not if they also affect 
other variables modeled in the system. If a set PAi in a model is too narrow, there will be 
disturbance terms that influence several variables simultaneously and the Markov prop- 
erty will be lost. Such disturbances will be treated explicitly as "latent" variables (see 
Definition 2.3.2). Once we acknowledge the existence of latent variables and represent 
their existence explicitly as nodes in a graph, the Markov property is restored. 

Once a causal model M is formed, it defines a joint probability distribution P(M) 
over the variables in the system. This distribution reflects some features of the causal 
structure (e.g., each variable must be independent of its grandparents, given the values 
of its parents). Nature then permits the scientist to inspect a select subset 0 & V of 
"observed" variables and to ask questions about PLol,  the probability distribution over 



2.3 Model Preference (Occam's Razor) 

the observables, but it hides the underlying causal model as well as the causal structure. 
We investigate the feasibility of recovering the topology D of the DAG from features of 
the probability distribution P~~~ .* 

2.3 MODEL PREFERENCE (OCCAM'S RAZOR) 

In principle, since V is unknown, there is an unbounded number of models that would fit a 
given distribution, each invoking a different set of "hidden" variables and each connecting 
the observed variables through different causal relationships. Therefore, with no restric- 
tion on the type of models considered, the scientist is unable to make any meaningful 
assertions about the structure underlying the phenomena. For example, every probability 
distribution PIol  can be generated by a structure in which no observed variable is a cause 
of another but instead all variables are consequences of one latent common cause, u . ~  
Likewise, assuming V = 0 but lacking temporal information, the scientist can never 
rule out the possibility that the underlying structure is a complete, acyclic, and arbitrar- 
ily ordered graph - a structure that (with the right choice of parameters) can mimic the 
behavior of any model, regardless of the variable ordering. However, following standard 
norms of scientific induction, it is reasonable to rule out any theory for which we find 
a simpler, less elaborate theory that is equally consistent with the data (see Definition 
2.3.5). Theories that survive this selection process are called minimal. With this notion, 
we can construct our (preliminary) definition of inferred causation as follows. 

Definition 2.3.1 (Inferred Causation (Preliminary)) 
A variable X is said to have a causal influence on a variable Y i fa  direc~edpath from X 

/' to Y exists in every minimal structure consistent with the data. ,, 

Here we equate a causal structure with a scientific theory, since both contain a set of free 
parameters that can be adjusted to fit the data. We regard Definikion 2.3.1 as preliminary 
because it assumes that all variables are observed. The next few definitions generalize 
the concept of minimality to structures with unobserved variables. 

Definition 2.3.2 (Latent Structure) 
A latent structure is a pair L = ( D ,  0 ) ,  where D is a causal structure over V and where 
0 V is a set of observed variables. 

Definition 2.3.3 (Structure Preference) 
One latent structure L = (D, 0) is preferred to another L' = (Dl, 0) (written L 5 L')  
ifand only if D' can mimic D over 0 - that is, ifand only iffor every OD there exists a 

This formulation invokes several idealizations of the actual task of scientific discovery. It assumes, 
for example, that the scientist obtains the distribution directly, rather than events sampled from 
the distribution. Additionally, we assume that the observed variables actually appear in the origi- 
nal causal model and are not some aggregate thereof. Aggregation might result in feedback loops, 
which we do not discuss in this chapter. 
This can be realized by letting U have as many states as 0, assigning to U the prior distribution 
P ( u )  = P ( o ( u ) )  (where o ( u )  is the cell of 0 corresponding to state u ) ,  and letting each observed 
variable Oi take on its corresponding value in o ( u ) .  
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Ob, such that PLol ((D', Qb,)) = PLol ((D, OD)). T*O latent structures are equivalent, 
written L' = L, if and only if L 5 L' and L ? L' .4 

Note that the preference for simplicity imposed by Definition 2.3.3 is gauged by the 
expressive power of a structure, not by its syntactic description. For example, one la- 
tent structure L1 may invoke many more parameters than L2 and still be preferred if 
LZ can accommodate a richer set of probability distributions over the observables. One 
reason scientists prefer simpler theories is that such theories are more constraining and 
thus more falsifiable; they provide the scientist with less opportunities to overfit the data 
"hindsightedly" and therefore command greater credibility if a fit is found (Popper 1959; 
Pearl 1978; Blumer et al. 1987). 

We also note that the set of independencies entailed by a causal structure imposes lim- 
its on its expressive power, that is, its power to mimic other structures. Indeed, L 1 cannot 
be preferred to L2 if there is even one observable dependency that is permitted by L 1 and 
forbidden by L2. Thus, tests for preference and equivalence can sometimes be reduced to 
tests of induced dependencies, which in turn can be determined directly from the topol- 
ogy of the DAGs without ever concerning ourselves with the set of parameters. This is 
the case in the absence of hidden variables (see Theorem 1.2.8) but does not hold gener- 
ally in all latent structures. Verma and Pearl (1990) showed that some latent structures 
impose numerical rather than independence constraints on the observed distribution (see 
e.g. Section 8.4, equations (8.21)-(8.23)); this makes the task of verifying model prefer- 
ence complicated but does still permit us to extend the semantical definition of inferred 
causation (Definition 2.3.1) to latent structures. 

Definition 2.3.4 (Minimality) 
A latent structure L is minimal with respect to a class LC of latent structures ifand onlj 
ifthere is no member of L that is strictly preferred to L - that is, if and only iffor ever). 
L' E ,C we have L = L' whenever L' 5 L. 

Definition 2.3.5 (Consistency) 
A latent structure L = (D, 0) is consistent with a distribution over 0 if D can ac- 

A 

commodate some model that generates P - that is, if there exists a parameterization OD 
such that Plol ( ( D ,  OD)) = @. 

Clearly, a necessary (and sometimes sufficient) condition for L to be consistent with B 
is that L can account for all the dependencies embodied in @. 

Definition 2.3.6 (Inferred Causation) 
Given B, a variable C has a causal influence on variable E i f  and only if there exists 6 

directed path from C to E in every minimal latent structure consistent with B.  

We view this definition as normative because it is based on one of the least disputed norm5 
of scientific investigation: Occam's razor in its semantical casting. However, as with an] 

We use the succinct term "preferred to" to mean "preferred or equivalent to," a relation that ha: 
also been named "a submodel of." 
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Figure 2.1 Causal structures illustrating the minimality of (a) and (b) and the justification for infer- 
ring the relationship c --, d. The node (+) represents a hidden variable with any number of states. 

scientific inquiry, we make no claims that this definition is guaranteed to always identify 
stable physical mechanisms in nature. It identifies the mechanisms we can plausibly in- 
fer from nonexperimental data; moreover, it guarantees that any alternative mechanism 
will be less trustworthy than the one inferred because the alternative would require more 
contrived, hindsighted adjustment of parameters (i.e. functions) to fit the data. 

As an example of a causal relation that is identified by Definition 2.3.6, imagine that 
observations taken over four variables {a, b, c, d} reveal two independencies: "a is in- 
dependent of b" and "d is independent of {a ,  b)  given c." Assume further that the data 
reveals no other independence besides those that logically follow from these two. This 
dependence pattern would be typical, for example, of the following variables: a = having 
a cold, b = having hay fever, c = having to sneeze, d = having to wipe one's nose. 
It is not hard to see that structures (a) and (b) in Figure 2.1 are minimal, for they entail 
the observed independencies and none other.5 Furthermore, any structure that explains 
the observed dependence between c and d by an arrow from d to c, or by a hidden com- 
mon cause (*) between the two, cannot be minimal, because any such structure would be 
able to "out-mimic" the one shown in Figure12.1(a) (or the one in Figure 2.l(b)), which 
reflects all observed independencies. For e-ple, the structure of Figure 2.l(c), unlike 
that of Figure 2.l(a), accommodates distributions with arbitrary relations between a and 
b. Similarly, Figure 2.l(d) is not minimal because it fails to impose the conditional in- 
dependence between d and (a,  b)  given c and will therefore accommodate distributions 
in which d and {a, b)  are dependent given c. In contrast, Figure 2.l(e) is not consis- 
tent with the data since it imposes an unobserved marginal independence between {a, b} 
and d. 

This example (taken from Pearl and Verma 1991) illustrates a remarkable connection 
between causality and probability: certain patterns of probabilistic dependencies (in our 
case, all dependencies except (a J l  b) and (d IL {a, b) I c)) imply unambiguous causal 
dependencies (in our case, c + d )  without making any assumption about the presence 

To verify that (a) and (b) are equivalent, we note that (b) can mimic (a) if we let the link a 6 * 
impose equality between the two variables. Conversely, (a) can mimic (b), since it is capable of 
generating every distribution that possesses the independencies entailed by (b). (For theory and 
methods of "reading off" conditional independencies from graphs, see Section 1.2.3 or Pearl 1988b.) 
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or absence of latent variabies? The only assumption invoked in this implication is mini- 
mality - models that overfit the data are ruled out. 

2.4 STABLE DISTRIBUTIONS 

Although the minimality principle is sufficient for forming a normative theory of inferred 
causation, it does not guarantee that the structure of the actual data-generating model 
would be minimal, or that the search through the vast space of minimal structures would 
be computationally practical. Some structures may admit peculiar parameterizations that 
would render them indistinguishable from many other minimal models that have totally 
disparate structures. For example, consider a binary variable C that takes the value 1 
whenever the outcomes of two fair coins ( A  and B) are the same and takes the value 0 
otherwise. In the trivariate distribution generated by this parameterization, each pair of 
variables is marginally independent yet is dependent conditional on the third variable. 
Such a dependence pattern may in fact be generated by three minimal causal structures, 
each depicting one of the variables as causally dependent on the other two, but there 
is no way to decide among the three. In order to rule out such "pathological" param- 
eterization~, we impose a restriction on the distribution called stability, also known as 
DAG-isomorphism (Pearl 1988b, p. 128) and faithfulness (Spirtes et al. 1993). This re- 
striction conveys the assumption that all the independencies embedded in P are stable; 
that is, they are entailed by the structure of the model D and hence remain invariant to 
any change in the parameters OD. In our example, only the correct structure (namely, 
A -, C t B) will retain its independence pattern in the face of changing parameteriza- 
tions - say, when one of the coins becomes slightly biased. 

Definition 2.4.1 (Stability) 
Let I ( P )  denote the set of all conditional independence relationships embodied in I! 
A causal model M = ( D ,  OD) generates a stable distribution if and only if P((D, OD)) 
contains no extraneous independences -that is, if and only i f  I ( P ( ( D ,  OD)))  & 
I(P((D, Ob))) for any set of parameter's 0;. 

The stability condition states that, as we vary the parameters from O to O', no inde- 
pendence in P can be destroyed; hence the name "stability." Succinctly, P is a stable 
distribution if there exists a DAG D such that (X J l  Y ( Z ) p  (X lL Y I Z ) D  for 
any three sets of variables X, Y, and Z (see Theorem 1.2.5). 

The relationship between minimality and stability can be illustrated using the follow- 
ing analogy. Suppose we see a picture of a chair and that we need to decide between two 
theories as follows. 

T1 : The object in the picture is a chair. 

T2: The object in the picture is either a chair or two chairs positioned such that one 
hides the other. 

Standard probabilistic definitions of causality (e.g. Suppes 1970; Eells 1991) invariably require 
knowledge of all relevant factors that may influence the observed variables (see Section 7.5.3). 
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Our preference for TI  over T2 can be justified on two principles, one based on minimality 
and the other on stability. The minimality principle argues that T I  is preferred to T2 be- 
cause the set of scenes composed of single objects is a proper subset of scenes composed 
of two or fewer objects and, unless we have evidence to the contrary, we should prefer the 
more specific theory. The stability principle rules out T2 a priori, arguing that it would 
be rather unlikely for two objects to align themselves so as to have one perfectly hide the 
other. Such an alignment would be unstable relative to slight changes in environmental 
conditions or viewing angle. 

The analogy with independencies is clear. Some independencies are structural, that 
is, they would persist for every functional-distributional parameterization of the graph. 
Others are sensitive to the precise numerical values of the functions and distributions. 
For example, in the structure Z + X -, Y, which stands for the relations 

the variables Z and Y will be independent, conditional on X, for all functions f i  and f 2 .  

In contrast, if we add an arrow Z -, Y to the structure and use a linear model 

with a! = -By, then Y and X will be independent. However, the independence between 
Y and X is unstable because it disappears as soon as the equality cr = - B y  is violated. 
The stability assumption presumes that this type of independence is unlikely to occur in 
the data, that all independencies are structural. 

To further illustrate the relations between stability and minimality, consider the causal 
structure depicted in Figure 2.l(c). The minimality principle rejects this structure on the 
ground that it fits a broader set of distributions than those fitted by structure (a). The 
stability principle rejects this structure. on the ground that, in order to fit the data (specif- 
ically, the independence (a IL b)) ,  the association produced by the arrow a -, b must 
cancel precisely the one produced by the path a e c -, b. Such precise cancelation can- 
not be stable, for it cannot be sustained for all functions connecting variables a ,  b, and 
c.  In structure (a), by contrast, the independence (a II. b) is stable. 

2.5 RECOVERING DAG STRUCTURES 

With the added assumption of stability, every distribution has a unique minimal causal 
structure (up to d-separation equivalence), as long as there are no hidden variables. This 
uniqueness follows from Theorem 1.2.8, which states that two causal structures are equiv- 
alent (i.e., they can mimic each other) if and only if they relay the same dependency in- 
formation - namely, they have the same skeleton and same set of v-structures. 

In the absence of unmeasured variables, the search for the minimal model then boils 
down to reconstructing the structure of a DAG D from queries about conditional inde- 
pendencies, assuming that those independencies reflect d-separation conditions in some 
undisclosed underlying DAG Do. Naturally, since Do may have equivalent structures, 
the reconstructed DAG will not be unique, and the best we can do is to find a graphical 
representation for the equivalence class of Do. Such graphical representation was intro- 
duced in Verma and Pearl (1990) under the name pattern. A pattern is a partially directed 
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DAG, in particular, a graph in which some edges are directed and some are nondirected. 
The directed edges represent arrows that are common to every member in the equiva- 
lence class of Do, while the undirected edges represent ambivalence; they are directed 
one way in some equivalent structures and another way in others. 

The following algorithm, introduced in Verma and Pearl (1990), takes as input a stable 
probability distribution k generated by some underlying DAG Do and outputs a pattern 
that represents the equivalence class of ~ 0 . ~  

IC Algorithm (Inductive Causation) 
Input: F, a stable distribution on a set V of variables. 

Output: a pattern H ( P )  compatible with k. 
1. For each pair of variables a and b in V, search for a set Sob such that 

(a IL b I Sab) holds in p - in other words, a and b should be independent in 
k, conditioned on Sab. Construct an undirected graph G such that vertices 
a and b are connected with an edge if and only if no set Sab can be found. 

2. For each pair of nonadjacent variables a and b with a common neighbor c, 
check if c E Sub. 

If it is, then continue. 
If it is not, then add arrowheads pointing at c (i.e., a -+ c + b) .  

3. In the partially directed graph that results, orient as many of the undirected 
edges as possible subject to two conditions: (i) the orientation should not 
create a new v-structure; and (ii) the orientation should not create a 
directed cycle. 

The IC algorithm leaves the details of steps 1 and 3 unspecified, and several refinements 
have been proposed fdrptimizing these two steps. Verma and Pearl (1990) noted that, 
in sparse graphs, the search can be trimmed substantially if commenced with the Markov 
network of F, namely, the undirected graph formed by linking only pairs that are depen- 
dent conditionally on all other variables. In linear Gaussian models, the Markov network 
can be found in polynomial time, through matrix inversion, by assigning edges to pairs 
that correspond to the nonzero entries of the inverse covariance matrix. Spirtes and Gly- 
mour (1991) proposed a general systematic way of searching for the sets Sob in step 1. 
Starting with sets Sub of cardinality 0, then cardinality 1, and so on, edges are recursively 
removed from a complete graph as soon as separation is found. This refinement, called 
the PC algorithm (after its authors, Peter and Clark), enjoys polynomial time in graphs 
of finite degree because, at every stage, the search for a separating set Sab can be limited 
to nodes that are adjacent to a and b. 

Step 3 of the IC algorithm can be systematized in several ways. Verma and Pearl 
(1992) showed that, starting with any pattern, the following four rules are required for 
obtaining a maximally oriented pattern. 

' The IC algorithm, as introduced in Verma and Pearl (1990), was designed to operate on latent struc- 
tures. For clarity, we here present the algorithm in two separate parts, IC and IC*, with IC restricted 
to DAGs and IC* operating on latent structures. 
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R1: Orient b - c into b -+ c whenever there is an arrow a 3 b such that a and c 
are nonadjacent. 

R2: Orient a - b into a -+ b whenever there is chain a -, c -+ b. 

R3: Orient a - b into a -, b whenever there are two chains a - c -+ b and 
a - d -+ b such that c and d are nonadjacent. 

R4: Orient a - b into a -, b whenever there are two chains a - c -+ d and 
c -+ d + b such that c and b are nonadjacent. 

Meek (1995) showed that these four rules are also sufficient, so that repeated appli- 
cation will eventually orient all arrows that are common to the equivalence class of Do. 
Moreover, R4 is not required if the starting orientation is limited to v-structures. 

Another systematization is offered by an algorithm due to Dor and Tarsi (1992) that 
tests (in polynomial time) if a given partially oriented acyclic graph can be fully oriented 
without creating a new v-structure or a directed cycle. The test is based on recursively 
removing any vertex v that has the following two properties: 

1. no edge is directed outward from v; 

2. every neighbor of v that is connected to v through an undirected edge is also ad- 
jacent to all the other neighbors of v. 

A partially oriented acyclic graph has an admissible extension in a DAG if and only if all 
its vertices can be removed in this fashion. Thus, to find the maximally oriented pattern, 
we can (i) separately try the two orientations, a -* b and a + b, for every undirected 
edge a - b, and (ii) test whether both orientations, or just one, have extensions. The set 
of uniquely orientable&.& con2titutes the desired maximally oriented pattern. Addi- 
tional refinements canbe found in Chickering (1995), Andersson et al. (1997), and Moole 
(1997). 

Latent structures, however, require special treatment, because the constraints that a 
latent structure imposes upon the distribution cannot be completely characterized by any 
set of conditional independence statements. Fortunately, certain sets of those indepen- 
dence constraints can be identified (Verma and Pearl 1990); this permits us to recover 
valid fragments of latent structures. 

2.6 RECOVERING LATENT STRUCTURES 

When Nature decides to "hide" some variables, the observed distribution p need no 
longer be stable relative to the observable set 0. That is, we are no longer guaranteed 
that, among the minimal latent structures compatible with F, there exists one that has a 
DAG structure. Fortunately, rather then having to search through this unbounded space of 
latent structures, the search can be confined to graphs with finite and well-defined struc- 
tures. For every latent structure L ,  there is a dependency-equivalent latent structure (the 
projection) of L on 0 in whlch every unobserved node is a root node with exactly two 
observed children. We characterize this notion explicitly as follows. 
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Definition 2.6.1 (Projection) 
A latent structure L[ol = (D,ol, 0) is a projection of another latent structure L ifand 
only ij? 

I .  every unobservable variable qf DLol is a parentless common cause of exactly two 
nonadjacent observable variables; and 

2. for every stable distribution P generated by L, there exists a stable distribution 
P' generated by Llol such that Z(PIol) = I(P;,l). 

Theorem 2.6.2 (Verma 1993) 
Any latent structure has at least one projection. 

It is convenient to represent projections using a bidirectional graph with only the ob- 
served variables as vertices (i.e., leaving the hidden variables implicit). Each bidirected 
link in such a graph represents a common hidden cause of the variables corresponding to 
the link's endpoints. 

Theorem 2.6.2 renders our definition of inferred causation (Definition 2.3.6) opera- 
tional; it can be shown (Verma 1993) that the existence of a certain link in a distinguished 
projection of any minimal model of @ must indicate the existence of a causal path in 
every minimal model of B. Thus, our search reduces to finding the distinguished protec- 
tion of any minimal model of ? and identifying the appropriate links. Remarkably, these 
links can be identified by a simple variant of the IC algorithm, here called IC*, that takes 
a distribution k and returns a marked pattern, which is a partially directed acyclic graph 
that contains four types of edges: 

1. a marked arrow s -% b,  signifying a directed path from a to b in the underlying 
model; 

2. an unmarked arrow a -, b, signifying either a directed path from a to b or a 
latent common cause a t L -W b in the underlying model; 

3. a bidirected edge a t--, b,  signifying a latent common cause a t L -, b in 
the underlying model; and 

4. an undirected edge a - b,  standing for either a + b or a -, b or a + L -* b 
in the underlying modeL8 

IC* Algorithm (Inductive Causation with Latent Variables) 

Input: p, a sampled distribution. 

Output: core(F), a marked pattern. 

1. For each pair of variables a and b,  search for a set Sub such that a and b 
are independent in @, conditioned on Sub. 

Spirtes et al. (1993) used a CH b to represent uncertainty about the arrowhead at node a. Several 
errors in the original proof of IC* were pointed out to us by Peter Spirtes and were corrected in 
Verma (1993). Alternative proofs of correctness, as well as refinements in the algorithm, are given 
in Spirtes et al. (1993). 
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Figure 2.2 Illustration of R2 in step 3 of the IC* algorithm, 

Figure 2.3 Graphs constructed by the IC* algorithm. (a) Underlying structure. (b) After step I. (c) 
After step 2. (d) Output of IC*. 

If there is no such Sab, place an undirected link between the two 
variables, a - b. 

2. For each pair of nonadjacent variables a and b with a common neighbor c,  
check if c E Sab. 

-- -. - If it is, then continue. 
If it is not, then add arrowheads pointing at c (i.e., a -, c +- b) .  

3. In the partially directed graph that results, add (recursively) as many 
arrowheads as possible, and mark as many edges as possible, according 
to the following two rules: 
R1:  For each pair of nonadjacent nodes a and b with a common neighbor 

c, if the link between a and c has an arrowhead into c and if the link 
between c and b has no arrowhead into c, then add an arrowhead on 
the link between c and b pointing at b and mark that link to obtain 
c L  b. 

R2: If a and b are adjacent and there is a directed path (composed strictly 
of marked links) from a to b (as in Figure 2.2), then add an arrowhead 
pointing toward b on the link between a and b. 

Steps 1 and 2 of IC* are identical to those of IC, but the rules in step 3 are different; they 
do not orient edges but rather add arrowheads to the individual endpoints of the edges, 
thus accommodating bidirectional edges. 

Figure 2.3 illustrates the operation of the IC* algorithm on the sprinkler example of 
Figure 1.2 (shown schematically in Figure 2.3(a)). 

1. The conditional independencies entailed by this structure can be read off using 
the d-separation criterion (Definition 1.2.3), and the smallest conditioning sets 
corresponding to these independencies are given by Sad = {b,  c), So, = { d l ,  
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Figure 2.4 Latent structures equivalent to those of Figure 2.3(a). 

Sbc = {a}, She = {dl, and S,, = (d}. Thus, step 1 of IC* yields the undirected 
graph of Figure 2.3(b). 

2. The triplet (b ,  d ,  c )  is the only one that satisfies the condition of step 2, since d is 
not in Sbc. Accordingly, we obtain the partially directed graph of Figure 2.3(c). 

3. Rule R1 of step 3 is applicable to the triplet (b, d,  e) (and to (c, d ,  e ) ) ,  since b 
and e are nonadjacent and there is an arrowhead at d from b but not from e. We 
therefore add an arrowhead at e, and mark the link, to obtain Figure 2.3(d). This 
is also the final output of IC*, because R1 and R2 are no longer applicable. 

The absence of arrowheads on a - b and a - c, and the absence of markings on 
b -. d and c -. d, correctly represent the ambiguities presented by p .  Indeed, each of 
the latent structures shown in Figure 2.4 is observationally equivalent to that of Figure 
2.3(a). Marking the link d + e in Figure 2,3(d) advertises the existence of a directed 
link d -, e in each and 'every latent structure that is independence-equivalent to the one 
in Figure 2.3(a). 

2.7 LOCAL CRITERIA FOR CAUSAL RELATIONS 

The IC* algorithm takes a distribution @ and outputs a partially directed graph. Some 
of the links are marked unidirectional (denoting genuine causation), some are unmarked 
unidirectional (denoting potential causation), some are bidirectional (denoting spurious 
association), and some are undirected (denoting relationships that remain undetermined). 
The conditions that give rise to these labelings can be taken as definitions for the various 
kinds of causal relationships. In this section we present explicit definitions of potential 
and genuine causation as they emerge from the IC * algorithm. Note that, in all these def- 
initions, the criterion for causation between two variables (X and Y) will require that a 
third variable Z exhibit a specific pattern of dependency with X and Y. This is not sur- 
prising, since the essence of causal claims is to stipulate the behavior of X and Y under 
the influence of a third variable, one that corresponds to an external control of X (or Y )  - 
as echoed in the paradigm of "no causation without manipulation" (Holland 1986). The 
difference is only that the variable Z, acting as a virtual control, must be identified within 
the data itself, as if Nature had performed the experiment. The IC* algorithm can be re- 
garded as offering a systematic way of searching for variables Z that qualify as virtual 
controls, given the assumption of stability. 
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Definition 2.7.1 (Potential Cause) 
A variable X has a potential causal influence on another variable Y (that is inferable from 
i) ifthe following conditions hold. 

1. X and Yare dependent in every context. 

2. There exists a variable Z and a context S such that 
(i) X and Z are independent given S (i.e., X IL Z I S)  and 
(ii) Z and Yare dependent given S (i.e., Z Jb Y I S). 

By "context" we mean a set of variables tied to specific values. In Figure 2.3(a), for ex- 
ample, variable b qualifies as a potential cause of d by virtue of variable Z = c being 
dependent on d and independent of b in context S = a.  Likewise, c qualifies as poten- 
tial cause of d (with Z = b and S = a ) .  Neither b nor c qualifies as genuine cause of 
d ,  because this pattern of dependencies is also compatible with a latent common cause, 
shown as bidirected arcs in Figures 2.4(a)-(b). However, Definition 2.7.1 disqualifies 
d as a cause of b (or c) ,  and this leads to the classification of d as a genuine cause of 
el as formulated in Definition 2.7.2.9 Note that Definition 2.7.1 precludes a variable X 
from being a potential cause of itself or of any other variable that functionally deter- 
mines X. < 

Definition 2.7.q (Genuine Cause) 
A variable X had a genuine causal influence on another variable Y if there exists a vari- 
able Z such that bither: 

I 

1. X and Yare dependent in any context and there exists a context S satisfying 

(i) Z is a potential cause of X (per Definition 2. T I ) ,  
(ii) Z and Yare dependent given S (i-e., Z Jh Y I S), and 
(iii) Z and Yare independent given S U X (i.e., Z IL Y I S U X); 
or 

2. X and Yare in the transitive closure of the relation defined in criterion 1. 

Conditions (i)-(iii) are illustrated in Figure 2.3(a) with X = d l  Y = e ,  Z = b ,  and S = 

0. The destruction of the dependence between b and e through conditioning on d can- 
not be attributed to spurious association between d and e; genuine causal influence is the 
only explanation, as shown in the structures of Figure 2.4. 

Definition 2.7.3 (Spurious Association) 
Two variables X and Yare spuriously associated i f  they are dependent in some context 
and there exist two other variables (Z1 and Z2) and two contexts (S1 and S2) such that: 

Definition 2.7.1 was formulated in Pearl (1990) as a relation between events (rather than variables) 
with the added condition P(Y I X )  > P(Y) (in the spirit of Reichenbach 1956, Good 1961, and 
Suppes 1970). This refinement is applicable to any of the definitions in this section, but it will not 
be formulated explicitly. 
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"3 Figure 2.5 Illustration of how temporal information 
permits the inference of genuine causation and spurious 
associations (between X and Y) from the conditional 
independencies displayed in (a) and (b), respectively. 

1. Z1 and X are dependent given S1 (i.e., Z1 Jb X I S1); 

2. Z1 and Yare independent given S1 (i.e., Z1 lL Y I S1); 

3. Z2 and Yare dependent given Sz (i.e., Z2 Jb Y I S2); and 

4. Z2 and X are independent given S2 (i.e., Z2 lL X I S2). 

Conditions 1 and 2 use Z1 and S1 to disqualify Y as a cause of X, paralleling condi- 
tions (i)-(ii) of Definition 2.7.1; conditions 3 and 4 use Z2 and S2 to disqualify X as 
a cause of Y. This leaves the existence of a latent common cause as the only expla- 
nation for the observed dependence between X and Y, as exemplified in the structure 
z1 -. X t--, Y + Z 2 .  

When temporal information is available (as is assumed in the most probabilistic the- 
ories of causality - Suppes 1970; Spohn 1983; Granger 1988), Definitions 2.7.2 and 2.7.3 
simplify considerably because every variable preceding and adjacent to X now qualifies 
as a "potential cause" of X. Moreover, adjacency (i.e., condition 1 of Definition 2.7.1) is 
not required as long as the context S is confined to be earlier than X. These considera- 
tions lead to simpler conditions distinguishing genuine from spurious causes, as shown 
next. 

Definition 2.7.4 (Genuine Causation with Temporal Information) 
A variable X has a causal influence on Y if there is a third variable Z and a context S, 
both occurring before X, such that: 

1. ( Z S Y  I S); 

2. ( Z A Y  I S U X ) .  

The intuition behind Definition 2.7.4 is the same as for Definition 2.7.2, except that tem- 
poral precedence is now used to establish Z as a potential cause of X. This is illustrated 
in Figure 2.5(a): If conditioning on X can turn Z and Y from dependent to independent 
(in context S) ,  it must be that the dependence between Z and Y was mediated by X; 
given that Z precedes X, such mediation implies that X has a causal influence on Y .  

Definition 2.7.5 (Spurious Association with Temporal Information) 
Two variables X and Yare spuriously associated ifthey are dependent in some context S, 
ifxprecedes Y, and i f  there exists a variable Z satisfying: 
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1. (ZILY I S);  

2. ( Z J h X  I S). 

Figure 2.5(b) illustrates the intuition behind Definition 2.7.5. Here the dependence be- 
tween X and Y cannot be attributed to causal connection between the two because such 
a connection would imply dependence between Z and Y, which is ruled out by condi- 
tion 1." 

Examining the definitions just presented, we see that all causal relations are inferred 
from at least three variables. Specifically, the information that pennits us to conclude that 
one variable is not a causal consequence of another comes in the form of an "intransitive 
triplet" - for example, the variables a ,  b, c in Figure 2.l(a) satisfying (a IL b I 91), (a JL c I 
0), and (b Jb c 1 0). The argument goes as follows. If we find conditions (Sab)  where 
the variables a and b are each correlated with a third variable c but are independent of 
each other, then the third variable cannot act as a cause of a or b (recall that, in stable 
distributions, the presence of a common cause implies dependence among the effects); 
rather, c must either be their common effect (a -* c t b) or be associated with a and b 
via common causes, forming a pattern such as a - c - 6.  This is indeed the con- 
dition that permits the IC* algorithm to begin orienting edges in the graph (step 2) and 
to assign arrowheads pointing at c. It is also this intransitive pattern that is used to en- 
sure that X ii not a consequence of Y in Definition 2.7.1 and that Z is not a consequence 
of X in Definitidq 2.7.2. In Definition 2.7.3 we have two intransitive triplets, (Z1, X, Y) 
and (X, Y, Z 2 ) ,  thus ruling out direct causal influence between X and Y and so implying 
that spurious assodiations are the only explanation for their dependence. 

This interpretation of intransitive triples involves a virtual control of the effect vari- 
able, rather than of the putative cause; this is analogous to testing the null hypothesis in 
the manipulative view of causation (Section 1.3). For example, one of the reasons people 
insist that the rain causes the grass to become wet, and not the other way around, is that 
they can easily find other means of getting the grass wet that are totally independent of 
the rain. Transferred to our chain a - c - b, we preclude c from being a cause of a if 
we find another means (b)  of potentially controlling c without affecting a (Pearl 1988a, 
p. 396). The analogy is merely heuristic, of course, because in observational studies we 
must wait for Nature to provide the appropriate control and refrain from contaminating 
that control with spurious associations (with a) .  

2.8 NONTEMPORAL CAUSATION AND STATISTICAL TIME 

Determining the direction of causal influences from nontemporal data raises some inter- 
esting philosophical questions about the relationships between time and causal explana- 
tions. For example, can the orientation assigned to the arrow X -, Y in Definitions 2.7.2 

lo Recall that transitivity of causal dependencies is implied by stability. Although it is possible to 
construct causal chains Z -, X + Y in which Z and Y are independent, such independence will 
not be sustained for all pararneterizations of the chain. 
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or 2.7.4 ever clash with the available temporal information (say, by a subsequent discov- 
ery that Y precedes X)?  Since the rationale behind Definition 2.7.4 is based on strong 
intuitions about the statistical aspects of causal relationships (e.g., no correlation with- 
out some causation), it is apparent that such clashes, if they occur, are rather rare. The 
question then arises: Why should orientations determined solely by statistical dependen- 
cies have anything to do with the flow of time? 

In human discourse, causal explanations satisfy two expectations: temporal and sta- 
tistical. The temporal aspect is represented by the understanding that a cause should 
precede its effect. The statistical aspect expects a complete causal explanation to screen 
off its various effects (i.e., render the effects conditionally independent);" explanations 
that do not screen off their effects are considered "incomplete," and the residual depen- 
dencies are considered "spurious" or "unexplained." The clashless coexistence of these 
two expectations through centuries of scientific observations implies that the statistics of 
natural phenomena must exhibit some basic temporal bias. Indeed, we often encounter 
phenomenon where knowledge of a present state renders the variables of the future state 
conditionally independent (e-g., multivariate economic time series as in (2.3)). However, 
we rarely find the converse phenomenon, where knowledge of the present state would 
render the components of the past state conditionally independent. Is there any com- 
pelling reason for this temporal bias? 

A convenient way to formulate this bias is through the notion of statistical time. 

Definition 2.8.1 (Statistical Time) 
Given an empirical distribution P, a statistical time of P is any ordering of the variables 
that agrees with at least one minimal causal structure consistent with P .  

We see, for example, that a scalar Markov chain process has many statistical times; one 
coinciding with the physical time, one opposite to it, and others that correspond to or- 
dering~ that agree with any orientation of the Markov chain away from one of the nodes 
(arbitrarily chosen as a root). On the other hand, a process governed by two coupled 
Markov chains, such as 

has only one statistical time - the one coinciding with the physical time.12 Indeed, run- 
ning the IC algorithm on samples taken from such a process - while suppressing all 
temporal information - quickly identifies the components of X,-I and Y,-, as genuine 

' l  This expectation, known as Reichenbach's "conjunctive fork" or "common-cause" criterion (Rei- 
chenbach 1956; Suppes and Zaniotti 1981; Sober and Barrett 1992) has been criticized by Salmon 
(1984a), who showed that some events qualify as causal explanations though they fail to meet Rei- 
chenbach's criterion. However, Salmon's examples involve incomplete explanations, as they leave 
out variables that mediate between the cause and its various effects (see Section 2.9.1). 

l 2  Here t, and q, are assumed to be two independent, white-noise time series. Also, a # 6 and 
Y # B .  
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causes of X, and Y,. This can be seen from Definition 2.7.1 (where Xt-2 qualifies as a po- 
tential cause of Xt-l using Z = Yt-2 and S = Y,-3)) and Definition 2.7.2 (where 
Xi-, qualifies as a genuine cause of X, using Z = Xt-2 and S = 

The temporal bias postulated earlier can be expressed as follows. 

Conjecture 2.8.2 (Temporal Bias) 
In most natural phenomenon, the physical time coincides with at least one statistical 
time. 

Reichenbach (1956) attributed the asymmetry associated with his conjunctive fork to the 
second law of thermodynamics. It is doubtful that the second law can provide a full ac- 
count of the temporal bias just described, since the influence of the external noise e, 
and r], renders the process in (2.3) nonc~nservative.'~ Moreover, the temporal bias is 
language-dependent. For example, expressing (2.3) in a different coordinate system - 
say, using a linear transformation 

X,! = a x ,  + bY,, 

Y,' = cXt + dYt' 

- it is possible to make *e statistical time in the (X', Y ' )  representation run contrary to 
the physical time; that iq, Xi and Y,' will be independent of each other conditional on 
their future values (Xi+l and Y,',,) rather than their past values. This suggests that the 
consistent agreement between physical and statistical times is a byproduct of the human 
choice of linguistic primitives and not a feature of physical reality. For example, if X, 
and Y ,  stand for the positions of two interacting particles at time t ,  with Xi the position 
of their center of gravity and Y,' their relative distance, then describing the particles' mo- 
tion in the (X, Y )  versus (X', Y ' )  coordinate system is (in principle) a matter of choice. 
Evidently, however, this choice is not entirely whimsical; it reflects a preference toward 
coordinate systems in which the forward disturbances (et and r ] ,  in (2.3)) are orthogo- 
nal to each other, rather than the corresponding backward disturbances (6: and qr). Pearl 
and Verma (1991) speculated that this preference represents survival pressure to facilitate 
predictions of future events, and that evolution has evidently ranked this facility more 
urgent than that of finding hindsighted explanations for current events. Whether this or 
some other force has shaped our choice of language remains to be investigated (see dis- 
cussions in Price 1996), which makes the statistical-temporal agreement that much more 
interesting. 

2.9 CONCLUSIONS 

The theory presented in this chapter shows that, although statistical analysis cannot dis- 
tinguish genuine causation from spurious covariation in every conceivable case, in many 
cases it can. Under the assumptions of model minimality (and/or stability), there are 

l 3  I am grateful to Seth Lloyd for this observation. 
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patterns of dependencies that should be sufficient to uncover genuine causal relation- 
ships. These relationships cannot be attributed to hidden causes lest we violate one of 
the basic maxims of scientific methodology: the semantical version of Occam's razor. 
Adherence to this maxim may explain why humans reach consensus regarding the direc- 
tionality and nonspuriousness of causal relationships in the face of opposing alternatives 
that are perfectly consistent with observation. Echoing Cartwright (1989), we summa- 
rize our claim with the slogan "No causes in - No causes out; Occam's razor in - Some 
causes out ." 

How safe are the causal relationships inferred by the IC algorithm - or by the TETRAD 
program of Spirtes et al. (1993) or the Bayesian methods of Cooper and Herskovits (1991) 
or Heckerman et al. (1994)? 

Recasting this question in the context of visual perception, we may equally well ask: 
How safe are our predictions when we recognize three-dimensional objects from their 
two-dimensional shadows, or from the two-dimensional pictures that objects reflect on 
our retinas? The answer is: Not absolutely safe, but good enough to tell a tree from a 
house and good enough to make useful inferences without having to touch every physical 
object that we see. Returning to causal inference, our question then amounts to assess- 
ing whether there are enough discriminating clues in a typical learning environment (say, 
in skill acquisition tasks or in epidemiological studies) to allow us to make reliable dis- 
criminations between cause and effect. This can only be determined by experiments - 
once we understand the logic behind the available clues and once we learn to piece these 
clues together coherently in large programs that tackle real-life problems. 

The model-theoretic semantics presented in this chapter provides a conceptual and 
theoretical basis for such experiments. The IC * algorithm and the algorithms developed 
by the TETRAD group (Spirtes et al. 1993) demonstrate the computational feasibility of 
the approach. Waldmann et al. (1995) described psychological experiments on how hu- 
mans use the causal clues discussed in this chapter. 

On the practical side, we have shown that the assumption of model minimality, to- 
gether with that of "stability" (no accidental independencies) lead to an effective algo- 
rithm for structuring candidate causal models capable of generating the data, transparent 
as well as latent. Simulation studies conducted at our laboratory in 1990 showed that net- 
works containing tens of variables require fewer than 5,000 samples to have their structure 
recovered by the algorithm. For example, 1,000 samples taken from (a binary version 
of) the process shown in (2.3), each containing ten successive X, Y pairs, were suffi- 
cient to recover its double-chain structure (and the correct direction of time). The greater 
the noise, the quicker the recovery (up to a point). In testing this modeling scheme on 
real-lifc data, we have examined the observations reported in Sewal Wright's seminal pa- 
per "Corn and Hog Correlations" (Wright 1925). As expected, corn price (X)  can clearly 
be identified as a cause of hog price (Y) but not the other way around. The reason lies 
in the existence of the variable corn crop (Z), which satisfies the conditions of Defini- 
tion 2.7.2 (with S = 0). Several applications of the principles and algorithms discussed 
in this chapter are described in Glymour and Cooper (1999, pp. 441-541). 

It should be interesting to explore how the new criteria for causation could benefit 
current research in machine learning and data mining. In some sense, our method resem- 
bles a standard, machine-learning search through a space of hypotheses (Mitchell 1982) 
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where each hypothesis stands for a causal model. Unfortunately, this is where the re- 
semblance ends. The prevailing paradigm in the machine-learning literature has been to 
define each hypothesis (or theory, or concept) as a subset of observable instances; once we 
observe the entire extension of this subset, the hypothesis is defined unambiguously. This 
is not the case in causal modeling. Even if the training sample exhausts the hypothesis 
subset (in our case, this corresponds to observing P precisely), we are still left with a 
vast number of equivalent causal theories, each stipulating a drastically different set of 
causal claims. Therefore,Jtness to data is an insuflcient criterion for validating causal 
theories. Whereas in traditional learning tasks we attempt to generalize from one set of 
instances to another, the causal modeling task is to generalize from behavior under one 
set of conditions to behavior under another set. Causal models should therefore be cho- 
sen by a criterion that challenges their stability against changing conditions, and these 
show up in the dath in the form of virtual control variables. Thus, the dependence pat- 
terns identified by Definitions 2.7.1-2.7.4 constitute islands of stability as well as virtual 
validation tests for caipal models. It would be interesting to examine whether these crite- 
ria, when incorporated; into existing machine-learning and data-mining programs, would 
improve the stability of relationships discovered by such programs. 

2.9.1 On Minimality, Markov, and Stability 

The idea of inferring causation from association cannot be expected to go unchallenged 
by scientists trained along the lines of traditional doctrines. Naturally, the assumptions 
underlying the theory described in this chapter - minimality and stability - come under 
attack from statisticians and philosophers. This section contains additional thoughts in 
defense of these assumptions. 

Although few have challenged the principle of minimality (to do so would amount 
to challenging scientific induction), objections have been voiced against the way we de- 
fined the objects of minimization - namely, causal models. Definition 2.2.2 assumes 
that the stochastic terms ui are mutually independent, an assumption that endows each 
model with the Markov property: conditioned on its parents (direct causes), each vari- 
able is independent of its nondescendants. This implies, among the other ramifications 
of d-separation, several familiar relationships between causation and association that are 
usually associated with Reichenbach's (1956) principle of common cause - for exam- 
ple, "no correlation without causation," "causes screen off their effects," "no action at a 
distance." 

The Markovian assumption, as explained in our discussion of Definition 2.2.2, is a 
matter of convention, and it has been adopted here as a useful abstraction of the under- 
lying physical processes because such processes are too detailed to be of practical use. 
After all, investigators are free to decide what level of abstraction is useful for a given 
purpose, and Markovian models have been selected as targets of pursuit because of their 
usefulness in both prediction and decision making.I4 By building the Markovian assump- 
tion into the definition of complete causal models (Definition 2.2.2) and then relaxing 

l4 Discovery algorithms for certain non-Markovian models, involving cycles and selection bias, have 
been reported in Spirtes et al. (1995) and Richardson (1996). 
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Figure 2.6 (a) Interactive fork. (b) Latent structure equiv- 
dent to (a). 

b c 

the assumption through latent structures (Definition 2.3.2), we confess our preparedness 
to miss the discovery of non-Markovian causal models that cannot be described as la- 
tent structures. I do not consider this loss to be very serious, because such models - 
even if any exist in the macroscopic world - would have limited utility as guides to de- 
cisions. For example, it is not clear how one would predict the effects of interventions 
from such a model, save for explicitly listing the effect of every conceivable intervention 
in advance. 

It is not surprising, therefore, that criticisms of the Markov assumption, most no- 
tably those of Cartwright (1995a, 1997) and Lemmer (1993), have two characteristics in 
common: 

1. they present macroscopic non-Markovian counterexamples that are reducible to 
Markovian latent structures of the type considered by Salmon (1984), that is, in- 
teractive forks; and 

2. they propose no alternative, non-Markovian models from which one could pre- 
dict the effects of actions and action combinations. 

The interactive fork model is shown in Figure 2.6(a). If the intermediate node d is 
unobserved (or unnamed), then one is tempted to conclude that the Markov assumption 
is violated, since the observed cause (a) does not screen off its effects (b and c). The la- 
tent structure of Figure 2.6(b) can emulate the one of Figure 2.6(a) in all respects; the 
two can be indistinguishable both observationally and experimentally. 

Only quantum-mechanical phenomena exhibit associations that cannot be attributed 
to latent variables, and it would be considered a scientific miracle if anyone were to dis- 
cover such peculiar associations in the macroscopic world. Still, critics of the Markov 
condition insist that certain alleged counterexamples must be modeled as P(bc I a )  and 
not as C, P(b 1 dl a)P(c  1 d, a )  - assuming, perhaps, that some insight or generality 
would be gained by leaving the dependency between b and c unexplained. The former 
model, in addition to being observationally indistinguishable from the latter, also leaves 
the causal effect Pac(b) unspecified. In contrast, the latent model predicts Pac(b) = 
Pa (b) and thus fulfills its role as a predictor of (experimentally testable) causal effects. 

Ironically, perhaps the strongest evidence for the ubiquity of the Markov condition 
can be found in the philosophical program known as "probabilistic causality" (see Sec- 
tion 7.5), of which Cartwright is a leading proponent. In this program, causal dependence 
is defined as a probabilistic dependence that persists after conditioning on some set of 
relevant factors (Good 1961; Suppes 1970; Skyrms 1980; Cartwright 1983; Eells 1991). 
This definition rests on the assumption that conditioning on the right set of factors en- 
ables one to suppress all spurious associations - an assumption equivalent to the Markov 
condition. The intellectual survival of probabilistic causality as an active philosophical 
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program for the past 30 years attests to the fact that counterexamples to the Markov con- 
dition are relatively rare and can be explained away through latent variables. 

I now address the assumption of stability. The argument usually advanced to justify 
stability (Spirtes et al. 1993) appeals to the fact that strict equalities among products of 
parameters have zero Lebesgue measure in any probability space in which parameters can 
vary independently of one another. For example, the equality a = -By in the model of 
(2.2) has zero probability if we consider any continuous joint density over the parameters 
a, #?, and y, unless that density somehow embodies the constraint a = -By on a priori 
grounds. Freedman (1947), in contrast, claimed that there is no reason to assume that pa- 
rameters are not in fact tied together by constraints of this sort, which would render the 
resulting distribution unstable (using Definition 2.4.1). 

Freedman's critique receives unexpected support from the practice of structural mod- 
eling itself, where equality constraints are commonplace. Indeed, the conditional in- 
dependencies that a causal model advertises amount to none other than equality con- 
straints on the joint distribution. The chain model Y -, X -, 2, for example, entails the 
equality 

PYZ = Pxz . pyx, 

where pxy is the correlation coefficient between X and Y; this equality constraint ties the 
three correlation coefficients in a permanent bond. What, then, gives equalities among 
correlation coefficients a privileged status over equalities among another set of parame- 
ters - say, a ,  #?, and y?  Why do we consider the equality pyz = p x ~  . pyx "substantive" 
and the equality a = -By "accidental," and why do we tie the notion of stability to the 
absence of the latter, not the former? 

The answer, I believe, rests again on the notion of autonomy (Aldrich 1989), a notion 
at the heart of all causal concepts (see Sections 1.3 and 1.4). A causal model is not just 
another scheme of encoding probability distribution through a set of parameters. When 
we come to define mathematical objects such as causal models, we must ensure that the 
definition captures the distinct ways in which these objects are being used and concep- 
tualized. The distinctive feature of causal models is that each variable is determined by 
a set of other variables through a relationship (called "mechanism") that remains invari- 
ant when those other variables are subjected to external influences. Only by virtue of this 
invariance do causal models allow us to predict the effect of changes and interventions, 
capitalizing on the locality of such changes. This invariance means that mechanisms can 
vary independently of one another, which in turns implies that the set of structural co- 
efficients (e.g., a, #I, y in our example of (2.2)) - rather than other types of parameters 
(e.g., p y ~ ,  pyx) - can and will vary independently when experimental conditions 
change. Consequently, equality constraints of the form a = -By are contrary to the idea 
of autonomy and thus should not be considered part of the model. 

For this reason, it has been suggested that causal modeling methods based solely 
on associations, like those embodied in the IC* algorithm or the TETRAD-I1 program, 
will find their greatest potential in longitudinal studies conducted under slightly varying 
conditions, where accidental independencies are destroyed and only structural indepen- 
dencies are preserved. This assumes that, under such varying conditions, the parameters 
of the model will be perturbed while its structure remains intact - a delicate balance that 
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might be hard to verify. Still, considering the alternative of depending only on controlled, 
randomized experiments, such longitudinal studies are an exciting opportunity. 

Relution to the Bayesian Approach 
It is important to stress that elements of the principles of minimality and stability also 
underlie causal discovery in the Bayesian approach. In this approach, one assigns prior 
probabilities to a set of candidate causal networks, based on their structures and pararn- 
eters, and then uses Bayes's rule to score the degree to which a given network fits the 
data (Cooper and Herskovits 1991; Heckerman et al. 1999). A search is then conducted 
over the space of possible structures to seek the one(s) with the highest posterior score. 
Methods based on this approach have the advantage of operating well under small-sample 
conditions, but they encounter difficulties in coping with hidden variables. The assump- 
tion of parameter independence, which is made in all practical implementations of the 
Bayesian approach, induces preferences toward models with fewer parameters and hence 
toward minimality. Likewise, parameter independence can be justified only when the pa- 
rameters represent mechanisms that are free to change independently of one another - 
that is, when the system is autonomous and hence stable. 



CHAPTER THREE 

Causal Diagrams and the Identification of 
Causal Fffects 

/ 

The eye obeys exactly 
the action of the mind. 

Emerson ( 1  860) 

Preface 

In the previous chapter we dealt with ways of learning causal relationships from raw data. 
In this chapter we explore the ways of learning such relationships from a combination 
of data and qualitative causal assumptions that are deemed plausible in a given domain. 
More broadly, this chapter aims to help researchers communicate qualitative assump- 
tions about cause-effect relationships, elucidate the ramifications of such assumptions, 
and derive causal inferences from a combination of assumptions, experiments, and data. 
Our major task will be to decide whether the assumptions given are sufficient for assess- 
ing the strength of causal effects from nonexperimental data. 

Causal effects permit us to predict how systems would respond to hypothetical inter- 
ventions - for example, policy decisions or actions performed in everyday activity. As we 
have seen in Chapter 1 (Section 1.3), such predictions are the hallmark of causal modeling, 
since they are not discernible from probabilistic information alone; they rest on - and, in 
fact, define - causal relationships. This chapter uses causal diagrams to give formal se- 
mantics to the notion of intervention, and it provides explicit formulas for postintervention 
probabilities in terms of preintervention probabilities. The implication is that the effects 
of every intervention can be estimated from nonexperimental data, provided the data is 
supplemented with a causal diagram that is both acyclic and contains no latent variables. 

If some variables are not measured then the question of identifiability arises, and this 
chapter develops a nonparametric framework for analyzing the identification of causal 
relationships in general and causal effects in particular. We will see that causal diagrams 
provide a powerful mathematical tool in this analysis; they can be queried, using extremely 
simple tests, to determine if the assumptions available are sufficient for identifying causal 
effects. If so, the diagrams produce mathematical expressions for causal effects in terms 
of observed distributions; otherwise, the diagrams can be queried to suggest additional 
observations or auxiliary experiments from which the desired inferences can be obtained. 

Another tool that emerges from the graphical analysis of causal effects is a calcu- 
lus of interventions - a set of inference rules by which sentences involving interventions 
and observations can be transformed into other such sentences, thus providing a syntac- 
tic method of deriving (or verifying) claims about interventions and the way they interact 
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with observations. With the help of this calculus the reader will be able to (i) determine 
mathematically whether a given set of covariates is appropriate for control of confound- 
ing, (ii) deal with measurements that lie on the causal pathways, and (iii) trade one set 
of measurements for another. 

Finally, we will show how the new calculus disambiguates concepts that have triggered 
controvehy and miscommunication among philosophers, statisticians, economists, and 
psychologists. These include distinctions between structural and regression equations, 
definitions of direct and indirect effects, and relationships between structural equations 
and Neyman-Rubin models. 

3.1 INTRODUCTION 

The problems addressed in this chapter can best be illustrated through a classical exam- 
ple due to Cochran (see Wainer 1989). Consider an experiment in which soil fumigants 
(X) are used to increase oat crop yields (Y)  by controlling the eelworm population ( 2 ) ;  
the fumigants may also have direct effects (both beneficial and adverse) on yields beside 
the control of eelworms. We wish to assess the total effect of the fumigants on yields 
when this typical study is complicated by several factors. First, controlled randomized 
experiments are unfeasible - farmers insist on deciding for themselves which plots are to 
be fumigated. Second, farmers' choice of treatment depends on last year's eelworrn pop- 
ulation (&), an unknown quantity that is strongly correlated with this year's population. 
Thus we have a classical case of confounding bias that interferes with the assessment of 
treatment effects regardless of sample size. Fortunately, through laboratory analysis of 
soil samples, we can determine the eelworm populations before and after the treatment; 
furthermore, because the fumigants are known to be active for a short period only, we can 
safely assume that they do not affect the growth of eelworms surviving the treatment. In- 
stead, eelworms' growth depends on the population of birds (and other predators), which 
is correlated with last year's eelworm population and hence with the treatment itself. 

The method developed in ths  chapter permits the investigator to translate complex 
considerations of this sort into a formal language and thereby facilitate the following tasks: 

I .  explicating the assumptions that underlie the model; 

2. deciding whether the assumptions are sufficient to obtain consistent estimates of 
the target quantity - the total effect of the fumigants on yields; 

3. providing (if the answer to item 2 is affirmative) a closed-form expression for the 
target quantity in terms of distributions of observed quantities; and 

4. suggesting (if the answer to item 2 is negative) a set of observations and experi- 
ments that, if performed, would render a consistent estimate feasible. 

The first step in this analysis is to construct a causal diagram like the one given in Fig- 
ure 3.1, which represents the investigator's understanding of the major causal influences 
among measurable quantities in the domain. For example, the quantities Zi, Z2, Z3 rep- 
resent the eelworm population before treatment, after treatment, and at the end of the 
season, respectively. The Zo term represents last year's eelworm population; because 
it is an unknown quantity, it is denoted by a hollow circle, as is the quantity B, the 



Figure 3.1 A causal diagram representing the effect of fumigants (X) 
on yields ( Y ) .  

population of birds and other predators. Links in the diagram are of two kinds: those 
that connect unmeasured quantities are designated by dashed arrows, those connecting 
measured quantities by solid arrows. The substantive assumptions embodied in the dia- 
gram are negative causal assertions which are conveyed through the links missing from 
the diagram. For example, the missing arrow between Z1 and Y signifies the investiga- 
tor's understanding that pretreatment eelworms can not affect oat plants directly; their 
entire influence on oat yields is mediated by the posttreatment conditions, Z2 and Z3. 
Our purpose is not to validate or repudiate such domain-specific assumptions but rather 
to test whether a given set of assumptions is sufficient for quantifying causal effects from 
nonexperimental data - here, estimating the total effect of fumigants on yields. 

The causal diagram in Figure 3.1 is similar in many respects to the path diagrams 
devised by Wright (1921); both reflect the investigator's subjective and qualitative knowl- 
edge of causal influences in the domain, both employ hrected acyclic graphs, and both 
allow for the incorporation of latent or unmeasured quantities. The major differences lie 
in the method of analysis. First, whereas path diagrams have been analyzed mostly in 
the context of linear models with Gaussian noise, causal diagrams permit arbitrary non- 
linear interactions. In fact, our analysis of causal effects will be entirely nonparametric, 
entailing no commitment to a particular functional form for equations and distributions. 
Second, causal diagrams will be used not only as a passive language to communicate as- 
sumptions but also as an active computational device through which the desired quantities 
are derived. For example, the method to be described allows an investigator to inspect 
the diagram of Figure 3.1 and make the following immediate conclusions. 

I .  The total effect of X on Y can be estimated consistently from the observed dis- 
tribution of X, Z1, Z2, 23, and Y. 

2. The total effect of X on Y (assuming discrete variables throughout) is given by 
the formula' 

The notation P,(y) was used in Chapter 1; it is changed henceforth to P(y I i) or P ( y  I do(x)) 
because of the inconvenience in handling subscripts. The reader need not be intimidated if, at this 
point, (3.1) appears unfamiliar. After reading Section 3.4, the reader should be able to derive such 
formulas with greater ease than solving algebraic equations. Note that x' is merely an index of 
summation that ranges over the values of X. 
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where P(y I i )  stands for the probability of achieving a yield level of Y = y, 
given that the treatment is set to level X = x by external intervention. 

3. A consistent estimation of the total effect of X on Y would not be feasible if Y 
were confounded with 2 3 ;  however, confounding Z2 and Y will not invalidate 
the formula for P( y I i ) .  

These conclusions will be obtained either by analyzing the graphical properties of the di- 
agram or by performing a sequence of symbolic derivations (governed by the diagram) 
that gives rise to causal effect formulas such as (3.1). 

3.2 INTERVENTION IN MARKOVIAN MODELS 

3.2.1 Graphs as Models of Interventions 

In Chapter 1 (Section 1.3) we saw how causal models, unlike probabilistic models, can 
serve to predict the effect of interventions. This added feature requires that the joint dis- 
tribution P be supplemented with a causal diagram - that is, a directed acyclic graph G 
that identifies the causal connections among the variables of interest. In this section we 
elaborate on the nature of interventions and give explicit formulas for their effects. 

The connection between the causal and associational readings of DAGs is formed 
through the mechanism-based account of causation, which owes its roots to early works 
in econometrics (Frisch 1938; Haavelmo 1943; Simon 1953). In this account, assertions 
about causal influences, such as those specified by the links in Figure 3.1, stand for au- 
tonomous physical mechanisms among the corresponding quantities; these mechanisms 
are represented as functional relationships perturbed by random disturbances. Echoing 
this tradition, Pearl and Verma (1991) interpreted the causal reading of a DAG in terms 
of functional, rather than probabilistic, relationships (see (1.40) and Definition 2.2.2); in 
other words, each child-parent family in a DAG G represents a deterministic function 

where pai are the parents of variable Xi in G; the Ei (1 5 i 5 n)  are mutually inde- 
pendent, arbitrarily distributed random disturbances. These disturbance terms represent 
independent background factors that the investigator chooses not to include in the analy- 
sis. If any of these factors is judged to be influencing two or more variables (thus violating 
the independence assumption), then that factor must enter the analysis as an unmeasured 
(or latent) variable and be represented in the graph by a hollow node, such as Zo and B 
in Figure 3.1. For example, the causal assumptions conveyed by the model in Figure 3.1 
correspond to the following set of equations: 
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More generally, we may lump together all unobserved factors (including the Ei) into a 
set U of background variables and then summarize their characteristics by a distribution 
function P(u) - or by some aspects (e.g. independencies) of P(u). Thus, a full specifi- 
cation of a causal model would entail two components: a set of functional relationships 

and a joint distribution function P(u) on the background factors. If the diagram G(M) 
associated with a causal model M is acyclic, then M is called semi-Markovian. If, in 
addition, the background variables are independent, M is called Markovian, since the 
resulting distribution of the observed variables would then be Markov relative to G ( M )  
(see Theorem 1.4.1). Thus, the model described in Figure 3.1 is semi-Markovian if the 
observed variables are {X, Y, Z1, Z2, Z 3 ) ;  it would turn Markovian if Zo and B were 
observed as well. In Chapter 7 we will pursue the analysis of general non-Markovian 
models, but in this chapter all models are assumed to be either Markovian or Markovian 
with unobserved variables (i.e. semi-Markovian). 

Needless to state, we would seldom be in possession of P(u) or even fi. It is im- 
portant nevertheless to explicate the mathematical content of a fully specified model in 
order to draw valid inferences from partially specified models, such as the one described 
in Figure 3.1. 

The equational model (3.2) is the nonparametric analog of the so-called structural 
equations model (Wright 1921; Goldberger 1973), except that: the functional form of 
the equations (as well as the distribution of the disturbance terms) will remain unspeci- 
fied. The equality signs in structural equations convey the asymmetrical counterfactual 
relation of "is determined by," and each equation represents a stable autonomous mecha- 
nism. For example, the equation for Y states that, regardless of what we currently observe 
about Y and regardless of any changes that might occur in other equations, if variables 
(X, Z2, Z 3 ,  E ~ )  were to assume the values (x , z2, z3, E y), respectively, then Y would take 
on the value dictated by the function fy . 

Recalling our discussion in Section 1.4, the functional characterization of each child- 
parent relationship leads to the same recursive decomposition of the joint distribution that 
characterizes Bayesian networks: 

which, in our example of Figure 3.1, yields 

Moreover, the functional characterization provides a convenient language for specify- 
ing how the resulting distribution would change in response to external interventions. 
This is accomplished by encoding each intervention as an alteration on a select subset 
of functions while keeping the other functions intact. Once we know the identity of the 
mechanisms altered by the intervention and the nature of the alteration, the overall effect 
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of the intervention can be predicted by modifying the corresponding equations in the 
model and using the modified model to compute a new probability function. 

The simplest type of external intervention is one in which a single variable, say Xi, 
is forced to take on some fixed value xi. Such an intervention, which we call "atomic," 
amounts to lifting Xi from the influence of the old functional mechanism xi = fi(pai, u;) 
and placing it under the influence of a new mechanism that sets the value xi while keeping 
all other mechanisms unperturbed. Formally, this atomic intervention, which we denote 
by do(Xi = xi), or do(xi) for short,2 amounts to removing the equation xi = f,(pai, ui) 
from the model and substituting Xi = xi in the remaining equations. The new model 
thus created represents the system's behavior under the intervention do(Xi = x i )  and, 
when solved for the distribution of Xj, yields the causal effect of Xi on Xi, which is de- 
noted P(xj cj I i ) .  More generally, when an intervention forces a subset X of variables 
to attain fixed values x, then a subset of equations is to be pruned from the model given 
in (3.4), one for each member of X, thus defining a new distribution over the remaining 
variables that completely characterizes the effect of the intervention." 

Definition 3.2.1 (Causal Effect) 
Given two disjoint sets ofvariables, X and Y, the causal effect of X on Y, denoted either 
as P ( y  1 2) or as P ( y  I do(x)), is afinction from X to the space ofprobability distribu- 
tions on Y. For each realization x of X, P ( y  I 2) gives the probability of Y = y induced 
by deleting from the model of (3.4) all equations corresponding to variables in X and 
substituting X = x in the remaining equations. 

Clearly, the graph corresponding to the reduced set of equations is a subgraph of G 
from which all arrows entering X have been pruned (Spirtes et al. 1993). The difference 
E(Y I do(x')) - E(Y 1 do(xN)) is sometimes taken as the definition of "causal effect" 
(Rosenbaum and Rubin 1983), where x' and x" are two distinct realizations of X. This 
difference can always be computed from the general function P(y I do(x)), which is de- 
fined for every level x of X and provides a more refined characterization of the effect of 
interventions. 

3.2.2 Interventions as Variables 
An alternative (but sometimes more appealing) account of intervention treats the force 
responsible for the intervention as a variable within the system (Pearl 1993b). This is 

- - 

An equivalent notation, using set ( x )  instead of do(x) ,  was used in Pearl (1995a). The do(x) nota- 
tion was first used in Goldszmidt and Pearl (1992) and is gaining in popular support. The expression 
P ( y  ( do(x)) is equivalent in intent to P(Y, = y )  in the potential-outcome model introduced by 
Neyman (1923) and Rubin (1974) and to the expression P [ ( X  = x )  Kt+ ( Y  = y)] in the counter- 
factual theory of Lewis (1973b). The semantical differences among these notions are discussed in 
Section 3.6.3 and in Chapter 7. 
The basic view of interventions as equation modifiers originates with Marschak (1950) and Simon 
(1953). An explicit translation of interventions to "wiping out" equations from the model was first 
proposed by Strotz and Wold (1960) and later used in Fisher (1970) and Sobel (1990). Graphi- 
cal ramifications of this translation were explicated first in Spirtes et al. (1993) and later in Pearl 
(1993b). 
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Figure 3.2 Representing external intervention Fi by an augmented network G' = G U { Fi -. Xi 1. 

facilitated by representing the function fi itself as a value of a variable Fi and then writ- 
ing (3.2) as 

where I is a three-argument function satisfying 

I (a ,b ,c)  = fi(a,c) whenever b =  fi. 

This amounts to conceptualizing the intervention as an external force Fi that alters the 
function fi between Xi and its parents. Graphically, we can represent Fi as an added 
parent node of Xi, and the effect of such an intervention can be analyzed by standard 
conditionalization - that is, by conditioning our probability on the event that variable Fi 
attains the value h. 

The effect of an atomic intervention do(Xi = xi) is encoded by adding to G a link 
Fi -, Xi (see Figure 3.2), where Fi is a new variable taking values in (do(x[), idle}, x( 
ranges over the domain of Xi, and "idle" represents no intervention. Thus, the new par- 
ent set of Xi in the augmented network is PA: = PAi U { F ; : ) ,  and it is related to Xi by 
the conditional probability 

P(xi I pai) if Fi = idle, 

P(xi I pa[) = if Fi = ~ o ( x ; )  and xi # x i ,  

if Fi = do(xf) and xi = x:. 

The effect of the intervention do(xi) is to transform the original probability function 
P(xl, . . . , x,) into a new probability function P(xl, . . . , x, I ;I), given by 

where P' is the distribution specified by the augmented network G' = G U {Fi -, Xi) 
and (3.8), with an arbitrary prior distribution on Fi . In general, by adding a hypothetical 
intervention link F, -, Xi to each node in G, we can construct an augmented probability 
function P'(xl, . . . , x,; Fl, . . . , F,) that contains information about richer types of inter- 
ventions. Multiple interventions would be represented by conditioning P' on a subset of 
the Fi (taking values in their respective do(xf) domains), and the preintervention proba- 
bility function P would be viewed as the posterior distribution induced by conditioning 
each Fi in P' on the value "idle." 

One advantage of the augmented network representation is that it is applicable to any 
change in the functional relationship fi and not merely to the replacement of fi by a 
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constant. It also displays clearly the ramifications of spontaneous changes in f, , unmedi- 
ated by external control. Figure 3.2 predicts, for example, that only descendants of Xi 
would be effected by changes in fi and hence the marginal probability P(z) will remain 
unaltered for every set Z of nondescendants of Xi. Likewise, Figure 3.2 dictates that the 
conditional probability P(y I xi) remains invariant to changes in J;: for any set Y of de- 
scendants of Xi, provided Xi d-separates Fi from Y. Kevin Hoover (1990, 1999) used 
such invariant features to determine the direction of causal influences among economic 
variables (e.g., employment and money supply) by observing the changes induced by 
sudden modifications in the processes that govern these variables (e.g., tax reform, labor 
dispute). Indeed, whenever we obtain reliable information (e.g., from historical or insti- 
tutional knowledge) that an abrupt local change has taken place in a specific mechanism 
f, that constrains a given family (Xi, PAi) of variables, we can use the observed changes 
in the marginal and conditional probabilities surrounding those variables to determine 
whether Xi is indeed the child (or dependent variable) of that family, thus determining 
the direction of causal influences in the domain. The statistical features that remain in- 
variant under such changes, as well as the causal assumptions underlying this invariance, 
are displayed in the augmented network GI. 

3.2.3 Computing the Effect of Interventions 

Regardless of whether we represent interventions as a modification of an existing model 
(Definition 3.2.1) or as a conditionalization in an augmented model (equation (3.9)), the 
result is a well-defined transformation between the preintervention and postintervention 
distributions. In the case of an atomic intervention do(Xi = xi), this transformation can 
be expressed in a simple truncated factorization formula that follows immediately from 
(3.2) and Definition 3.2.1:~ 

Equation (3.10) reflects the removal of the term P(xi I pai)  from the product of (3.5), 
since psi no longer influence Xi. For example, the intervention do(X = x') will trans- 
form the preintervention distribution given in (3.6) into the product 

Graphically, the removal of the term P(xi I pai) is equivalent to removing the links 
between PAi and Xi while keeping the rest of the network intact. Clearly, the transfor- 
mation defined in (3.10) satisfies the conltion of Definition 1.3.1 as well as the properties 
of (1.38)-(1.39). 

Equation (3.10) can also be obtained from the G-computation formula of Robins (1986, p. 1423; see 
also Section 3.6.4) and the manipulation theorem of Spirtes et al. (1993) (according to this source, 
said formula was "independently conjectured by Fienberg in a seminar in 1991"). Additional prop- 
erties of the transformation defined in (3.10) and (3.11) are given in Goldszrnidt and Pearl (1992) 
and Pearl (1993b). 
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Multiplying and dividing (3.10) by P(xf I pai), the relationship to the preinterven- 
tion distribution becomes more transparent: 

I P(xI,  - ., xn) if xi = xi, 
" I  P I ,  . . . , x x ~ )  P (x i Ipa i )  

If we regard a joint distribution as an assignment of mass to a collection of abstract points 
( x l ,  . . . , x,) , each representing a possible state of the world, then the transformation de- 
scribed in (3.11) reveals some interesting properties of the change in mass distribution 
that take place as a result of an intervention do(Xi = xf) (Goldszmidt and Pear1 1992). 
Each point (xl, . . . , xn) is seen to increase its mass by a factor equal to the inverse of 
the conditional probability P(xi I pai)  corresponding to that point. Points for which 
this conditional probability is low would boost their mass value substantially, while those 
possessing a pai value that anticipates a natural (noninterventional) realization of xi (i.e., 
P(x( I pai) z 1) will keep their mass unaltered. In standard Bayes conditionalization, 
each excluded point (xi # xi) transfers its mass to the entire set of preserved points 
through a renorrnalization constant. However, (3.11) describes a different transforma- 
tion: each excluded point (xi # xf) transfers its mass to a select set of points that share 
the same value of pai. This can be seen from the constancy of both the total mass as- 
signed to each stratum pai and the relative masses of points within each such stratum: 

Here S; denotes the set of all variables excluding {PAi U Xi). This select set of mass- 
receiving points can be regarded as "closest" to the point excluded by virtue of sharing 
the same history, as summarized by pai (see Sections 4.1.3 and 7.4.3). 

Another interesting form of (3.11) obtains when we interpret the division by P ( x ~  I 
pai) as conditionalization on xf and pai: 

This formula becomes familiar when used to compute the effect of an intervention 
do(Xi = xf) on a set of variables Y disjoint of (Xi U PAi). Summing (3.12) over all 
variables except Y U Xi yields the following theorem. 

Theorem 3.2.2 (Adjustment for Direct Causes) 
Let PAi denote the set of direct causes of variable Xi, and let Y be any set of variables 
disjoint of {Xi U PAi }. The efSect of the intervention do(Xi = xf ) on Y is given by 

where P( y I xi, pai) and P(pai)  represent preintewention probabilities. 
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Equation (3.13) calls for conditioning P(y I xl) on the parents of Xi and then averaging 
the result, weighted by the prior probability of PAi = pai . The operation defined by this 
conditioning and averaging is known as "adjusting for PAi ." 

Variations of this adjustment have been advanced by many philosophers as probabilis- 
tic definitions of causality and causal effect (see Section 7.5). Good (1961), for example, 
calls for conditioning on "the state of the universe just before" the occurrence of the 
cause. Suppes (1970) calls for conditioning on the entire past, up to the occurrence of 
the cause. Skyms (1980, p. 133) calls for conditioning on "maximally specific specifica- 
tions of the factors outside of our influence at the time of the decision which are causally 
relevant to the outcome of our actions . . .". The aim of conditioning in these proposals 
is, of course, to eliminate spurious correlations between the cause (in our case, Xi = xi) 
and the effect (Y  = y ) ;  clearly, the set of parents PAi can accomplish this aim with great 
economy. In the structural account that we pursue in this book, causal effects are defined 
in a radically different way. The conditioning operator is not introduced into (3.13) as a 
remedial "adjustment" aimed at eradicating spurious correlations. Rather, it emerges for- 
mally from the deeper principle represented in (3.10) - that of preserving all the invariant 
information that the preintervention distribution can provide. 

The transformation of (3.10) can easily be extended to more elaborate interventions 
in which several variables are manipulated simultaneously. For example, if we consider 
the compound intervention do(S = s) where S is a subset of variables, then (echoing 
(1.37)) we should delete from the product of (3.5) all factors P(xi I pai)  corresponding 
to variables in S and obtain the more general truncated factorization 

ni P(xi I pai)  for X I ,  . . . , xn consistent with s, 
p ( x l , , X n  / ; ) = l o  otherwise. (3.14) 

Likewise, we need not limit ourselves to simple interventions that set variables to 
constants. Instead, we may consider a more general modification of the causal model 
whereby some mechanisms are replaced. For example, if we replace the mechanism 
that determines the value of Xi by another equation, one that involves perhaps a new 
set PAT of variables, then the resultant distribution would obtain by replacing the fac- 
tor P(xi I pai)  with the conhtional probability P*(xi I pa,*) induced by the new 
equation. The modified joint distribution would then be given by P*(xl, . . . , xn) = 

An Example: Process Control 

To illustrate these operations, let us consider an example involving process control; anal- 
ogous applications in the areas of health management, economic policy making, product 
marketing, or robot motion planning should follow in a straightforward way. Let the vari- 
able Zk stand for the state of a production process at time tk, and let Xk stand for a set of 
variables (at time tk) that is used to control that process (see Figure 3.3). For example, 
Zk could stand for such measurements as temperature and pressure at various location 
in the plant, and Xk could stand for the rate at which various chemicals are permitted to 
flow in strategic conduits. Assume that data are gathered while the process is controlled 
by a strategy S in which each Xk is determined by (i) monitoring three previous variables 
(XkPl, Zk, and Zk-,) and (ii) choosing Xk = xk with probability P(xk I xk-1, z k ,  zk-,). 
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XI Xk-1 Xn 
CONTROLS 

STATES 

Y OUTCOME 

Figure 3.3 Dynamic causal diagram illustrating typical dependencies among the control variables 
XI, . . . , X,, the state variables Z,,  . . . , Z,, and the outcome variable Y of a sequential process. 

The performance of S is monitored and summarized in the form of a joint probability 
function P(y,  zl, 22,  . . . , z,, XI ,  x2 , . . . , x,), where Y is an outcome variable (e.g., the 
quality of the final product). Finally, let us assume (for simplicity) that the state Zk of the 
process depends only on the previous state Zk-l and on the previous control Xk-]. We 
wish to evaluate the merit of replacing S with a new strategy, S*, in which Xk is chosen 
according to a new conditional probability P*(xk I xk-1, zk, ~k-]) .  

Based on our previous analysis (equation (3.14)), the performance P*(y) of the new 
strategy S* will be governed by the distribution 

Because the first two terms remain invariant and the third one is known, we have 

P*(y) = C P*(y, z1,22, . . a ,  z,,, X I ,  xz, . . . , x.1 
Zl, . - . ,  Z n , X l ,  . . . , X  n  

In the special case where S* is deterministic and time-invariant, Xk becomes a func- 
tion of Xk-], Zk,  and Zk-l: 

Then the summation over XI ,  . . . , x, can be performed, yielding 

where gk is defined recursively as 
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In the special case of a strategy S* composed of elementary actions do(Xk = xk: 
the function g degenerates into a constant, xk, and we obtain 

which can also be obtained from (3.14). 
The planning problem illustrated by this example is typical of Markov decision prc 

cesses (MDPs) (Howard 1960; Dean and Wellman 1991; Bertsekas and Tsitsiklis 1996 
where the target of analysis is finding the best next action do(Xk = xk), given the cu: 
rent state Zk and past actions. In MDPs, we are normally given the transition functior 
P(zk+1 I zk, 2k) and the cost function to be minimized. In the problem we have just an: 
lyzed, neither function is given; instead, they must be learned from data gathered undr 
past (presumably suboptimal) strategies. Fortunately, because all variables in the modc 
were measured, both functions were identifiable and could be estimated directly from th 
corresponding conditional probabilities as follows: 

In Chapter 4 (Section 4.4) we will deal with partially observable Markov decision prc 
cesses (POMDPs), where some states Zk are unobserved; learning the transition and co: 
functions in those problems will require a more intricate method of identification. 

It is worth noting that, in this example, to predict the effect of a new strategy it is nec 
essary first to measure variables (Zk) that are affected by some control variables (Xk-l 
Such measurements are generally shunned in the classical literature on experimental dc 
sign (Cox 1958, p. 48), because they lie on the causal pathways between treatment an 
outcome and thus tend to confound the desired effect estimate. However, our anal! 
sis shows that, when properly processed, such measurements may be indispensable i 
predicting the effect of certain control programs. This will be especially true in sem 
Markovian models (i.e., DAGs involving unmeasured variables), which are analyzed i 
Section 3.3.2. 

Summary 
The immediate implication of the analysis provided in this section is that - given a caus, 
diagram in which all direct causes (i.e. parents) of intervened variables are observable 
one can infer postintervention distributions from preintervention distributions; henc 
under such assumptions we can estimate the effects of interventions from passive (i. 
nonexperimental) observations, using the truncated factorization formula of (3.14). Y; 
the more challenging problem is to derive causal effects in situations like Figure 3. 
where some members of PAi are unobservable and so prevent estimation of P(xS I paj 
In Sections 3.3 and 3.4 we provide simple graphical tests for deciding when P(x, 1 I i )  
estimable in such models. But first we need to define more formally what it means for 
causal quantity Q to be estimable from passive observations, a question that falls undl 
the technical term identijication. 
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3.2.4 Identification of Causal Quantities 

Causal quantities, unlike statistical parameters, are defined relative to a causal model M 
and not relative to a joint distribution PM (v) over the set V of observed variables. Since 
nonexperimental data provides information about PM (v) alone, and since several mod- 
els can generate the same distribution, the danger exists that the desired quantity will 
not be discernible unambiguously from the data - even when infinitely many samples 
are taken. Identifiability ensures that the added assumptions we make about M (e.g., the 
causal graph or the zero coefficients in structural equations) will supply the missing in- 
formation without explicating M in full detail. 

Definition 3.2.3 (Identifiability) 
Let Q(M) be any computable quantity of a model M. We say that Q is identifiable in 
a class M of models if, for any pairs of models MI and M2 from M, Q(M1) = Q(M2) 
whenever PM, (v) = PM2 (v). I f  our observations are limited and permit only a partial 
set FM of features (of P M ( v ) )  to be estimated, we define Q to be identifiable from FM if 
Q(M1) = Q ( M 2 )  whenever FM, = FM2. 

Identifiability is essential for integrating statistical data (summarized by P(v)) with in- 
complete causal knowledge of { A ) ,  as it enables us to estimate quantities Q consistently 
from large samples of P without specifying the details of M; the general characteristics 
of the class M suffice. For the purpose of our analysis, the quantity Q of interest is the 
causal effect PM(y ( i ) ,  which is certainly computable from a given model M (using 
Definition 3.2.1) but which we often need to compute from an incomplete specification 
of M - in the form of general characteristics portrayed in the graph G associated with M. 
We will therefore consider a class M of models that have the following characteristics in 
common: 

(i) they share the same parent-child families (i.e., the same causal graph G); and 

(ii) they induce positive distributions on the observed variables (i.e., P(v) > 0). 

Relative to such classes, we now have the following. 

Definition 3.2.4 (Causal Effect Identifiability) 
The causal effect of X on Y is identifiable from a graph G if the quantity P(y 1 2) can 
be computed uniquely from any positive probability of the observed variables - that is, if 
PM, ( y  1 2 )  = PM2 (y I 2)  for every pair of models M I  and M2 with PM, (v) = P M ~  (u) > 
0 and G(M1) = G(M2) = G .  

The identifiability of P(y I 2) ensures that it is possible to infer the effect of action 
do(X = x) on Y from two sources of information: 

(i) passive observations, as summarized by the probability function P(v); and 

(ii) the causal graph G, which specifies (qualitatively) which variables make up the 
stable mechanisms in the domain or, alternatively, which variables participate 
in the determination of each variable in the domain. 
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Restricting identifiability to positive distributions assures us that the condition X = 

x is represented in the data in the appropriate context, thus avoiding a zero denornina- 
tor in (3.10). It would be impossible to infer the effect of action do(X = x) from data 
in which X never attains the value x in the context wherein the action is applied. Exten- 
sions to some nonpositive distributions are feasible but will not be treated here. Note that, 
to prove nonidentifiability, it is sufficient to present two sets of structural equations that 
induce identical distributions over observed variables but have different causal effects. 

Using the concept of identifiability, we can now summarize the results of Section 
3.2.3 in the following theorem. 

Theorem 3.2.5 
Given a causal diagram G of any Markovian model in which a subset V of variables are 
measured, the causal effect P(y I 2) is identifzable whenever { X  U Y U PAx) & V, that 
is, whenever X, Y, and all parents of variables in X are measured. The expression for 
P(y I 2 )  is then obtained by adjusting for PAx, as in (3.13). 

A special case of Theorem 3.2.5 holds when all variables are assumed to be observed. 

Corollary 3.2.6 
Given the causal diagram G of any Markovian model in which all variables are mea- 
sured, the causal effect P ( y  I 2) is identifzable for every two subsets of variables X and 
Y and is obtained from the truncated factorization of (3.14). 

We now turn our attention to identification problems in semi-Markovian models. 

3.3 CONTROLLING CONFOUNDING BIAS 

Whenever we undertake to evaluate the effect of one factor (X) on another (Y), the 
question arises as to whether we should adjust our measurements for possible varia- 
tions in some other factors (Z), otherwise known as "covariates," "concomitants," or 
"confounders" (Cox 1958, p. 48) Adjustment amounts to partitioning the population into 
groups that are homogeneous relative to Z, assessing the effect of X on Y in each ho- 
mogeneous group, and then averaging the results (as in (3.13)). The illusive nature of 
such adjustment was recognized as early as 1899, when Karl Pearson discovered what 
is now called Simpson's paradox (see Section 6.1): Any statistical relationship between 
two variables may be reversed by including additional factors in the analysis. For exam- 
ple, we may find that students who smoke obtain higher grades than those who do not 
smoke but, adjusting for age, smokers obtain lower grades in every age group and, fur- 
ther adjusting for family income, smokers again obtain higher grades than nonsmokers 
in every income-age group, and so on. 

Despite a century of analysis, Simpson's reversal continues to "trap the unwary" 
(Dawid 1979), and the practical question that it poses - whether an adjustment for a 
given covariate is appropriate - has resisted mathematical treatment. Epidemiologists, 
for example, are still debating the meaning of "confounding" (Grayson 1987; Shapiro 
1997) and often adjust for wrong sets of covariates (Weinberg 1993; see also Chapter 6). 
The potential-outcome analyses of Rosenbaum and Rubin (1983) and Pratt and Schlaifer 



3.3 Controlling Confounding Bias 

(1988) have led to a concept named "ignorability," which recasts the covariate selection 
problem in counterfactual vocabulary but falls short of providing a workable solution. 
Ignorability reads: "2  is an admissible set of covariates if, given Z,  the value that Y 
would obtain had X been x is independent of X." Since counterfactuals are not ob- 
servable, and since judgments about conditional independence of counterfactuals are not 
readily assertable from ordinary understanding of causal processes, the question has re- 
mained open: What criterion should one use to decide which variables are appropriate 
for adjustment? 

Section 3.3.1 presents a general and formal solution of the adjustment problem us- 
ing the language of causal graphs. In Section 3.3.2 we extend this result to nonstandard 
covariates that are affected by X and hence require several steps of adjustment. Finally, 
Section 3.3.3 illustrates the use of these criteria in an example. 

3.3.1 The Back-Door Criterion 

Assume we are given a causal diagram G, together with nonexperimental data on a subset 
V of observed variables in G ,  and suppose we wish to estimate what effect the interven- 
tions do(X = x) would have on a set of response variables Y, where X and Y are two 
subsets of V. In other words, we seek to estimate P(y  I 2) from a sample estimate of 

P(v) .  
We show that there exists a simple graphical test, named the "back-door criterion" in 

Pearl (1993b), that can be applied directly to the causal diagram in order to test if a set 
Z V of variables is sufficient for identifying P(y  1 2).5 

Definition 3.3.1 (Back-Door) 
A set of variables Z satisJies the back-door criterion relative to an ordered pair of vari- 
ables (Xi, Xj) in a DAG G @ 

(i) no node in Z is a descendant of Xi ; and 

(ii) Z blocks every path between Xi and Xj that contains an arrow into X i .  

Similarly, ifX and Y are two disjoint subsets of nodes in G, then Z is said to satisfy 
the back-door criterion relative to ( X ,  Y )  if it satisjies the criterion relative to any pair 
(Xi, Xi) such that Xi E X and Xi E Y. 

The name "back-door" echoes condition (ii), which requires that only paths with ar- 
rows pointing at Xi be blocked; these paths can be viewed as entering Xi through the 
back door. In Figure 3.4, for example, the sets Z1 = {X3, X4) and Z 2  = {X4, X5) meet 
the back-door criterion, but Z3 = {X4} does not because X4 does not block the path 
(Xi, X3, XI, 1 4 ,  X2, X5, Xj). 

Theorem 3.3.2 (Back-Door Adjustment) 
Ifa set of variables Z satisjies the back-door criterion relative to ( X ,  Y), then the causal 
effect of X on Y is identiJiable and is given by the formula 

This criterion may also be obtained from Theorem 7.1 of Spirtes et al. (1993). An alternative crite- 
rion, using a single d-separation test, is established in Section 3.4 (see (3.37)). 
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4: justing Figure 3.4 for variables A diagram {X3, representing X4) (or {X4, the X5}) back-door yields criterion; a consistent ad- 
estimate of P ( x j  I 2, ) .  

Xi 
' 6  

xj 

The summation in (3.19) represents the standard formula obtained under adjustment for 
Z ;  variables X for which the equality in (3.19) is valid were named "conditionally ig- 
norable given Z" in Rosenbaum and Rubin (1983). Reducing ignorability conditions to 
the graphical criterion of Definition 3.3.1 replaces judgments about counterfactual de- 
pendencies with judgments about the structure of causal processes, as represented in the 
diagram. The graphical criterion can be tested by systematic procedures that are applica- 
ble to diagrams of any size and shape. The criterion also enables the analyst to search for 
an optimal set of covariate - namely, a set Z that minimizes measurement cost or sarn- 
pling variability (Tian et al. 1998). The use of a similar graphical criterion for identifying 
path coefficients in linear structural equations is demonstrated in Chapter 5. Applica- 
tions to epidemiological research are given in Greenland et al. (1999a), where the set Z 
is called "sufficient set" for control of confounding. 

Proof of Theorem 3.3.2 
The proof originally offered in Pearl (1993b) was based on the observation that, when 
Z blocks all back-door paths from X to Y, setting (X = x) or conditioning on X = x 
has the same effect on Y. This can best be seen from the augmented diagram G' of Fig- 
ure 3.2, to which the intervention arcs Fx -, X were added. If all back-door paths from 
X to Y are blocked, then all paths from Fx to Y must go through the children of X, and 
those would be blocked if we condition on X. The implication is that Y is independent 
of Fx given X, 

P(y I x, Fx =do(x)) = P(y I x, Fx =idle) = P(y I x), 

which means that the observation X = x cannot be distinguished from the intervention 
Fx = do(x) .  

Formally, we can prove this observation by writing P(y I i )  in terms of the aug- 
mented probability function P '  in accordance with (3.9) and conditioning on Z to obtain 

The addition of x to the last expression is licensed by the implication F, X = x .  

To eliminate Fx from the two terms on the right-hand side of (3.21), we invoke the two 
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@, (Unobserved) 

Figure 3.5 A diagram representing the front-door criterion. A 
two-step adjustment for Z yields aconsistent estimate of P ( y  I i). 

conditions of Definition 3.3.1. Since F, consists of root nodes with children restricted to 
X, it must be independent of all nondescendants of X, including 2. Thus, condition (i) 
yields 

p'(z I F,) = P'(z) = P(z). 

Invoking now the back-door condition (ii), together with (3.20), permits us to eliminate 
Fx from (3.21), thus proving (3.19). 

3.3.2 The Front-Door Criterion 

Condition (i) of Definition 3.3.1 reflects the prevailing practice that "the concomitant ob- 
servations should be quite unaffected by the treatment" (Cox 1958, p. 48). This section 
demonstrates how concomitants that are affected by the treatment can be used to facil- 
itate causal inference. The emerging criterion, named the front-door criterion in Pearl 
(1995a), will constitute the second building block of the general test for identifying causal 
effects (Section 3.4). 

Consider the diagram in Figure 3.5, which represents the model of Figure 3.4 when 
the variables XI, . . . , X 5  are unobserved and {Xi, X 6 ,  X j  ) are relabeled {X, 2, Y ) ,  re- 
spectively. Although Z does not satisfy any of the back-door conditions, measurements 
of Z can nevertheless enable consistent estimation of P(y I 2). This will be shown by 
reducing the expression for P(y I 2)  to formulas that are computable from the observed 
distribution function P(x, y, 2). 

The joint distribution associated with Figure 3.5 can be decomposed (equation (3.5)) 
into 

From (3.10), the intervention do(x) removes the factor P(x I u) and induces the post- 
intervention distribution 

Summing over z and u then gives 

In order to eliminate u from the r.h.s. of (3.24), we use the two conditional independence 
assumptions encoded in the graph of Figure 3.5: 
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This yields the equalities 

and allows the reduction of (3.24) to a form involving only observed quantities: 

All factors on the r.h.s. of (3.28) are consistently estimable from nonexperimental 
data, so it follows that P(y I i )  is estimable as well. Thus, we are in possession of an 
identifiable nonparametric estimand for the causal effect of X on Y whenever we can find 
a mediating variable Z that meets the conditions of (3.25) and (3.26). 

Equation (3.28) can be interpreted as a two-step application of the back-door for- 
mula. In the first step, we find the causal effect of X on Z; since there is no back-door 
path from X to Z,  we simply have 

P(z I i )  = P(z I x). 

Next, we compute the causal effect of Z on Y, which we can no longer equate with the 
conditional probability P(y I z) because there is a back-door path Z + X + U -, Y 
from Z to Y. However, since X blocks (d-separates) this path, X can play the role of a 
concomitant in the back-door criterion, which allows us to compute the causal effect of 
Z on Y in accordance with (3.19), giving P(  y I 2 )  = Ex, P( y I x', z) P(x' ) . Finally, we 
combine the two causal effects via 

which reduces to (3.28). 
We summarize this result by a theorem after formally defining the assumptions. 

Definition 3.3.3 (Front-Door) 
A set of variables Z is said to satisfy the front-door criterion relative to an ordered pair 
of variables (X, Y) if 

(i) Z intercepts all directed paths from X to Y; 

(ii) there is no back-door path from X to Z ;  and 

(iii) all back-door paths from Z to Yare blocked by X .  
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Theorem 3.3.4 (Front-Door Adjustment) 
If Zsatisjes the front-door criterion relative to ( X ,  Y) and if P(x, z )  > 0, then the causal 
effect of X on Y is identijable and is given by the formula 

P(Y I i )  = C P(z I x )  C P(y I x', z )  P(xl). 

The conditions stated in Definition 3.3.3 are overly restrictive; some of the back-door 
paths excluded by conditions (ii) and (iii) can actually be allowed provided they are 
blocked by some concomitants. For example, the variable Z2 in Figure 3.1 satisfies a 
front-door-like criterion relative to (X, Z 3 )  by virtue of Z1 blocking all back-door paths 
from X to Z2 as well as those from Z2 to Z 3 .  To allow the analysis of such intricate struc- 
tures, including nested combinations of back-door and front-door conditions, a more 
powerful symbolic machinery will be introduced in Section 3.4, one that will sidestep al- 
gebraic manipulations such as those used in the derivation of (3.28). But first let us look 
at an example illustrating possible applications of the front-door condition. 

3.3.3 Example: Smoking and the Genotype Theory 

Consider the century-old debate on the relation between smoking (X) and lung cancer 
(Y)  (Sprites et al. 1993, pp. 291-302). According to many, the tobacco industry has man- 
aged to forestall antismoking legislation by arguing that the observed correlation between 
smoking and lung cancer could be explained by some sort of carcinogenic genotype (U) 
that involves inborn craving for nicotine. 

The amount of tar ( Z )  deposited in a person's lungs is a variable that promises to meet 
the conhtions listed in Definition 3.3.3, thus fitting the structure of Figure 3.5. To meet 
condition (i), we must assume that smoking cigarettes has no effect on the production of 
lung cancer except as mediated through tar deposits. To meet conditions (ii) and (iii), 
we must assume that, even if a genotype is aggravating the production of lung cancer, 
it nevertheless has no effect on the amount of tar in the lungs except indirectly (through 
cigarette smoking). Likewise, we must assume that no other factor that affects tar de- 
posit has any influence on smoking. Finally, condition P ( x ,  z )  > 0 of Theorem 3.3.4 
requires that high levels of tar in the lungs be the result not only of cigarette smoking but 
also of other factors (e.g., exposure to environmental pollutants) and that tar may be ab- 
sent in some smokers (owing perhaps to an extremely efficient tar-rejecting mechanism). 
Satisfaction of this last condition can be tested in the data. 

To demonstrate how we can assess the degree to which cigarette smoking increases 
(or decreases) lung-cancer risk, wc will assume a hypothetical study in which the three 
variables X, Y, Z were measured simultaneously on a large, randomly selected sample 
of the population. To simplify the exposition, we will further assume that all three vari- 
ables are binary, taking on true (I)  or false (0) values. A hypothetical data set from a 
study on the relations among tar, cancer, and cigarette smoking is presented in Table 3.1. 
It shows that 95% of smokers and 5% of nonsmokers have developed high levels of tar 
in their lungs. Moreover, 81% of subjects with tar deposits have developed lung cancer, 
compared to only 14% among those with no tar deposits. Finally, within each of these 
two groups (tar and no-tar), smokers show a much higher percentage of cancer than non- 
smokers. 
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Table 3.1 

P ( x ,  z) P(Y  = 1 1 x ,  z )  
Group Size % of Cancer Cases 

Group Type (% of Population) in Group 

X = 0, Z = 0 Nonsmokers, No tar 47.5 10 
X = 1, Z = 0 Smokers, No tar 2.5 90 
X = 0, Z = 1 Nonsmokers, Tar 2.5 5 
X = 1 ,  Z = 1 Smokers, Tar 47.5 85 

These results seem to prove that smoking is a major contributor to lung cancer. How- 
ever, the tobacco industry might argue that the table tells a different story - that smoking 
actually decreases one's risk of lung cancer. Their argument goes as follows. If you de- 
cide to smoke, then your chances of building up tar deposits are 95%, compared to 5% 
if you decide not to smoke. In order to evaluate the effect of tar deposits, we look sep- 
arately at two groups, smokers and nonsmokers. The table shows that tar deposits have 
a protective effect in both groups: in smokers, tar deposits lower cancer rates from 90% 
to 85%; in nonsmokers, they lower cancer rates from 10% to 5%. Thus, regardless of 
whether I have a natural craving for nicotine, I should be seeking the protective effect of 
tar deposits in my lungs, and smoking offers a very effective means of acquiring those 
deposits. 

To settle the dispute between the two interpretations, we now apply the front-door 
formula (equation (3.29)) to the data in Table 3.1. We wish to calculate the probability 
that a randomly selected person will develop cancer under each of the following two ac- 
tions: smoking (setting X = 1) or not smoking (setting X = 0). 

Substituting the appropriate values of P(z I x), P (  y I x ,  z ) ,  and P(x), we have 

P(Y = 1 I do(X = I)) = .05(.10 x .50 + .90 x .50) 

Thus, contrary to expectation, the data prove smoking to be somewhat beneficial to one's 
health. 

The data in Table 3.1 are obviously unrealistic and were deliberately crafted so as to 
support the genotype theory. However, the purpose of this exercise was to demonstrate 
how reasonable qualitative assumptions about the workings of mechanisms, coupled with 
nonexperimental data, can produce precise quantitative assessments of causal effects. In 
reality, we would expect observational studies involving mediating variables to refute the 
genotype theory by showing, for example, that the mediating consequences of smoking 
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(such as tar deposits) tend to increase, not decrease, the risk of cancer in smokers and 
nonsmokers alike. The estimand of (3.29) could then be used for quantifying the causal 
effect of smoking on cancer. 

3.4 A CALCULUS OF INTERVENTION 

This section establishes a set of inference rules by which probabilistic sentences involv- 
ing interventions and observations can be transformed into other such sentences, thus 
providing a syntactic method of deriving (or verifying) claims about interventions. Each 
inference rule will respect the interpretation of the do(-) operator as an intervention that 
modifies a select set of functions in the underlying model. The set of inference rules that 
emerge from this interpretation will be called do calculus. 

We will assume that we are given the structure of a causal diagram G in which some 
of the nodes are observable while others remain unobserved. Our objective will be to fa- 
cilitate the syntactic derivation of causal effect expressions of the form P(y I ;), where 
X and Y stand for any subsets of observed variables. By "derivation" we mean stepwise 
reduction of the expression P(  y I i )  to an equivalent expression involving standard prob- 
abilities of observed quantities. Whenever such reduction is feasible, the causal effect of 
X on Y is identifiable (see Definition 3.2.4). 

3.4.1 Preliminary Notation 

Let X, Y, and Z be arbitrary disjoint sets of nodes in a causal DAG G. We denote by G,- 
the graph obtained by deleting from G all arrows pointing to nodes in X. Likewise, we 
denote by Gx - the graph obtained by deleting from G aH arrows emerging from nodes 
in X. To represent the deletion of both incoming and outgoing arrows, we use the no- 
tation Gz, (see Figure 3.6 for an illustration). Finally, the expression P(y I i ,  z )  5 
P(y, z I i ) / P ( z  I 2) stands for the probability of Y = y given that X is held constant at 
x and that (under this condition) Z = z is observed. 

3.4.2 Inference Rules 

The following theorem states the three basic inference rules of the proposed calculus. 
Proofs are provided in Pearl (1995a). 

Theorem 3.4.1 (Rules of do Calculus) 
Let G be the directed acyclic graph associated with a causal model as defined in (3.2), 
and let P(.) stand for the probability distribution induced by that model. For any disjoint 
subsets of variables X, Y,  Z, and W, we have the following rules. 

Rule 1 (Insertion/deletion of observations): 

P(y I P, z ,  w) = P(y I P, w) if ( Y  I1 z I X ,  W)G?. 

Rule 2 (Action/observation exchange): 

P ( y I P , ? , w ) = P ( y I i , z , w )  ~ ~ ( Y I L Z I X , W ) G - .  
XZ 



Causal Diagrams and the Identification of Causal Effects 

Rule 3 (Insertion/deletion of actions): 

P ( y I . i , i , w ) = P ( y ( i , w )  i f ( Y I L Z I X , W ) G - -  
X . Z ( W )  ' (3.33) 

where Z (  W) is the set of Z-nodes that are not ancestors of any W-node in Gi .  

Each of these inference rules follows from the basic interpretation of the "hat" i opera- 
tor as a replacement of the causal mechanism that connects X to its preaction parents by 
a new mechanism X = x introduced by the intervening force. The result is a submodel 
characterized by the subgraph Gx (named "manipulated graph" in Spirtes et al. 1993). 

Rule 1 reaffirms d-separation as a valid test for conditional independence in the distri- 
bution resulting from the intervention do(X = x), hence the graph G,. This rule follows 
from the fact that deleting equations from the system does not introduce any dependen- 
cies among the remaining disturbance terms (see (3.2)). 

Rule 2 provides a condition for an external intervention do(Z = z) to have the same 
effect on Y as the passive observation Z = z .  The condition amounts to {X U W) block- 
ing all back-door paths from Z to Y (in GF), since G, retains all (and only) such paths. 

Rule 3 provides conditions for introducing (or deleting) an external intervention 
do(Z = z )  without affecting the probability of Y = y. The validity of this rule stems, 
again, from simulating the intervention do(Z = z )  by the deletion of all equations corre- 
sponding to the variables in Z (hence the graph G,-,-). The reason for limiting the deletion 
to nonancestors of W-nodes is provided with the proofs of Rules 1-3 in Pearl (1995a). 

Corollary 3.4.2 
A causal efect q = P(yl,  . . . , yk I i l ,  . . . ,2,)  is identijiable in a model characterized 
by a graph G if there exists aJinite sequence of transformations, each conforming to one 
of the inference rules in Theorem 3.4.1, that reduces q into a standard (i.e., "hat7'-free) 
probability expression involving observed quantities. 

Whether Rules 1-3 are sufficient for deriving all identifiable causal effects remains an 
open question. However, the task of finding a sequence of transformations (if such exists) 
for reducing an arbitrary causal effect expression can be systematized and executed by 
efficient algorithms (Galles and Pearl 1995; Pearl and Robins 1995), to be discussed in 
Chapter 4. As we illustrate in Section 3.4.3, symbolic derivations using the hat notation 
are much more convenient than algebraic derivations that aim at eliminating latent vari- 
ables from standard probability expressions (as in Section 3.3.2, equation (3.24)). 

3.4.3 Symbolic Derivation of Causal Effects: An Example 
We will now demonstrate how Rules 1-3 can be used to derive all causal effect estimands 
in the structure of Figure 3.5. Figure 3.6 displays the subgraphs that will be needed for 
the derivations that follow. 

Task 1: Compute P(z I 2 )  
This task can be accomplished in one step, since G satisfies the applicability condition 
for Rule 2. That is, X lL Z in Gx - (because the path X + U -+ Y - Z is blocked by 
the converging arrows at Y)  and we can write 

P(z I i )  = P ( z  I x). 
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a lJ (Unobserved) 

Figure 3.6 Subgraphs of G used in the derivation of causal effects. 

Task 2: Compute P(y I 2) 
Here we cannot apply Rule 2 to exchange 2 with z because G Z  contains a back-door 
path from Z to Y: Z t X c U -r Y. Naturally, we would like to block this path by 
measuring variables (such as X) that reside on that path. This involves conditioning and 
summing over all values of X: 

We now have to deal with two terms involving 2, P(y  I x ,  2) and P(x  I 2). The latter 
can be readily computed by applying Rule 3 for action deletion: 

since X and Z are d-separated in G Z .  (Intuitively, manipulating Z should have no effect 
on X, because Z is a descendant of X in G.)  To reduce the former term, P ( y  I x ,  i ) ,  we 
consult Rule 2: 

P (Y I x , ? ) =  P(y  I x , z )  if ( Z L Y  I X)Gz,  - 

noting that X d-separates Z from Y in G Z .  - This allows us to write (3.35) as 

which is a special case of the back-door formula (equation (3.19)). The legitimizing con- 
dition, (2 L Y I X)Gz, offers yet another graphical test for a set X to be sufficient for 
control of confounding (between Y and 2 )  that is equivalent to the ignorability condition 
of Rosenbaum and Rubin (1983). 

Task 3: Compute P(y 1 4) 
Writing 
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we see that the term P(z I i )  was reduced in (3.34) but that no rule can be applied to 
eliminate the hat symbol * from the term P( y ( z ,  i ) .  However, we can legitimately add 
this symbol via Rule 2: 

since the applicability condition (Y lL Z I X ) G -  holds (see Figure 3.6). We can now 
XZ 

delete the action i from P(y I i, 2 )  using Rule 3, since Y lL X I Z holds in GxZ Thus, 
we have 

which was calculated in (3.38). Substituting (3.38), (3.41), and (3.34) back into (3.39) 
finally yields 

which is identical to the front-door formula of (3.28). 

Task 4: Compute P(y, z 1 P) 
We have 

The two terms on the r.h.s. were derived before in (3.34) and (3.41), from which we 
obtain 

Task 5: Compute P(x ,  y I 2) 
We have 

The first term on the r.h.s. is obtained by Rule 2 (licensed by GZ) - and the second term 
by Rule 3 (as in (3.36)). 

Note that, in all the derivations, the graph G has provided both the license for applying 
the inference rules and the guidance for choosing the right rule to apply. 

3.4.4 Causal Inference by Surrogate Experiments 

Suppose we wish to learn the causal effect of X on Y when P(y I 2) is not identifi- 
able and, for practical reasons of cost or ethics, we cannot control X by randomized 
experiment. The question arises of whether P(y I i )  can be identified by randomizing 
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a surrogate variable Z that is easier to control than X. For example, if we are interested 
in assessing the effect of cholesterol levels (X) on heart disease ( Y ) ,  a reasonable ex- 
periment to conduct would be to control subjects' diet (Z), rather than exercising direct 
control over cholesterol levels in subjects' blood. 

Formally, this problem amounts to transforming P(y I 2) into expressions in which 
only members of Z obtain the hat symbol. Using Theorem 3.4.1, it can be shown that the 
following conditions are sufficient for admitting a surrogate variable 2: 

(i) X intercepts all directed paths from Z to Y ;  and 

(ii) P(y I i )  is identifiable in G,.  

Indeed, if condition (i) holds then we can write P(  y I i )  = P (  y 1 i, i), because 
(Y 1 Z I X)c,. But P(y I 2 ,  2) stands for the causal effect of X on Y in a model gov- 
erned by G z ,  which - by condition (ii) - is identifiable. Translated to our cholesterol 
example, these condition require that there be no direct effect of diet on heart conditions 
and no confounding of cholesterol levels and heart disease, unless we can neutralize such 
confounding by additional measurements. 

Figures 3.9(e) and 3.9(h) (in Section 3.5.2) illustrate models in which both conditions 
hold. With Figure 3.9(e), for example, we obtain this estimand 

This can be established directly by first applying Rule 3 to add 2, 

P(y I 2) = P(y I i, 2) because (Y 1L Z I X)G,,, 

and then applying Rule 2 to exchange 2 with x :  

P(Y I i 1 2 )  = P(y I x ,?)  because ( Y l X  I Z)G - xz - 

According to (3.45), only one level of Z suffices for the identification of P(y I 2 )  for 
any values of y and x. In other words, Z need not be varied at all; it can simply be held 
constant by external means and, if the assumptions embodied in G are valid, the r.h.s. of 
(3.45) should attain the same value regardless of the (constant) level at which Z is be- 
ing held. In practice, however, several levels of Z will be needed to ensure that enough 
samples are obtained for each desired value of X. For example, if we are interested in 
the difference E(Y [ 2) - E(Y I i f ) ,  where x and x' are two treatment levels, then we 
should choose two values z and z' of Z that maximize the number of samples in x and x' 
(respectively) and then estimate 

3.5 GRAPHICAL TESTS OF IDENTIFIABILITY 

Figure 3.7 shows simple diagrams in which P ( y  I i )  cannot be identified owing to the 
presence of a "bow" pattern - a confounding arc (dashed) embracing a causal link be- 
tween X and Y. A confounding arc represents the existence in the diagram of a back-door 



Causal Diagrams and the Identification of Causal Effects 

Figure 3.7 (a) A bow pattern: a confounding arc embracing a causal link X - Y,  thus preventing 
the identification of P(y I i )  even in the presence of an instrumental variable Z, as in (b). (c) A 
bowless graph that still prohibits the identification of P (y  I 2). 

path that contains only unobserved variables and has no converging arrows. For exam- 
ple, the path X, Zo, B, Z 3  in Figure 3.1 can be represented as a confounding arc between 
X and Z3. A bow pattern represents an equation y = fy (x, U ,  EY), where U is unob- 
served and dependent on X. Such an equation does not permit the identification of causal 
effects, since any portion of the observed dependence between X and Y may always be 
attributed to spurious dependencies mediated by U. 

The presence of a bow pattern prevents the identification of P(y I i )  even when it is 
found in the context of a larger graph, as in Figure 3.7(b). This is in contrast to linear 
models, where the addition of an arc to a bow pattern can render P(y ( i )  identifiable 
(see Chapter 5, Figure 5.9). For example, if Y is related to X via a linear relation y = 

bx + u, where U is an unobserved disturbance possibly correlated with X, then b = 
~ E ( Y  I i )  is not identifiable. However, adding an arc Z -c X to the structure (i-e., ax 
finding a variable Z that is correlated with X but not with U) would facilitate the compu- 
tation of E(Y I i )  via the instrumental variable formula (Bowden and Turkington 1984; 
see also Chapter 5): 

In nonparametric models, adding an instrumental variable Z to a bow pattern (Figure 
3.7(b)) does not permit the identification of P(y ( 2). This is a familiar problem in the 
analysis of clinical trials in which treatment assignment (Z) is randomized (hence, no 
link enters Z)  but compliance is imperfect (see Chapter 8). The confounding arc be- 
tween X and Y in Figure 3.7(b) represents unmeasurable factors that influence subjects' 
choice of treatment (X) as well as subjects' response to treatment (Y). In such trials, 
it is not possible to obtain an unbiased estimate of the treatment effect P(y I i )  with- 
out making additional assumptions on the nature of the interactions between compliance 
and response (as is done, for example, in the potential-outcome approach to instrumen- 
tal variables developed in Imbens and Angrist 1994 and Angrist et al. 1996). Although 
the added arc Z 4 X permits us to calculate bounds on P(y ] i )  (Robins 1989, sec. lg; 
Manski 1990; Balke and Pearl 1997) and the upper and lower bounds may even coincide 
for certain types of distributions P(x, y, z) (Section 8.2.4), there is no way of computing 
P(y I i )  for every positive distribution P(x, y, z), as required by Definition 3.2.4. 

In general, the addition of arcs to a causal diagram can impede, but never assist, the 
identification of causal effects in nonparametric models. This is because such addition 
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reduces the set of d-separation conditions carried by the diagram; hence, if a causal ef- 
fect derivation fails in the original diagram, it is bound to fail in the augmented diagram 
as well. Conversely, any causal effect derivation that succeeds in the augmented diagram 
(by a sequence of symbolic transformations, as in Corollary 3.4.2) would succeed in the 
original diagram. 

Our ability to compute P(yl I i )  and P(y2 I i )  for pairs (Yl, Y2) of singleton vari- 
ables does not ensure our ability to compute joint distributions, such as P(yl, y2 I i ) .  
Figure 3.7(c), for example, shows a causal diagram where both P(zl I i )  and P(z2 I 2) 
are computable yet P(zl, z 2  I i )  is not. Consequently, we cannot compute P(y I i ) .  It 
is interesting to note that this diagram is the smallest graph that does not contain a bow 
pattern and still presents an uncomputable causal effect. 

Another interesting feature demonstrated by Figure 3.7(c) is that computing the ef- 
fect of a joint intervention is often easier than computing the effects of its constituent 
singleton  intervention^.^ Here, it is possible to compute P(  y I 2, ,?2) and P(y [ 2, il), 
yet there is no way of computing P(y I 2). For example, the former can be evaluated by 
invoking Rule 2 in Ge2, giving 

However, Rule 2 cannot be used to convert P(zl I i ,  z2) into P(zl I x ,  z2) because, 
when conditioned on Z2, X and Z1 are d- connected in G - (through the dashed lines). A 
general approach to computing the effect of joint interventions is developed in Pearl and 
Robins (1995); this is described in Chapter 4 (Section 4.4). 

3.5.1 Identifying Models 

Figure 3.8 shows simple diagrams in which the causal effect of X on Y is identifiable 
(where X and Y are single variables). Such models are called "identifying" because their 
structures communicate a sufficient number of assumptions (missing links) to permit the 
identification of the target quantity P(y I 2). Latent variables are not shown explicitly 
in these diagrams; rather, such variables are implicit in the confounding arcs (dashed). 
Every causal diagram with latent variables can be converted to an equivalent diagram 
involving measured variables interconnected by arrows and confounding arcs. This con- 
version corresponds to substituting out all latent variables from the structural equations 
of (3.2) and then constructing a new diagram by connecting any two variables X i  and Xi 
by (i) an arrow from Xi to Xi whenever X; appears in the equation for Xi and (ii) a con- 
founding arc whenever the same E term appears in both J;: and fj . The result is a diagram 
in which all unmeasured variables are exogenous and mutually independent. 

Several features should be noted from examining the diagrams in Figure 3.8. 

This was brought to my attention by James Robins, who has worked out many of these computa- 
tions in the context of sequential treatment management (Robins 1986, p. 1423). 
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Figure 3.8 Qpical models in which the effect of X on Y is identifiable. Dashed arcs represent con- 
founding paths, and Z represents observed covariates. 

1. Since the removal of any arc or arrow from a causal diagram can only assist 
the identifiability of causal effects, P(y ( i )  will still be identified in any edge 
subgraph of the diagrams shown in Figure 3.8. Likewise, the introduction of me- 
diating observed variables onto any edge in a causal graph can assist, but never 
impede, the identifiability of any causal effect. Therefore, P(y I 2 )  will stilI be 
identified from any graph obtained by adding melating nodes to the diagrams 
shown in Figure 3.8. 

2. The diagrams in Figure 3.8 are maximal in the sense that the introduction of any 
additional arc or arrow onto an existing pair of nodes would render P(y I i) no 
longer identifiable. 

3. Although most of the diagrams in Figure 3.8 contain bow patterns, none of these 
patterns emanates from X (as is the case in Figures 3.9(a) and (b) to follow). In 
general, a necessary condition for the identifiability of P(y I 2)  is the absence of 
a confounding arc between X and any child of X that is an ancestor of Y. 

4. Diagrams (a) and (b) in Figure 3.8 contain no back-door paths between X and 
Y and thus represent experimental designs in which there is no confounding bias 
between the treatment (X) and the response (Y); hence, P(y I i )  = P ( y  I x). 
Likewise, diagrams (c) and (d) in Figure 3.8 represent designs in which observed 
covariates Z block every back-door path between X and Y (i.e., X is "condition- 
ally ignorable" given Z,  in the language of Rosenbaum and Rubin 1983); hence, 
P(y I 2 )  is obtained by standard adjustment for Z (as in (3.19)): 

Z 

5.  For each of the diagrams in Figure 3.8, we readily obtain a formula for P( y I i )  by 
using symbolic derivations patterned after those in Section 3.4.3. The derivation 
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is often guided by the graph topology. For example, diagram (f) in Figure 3.8 
dictates the following derivation. Writing 

P(Y I 2) = C P(Y I Z I ,  ZZ, i ) P ( z ~ ,  z2 I i ) ,  
Z19Z2 

we see that the subgraph containing {Xi Z1, Z2) is identical in structure to that 
of diagram (e), with (Z1, Z2) replacing (Z, Y), respectively. Thus, P(zl, z2 I i )  
can be obtained from (3.43). Likewise, the term P(y I zl,  22 ,  i )  can be reduced 
to P(y ( z l ,  22,  x) by Rule 2, since (Y ll X ( Z1, Z2)Gx. We therefore have - 

Z I , Z 2  x ' 
Applying a similar derivation to diagram (g) of Figure 3.8 yields 

2 1  2 2  X' 

x P(z1 I z2, xIP(z2). (3.49) 

Note that the variable Z3 does not appear in (3.49), which means that Z 3  need 
not be measured if all one wants to learn is the causal effect of X on Y. 

6. In diagrams (e), (f), and (g) of Figure 3.8, the identifiability of P(y I i )  is ren- 
dered feasible through observed covariates Z that are affected by the treatment 
X (since members of Z are descendants of X). This stands contrary to the wam- 
ing - repeated in most of the literature on statistical experimentation - to refrain 
from adjusting for concomitant observations that are affected by the treatment 
(Cox 1958; Rosenbaum 1984; Pratt and Schlaifer 1988; Wainer 1989). It is com- 
monly believed that a concomitant Z that is affected by the treatment must be 
excluded from the analysis of the total effect of the treatment (Pratt and Schlaifer 
1988). The reason given for the exclusion is that the calculation of total effects 
amounts to integrating out 2, which is functionally equivalent to omitting Z to 
begin with. Diagrams (e),  (f), and (g) show cases where the total effects of X are 
indeed the target of investigation and, even so, the measurement of concomitants 
that are affected by X (e.g., Z or Z1) is still necessary. However, the adjustment 
needed for such concomitants is nonstandard, involving two or more stages of 
the standard adjustment of (3.19) (see (3.28), (3.48), and (3.49)). 

7. In diagrams (b), (c), and (f) of Figure 3.8, Y has a parent whose effect on Y is 
not identifiable; even so, the effect of X on Y is identifiable. This demonstrates 
that local identifiability is not a necessary condition for global identifiability. In 
other words, to identify the effect of X on Y we need not insist on identifying 
each and every link along the paths from X to Y. 

3.5.2 Nonidentifying Models 
Figure 3.9 presents typical diagrams in which the total effect of X on Y, P(y I i ) ,  is not 
identifiable. Noteworthy features of these diagrams are as follows. 

I. All graphs in Figure 3.9 contain unblockable back-door paths between X and Y, 
that is, paths ending with arrows pointing to X that cannot be blocked by ob- 
served nondescendants of X. The presence of such a path in a graph is, indeed, 
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Figure 3.9 Typical models in which P ( y  ( i )  is not identifiable. 

a necessary test for nonidentifiability (see Theorem 3.3.2). That it is not a suffi- 
cient test is demonstrated by Figure 3.8(e), in which the back-door path (dashed) 
is unblockable and yet P(y I i )  is identifiable. 

2. A sufficient condition for the nonidentifiability of P(y I i )  is the existence of a 
confounding path between X and any of its children on a path from X to Y, as 
shown in Figures 3.9(b) and (c). A stronger sufficient condition is that the graph 
contain any of the patterns shown in Figure 3.9 as an edge subgraph. 

3. Graph (g) in Figure 3.9 (same as Figure 3.7(c)) demonstrates that local identi- 
fiability is not sufficient for global identifiability. For example, we can identify 
P(zl I i ) ,  P(z2 I i), P(y I and P(y I i2) but not P(y I i ) .  This is one of 
the main differences between nonparametric and linear models; in the latter, all 
causal effects can be determined from the structural coefficients and each coeffi- 
cient represents the causal effect of one variable on its immediate successor. 

3.6 DISCUSSION 

3.6.1 Qualifications and Extensions 
The methods developed in this chapter facilitate the drawing of quantitative causal infer- 
ences from a combination of qualitative causal assumptions (encoded in the diagram) and 
nonexperimental observations. The causal assumptions in themselves cannot generally be 
tested in nonexperimental studies, unless they impose constraints on the observed distri- 
butions. The most common type of constraints appears in the form of conditional indepen- 
dencies, as communicated through the d-separation conditions in the diagrams. Another 
type of constraints takes the form of numerical inequalities. In Chapter 8, for example, 
we show that the assumptions associated with instrumental variables (Figure 3.7(b)) are 
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subject to falsification tests in the form of inequalities on conditional probabilities (Pearl 
1995b). Still, such constraints permit the testing of merely a small fraction of the causal 
assumptions embodied in the diagrams; the bulk of those assumptions must be substanti- 
ated from domain knowledge as obtained from either theoretical considerations (e.g., that 
falling barometers do not cause rain) or related experimental studies. For example, the 
experimental study of Moertel et al. (1985), which refuted the hypothesis that vitamin C 
is effective against cancer, can be used as a substantive assumption in observational stud- 
ies involving vitamin C and cancer patients; it would be represented as a missing link 
(between vitamin C and cancer) in the associated diagram. In summary, the primary 
use of the methods described in this chapter lies not in testing causal assumptions but in 
providing an effective language for malung those assumptions precise and explicit. As- 
sumptions can thereby be isolated for deliberation or experimentation and then (once val- 
idated) be integrated with statistical data to yield quantitative estimates of causal effects. 

An important issue that will be considered only briefly in this book (see Section 8.5) 
is sampling variability. The mathematical derivation of causal effect estimands should be 
considered a first step toward supplementing these estimands with confidence intervals 
and significance levels, as in traditional analysis of controlled experiments. We should 
remark, though, that having obtained nonparametric estimands for causal effects does not 
imply that one should refrain from using parametric forms in the estimation phase of the 
study. For example, if the assumptions of Gaussian, zero-mean disturbances and additive 
interactions are deemed reasonable, then the estimand given in (3.28) can be converted to 
the product E(Y I 2 )  = rzxry~.xx,  where r y z . ~  is the standardized regression coefficient 
(Section 5.3.1); the estimation problem then reduces to that of estimating regression co- 
efficients (e.g., by least squares). More sophisticated estimation techniques can be found 
in Rosenbaum and Rubin (1983), Robins (1989, sec. 17), and Robins et al. (1992, pp. 
331-3). For example, the "propensity score" method of Rosenbaum and Rubin (1983) 
was found to be quite useful when the dimensionality of the adjusted covariates is high. 
In a more recent scheme called "marginal models," Robins (1999) shows that, rather than 
estimating individual factors in the adjustment formula of (3.19), it is often more advan- 

P ( x  Y 2 )  tageous to use P ( y  1 i )  = x, -, where the preintervention distribution remains 
unfactorized. One can then separately estimate the denominator P(x 1 z), weigh indi- 
vidual samples by the inverse of this estimate, and treat the weighted samples as if they 
were drawn at random from the postintervention distribution P(y I i ) .  Postintervention 
parameters, such as & E(Y I i ) ,  can then be estimated by ordinary least squares. This 
method is especially advantageous in longitudinal studies with time-varying covariates, 
as in the process control problem discussed in Section 3.2.3 (see (3.18)). 

Several extensions of the methods proposed in this chapter are noteworthy. First, the 
identification analysis for atomic interventions can be generalized to complex policies 
in which a set X of controlled variables is made to respond in a specified way to some 
set Z of covariates via functional or stochastic strategies, as in Section 3.2.3. In Chap- 
ter 4 (Section 4.2) it is shown that identifying the effect of such policies is equivalent to 
computing the expression P( y ] i, z). 

A second extension concerns the use of the intervention calculus (Theorem 3.4.1) in 
nonrecursive models, that is, in causal diagrams involving directed cycles or feedback 
loops. The basic definition of causal effects in term of "wiping out" equations from 
the model (Definition 3.2.1) still carries over to nonrecursive systems (Strotz and Wold 
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1960; Sobel 1990), but then two issues must be addressed. First, the analysis of identi- 
fication must ensure the stability of the remaining submodels (Fisher 1970). Second, the 
d-separation criterion for DAGs must be extended to cover cyclic graphs as well. The va- 
lidity of d-separation has been established for nonrecursive linear models (Spirtes 1995) as 
well as for nonlinear systems involving discrete variables (Pearl and Dechter 1996). How- 
ever, the computation of causal effect estimands will be harder in cyclic nonlinear systems, 
because symbolic reduction of P(y ) i )  to hat-free expressions may require the solution 
of nonlinear equations. In Chapter 7 (Section 7.2.1) we demonstrate the evaluation of poli- 
cies and counterfactuals in nonrecursive linear systems (see also Balke and Pearl 1995). 

A third extension concerns generalizations of intervention calculus (Theorem 3.4.1) 
to situations where the data available is not obtained under i.i.d. (independent and identi- 
cally distributed) sampling. One can imagine, for instance, a physician who prescribes a 
certain treatment to patients only when the fraction of survivors among previous patients 
drops below some threshold. In such cases, it is required to estimate the causal effect 
P ( y  I i )  from nonindependent samples. Vladimir Vovk (1996) gave conditions under 
which the rules of Theorem 3.4.1 will be applicable when sampling is not i.i.d., and he 
went on to cast the three inference rules as a logical production system. 

3.6.2 Diagrams as a Mathematical Language 

The benefit of incorporating substantive background knowledge into probabilistic infer- 
ence was recognized as far back as Thomas Bayes (1763) and Pierre Laplace (1814), and 
its crucial role in the analysis and interpretation of complex statistical studies is gener- 
ally acknowledged by most modem statisticians. However, the mathematical language 
available for expressing background knowledge has remained in a rather pitiful state of 
development. 

Traditionally, statisticians have approved of only one way of combining substantive 
knowledge with statistical data: the Bayesian method of assigning subjective priors to dis- 
tributional parameters. To incorporate causal information within this framework, plain 
causal statements such as "Y is not affected by X" must be converted into sentences 
or events capable of receiving probability values (e.g. counterfactuals). For instance, to 
communicate the innocent assumption that mud does not cause rain, we would have to 
use a rather unnatural expression and say that the probability of the counterfactual event 
"rain if it were not muddy" is the same as the probability of "rain if it were muddy." 
Indeed, this is how the potential-outcome approach of Neyman and Rubin has achieved 
statistical legitimacy: causal judgments are expressed as constraints on probability func- 
tions involving counterfactual variables (see Section 3.6.3). 

Causal diagrams offer an alternative language for combining data with causal infor- 
mation. This language simplifies the Bayesian route by accepting plain causal statements 
as its basic primitives. Such statements, which merely indicate whether a causal connec- 
tion between two variables of interest exists, are commonly used in ordinary discourse and 
provide a natural way for scientists to communicate experience and organize knowledge.7 

' Remarkably, many readers of this chapter (including two referees of this book) classified the meth- 
ods presented here as belonging to the "Bayesian camp" and as depending on a "good prior." This 
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It can be anticipated, therefore, that the language of causal graphs will find applications 
in problems requiring substantial domain knowledge. 

The language is not new. The use of diagrams and structural equations models to con- 
vey causal information has been quite popular in the social sciences and econometrics. 
Statisticians, however, have generally found these models suspect, perhaps because social 
scientists and econometricians have failed to provide an unambiguous definition of the 
empirical content of their models - that is, to specify the experimental conditions, how- 
ever hypothetical, whose outcomes would be constrained by a given structural equation. 
(Chapter 5 discusses the bizarre history of structural equations in the social sciences and 
economics). As a result, even such basic notions as "structural coefficients" or "missing 
links" become the object of serious controversy (Freedman 1987; Goldberger 1992) and 
misinterpretations (Whittaker 1990, p. 302; Wermuth 1992; Cox & Wermuth 1993). 

To a large extent, this history of controversy and miscommunication stems from the 
absence of an adequate mathematical notation for defining basic notions of causal mod- 
eling. For example, standard probabilistic notation cannot express the empirical content 
of the coefficient b in the structural equation y = bx + EY, even if one is prepared to 
assume that EY (an unobserved quantity) is uncorrelated with x . ~  Nor can any probabilis- 
tic meaning be attached to the analyst's excluding from the equation variables that are 
highly correlated with X or Y but do not "directly affect" Y . ~  

The notation developed in this chapter gives these (causal) notions a clear empirical 
interpretation, because it permits one to specify precisely what is being held constant and 
what is merely measured in a given experiment. (The need for this distinction was rec- 
ognized by many researchers, most notably Pratt and Schlaifer 1988 and Cox 1992). The 
meaning of b is simply $ E(Y 1 i ) ,  that is, the rate of change (in x) of the expectation 
of Y in an experiment where X is held at x by external control. This interpretation holds 
regardless of whether E Y  and X are correlated (e.g., via another equation x = ay + E,). 
Likewise, the analyst's decision as to which variables should be included in a given equa- 
tion can be based on a hypothetical controlled experiment: A variable Z is excluded from 
the equation for Y if (for every level of E y) Z has no influence on Y when all other variables 
(SyZ) are held constant; this implies P(y I 2,  S l y Z )  = P(y I iyz). Specifically, variables 
that are excluded from the equation y = bx + EY are not conditionally independent of Y 
given measurements of X but instead are causally irrelevant to Y given settings of X. The 
operational meaning of the "disturbance term" EY is likewise demystified: E Y  is defined as 
the difference Y - E(Y I iy). TWO disturbance terms, EX and E Y ,  are correlated if P(y I 
2 ,  ixY) # P(y I x, ixy),  and so on (see Chapter 5, Section 5.4, for further elaboration). 

The distinctions provided by the hat notation clarify the empirical basis of struc- 
tural equations and should make causal models more acceptable to empirical researchers. 

classification is misleading. The method does depend on subjective assumptions (e.g., mud does 
not cause rain), but such assumptions are causal, not statistical, and cannot be expressed as prior 
probabilities on parameters of joint distributions. 
Voluminous literature on the subject of "exogeneity" (e.g. Richard 1980; Engle et al. 1983; Hendry 
1995) has emerged from economists' struggle to give statistical interpretation to the causal asser- 
tion "X and EY are uncorrelated" (Aldrich 1993; see Section 5.4.3). 
The bitter controversy between Goldberger (1992) and Wermuth (1992) revolves around Wermuth's 
insistence on giving a statistical interpretation to the zero coefficients in structural equations (see 
Section 5.4.1). 
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Moreover, since most scientific knowledge is organized around the operation of "holding 
X fixed" rather than "conditioning on X," the notation and calculus developed in this 
chapter should provide an effective means for scientists to communicate substantive in- 
formation and to infer its logical consequences. 

3.6.3 Translation from Graphs to Potential Outcomes 
This chapter uses two representations of causal information: graphs and structural equa- 
tions, where the former is an abstraction of the latter. Both representations have been 
controversial for almost a century. On the one hand, economists and social scientists have 
embraced these modeling tools, but they continue to question and debate the causal con- 
tent of the parameters they estimate (see Sections 5.1 and 5.4 for details); as a result, the 
use of structural models in policy-making contexts is often viewed with suspicion. Statis- 
ticians, on the other hand, reject both representations as problematic (Freedman 1987) 
if not meaningless (Wermuth 1992; Holland 1995), and they sometimes resort to the 
Neyman-Rubin potential-outcome notation when pressed to communicate causal infor- 
mation (Rubin 1990)?' A detailed formal analysis of the relationships between the struc- 
tural and potential-outcome approaches is offered in Chapter 7 (Section 7.4.4) and proves 
their mathematical equivalence. In this section we highlight commonalities and differ- 
ences between the two approaches as they pertain to the elicitation of causal assumptions. 

The primitive object of analysis in the potential-outcome framework is the unit-based 
response variable, denoted Y (x, u) or Y, (u) , read: "the value that Y would obtain in unit 
u, had X been x." This counterfactual entity has natural interpretation in structural equa- 
tions models. Consider a general structural model M that contains a set of equations 

as in (3.4). Let U stand for the vector (U1, . . . , U,) of background variables, let X and Y 
be two disjoint subsets of observed variables, and let M, be the submodel created by re- 
placing the equations corresponding to variables in X with X = x, as in Definition 3.2.1. 
The structural interpretation of Y(x, u) is given by 

That is, Y(x, u) is the (unique) solution of Y under the realization U = u in the submodel 
M, of M. Although the term unit in the potential-outcome literature normally stands for 
the identity of a specific individual in a population, a unit may also be thought of as the 
set of attributes that characterize that individual, the experimental conditions under study, 
the time of day, and so on - all of which are represented as components of the vector u 
in structural modeling. In fact, the only requirements on U are (i) that it represent as 
many background factors as needed to render the relations among endogenous variables 
deterministic and (ii) that the data consist of independent samples drawn from P(u). The 

lo A parallel framework was developed in the econometrics literature under the rubric "switching 
regression" Manski (1995, p. 38), which Heckman (1996) attributed to Roy (1951) and Quandt 
(1958). 
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identity of an individual person in an experiment is often sufficient for this purpose be- 
cause it represents the anatomical and genetic makings of that individual, which are often 
sufficient for determining that individual's response to treatments or other programs of 
interest. 

Equation (3.51) forms a connection between the opaque English phrase "the value 
that Y would obtain in unit u, had X been x" and the physical processes that transfer 
changes in X into changes in Y. The formation of the submodel M, explicates precisely 
how the hypothetical phrase "had X been x" could be realized, as well as what process 
must give in to make X = x a reality. 

Given this interpretation of Y(x, u), it is instructive to contrast the methodologies 
of causal inference in the counterfactual versus structural frameworks. If U is treated 
as a random variable then the value of the counterfactual Y(x, u) becomes a random 
variable as well, denoted as Y(x) or Y,. The potential-outcome analysis proceeds by 
imagining the observed distribution P(xl, . . . , x,) as the marginal distribution of an aug- 
mented probability function P* defined over both observed and counterfactual variables. 
Queries about causal effects (written P(y I i )  in our structural analysis) are phrased as 
queries about the marginal distribution of the counterfactual variable of interest, written 
P*(Y(x) = y). The new hypothetical entities Y(x) are treated as ordinary random vari- 
ables; for example, they are assumed to obey the axioms of probability calculus, the laws 
of conditioning, and the axioms of conditional independence. Moreover, these hypotheti- 
cal entities are assumed to be connected to observed variables via consistency constraints 
(Robins 1986) such as" 

which states that, for every u, if the actual value of X turns out to be x, then the value 
that Y would take on if X were x is equal to the actual value of Y. Thus, whereas the 
structural approach views the intervention do(x) as an operation that changes the model 
(and the distribution) but keeps all variables the same, the potential-outcome approach 
views the variable Y under do(x) to be a different variable, Y(x), loosely connected to 
Y through relations such as (3.52). In Chapter 7 we show, using the structural interpre- 
tation of Y (x, u), that it is indeed legitimate to treat counterfactuals as random variables 
in all respects and, moreover, that consistency constraints like (3.52) follow as theorems 
from the structural interpretation. 

To communicate substantive causal knowledge, the potential-outcome analyst must 
express causal assumptions as constraints on P*, usually in the form of conditional in- 
dependence assertions involving counterfactual variables. For example, to communicate 
the understanding that - in a randomized clinical trial with imperfect compliance (see 
Figure 3.7(b)) - the way subjects react (Y) to treatments (X) is statistically independent 
of the treatment assignment (Z), the potential-outcome analyst would write Y(x) lL Z. 
Likewise, to convey the understanding that the assignment is randomized and hence in- 
dependent of how subjects comply with the assignment, the potential-outcome analyst 
would use the independence constraint Z IL X(z). 

I '  Gibbard and Harper (1976, p. 156) expressed this constraint as A > [ ( A  tl, S) = S]. 
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A collection of constraints of this type might sometimes be sufficient to permit a 
unique solution to the query of interest; in other cases, only bounds on the solution can 
be obtained. For example, if one can plausibly assume that a set Z of covariates satisfies 
the conditional independence 

(an assumption that was termed "conditional ignorability" by Rosenbaum and Rubin 
1983), then the causal effect P*(Y(x) = y) can readily be evaluated, using (3.52), to 
yield ' 

The last expression contains no counterfactual quantities (thus permitting us to drop the 
asterisk from P*) and coincides precisely with the adjustment formula of (3.19), which 
obtains Erom the back-door criterion. However, the assumption of conditional ignora- 
bility (equation (3.53)) - the key to the derivation of (3.54) - is not straightforward to 
comprehend or ascertain. Paraphrased in experimental metaphors, this assumption reads: 
The way an individual with attributes Z would react to treatment X = x is independent 
of the treatment actually received by that individual. 

Section 3.6.2 explains why this approach may appeal to some statisticians, even 
though the process of eliciting judgments about counterfactual dependencies has been 
extremely difficult and error-prone; instead of constructing new vocabulary and new 
logic for causal expressions, all mathematical operations in the potential-outcome frame- 
work are conducted within the safe confines of probability calculus. The drawback lies 
in the requirement of using independencies among counterfactual variables to express 
plain causal knowledge. When counterfactual variables are not viewed as byproducts of 
a deeper, process-based model, it is hard to ascertain whether all relevant counterfactual 
independence judgments have been articulated,13 whether the judgments articulated are 
redundant, or whether those judgments are self-consistent. The elicitation of such coun- 
terfactual judgments can be systematized by using the following translation from graphs 
(see Section 7.1.4 for additional relationships). 

Graphs encode substantive information in both the equations and the probability func- 
tion P(u); the former is encoded as missing arrows, the latter as missing dashed arcs. 

l 2  Gibbard and Harper (1976, p. 157) used the "ignorability assumption" Y(x) 1 X to derive the 
equality P(Y(x) = y) = P(y I x). 

l 3  A typical oversight in the example of Figure 3.7(b) has been to write Z IL Y(x) and Z lL X ( z )  
instead of Z lL { Y  (x), X ( z ) ) ,  as dictated by (3.56). 
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Each parent-child family (PAi, Xi) in a causal diagram G corresponds to an equation 
in the model M of (3.50). Hence, missing arrows encode exclusion assumptions, that is, 
claims that adding excluded variables to an equation will not change the outcome of the 
hypothetical experiment described by that equation. Missing dashed arcs encode inde- 
pendencies among disturbance terms in two or more equations. For example, the absence 
of dashed arcs between a node Y and a set of nodes {Z1, . . . , Z k )  implies that the corre- 
sponding background variables, Uy and {Uzl, . . . , Uz,), are independent in P(u). 

These assumptions can be translated into the potential-outcome notation using two 
simple rules (Pearl 1995a, p. 704); the first interprets the missing arrows in the graph, the 
second, the missing dashed arcs. 

1 .  Exclusion restrictions: For every variable Y having parents PA y and for every 
set of variables S disjoint of PAy, we have 

Y ( P ~ Y )  = Y(pay7 s). (3.55) 
2. Independence restrictions: If Z1, . . . , Zk is any set of nodes not connected to Y 

via dashed arcs, we haveI4 

Y(paY) 1 {Zl(paz,), - - a  7 Zk(paz,>}. 

The independence restriction translates the independence between Uy and {Uzl, . . . , Uz, ) 
into independence between the corresponding potential-outcome variables. This follows 
from the observation that, once we set their parents, the variables in {Y, Z1, . . . , Zk} stand 
in functional relationships to the U terms in their corresponding equations. 

As an example, the model shown in Figure 3.5 displays the following parent sets: 

PAX = {PI}, PAz = {X}, PAy = {Z). 

Consequently, the exclusion restrictions translate into: 

the absence of a dashed arc between Z and {Y, X} translates into the independence re- 
striction 

Given a sufficient number of such restrictions on P*, the analyst attempts to compute 
causal effects P*(Y(x) = y) using standard probability calculus together with the logical 
constraints (e.g. (3.52)) that couple counterfactual variables with their measurable coun- 
terparts. These constraints can be used as axioms, or rules of inference, in attempting to 

l4 The restriction is in fact stronger, jointly applying to all instantiations of the PA variables. For 
example, X IL Y ( p a z )  should be interpreted as X 1 { Y ( p a i ) ,  Y ( p a : ) ,  Y ( p a g ) ,  . . . ), where 
pa; ,  pa:, p a y ,  . . . are the values that the set PAZ may take on. 
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transform causal effect expressions of the form P*(Y(x) = y )  into expressions involv- 
ing only measurable variables. When such a transformation is found, the corresponding 
causal effect is identifiable, since P* then reduces to P .  

The question naturally arises of whether the constraints used by potential-outcome an- 
alysts are complete - that is, whether they are sufficient for deriving every valid statement 
about causal processes, interventions, and counterfactuals. To answer this question, the 
validity of counterfactual statements need be defined relative to more basic mathematical 
objects, such as possible worlds (Section 1.4.4) or structural equations (equation (3.51)). 
In the standard potential-outcome framework, however, the question of completeness 
remains open, because Y(x, u) is taken as a primitive notion and because consistency 
constraints such as (3.52) - although they appear plausible for the English expression 
"had X been x," - are not derived from a deeper mathematical object. This question of 
completeness is settled in Chapter 7, where a necessary and sufficient set of axioms is 
derived from the structural semantics given to Y(x, u) by (3.51). 

In assessing the historical development of structural equations and potential-outcome 
models, one cannot overemphasize the importance of the conceptual clarity that structural 
equations offer vis-5-vis the potential-outcome model. The reader may appreciate this 
importance by attempting to judge whether the condition of (3.61) holds in a given famil- 
iar situation. This condition reads: "the value that Z would obtain had X been x is jointly 
independent of both X and the value that Y would obtain had Z been z." (In the struc- 
tural representation, the sentence reads: "Z shares no cause with either X or Y, except for 
X itself, as shown in Figure 3.5.") The thought of having to express, defend, and manage 
formidable counterfactual relationships of this type may explain why the enterprise of 
causal inference is currently viewed with such awe and despair among rank-and-file epi- 
demiologists and statisticians - and why economists and social scientists continue to use 
structural equations instead of the potential-outcome alternatives advocated in Holland 
(1988), Angrist et al. (1996), and Sobel (1998). On the other hand, the algebraic machin- 
ery offered by the potential-outcome notation, once a problem is properly formalized, 
can be quite powerful in refining assumptions, deriving probabilities of counterfactuals, 
and verifying whether conclusions follow from premises - as we demonstrate in Chap- 
ter 9. The translation given in (3.51)-(3.56) should help researchers combine the best 
features of the two approaches. 

3.6.4 Relations to Robins's G-Estimation 
Among the investigations conducted in the potential-outcome framework, the one closest 
in spirit to the structural analysis described in this chapter is Robins's work on "causally 
interpreted structured tree graphs" (Robins 1986, 1987). Robins was the first to realize 
the potential of Neyman's counterfactual notation Y(x) as a general mathematical lan- 
guage for causal inference, and he used it to extend Rubin's (1978) "time-independent 
treatment" model to studies with direct and indirect effects and time-varying treatments, 
concomitants, and outcomes. 

Robins considered a set V = {V,, . . . , VM) of temporally ordered discrete random 
variables (as in Figure 3.3) and asked under what conditions one can identify the effect 
of control policy g : X = x on outcomes Y c V\X, where X = {XI ,  . . . , X K )  V are 
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the temporally ordered and potentially manipulable treatment variables of interest. The 
causal effect of X = x on Y was expressed as the probability 

where the counterfactual variable Y(x) stands for the value that outcome variables Y 
would take had the treatment variables X been x. 

Robins showed that P(y I g = x) is identified from the distribution P(v) if each 
component Xk of X is "assigned at random, given the past," a notion explicated as fol- 
lows. Let Lk be the variables occurring between Xk-1 and Xk, with L being the variables 
preceding XI. Write Z k  = (L1, . . . , Lk)? L = LK, and X k  = (XI, . . . , Xk), and define 
Xo, Lo,  Vo to be identically zero. The treatment Xk = xk is said to be assigned at ran- 
dom, given the past, if the following relation holds: 

Robins further proved that, if (3.62) holds for every k,  then the causal effect is given 

by 

an expression he called the "G-computation algorithm formula." This expression can be 
derived by applying condition (3.62) iteratively, as in the derivation of (3.54). If X is 
univariate, then (3.63) reduces to the standard adjustment formula 

paralleling (3.54). Likewise, in the special structure of Figure 3.3, (3.63) reduces to (3.18). 
To place this result in the context of our analysis in this chapter, we note that the class 

of semi-Markovian models satisfying assumption (3.62) corresponds to complete DAGs 
in which all arrowheads pointing to Xk originate from observed variables. Indeed, in 
such models, the parents PAk = zk, Xk-l of variable Xk satisfy the back-door condition 
of Definition 3.3.1, 

which implies (3.62).15 This class of models falls under Theorem 3.2.5, which states that 
all causal effects in this class are identifiable and are given by the truncated factorization 
formula of (3.14); the formula coincides with (3.63) after marginalizing over the uncon- 
trolled covariates. 

l 5  Alternatively, (3.62) can be obtained by applying the translation rule of (3.56) to graphs with no 
confounding arcs between Xk and {Y,  P A k } .  Note, however, that the implication goes only one 
way; Robins's condition is the weakest assumption needed for identifying the causal effect. 
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The structural analysis introduced in this chapter supports and generalizes Robins's 
result from a new theoretical perspective. First, on the technical front, this analysis offers 
systematic ways of managing models with unmeasured confounders (i.e., unobserved par- 
ents of control variables, as in Figures 3.8(d)-(g)), where Robins's starting assumption 
(3.62) is inapplicable. Second, on the conceptual front, the structural framework rep- 
resents a fundamental shift from the vocabulary of counterfactual independencies (e.g. 
(3.62)) to the vocabulary of processes and mechanisms, from which human judgment of 
counterfactuals originates. Although expressions of counterfactual independencies can 
be engineered to facilitate algebraic derivations of causal effects (as in (3.54)), articu- 
lating the right independencies for a problem or assessing the assumptions behind such 
independencies may often be the hardest part of the problem. In the structural framework, 
the counterfactual expressions themselves are derived (if needed) from a mathematical 
theory (as in (3.56) and (3.61)). Still, Robins's pioneering research has proven (i) that al- 
gebraic methods can handle causal analysis in complex multistage problems and (ii) that 
causal effects in such problems can be reduced to estimable quantities (see also Sections 
3.6.1 and 4.4). 

Postscript 

The work recounted in this chapter sprang from two simple ideas that totally changed my 
attitude toward causality. The first idea arose in the summer of 1990, while I was work- 
ing with Tom Verma on "A Theory of Inferred Causation" (Pearl and Verma 1991; see 
also Chapter 2). We played around with the possibility of replacing the parents-child re- 
lationship P(xi I pa;)  with its functional counterpart xi = f,(pai, ui) and, suddenly, 
everything began to fall into place: we finally had a mathematical object to which we 
could attribute familiar properties of physical mechanisms instead of those slippery epi- 
stemic probabilities P(xi I pai) with which we had been working so long in the study of 
Bayesian networks. Danny Geiger, who was writing his dissertation at that time, asked 
with astonishment: "Deterministic equations? Truly deterministic?' Although we knew 
that deterministic structural equations have a long history in econometrics, we viewed 
this representation as a relic of the past. For us at UCLA in the early 1990s, the idea 
of putting the semantics of Bayesian networks on a deterministic foundation seemed a 
heresy of the worst kind. 

The second simple idea came from Peter Spirtes's lecture at the International Con- 
gress of Philosophy of Science (Uppsala, Sweden, 1991). In one of his slides, Peter 
illustrated how a causal diagram would change when a variable is manipulated. To me, 
that slide of Spirtes's - when combined with the deterministic structural equations - was 
the key to unfolding the manipulative account of causation and led to most of the explo- 
rations described in this chapter. 

I should really mention another incident that contributed to this chapter. In early 
1993 I read the fierce debate between Arthur Goldberger and Nanny Wermuth on the 
meaning of structural equations (Goldberger 1992; Wermuth 1992). It suddenly hit me 
that the century-old tension between economists and statisticians stems from simple se- 
mantic confusion: Statisticians read structural equations as statements about E(Y I x), 
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while economists read them as E(Y I do(x) ) .  This would explain why statisticians claim 
that structural equations have no meaning and why economists retort that statistics has 
no substance. I wrote a technical report, "On the Statistical Interpretation of Structural 
Equations" (Pearl 1993c), hoping to see the two camps embrace in reconciliation. Noth- 
ing of the sort happened. The statisticians in the dispute continued to insist that anything 
that is not interpreted as E(Y I x )  simply lacks meaning. The economists, in contrast, 
are still trying to decide if it was do(x)  that they have been meaning to say all along. 

Encouraging colleagues receive far too little credit in official channels, considering 
the immense impact they have on the encouraged. I must take this opportunity to ac- 
knowledge four colleagues who saw clarity shining through the do(x)  operator before it 
gained popularity: Steffen Lauritzen, David Freedman, James Robins, and Philip Dawid. 
Phil showed special courage in printing my paper in Biornetrika (Pearl 1995a), the jour- 
nal founded by causality's worst adversary - Karl Pearson. 



CHAPTER FOUR 

Actions, Plans, and Direct Effects 

He whose actions exceed his wisdom, 
his wisdom shall endure. 

Rabbi Hanina ben Dosa 
(1st century A.D.) 

Preface 

So far, our analysis of causal effects has focused on primitive interventions of the form 
do(x), which stood for setting the value of variable X to a fixed constant, x, and ask- 
ing for the effect of this action on the probabilities of some response variables Y. In this 
chapter we introduce several extensions of this analysis. 

First (Section 4.1), we discuss the status of actions vis-8-vis observations in proba- 
bility theory, decision analysis, and causal modeling, and we advance the thesis that the 
main role of causal models is to facilitate the evaluation of the effect of novel actions and 
policies that were unanticipated during the construction of the model. 

In Section 4.2 we extend the identification analysis of Chapter 3 to conditional actions 
of the form "do x if you see z" and stochastic policies of the form "do x with proba- 
bility p if you see z." We shall see that the evaluation and identification of these more 
elaborate interventions can be obtained from the analysis of primitive interventions. In 
Section 4.3, we use the intervention calculus developed in Chapter 3 to give a graphical 
characterization of the set of semi-Markovian models for which the causal effect of one 
variable on another can be identified. 

We address in Section 4.4 the problem of evaluating the effect of sequential plans - 
namely, sequences of time-varying actions (some taken concurrently) designed to pro- 
duce a certain outcome. We provide a graphical method of estimating the effect of such 
plans from nonexperimental observations in which some of the actions are influenced 
by their predecessors, some observations are influenced by the actions, and some con- 
founding variables are unmeasured. We show that there is substantial advantage to ana- 
lyzing a plan into its constituent actions rather than treating the set of actions as a single 
entity. 

Finally, in Section 4.5 we address the question of distinguishing direct from indirect 
effects. We show that direct effects can be identified by the graphical method developed 
in Section 4.4. An example using alleged sex discrimination in college admission will 
serve to demonstrate the assumptions needed for proper analysis of direct effects. 
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4.1 INTRODUCTION 

4.1.1 Actions, Acts, and Probabilities 
Actions admit two interpretations: reactive and deliberative. The reactive interpretation 
sees action as a consequence of an agent's beliefs, disposition, and environmental inputs, 
as in "Adam ate the apple because Eve handed it to him." The deliberative interpretation 
sees action as an option of choice in contemplated decision making, usually involving 
comparison of consequences, as in "Adam was wondering what God would do if he ate 
the apple." We shall distinguish the two views by calling the first "act" and the second 
"action." An act is viewed from the outside, an action from the inside. Therefore, an 
act can be predicted and can serve as evidence for the actor's stimuli and motivations 
(provided the actor is part of our model). Actions, in contrast, can neither be predicted 
nor provide evidence since (by definition) they are pending deliberation and turn into acts 
once executed. 

The confusion between actions and acts has led to Newcomb's paradox (Nozick 1969) 
and other oddities in the so-called evidential decision theory, which encourages decision 
makers to take into consideration the evidence that an action would provide, if enacted. 
This bizarre theory seems to have loomed from Jeffrey's influential book The Logic of 
Decision (Jeffrey 1965), in which actions are treated as ordinary events (rather than inter- 
ventions) and, accordingly, the effects of actions are obtained through conditionalization 
rather than through a mechanism-modifying operation like do(x). (See Stalnaker 1972; 
Gibbard and Harper 1976; Skyrms 1980; Meek and Glymour 1994; Hitchcock 1996.) 

Traditional decision theory1 instructs rational agents to choose the option x that max- 
imizes expected ~ t i l i t y ,~  

where u(y) is the utility of outcome y ;  in contrast, "evidential decision" theory calls for 
maximizing the conditional expectation 

in which x is (improperly) treated as an observed proposition. 
The paradoxes that emerge from this fallacy are obvious: patients should avoid going 

to the doctor "to reduce the probability that one is seriously ill" (Skyrms 1980, p. 130); 
workers should never hurry to work, to reduce the probability of having overslept; students 

' I purposely avoid the common title "causal decision theory" in order to suppress even the slightest 
hint that any alternative, noncausal theory can be used to guide decisions. 
Following a suggestion of Stalnaker (1972), Gibbard and Harper (1976) used P(x D-, y )  in U(x), 
rather than P ( y  I d o ( x ) ) ,  where x  [I, y stands for the subjunctive conditional "J if it were x." 
The semantics of the two operators are closely related (see Section 7.4), but the equation-removal 
interpretation of the do(x)  operator is less ambiguous and clearly suppresses inference from effect 
to cause. 
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should not prepare for exams, lest this would prove them behind in their studies; and so 
on. In short, all remedial actions should be banished lest they increase the probability 
that a remedy is indeed needed. 

The oddity in this kind of logic stems from treating actions as acts that are governed 
by past associations instead of as objects of free choice, as dictated by the semantics of 
the do(x) operator. This "evidential" decision theory preaches that one should never ig- 
nore genuine statistical evidence (in our case, the evidence that an act normally provides 
regarding whether the act is needed), but decision theory proper reminds us that actions - 
by their very definition - render such evidence irrelevant to the decision at hand, for ac- 
tions change the probabilities that acts normally obey.3 

The moral of this story can be summarized in the following mnemonic rhymes: 

Whatever evidence an act might provide 
On facts that preceded the act, 
Should never be used to help one decide 
On whether to choose that same act. 

Evidential decision theory was a passing episode in the philosophical literature, and 
no philosopher today takes the original version of this theory seriously. Still, some re- 
cent attempts have been made to revive interest in Jeffrey's expected utility by replacing 
P ( y  I x) with P ( y  I x, K), where K stands for various background contexts, chosen 
to suppress spurious associations (as in (3.13)) (Price 1991; Hitchcock 1996). Such at- 
tempts echo an overly restrictive empiricist tradition, according to which rational agents 
live and die by one source of information - statistical associations - and hence expected 
utilities should admit no other operation but Bayes's conditionalization. This tradition 
is rapidly giving way to a more accommodating conception: rational agents should act 
according to theories of actions; naturally, such theories demand action-specific con- 
ditionalization (e.g. d o ( ~ ) )  while reserving Bayes's conditionalization for representing 
passive observations (see Goldszmidt and Pearl 1992; Meek and Glymour 1994; Wood- 
ward 1995). 

In principle, actions are not part of probability theory, and understandably so: proba- 
bilities capture normal relationships in the world, whereas actions represent interventions 
that perturb those relationships. It is no wonder, then, that actions are treated as foreign 
entities throughout the literature on probability and statistics; they serve neither as argu- 
ments of probability expressions nor as events for conditioning such expressions. 

Even in the statistical decision-theoretic literature (e.g. Savage 1954), where actions 
are the main target of analysis, the symbols given to actions serve merely as indices for 
distinguishing one probability function from another, not as entities that stand in logi- 
cal relationships to the variables on which probabilities are defined. Savage (1954, p. 14) 
defined "act" as a "function attaching a consequence to each state of the world,'' and 
he treated a chain of decisions, one leading to other, as a single decision. However, the 

"uch evidence is rendered irrelevant within the actor's own probability space; in multiagent de- 
cision situations, however, each agent should definitely be cognizant of how other agents might 
interpret each of his pending "would-be" acts. 
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logic that leads us to infer the consequences of actions and strategies from more elemen- 
tary considerations is left out of the formalism. For example, consider the actions: "raise 
taxes," "lower taxes," and "raise interest rates." The consequences of all three actions 
must be specified separately, prior to analysis; none can be inferred from the others. As 
a result, if we are given two probabilities, PA and PB, denoting the probabilities prevail- 
ing under actions A or B, respectively, there is no way we can deduce from this input the 
probability PAAB corresponding to the joint action A A B or indeed any Boolean com- 
bination of the propositions A and B.  This means that, in principle, the impact of all 
anticipated joint actions would need to be specified in advance - an insurmountable task. 

The peculiar status of actions in probability theory can be seen most clearly in com- 
parison to the status of observations. By specifying a probability function P(s) on the 
possible states of the world, we automatically specify how probabilities should change 
with every conceivable observation e, since P(s) permits us to compute (by condition- 
ing on e) the posterior probabilities P ( E  ) e )  for every pair of events E and e .  However, 
specifying P(s) tells us nothing about how probabilities should change in response to 
an external action do(A). In general, if an action do(A) is to be described as a function 
that takes P(s) and transforms it to PA(f), then P(s) tells us nothing about the nature of 
PA(s), even when A is an elemeniary event for which P(A) is well-defined (e.g.. "raise 
the temperature by 1 degree" or "turn the sprinkler on"). With the exception of the triv- 
ial requirement that PA(s) be zero if s implies l A ,  a requirement that applies uniformly 
to every P(s), probability theory does not tell us how PA($) should differ from Pi(s), 
where Pf(s)  is some other preaction probability function. Conditioning on A is clearly 
inadequate for capturing this transformation, as we have seen in many examples in Chap- 
ters 1 and 3 (see e.g. Section 1.3.1), because conditioning represents passive observations 
in an unchanging world whereas actions change the world. 

Drawing analogy to visual perception, we may say that the information contained in 
P ( s )  is analogous to a precise description of a three-dimensional object; it is sufficient 
for predicting how that object will be viewed from any angle outside the object, but it 
is insufficient for predicting how the object will be viewed if manipulated and squeezed 
by external forces. Additional information about the physical properties of the object 
must be supplied for making such predictions. By analogy, the additional information 
required for describing the transformation from P(s) to PA(s) should identify those ele- 
ments of the world that remain invariant under the action do(A). This extra information 
is provided by causal knowledge, and the do(.) operator enables us to capture the in- 
variant elements (thus defining PA(s)) by locally modifying the graph or the structural 
equations. The next section will compare this device to the way actions are handled in 
standard decision theory. 

4.1.2 Actions in Decision Analysis 

Instead of introducing new operators into probability calculus, the traditional approach 
has been to attribute the differences between seeing and doing to differences in the to- 
tal evidence available. Consider the statements: "the barometer reading was observed to 
be x" and "the barometer reading was set to level x." The former helps us predict the 
weather, the latter does not. While the evidence described in the first statement is limited 
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to the reading of the barometer, the second statement also tells us that the barometer was 
manipulated by some agent, and conditioning on this additional evidence should render 
the barometer reading irrelevant to predicting the rain. 

The practical aspects of this approach amount to embracing the acting agents as vari- 
ables in the analysis, constructing an augmented distribution function including the de- 
cisions of those agents, and inferring the effect of actions by conditioning those decision 
variables to particular values. Thus, for example, the agent manipulating the barometer 
might enter the system as a decision variable "squeezing the barometer"; after incorpo- 
rating this variable into the probability distribution, we could infer the impact of manipu- 
lating the barometer simply by conditioning the augmented distribution on the event "the 
barometer was squeezed by force y and has reached level x." 

For this conditioning method to work properly in evaluating the effect of future ac- 
tions, the manipulating agent must be treated as an ideal experimenter acting out of free 
will, and the associated decision variables must be treated as exogenous - causally un- 
affected by other variables in the system. For example, if the augmented probability 
function encodes the fact that the current owner of the barometer tends to squeeze the 
barometer each time she feels arthritis pain, we will be unable to use that function for 
evaluating the effects of deliberate squeezing of the barometer, even by the same owner. 
Recalling the difference between acts and actions, whenever we set out to calculate the 
effect of a pending action, we must ignore all mechanisms that constrained or triggered 
the execution of that action in the past. Accordingly, the event "The barometer was 
squeezed" must enter the augmented probability function as independent of all events 
that occurred prior to the time of manipulation, similar to the way action variable F en- 
tered the augmented network in Figure 3.2. 

This solution corresponds precisely to the way actions are treated in decision anal- 
ysis, as depicted in the literature on influence diagrams (IDS) (Howard and Matheson 
1981; Shachter 1986; Pearl 1988b, chap. 6). Each decision variable is represented as ex- 
ogenous variable (a parentless node in the diagram), and its impact on other variables is 
assessed and encoded in terms of conditional probabilities, similar to the impact of any 
other parent node in the diagram.l 

The difficulty with this approach is that we need to anticipate in advance, and rep- 
resent explicitly, all actions whose effects we might wish to evaluate in the future. This 
renders the modeling process unduly cumbersome, if not totally unmanageable. In cir- 
cuit diagnosis, for example, it would be awkward to represent every conceivable act of 
component replacement (similarly, every conceivable connection to a voltage source, 
current source, etc.) as a node in the diagram. Instead, the effects of such replacements 
are implicit in the circuit diagram itself and can be deduced from the diagram, given its 
causal interpretation. In econometric modeling likewise, it would be awkward to repre- 
sent every conceivable variant of policy intervention as a new variable in the economic 
equations. Instead, the effects of such interventions can be deduced from the structural 

The ID literature's insistence on divorcing the links in the ID from any causal interpretation (Howard 
and Matheson 1981; Howard 1990) is at odds with prevailing practice. The causal interpretation is 
what allows us to treat decision variables as root nodes, unassociated with all other nodes (except 
their descendants). 
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interpretation of those equations, if only we can tie the immediate effects of each policy 
to the corresponding variables and parameters in the equations. The compound action 
"raise taxes and lower interest rates," for example, need not be introduced as a new vari- 
able in the equations, because the effect of that action can be deduced if we have the 
quantities "taxation level" and "interest rates" already represented as (either exogenous 
or endogenous) variables in the equations. 

The ability to predict the effect of interventions without enumerating those interven- 
tions in advance is one of the main advantages we draw from causal modeling and one 
of the main functions served by the notion of causation. Since the number of actions 
or action combinations is enormous, they cannot be represented explicitly in the model 
but rather must be indexed by the propositions that each action enforces directly. In- 
direct consequences of enforcing those propositions are then inferred from the causal 
relationships among the variables represented in the model. We will return to this theme 
in Chapter 7 (Section 7.2.4), where we further explore the invariance assumptions that 
must be met for this encoding scheme to work. 

4.1.3 Actions and Counterfactuals 

As an alternative to Bayesian conditioning, philosophers (Lewis 1976; Gardenfors 1988) 
have studied another probability transformation called "imaging," which was deemed 
useful in the analysis of subjunctive conditionals and which more adequately represents 
the transformations associated with actions. Whereas Bayes conditioning of P(s  I e )  
transfers the entire probability mass from states excluded by e to the remaining states (in 
proportion to their current probabilities, P(s)), imaging works differently: each excluded 
state s transfers its mass individually to a select set of states S*(s) that are considered to 
be "closest" to s (see Section 7.4.3). Although providing a more adequate and general 
framework for actions (Gibbard and Harper 1976), imaging leaves the precise specifica- 
tion of the selection function S*(s) almost unconstrained. Consequently, the problem of 
enumerating future actions is replaced by the problem of encoding distances among states 
in a way that would be both economical and respectful of common understanding of the 
causal laws that operate in the domain. The second requirement is not trivial, consider- 
ing that indirect ramifications of actions often result in worlds that are quite dissimilar to 
the one from which we start (Fine 1975). 

The difficulties associated with making the closest-world approach conform to causal 
laws will be further elaborated in Chapter 7 (Section 7.4). The structural approach pur- 
sued in this book escapes these difficulties by basing the notion of interventions directly 
on causal mechanisms and by capitalizing on the properties of invariance and auton- 
omy that accompany these mechanisms. This mechanism-modification approach can be 
viewed as a special instance of the closest-world approach, where the closeness measure 
is crafted so as to respect the causal mechanisms in the domain; the selection function 
S*(s) that ensues is represented in (3.11) (see discussion that follows). 

The operationality of this mechanism-modification semantics was demonstrated in 
Chapter 3 and led to the quantitative predictions of the effects of actions, including ac- 
tions that were not contemplated during the model's construction. The do calculus that 
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emerged (Theorem 3.4.1) extends this prediction facility to cases where some of the 
variables are unobserved. In Chapter 7 we further use the mechanism-modification inter- 
pretation to provide semantics for counterfactual statements, as outlined in Section 1.1.4. 
In this chapter, we will extend the applications of the do calculus in several directions, 
as outlined in the Preface. 

4.2 CONDITIONAL ACTIONS AND STOCHASTIC POLICIES 

The interventions considered in our analysis of identification (Sections 3.3-3.4) were 
limited to actions that merely force a variable or a group of variables X to take on some 
specified value x. In general (see the process control example in Section 3.2.3), inter- 
ventions may involve complex policies in which a variable X is made to respond in a 
specified way to some set Z of other variables - say, through a functional relationship 
x = g(z) or through a stochastic relationship whereby X is set to x with probability 
P*(x I z). We will show, based on Pearl (1994b), that identifying the effect of such poli- 
cies is equivalent to identifying the expression P(y 1 i, z). 

Let P(y I do(X = g(z))) stand for the distribution (of Y) prevailing under the policy 
do(X = g (z)). To compute P(y I do(X = g ( z ) ) ) ,  we condition on Z and write 

The equality 

stems, of course, from the fact that Z cannot be a descendant of X; hence, any control ex- 
erted on X can have no effect on the distribution of Z. Thus, we see that the causal effect 
of a policy do(X = g(z)) can be evaluated directly from the expression of P(y I i, z) 
simply by substituting g(z) for x and taking the expectation over Z (using the observed 
distribution P(z)). 

This identifiability criterion for conditional policy is somewhat stricter than that for 
unconditional intervention. Clearly, if a policy do(X = g(z)) is identifiable then the sim- 
ple intervention do(X = x )  is identifiable as well, since we can always obtain the latter 
by setting g(z) = x .  The converse does not hold, however, because conditioning on Z 
might create dependencies that will prevent the successful reduction of P(y I 2, z )  to a 
hat-free expression. 

A stochastic policy, which imposes a new conditional distribution P*(x I z) for x,  
can be handled in a similar manner. We regard the stochastic intervention as a random 
process in which the unconditional intervention do(X = x) is enforced with probability 
P*(x I z). Thus, given Z = z, the intervention do(X = x) will occur with probability 
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P * ( x  I z )  and will produce a causal effect given by P(y 1 2, z). Averaging over x and 
z gives the effect (on Y) of the stochastic policy P*(x I z): 

Because P*(x 1 z) is specified externally, we see again that the identifiability of P(y 1 
i, z) is a necessary and sufficient condition for the identifiability of any stochastic policy 
that shapes the distribution of X by the outcome of 2. 

Of special importance in planning is a STRIPS-like action (Fikes and Nilsson 1971) 
whose immediate effects X = x depend on the satisfaction of some enabling precondi- 
tion C(w) on a set W of variables. To represent such actions, we let Z = W U PAx and 
set 

P(x I pax) if C(w) = false, 

P*(x 1 z )  = { : if C(w) = true and X = x,  

if C(w) = true and X # x. 

4.3 WHEN IS THE EFFECT OF AN ACTION IDENTIFIABLE? 

In Chapter 3 we developed several graphical criteria for recognizing when the effect of 
one variable on another, P(y I do(x)), is identifiable in the presence of unmeasured 
variables. These criteria, like the back-door (Theorem 3.3.2) and front-door (Theorem 
3.3.4), are special cases of a more general class of semi-Markovian models for which 
repeated application of the inference rules of do calculus (Theorem 3.4.1) will reduce 
P(y I 2)  to a hat-free expression, thus rendering it identifiable. The semi-Markovian 
model of Figure 3.1 (or Figure 3.8(f)) is an example where direct application of either the 
back-door or front-door criterion would not be sufficient for identifying P ( y  I 2) and yet 
the expression is reducible (hence identifiable) by a sequence of inference rules of Theo- 
rem 3.4.1. In this section we establish a complete characterization of the class of models 
in which the causal effect P(y I 2 )  is identifiable in do calculus. 

4.3.1 Graphical Conditions for Identification 

Theorem 4.3.1 characterizes the class of "do-identifiable" models in the form of four 
graphical conditions, any one of which is sufficient for the identification of P(y I i )  
when X and Y are singleton nodes in the graph. Theorem 4.3.2 then asserts the com- 
pleteness (or necessity) of these four conditions; one of which must hold in the model for 
P(y I 2) to be identifiable in do calculus. Whether these four conditions are necessary 
in general (in accordance with the semantics of Definition 3.2.4) depends on whether the 
inference rules of do calculus are complete. This question, to the best of my knowledge, 
is still open. 

Theorem 4.3.1 (Galles and Pearl 1995) 
Let X and Y denote two singleton variables in a semi-Markovian model characterized by 
graph G. A sufJicient condition for the identijability of P(y I 2) is that G satisfy one of 
the following four conditions. 
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Figure 4.1 Condition 3 of Theorem 4.3.1. In (a), the 
set { B 1 ,  B2) blocks all back-door paths from X to Y, 
and P(bl, bz I f) = P(bl, b2). In (b), the node B 
blocks all back-door paths from X to Y, and P(b I 2 )  

Y is identifiable using Condition 4. 

1. There is no back-door path from X to Y in G; that is, (X IL Y ) G ~ .  - 
2. There is no directed path from X to Y in G. 

3. There exists a set of nodes B that blocks all back-door paths from X to Y so that 
P(b I 2) is identiJiable. (A special case of this condition occurs when B consists 
entirely of nondescendants of X, in which case P(b I i )  reduces immediately to 

P(b).) 

4. There exist sets of nodes Z1 and Z2 such that: 

(i) Z1 blocks every directed path from X to Y (i.e., (Y IL X I Z1 )G - -); 
ZI x 

(ii) Z2 blocks all back-doorpaths between Z1 and Y (i.e., (Y ll Z1 ] Z2).5- ); 
XZI 

(iii) Z2 blocks all back-door paths between X and Zl (i-e., (X IL Z1 I z2)Gx ; 
- 

and 
(iv) Z2 does not activate any back-door paths from X to Y (i.e., (X lL Y ( 

Z1, Z 2 ) G - ) .  (This condition holds if (i)-(iii) are met and no member 
ZlX(Z2) 

of Z2 is a descendant of X.) 
(A special case of condition 4 occurs when Z2 = 0 and there is no back-door 
path from X to Z1 or from Z1 to Y.) 

Proof 
Condition I .  This condition follows directly from Rule 2 (see Theorem 3.4.1). If 

(Y 1 X)Gx then we can immediately change P(y I i )  to P(y I x), so the query is iden- - 
tifiable. 

Condition 2. If there is no directed path from X to Y in G, then (Y IL X)Gi. Hence, 
by Rule 3, P(y I 2) = P(y) and so the query is identifiable. 

Condition 3. If there is a set of nodes B that blocks all back-door paths from X to Y 
(i.e., (Y  ll X I B)Gx), then we can expand P(y I i )  as zb P(y I i, b)P(b I i )  and, by 
Rule 2, rewrite P($ I i, b) as P(y I x, b). If the query (b I i )  is identifiable, then the 
original query must also be identifiable. See examples in Figure 4.1. 

Condition 4. If there is a set of nodes Z1 that block all directed paths from X to Y 
and a set of nodes Z2 that block all back-door paths between Y and ZI in GF, then we 
expand P(Y 1 i )  = P(y 12, ZI ,  z ~ ) P ( z I ,  z2 1 i )  and rewrite P(y 1 ;,zl, z2) as 
P(y [ 2 ,  .?,, z2) using Rule 2, since all back-door paths between Z1 and Y are blocked by 
Z2 in Gi .  We can reduce P(y I 2, 21, z2) to P(y 1 21, z2) using Rule 3, since (Y lL X I 
ZI, Z2)C--. We can rewrite P(y  1 il, z2) as P(y 1 21, z 2 )  if (Y 1 Z I  I Z2)Gr,. The 

ZlX(Z2)  

only way that this independence cannot hold is if there is a path from Y to ZI  &rough 
X, since (Y IL ZI  I Z2)G- . However, we can block this path by conditioning and 

XZl - 
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(a) (b) (c) 

Figure 4.2 Condition 4 of Theorem 4.3.1. In (a), Z1 blocks all directed paths from X to Y,  and 
empty set blocks all back-door paths from ZI  to Y in G ,  and all back-door paths from X to Z I  in 
In (b) and (c), Z1 blocks all directed paths from X to Y, and Z2 blocks all back-door paths from 
to Y in G,- and all back-door paths from X to ZI  in G.  

summing over X and so derive Ex,  P(y I .?I, z2 ,  x') P(xt  I 21, z2). Now we can rewl 
P(y I 22,  x') as P(y I zl,  z2, x') using Rule 2. The P(x'  I 21, z2) term can be rew: 
ten as P(x' I z2) using Rule 3, since Z1 is a child of X and the graph is acyclic. The quc 
can therefore be rewritten as x,,,,2 Ex, P(y I zl, z2, x')P(xr I z2)P(z1, z2 I i), 2 

we have P(zl, z2 I i )  = P(z2 I i )  P(zl I 2,  z2). Since Z 2  consists of nondescendants 
X ,  we can rewrite P(z2 I i )  as P(z2) using Rule 3. Since Z2 blocks all back-door pa 
from X to Z1, we can rewrite P(zl I i, z2) as P(zl I X, z2) using Rule 2. The ent 
query can thus be rewritten as E,,,Z, Ex ,  P(y  I Z I ,  z 2 ,  x') P(x' I ZZ) P(z1 I X ,  z ~ ) P ( z  
See examples in Figure 4.2. 

Theorem 4.3.2 
The four conditions of Theorem 4.3.1 are necessary for identijiability in do calculus. Ti 
is, if all four conditions of Theorem 4.3.1 fail in a graph G, then there exists no Jin 

sequence of inference rules that reduces P(y I i )  to a hat-free expression. 

A proof of Theorem 4.3.2 is given in Galles and Pearl (1995). 

4.3.2 Remarks on Efficiency 

In implementing Theorem 4.3.1 as a systematic method for determining identifiabilj 
Conditions 3 and 4 would seem to require exhaustive search. In order to prove that Cc 
dition 3 does not hold, for instance, we need to prove that no such blocking set B c 
exist. Fortunately, the following theorems allow us to significantly prune the search sp: 
so as to render the test tractable. 

Theorem 4.3.3 
I f  P(bi I i )  is identijiable for one minimal set B;, then P(bj I 2) is identijiable for c 

other minimal set B, . 

Theorem 4.3.3 allows us to test Condition 3 with a single minimal blocking set B. If 
meets the requirements of Condition 3 then the query is identifiable; otherwise, Con 
tion 3 cannot be satisfied. In proving this theorem, we use the following lemma. 



4.3 When is the Effect of an Action Identifiable? 

: Figure 4.3 Theorem 4.3.1 ensures a reducing sequence for P(y2 I i ,  yl ) and 
I' P(yl 1 1), although none exists for P(yl 1 1, y2). 

Lemma 4.3.4 
If the query P(y ( i )  is identijiable and i fa set of nodes Z lies on a directed path from X 
to Y, then the query P(z I i )  is identiJiable. 

Theorem 4.3.5 
Let Y1 and Y2 be two subsets of nodes such that either (i) no nodes Y1 are descendants of 
X or (ii) all nodes Yl and Y2 are descendants of X and all nodes Yl are nondescendants 
of Y2. A reducing sequence for P(yl, y;! I i )  exists (per  Corollary 3.4.2) if and only i f  
there are reducing sequences for both P (  yl I 2) and P(y2 I i, yl ). 

The probability P(yl, y2 I i )  might pass the test in Theorem 4.3.1 if we apply the proce- 
dure to both P(y2 ( 2 ,  yl) and P(yl 1 i ) ,  but if we try to apply the test to P(yl 1 i ,  y2) 
then we will not find a reducing sequence of rules. Figure 4.3 shows just such an exam- 
ple. Theorem 4.3.5 guarantees that, if there is a reducing sequence for P(yl, yz I i ) ,  
then we should always be able to find such a sequence for both P(yl I i )  and P(y2 1 
i ,  yl) by proper choice of Yl . 

Theorem 4.3.6 
I f  there exists a set Z1 that meets all of the requirements for Z1 in Condition 4, then the 
set consisting of the children of X intersected with the ancestors of Y will also meet all of 
the requirements for ZI in Condition 4. 

Theorem 4.3.6 removes the need to search for Z1 in Condition 4 of Theorem 4.3.1. Proofs 
of Theorems 4.3.3-4.3.6 are given in Galles and Pearl (1995). 

4.3.3 Deriving a Closed-Form Expression for Control Queries 

The algorithm defined by Theorem 4.3.1 not only determines the identifiability of a con- 
trol query but also provides a closed-form expression for P (  y I i )  in terms of the observed 
probability distribution (when such a closed form exists) as follows. 

Function: ClosedForm (P(  y 1 i ) ) .  

Input: Control query of the form P(y I i ) .  

Output: Either a closed-form expression for P ( y  1 i ) ,  in terms of observed 
variables only, or FAIL when the query is not identifiable. 

1. If (X lL Y)G- then return P(y). 
X 

2. Otherwise, if (X IL Y)Gx then return P(y I x ) .  
- 
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3. Otherwise, let B = BlockingSet(X, Y) and P b  = ClosedForm(b I i ) ;  if 
P b  # FAIL then return x, P(y I b, x)  * Pb. 

4. Otherwise, let Z1 = Children(X) n (Y U Ancestors(Y)), 
Z3 = BlockingSet(X, Z1), Z4 = BlockingSet(Z1, Y), and Z2 = Z3 U z 4 ;  
if Y 6 Z1 and X 6 Z2 then return 

Crl,12 C,rf P(Y I z l ,  z2,x')P(x' I z ~ ) P ( z I  I X,  Z Z ) P ( Z ~ ) .  
5. Otherwise. return FAIL. 

Steps 3 and 4 invoke the function BlockingSet(X, Y), which selects a set of nodes Z that 
d-separate X from Y. Such sets can be found in polynomial time (Tian et al. 1998). Step 3 
contains a recursive call to the algorithm ClosedForm(b 1 2) itself, in order to obtain an 
expression for causal effect P(b ] i ) .  

4.3.4 Summary 

The conditions of Theorem 4.3.1 sharply delineate the boundary between the class of 
identifying models (such as those depicted in Figure 3.8) and nonidentifying models 
(Figure 3.9). These conditions lead to an effective algorithm for determining the identifi- 
ability of control queries of the type P(  y ( i ) ,  where X is a single variable. Such queries 
are identifiable in do calculus if and only if they meet the conditions of Theorem 4.3.1. 
The algorithm further gives a closed-form expression for the causal effect P(y I i )  in 
terms of estimable probabilities. 

Applications to causal analysis of nonexperimental data in the social and medical sci- 
ences are discussed in Chapter 3 and further elaborated in Chapters 5 and 6. In Chapter 9 
(Corollary 9.2.17) we will apply these results to problems of causal attribution, that is, 
to estimate the probability that a specific observation (e.g., a disease case) is causally at- 
tributable to a given event (e.g., exposure). 

4.4 THE IDENTIFICATION OF PLANS 

This section, based on Pearl and Robins (1995), concerns the probabilistic evaluation of 
plans in the presence of unmeasured variables, where each plan consists of several con- 
current or sequential actions and each action may be influenced by its predecessors in the 
plan. We establish a graphical criterion for recognizing when the effects of a given plan 
can be predicted from passive observations on measured variables only. When the cri- 
terion is satisfied, a closed-form expression is provided for the probability that the plan 
will achieve a specified goal. 

4.4.1 Motivation 
To motivate the discussion, consider an example discussed in Robins (1993, apx. 2), as de- 
picted in Figure 4.4. The variables XI and X2 stand for treatments that physicians prescribe 
to a patient at two different times, Z represents observations that the second physician 
consults to determine X2, and Y represents the patient's survival. The hidden variables U, 
and U2 represent, respectively, part of the patient's history and the patient's disposition 
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_ - -? '2 Figure 4.4 The problem of evaluating the effect of the 
/ 

/ 
/ plan ( d o ( x l ) ,  do(xz ) )  on Y, from nonexperimental data , 

I 
/ taken on XI, Z, X2, and Y. 

/ 

/ 
/ 

/ 

to recover. A simple realization of such structure could be found among AIDS patients, 
where Z represents episodes of PCP. This is a common opportunistic infection of AIDS 
patients that (as the diagram shows) does not have a direct effect on survival Y because it 
can be treated effectively, but it is an indicator of the patient's underlying immune status 
(U2), which can cause death. The terms Xl and X2 stand for bactrim, a drug that prevents 
PCP ( 2 )  and may also prevent death by other mechanisms. Doctors used the patient's 
earlier PCP history (U1) to prescribe XI, but its value was not recorded for data analysis. 

The problem we face is as follows. Assume we have collected a large amount of 
data on the behavior of many patients and physicians, which is summarized in the form 
of (an estimated) joint distribution P of the observed four variables (XI, 2, X2, Y). A 
new patient comes in, and we wish to determine the impact of the (unconditional) plan 
(do(xl), do(x2)) on survival, where xl and x2 are two predetermined dosages of bactrim 
to be administered at two prespecified times. 

In general, our problem amounts to that of evaluating a new plan by watching the 
performance of other planners whose decision strategies are indiscernible. Physicians 
do not provide a description of all inputs that prompted them to prescribe a given treat- 
ment; all they communicate to us is that U1 was consulted in determining XI and that 
Z and X1 were consulted in determining X2. But U1, unfortunately, was not recorded. 
In epidemiology, the plan evaluation problem is known as "time-varying treatment with 
time-varying confounders" (Robins 1993). In artificial intelligence applications, the eval- 
uation of such plans enables one agent to learn to act by observing the performance of 
another agent, even in cases where the actions of the other agent are predicated on fac- 
tors that are not visible to the learner. If the learner is permitted to act as well as observe, 
then the task becomes much easier: the topology of the causal diagram could also be in- 
ferred (at least partially), and the effects of some previously unidentifiable actions could 
be determined. 

As in the identification of actions (Section 4.3), the main problem in plan identifica- 
tion is the control of "confounders," that is, unobserved factors that trigger actions and 
simultaneously affect the response. However, unlike the problem treated in Section 4.3, 
plan identification is further complicated by the fact that some of the confounders (e.g. 
2 )  are affected by control variables. As remarked in Chapter 3, one of the deadliest sins 
in the design of statistical experiments (Cox 1958, p. 48) is to adjust for such variables, 
because the adjustment would simulate holding a variable constant; holding constant a 
variable that stands between an action and its consequence interferes with the very quan- 
tity we wish estimate - the total effect of that action. 
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Two other features of Figure 4.4 are worth noting. First, the quantity P(y ( il, i 2 )  
cannot be computed if we treat the control variables XI and X2 as a single compound 
variable X. The graph corresponding to such compounding would depict X as connected 
to Y by both an arrow and a curved arc (through U )  and thus would form a bow pat- 
tern (see Figure 3.9), which is indicative of nonidentifiability. Second, the causal effect 
P(y I i l )  in isolation is not identifiable because U1 creates a bow pattern around the link 
X -, 2, which lies on a directed path from X to Y (see the discussion in Section 3.5). 

The feature that facilitates the identifiability of P(y 1 i l ,  i 2 )  is the identifiability of 
P(y I xl, z, i2) - the causal effect of the action do(X2 = x2) alone, conditioned on the 
observations available at the time of this action. This can be verified using the back-door 
criterion, observing that {XI, Z} blocks all back-door paths between X2 and Y. Thus, the 
identifiability of P(y I il, i 2 )  can be readily proven by writing 

where (4.1) and (4.3) follow from Rule 2, and (4.2) follows from Rule 3. The subgraphs 
that permit the application of these rules are shown in Figure 4.5 (in Section 4.4.3). 

This derivation also highlights how conditional plans can be evaluated. Assume we 
wish to evaluate the effect of the plan {do(X1 = xl), do(Xz = g (XI, z))). Following the 
analysis of Section 4.2, we write 

P(Y I do(Xi= xi), do(X2 = g(x1,z))) = P(y I xi, do(X2 = g(xl, z ) ) )  

Again, the identifiability of this conditional plan rests on the identifiability of the ex- 
pression P( y I z ,  xl, i?2), which reduces to P(  y 1 z, XI,  x2) because {XI, Z } blocks all 
back-door paths between X2 and Y. 

The criterion developed in the next section will enable us to recognize in general, by 
graphical means, whether a proposed plan can be evaluated from the joint distribution on 
the observables and, if so, to identify which covariates should be measured and how they 
should be adjusted. 

4.4.2 Plan Identification: Notation and Assumptions 
Our starting point is a knowledge specification scheme in the form of a causal diagram, 
like the one shown in Figure 4.4, that provides a qualitative summary of the analyst's 
understanding of the relevant data-generating processes.5 

An alternative specification scheme using counterfactual statements was developed by Robins (1986, 
1987), as described in Section 3.6.4. 
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Notation 

A control problem consists of a directed acyclic graph (DAG) G with vertex set V, par- 
titioned into four disjoint sets V = {X, 2, U, Y ) ,  where 

X = the set of control variables (exposures, interventions, treatments, etc.); 

Z = the set of observed variables, often called covariates; 

U = the set of unobserved (latent) variables; and 

Y = an outcome variable. 

We let the control variables be ordered X = XI, X2, . . . , Xn such that every Xk is a 
nondescendant of Xk+ ( j  > 0) in G, and we let the outcome Y be a descendant of Xn . 
Let Nk stand for the set of observed nodes that are nondescendants of any element in the 
set (Xk, Xk+1, . . . , Xn). A plan is an ordered sequence ( i l ,  i2, . . . , i n )  of value assign- 
ments to the control variables, where ik means "Xk is set to xk." A conditional plan is an 
ordered sequence (gl (zl), g2 (z2), . . . , in(zn)), where each g k  is a function from a set Zk 
to Xk and where ik(zk)  stands for the statement "set Xk to gk(zk) whenever Zk attains 
the value zk ." The support Zk of each gk (zk) function must not contain any variables that 
are descendants of Xk in G. 

Our problem is to evaluate an unconditional plan6 by computing P( y 1 il, i2, . . . , i n ) ,  
which represents the impact of the plan (il, . . . , in) on the outcome variable Y. The 
expression P(y 1 il, i 2 ,  . . . , i n )  is said to be identiJiable in G if, for every assign- 
ment (il, i2, . . . , i n ) ,  the expression can be determined uniquely from the joint distri- 
bution of the observables {X, Y, 2 ) .  A control problem is identifiable whenever P(y I 
il, i2, . . . , i n )  is identifiable. 

Our main identifiability criteria are presented in Theorems 4.41 and 4.4.6. These in- 
voke d-separation tests on various subgraphs of G ,  defined in the same manner as in 
Section 4.3. We denote by Gi (and Gx, respectively) the graphs obtained by deleting 
from G all arrows pointing to (emerging from) nodes in X. To represent the deletion of 
both incoming and outgoing arrows, we use the notation G?,. Finally, the expression 

P(y I 2,  z )  A P(y, z I i)/P(z I 2) stands for the probability of Y = y given that Z = z 
is observed and X is held constant at x .  

4.4.3 Plan Identification: A General Criterion 

Theorem 4.4.1 (Pearl and Robins 1995) 
The probability P ( y  ( il, . . . , i n )  is ident$able if, for every 1 _( k 5 n, there exists a set 
Zk of covariates satisfying 

(i.e., Zk consists of nondescendants of {Xk, X ~ + I ,  . . . , Xn)) and 

Identification of conditional plans can be obtained from Theorem 4.4.1 using the method described 
in Section 4.2 and exemplified in Section 4.4.1. 
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(a> (b) 

Figure 4.5 The two subgraphs of G used in testing the identifiability of the plan ( i l ,  i2) in Fig- 
ure 4.4. 

When these conditions are satisjed, the eflect of the plan is given by 

Before presenting its proof, let us demonstrate how Theorem 4.4.1 can be used to test the 
identifiability of the control problem shown in Figure 4.4. First, we will show that P ( y  I 
f l ,  i2) cannot be identified without measuring Z; in other words, that the sequence Zl = 
0, Z2 = 91 wouId not satisfy conditions (4.4)-(4.5). The two d-separation tests encoded 
in (4.5) are 

The two subgraphs associated with these tests are shown in Figure 4.5. We see that 
(Y 1 XI) holds in Gx,,p2 but that (Y lL X2 I XI) fails to hold in Gx,. - Thus, in order to 
pass the test, we musthave either Z1 = {Z} or Z2 = {Z); since Z is a descendant of X1, 
only the second alternative satisfies (4.4). The tests applicable to the sequence Z1 = 0, 
Zz = {Z) are ( Y  IL ,? and (Y IL X2 I XI, Z)C_X2. Figure 4.5 shows that both tests 

-1 2 

are now satisfied, because {XI, Z} d-separates Y from X 2  in GX2. Having satisfied con- 
ditions (4.4)-(4.5), equation (4.6) provides a formula for the effect of plan (21, 22) on Y: 

which coincides with (4.3). 
The question naturally arises of whether the sequence Z1 = 0, Z2 = { Z }  can be iden- 

tified without exhaustive search. This question will be answered in Corollary 4.4.5 and 
Theorem 4.4.6. 
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Proof of Theorem 4.4.1 
The proof given here is based on the inference rules of do calculus (Theorem 3.4.1), which 
facilitate the reduction of causal effect formulas to hat-free expressions. An alternative 
proof, using latent variable elimination, is given in Pearl and Robins (1995). 

Step 1. The condition Zk 5 Nk implies Zk G Nj for all j > k. Therefore, we have 

This is so because no node in {Z1, . . . , Zk, XI, . . . , Xk-1) can be a descendant of any node 
in {Xk, . . . , Xn}. Hence, Rule 3 allows us to delete the hat variables from the expression. 

Step 2. The condition in (4.5) permits us to invoke Rule 2 and write: 

Thus, we have 

Definition 4.4.2 (Admissible Sequence and G-Identifiability) 
Any sequence Z1, . . . , Zn of covariates satisfying the conditions in (4.4)-(4.5) will be 
called admissible, and any expression P(y I PI, i 2 ,  . . . , 9,) that is ident@able by the 
criterion of Theorem 4.4.1 will be called G-identifiable.' 

The term "G-admissibility" was used in Pearl and Robins (1995) to evoke two associations: 
(1) Robins's G-estimation formula (equation (3.63)), which coincides with (4.6) when G is com- 
plete and contains no unobserved confounders; and (2) the graphical nature of the conditions in 
(4.4)-(4.5). 
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Figure 4.6 An admissible choice Z1 = W that rules out 
\ U anv admissible choice for Z ? .  The choice ZI = 0 would - L b--* ,/ 

- 
permit the construction of an admissible sequence (Z1 = 

w /.' 0, z2 = 0). 
, 

The following corollary is immediate. 

Corollary 4.4.3 
A control problem is G-identiJiable i f  and only if it has an admissible sequence. 

The property of G-identifiability is sufficient but not necessary for general plan identifi- 
ability as defined in Section 4.4.2. The reasons are twofold. First, the completeness of 
the three inference rules of do calculus is still a pending conjecture. Second, the kth step 
in the reduction of (4.6) refrains from conditioning on variables Zk that are descendants 
of Xk - namely, variables that may be affected by the action do(Xk = xk). In certain 
causal structures, the identifiability of causal effects requires that we condition on such 
variables, as demonstrated by the front-door criterion (Theorem 3.3.4). 

4.4.4 Plan Identification: A Procedure 

Theorem 4.4.1 provides a declarative condition for plan identifiability. It can be used to 
ratify that a proposed formula is valid for a given plan, but it does not provide an effec- 
tive procedure for deriving such formulas because the choice of each Zk is not spelled out 
procedurally. The possibility exists that some unfortunate choice of Zk satisfying (4.4) 
and (4.5) might prevent us from continuing the reduction process even though another 
reduction sequence is feasible. 

This is illustrated in Figure 4.6. Here W is an admissible choice for Z1, but if we 
make this choice then we will not be able to complete the reduction, since no set Z2 
can be found that satisfies condition (4.5): ( Y  IL X2 I XI, W, Z2)GZ2. In this example it 
would be wiser to choose Z1 = Z2 = 0, which satisfies both (Y  J l  XI I O)c - and 

_Xl.X2 
( Y l X 2  I X1, @ ) G ~ , -  

The obvious way to avoid bad choices of covariates, like the one illustrated in Fig- 
ure 4.6, is to insist on always choosing a "minimal" Zk, namely, a set of covariates sat- 
isfying (4.5) that has no proper subset satisfying (4.5). However, since there are usually 
many such minimal sets (see Figure 4.7), the question remains of whether every choice 
of a minimal Zk is "safe": Can we be sure that no choice of a minimal subsequence 
ZI, . . . , Zk will ever prevent us from finding an admissible Zk+1 when some admissible 
sequence Zr, . . . , Z i  exists? 
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Figure 4.7 Nonuniqueness of minimal admissible sets: Zr and 
Zi are each minimal and admissible, since (Y lL XI I Z1)  and 
(Y IL XI I Z i )  both hold in Gxl ,x2 .  - 

The next result guarantees the safety of every minimal subsequence Z 1 ,  . . . Z k  and 
hence provides an effective test for G-identifiability. 

Theorem 4.4.4 
If there exists an admissible sequence Z ; ,  . . . , Z,* then, for every minimally admissible 
subsequence Z1, . . . , Zk-1 of covariates, there is an admissible set Z k .  

A proof is given in Pearl and Robins (1995). 
Theorem 4.4.4 now yields an effective decision procedure for testing G-identifiability 

as follows. 

Corollary 4.4.5 
A control problem is G-identijiable ifand only ifthe following algorithm exits with success. 

1.  S e t k = l .  

2. Choose any minimal Zk C Nk satisfying (4.5). 

3. If no such Z k  exists then exit with failure; else set k = k + 1. 

4. I f k  = n + 1 then exit with success; else return to step 2. 

A further variant of Theorem 4.4.4 can be stated that avoids the search for minimal sets Z k  . 
This follows from the realization that, if an admissible sequence exists, we can rewrite 
Theorem 4.4.1 in terms of an explicit sequence of covariates Wl, W 2 ,  . . . , Wn that can 
easily be identified in G.  

Theorem 4.4.6 
The probability P(y  I i l ,  . . . , in) is G-identijiable ifand only ifthe following condition 
holds for every 1 5 k 5 n: 

where Wk is the set of all covariates in G that are both nondescendants of (Xk, Xk+l, . . . , 
- . Moreover, ifthis condition X,) and have either Y or Xk as descendant in G x k ,  x ~ + ~ ,  . . . , Xn - 

is satisfied then the plan evaluates as 
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(a> (b) 

Figure 4.8 Causal diagram G in which proper ordering of the control variables XI and X2 is 
important. 

A proof of Theorem 4.4.6, together with several generalizations, can be found in Pearl 
and Robins (1995). Extensions to G-identifiability are reported in Kuroki and Miyakawa 
(1999). 

The reader should note that, although Corollary 4.4.5 and Theorem 4.4.6 are pro- 
cedural in the sense of offering systematic tests for plan identifiability, they are still 
order-dependent. It is quite possible that an admissible sequence exists in one order- 
ing of the control variables and not in another when both orderings are consistent with 
the arrows in G. The graph G in Figure 4.8 illustrates such a case. It is obtained from 
Figure 4.4 by deleting the arrows XI -, X2 and XI -, Z ,  so that the two control vari- 
ables (XI and X2) can be ordered arbitrarily. The ordering (XI, X2) would still admit the 
admissible sequence (0, Z )  as before, but no admissible sequence can be found for the 
ordering (X2, XI). This can be seen immediately from the graph Gx, , in which (accord- 
ing to (4.5) with k = 1) we need to find a set Z  such that (X2, Z }  d-separates Y from XI. 
No such set exists. 

The implication of this order sensitivity is that, whenever G permits several order- 
ings of the control variables, all orderings need be examined before we can be sure that a 
plan is not G-identifiable. Whether an effective search exists through the space of such 
orderings remains an open question. 

4.5 DIRECT EFFECTS AND THEIR IDENTIFICATION 

4.5.1 Direct versus Total Effects 

The causal effect we have analyzed so far, P ( y  I z ) ,  measures the total effect of a vari- 
able (or a set of variables) X on a response variable Y. In many cases, this quantity does 
not adequately represent the target of investigation and attention is focused instead on 
the direct effect of X on Y. The term "direct effect" is meant to quantify an effect that 
is not mediated by other variables in the model or, more accurately, the sensitivity of Y 
to changes in X while all other factors in the analysis are held fixed. Naturally, holding 
those factors fixed would sever all causal paths from X to Y with the exception of the 
direct link X -, Y, which is not intercepted by any intermediaries. 
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A classical example of the ubiquity of direct effects (see Hesslow 1976; Cartwright 
1989) tells the story of a birth-control pill that is suspect of producing thrombosis in 
women and, at the same time, has a negative indirect effect on thrombosis by reduc- 
ing the rate of pregnancies (pregnancy is known to encourage thrombosis). In this ex- 
ample, interest is focused on the direct effect of the pill because it represents a sta- 
ble biological relationship that, unlike the total effect, is invariant to marital status and 
other social factors that may affect women's chances of getting pregnant or of sustaining 
pregnancy. 

Another class of examples involves legal disputes over race or sex discrimination in 
hiring. Here, neither the effect of sex or race on applicants' qualification nor the effect 
of qualification on hiring are targets of litigation. Rather, defendants must prove that sex 
and race do not directly influence hiring decisions, whatever indirect effects they might 
have on hiring by way of applicant qualification. 

In all these examples, the requirement of holding the mediating variables fixed must 
be interpreted as (hypothetically) setting these variables to constants by physical inter- 
vention, not by analytical means such as selection, conditioning, or adjustment. For 
example, it will not be sufficient to measure the association between the birth-control pill 
and thrombosis separately among pregnant and nonpregnant women and then aggregate 
the results. Instead, we must perform the study among women who became pregnant be- 
fore the use of the pill and among women who prevented pregnancy by means other than 
the drug. The reason is that, by conditioning on an intermediate variable (pregnancy in 
the example), we may create spurious associations between X and Y even when there is 
no direct effect of X on Y. This can easily be illustrated in the model X + Z e U + Y, 
where X has no direct effect on Y. Physically holding Z constant would permit no as- 
sociation between X and Y, as can be seen by deleting all arrows entering Z. But if we 
were to condition on 2, a spurious association would be created through U (unobserved) 
that might be construed as a direct effect of X on Y. 

4.5.2 Direct Effects, Definition, and Identification 

Controlling all variables in a problem is obviously a major undertaking, if not an impos- 
sibility. The analysis of identification tells us under what conditions direct effects can be 
estimated from nonexperimental data even without such control. Using our do(x) nota- 
tion (or i for short), we can express the direct effect as follows. 

Definition 4.5.1 (Direct Effect) 
The direct eflect of X on Y is given by P(y I 2 ,  ixY),  where SXy is the set of all endoge- 
nous variables except X and Y in the system. 

We see that the measurement of direct effects is ascribed to an ideal laboratory; the scien- 
tist controls for all possible conditions Sxy and need not be aware of the structure of the 
diagram or of which variables are truly intermediaries between X and Y. Much of the ex- 
perimental control can be eliminated, however, if we know the structure of the diagram. 
For one thing, there is no need to actually hold all other variables constant; holding con- 
stant the direct parents of Y (excluding X) should suffice. Thus, we obtain the following 
equivalent definition of a direct effect. 
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Corollary 4.5.2 
The direct efect of X on Y is given by P ( y  I 1, @,\,), where pa,, ,  stands for any 
realization of the parents of Y ,  excluding X .  

Clearly, if X does not appear in the equation for Y (equivalently, if X is not a parent of Y), 
then P(y I 2,  j% ,\,) defines a constant distribution on Y that is independent of x, thus 
matching our understanding of "having no direct effect." In general, assuming that X is 
a parent of Y, Corollary 4.5.2 implies that the direct effect of X on Y is identifiable when- 
ever P ( y  I @ ,) is identifiable. Moreover, since the conditioning part of this expression 
corresponds to a plan in which the parents of Y are the control variables, we conclude 
that a direct effect is identifiable whenever the effect of the corresponding parents' plan 
is identifiable. We can now use the analysis of Section 4.4 and apply the graphical cri- 
teria of Theorems 4.4.1 and 4.4.6 to the analysis of direct effects. In particular, we can 
state our next theorem. 

Theorem 4.5.3 
Let PA y = {XI, . . . , Xk, . . . , Xm). The direct efSect of any Xk on Y is identijiable whenever 
the conditions of Corollary 4.4.5 hold for the plan (2,' 22, . . . ,2,) in some admissible 
ordering of the variables. The direct efSect is then given by (4.8). 

Theorem 4.5.3 implies that if the effect of one parent of Y is identifiable then the effect 
of every parent of Y is identifiable as well. Of course, the magnitude of the effect would 
differ from parent to parent, as seen in (4.8). 

The following corollary is immediate. 

Corollary 4.5.4 
Let Xi be aparent of Y. The direct efect of X; on Y is, in general, nonidentijable ifthere 
exists a confounding arc that embraces any link Xk --, Y. 

4.5.3 Example: Sex Discrimination in College Admission 

To illustrate the use of this result, consider the study of Berkeley's alleged sex bias in 
graduate admission (Bickel et al. 1975), where data showed a higher rate of admission 
for male applicants overall but, when broken down by departments, a slight bias toward 
female applicants. The explanation was that female applicants tend to apply to the more 
competitive departments, where rejection rates are high; based on this finding, Berkeley 
was exonerated from charges of discrimination. The philosophical aspects of such re- 
versals, known as Simpson's paradox, will be discussed more fully in Chapter 6. Here 
we focus on the question of whether adjustment for department is appropriate for as- 
sessing sex discrimination in college admission. Conventional wisdom has it that such 
adjustment is appropriate because "We know that applying to a popular department (one 
with considerably more applicants than positions) is just the kind of thing that causes re- 
jection" (Cartwright 1983, p. 38)' but we will soon see that additional factors should be 
considered. 

Let us assume that the relevant factors in the Berkeley example are configured as in 
Figure 4.9, with the following interpretation of the variables: 
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Figure 4.9 Causal relationships relevant to Berkeley's sex 
discrimination study. Adjusting for department choice (X2) 
or career objective (Z) (or both) would be inappropriate in 
estimating the direct effect of gender on admission. The ap- 
propriate adjustment is given in (4.10). 

X1 = applicant's gender; 

X2 = applicant's choice of department; 

Z = applicant's career objectives; 

Y = admission outcome (acceptlreject); 

U = applicant's aptitude (unrecorded). 

Note that U affects applicant's career objective and also the admission outcome Y (say, 
through verbal skills (unrecorded)). 

Adjusting for department choice amounts to computing the following expression: 

In contrast, the direct effect of XI on Y, as given by (4.7), reads 

It is clear that the two expressions may differ substantially. The first measures the (aver- 
age) effect of sex on admission among applicants to a given department, a quantity that is 
sensitive to the fact that some gender-department combinations may be associated with 
high admission rates merely because such combinations are indicative of certain aptitude 
(U) that was unrecorded. The second expression eliminates such spurious associations 
by separately adjusting for career objectives (Z) in each of the two genders. 

To verify that (4.9) does not properly measure the direct effect of XI on Y, we note 
that the expression depends on the value of XI even in cases where the arrow between 
XI and Y is absent. Equation (4.10), on the other hand, becomes insensitive to xl in such 
cases - an exercise that we leave for the reader to verify.8 

To cast this analysis in a concrete numerical setting, let us imagine a college consist- 
ing of two departments, A and B, both admitting students on the basis of qualification, 
Q ,  alone. Let us further assume (i) that the applicant pool consists of 100 males and 100 
females and (ii) that 50 applicants in each gender have high qualifications (hence are ad- 
mitted) and 50 have low qualifications (hence are rejected). Clearly, this college cannot 
be accused of sex discrimination. 

Hint: Factorize P ( y ,  u ,  z 1 i 2 )  using the independencies in the graph and eliminate u as in the 
derivation of (3.27). 
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Table 4.1. Admission Rate among Males and Females in Each Department 

Males Females Total 

Admitted Applied Admitted Applied Admitted Applied 

Dept . A 50 50 0 0 50 50 
Dept. B 0 50 50 100 50 150 

Unadjusted 50% 50% 50% 
Adjusted 25 % 37.5% 

A different result would surface, however, if we adjust for departments while ignoring 
qualifications, which amounts to using (4.9) to estimate the effect of gender on admission. 
Assume that the nature of the departments is such that all and only qualified male appli- 
cants apply to department A,  while all females apply to department B (see Table 4.1). 

We see from the table that adjusting for department would falsely indicate a bias 
of 37.5 : 25 (= 3 : 2) in favor of female applicants. An unadjusted (sometimes called 
"crude") analysis happens to give the correct result in this example - 50% admission 
rate for males and females alike - thus exonerating the school from charges of sex 
discrimination. 

Our analysis is not meant to imply that the Berkeley study of Bickel et al. (1975) 
is defective, or that adjustment for department was not justified in that study. The pur- 
pose is to emphasize that no adjustment is guaranteed to give an unbiased estimate of 
causal effects, direct or indirect, absent a careful examination of the causal assumptions 
that ensure identification. Theorem 4.5.3 provides us with the understanding of those 
assumptions and with a mathematical means of expressing them. We note that if appli- 
cants' qualifications were not recorded in the data, then the direct effect of gender on 
admission will not be identifiable unless we can measure some proxy variable that stands 
in the same relation to Q as Z stands to U in Figure 4.9. 

4.5.4 Average Direct Effects 

Readers versed in structural equation models (SEMs) will note that, in linear systems, 
the direct effect P(Y 1 2, SY,,) is fully specified by the path coefficient attached to the 
link from X to Y (see (5.24) for mathematical definition); therefore, the direct effect is 
independent of the values pay\x at which we hold the other parents of Y. In nonlinear 
systems, those values would, in general, modify the effect of X on Y and thus should 
be chosen carefully to represent the target policy under analysis. For example, the direct 
effect of a pill on thrombosis would most likely be different for pregnant and nonpreg- 
nant women. Epidemiologists call such differences "effect modification" and insist on 
separately reporting the effect in each subpopulation. 

Although the direct effect is sensitive to the levels at which we hold the parents of 
the outcome variable, it is sometimes meaningful to average the direct effect over those 
levels. For example, if we wish to assess the degree of discrimination in a given school 
without reference to specific departments, we can compute the difference 
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A -  

P(admission I male, dept) - P(admission I female, dept) 

and average this difference over all departments. This average measures the increase in 
admission rate in a hypothetical experiment in which we instruct all female candidates to 
retain their department preferences but change their gender identification (on the appli- 
cation form) from female to male. 

In general, the average direct effect can be defined as a set of probabilities 

one for each level of X. Several variants of this definition may be used when X affects 
other parents of Y. For example, we may wish to assess the average change in E(Y) 
induced by changing X from x to x' while keeping the other parents of Y constant at 
whatever value they obtain under do(x). The appropriate expression for this change is 

This expression represents what we actually wish to measure in race or sex discrimina- 
tion cases, where we are instructed to assess the effect of one factor (X) while keeping 
"all other factors constant." 
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CHAPTER FIVE 

Causality and Structural Models in 
Social Science and Economics 

Do two men travel together 
unless they have agreed? 

Amos 3:3 

Preface 

Structural equation modeling (SEM) has dominated causal analysis in economics and 
the social sciences since the 1950s, yet the prevailing interpretation of SEM differs sub- 
stantially from the one intended by its originators and also from the one expounded in 
this book. Instead of carriers of substantive causal information, structural equations are 
often interpreted as carriers of probabilistic information; economists view them as con- 
venient representations of density functions, and social scientists see them as summaries 
of covariance matrices. The result has been that many SEM researchers have difficulty 
articulating the causal content of SEM, and the most distinctive capabilities of SEM are 
currently ill understood and underutilized. 

This chapter is written with the ambitious goal of reinstating the causal interpretation 
of SEM. We shall demonstrate how developments in the areas of graphical models and 
the logic of intervention can alleviate the current dfficulties and thus revitalize structuraI 
equations as the primary language of causal modeling. Toward this end, we recast sev- 
eral of the results of Chapters 3 and 4 in parametric form (the form most familiar to SEM 
researchers) and demonstrate how practical and conceptual issues of model testing and 
parameter identification can be illuminated through graphical methods. We then move 
back to nonparametric analysis, from which an operational semantics will evolve that 
offers a coherent interpretation of what structural equations are all about (Section 5.4). 
In particular, we will provide answers to the following fundamental questions: What do 
structural equations claim about the world? What portion of those claims is testable? Un- 
der what conditions can we estimate structural parameters through regression analysis? 

In Section 5.1 we survey the history of SEM and suggest an explanation for the cur- 
rent erosion of its causal interpretation. The testable implications of structural models are 
explicated in Section 5.2. For recursive models (herein termed Markovian), we find that 
the statistical content of a structural model can be fully characterized by a set of zero par- 
tial correlations that are entailed by the model. These zero partial correlations can be read 
off the graph using the d-separation criterion, which in linear models applies to graphs 
with cycles and correlated errors as well (Section 5.2). The application of this criterion 
to model testing is discussed in Section 5.2.2, which advocates local over global testing 
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strategies. Section 5.2.3 provides simple graphical tests of model equivalence and thus 
clarifies the nontestable part of structural models. 

In Section 5.3 we deal with the issue of determining the identifiability of structural 
parameters prior to gathering any data. In Section 5.3.1, simple graphical tests of iden- 
tifiability are developed for linear Markovian and semi-Markovian models (i.e., acyclic 
diagrams with correlated errors). These tests result in a simple procedure for detennin- 
ing when a path coefficient can be equated to a regression coefficient and, more generally, 
when structural parameters can be estimated through regression analysis. Section 5.3.2 
discusses the connection between parameter identification in linear models and causal 
effect identification in nonparametric models, and Section 5.3.3 offers the latter as a se- 
mantical basis for the former. 

Finally, in Section 5.4 we discuss the logical foundations of SEM and resolve a num- 
ber of difficulties that were kept dormant in the past. These include operational definitions 
for structural equations, structural parameters, error terms, and total and direct effects, as 
well as a causal-theoretic explication of exogeneity in econometrics. 

5.1 INTRODUCTION 

5.1.1 Causality in Search of a Language 
The word cause is not in the vocabulary of standard probability theory. It is an embar- 
rassing yet inescapable fact that probability theory, the official mathematical language of 
many empirical sciences, does not permit us to express sentences such as "Mud does not 
cause rain"; all we can say is that the two events are mutually correlated, or dependent - 
meaning that if we find one, we can expect to encounter the other. Scientists seek- 
ing causal explanations for complex phenomena or rationales for policy decisions must 
therefore supplement the language of probability with a vocabulary for causality, one in 
which the symbolic representation for the causal relationship "Mud does not cause rain" 
is distinct from the symbolic representation for "Mud is independent of rain." Oddly, 
such distinctions have yet to be incorporated into standard scientific analysis.' 

Two languages for causality have been proposed: path analysis or structural equa- 
tion modeling (SEM) (Wright 1921; Haavelmo 1943); and the Neyman-Rubin potential- 
outcome model (Neyman 1923; Rubin 1974). The former has been adopted by econo- 
mists and social scientists (Goldberger 1972; Duncan 1975), while a group of statisticians 
champion the latter (Rubin 1974; Robins 1986; Holland 1988). These two languages are 
mathematically equivalent (see Chapter 7, Section 7.4.4), yet neither has become stan- 
dard in causal modeling - the structural equation framework because it has been greatly 
misused and inadequately formalized (Freedman 1987) and the potential-outcome frame- 
work because it has been only partially formalized and (more significantly) because it 
rests on an esoteric and seemingly metaphysical vocabulary of counterfactual variables 
that bears no apparent relation to ordinary understanding of cause-effect processes (see 
Section 3.6.3). 

' A summary of attempts by philosophers to reduce causality to probabilities is given in Chapter 7 
(Section 7.5). 
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Currently, potential-outcome models are understood by few and used by even fewer. 
Structural equation models are used by many, but their causal interpretation is generally 
questioned or avoided, even by their leading practitioners. In Chapters 3 and 4 we de- 
scribed how structural equation models, in nonparametric form, can provide the semantic 
basis for theories of interventions. In Section 1.4 we outlined how these models provide 
the semantical basis for a theory of counterfactuals as well. It is somewhat embarrass- 
ing that these distinctive features are hardly recognized and rarely utilized in the modern 
SEM literature. The current dominating philosophy treats SEM as just a convenient way 
to encode density functions (in economics) or covariance information (in social science). 
Ironically, we are witnessing one of the most bizarre circles in the history of science: 
causality in search of a language and, simultaneously, the language of causality in search 
of its meaning. 

The purpose of this chapter is to formulate the causal interpretation and outline the 
proper use of structural equation models, thereby reinstating confidence in SEM as the 
primary formal language for causal analysis in the social and behavioral sciences. First, 
however, we present a brief analysis of the current crisis in SEM research in light of its 
historical development. 

5.1.2 SEM: How its Meaning Became Obscured 
Structural equation modeling was developed by geneticists (Wright 1921) and econo- 
mists (Haavelmo 1943; Koopmans 1950, 1953) so that qualitative cause-effect infor- 
mation could be combined with statistical data to provide quantitative assessment of 
cause-effect relationships among variables of interest. Thus, to the often asked ques- 
tion, "Under what conditions can we give causal interpretation to structural coefficients?" 
Wright and Haavelmo would have answered, "Always!" According to the founding fa- 
thers of SEM, the conditions that make the equation y = px + E structural are precisely 
those that make the causal connection between X and Y have no other value but #I and 
ensure that nothing about the statistical relationship between x and E can ever change this 
interpretation of #I. Amazingly, this basic understanding of SEM has all but disappeared 
from the literature, leaving modern econometricians and social scientists in a quandary 
over #I. 

Most SEM researchers today are of the opinion that extra ingredients are necessary 
for structural equations to qualify as carriers of causal claims. Among social scientists, 
James, Mulaik, and Brett (1982, p. 45), for example, stated that a condition called self- 
containment is necessary for consecrating the equation y = p x  + E with causal meaning, 
where self-containment stands for cov(x, E )  = 0. According to James et al. (1982), if self- 
containment does not hold then "neither the equation nor the functional relation represents 
a causal relation." Bollen (1989, p. 44) reiterated the necessity of self-containment (under 
the rubric isolation or pseudo-isolation) - contrary to the understanding that structural 
equations attain their causal interpretation prior to, and independently of, any statistical 
relationships among their constituents. Since the early 1980s, it has become exceedingly 
rare to find an open endorsement of the original SEM logic: that #I defines the sensitivity 
of E ( Y )  to experimental manipulations of X; that E is defined in terms of j9, not the other 
way around; and that the orthogonality condition cov(x, E) = 0 is neither necessary nor 
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sufficient for the causal interpretation of B (see Sections 3.6.2 and 5.4.1).~ It is therefore 
not surprising that many SEM textbooks have given up on causal interpretation altogether: 
"We often see the terms cause, effect, and causal modeling used in the research literature. 
We do not endorse this practice and therefore do not use these terms here" (Schumaker 
and Lomax 1996, p. 90). 

Econometricians have just as much difficulty with the causal reading of structural 
parameters. Leamer (1985, p. 258) observed, "It is my surprising conclusion that econo- 
mists know very well what they mean when they use the words 'exogenous,' 'structural,' 
and 'causal,' yet no textbook author has written adequate definitions." There has been 
little change since Leamer made these observations. Econometric textbooks invariably 
devote most of their analysis to estimating structural parameters, but they rarely discuss 
the role of these parameters in policy evaluation. The few books that deal with policy 
analysis (e.g. Goldberger 1991; Intriligator et al. 1996, p. 28) assume that policy variables 
satisfy the orthogonality condition by their very nature, thus rendering structural infor- 
mation superfluous. Hendry (1995, p. 62), for instance, explicitly tied the interpretation 
of p to the orthogonality condition, stating as follows: 

the status of may be unclear until the conditions needed to estimate the postulated model 
are specified. For example, in the model: 

y t = z r @ + u r  where u,-IN[o,~:] ,  

until the relationship between z ,  and u,  is specified the meaning of 6 is uncertain since 
E [ztu,]  could be either zero or nonzero on the information provided. 

LeRoy (1995, p. 211) goes even further: "It is a commonplace of elementary instruction 
in economics that endogenous variables are not generally causally ordered, implying that 
the question 'What is the effect of yl on yz' where yl and y2 are endogenous variables is 
generally meaningless." According to LeRoy, causal relationships cannot be attributed to 
any variabie whose causes have separate influence on the effect variable, a position that 
denies any causal reading to most of the structural parameters that economists and social 
scientists labor to estimate. 

Cartwright (1995b, p. 49), a renowned philosopher of science, addresses these diffi- 
culties by initiating a renewed attack on the tormenting question, "Why can we assume 
that we can read off causes, including causal order, from the parameters in equations 
whose exogenous variables are uncorrelated?' Cartwright, like SEM's founders, rec- 
ognizes that causes cannot be derived from statistical or functional relationships alone 
and that causal assumptions are prerequisite for validating any causal conclusion. Unlike 
Wright and Haavelmo, however, she launches an all-out search for the assumptions that 
would endow the parameter B in the regression equation y = fix + E with a legitimate 
causal meaning and endeavors to prove that the assumptions she proposes are indeed 
sufficient. What is revealing in Cartwright's analysis is that she does not consider the an- 
swer Haavelrno would have provided - namely, that the assumptions needed for drawing 

In fact, this condition is not necessary even for the identiJication of p, once j3 is interpreted (see 
the identification of a in Figures 5.7 and 5.9). 
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causal conclusions from parameters are communicated to us by the scientist who declared 
the equation "structural"; they are already encoded in the syntax of the equations and can 
be read off the associated graph as easily as a shopping list;3 they need not be searched 
for elsewhere, nor do they require new proofs of sufficiency. Again, Haavelmo's answer 
applies to models of any size and shape, including models with correlated exogenous 
variables. 

These examples bespeak an alarming tendency among economists and social sci- 
entists to view a structural equation as an algebraic object that carries functional and 
statistical assumptions but is void of causal content. This statement from one leading so- 
cial scientist is typical: "It would be very healthy if more researchers abandoned thinking 
of and using terms such as cause and effect" (Muthen 1987, p. 180). Perhaps the bold- 
est expression of this tendency was voiced by Holland (1995, p. 54): "1 am speaking, of 
course, about the equation: {y = a + bx + F ) .  What does it mean? The only meaning I 
have ever determined for such an equation is that it is a shorthand way of describing the 
conditional distribution of ( y }  given ( x } . " ~  

The founders of SEM had an entirely different conception of structures and models. 
Wright (1923, p. 240) declared that "prior knowledge of the causal relations is assumed 
as prerequisite" in the theory of path coefficients, and Haavelmo (1943) explicitly inter- 
preted each structural equation as a statement about a hypothetical controlled experiment. 
Likewise, Marschak (1950), Koopmans (1953)' and Simon (1953) stated that the purpose 
of postulating a structure behind the probability distribution is to cope with the hypo- 
thetical changes that can be brought about by policy. One wonders, therefore, what has 
happened to SEM over the past 50 years, and why the basic (and still valid) teachings of 
Wright, Haavelmo, Marschak, Koopmans, and Simon have been forgotten. 

Some economists attribute the decline in the understanding of structural equations 
to Lucas's (1976) critique, according to which economic agents anticipating policy in- 
terventions would tend to act contrary to SEM's predictions, which often ignore such 
anticipations. However, since this critique merely shifts the model's invariants and the 
burden of structural modeling - from the behavioral level to a deeper level that involves 
agents' motivations and expectations - it does not exonerate economists from defining 
and representing the causal content of structural equations at some level of discourse. 

I believe that the causal content of SEM has gradually escaped the consciousness of 
SEM practitioners mainly for the following reasons. 

These assumptions are explicated and operationalized in Section 5.4. Briefly, if G is the graph as- 
sociated with a causal model that renders a certain parameter identifiable, then two assumptions are 
sufficient for authenticating the causal reading of that parameter: (1) every missing arrow, say be- 
tween X and Y, represents the assumption that X has no effect on Y once we intervene and hold the 
parents of Y fixed; and (2) every missing bidirected arc X 4--B Y represents the assumption that 
all omitted factors that affect Y are uncorrelated with those that affect X. Each of these assumptions 
is testable in experimental settings, where interventions are feasible (Section 5.4.1). 
All but forgotten, the structural interpretation of the equation (Haavelmo 1943) poses no restric- 
tion whatsoever on the conditional distribution of (y} given { x } .  Paraphrased in our vocabulary, it 
reads: "In an ideal experiment where we control X to x and any other set Z of variables (not con- 
taining X or Y )  to z ,  Y will attain a value y given by a + bx + E ,  where E is a random variable that 
is (pointwise) independent of the settings x and z" (see Section 5.4.1). This statement implies that 
E[Y I do(x ) ,  do(z ) ]  = a + bx + c but says nothing about E(Y I X = x ) .  
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1. SEM practitioners have sought to gain respectability for SEM by keeping causal 
assumptions implicit, since statisticians, the arbiters of respectability, abhor as- 
sumptions that are not directly testable. 

2. The algebraic language that has dominated SEM lacks the notational facility 
needed to make causal assumptions, as distinct from statistical assumptions, ex- 
plicit. By failing to equip causal relations with precise mathematical notation, 
the founding fathers in fact committed the causal foundations of SEM to obliv- 
ion. Their disciples today are seeking foundational answers elsewhere. 

Let me elaborate on the latter point. The founders of SEM understood quite well that, 
in structural models, the equality sign conveys the asymmetrical relation "is determined 
by" and hence behaves more like an assignment symbol (:=) in programming languages 
than like an algebraic equality. However, perhaps for reasons of mathematical purity, they 
refrained from introducing a symbol to represent the asymmetry. According to Epstein 
(1987), in the 1940s Wright gave a seminar on path diagrams to the Cowles Commission 
(the breeding ground for SEM), but neither side saw particular merit in the other's meth- 
ods. Why? After all, a diagram is nothing but a set of nonparametric structural equations 
in which, to avoid confusion, the equality signs are replaced with arrows. 

My explanation is that the early econometricians were extremely careful mathemati- 
cians who thought they could keep the mathematics in purely equational-statistical form 
and just reason about structure in their heads. Indeed, they managed to do so surpris- 
ingly well, because they were truly remarkable individuals who could do it in their heads. 
The consequences surfaced in the early 1980s, when their disciples began to mistake the 
equality sign for an algebraic equality. The upshot was that suddenly the "so-called dis- 
turbance terms" did not make any sense at all (Richard 1980, p. 3). We are living with 
the sad end to this tale. By failing to express their insights in mathematical notation, the 
founders of SEM brought about the current difficulties surrounding the interpretation of 
structural equations, as summarized by Holland's "What does it mean?' 

5.1.3 Graphs as a Mathematical Language 

Recent developments in graphical methods promise to bring causality back into the main- 
stream of scientific modeling and analysis. These developments involve an improved un- 
derstanding of the relationships between graphs and probabilities, on the one hand, and 
graphs and causality, on the other. But the crucial change has been the emergence of 
graphs as a mathematical language. This mathematical language is not simply a heuris- 
tic mnemonic device for displaying algebraic relationships, as in the writings of Blalock 
(1962) and Duncan (1975). Rather, graphs provide a fundamental notational system for 
concepts and relationships that are not easily expressed in the standard mathematical lan- 
guages of algebraic equations and probability calculus. Moreover, graphical methods 
now provide a powerful symbolic machinery for deriving the consequences of causal as- 
sumptions when such assumptions are combined with statistical data. 

A concrete example that illustrates the power of the graphical language - and that will 
set the stage for the discussions in Sections 5.2 and 5.3 - is Simpson's paradox, discussed 
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in Section 3.3 and further analyzed in Section 6.1. This paradox concerns the reversal of 
an association between two variables (e-g., gender and admission to school) that occurs 
when we partition a population into finer groups, (e.g., departments). Simpson's reversal 
has been the topic of much statistical research since its discovery in 1899. This research 
has focused on conditions for escaping the reversal instead of addressing the practical 
questions posed by the reversal: "Which association is more valid, before or after parti- 
tioning?" In linear analysis, the problem surfaces through the choice of regressors - for 
example, determining whether a variate Z can be added to a regression equation without 
biasing the result. Such an addition may easily reverse the sign of the coefficients of the 
other regressors, a phenomenon known as "suppressor effect" (Darlington 1990). 

Despite a century of analysis, questions of regressor selection or adjustment for co- 
variates continue to be decided informally, case-by-case, with the decision resting on 
folklore and intuition rather than on hard mathematics. The standard statistical literature 
is remarkably silent on this issue. Aside from noting that one should not adjust for a co- 
variate that is affected by the putative cause (x),' the literature provides no guidelines 
as to what covariates might be admissible for adjustment and what assumptions would 
be needed for making such a determination formally. The reason for this silence is clear: 
the solution to Simpson's paradox and the covariate selection problem (as we have seen 
in Sections 3.3.1 and 4.5.3) rests on causal assumptions, and such assumptions cannot be 
expressed formally in the standard language of  statistic^.^ 

In contrast, formulating the covariate selection problem in the language of graphs 
immediately yields a general solution that is both natural and formal. The investigator 
expresses causal knowledge (or assumptions) in the familiar qualitative terminology of 
path diagrams, and once the diagram is complete, a simple procedure decides whether a 
proposed adjustment (or regression) is appropriate relative to the quantity under evalu- 
ation. This procedure, which we called the back-door criterion in Definition 3.3.1, was 
applicable when the quantity of interest is the total effect of X on Y. If instead the direct 
effect is to be evaluated, then the graphical criterion of Theorem 4.5.3 is applicable. A 
modified criterion for identifying direct effects (i.e., a path coefficient) in linear models 
will be given in Theorem 5.3.1. 

This example is not an isolated instance of graphical methods affording clarity and 
understanding. In fact, the conceptual basis for SEM achieves a new level of preci- 
sion through graphs. What makes a set of equations "structural," what assumptions are 
expressed by the authors of such equations, what the testable implications of those as- 
sumptions are, and what policy claims a given set of structural equations advertises 
are some of the questions that receive simple and mathematically precise answers via 
graphical methods. These and related issues in SEM will be discussed in the following 
sections. 

This advice, which rests on the causal relationship "not affected by," is (to the best of my knowl- 
edge) the only causal notion that has found a place in statistics textbooks. The advice is neither 
necessary nor sufficient, as readers can verify from the discussion in Chapter 3. 
Simpson's reversal, as well as the supressor effect, are paradoxical only when we attach causal 
reading to the associations involved; see Section 6.1. 



Causality and Structural Models in Social Science and Economics 

5.2 GRAPHS AND MODEL TESTING 

In 1919, Wright developed his "method of path coefficients," which allows researchers 
to compute the magnitudes of cause-effect relationships from correlation measurements 
provided the path diagram represents correctly the causal processes underlying the data. 
Wright's method consists of writing a set of equations, one for each pair of variables 
(Xi, Xj), and equating the (standardized) correlation coefficient pi, with a sum of prod- 
ucts of path coefficients and residual correlations along the various paths connecting Xi 
and Xj. One can then attempt to solve these equations for the path coefficients in terms 
of the observed correlations. Whenever the resulting equations give a unique solution to 
some path coefficient p,, that is independent of the (unobserved) residual correlations, 
that coefficient is said to be identijable. If every set of correlation coefficients pij is com- 
patible with some choice of path coefficients then the model is said to be untestable or 
unfalsijable (also called saturated, just identijied, etc.), because it is capable of perfectly 
fitting any data whatsoever. 

Whereas Wright's method is partly graphical and partly algebraic, the theory of di- 
rected graphs permits us to analyze questions of testability and identifiability in purely 
graphical terms, prior to data collection, and it also enables us to extend these analyses 
from linear to nonlinear or nonparametric models. This section deals with issues of testa- 
bility in linear and nonparametric models. 

5.2.1 The Testable Implications of Structural Models 
When we hypothesize a model of the data-generating process, that model often imposes 
restrictions on the statistics of the data collected. In observational studies, these restric- 
tions provide the only view under which the hypothesized model can be tested or falsified. 
In many cases, such restrictions can be expressed in the form of zero partial correlations; 
more significantly, the restrictions are implied by the structure of the path diagram alone, 
independent of the numerical values of the parameters, as revealed by the d-separation 
criterion. 

Preliminary Notation 

Before addressing the testable implication of structural models, let us first review some 
definitions from Section 1.4 and relate them to the standard notation used in the SEM 
literature. 

The graphs we discuss in this chapter represent sets of structural equations of the form 

where pai (connoting parents) stands for (values of) the set of variables judged to be im- 
mediate causes of Xi and where the ~i represent errors due to omitted factors. Equation 
(5.1) is a nonlinear, nonparametric generalization of the standard linear equations 
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in which pai correspond to those variables on the r.h.s. of (5.2) that have nonzero co- 
efficients. A set of equations in the form of (5.1) will be called a causal model if each 
equation represents the process by which the value (not merely the probability) of vari- 
able Xi is selected. The graph G obtained by drawing an arrow from every member of 
pai to X i  will be called a causal diagram. In addition to full arrows, a causal diagram 
should contain a bidirected (i.e. double-arrowed) arc between any pair of variables whose 
corresponding errors are dependent. 

It is important to emphasize that causal diagrams (as well as traditional path diagrams) 
should be distinguished from the wide variety of graphical models in the statistical litera- 
ture whose construction and interpretation rest solely on properties of the joint distribution 
(Kiiveri et al. 1984; Whittaker 1990; Cox and Wermuth 1996; Lauritzen 1996; Andersson 
et al. 1999). The missing links in those statistical models represent conditional inde- 
pendencies, whereas the missing links in causal diagrams represent absence of causal 
connections (see note 3 and Section 5.4), which may or may not imply conditional inde- 
pendencies in the distribution. 

A causal model will be called Markovian if its graph contains no directed cycles and 
if its E~ are mutually independent (i.e., if there are no bidirected arcs). A model is serni- 
Markovian if its graph is acyclic and if it contains dependent errors. 

If the ci are multivariate normal (a common assumption in the SEM literature), then 
the Xi in (5.2) will also be multivariate normal and will be fully characterized by the cor- 
relation coefficients pij. A useful property of multivariate normal distributions is that the 
conditional variance o: conditional covariance oxy 1 i, and conditional correlation co- 
efficient p x ~  l l  are all independent of the value z. These are known as partial variance, 
covariance, and correlation coefficient and are denoted by ~ x . z ,  a x y . ~ ,  and p ~ y . ~  (respec- 
tively), where X and Y are single variables and Z is a set of variables. Moreover, the partial 
correlation coefficient pxy.z is zero if and only if (X II Y I Z) holds in the distribution. 

The partial regression coefficient is given by 

it is equal to the coefficient of X in the linear regression of Y on X and Z (the order of 
the subscripts is essential). In other words, the coefficient of x in the regression equation 

is given by 

These coefficients can therefore be estimated by the method of least squares (Criimer 
1946). 

d-Separation and Partial Correlations 
Markovian models (the parallel term in the SEM literature is recursive  model^;^ Bollen 
1989) satisfy the Markov property of Theorem 1.2.7; as a result, the statistical parameters 

' The term recursive is ambiguous; some authors exclude correlated errors but others do not. 
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of Markovian models can be estimated by ordinary regression analysis. In particular, the 
d-separation criterion is valid in such models (here we restate Theorem 1.2.4). 

Theorem 5.2.1 (Verma and Pearl 1988; Geiger et al. 1990) 
Ifsets X and Yare d-separated by Z in a DAG G, then X is independent of Y conditional 
on Z in every Markovian model structured according to G. Conversely, i f X  and Y are 
not d-separated by Z in a DAG G, then X and Yare dependent conditional on Z in almost 
all Markovian models structured according to G. 

Because conditional independence implies zero partial correlation, Theorem 5.2.1 trans- 
lates into a graphical test for identifying those partial correlations that must vanish in the 
model. 

Corollary 5.2.2 
In any Markovian model structured according to a DAG G, the partial correlation p x y . . ~  
vanishes whenever the nodes corresponding to the variables in Z d-separate node X from 
node Y in G, regardless of the model's parameters. Moreover, no other partial correla- 
tion would vanish for all the model's parameters. 

Unrestricted semi-Markovian models can always be emulated by Markovian models that 
include latent variables, with the latter accounting for all dependencies among error terms. 
Consequently, the d-separation criterion remains valid in such models if we interpret bi- 
directed arcs as emanating from latent common parents. This may not be possible in 
some linear semi-Markovian models where each latent variable is restricted to influence 
at most two observed variables (Spirtes et al. 1996). However, it has been shown that the 
d-separation criterion remains valid in such restricted systems (Spirtes et al. 1996) and, 
moreover, that the validity is preserved when the network contains cycles (Spirtes et al. 
1998; Koster 1999). These results are summarized in the next theorem. 

Theorem 5.2.3 (d-Separation in General Linear Models) 
For any linear model structured according to a diagram D, which may include cycles 
and bidirected arcs, the partial correlation p ~ y . ~  vanishes if the nodes corresponding to 
the set of variables Z d-separate node X from node Y in D. (Each bidirected arc i 4 - - w j 
is interpreted as a latent common parent i t L -* j.) 

For linear structural equation models (see (5.2)), Theorem 5.2.3 implies that those (and 
only those) partial correlations identified by the d-separation test are guaranteed to van- 
ish independent of the model parameters a i k  and independent of the error variances. This 
suggests a simple and direct method for testing models: rather than going through the 
standard exercise of finding a maximum likelihood estimate for the model's parameters 
and scoring those estimates for fit to the data, we can directly test for each zero partial 
correlation implied by the free model. The advantages of using such tests were noted by 
Shipley (1997), who also devised implementations of these tests. 

However, the question arises of whether it is feasible to test for the vast number of 
zero partial correlations entailed by a given model. Fortunately, these partial correlations 
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Figure 5.1 Model testable with two regressors for each missing link 
x4 (equation (5.3)). 

are not independent of each other; they can be derived from a relatively small number of 
partial correlations that constitutes a basis for the entire set (Pearl and Verma 1987). 

Definition 5.2.4 (Basis) 
Let S be a set of partial correlations. A basis B for S is a set of zero partial correlations 
where ( i )  B implies (using the laws of probability) the zero of every element of S and 
(ii) no proper subset of B sustains such implication. 

An obvious choice of a basis for the zero partial correlations entailed by a DAG D is the 
set of equalities B = = 0 I i > j ) ,  where i ranges over all nodes in D and j 
ranges over all predecessors of i in any order that agrees with the arrows of D.  In fact, this 
set of equalities reflects the "parent screening" property of Markovian models (Theorem 
1.2.7), which is the source of all the probabilistic information encoded in a DAG. Testing 
for these equalities is therefore sufficient for testing all the statistical claims of a linear 
Markovian model. Moreover, when the parent sets PAi are large, it may be possible to 
select a more economical basis, as shown in the next theorem.' 

Theorem 5.2.5 (Graphical Basis) 
Let ( i ,  j )  be apair of nonadjacent nodes in a DAG D ,  and let Zi j  be any set of nodes that 
are closer to i than j is to i and such that Zi j  d-separates i from j .  The set of zero partial 
correlations B = {pi, .zij = 0 I i > j ), consisting of one element per nonadjacent pair, 
constitutes a basis for the set of all zero partial correlations entailed by D. 

Theorem 5.2.5 states that the set of zero partial correlations corresponding to any separa- 
tion between nonadjacent nodes in the diagram encapsulates all the statistical information 
conveyed by a linear Markovian model. A proof of Theorem 5.2.5 is given in Pearl and 
Meshkat (1998). 

Examining Figure 5.1, we see that each of following two sets forms a basis for the 
model in the figure: 

The basis B1 employs the parent set PAi for separating i from j ( i  > j ) .  Basis B2, on 
the other hand, employs smaller separating sets and thus leads to tests that involve fewer 

The possibility that linear models may possess more economical bases came to my awareness dur- 
ing a conversation with Rod McDonald. 



Causality and Structural Models in Social Science and Economics 

7 &3 Figure 5.2 A testable model containing unidentified parame- 

.i ter (a). 

X o l  Y P z  

regressors. Note that each member of a basis corresponds to a missing arrow in the DAG; 
therefore, the number of tests required to validate a DAG is equal to the number of miss- 
ing arrows it contains. The sparser the graph, the more it constrains the covariance matrix 
and more tests are required to verify those constraints. 

5.2.2 Testing the Testable 

In linear structural equation models, the hypothesized causal relationships between vari- 
ables can be expressed in the form of a directed graph annotated with coefficients, some 
fixed a priori (usually to zero) and some free to vary. The conventional method for testing 
such a model against the data involves two stages. First, the free parameters are estimated 
by iteratively maximizing a fitness measure such as the likelihood function. Second, the 
covariance matrix implied by the estimated parameters is compared to the sample covari- 
ances and a statistical test is applied to decide whether the latter could originate from the 
former (Bollen 1989; Chou and Bentler 1995). 

There are two major weaknesses to this approach: 

1.  if some parameters are not identifiable, then the first phase may fail to reach sta- 
ble estimates for the parameters and the investigator must simply abandon the 
test; 

2. if the model fails to pass the data fitness test, the investigator receives very little 
guidance about which modeling assumptions are wrong. 

For example, Figure 5.2 shows a path model in which the parameter a! is not identifi- 
able if cov(sl, sz) is assumed to be unknown, which means that the maximum likelihood 
method may fail to find a suitable estimate for a, thus precluding the second phase of 
the test. Still, this model is no less testable than the one in which cov(sl, s2) = 0, a! is 
identifiable, and the test can proceed. These models impose the same restrictions on the 
covariance matrix - namely, that the partial correlation p x ~ . ~  should vanish (i.e., px, = 
pxrpYz) - yet the model with free cov(sl, s2), by virtue of a being nonidentifiable, can- 
not be tested for this restriction. 

Figure 5.3 illustrates the weakness associated with model diagnosis. Suppose the 
true data-generating model has a direct causal connection between X and W, as shown 
in Figure 5.3(a), while the hypothesized model (Figure 5.3(b)) has no such connection. 
Statistically, the two models differ in the term p x w . ~ ,  which should vanish according 
to Figure 5.3(b) and is left free according to Figure 5.3(a). Once the nature of the dis- 
crepancy is clear, the investigator must decide whether substantive knowledge justifies 
alteration of the model by adding either a link or a curved arc between X and W. However, 
because the effect of the discrepancy will be spread over several covariance terms, global 
fitness tests will not be able to isolate the discrepancy easily. Even multiple fitness tests 
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Figure 5.3 Models differing in one lo- 
cal test, p x w . ~  = 0. 

on various local modifications of the model (such tests are provided by LISREL) may not 
help much, because the results may be skewed by other discrepancies in different parts 
of the model, such as the subgraph rooted at Y. Thus, testing for global fitness is often of 
only minor use in model debugging. 

An attractive alternative to global fitness testing is local fitness testing, which involves 
listing the restrictions implied by the model and testing them one by one. A restriction 
such as pxw.z = 0, for example, can be tested locally without measuring Y or any of 
its descendants, thus keeping errors associated with those measurements from interfering 
with the test for pxw,z = 0, which is the real source of the lack of fit. More generally, 
typical SEM models are often close to being "saturated," claiming but a few restrictions 
in the form of a few edges missing from large, otherwise unrestrictive diagrams. Local 
and direct tests for those restrictions are more reliable than global tests, since they in- 
volve fewer degrees of freedom and are not contaminated with irrelevant measurement 
errors. The missing edges approach described in Section 5.2.1 provides a systematic way 
of detecting and enumerating the local tests needed for testing a given model. 

5.2.3 Model Equivalence 
In Section 2.3 (Definition 2.3.3) we defined two structural equation models to be observa- 
tionally equivalent if every probability distribution that is generated by one of the models 
can also be generated by the other. In standard SEM, models are assumed to be linear 
and data are characterized by covariance matrices. Thus, two such models are observa- 
tionally indistinguishable if they are covariance equivalent, that is, if every covariance 
matrix generated by one model (through some choice of parameters) can also be gener- 
ated by the other. It can be easily verified that the equivalence criterion of Theorem 1.2.8 
extends to covariance equivalence. 

Theorem 5.2.6 
Two Markovian linear-normal models are covariance equivalent if and only if they en- 
tail the same sets of zero partial correlations. Moreover, two such models are covariance 
equivalent i f  and only if their corresponding graphs have the same sets of edges and the 
same sets of v-structures. 

The first part of Theorem 5.2.6 defines the testable implications of Markovian models. It 
states that, in nonmanipulative studies, Markovian structural equation models cannot be 
tested for any feature other than those zero partial correlations that the d-separation test 
reveals. It also provides a simple test for equivalence that requires, instead of checking 
all the d-separation conditions, merely a comparison of corresponding edges and their 
directionalities. 
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In semi-Markovian models (DAGs with correlated errors), the d-separation criterion 
is still valid for testing independencies (see Theorem 5.2.3), but independence equiva- 
lence no longer implies observational equivalence.9 Two models that entail the same set 
of zero partial correlations among the observed variables may yet impose different in- 
equality constraints on the covariance matrix. Nevertheless, Theorems 5.2.3 and 5.2.6 
still provide necessary conditions for testing equivalence. 

Generating Equivalent Models 
By permitting arrows to be reversed as long as no v-structures are destroyed or created, 
we can use Theorem 5.2.6 to generate equivalent alternatives to any Markovian model. 
Meek (1995) and Chickering (1995) showed that X -, Y can be replaced by X + Y if 
and only if all parents of X are also parents of Y. They also showed that, for any two 
equivalent models, there is always some sequence of such edge reversals that takes one 
model into the other. This simple rule for edge reversal coincides with those proposed 
by Stelzl(1986) and Lee and Hershberger (1990). 

In semi-Markovian models, the rules for generating equivalent models are more com- 
plicated. Nevertheless, Theorem 5.2.6 yields convenient graphical principles for testing 
the correctness of edge-replacement rules. The basic principle is that if we regard each 
bidirected arc X 4--, Y as representing a latent common cause X + L -+ Y, then the 
"if" part of Theorem 5.2.6 remains valid; that is, any edge-replacement transformation 
that does not destroy or create a v-structure is allowed. Thus, for example, an edge 
X -, Y can be replaced by a bidirected arc X 4--, Y whenever X and Y have no other 
parents, latent or observed. Likewise, an edge X 4 Y can be replaced by a bidirected 
arc X 4--b Y whenever (1) X and Y have no latent parents and (2) every parent of X 
or Y is a parent of both. Such replacements do not introduce new v-structures. How- 
ever, since v-structures may now involve latent variables, we can tolerate the creation 
or destruction of some v-structures as long as this does not affect partial correlations 
among the observed variables. Figure 5.4(a) demonstrates that the creation of certain 
v-structures can be tolerated. By reversing the arrow X -, Y we create two converging 
arrows Z -, X t Y whose tails are connected, not directly, but through a latent com- 
mon cause. This is tolerated because, although the new convergence at X blocks the path 
(Z, X, Y), the connection between Z and Y (through the arc Z 4-- b Y) remains un- 
blocked and, in fact, cannot be blocked by any set of observed variables. 

We can carry this principle further by generalizing the concept of v-structure. Whereas 
in Markovian models a v-structure is defined as two converging arrows whose tails are 
not connected by a link, we now define v-structure as any two converging arrowheads 
whose tails are "separable." By separable we mean that there exists a conditioning set S 
capable of d-separating the two tails. Clearly, the two tails will not be separable if they 
are connected by an arrow or by a bidirected arc. But a pair of nodes in a semi-Markovian 
model can be inseparable even when not connected by an edge (Verma and Pearl 1990). 
With this generalization in mind, we can state necessary condtions for edge replacement 
as follows. 

Verma and Pearl (1990) presented an example using a nonparametric model, and Richardson de- 
vised an example using linear models with correlated errors (Spirtes and Richardson 1996). 
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(a) (b) (c> 

Figure 5.4 Models permitting ((a) and (b)) and forbidding ( c )  the reversal of X - Y. 

Rule I:  An mow X -F Y is interchangeable with X 4 - -b Y only if every neighbor 
or parent of X is inseparable from Y. (By neighbor we mean a node connected (to 
X) through a bidirected arc.) 

Rule 2: An arrow X -* Y can be reversed into X t Y only if, before reversal, 
(i) every neighbor or parent of Y (excluding X) is inseparable from X and (ii) every 
neighbor or parent of X is inseparable from Y. 

For example, consider the model Z 4-- c X -, Y. The arrow X -+ Y cannot be re- 
placed with a bidirected arc X 4--c Y because Z (a neighbor of X) is separable from 
Y by the set S = (X). Indeed, the new v-structure created at X would render X and Y 
marginally independent, contrary to the original model. 

As another example, consider the graph in Figure 5.4(a). Here, it is legitimate to 
replace X -, Y with X 4--, Y or with a reversed arrow X t Y because X has no 
neighbors and Z,  the only parent of X, is inseparable from Y. The same considerations 
apply to Figure 5.4(b); variables Z and Y, though nonadjacent, are inseparable, because 
the paths going from Z to Y through W cannot be blocked. 

A more complicated example, one that demonstrates that rules 1 and 2 are not suf- 
ficient to ensure the legitimacy of a transformation, is shown in Figure 5.4(c). Here, it 
appears that replacing X 3 Y with X 4--, Y would be legitimate because the (latent) 
v-structure at X is shunted by the arrow Z -, Y. However, the original model shows the 
path from W to Y to be d-connected given Z, whereas the postreplacement model shows 
the same path d-separated given Z. Consequently, the partial correlation p ~ y . ~  vanishes 
in the postreplacement model but not in the prereplacement model. A similar disparity 
also occurs relative to the partial correlation p w y . ~ x .  The original model shows that the 
path from W to Y is blocked, given (Z, X), but the postreplacement model shows that 
path to be d-connected, given {Z, X). Consequently, the partial correlation p w ~ . ~ x  van- 
ishes in the prereplacement model but is unconstrained in the postreplacement model.I0 
Evidently, it is not enough to impose rules on the parents and neighbors of X; remote 
ancestors (e.g. W )  should be considered, too. 

These rules are just a few of the implications of the d-separation criterion when 
applied to semi-Markovian models. A necessary and sufficient criterion for testing the d- 
separation equivalence of two semi-Markovian models was devised by Spirtes and Verma 
(1992). Spirtes and Richardson (1996) extended that criterion to include models with 
feedback cycles. However, we should keep in mind that, because two semi-Markovian 

lo This example was brought to my attention by Jin Tian, and a similar one by two anonymous 
reviewers. 
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models can be zero-partial-conelation equivalent and yet not covariance equivalent, 
criteria based on d-separation can provide merely the necessary conditions for model 
equivalence. 

The Signijicance of Equivalent Models 

Theorem 5.2.6 is methodologically significant because it clarifies what it means to claim 
that structural models are "testable" (Bollen 1989, p. 78).11 It asserts that we never test 
a model but rather a whole class of observationally equivalent models from which the 
hypothesized model cannot be distinguished by any statistical means. It asserts as well 
that this equivalence class can be constructed (by inspection) from the graph, which thus 
provides the investigator with a vivid representation of competing alternatives for consid- 
eration. Graphs representing all models in a given equivalence class have been devised 
by Verma and Pearl (1990) (see Section 2.6), Spirtes et al. (1993), and Andersson et al. 
(1999). Richardson (1996) discusses the representation of equivalence classes of models 
with cycles. 

Although it is true that (overidentified) structural equation models have testable im- 
plications, those implications are but a small part of what the model represents: a set of 
claims, assumptions, and implications. Failure to distinguish among causal assumptions, 
statistical implications, and policy claims has been one of the main reasons for the sus- 
picion and confusion surrounding quantitative methods in the social sciences (Freedman 
1987, p. 112; Goldberger 1992; Wermuth 1992). However, because they make the distinc- 
tions among these components vivid and crisp, graphical methods promise to make SEM 
more acceptable to researchers from a wide variety of disciplines. 

By and large, the SEM literature has ignored the explicit analysis of equivalent mod- 
els. Breckler (1990), for example, found that only one of 72 articles in the areas of 
social and personality psychology even acknowledged the existence of an equivalent 
model. The general attitude has been that the combination of data fitness and model 
over-identification is sufficient to confirm the hypothesized model. Recently, however, 
the existence of multiple equivalent models seems to have jangled the nerves of some 
SEM researchers. MacCallum et al. (1993, p. 198) concluded that "the phenomenon of 
equivalent models represents a serious problem for empirical researchers using CSM" 
and "a threat to the validity of interpretation of CSM results" (CSM denotes "covariance 
structure modeling"; this does not differ from SEM, but the term is used by some social 
scientists to disguise euphemistically the causal content of their models). Breckler (1990, 
p. 262) reckoned that "if one model is supported, so too are all of its equivalent models" 
and hence ventured that "the term causal modeling is a misnomer." 

Such extremes are not justifiable. The existence of equivalent models is logically in- 
evitable if we accept the fact that causal relations cannot be inferred from statistical data 
alone; as Wright (1921) stated, "prior knowledge of the causal relations is assumed as 
prerequisite" in SEM. But this does not make SEM useless as a tool for causal modeling. 

" In response to an allegation that "path analysis does not derive the causal theory from the data, or 
test any major part of it against the data" (Freedman 1987, p. 112), Bollen (1989, p. 78) stated, "we 
can test and reject structural models.. . . Thus the assertion that these models cannot be falsified 
has little basis." 
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. 
AFFECT COGNITION Figure 5.5 Untestable model displaying quanti- 

tative causal information derived. 

BEHAVIOR 

The move from the qualitative causal premises represented by the structure of a path di- 
agram (see note 3) to the quantitative causal conclusions advertised by the coefficients 
in the diagram is neither useless nor trivial. Consider, for example, the model depicted 
in Figure 5.5, which Bagozzi and Burnkrant (1979) used to illustrate problems associ- 
ated with equivalent models. Although this model is saturated (i.e., just identified) and 
although it has (at least) 27 semi-Markovian equivalent models, finding that the influ- 
ence of AFFECT on BEHAVIOR is almost three times stronger (on a standardized scale) than 
the influence of COGNITION on BEHAVIOR is still very illuminating - it tells us about the 
relative effectiveness of different behavior modification policies if some are known to in- 
fluence AFFECT and others COGNITION. The significance of this quantitative analysis on 
policy analysis may be more dramatic when a path coefficient turns negative while the 
corresponding correlation coefficient measures positive. Such quantitative results may 
have profound impact on policy decisions, and learning that these results are logically 
implied by the data and the qualitative premises embedded in the diagram should make 
the basis for policy decisions more transparent to defend or criticize. 

In summary, social scientists need not abandon SEM altogether; they need only aban- 
don the notion that SEM is a method of testing causal models. Structural equation mod- 
eling is a method of testing a tiny fraction of the premises that make up a causal model 
and, in cases where that fraction is found to be compatible with the data, the method 
elucidates the necessary quantitative consequences of both the premises and the data. It 
follows, then, that users of SEM should concentrate on examining the impIicit theoret- 
ical premises that enter into a model. As we will see in Section 5.4, graphical methods 
make these premises vivid and precise. 

5.3 GRAPHS AND IDENTIFIABILITY 

5.3.1 Parameter Identification in Linear Models 

Consider a directed edge X -, Y embedded in a path diagram G ,  and let a stand for the 
path coefficient associated with that edge. It is well known that the regression coefficient 
r YX = pX yoY /ox can be decomposed into the sum 

where IYX is not a function of a ,  since it is computed (e.g., using Wright's rules) from 
other paths connecting X and Y excluding the edge X -, Y. (Such paths traverse both 
unidirected and bidirected arcs.) Thus, if we remove the edge X -P Y from the path dia- 
gram and find that the resulting subgraph entails zero correlation between X and Y, then 
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(a) (b) 

Figure 5.6 Test of whether structural parameter a can be equated with regression coefficient r y x .  

we know that IYX = 0 and a = ryx; hence, a! is identified. Such entailment can be es- 
tablished graphically by testing whether X is d-separated from Y (by the empty set Z = 

{0)) in the subgraph. Figure 5.6 illustrates this simple test for identification: all paths 
between X and Y in the subgraph G, are blocked by converging arrows, and a can im- 
mediately be equated with ryx . 

We can extend this basic idea to cases where IyX is not zero but can be made zero by 
adjusting for a set of variables Z = {Z1, Z 2 ,  . . . , Z k  ) that lie on various d- connected paths 
between X and Y. Consider the partial regression coefficient r y x . ~  = pYX.ZoY.Z/oX.Z,  
which represents the residual correlation between Y and X after Z is "partialled out." If 
Z contains no descendant of Y, then again we can write12 

where IYX.= represents the partial correlation between X and Y resulting from setting a 
to zero, that is, the partial correlation in a model whose graph G, lacks the edge X -, Y 
but is otherwise identical to G. If Z d-separates X from Y in G,, then IYX.Z would in- 
deed be zero in such a model and so we can conclude that, in our original model, a is 
identified and is equal to r y x . ~ .  Moreover, since ~ Y X . Z  is given by the coefficient of x in 
the regression of Y on X and Z,  a can be estimated using the regression 

This result provides a simple graphical answer to the questions, alluded to in Section 
5.1.3, of (i) what constitutes an adequate set of regressors and (ii) when a regression coef- 
ficient provides a consistent estimate of a path coefficient. The answers are summarized 
in the following theorem.13 

Theorem 5.3.1 (Single-Door Criterion for Direct Effects) 
Let G be any path diagram in which a is the path coeficient associated with link X -, Y,  
and let G, denote the diagram that results when X -t Y is deleted from G. The coef 
Jicient a is identiJiable if there exists a set of variables Z such that (i) Z contains no 

l 2  This can be seen when the relation between Y and its parents, Y = a x  + C , pi w ,  + E ,  is sub- 
stituted into the expression for r ~ x . z ,  which yields a plus an expression IYX.= involving partial 
correlations among the variables {X, WI, . . . , Wk, Z, F ) .  Because Y is assumed not to be an ances- 
tor of any of these variables, their joint density is unaffected by the equation for Y;  hence, lux.Z 
is independent of a. 

l 3  This result is presented in Pearl (1998a) and Spirtes et al. (1998). 
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Figure 5.7 The identification of a with r y x . ~  (Theorem 5.3.1) is confirmed by G,. 

Figure 5.8 Graphical identification of the total effect of X on Y, yielding cr + By = r y x . ~ ,  

descendant of Y and (ii) Z d-separates X from Y in G,. ZfZ satisfies these two condi- 
tions, then a is equal to the regression coeficient r y x . ~ .  Conversely, $2 does not satisfy 
these conditions, then r y x . ~  is not a consistent estimand of a (except in rare instances of 
measure zero). 

The use of Theorem 5.3.1 can be illustrated as follows. Consider the graphs G and G, in 
Figure 5.7. The only path connecting X and Y in G, is the one traversing 2, and since 
that path is d-separated (blocked) by Z,  a! is identifiable and is given by a! = r y x . ~ .  
The coefficient /9 is identifiable, of course, since Z is d-separated from X in Gg (by the 
empty set 0) and thus B = r x ~ .  Note that this "single-door" test differs slightly from the 
back-door criterion for total effects (Definition 3.3.1); the set Z here must block all indi- 
rect paths from X to Y, not only back-door paths. Condition (i) is identical to both cases, 
because if X is a parent of Y then every descendant of Y must also be a descendant of X. 

We now extend the identification of structural parameters through the identification 
of total effects (rather than direct effects). Consider the graph G in Figure 5.8. If we form 
the graph G, by removing the link X -, Y, we observe that there is no set Z of nodes 
that d-separates all paths from X to Y. If Z contains Z1, then the path X -, Z1 4-- w Y 
will be unblocked through the converging arrows at Z1. If Z does not contain Z1,  the 
path X -, Z1 -, Y is unblocked. Thus we conclude that a cannot be identified using 
our previous method. However, suppose we are interested in the total effect of X on 
Y, which is given by a + By.  For this sum to be identified by r y ~ ,  there should be no 
contribution to ryx from paths other than those leading from X to Y. However, we see 
that two such paths, called confounding or back-door paths, exist in the graph - namely, 
X + Z2 -, Y and X r - - w  Z2 + Y. Fortunately, these paths are blocked by Z2 and so 
we may conclude that adjusting for Z2 would render a + By identifiable; thus we have 
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This line of reasoning is captured by the back-door criterion of Definition 3.3.1, which 
we restate here for completeness. 

Theorem 5.3.2 (Back-Door Criterion) 
For any two variables X and Y in a causal diagram G ,  the total effect of X on Y is identi- 
$able if there exists a set of measurements Z such that 

1. no member of Z is a descendant of X; and 

2. Z d-separates X from Y in the subgraph G x  - formed by deleting from G all arrows 
emanating from X .  

Moreover, if the two conditions are satisjed, then the total efiect of X on Y is given by 

~ Y X . Z -  

The two conditions of Theorem 5.3.2, as we have seen in Section 3.3.1, are also valid 
in nonlinear non-Gaussian models as well as in models with discrete variables. The test 
ensures that, after adjustment for Z, the variables X and Y are not associated through 
confounding paths, which means that the regression coefficient r y ~ . ~  is equal to the total 
effect. In fact, we can view Theorems 5.3.1 and 5.3.2 as special cases of a more gen- 
eral scheme: In order to identify any partial efect, as defined by a select bundle of 
causal paths from X to Y,  we ought to find a set Z of measured variables that block all 
nonselected paths between X and Y. The partial effect will then equal the regression co- 
efficient r y ~ . ~ .  

Figure 5.8 demonstrates that some total effects can be determined directly from the 
graphs without having to identify their individual components. Standard SEM methods 
(Bollen 1989; Chou and Bentler 1995) that focus on the identification and estimation of 
individual parameters may miss the identification and estimation of effects such as the 
one in Figure 5.8, which can be estimated reliably even though some of the constituents 
remain unidentified. 

Some total effects cannot be determined directly as a unit but instead require the de- 
termination of each component separately. In Figure 5.7, for example, the effect of Z on 
Y (= cxp) does not meet the back-door criterion, yet this effect can be determined from 
its constituents a and ,f3, which meet the back-door criterion individually and evaluate to 

There is yet a third kind of causal parameter: one that cannot be determined either 
directly or through its constituents but rather requires the evaluation of a broader causal 
effect of which it is a part. The structure shown in Figure 5.9 represents an example of 
this case. The parameter cx cannot be identified either directly or from its constituents (it 
has none), yet it can be determined from a/3 and p ,  which represent the effect of Z on 
Y and of Z on X, respectively. These two effects can be identified directly, since there 
are no back-door paths from Z to either Y or X; therefore, ap = ryz and #I = rxz.  It 
follows that 
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\: - ,, Figure 5.9 Graphical identification of o using instrumental variable I. 

I 

Figure 5.10 Graphical identification of cr, b ,  and y. 

which is familiar to us as the instrumental variable formula (Bowden and Turkington 
1984; see also Section 3.5, equation (3.46)). 

The example shown in Figure 5.10 combines all three methods considered thus far. 
The total effect of X on Y is given by afi + y6, which is not identifiable because it does 
not meet the back-door criterion and is not part of another identifiable structure. How- 
ever, suppose we wish to estimate B. By conditioning on Z, we block all paths going 
through Z and obtain a/3 = r y x . ~ ,  which is the effect of X on Y mediated by W. Because 
there are no back-door paths from X to W, a itself evaluates directly to a! = rwx. We 
therefore obtain 

On the other hand, y can be evaluated directly by conditioning on X (thus blocking all 
back-door paths from Z to Y through X), which gives 

The methods that we have been using suggest the following systematic procedure for 
recognizing identifiable coefficients in a graph. 

1. Start by searching for identifiable causal effects among pairs of variables in the 
graph, using the back-door criterion and Theorem 5.3.1. These can be either di- 
rect effects, total effects, or partial effects (i.e., effects mediated by specific sets 
of variables). 

2. For any such identified effect, collect the path coefficients involved and put them 
in a bucket. 

3. Begin labeling the coefficients in the buckets according to the following proce- 
dure: 
(a) if a bucket is a singleton, label its coefficient I (denoting identifiable); 
(b) if a bucket is not a singleton but contains only a single unlabeled element, 

label that element I. 
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Figure 5.11 
variables. 

Identifying and 6 using two instrumental 

4. Repeat this process until no new labeling is possible. 

5. List all labeled coefficients; these are identifiable. 

The process just described is not complete, because our insistence on labeling co- 
efficients one at a time may cause us to miss certain opportunities. This is shown in 
Figure 5.11. Starting with the pairs (X, Z),  (X, W) ,  (X', Z),  and (X', W ) ,  we clscover 
that a, y, a', and y' are identifiable. Going to (X, Y), we find that aB + 6y is identifi- 
able; likewise, from (X', Y) we see that a'#3 + y'6 is identifiable. This does not yet enable 
us to label or 6, but we can solve two equations for the unknowns fi and S as long as 

the determinant I a y ,  I is nonzero. Since we are not interested in identifiability at a point 

but rather in identifiability "almost everywhere" (Koopmans et al. 1950; Simon 1953), 
we need not compute this determinant. We merely inspect the symbolic form of the de- 
terminant's rows to make sure that the equations are nonredundant; each imposes a new 
constraint on the unlabeled coefficients for at least one value of the labeled coefficients. 

With a facility to detect redundancies, we can increase the power of our procedure by 
adding the following rule: 

3". If there are k nonredundant buckets that contain at most k unlabeled coefficients, 
label these coefficients and continue. 

Another way to increase the power of our procedure is to list not only identifiable 
effects but also expressions involving correlations due to bidirected arcs, in accordance 
with Wright's rules. Finally, one can endeavor to list effects of several variables jointly 
as is done in Section 4.4. However, such enrichments tend to make the procedure more 
complex and might compromise our main objective of providing investigators with a way 
to immediately recognize the identified coefficients in a given model and immediately 
understand those features in the model that influence the identifiability of the target quan- 
tity. We now relate these results to the identification in nonparametric models, such as 
those treated in Section 3.3. 

5.3.2 Comparison to Nonparametric Identification 
The identification results of the previous section are significantly more powerful than 
those obtained in Chapters 3 and 4 for nonparametric models. Nonparametric models 
should nevertheless be studied by parametric modelers for both practical and conceptual 
reasons. On the practical side, investigators often find it hard to defend the assumptions of 
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linearity and normality (or other functional-distributional assumptions), especially when 
categorical variables are involved. Because nonparametric results are valid for nonlin- 
ear functions and for any distribution of errors, having such results allows us to gauge 
how sensitive standard techniques are to assumptions of linearity and normality. On the 
conceptual side, nonparametric models illuminate the distinctions between structural and 
algebraic equations. The search for nonpararnetric quantities analogous to path coeffi- 
cients forces explication of what path coefficients really mean, why one should labor at 
their identification, and why structural models are not merely a convenient way of encod- 
ing covariance information. 

In this section we cast the problem of nonparametric causal effect identification (Chap- 
ter 3) in the context of parameter identification in linear models. 

Parametric versus Noaparametric Models: An Example 

Consider the set of structural equations 

where X, Z, Y are observed variables, f i ,  f2, f3 are unknown arbitrary functions, and 
U, E I ,  E ~ , Q  are unobservables that we can regard either as latent variables or as distur- 
bances. For the sake of this discussion, we will assume that U, EI ,  E*, ~g are mutually 
independent and arbitrarily distributed. Graphically, these influences can be represented 
by the path diagram of Figure 5.12. 

The problem is as follows. We have drawn a long stream of independent samples 
of the process defined by (5.4)-(5.6) and have recorded the values of the observed vari- 
ables X, Z, and Y;  we now wish to estimate the unspecified quantities of the model to 
the greatest extent possible. 

To clarify the scope of the problem, we consider its linear version, which is given by 
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X Y Figure 5.13 Diagram representing model M' of (5.12)-(5.14). 

where U, EI, E * ,  ~3 are uncorrelated, zero-mean disturbances.14 It is not hard to show 
that parameters a, j?, and y can be determined uniquely from the correlations among 
the observed quantities X, 2, and Y. This identification was demonstrated already in the 
example of Figure 5.7, where the back-door criterion yielded 

and hence 

Thus, returning to the nonparametric version of the model, it is tempting to general- 
ize that, for the model to be identifiable, the functions { fi,  f2, f3) must be determined 
uniquely from the data. However, the prospect of this happening is unlikely, because 
the mapping between functions and distributions is known to be many-to-one. In other 
words, given any nonparametric model M, if there exists one set of functions I f i ,  fi, f3} 
compatible with a given distribution P(x, y ,  z) ,  then there are infinitely many such func- 
tions (see Figure 1.6). Thus, it seems that nothing useful can be inferred from loosely 
specified models such as the one given by (5.4)-(5.6). 

Identification is not an end in itself, however, even in linear models. Rather, it serves 
to answer practical questions of prediction and control. At issue is not whether the data 
permit us to identify the form of the equations but, instead, whether the data permit us 
to provide unambiguous answers to questions of the kind traditionally answered by para- 
metric models. 

When the model given by (5.4)-(5.6) is used strictly for prediction (i.e., to determine 
the probabilities of some variables given a set of observations on other variables), the 
question of identification loses much (if not all) of its importance; all predictions can be 
estimated directly from either the covariance matrices or the sample estimates of those 
covariances. If dimensionality reduction is needed (e.g., to improve estimation accuracy) 
then the covariance matrix can be encoded in a variety of simultaneous equation models, 
all of the same dimensionality. For example, the correlations among X, Y, and Z in the 
linear model M of (5.7)-(5.9) might well be represented by the model M' (Figure 5.13): 

p p p p p  

l4 An equivalent version of this model is obtained by eliminating U from the equations and alfowing 
E ,  and ~3 to be correlated, as in Figure 5.7. 
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This model is as compact as (5.7)-(5.9) and is covariance equivalent to M with respect 
to the observed variables X, Y, 2. Upon setting a' = a, /3' = B, and S = y,  model M' 
will yield the same probabilistic predictions as those of the model of (5.7)-(5.9). Still, 
when viewed as data-generating mechanisms, the two models are not equivalent. Each 
tells a different story about the processes generating X, Y, and 2, so naturally their pre- 
dictions differ concerning the changes that would result from subjecting these processes 
to external interventions. 

5.3.3 Causal Effects: The Interventional Interpretation of Structural 
Equation Models 

The differences between models M and M' illustrate precisely where the structural read- 
ing of simultaneous equation models comes into play, and why even causally shy re- 
searchers consider structural parameters more "meaningful" than covariances and other 
statistical parameters. Model M', defined by (5.12)-(5.14), regards X as a direct par- 
ticipant in the process that determines the value of Y, whereas model M, defined by 
(5.7)-(5.9), views X as an indirect factor whose effect on Y is mediated by Z. This dif- 
ference is not manifested in the data itself but rather in the way the data would change in 
response to outside interventions. For example, suppose we wish to predict the expecta- 
tion of Y after we intervene and fix the value of X to some constant x;  this is denoted 
E(Y I do(X = x ) ) .  After X = x is substituted into (5.13) and (5.14), model M' yields 

E [Y I do(X = x)] = E[/3'aJx + B'e2 + AX + E ~ ]  

model M yields 

E[Y I do(X = x)] = E[/3ax + Be2 + yU + ~ 3 1  

Upon setting a' = a, /3' = /3, and S = y (as required for covariance equivalence; see 
(5.10) and (5.11)), we see clearly that the two models assign different magnitudes to the 
(total) causal effect of X on Y: model M predicts that a unit change in x will change 
E(Y) by the amount pa, whereas model M' puts this amount at /?a + y . 

At this point, it is tempting to ask whether we should substitute x - E ,  for u in (5.9) 
prior to taking expectations in (5.17). If we permit the substitution of (5.8) into (5.9), as 
we did in deriving (5.17), why not permit the substitution of (5.7) into (5.9) as well? Af- 
ter all (the argument runs), there is no harm in upholding a mathematical equality, u = 

x - E I ,  that the modeler deems valid. This argument is fallacious, however.I5 Structural 
equations are not meant to be treated as immutable mathematical equalities. Rather, they 
are meant to define a state of equilibrium - one that is violated when the equilibrium is 
perturbed by outside interventions. In fact, the power of structural equation models is 

l 5  Such arguments have led to Newcomb's paradox in the so-called evidential decision theory (see 
Section 4.1.1). 
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that they encode not only the initial equilibrium state but also the information necessary 
for determining which equations must be violated in order to account for a new state of 
equilibrium. For example, if the intervention consists merely of holding X constant at 
x, then the equation x = u + ~ 1 ,  which represents the preintervention process determin- 
ing X, should be overruled and replaced with the equation X = x. The solution to the 
new set of equations then represents the new equilibrium. Thus, the essential character- 
istic of structural equations that sets them apart from ordinary mathematical equations is 
that the former stand not for one but for many sets of equations, each corresponding to 
a subset of equations taken from the original model. Every such subset represents some 
hypothetical physical reality that would prevail under a given intervention. 

If we take the stand that the value of structural equations lies not in summarizing dis- 
tribution functions but in encoding causal information for predicting the effects of policies 
(Haavelmo 1943; Marschak 1950; Simon 1953), it is natural to view such predictions as 
the proper generalization of structural coefficients. For example, the proper generaliza- 
tion of the coefficient in the linear model M would be the answer to the control query, 
"What would be the change in the expected value of Y if we were to intervene and change 
the value of Z from z to z + 1," which is different, of course, from the observational 
query, "What would be the difference in the expected value of Y if we were to$nd Z 
at level z + 1 instead of level z." Observational queries, as we discussed in Chapter 1, 
can be answered directly from the joint distribution P(x, y, z), while control queries re- 
quire causal information as well. Structural equations encode this causal information in 
their syntax by treating the variable on the left-hand side of the equality sign as the effect 
and treating those on the right as causes. In Chapter 3 we distinguished between the two 
types of queries through the symbol do(.). For example, we wrote 

E(Y I do(x)) E[Y I do(X = x)] 

for the controlled expectation and 

for the standard conditional or observational expectation. That E(Y [ do(x)) does not 
equal E(Y I x) can easily be seen in the model of (5.7)-(5.9), where E(Y I do(x)) = 
afix but E(Y I x)  = ryxx  = (afi + y )x .  Indeed, the passive observation X = x should 
not violate any of the equations, and this is the justification for substituting both (5.7) and 
(5.8) into (5.9) before taking the expectation. 

In linear models, the answers to questions of direct control are encoded in the path 
(or structural) coefficients, which can be used to derive the total effect of any variable on 
another. For example, the value of E(Y I do(x)) in the model defined by (5.7)-(5.9) is 
apx ,  that is, x times the product of the path coefficients along the path X -, Z -, Y. 
Computation of E(Y I do(x)) would be more complicated in the nonparametric case, 
even if we knew the functions fl ,  f2, and f3. Nevertheless, this computation is well- 
defined; it requires the solution (for the expectation of Y) of a modified set of equations 
in which fi is "wiped out" and X is replaced by the constant x: 
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Thus, computation of E(Y I do(x)) requires evaluation of 

where the expectation is taken over U, e2, and ~ g .  Graphical methods for performing this 
computation were discussed in Section 3.3.2. 

What, then, is an appropriate definition of identifiability for nonparametric models? 
One reasonable definition is that answers to interventional queries are unique, and this 
is precisely how Definition 3.2.3 interprets the identification of the causal effect P(y I 
do(x)). As we have seen in Chapters 3 and 4, many aspects of nonparametric iden- 
tification can be determined graphically, almost by inspection, from the diagrams that 
accompany the equations. These include tests for deciding whether a given interven- 
tional query is identifiable as well as formulas for estimating such queries. 

5.4 SOME CONCEPTUAL UNDERPINNINGS 

5.4.1 What Do Structural Parameters Really Mean? 

Every student of SEM has stumbled on the following paradox at some point in his or her 
career. If we interpret the coefficient in the equation 

as the change in E(Y) per unit change of X, then, after rewriting the equation as 

we ought to interpret 1/B as the change in E(X) per unit change of Y. But this conflicts 
both with intuition and with the prediction of the model: the change in E(X) per unit 
change of Y ought to be zero if Y does not appear as an independent variable in the orig- 
inal, structural equation for X. 

Teachers of SEM generally evade this dilemma via one of two escape routes. One 
route involves denying that p has any causal reading and settling for a purely statistical 
interpretation, in which /3 measures the reduction in the variance of Y explained by X 
(see e.g. Muthen 1987). The other route permits causal reading of only those coefficients 
that meet the "isolation" restriction (Bollen 1989; James et al. 1982): the explanatory 
variable must be uncorrelated with the error in the equation. Because E cannot be uncor- 
related with both X and Y (or so the argument goes), fi and 1/B cannot both have causal 
meaning, and the paradox dissolves. 

The first route is self-consistent, but it compromises the founders' intent that SEM 
function as an aid to policy making and clashes with the intuition of most SEM users. 
The second is vulnerable to attack logically. It is well known that every pair of bivariate 
normal variables, X and Y, can be expressed in two equivalent ways, 

y = Bx + c l  and x = a y  + ~ 2 ,  

where cov(X, E ~ )  = COV(Y, ~ 2 )  = 0 and a = rxr = ,~?oi/a;. Thus, if the condition 
cov(X, E,) = 0 endows /? with causal meaning, then cov(Y, ~ 2 )  = 0 ought to endow a 
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with causal meaning as well. But this, too, conflicts with both intuition and the inten- 
tions behind SEM; the change in E ( X )  per unit change of Y ought to be zero, not r x ~ ,  if 
there is no causal path from Y to X. 

What then is the meaning of a structural coefficient? Or a structural equation? Or 
an error term? The interventional interpretation of causal effects, when coupled with the 
do(x) notation, provides simple answers to these questions. The answers explicate the 
operational meaning of structural equations and thus should end, I hope, an era of con- 
troversy and confusion regarding these entities. 

Structural Equations: Operational Definition 

Definition 5.4.1 (Structural Equations) 
An equation y = /?x + F is said to be structural f i t  is to be interpreted as follows: In 
an ideal experiment where we control X to x and any other set Z of variables (not con- 
taining X or Y) to z ,  the value y of Y is given by Px + F ,  where E is not a function of the 
settings x and z .  

This definition is operational because all quantities are observable, albeit under conditions 
of controlled manipulation. That manipulations cannot be performed in most observa- 
tional studies does not negate the operationality of the definition, much as our inability 
to observe bacteria with the naked eye does not negate their observability under a micro- 
scope. The challenge of SEM is to extract the maximum information concerning what 
we wish to observe from the little we actually can observe. 

Note that the operational reading just given makes no claim about how X (or any 
other variable) will behave when we control Y. This asymmetry makes the equality signs 
in structural equations different from algebraic equality signs; the former act symmetri- 
cally in relating observations on X and Y (e-g., observing Y = 0 implies ,6x = - E ) ,  but 
they act asymmetrically when it comes to interventions (e.g., setting Y to zero tells us 
nothing about the relation between x and E ) .  The arrows in path diagrams make this dual 
role explicit, and this may account for the insight and inferential power gained through 
the use of diagrams. 

The strongest empirical claim of the equation y = ,6x + E is made by excluding other 
variables from the r.h.s. of the equation, thus proclaiming X the only immediate cause 
of Y. This translates into a testable claim of invariance: the statistics of Y under condi- 
tion do(x) should remain invariant to the manipulation of any other variable in the model 
(see Section 1.3.2).16 This claim can be written symbolically as 

P(Y I do(x), do(z)) = P(Y 1 do(x)) 

for all Z lsjoint of (X U y).17 

' m e  basic notion that structural equations remain invariant to certain changes in the system goes 
back to Marschak (1950) and Simon (1953), and it has received mathematical formulation at var- 
ious levels of abstraction in Hurwicz (1962), Mesarovic (1969), Sims (1977), Cartwright (1989), 
Hoover (1990), and Woodward (1995). The simplicity, precision, and clarity of (5.23) is unsur- 
passed, however. 

l7 This claim is, in fact, only part of the message conveyed by the equation; the other part consists of 
a dynamic or counterfactual claim: If we were to control X to x' instead of x ,  then Y would attain 
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Note that this invariance holds relative to manipulations, not observations, of Z. The 
statistics of Y under condition do(x) given the measurement Z = z ,  written P(y I 
do(x), z ) ,  would certainly depend on z if the measurement were taken on a consequence 
(i.e. descendant) of Y. Note also that the ordinary conditional probability P ( y  I x) does 
not enjoy such a strong property of invariance, since P ( y  1 x) is generally sensitive to 
manipulations of variables other than X in the model (unless X and s are independent). 
Equation (5.23), in contrast, remains valid regardless of the statistical relationship be- 
tween s and X. 

Generalized to a set of several structural equations, (5.23) explicates the assumptions 
underlying a given causal diagram. If G is the graph associated with a set of structural 
equations, then the assumptions are embodied in G as follows: (1) every missing arrow - 
say, between X and Y -represents the assumption that X has no causal effect on Y once 
we intervene and hold the parents of Y fixed; and (2) every missing bidirected link be- 
tween X and Y represents the assumption that the omitted factors that (directly) influence 
X are uncorrelated with those that (directly) influence Y. We shall define the operational 
meaning of the latter assumption in (5.25)-(5.27). 

The Structural Parameters: Operational Definition 
The interpretation of a structural equation as a statement about the behavior of Y under 
a hypothetical intervention yields a simple definition for the structural parameters. The 
meaning of in the equation y = Bx + E is simply 

that is, the rate of change (relative to x )  of the expectation of Y in an experiment where 
X is held at x by external control. This interpretation hoids regardless of whether E and 
X are correlated in nonexperimental studies (e.g., via another equation x = ay  + 6). 

We hardly need to add at this point that ,B has nothing to do with the regression co- 
efficient r y ~  or, equivalently, with the conditional expectation E ( Y  I x), as suggested in 
many textbooks. The conditions under which coincides with the regression coefficient 
are spelled out in Theorem 5.3.1. 

It is important nevertheless to compare the definition of (5.24) with theories that ac- 
knowledge the invariant character of B but have difficulties explicating which changes B is 
invariant to. Cartwright (1989, p. 194), for example, characterizes B as an invariant of na- 
ture that she calls "capacity." She states correctly that p remains constant under change 
but explains that, as the statistics of X changes, "it is the ratio [,B = E(Yx)/E(x~)] 
which remains fixed no matter how the variances shift." This characterization is impre- 
cise on two accounts. First, B may in general not be equal to the stated ratio nor to any 
other combination of statistical parameters. Second - and this is the main point of Def- 
inition 5.4.1 - structural parameters are invariant to local interventions (i.e., changes in 

the value f ix '  + E. In other words, plotting the value of Y under various hypothetical controls of X, 
and under the same external conditions ( E ) ,  should result in a straight line with slope f i .  Such de- 
terministic dynamic claims concerning system behavior under successive control conditions can 
only be tested under the assumption that E, representing external conditions or properties of exper- 
imental units, remains unaltered as we switch from x  to x ' .  Such counterfactual claims constitute 
the empirical content of every scientific law (see Section 7.2.2). 
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specific equations in the system) and not to general changes in the statistics of the vari- 
ables. If we start with cov(X, E) = 0 and the variance of X changes because we (or 
Nature) locally modify the process that generates X, then Cartwright is correct; the ra- 
tio fl = E(Yx)/E(x~) will remain constant. However, if the variance of X changes for 
any other reason - say, because we observed some evidence Z = z that depends on both 
X and Y or because the process generating X becomes dependent on a wider set of vari- 
ables - then that ratio will not remain constant. 

The Mystical Error Tern: Operational Definition 

The interpretations given in Definition 5.4.1 and (5.24) provide an operational definition 
for that mystical error term 

which, despite being unobserved in nonmanipulative studies, is far from being metaphys- 
ical or definitional as suggested by some researchers (e.g. Richard 1980; Holland 1988, 
p. 460; Hendry 1995, p. 62). Unlike errors in regression equations, E measures the de- 
viation of Y from its controlled expectation E[Y I do(x)] and not from its conditional 
expectation E [Y 1 x]. The statistics of E can therefore be measured from observations on 
Y once X is controlled. Alternatively, because remains the same regardless of whether 
X is manipulated or observed, the statistics of E = y - fix can be measured in observa- 
tional studies if we know B.  

Likewise, correlations among errors can be estimated empirically. For any two non- 
adjacent variables X and Y, (5.25) yields 

Once we have determined the structural coefficients, the controlled expectations E [ Y  I 
do(pay)], E[X I do(pax)], and E[YX I do(pay , pax)] become known linear func- 
tions of the observed variables pay and pax; hence, the expectations on the r.h.s. of 
(5.26) can be estimated in observational studies. Alternatively, if the coefficients are 
not determined, then the expression can be assessed directly in interventional studies by 
holding pax and pay fixed (assuming X and Y are not in parent-child relationship) and 
estimating the covariance of X and Y from data obtained under such conditions. 

Finally, we are often interested not in assessing the numerical value of E [ E ~ E ~ ]  but 
rather in determining whether E Y  and E X  can be assumed to be uncorrelated. For this de- 
termination, it suffices to test whether the equality 

holds true, where sxy stands for (any setting of) all variables in the model excluding X 
and Y. This test can be applied to any two variables in the model except when Y is a parent 
of X, in which case the symmetrical equation (with X and Y interchanged) is applicable. 

The Mystical Error Term: Conceptual Interpretation 

The authors of SEM textbooks usually interpret error terms as representing the influence 
of omitted factors. Many SEM researchers are reluctant to accept this interpretation, 
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however, partly because unspecified omitted factors open the door to metaphysical spec- 
ulations and partly because arguments based on such factors were improperly used as a 
generic, substance-free license to omit bidirected arcs from path diagrams (McDonald 
1997). Such concerns are answered by the operational interpretation of error terms, (5.25), 
since it prescribes how errors are measured, not how they originate. 

It is important to note, though, that this operational definition is no substitute for the 
omitted-factors conception when it comes to deciding whether pairs of error terms can 
be assumed to be uncorrelated. Because such decisions are needed at a stage when the 
model's parameters are still "free," they cannot be made on the basis of numerical as- 
sessments of correlations but must rest instead on qualitative structural knowledge about 
how mechanisms are tied together and how variables affect each other. Such judgmen- 
tal decisions are hardly aided by the operational criterion of (5.26), which instructs the 
investigator to assess whether two deviations - taken on two different variables under 
complex experimental conditions - would be correlated or uncorrelated. Such assess- 
ments are cognitively unfeasible. 

In contrast, the omitted-factors conception instructs the investigator to judge whether 
there could be factors that simultaneously influence several observed variables. Such 
judgments are cognitively manageable because they are qualitative and rest on purely 
structural knowledge - the only knowledge available during this phase of modeling. 

Another source of error correlation that should be considered by investigators is se- 
lection bias. If two uncorrelated unobserved factors have a common effect that is omitted 
from the analysis but influences the selection of samples for the study, then the corre- 
sponding error terms will be correlated in the sampled population; hence, the expectation 
in (5.26) will not vanish when taken over the sampled population (see discussion of Berk- 
son's paradox in Section 1.2.3). 

We should emphasize, however, that the arcs missing from the diagram, not those in 
the diagram, demand the most attention and careful substantive justification. Adding an 
extra bidirected arc can at worst compromise the identifiability of parameters, but delet- 
ing an existing bidirected arc may produce erroneous conclusions as well as a false sense 
of model testability. Thus, bidirected arcs should be assumed to exist, by default, be- 
tween any two nodes in the diagram. They should be deleted only by well-motivated 
justifications, such as the unlikely existence of a common cause for the two variables 
and the unlikely existence of selection bias. Although we can never be cognizant of all 
the factors that may affect our variables, substantive knowledge sometimes permits us to 
state that the influence of a possible common factor is not likely to be significant. 

Thus, as often happens in the sciences, the way we measure physical entities does 
not offer the best way of thinking about them. The omitted-factor conception of errors, 
because it rests on structural knowledge, is a more useful guide than the operational def- 
inition when building, evaluating, and thinking about causal models. 

5.4.2 Interpretation of Effect Decomposition 
Structural equation modeling prides itself, and rightly so, for providing principled method- 
ology for distinguishing direct from indirect effects. We have seen in Section 4.5 that such 
distinction is important in many applications, ranging from process control to legal dis- 
putes, and that SEM indeed provides a coherent methodology of defining, identifying, and 
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estimating direct and indirect effects. However, the reluctance of most SEM researchers 
to admit the causal reading of structural parameters - coupled with their preoccupation 
with algebraic manipulations - has resulted in inadequate definitions of direct and indirect 
effects, as pointed out by Freedman (1987) and Sobel (1990). In this section we hope to 
correct this confusion by adhering to the operational meaning of the structural coefficients. 

We start with the general notion of a causal effect P(y I do(x)) as in Definition 3.2.1. 
We then specialize it to define direct effect, as in Section 4.5, and finally express the def- 
initions in terms of structural coefficients. 

Definition 5.4.2 (Total Effect) 
The total effect of X on Y is given by P( y I do(x)), namely, the distribution of Y while X 
is held constant at  x and all other variables are permitted to run their nafural course. 

Definition 5.4.3 (Direct Effect) 
The direct effect of X on Y is given by P(y I do(x), do(sxy)), where Sxy is the set of all 
observed variables in the system except X and Y. 

In linear analysis, Definitions 5.4.2 and 5.4.3 yield, after differentiation with respect to 
x,  the familiar path coefficients in terms of which direct and indirect effects are usually 
defined. Yet they differ from conventional definitions in several important aspects. First, 
direct effects are defined in terms of hypothetical experiments in which intermediate vari- 
ables are held constant by physical intervention, not by statistical adjustment (which is 
often disguised under the misleading phrase "control for"). Figure 5.10 depicts a simple 
example where adjusting for the intermedate variables (Z and W )  would not give the 
correct value of zero for the direct effect of X on Y, whereas $E(Y I do(x, y, w ) )  does 

yield the correct value: g ( ~ w  + yz) = 0. Section 4.5.3 (Table 4.1) provides another 
such example, one that involves dichotomous variables. 

Second, there is no need to limit control to only intermediate variables; all variables 
in the system may be held constant (except for X and Y). Hypothetically, the scien- 
tist controls for all possible conditions SXY, and measurements may commence without 
knowing the structure of the diagram. Finally, our definitions differ from convention by 
interpreting total and direct effects independently of each other, as outcomes of two dif- 
ferent experiments. Textbook definitions (e.g. Bollen 1989, p. 376; Mueller 1996, p. 141; 
Kline 1998, p. 175) usually equate the total effect with a power series of path coefficient 
matrices. This algebraic definition coincides with the operational definition (Definition 
5.4.2) in recursive (semi-Markovian) systems, but it yields erroneous expressions in mod- 
els with feedback. For instance, given the pair of equations {y = fix + E, x = cry + S), 
the total effect of X on Y is simply B, not p(1- crfi)-' as stated in Bollen (1989, p. 379). 
The latter has no operational significance worthy of the phrase "effect of x."" 

We end this section of effect decomposition with a few remarks that should be of 
interest to researchers dealing with dichotomous variables. The relations among such 

l8 This error was noted by Sobel (1990) but, perhaps because constancy of path coefficients was pre- 
sented as a new and extraneous assumption, Sobel's correction has not brought about a shift in 
practice or philosophy. 
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variables are usually nonlinear, so the results of Section 4.5 should be applicable. In par- 
ticular, the direct effect of X on Y will depend on the levels at which we hold the other 
parents of Y. If we wish to average over these values, we obtain the expression given in 
Section 4.5.4. 

In standard linear analysis, an indirect effect may be defined as the difference between 
the total effect and the direct effects (Bollen 1989). In nonlinear analysis, differences lose 
their significance, and one must isolate the contribution of mediating paths in some other 
way. Expressions of the form P(y I do(x), do(z)) cannot be used to isolate such con- 
tributions because there is no physical means of selectively disabling a direct causal link 
from X to Y by holding some variables constant. This suggests that the notion of indirect 
effect has no intrinsic operational meaning apart from providing a comparison between 
the direct and the total effects. In other words, a policy maker who asks for that part of 
the total effect transmitted by a particular intermediate variable or by a group Z of such 
variables is really asking for a comparison of the effects of two policies, one where Z is 
held constant versus the other where it is not. The expressions corresponding to these 
policies are P(y I do(x), do(z)) and P(y I do(x)), and this pair of distributions should 
be taken as the most general representation of indirect effects. Similar conclusions have 
been expressed by Robins (1986) and Robins and Greenland (1992). 

5.4.3 Exogeneity, Superexogeneity, and Other Frills 
Economics textbooks invariably warn readers that the distinction between exogenous and 
endogenous variables is, on the one hand, "most important for model building" (Darnel1 
1994, p. 127) and, on the other hand, "a subtle and sometimes controversial complica- 
tion" (Greene 1997, p. 712). Economics students would naturally expect the concepts and 
tools developed in this chapter to shed some light on the subject, and rightly so. We next 
offer a simple definition of exogeneity that captures the important nuances appearing in 
the literature and that is both palatable and precise. 

It is fashionable today to distinguish three types of exogeneity: weak, strong, and su- 
per (Engle et al. 1983); the former two are statistical and the latter causal. However, the 
importance of exogeneity - and the reason for its controversial status - lies in its impli- 
cations for policy interventions. Some economists believe, therefore, that only the causal 
aspect (i.e. superexogeneity) deserves the exogenous title and that the statistical versions 
are unwarranted intruders that tend to confuse issues of identification and interpretability 
with those of estimation efficiency (Ed Leamer, personal communication).1g I will serve 
both camps by starting with a simple definition of causal exogeneity and then offering a 
more general definition, from which both the causal and the statistical aspects would fol- 
low as special cases. Thus, what we call "exogeneity" corresponds to what Engle et al. 
called "superexogeneity," a notion that captures economists' interest in the structural in- 
variance of certain relationships under policy intervention. 

Suppose that we consider intervening on a set of variables X and that we wish to char- 
acterize the statistical behavior of a set Y of outcome variables under the intervention 

l9 Similiar opinions have also been communicated by John Aldrich and James Heckman. See also 
Aldrich (1993). 
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do(X = x). Denote the postintervention distribution of Y by the usual expression P(y I 
do(x)). If we are interested in a set h of parameters of that distribution, then our task is to 
estimate A[P(y I do(x) J from the available data. However, the data available is typically 
generated under a different set of conditions: X was not held constant but instead was al- 
lowed to vary with whatever economical pressures and expectations prompted decision 
makers to set X in the past. Denoting the process that generated data in the past by M 
and the probability distribution associated with M by PM (v) ,  we ask whether h [PM (y ] 
do(x)] can be estimated consistently from samples drawn from PM (u), given our back- 
ground knowledge T (connoting "theory") about M. This is essentially the problem of 
identification that we have analyzed in this and previous chapters, with one important dif- 
ference; we now ask whether h[P(y I do(x)] can be identified from the conditional dis- 
tribution P(y I x) alone, instead of from the entire joint distribution P(v). When identifi- 
cation holds under this restricted condition, X is said to be exogenous relative to (Y, A ,  T). 

We may state this formally as follows. 

Definition 5.4.4 (Exogeneity) 
Let X and Y be two sets of variables, and let A. be any set of parameters of the postinter- 
vention probability P(  y I do(x)). We say that X is exogenous relative to (Y, A ,  T) ifh is 
identijable from the conditional distribution P(y I x), that is, if 

for any two models, M I  and M 2 ,  satisfying theory T. 

In the special case where h constitutes a complete specification of the postintervention 
probabilities, (5.28) reduces to the implication 

If we further assume that, for every P(y I x), our theory T does not a priori exclude 
some model M2 satisfying PM2(y I do(x)) = PM2(y ( x) ,~ '  then (5.29) reduces to the 
equality 

a condition we recognize as "no confounding" (see Sections 3.3 and 6.2). Equation (5.30) 
follows (from (5.29)) because (5.29) must hold for all MI in T. Note that, since the the- 
ory T is not mentioned explicitly, (5.30) can be applied to any individual model M and 
can be taken as yet another definition of exogeneity - albeit a stronger one than (5.28). 

The motivation for insisting that h be identifiable from the conditional distribution 
P(y I x) alone, even though the marginal distribution P(x) is available, lies in its ramifi- 
cation for the process of estimation. As stated in (5.30), discovering that X is exogenous 

20 For example, if T stands for all models possessing the same graph structure, then such M2 is not 
a priori excluded. 
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permits us to predict the effect of interventions (in X )  directly from passive observations, 
without even adjusting for confounding factors. Our analyses in Sections 3.3 and 5.3 fur- 
ther provide a graphical test of exogeneity: X is exogenous for Y if there is no unblocked 
back-door path from X to Y (Theorem 5.3.2). This test supplements the declarative def- 
inition of (5.30) with a procedural definition and thus completes the formalization of 
exogeneity. That the invariance properties usually attributable to superexogeneity are 
discernible from the topology of the causal diagram should come as no surprise, con- 
sidering that each causal diagram represents a structural model and that each structural 
model already embodies the invariance assumptions necessary for policy predictions (see 
Definition 5.4.1). 

Learner (1985) defined X to be exogenous if P(y I x) remains invariant to changes 
in the "process that generates" X. This definition coincides2' with (5.30) because P(y I 
do(x)) is governed by a structural model in which the equations determining X are wiped 
out; thus, P(y I x) must be insensitive to the nature of those equations. In contrast, En- 
gle et al. (1983) defined exogeneity (i.e., their superexogeneity) in terms of changes in 
the "marginal density" of X; as usual, the transition from process language to statistical 
terminology leads to ambiguities. According to Engle et al. (1983, p. 284), exogeneity 
requires that all the parameters of the conditional distribution P(y I x)  be "invariant 
for any change in the distribution of the conditioning variables"22 (i.e. P(x)) .  This re- 
quirement of constancy under any change in P(x) is too strong - changing conditions 
or new observations can easily alter both P(x) and P(y I x) even when X is perfectly 
exogenous. (To illustrate, consider a change that turns a randomized experiment, where 
X is indisputably exogenous, into a nonrandomized experiment; we should not insist on 
P(y I x) remaining invariant under such change.) The class of changes considered must 
be restricted to local modification of the mechanisms (or equations) that determine X, 
as stated by Leamer, and this restriction must be incorporated into any definition of exo- 
geneity. In order to make this restriction precise, however, the vocabulary of SEMs must 
be invoked as in the definition of P(y I do(x) ) ;  the vocabulary of marginal and condi- 
tional densities is far too coarse to properly define the changes against which P(y I x) 
ought to remain invariant. 

We are now ready to define a more general notion of exogeneity, one that includes 
"weak" and "super" exogeneities under the same umbrella.23 Toward that end, we remove 
from Definition 5.4.4 the restriction that h must represent features of the postinterven- 
tion distribution. Instead, we allow h to represent any feature of the underlying model 
M, including structural features such as path coefficients, causal effects, and counterfac- 
tuals, and including statistical features (which could, of course, be ascertained from the 
joint distribution alone). With this generalization, we also obtain a simpler definition of 
exogeneity. 

21 Provided that changes are confined to modification of functions without changing the set of argu- 
ments (i.e. parents) in each function. 

22 This requirement is repeated verbatim in Darnel1 (1994, p. 131) and Maddala (1992, p. 192). 
23 We leave out discussion of "strong" exogeneity, which is a slightly more involved version of weak 

exogeneity applicable to time-series analysis. 
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Definition 5.4.5 (General Exogeneity) 
Let X and Y be two sets of variables, and let h be any set of parameters dejined on a 
structural model M in a theory T .  We say that X is exogenous relative to (Y, A ,  T )  ifh is 
identijiable from the conditional distribution P(y 1 x), that is, if 

for any two models, MI and M2, satisfying theory T. 

When h consists of structural parameters, such as path coefficients or causal effects, (5.31) 
expresses invariance to a variety of interventions, not merely do(X = x). Although the 
interventions themselves are not mentioned explicitly in (5.31), the equality h(M1) = 
h(M2) reflects such interventions through the structural character of A. In particular, if 
h stands for the values of the causal effect function P(y I do(x)) at selected points of x 
and y , then (5.31) reduces to the implication 

which is identical to (5.29). Hence the causal properties of exogeneity follow. 
When h consists of strictly statistical parameters - such as means, modes, regression 

coefficients, or other distributional features - the structural features of M do not enter 
into consideration; we have h(M) = h(PM) and so (5.31) reduces to 

for any two probability distributions PI (x, y )  and P2(x, y)  that are consistent with T. 
We have thus obtained a statistical notion of exogeneity that permits us to ignore the mar- 
ginal P(x) in the estimation of h and that we may call "weak e~ogeneity."'~ 

Finally, if h consists of causal effects among variables in Y (excluding X), we ob- 
tain a generalized definition of instrumental variables. For example, if our interest lies in 
the causal effect h = P(w I do(z)) ,  where W and Z are two sets of variables in Y, then 
the exogeneity of X relative to this parameter ensures the identification of P(w ] do(z)) 
from the conditional probability P(z, w 1 x). This is indeed the role of an instrumen- 
tal variable - to assist in the identification of causal effects not involving the instrument. 
(See Figure 5.9, with Z, X, Y representing X, 2, W, respectively.) 

A word of caution regarding the language used in most textbooks: exogeneity is 
frequently defined by asking whether parameters "enter" into the expressions of the con- 
ditional or the marginal density. For example, Maddala (1992, p. 392) defined weak exo- 
geneity as the requirement that the marginal distribution P(x) "does not involve" A. Such 
definitions are not unambiguous, because the question of whether a parameter "enters" a 
density or whether a density "involves" a parameter are syntax-dependent; different al- 
gebraic representations may make certain parameters explicit or obscure. For example, 

24 Engle et al. (1983) further imposed a requirement called "variation-free," which is satisfied by de- 
fault when dealing with genuinely structural models M in which mechanisms do not constrain one 
another. 
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if X and Y are dichotomous, then the marginal probability P(x) certainly "involves" pa- 
rameters such as 

A I  = P(xo, yo) + P(xo, y l )  and h2 = P(xo, yo), 

as well as their ratio: 

Therefore, writing P(xo) = h2/h shows that both A. and h2 are involved in the marginal 
probability P(xo), and one may be tempted to conclude that X is not exogenous relative 
to A. Yet X is in fact exogenous relative to A ,  because the ratio A = h2 /A1 is none other 
than P(yo I xo); hence it is determined uniquely by P(yo I xo) as required by (5.33).25 

The advantage of the definition given in (5.31) is that it depends not on the syntactic 
representation of the density function but rather on its semantical content alone. Param- 
eters are treated as quantities computed from a model, and not as mathematical symbols 
that describe a model. Consequently, the definition applies to both statistical and struc- 
tural parameters and, in fact, to any quantity h that can be computed from a structural 
model M, regardless of whether it serves (or may serve) in the description of the marginal 
or conditional densities. 

The Mystical Error Term Revisited 

Historically, the definition of exogeneity that has evoked most controversy is the one ex- 
pressed in terms of correlation between variables and errors. It reads as follows. 

Definition 5.4.6 (Error-Based Exogeneity) 
A variable X is exogenous (relative to h. = P(y I do(x))) i f X  is independent of all errors 
that injluence Y, except those mediated by X. 

This definition, which Hendry and Morgan (1995) trace to Orcutt (1952), became standard 
in the econometric literature between 1950 and 1970 (e.g. Christ 1966, p. 156; Dhrymes 
1970, p. 169) and still serves to guide the thoughts of most econometricians (as in the 
selection of instrumental variables; Bowden and Turkington 1984). However, it came un- 
der criticism in the early 1980s when the distinction between structural errors (equation 
(5.25)) and regression errors became obscured (Richard 1980). (Regression errors, by 
definition, are orthogonal to the regressors.) The Cowles Commission logic of structural 
equations (see Section 5.1) has not reached full mathematical maturity and - by denying 
notational distinction between structural and regressional parameters - has left all no- 
tions based on error terms suspect of ambiguity. The prospect of establishing an entirely 
new foundation of exogeneity - seemingly free of theoretical terms such as "errors" and 
"structure" (Engle et al. 1983) - has further dissuaded economists from tidying up the 
Cowles Commission logic, and criticism of the error-based definition of exogeneity has 
become increasingly fashionable. For example, Hendry and Morgan (1995) wrote that 

25 Engle et al. (1983, p. 281) and Hendry (1995, pp. 162-3) attempted to overcome this ambiguity by 
using ''reparameterization" - an unnecessary complication. 
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"the concept of exogeneity rapidly evolved into a loose notion as a property of an observ- 
able variable being uncorrelated with an unobserved error," and Imbens (1997) readily 
agreed that this notion "is inadequate."26 

These critics are hardly justified if we consider the precision and clarity with which 
structural errors can be defined when using the proper notation (e.g. (5.25)). When ap- 
plied to structural errors, the standard error-based criterion of exogeneity coincides for- 
mally with that of (5.30), as can be verified using the back-door test of Theorem 5.3.2 
(with Z = 0). Consequently, the standard definition conveys the same information as 
that embodied in more complicated and less communicable definitions of exogeneity. I 
am therefore convinced that the standard definition will eventually regain the acceptance 
and respectability that it has always deserved. 

Relationships between graphical and counterfactual definitions of exogeneity and in- 
strumental variables will be discussed in Chapter 7 (Section 7.4.5). 

5.5 CONCLUSION 

Today the enterprise known as structural equation modeling is increasingly under fire. The 
founding fathers have retired, their teachings are forgotten, and practitioners, teachers, 
and researchers currently find the methodology they inherited difficult to either defend or 
supplant. Modern SEM textbooks are preoccupied with parameter estimation and rarely 
explicate the role that those parameters play in causal explanations or in policy analysis; 
examples dealing with the effects of interventions are conspicuously absent, for instance. 
Research in SEM now focuses almost exclusively on model fitting, while issues pertain- 
ing to the meaning and usage of SEM's models are subjects of confusion and controversy. 

I am thoroughly convinced that the contemporary crisis in SEM originates in the lack 
of a mathematical language for handling the causal information embedded in structural 
equations. Graphical models have provided such a language. They have thus helped us 
answer many of the unsettled questions that drive the current crisis: 

1. Under what conditions can we give causal interpretation to structural coefficients? 

2. What are the causal assumptions underlying a given structural equation model? 

3. What are the statistical implications of any given structural equation model? 

4. What is the operational meaning of a given structural coefficient? 

5 .  What are the policy-making claims of any given structural equation model? 

6. When is an equation not structural? 

This chapter has described the conceptual developments that now resolve such foun- 
dational questions. In addition, we have presented several tools to be used in answering 
questions of practical importance: 

26 Imbens prefers definitions in terms of experimental metaphors such as "random assignment as- 
sumption,'' fearing, perhaps, that "[tlypically the researcher does not have a firm idea what these 
disturbances really represent" (Angrist et al. 1996, p. 446). 
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1. When are two structural equation models observationally indistinguishable? 

2. When do regression coefficients represent path coefficients? 

3. When would the addition of a regressor introduce bias? 

4. Bow can we tell, prior to collecting any data, which path coefficients can be iden- 
tified? 

5 .  When can we dispose of the linearity-normality assumption and still extract 
causal information from the data? 

I remain hopeful that researchers will recognize the benefits of these concepts and 
tools and use them to revitalize causal analysis in the social and behavioral sciences. 
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CHAPTER S I X  

Simpson's Paradox, Confounding, and 
Collapsibility 

He who confronts the paradoxical 
exposes himselfto reality. 

Friedrick Durrenmatt (1962) 

Preface 

Confounding represents one of the most fundamental impediments to the elucidation of 
causal inferences from empirical data. As a result, the consideration of confounding 
underlies much of what has been written or said in areas that critically rely on causal in- 
ferences; this includes epidemiology, econometrics, biostatistics, and the social sciences. 
Yet, apart from the standard analysis of randomized experiments, the topic is given lit- 
tle or no discussion in most statistics texts. The reason for this is simple: confounding 
is a causal concept and hence cannot be expressed in standard statistical models. When 
formal statistical analysis is attempted, it often leads to confusions or complexities that 
make the topic extremely hard for the nonexpert to comprehend, let alone master. 

One of my main objectives in writing this book is to see these confusions resolved - 
to see problems involving the control of confounding reduced to simple mathematical 
routines. The mathematical techniques introduced in Chapter 3 have indeed culminated 
in simple graphical routines of detecting the presence of confounding and of identifying 
variables that need be controlled in order to obtain unconfounded effect estimates. In this 
chapter, we address the difficulties encountered when we attempt to define and control 
confounding by using statistical criteria. 

We start by analyzing the interesting history of Simpson's paradox (Section 6.1) and 
use it as a magnifying glass to examine the difficulties that generations of statisticians 
have had in their attempts to capture causal concepts in the language of statistics. In 
Sections 6.2 and 6.3, we examine the feasibility of replacing the causal definition of con- 
founding with statistical criteria that are based solely on frequency data and measurable 
statistical associations. We will show that, although such replacement is generally not 
feasible (Section 6.3), a certain kind of nonconfounding conditions, called stable, can 
be given statistical or semistatistical characterization (Section 6.4). This characterization 
leads to operational tests, similar to collapsibility tests, that can alert investigators to the 
existence of either instability or bias in a given effect estimate (Section 6.4.3). Finally, 
Section 6.5 clarifies distinctions between collapsibility and no-confounding, confounders 
and confounding, and between the structural and exchangeability approaches to repre- 
senting problems of confounding. 
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6.1 SIMPSON'S PARADOX: AN ANATOMY 

The reversal effect known as Simpson's paradox has been briefly discussed twice in this 
book: first in connection with the covariate selection problem (Section 3.3) and then in 
connection with the definition of direct effects (Section 4.5.3). In this section we analyze 
the reasons why the reversal effect has been (and still is) considered paradoxical and why 
its resolution has been so late in coming. 

6.1.1 A Tale of a Non-Paradox 
Simpson's paradox (Simpson 1951; BIyth 1972), first encountered by Pearson in 1899 
(Aldrich 1995), refers to the phenomenon whereby an event C increases the probability 
of E in a given population p and, at the same time, decreases the probability of E in 
every subpopulation of p. In other words, if F and 1 F  are two complementary proper- 
ties describing two subpopulations, we might well encounter the inequalities 

Although such order reversal might not surprise students of probability, it is paradoxi- 
cal when given causal interpretation. For example, if we associate C (connoting cause) 
with taking a certain drug, E (connoting effect) with recovery, and F with being a fe- 
male, then - under the causal interpretation of (6.2)-(6.3) -the drug seems to be harmful 
to both males and females yet beneficial to the population as a whole (equation (6.1)). 
Intuition deems such a result impossible, and correctly so. 

The tables in Figure 6.1 represent Simpson's reversal numerically. We see that, over- 
all, the recovery rate for patients receiving the drug (C) at 50% exceeds that of the control 
(1C) at 40% and so the drug treatment is apparently to be preferred. However, when 
we inspect the separate tables for males and females, the recovery rate for the untreated 
patients is 10% higher than that for the treated ones, for males and females both. 

The explanation for Simpson's paradox should be clear to readers of this book, since 
we have taken great care in distinguishing seeing from doing. The conditioning operator 
in probability calculus stands for the evidential conditional "given that we see," whereas 
the do(.) operator was devised to represent the causal conditional "given that we do." 
Accordingly, the inequality 

is not a statement about C being a positive causal factor for E,  properly written 

but rather about C being positive evidence for E, which may be due to spurious con- 
founding factors that cause both C and E. In our example, the drug appears beneficial 
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Combined Recovery Rate 

(a) Drug (C) 20 20 40 50% 
No drug (7C)  16 24 40 40% 

36 44 80 

Males E 7 E  Recovery Rate 

Females E 7 E  Recovery Rate 

(c) Drug (c)  2 8 10 20% 
Nodrug (7C)  9 21 30 30% 

11 29 40 

Figure 6.1 Recovery rates under treatment (C) and control (1C)  for males, females, and combined. 

overall because the males, who recover (regardless of the drug) more often than the fe- 
males, are also more likely than the females to use the drug. Indeed, finding a drug-using 
patient (C) of unknown gender, we would do well inferring that the patient is more likely 
to be a male and hence more likely to recover, in perfect harmony with (6.1)-(6.3). 

The standard method for dealing with potential confounders of this kind is to "hold 
them fixed,"' namely, to condition the probabilities on any factor that might cause both C 
and E. In our example, if being a male (1 F )  is perceived to be a cause for both recovery 
(E) and drug usage ( C ) ,  then the effect of the drug needs to be evaluated separately for 
men and women (as in (6.2)-(6.3)) and then averaged accordingly. Thus, assuming F is 
the only confounding factor, (6.2)-(6.3) properly represent the efficacy of the drug in the 
respective populations while (6.1) represents merely its evidential weight in the absence 
of gender information, and the paradox dissolves. 

6.1.2 A Tale of Statistical Agony 

Thus far, we have described the paradox as it is understood, or should be understood, by 
modern students of causality (see e.g. Cartwright 1983;~ Holland and Rubin 1983; Green- 
land and Robins 1986; Pearl 1993; Spirtes et al. 1993; Meek and Glymour 1994). Most 

' The phrases "hold F fixed" and "control for F," used both by philosophers (e-g. Eells 1991) and 
statisticians (e.g. Pratt and Schlaifer 1988), connote external interventions and may therefore be 
misleading. In statistical analysis, all one can do is simulate "holding F fixed" by considering 
cases with equal values of F - that is, "conditioning" on F and -IF - an operation that I will call 
"adjusting for F." 
Cartwright states, though, that the third factor F should be "held fixed" if and only if F is causally 
relevant to E (p. 37); the correct (back-door) criterion is somewhat more involved (see Definition 
3.3.1). 
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statisticians, however, are reluctant to entertain the idea that Simpson's paradox emerges 
from causal considerations. The general attitude is as follows: The reversal is real and dis- 
turbing, because it actually shows up in the numbers and may actually mislead statisticians 
into incorrect conclusions. If something is real then it cannot be causal, because causal- 
ity is a mental construct that is not well-defined. Thus, the paradox must be a statistical 
phenomenon that can be detected, understood, and avoided using the tools of statistical 
analysis. The Encyclopedia of Statistical Sciences, for example, warns us sternly of the 
dangers lurking from Simpson's paradox with no mention of the words "cause" or "causal- 
ity" (Agresti 1983). The Encyclopedia of Biostatistics (Dong 1998) and The Cambridge 
Dictionary of Statistics in Medical Sciences (Everitt 1995) uphold the same conception. 

I know of only two articles in the statistical literature that explicitly attribute the pe- 
culiarity of Simpson's reversal to causal interpretations. The first is Pearson et al. (1899), 
where the discovery of the phenomenon3 is enunciated in these terms: 

To those who persist on looking upon all correlation as cause and effect, the fact that cor- 
relation can be produced between two quite uncorrelated characters A and B by taking an 
artificial mixture of the two closely allied races, must come as rather a shock. 

Influenced by Pearson7s life-long campaign, statisticians have refrained from causal 
talk whenever possible and, for over half a century, the reversal phenomenon has been 
treated as a curious mathematical property of 2 x 2 tables, stripped of its causal origin. 
Finally, Lindley and Novick (1981) analyzed the problem from a new angle, and made 
the second published connection to causality: 

In the last paragraph the concept of a "cause" has been introduced. One possibility would 
be to use the language of causation, rather than that of exchangeability or identification of 
populations. We have not chosen to do this; nor to discuss causation, because the concept, 
although widely used, does not seem to be well-defined. (p. 51) 

What is amazing about the history of Simpson's reversal is that, from Pearson et al. to 
Lindley and Novick, none of the many authors who wrote on the subject dared ask why 
the phenomenon should warrant our attention and why it evokes surprise. After all, see- 
ing probabilities change magnitude upon conditionalization is commonplace, and seeing 
such changes turn into sign reversal (by taking differences and mixtures of those proba- 
bilities) is not uncommon either. Thus, if it were not for some misguided yet persistent 
illusion, what is so shocking about inequalities reversing direction? 

Pearson uilderstood that the shock originates with distorted causal interpretations, 
which he set out to correct through the prisms of statistical correlations and contingency 
tables (see the Epilogue following Chapter 10). His disciples took him rather seriously, 
and some even asserted that causation is none but a species of correlation (Niles 1922). 
In so denying any attention to causal intuition, researchers often had no choice but to at- 
tribute Simpson's reversal to some evil feature of the data, one that ought to be avoided 

Pearson et al. (1899) and Yule (1903) reported a weaker version of the paradox in which (6.2)-(6.3) 
are satisfied with equality. The reversal was discovered later by Cohen and Nagel (1934, p. 449). 
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by scrupulous researchers. Dozens of papers have been written since the 1950s on the sta- 
tistical aspects of Simpson's reversal; some dealt with the magnitude of the effect (Blyth 
1972; Zidek 1984), some established conditions for its disappearance (Bishop et al. 1975; 
Whittemore 1978; Good and Mittal1987; Wermuth 1987), and some even proposed reme- 
dies as drastic as replacing P(E I C )  with P(C I E) as a measure of treatment efficacy 
(Barigelli and Scozzafava 1984) - the reversal had to be avoided at all cost. 

A typical treatment of the topic can be found in the influential book of Bishop, Fien- 
berg, and Holland (1975). Bishop et al. (1975, pp. 41-2) presented an example whereby 
an apparent association between amount of prenatal care and infant survival disappears 
when the data are considered separately for each clinic participating in the study. They 
concluded: "If we were to look only at this [the combined] table we would erroneously 
conclude that survival was related [my italics] to the amount of care received." Ironi- 
cally, survival was in fact related to the amount of care received in the study considered. 
What Bishop et al. meant to say is that, looking uncritically at the combined table, we 
would erroneously conclude that survival was causally related to the amount of care re- 
ceived. However, since causal vocabulary had to be avoided in the 1970s, researchers 
like Bishop et al. were forced to use statistical surrogates such as "related" or "associ- 
ated" and so naturally fell victim to the limitations of the language; statistical surrogates 
could not express the causal relationships that researchers meant to convey. 

Simpson's paradox helps us to appreciate both the agony and the achievement of this 
tormented generation of statisticians. Driven by healthy causal intuition, yet culturally 
forbidden from admitting it and mathematically disabled from expressing it, they man- 
aged nevertheless to extract meaning from dry tables and to make statistical methods the 
standard in the empirical sciences. But the spice of Simpson's paradox turned out to be 
nonstatistical after all. 

6.1.3 Causality versus Exchangeability 
Lindley and Novick (1981) were the first to demonstrate the nonstatistical character of 
Simpson's paradox - that there is no statistical criterion that would warn the investiga- 
tor against drawing the wrong conclusions or would indicate which table represents the 
correct answer. 

In the tradition of Bayesian decision theory, they first shifted attention to the practical 
side of the phenomenon and boldly asked: A new patient comes in; do we use the drug 
or do we not? Equivalently: Which table do we consult, the combined or the gender- 
specific? "The apparent answer is," confesses Novick (1983, p. 45), "that when we know 
that the gender of the patient is male or when we know that it is female we do not use 
the treatment, but if the gender is unknown we should use the treatment! Obviously that 
conclusion is ridiculous." Lindley and Novick then go through lengthy informal discus- 
sion, concluding (as we did in Section 6.1.1) that we should consult the gender-specific 
tables and not use the drug. 

The next step was to ask whether some additional statistical information could in gen- 
eral point us to the right table. This question Lindley and Novick answered in the negative 
by showing that, with the very same data, we sometimes should decide the opposite and 
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Treatment 

'5 F 
Gender 

Recovery E 

Treatment 

Blood ' p l e s s u r e  

Recovery E 

Treatment- - '? 

Recovery E 

(a) (b) (c> 

Figure 6.2 Three causal models capable of generating the data in Figure 6.1. Model (a) dictates use 
of the gender-specific tables, whereas (b) and (c) dictate use of the combined table. 

consult the combined table. They asked: Suppose we keep the same numbers and merely 
change the story behind the data, imagining that F stands for some property that is af- 
fected by C - say, low blood pressure, as shown in Figure 6.2(b).4 By inspecting the 
diagram in Figure 6.2(b), the reader should immediately conclude that the combined 
table represents the answer we want; we should not condition on F because it resides 
on the very causal pathway that we wish to evaluate. (Equivalently, by comparing pa- 
tients with the same posttreatment blood pressure, we mask the effect of one of the two 
pathways through which the drug operates to bring about recovery.) 

When two causal models generate the same statistical data (Figures 6.2(a) and (b) are 
observationally equivalent) and in one we decide to use the drug yet in the other not to 
use it, it is obvious that our decision is driven by causal and not by statistical considera- 
tions. Some readers might suspect that temporal information is involved in the decision, 
noting that gender is established before the treatment and blood pressure afterwards. But 
this is not the case; Figure 6.2(c) shows that F may occur before or after C and still the 
correct decision should remain to consult the combined table (i.e., not to condition on F, 
as can be seen from the back-door criterion). 

We have just demonstrated by example what we already knew in Section 6.1.1 - 
namely, that every question related to the effect of actions must be decided by causal 
considerations; statistical information alone is insufficient. Moreover, the question of 
choosing the correct table on which to base our decision is a special case of the covariate 
selection problem that was given a general solution in Section 3.3 using causal calculus. 
Lindley and Novick, on the other hand, stopped short of this realization and attributed 
the difference between the two examples to a meta-statistical5 concept called exchange- 
ability, first proposed by De Finetti (1974). 

Exchangeability concerns the question of choosing an appropriate reference class, 
or subpopulation, for making predictions about an individual unit. Insurance compa- 
nies, for example, would like to estimate the life expectancy of a new customer using 
mortality records of a class of persons most closely resembling the characteristics of the 

' The example used in Lindley and Novick (1981) was taken from agriculture, and the causal rela- 
tionship between C and F was not mentioned, but the structure was the same as in Figure 6.2(b). 
By "meta-statistical" I mean a criterion - not itself discernible from statistical data - for judging 
the adequacy of a certain statistical method. 
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new customer. De Finetti gave this question a formal twist by translating judgment about 
resemblance into judgment of probabilities. According to this criterion, an (n + 1)th unit 
is exchangeable in property X, relative to a group of n other units, if the joint probability 
distribution P(X1, . . . , X,, X,+l) is invariant under permutation. To De Finetti, the ques- 
tion of how such invariance can be established was a psychological question of secondary 
importance; the main point was to cast the target of this psychological exercise in the form 
of mathematical expression so that it could be communicated and discussed in scientific 
terms. It is this concept that Lindley and Novick tried to introduce into Simpson's rever- 
sal phenomenon and with which they hoped to show that the appropriate subpopulations 
in the F = female example are the male and female whereas, in the F = blood pressure 
example, the whole population of patients should be considered. 

Readers of Lindley and Novick's article would quickly realize that, although these 
authors decorate their discussion with talks of exchangeability and subpopulations, what 
they actually do is present informal cause-effect arguments for their intuitive conclu- 
sions. Meek and Glymour (1994) keenly observed that the only comprehensible part of 
Lindley and Novick's discussion of exchangeability is the one based on causal consider- 
ations, which suggests that "an explicit account of the interaction of causal beliefs and 
probabilities is necessary to understand when exchangeability should and should not be 
assumed'? (Meek and Glymour 1994, p. 1013). 

This is indeed thc case; exchangeability in experimental studies depends on causal un- 
derstanding of the mechanisms that generate the data. The determination of whether the 
response of a new unit should be judged by previous response of a group of units is predi- 
cated upon the question of whether the experimental conditions to which we contemplate 
subjecting the new unit are equal to those prevailing while the group was observed. The 
reason we cannot use the combined table (Figure 6.l(a)) for determining the response of 
a new patient (with unknown gender) is that the experimental conditions have changed; 
whereas the group was studied with patients selecting treatment by choice, the new pa- 
tient will be given treatment by decree, perhaps against his or her natural inclination. 
A mechanism will therefore be altered in the new experiment, and no judgment of ex- 
changeability is feasible without first making causal assumptions regarding whether the 
probabilities involved would or would not remain invariant to such alteration. The rea- 
son we could use the combined table in the blood pressure example of Figure 6.2(b) is 
that the altered treatment selection mechanism in that setup is assumed to have no effect 
on the conditional probability P(E I C);  that is, C is assumed to be exogenous. (This 
can clearly be seen in the absence of any back-door path in the graph.) 

Note that the same consideration holds if the next patient is a member of the group 
under study (assuming hypothetically that treatment and effect can be replicated and that 
the next patient is of unknown gender and identity); a randomly selected sample from a 
population is not "exchangeable" with that population if we subject the sample to new 
experimental conditions. Alteration of causal mechanisms must be considered in order to 
determine whether exchangability holds under the new circumstances. And once causal 
mechanisms are considered, separate judgment of exchangeability is not needed. 

But why did Lindley and Novick choose to speak so elliptically (via exchangeabil- 
ity) when they could have articulated their ideas directly by talking openly about causal 
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relations? They partially answered this question as follows: "[causality], although widely 
used, does not seem to be well-defined." One may naturally wonder how exchangeabil- 
ity can be more "well-defined" than the very considerations by which it is judged! The 
answer can only be understood when we consider the mathematical tools available to 
statisticians in 1981. When Lindley and Novick wrote that causality is not well-defined, 
what they really meant is that causality cannot be written down in any mathematical form 
to which they were accustomed. The potentials of path diagrams, structural equations, 
and Neyman-Rubin notation as mathematical languages were generally unrecognized in 
1981, for reasons described in Sections 5.1 and 7.4.3. Indeed, had Lindley and Novick 
wished to convey their ideas in causal terms, they would have been unable to express 
mathematically even the simple yet crucial fact that gender is not affected by the drug 
and a fortiori to derive less obvious truths from that fact.6 The only formal language with 
which they were familiar was probability calculus, but as we have seen on several oc- 
casions already, this calculus cannot adequately handle causal relationships without the 
proper extensions. 

Fortunately, the mathematical tools that have been developed in the past ten years 
permit a more systematic and friendly resolution of Simpson's paradox. 

6.1.4 A Paradox Resolved (Or: What Kind of Machine Is Man?) 
Paradoxes, like optical illusions, are often used by psychologists to reveal the inner work- 
ings of the mind, for paradoxes stem from (and amplify) dormant clashes among implicit 
sets of assumptions. In the case of Simpson's paradox, we have a clash between (i) the 
assumption that causal relationships are governed by the laws of probability calculus and 
(ii) the set of implicit assumptions that drive our causal intuitions. The first assumption 
tells us that the three inequalities in (6.1)-(6.3) are consistent, and it even presents us 
with a probability model to substantiate the claim (Figure 6.1). The second tells us that 
no miracle drug can ever exist that is harmful to both males and females and is simulta- 
neously beneficial to the population at large. 

To resolve the paradox we must either (a) show that our causal intuition is misleading 
or incoherent or (b) deny the premise that causal relationships are governed by the laws 
of standard probability calculus. As the reader surely suspects by now, we will choose 
the second option; our stance here, as well as in the rest of the book, is that causality is 
governed by its own logic and that this logic requires a major extension of probability 
calculus. This still behooves us to explicate the logic that governs our causal intuition 
and to show, formally, that this logic precludes the existence of such a miracle drug. 

The logic of the do(-)  operator is perfectly suitable for this purpose. Let us first trans- 
late the statement that our miracle drug C has harmful effect on both males and females 
into formal statements in causal calculus: 

Lindley and Novick (1981, p. 50) did try to express this fact in probabilistic notation. But not hav- 
ing the do(.)  operator at their disposal, they improperly wrote P ( F  I C) instead of P ( F  I do(C) )  
and argued unconvincingly that we should equate P ( F  I C )  and P ( F ) :  "Instead [ylou might judge 
that the decision to use the treatment or the control is not affected by the unknown sex, so that F  
and C  are independent." Oddly, this decision is also not affected by the unknown blood pressure 
and yet, if we write P ( F  I C )  = P ( F )  in the example of Figure 6.2(b), we obtain the wrong result. 
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We need to demonstrate that C must be harmful to the population at large; that is, the 
inequality 

must be shown to be inconsistent with what we know about drugs and gender. 

Theorem 6.1.1 (Sure-Thing Principle7) 
An action C that increases the probability of an event E in each subpopulation must also 
increase the probability of E in the population as a whole, provided that the action does 
not change the distribution of the subpopulations. 

Proof 
We will prove Theorem 6.1.1 in the context of our example, where the population is par- 
titioned into males and females; generalization to multiple partitions is straightforward. 
In this context, we need to prove that the reversal in the inequalities of (6.4)-(6.6) is in- 
consistent with the assumption that drugs have no effect on gender: 

Expandmg P(E I do(C))  and using (6.7) yields 

Similarly, for do(1C)  we obtain 

Since every term on the right-hand side of (6.8) is smaller than the corresponding term 
in (6.9), we conclude that 

' Savage (1954, p. 21) proposed the sure-thing principle as a basic postulate of preferences (on ac- 
tions), tacitly assuming the no-change provision in the theorem. Blyth (1972) used this omission 
to devise an apparent counterexample. Theorem 6.1.1 shows that the sure-thing principle need not 
be stated as a separate postulate - it follows logically from the semantics of actions as modifiers of 
structural equations (or mechanisms). See Gibbard and Harper (1976) for a counterfactual analysis. 
Note that the no-change provision is probabilistic; it permits the action to change the classification 
of individual units as long as the relative sizes of the subpopulations remain unaltered. 
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proving Theorem 6.1.1. 

We thus see where our causal intuition comes from: an obvious but crucial assumption 
in our intuitive logic has been that drugs do not influence gender. This explains why our 
intuition changes so drastically when F is interpreted as an intermediate event affected 
by the drug, as in Figure 6.2(b). In this case, our intuitive logic tells us that it is perfectly 
consistent to find a drug satisfying the three inequalities of (6.4)-(6.6) and, moreover, 
that it would be inappropriate to adjust for F. If F is affected by the C, then (6.8) can- 
not be derived and the difference P (E  ) do(C)) - P(E  ) do(1C)) may be positive or 
negative, depending on the relative magnitudes of P ( F  1 do(C)) and P ( F  I do(1C)). 
Provided C and E have no common cause, we should then assess the efficacy of C directly 
from the combined table (equation (6.1)) and not from the F-specific tables (equations 
(6.2)-(6.3)). 

Note that nowhere in our analysis have we assumed either that the data originate from 
a randomized study (i.e., P (E  I do(C)) = P(E I C)) or from a balanced study (i.e., 
P(C I F )  = P(C I 1 F ) ) .  On the contrary, given the tables of Figure 6.1, our causal 
logic accepts gracefully that we are dealing with unbalanced study but nevertheless re- 
fuses to accept the consistency of (6.4)-(6.6). People, likewise, can see clearly from the 
tables that the males were more likely to take the drug than the females; still, when pre- 
sented with the reversal phenomenon, people are "shocked" to discover that differences 
of recovery rates can be reversed by combining tables. 

The conclusions we may draw from these observations are that humans are generally 
oblivious to rates and proportions (which are transitory) and that they constantly search 
for causal relations (which are invariant). Once people interpret proportions as causal 
relations, they continue to process those relations by causal calculus and not by the cal- 
culus of proportions. Were our minds governed by the calculus of proportions, Figure 6.1 
would have evoked no surprise at all and Simpson's paradox would never have generated 
the attention that it did. 

6.2 WHY THERE IS NO STATISTICAL TEST FOR 
CONFOUNDING, WHY MANY THINK THERE rs, 
AND WHY THEY ARE ALMOST RIGHT 

6.2.1 Introduction 

Confounding is a simple concept. If we undertake to estimate the effects of one vari- 
able (X)  on another ( Y )  by examining the statistical association between the two, we 
ought to ensure that the association is not produced by factors other than the effect urider 
study. The presence of spurious association, due for example to the influence of extra- 
neous variables, is called confounding because it tends to confound our reading and to 

- 

We will confine the use of the terms "effect," "influence," and "affect" to their causal interpreta- 
tions; the term "association" will be set aside for statistical dependencies. 
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bias our estimate of the effect studied. Conceptually, therefore, we can say that X and 
Y are confounded when there is a third variable Z that influences both X and Y; such a 
variable is then called a confounder of X and Y. 

As simple as this concept is, it has resisted formal treatment for decades, and for 
good reason: The very notions of "effect" and "influence" - relative to which "spurious 
association" must be defined - have resisted mathematical formulation. The empirical 
definition of effect as an association that would prevail in a controlled randomized exper- 
iment cannot easily be expressed in the standard language of probability theory, because 
that theory deals with static conditions and does not permit us to predict, even from a 
full specification of a population density function, what relationships would prevail if 
conditions were to change - say, from observational to controlled studies. Such predic- 
tions require extra information in the form of causal or counterfactual assumptions, which 
are not discernible from density functions (see Sections 1.3 and 1.4). The do(.)  opera- 
tor used in this book was devised specifically for distinguishing and managing this extra 
information. 

These difficulties notwithstanding, epidemiologists, biostatisticians, social scientists, 
and economists9 have made numerous attempts to define confounding in statistical terms, 
partly because statistical definitions - free of theoretical terms of "effect" or "influence" - 
can be expressed in conventional mathematical form and partly because such definitions 
may lead to practical tests of confounding and thereby alert investigators to possible bias 
and need for adjustment. These attempts have converged in the following basic criterion. 

Associational Criterion 
Two variables X and Yare not confounded ifand only if every variable Z that is not af- 
fected by X is either 

(U1) unassociated with X or 

(U2) unassociated with Y, conditional on X .  

This criterion, with some variations and derivatives (often avoiding the "only if" part), 
can be found in almost every epidemiology textbook (Schlesselman 1982; Rothman 1986; 
Rothman and Greenland 1998) and in almost every article dealing with confoundmg. In 
fact, the criterion has become so deeply entrenched in the literature that authors (e.g. Gail 
1986; Hauck et al. 1991; Becher 1992; Steyer et al. 1996) often take it to be the deJinition 
of no-confounding, forgetting that ultimately confounding is useful only so far as it tells 
us about effect bias." 

The purpose of this and the next section is to highlight several basic limitations of the 
associational criterion and its derivatives. We will show that the associational criterion 

In econometrics, the difficulties have focused on the notion of "exogeneity" (Engle et al. 1983; 
Learner 1985; Aldrich 1993), which stands essentially for "no confounding" (see Section 5.4.3). 

lo Hauck et al. (1991) dismiss the effect-based definition of confounding as "philosophic" and con- 
sider a difference between two measures of association to be a "bias." Grayson (1987) even goes so 
far as to state that the change-in-parameter method, a derivative of the associational criterion, is the 
only fundamental definition of confounding (see Greenland et al. 1989 for critiques of Grayson's 
position). 
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neither ensures unbiased effect estimates nor follows from the requirement of unbiased- 
ness. After demonstrating, by examples, the absence of logical connections between the 
statistical and the causal notions of confounding, we will define a stronger notion of un- 
biasedness, called "stable" unbiasedness, relative to which a modified statistical criterion 
will be shown necessary and sufficient. The necessary part will then yield a practical 
test for stable unbiasedness that, remarkably, does not require knowledge of all potential 
confounders in a problem. Finally, we will argue that the prevailing practice of sub- 
stituting statistical criteria for the effect-based definition of confounding is not entirely 
misguided, because stable unbiasedness is in fact (i) what investigators have been (and 
perhaps should be) aiming to achieve and (ii) what statistical criteria can test. 

6.2.2 Causal and Associational Definitions 

In order to facilitate the discussion, we shall first cast the causal and statistical definitions 
of no-confounding in mathematical forms." 

Definition 6.2.1 (No-Confounding; Causal Definition) 
Let M be a causal model of the data-generating process - that is, a formal description 
of how the value of each observed variable is determined. Denote by P(y ( do(x)) the 
probability of the response event Y = y under the hypothetical intervention X = x, cal- 
culated according to M. We say that X and Yare not confounded in M ifand only if 

for all x and y in their respective domains, where P(y I x) is the conditional probability 
generated by M. 

For the purpose of our discussion here, we take this causal definition as the meaning of 
the expression "no confounding." The probability P(y I do(x)) was defined in Chap- 
ter 3 (Definition 3.2.1, also abbreviated P(y 1 i ) ) ;  it may be interpreted as the conditional 
probability P*(Y = y I X = x) corresponding to a controlled experiment in which X 
is randomized. We recall that this probability can be calculated from a causal model M 
either directly, by simulating the intervention do(X = x), or (if P(x,  s) > 0) via the 
adjustment formula (equation (3.19)) 

where S stands for any set of variables, observed as well as unobserved, that satisfy 
the back-door criterion (Definition 3.3.1). Equivalently, P(y I dofx)) can be written 
P(Y(x) = y), where Y ( x )  is the potential-outcome variable as defined in (3.51) or in 

l 1  For simplicity, we will limit our discussion to unadjusted confounding; extensions involving mea- 
surement of auxiliary variables are straightforward and can be obtained from Section 3.3. We also 
use the abbreviated expression "X and Y are not confounded," though "the effect of X on Y is not 
confounded" is more exact. 
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Rubin (1974). We bear in mind that the operator do(.),  and hence also effect estimates 
and confounding, must be defined relative to a specific causal or data-generating model 
M because these notions are not statistical in character and cannot be defined in terms of 
joint distributions. 

Definition 6.2.2 (No-Confounding; Associational Criterion) 
Let T be the set of variables in a problem that are not affected by X .  We say that X and 
Yare not confounded in the presence of T if each member Z of T satis$es at least one of 
the following conditions: 

(U1) Z is not associated with X (i.e., P(x I z) = P(x)); 

( U 2 )  Z is not associated with Y, conditional on X (i.e., P ( y  I z, x) = P(y I x)). 

Conversely, X and Yare said to be confounded if any member Z of T violates both ( U 1 )  
and (U2). 

Note that the associational criterion in Definition 6.2.2 is not purely statistical in that it 
invokes the predicate "affected by," which is not discernible from probabilities but rests 
instead on causal information. This exclusion of variables that are affected by treatments 
(or exposures) is unavoidable and has long been recognized as a necessary judgmental 
input to every analysis of treatment effect in observational and experimental studies alike 
(Cox 1958, p. 48; Greenland and Neutra 1980). We shall assume throughout that inves- 
tigators possess the knowledge required for distinguishing variables that are affected by 
the treatment X from those that are not. We shall then explore what additional causal 
knowledge is needed, if any, for establishing a test of confounding. 

6.3 HOW THE ASSOCIATIONAL CRITERION FAILS 

We will say that a criterion for no-confounding is sufJicient if it never errs when it clas- 
sifies a case as no-confounding and necessary if it never errs when it classifies a case as 
confounding. There are several ways that the associational criterion of Definition 6.2.2 
fails to match the causal criterion of Definition 6.2.1. Failures with respect to sufficiency 
and necessity will be addressed in turn. 

6.3.1 Failing Sufficiency via Marginality 

The criterion in Definition 6.2.2 is based on testing each element of T individually. A 
situation may well be present where two factors, Z1 and Z2, jointly confound X and Y 
(in the sense of Definition 6.2.2) and yet each factor separately satisfies (Ul) or (U2). 
This may occur because statistical independence between X and individual members of 
T does not guarantee the independence of X and groups of variables taken from T. For 
example, let Z1 and Z2 be the outcomes of two independent fair coins, each affecting 
both X and Y. Assume that X occurs when Z1 and Z2 are equal and that Y occurs when- 
ever Z1 and Z2 are unequal. Clearly, X and Y are highly confounded by the pair T = 
(Z1, 22); they are, in fact, perfectly correlated (negatively) without causally affecting 
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X- exposure 
Y- disease 
Z =  type of car owned by patient 
E = education 
A = age 

Figure 6.3 X and Y are not confounded, though Z is associated with both. 

each other. Yet, neither Z1 nor Z2 is associated with either X or Y; discovering the out- 
come of any one coin does not change the probability of X (or of Y) from its initial value 

1 of 2. 
An attempt to remedy Definition 6.2.2 by replacing Z with arbitrary subsets of T in 

(Ul) and (U2) would be much too restrictive, because the set of all causes of X and Y,  
when treated as a group, would almost surely fail the tests of (Ui) and (U2). In Sec- 
tion 6.5.2 we identify the subsets that should replace Z in ( U , )  and (U2) if sufficiency is 
to be restored. 

6.3.2 Failing Sufficiency via Closed-World Assumptions 

By "closed-world" assumption I mean the assumption that our model accounts for all rel- 
evant variables and, specifically to Definition 6.2.2, that the set T of variables consists 
of all potential confounders in a problem. In order to correctly classify every case of 
no-confounding, the associational criterion requires that condition (U1) or (U2) be sat- 
isfied for every potential confounder Z in a problem. In practice, since investigators can 
never be sure whether a given set T of potential confounders is complete, the associa- 
tional criterion will falsely classify certain confounded cases as unconfounded. 

This limitation actually implies that any statistical test whatsoever is destined to be in- 
sufficient. Since practical tests always involve proper subsets of T, the most we can hope 
to achieve by statistical means is necessity -that is, a test that would correctly label cases 
as confounding when criteria such as (U1) and (U2) are violated by an arbitrary subset of 
T. This prospect, too, is not fulfilled by Definition 6.2.2, as we now demonstrate. 

6.3.3 Failing Necessity via Barren Proxies 

Example 6.3.1 Imagine a situation where exposure (X) is influenced by a person's 
education (E),  disease (Y) is influenced by both exposure and age (A) ,  and car type 
( 2 )  is influenced by both age ( A )  and education (E). These relationships are shown 
schematically in Figure 6.3. 

The car-type variable (Z) violates the two conditions in Definition 6.2.2 because: 
( I )  car type is indicative of education and hence is associated with the exposure vari- 
able; and (2) car type is indicative of age and hence is associated with the disease 
among the exposed and the nonexposed. However, in this example the effect of X 
on Y is not confounded; the type of car owned by a person has no effect on either 
exposure or disease and is merely one among many irrelevant properties that are as- 
sociated with both via intermediaries. The analysis of Chapter 3 establishes that, 
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indeed, (6.10) is satisfied in this model12 and that, moreover, adjustment for Z would 
generally yield a biased result: 

Thus we see that the traditional criterion based on statistical association fails to identify 
an unconfounded effect and would tempt one to adjust for the wrong variable. This fail- 
ure occurs whenever we apply (U,) and (U2) to a variable Z that is a barren proxy - that 
is, a variable that has no influence on X or Y but is a proxy for factors that do have such 
influence. 

Readers may not consider this failure to be too serious, because experienced epidemi- 
ologists would rarely regard a variable as confounder unless it is suspect of having some 
influence on either X or Y. Nevertheless, adjustment for proxies is a prevailing prac- 
tice in epidemiology and should be done with great caution (Greenland and Neutra 1980; 
Weinberg 1993). To regiment this caution, the associational criterion must be modified to 
exclude barren proxies from the test set T. This yields the following modified criterion 
in which T consists only of variables that (causally) influence Y (possibly through X).  

Definition 6.3.2 (No-Confounding; Modified Associational Criterion) 
Let T be the set of variables in a problem that are not affected by X but may potentially 
affect Y. We say that X and Y are unconfounded by the presence of T ifand only if every 
member Z of T satisfies either (U1) or (U2) of Definition 6.2.2. 

Stone (1993) and Robins (1997) proposed alternative modifications of Definition 6.2.2 
that avoid the problems created by barren proxies without requiring one to judge whether 
a variable has an effect on Y.  Instead of restricting the set T to potential causes of Y, we 
let T remain the set of all variables unaffected by X,13 requiring instead that T be com- 
posed of two disjoint subsets, TI  and T2, such that 

(U;) TI is unassociated with X and 

(U;) T2 is unassociated with Y given X and TI. 

In the model of Figure 6.3, for instance, conditions (U;") and (U;) are satisfied by the 
choice TI = A and T2 = (2, E), because (using the d-separation test) A is independent 
of X and E is independent of Y, given {X, A ) .  

This modification of the associational criterion further rectifies the problem associated 
with marginality (see Section 6.3.1) because (U;") and (U;) treat TI and T2 as compound 

l 2  Because the (back-door) path X + E + Z + A -. Y is blocked by the colliding arrows at Z 
(see Definition 3.3.1). 

l 3  Alternatively, T can be confined to any set S of variables sufficient for control of confounding: 

Again, however, we can never be sure if the measured variables in the model contain such a set, 
or which of T's subsets possess this property. 
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Figure 6.4 Z is associated with both X and Y, yet the effect of X on Y is 

X not confounded (when r = -a y ) . 

variables. However, the modification falls short of restoring necessity. Because the set 
T = (TI, T2) must include all variables unaffected by X (see note 13) and because prac- 
tical tests are limited to proper subsets of T, we cannot conclude that confounding is 
present solely upon the failure of (U;) and (Uz), as specified in Section 6.3.2. This cri- 
terion, too, is thus inadequate as a basis for practical detection of confounding. 

We now discuss another fundamental limitation on our ability to detect confounding 
by statistical means. 

6.3.4 Failing Necessity via Incidental Cancellations 

Here we present a case that is devoid of barren proxies and in which the effect of X on Y 
(i) is not confounded in the sense of (6.10) but (ii) is confounded according to the modi- 
fied associational criterion of Definition 6.3.2. 

Example 6.3.3 Consider a causal model defined by the linear equations 

where E ,  and ~2 are correlated unmeasured variables with cov(el, c2) = r and where 
Z is an exogenous variable that is uncorrelated with E, or ~ 2 .  The diagram associated 
with this model is depicted in Figure 6.4. The effect of X on Y is quantified by the 
path coefficient B, which gives the rate of change of E(Y 1 do(x)) per unit change 
in x.I4 

It is not hard to show (assuming standardized variables) that the regression of Y on X 
gives 

where cov(x, E) = 0. Thus, whenever the equality r = -ay holds, the regression co- 
efficient of r y ~  = p + r + a y is an unbiased estimate of p,  meaning that the effect of 
X on Y is unconfounded (no adjustment is necessary). Yet the associational conditions 
(Ul) and (U2) are both violated by the variable Z; Z is associated with X (if a # 0) 
and conditionally associated with Y, given X (except for special values of y for which 

P y z . n  = 0)- 

l4 See Sections 3.5-3.6 or (5.24) in Section 5.4.1. 
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This example demonstrates that the condition of unbiasedness (Definition 6.2.1) does 
not imply the modified criterion of Definition 6.3.2. The associational criterion might 
falsely classify some unconfounded situations as confounded and, worse yet, adjusting 
for the false confounder (2 in our example) will introduce bias into the effect estimate.I5 

6.4 STABLE VERSUS INCIDENTAL UNBIASEDNESS 

6.4.1 Motivation 
The failure of the associational criterion in the previous example calls for a reexamination 
of the notion of confounding and unbiasedness as defined in (6.10). The reason that X 
and Y were classified as unconfounded in Example 6.3.3 was that, by setting r = -a y, 
we were able to make the spurious association represented by r cancel the one mediated 
by 2. In practice, such perfect cancellation would be an incidental event specific to a pe- 
culiar combination of study conditions, and it would not persist when the parameters of 
the problem (i-e., a, y, and r) undergo slight changes - say, when the study is repeated 
in a different location or at a different time. In contrast, the condition of no-confounding 
found in Example 6.3.1 does not exhibit such volatility. In this example, the unbiased- 
ness expressed in (6.10) would continue to hold regardless of the strength of connection 
between education and exposure and regardless on how education and age influence the 
type of car that a patient owns. We call this type of unbiasedness stable, since it is ro- 
bust to change in parameters and remains intact as long as the configuration of causal 
connections in the model remains the same. 

In light of this distinction between stable and incidental unbiasedness, we need to 
reexamine whether we should regard a criterion as inadequate if it misclassifies (as con- 
founded) cases that are rendered unconfounded by mere incidental cancellation and, more 
fundamentally, whether we should insist on including such peculiar cases in the definition 
of unbiasedness (given the precarious conditions under which (6.10) would be satisfied 
in these cases). Although answers to these questions are partly a matter of choice, there 
is ample evidence that our intuition regarding confounding is driven by considerations of 
stable unbiasedness, not merely incidental ones. How else can we explain why genera- 
tions of epidemiologists and biostatisticians would advocate confounding criteria that fail 
in cases involving incidental cancellation? On the pragmatic side, failing to detect situa- 
tions of incidental unbiasedness should not introduce appreciable error in observational 
studies because those situations are short-lived and are likely to be refuted by subsequent 
studies, under slightly different conditions.16 

Assuming that we are prepared to classify as unbiased only cases in which unbiased- 
ness remains robust to changes in parameters, two questions remain: (1) How can we give 
this new notion of "stable unbiasedness" a formal, nonparametric formulation? (2) Are 
practical statistical criteria available for testing stable unbiasedness? Both questions can 
be answered using structural models. 

l5 Note that the Stone-Robins modifications of Definition 6.3.2 would also fail in this example, un- 
less we can measure the factors responsible for the correlation between and ~ 2 .  

l6 As we have seen in Example 6.3.3, any statistical test capable of recognizing such cases would 
require measurement of all variables in T. 
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Chapter 3 describes a graphical criterion, called the "back-door criterion," for iden- 
tifying conditions of unbiasedness in a causal diagram.17 In the simple case of no ad- 
justment (for measured covariates), the criterion states that X and Y are unconfounded 
if every path between X and Y that contains an arrow pointing into X must also contain 
a pair of arrows pointing head-to-head (as in Figure 6.3); this criterion is valid when- 
ever the missing links in the diagram represent absence of causal connections among the 
corresponding variables. Because the causal assumptions embedded in the missing links 
are so explicit, the back-door criterion has two remarkable features. First, no statisti- 
cal information is needed; the topology of the diagram suffices for reliably determining 
whether an effect is unconfounded (in the sense of Definition 6.2.1) and whether an ad- 
justment for a set of variables is sufficient for removing confounding when one exists. 
Second, any model that meets the back-door criterion would in fact satisfy (6.10) for an 
infinite class of models (or situations), each generated by assigning different parameters 
to the causal connections in the diagram. 

To illustrate, consider the diagram depicted in Figure 6.3. The back-door criterion 
will identify the pair (X, Y) as unconfounded, because the only path ending with an arrow 
into X is the one traversing (X, E, 2, A ,  Y), and this path contains two arrows pointing 
head-to-head at 2. Moreover, since the criterion is based only on graphical relationships, 
it is clear that (X, Y) will continue to be classified as unconfounded regardless of the 
strength or type of causal relationships that are represented by the arrows in the diagram. 
In contrast, consider Figure 6.4 in Example 6.3.3, where two paths end with arrows into 
X. Since none of these paths contains head-to-head arrows, the back-door criterion will 
fail to classify the effect of X on Y as unconfounded, acknowledging that an equality r = 
-a y (if it prevails) would not represent a stable case of unbiasedness. 

The vulnerability of the back-door criterion to causal assumptions can be demon- 
strated in the context of Figure 6.3. Assume the investigator suspects that variable Z (car 
type) has some influence on the outcome variable Y. This would amount to adding an ar- 
row from Z to Y in the diagram, classifying the situation as confounded, and suggesting 
an adjustment for E (or {A, 2)).  Yet no adjustment is necessary if, owing to the spe- 
cific experimental conditions in the study, Z has in fact no influence on Y. It is true that 
the adjustment suggested by the back-door criterion would introduce no bias, but such 
adjustment could be costly if it calls for superfluous measurements in a no-confounding 
situation.18 The added cost is justified in light of (i) the causal information at hand (i.e., 
that Z may potentially influence Y )  and (ii) our insistence on ensuring stable unbiased- 
ness - that is, avoiding bias in all situations compatible with the information at hand. 

" A gentle introduction to applications of the back-door criterion in epidemiology can be found in 
Greenland et al. (1999a). 

la  On the surface, it appears as though the Stone-Robins criterion would correctly recognize the ab- 
sence of confounding in this situation, since it is based on associations that prevail in the probability 
distribution that actually generates the data (according to which (E, Z }  should be independent of 
Y, given {A, X)). However, these associations are of no help in deciding whether certain mea- 
surements can be avoided; such decisions must be made prior to gathering the data and must rely 
therefore on subjective assumptions about the disappearance of conditional associations. Such as- 
sumptions are normally supported by causal, not associational, knowledge (see Section 1.3). 



6.4 Stable versus Incidental Unbiasedness 

6.4.2 Formal Definitions 

To formally distinguish between stable and incidental unbiasedness, we use the follow- 
ing general definition. 

Definition 6.4.1 (Stable Unbiasedness) 
Let A be a set of assumptions (or restrictions) on the data-generating process, and let 
CA be a class of causal models satisfying A. The effect estimate of X on Y is said to be 
stably unbiased given A if P ( y  I do(x ) )  = P(y  I x )  holds in every model M in CA. 
Correspondingly, we say that the pair ( X ,  Y )  is stably unconfounded given A. 

The assumptions commonly used to specify causal models can be either parametric or 
topological. For example, the structural equation models used in the social sciences and 
economics are usually restricted by the assumptions of linearity and normality. In this 
case, CA would consist of all models created by assigning different values to the unspeci- 
fied parameters in the equations and in the covariance matrix of the error terms. Weaker, 
nonparametric assumptions emerge when we specify merely the topological structure of 
the causal diagram but let the error distributions and the functional form of the equations 
remain undetermined. We now explore the statistical ramifications of these nonparamet- 
ric assumptions. 

Definition 6.4.2 (Structurally Stable No-Confounding) 
Let AD be the set of assumptions embedded in a causal diagram D. We say that X and Y 
are stably unconfounded given AD if P (y  I do(x ) )  = P(y I x )  holds in everyparame- 
terization of D. By "parameterization" we mean an assignment of functions to the links 
of the diagram and prior probabilities to the background variables in the diagram. 

Explicit interpretation of the assumptions embedded in a causal diagram are given in 
Chapters 3 and 5. Put succinctly, if D is the diagram associated with the causal model, 
then: 

1.  every missing arrow (between, say, X and Y) represents the assumption that X 
has no effect on Y once we intervene and hold the parents of Y fixed; 

2. every missing bidirected link between X and Y represents the assumption that 
there are no common causes for X and Y, except those shown in D. 

Whenever the diagram D is acyclic, the back-door criterion provides a necessary and suf- 
ficient test for stable no-confounding, given A D .  In the simple case of no adjustment for 
covariates, the criterion reduces to the nonexistence of a common ancestor, observed or 
latent, of X and Y." Thus, we have our next theorem. 

l9  The colloquial term "common ancestors" should exclude nodes that have no other connection to 
Y except through X (e.g., node E in Figure 6.3) and include latent nodes for correlated errors. In 
the diagram of Figure 6.4, for example, X and Y are understood to have two common ancestors; 
the first is Z and the second is the (implicit) latent variable responsible for the double-mowed arc 
between X and Y (i.e., the correlation between E I  and E ~ ) .  
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Theorem 6.4.3 (Common- Cause Principle) 
Let A D  be the set of assumptions embedded in an acyclic causal diagram D .  Variables X 
and Yare stably unconfounded given AD ifand only ifX and Y have no common ancestor 
in D.  

Proof 
The "if" part follows from the validity of the back-door criterion (Theorem 3.3.2). The 
"only if" part requires the construction of a specific model in which (6.10) is violated 
whenever X and Y have a common ancestor in D. This is easily done using linear mod- 
els and Wright's rules for path coefficients. 

Theorem 6.4.3 provides a necessary and sufficient condition for stable no-confounding 
without invoking statistical data, since it relies entirely on the information embedded in 
the diagram. Of course, the diagram itself has statistical implications that can be tested 
(Sections 1.2.3 and 5.2.1), but those tests do not specify the diagram uniquely (see Chap- 
ter 2 and Section 5.2.3). 

Suppose, however, that we do not possess all the information required for construct- 
ing a causal diagram and instead know merely for each variable Z whether it is safe to 
assume that Z has no effect on Y and whether X has no effect on Z. The question now 
is whether this more modest information, together with statistical data, is sufficient to 
qualify or disqualify a pair (X, Y) as stably unconfounded. The answer is positive. 

6.4.3 Operational Test for Stable No-Confounding 

Theorem 6.4.4 (Criterion for Stable No- Confounding) 
Let AZ denote the assumptions that (i) the data are generated by some (unspecified) 
acyclic model M and (ii) Z is a variable in M that is unaffected by X but may possibly 
affect Y.~' Ifboth of the associational criteria (Ul) and (U2) of Dejinition 6.2.2 are vio- 
lated, then (X, Y )  are not stably unconfounded given Az. 

Proof 
Whenever X and Y are stably unconfounded, Theorem 6.4.3 rules out the existence of a 
common ancestor of X and Y in the diagram associated with the underlying model. The 
absence of a common ancestor, in turn, implies the satisfaction of either (U1) or (U2) 
whenever Z satisfies AZ.  This is a consequence of the d-separation rule (Section 1.2.3) 
for reading the conditional independence relationships entailed by a diagram2' 

Theorem 6.4.4 implies that the traditional associational criteria (U,) and (U2) could be 
used in a simple operational test for stable no-confounding, a test that does not require 
us to know the causal structure of the variables in the domain or even to enumerate the 
set of relevant variables. Finding just any variable Z that satisfies AZ and violates (U1) 

20 By "possibly affecting Y" we mean: AZ does not contain the assumption that Z does not affect Y. 
In other words, the diagram associated with M must contain a directed path from Z to Y. 

2' It also follows from Theorem 7(a) in Robins (1997). 
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and (Uz) permits us to disqualify (X, Y) as stably unconfounded (though (X, Y) may 
be incidentally unconfounded in the particular experimental conditions prevailing in the 
study). 

Theorem 6.4.4 communicates a formal connection between statistical associations 
and confounding that is not based on the closed-world assumption.22 It is remarkable 
that the connection can be formed under such weak set of added assumptions: the qualita- 
tive assumption that a variable may have influence on Y and is not affected by X suffices 
to produce a necessary statistical test for stable no-confounding. 

6.5 CONFOUNDING, COLLAPSIBILITY, AND 
EXCHANGEABILITY 

6.5.1 Confounding and Collapsibility 

Theorem 6.4.4 also establishes a formal connection between confounding and "collapsi- 
bility" - a criterion under which a measure of association remains invariant to the omission 
of certain variables. 

Definition 6.5.1 (Collapsibility) 
Let g [ P ( x ,  y )] be any that measures the association between Y and X in the 
joint distribution P(x,  y). We say that g is collapsible on a variable Z if 

It is not hard to show that if g  stands for any linear functional of P (y  I x) - for exam- 
ple, the risk difference P(y I x l )  - P(y I x2) - then collapsibility holds whenever Z 
is either unassociated with X or unassociated with Y given X. Thus, any violation of 
collapsibility implies violation of the two statistical criteria of Definition 6.2.2, and that 
is probably why many believed noncollapsibility to be intimately connected with con- 
founding. However, the examples in this chapter demonstrate that violation of these two 
conditions is neither sufficient nor necessary for confounding. Thus, noncollapsibility 
and confounding are in general two distinct notions; neither implies the other. 

Some authors tend to believe that this distinction is a peculiar property of nonlin- 
ear effect measures g ,  such as the odds or likelihood ratios, and that "when the effect 
measure is an expectation over population units, confounding and noncollapsibility are 
algebraically equivalent7' (Greenland 1998, p. 906). This chapter shows that confound- 
ing and noncollapsibility need not correspond even in linear functionals. For example, 
the effect measure P(y I xl) - P(y  I x2) (the risk difference) is not collapsible over Z 
in Figure 6.3 (for almost every parameterization of the graph) and yet the effect measure 
is unconfounded (for every parameterization). 

22 I am not aware of another such connection in the literature. 
23 Afinctional is an assignment of a real number to any function from a given set of functions. For 

example, the mean E ( X )  = C, x P ( x )  is a functional, since it assigns a real number E ( X )  to each 
probability function P ( x ) .  
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The logical connection between confounding and collapsibility is fonned through the 
notion of stable no-confounding, as formulated in Definition 6.4.2 and Theorem 6.4.4. 
Because any violation of collapsibility means violation of (Ul) and (Uz) in Definition 
6.2.2, it also implies (by Theorem 6.4.4) violation of stable unbiasedness (or stable no- 
confounding). Thus we can state the following corollary. 

Corollary 6.5.2 (Stable No-Confounding Implies Collapsibility) 
Let Z be any variable that is not affected by Xand that maypossibly affect Y. Let g [ P ( x ,  y )] 
be any linear functional that measures the association between X and Y. Ifg is not col- 
lapsible on Z, then X and Yare not stably unconfounded. 

This corollary provides a rationale for the widespread practice of testing confoundedness 
by the change-in-parameter method, that is, labeling a variable Z a confounder whenever 
the "crude" measure of association, g [ P ( x ,  y)], is not equal to the Z-specific measures 
of association averaged over the levels of Z (Breslow and Day 1980; Kleinbaum et al. 
1982; Yanagawa 1984; Grayson 1987). Theorem 6.4.4 suggests that the intuitions respon- 
sible for this practice were shaped by a quest for a stable condition of no-confounding, 
not merely an incidental one. Moreover, condition AZ in Theorem 6.4.4 justifies a re- 
quirement made by some authors that a confounder must be a causal determinant of, and 
not merely associated with, the outcome variable Y. 

6.5.2 Confounding versus Confounders 
The focus of our discussion in this chapter has been the phenomenon of confounding, 
which we equated with that of effect bias (Definition 6.2.1). Much of the literature on 
this topic has been concerned with the presence or absence of confounders, presuming 
that some variables possess the capacity to confound and some do not. This notion may 
be misleading if interpreted literally, and caution should be exercised before we label a 
variable as a confounder. 

Rothman and Greenland (1998, p. 120), for example, offer this definition: "The ex- 
traneous factors responsible for difference in disease frequency between the exposed and 
unexposed are called confounders"; they go on to state that: "In general, a confounder 
must be associated with both the exposure under study and the disease under study to 
be confounding" (p. 121). Rothman and Greenland qualify their statement with "In gen- 
eral," and for good reason: We have seen (in the two-coin example of Section 6.3.1) that 
each individual variable in a problem can be unassociated with both the exposure (X) 
and the disease (Y)  under study and still the effect of X on Y remains confounded. A 
similar situation can also be seen in the linear model depicted in Figure 6.5. Although Z 
is clearly a confounder for the effect of X on Y and must therefore be controlled, the as- 
sociation between Z and Y may actually vanish (at each level of X )  and the association 
between Z and X may vanish as well. This can occur if the indirect association mediated 
by the path Z - A -+ Y happens to cancel the direct association carried by the arrow 
Z -, Y, This cancellation does not imply the absence of confounding, because the path 
X t E -* Z -, Y is unblocked while X e E + Z - A -, Y is blocked. Thus, Z 
is a confounder that is associated neither with the exposure (X) nor with the disease (Y). 

The intuition behind Rothman and Greenland's statement just quoted can be expli- 
cated formally through the notion of stability: a variable that is stably unassociated with 
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Figure 6.5 Z may be unassociated with both X and Y and still be a 
confounder (i.e., a member of every sufficient set). 

X Y 

either X or Y can safely be excluded from adjustment. Alternatively, Rothman and 
Greenland's statement can be supported (without invoking stability) by using the notion 
of minimal sufficient set (Section 3.3) - a minimal set of variables for which adjustment 
will remove confounding bias. It can be shown (see the end of this section) that each 
such sufficient set S, taken as a unit, must indeed be associated with X and be condition- 
ally associated with Y, given X. Thus, Rothman and Greenland's condition is valid for 
minimal sufficient sets but not for the individual variables in a problem. 

The practical ramifications of this condition are as follows. If we are given a set S 
of variables that is claimed to be minimally sufficient (for removing bias by adjustment), 
then that claim can be given a necessary statistical test: S as a compound variable must 
be associated both with X and with Y (given X). In Figure 6.5, for example, the minimal 
sufficient sets are S1 = ( A ,  Z }  and S2 = ( E ,  2 ) ;  both must satisfy the condition stated. 

Note that, although this test can be used for screening sets claimed to be minimally 
sufficient, it does not constitute a test for detecting confounding. Even if we find a set S 
in a problem that is associated with both X and Y, we are still unable to conclude that X 
and Y are confounded. Our findlng merely qualifies S as a candidate for minimally suf- 
ficient status in case confounding exists, but we cannot rule out the possibility that the 
problem is unconfounded to start with. (The sets S = (E, A} or S = ( 2 )  in Figure 6.1 
illustrate this point.) Observing a discrepancy between adjusted and unadjusted associ- 
ations (between X and Y) does not help us either, because (recalling our discussion of 
collapsibility) we do not know which - the preadjustment or postadjustment association - 
is unbiased (see Figure 6.4). 

Proof of Necessity 

To prove that ( U l )  and (U2) must be violated whenever Z stands for a minimally suf- 
ficient set S, consider the case where X has no effect on Y. In this case, confounding 
amounts to a nonvanishing association between X and Y. A well-known property of con- 
ditional independence, called contraction (Section 1.1.5), states that violation of (U1), 
X l L  S, together with sufficiency, X IL Y I S, implies violation of minimality, X IL Y: 

X l L S  & X l l Y  1 S * XlLY. 

Likewise, another property of conditional independence, called intersection, states that 
violation of (U2), S l L  Y I X, together with sufficiency, X II Y I S ,  also implies viola- 
tion of rninimality, X l L  Y: 

S l L Y  1 X & X l L Y  1 S ==. XlLY. 

Thus, both (U,) and (U2) must be violated by any minimally sufficient set Z in Defini- 
tion 6.2.2. 
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Note, however, that intersection holds only for strictly positive probability distribu- 
tions, which means that the Rothman-Greenland condition may be violated if determin- 
istic relationships hold among some variables in a problem. This can be seen from a 
simple example in which both X and Y stand in a one-to-one functional relationship to 
a third variable, Z. Clearly, Z is a minimally sufficient set yet is not associated with Y 
given X; once we know the value of X, the probability of Y is determined and would no 
longer change with learning the value of 2. 

6.5.3 Exchangeability versus Structural Analysis of Confounding 

Students of epidemiology complain bitterly about the confusing way in which the fun- 
damental concept of confounding has been treated in the literature. A few authors have 
acknowledged the confusion (e.g. Greenland and Robins 1986; Wickramaratne and Hol- 
ford 1987; Weinberg 1993) and have suggested new ways of looking at the problem that 
might lead to more systematic analysis. Greenland and Robins (GR), in particular, have 
recognized the same basic principIes and results that we have expounded here in Sections 
6.2 and 6.3. Their analysis represents one of the few bright spots in the vast literature 
on confounding in that it treats confounding as an unknown causal quantity that is not 
directly measurable from observed data. They further acknowledge (as do Miettinen 
and Cook 1981) that the presence or absence of confounding should not be equated with 
absence or presence of collapsibility and that confounding should not be regarded as a 
parameter -dependent phenomenon. 

However, the structural analysis presented in this chapter differs in a fundamental 
way from that of GR, who have pursued an approach based on judgment of "exchange- 
ability." In Section 6.1 we encountered a related notion of exchangeability, one with 
which Lindley and Novick (1981) attempted to view Simpson's paradox; GR's idea of ex- 
changeability is more concrete and more clearly applicable. Conceptually, the connection 
between confounding and exchangeability is as follows. If we undertake to assess the ef- 
fect of some treatment, we ought to make sure that any response differences between the 
treated and the untreated group is due to the treatment itself and not to some intrinsic dif- 
ferences between the groups that are unrelated to the treatment. In other words, the two 
groups must resemble each other in all characteristics that have bearing on the response 
variable. In principle, we could have ended the definition of confounding at this point, 
declaring simply that the effect of treatment is unconfounded if the treated and untreated 
groups resemble each other in all relevant features. This definition, however, is too ver- 
bal in the sense that it is highly sensitive to interpretation of the terms "resemblance" and 
"relevance." To make it less informal, GR used De Finetti's twist of hypothetical permu- 
tation; instead of judging whether two groups are similar, the investigator is instructed to 
imagine a hypothetical exchange of the two groups (the treated group becomes untreated, 
and vice versa) and then to judge whether the observed data under the swap would be 
distinguishable from the actual data. 

One can justifiably ask what has been gained by this mental exercise, relative to judg- 
ing directly if the two groups are effectively identical. The gain is twofold. First, people 
are quite good in envisioning dynamic processes and can simulate the outcome of this 
swapping scenario from basic understanding of the processes that govern the response 
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to treatment and the factors that affect the choice of treatment. Second, moving from 
judgment about resemblance to judgment about probabilities permits us to cast those 
judgments in probabilistic notation and hence to invite the power and respectability of 
probability calculus. 

Greenland and Robins made an important first step toward this formalization by bring- 
ing notation closer to where judgment originates - the human understanding of causal 
processes. The structural approach pursued in this book takes the next, natural step: for- 
malizing the causal processes themselves. 

Let A and B stand (respectively) for the treated and untreated groups, and let PA, (y) 
and PAO(y) stand (respectively) for the response distribution of group A under two hypo- 
thetical conditions, treatment and no treatment.24 If our interest lies in some parameter 
p of the response distribution, we designate by , U A ~  and p ~ 0  the values of that parameter 
in the corresponding distribution PA1(y) and PAo(y), with p ~ 1  and p ~ 0  defined similarly 
for group B. In actuality, we measure the pair (pAI,  ~ B O ) ;  after the hypothetical swap, 
we would measure (pB1, pAO). We define the groups to be exchangeable relative to pa- 
rameter w if the two pairs are indistinguishable, that is, if 

In particular, if we define the causal effect by the difference CE = ,UAI - p ~ o ,  then ex- 
changeability permits us to replace ~ A O  with ~ B O  and so obtain CE =  LA^ - ~ B O ,  which 
is measurable because both quantities are observed. Greenland and Robins thus declare 
the causal effect CE to be unconfounded if p ~ o  = p ~ o .  

If we compare this definition to that of (6.10), P(y I do(x)) = P(y I x) ,  we find that 
the two coincide if we rewrite the latter as p[P(y I do(x))] = p[P(y I x ) ] ,  where p 
is the parameter of interest in the response distribution. However, the major difference 
between the structural and the GR approaches lies in the level of analysis. Structural mod- 
eling extends the formalization of confounding in two important directions. First, (6.10) 
is not submitted to direct human judgment but is derived mathematically from more ele- 
mcntary judgments concerning causal processes.25 Second, the input judgments needed 
for the structural model are both qualitative and stable. 

A simple example will illustrate the benefits of these features. Consider the following 
statement (Greenland 1998): 

( Q * )  "if the effect measure is the difference or ratio of response proportions, then 
the above phenomenon - noncollapsibility without confounding - cannot oc- 
cur, nor can confounding occur without noncollapsibility." 

We have seen in this chapter that statement (Q*) should be qualified in several ways 
and that, in general, noncollapsibility and confounding are two distinct notions - nei- 
ther implying the other, regardless of the effect measure (Section 6.5.1). However, the 

24 In do( . )  notation, we would write PAI(y )  = PA(y I do(X = 1)). 
25 Recall that the do( . )  operator is defined mathematically in terms of equation deletion in structural 

equation models; consequently, the verification of the nonconfounding condition P ( y  I do(x ) )  = 
P(y  I x )  in a given model is not a matter of judgment but a subject of mathematical analysis. 
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question we wish to discuss here is methodological: What formalism would be appro- 
priate for validating, refuting, or qualifying statements of this sort? Clearly, since (Q*)  
makes a general claim about all instances, one counterexample would suffice to refute 
its general validity. But how do we construct such a counterexampIe? More generally, 
how do we construct examples that embody properties of confounding, effect bias, causal 
effects, experimental versus nonexperimental data, counterfactuals, and other causality- 
based concepts? 

In probability theory, if we wish to refute a general statement about parameters and 
their relationship we need only present one density function f for which that relation- 
ship fails to hold. In propositional logic, in order to show that a sentence is false, we need 
only present one truth table T that satisfies the premises and violates the conclusions. 
What, then, is the mathematical object that should replace f or T when we wish to refute 
causal claims like statement (Q*)? The corresponding object used in the exchangeabil- 
ity framework of Greenland and Robins is a counterfactual contingency table (see e.g. 
Greenland et al. 1999b, p. 905, or Figure 1.7 in Section 1.4.4). For instance, to illustrate 
confounding, we need two such tables: one describing the hypothetical response of the 
treated group A to both treatment and nontreatment, and one describing the hypothetical 
response of the untreated group B to both treatment and nontreatment. If the tables show 
that the parameter FAO, computed from the hypothetical response of the treated group 
to no treatment, differs from ~ B O ,  computed from the actual response of the untreated 
group, then we have confounding on our hands. 

Tables of this type can easily be constructed for simple problems involving one treat- 
ment and one response variable, but they become a nightmare when several covariates 
are involved or when we wish to impose certain constraints on those covariates. For ex- 
ample, we may wish to incorporate the standard assumption that a covariate Z does not 
lie on the causal pathway between treatment and response, or that Z has causal influence 
on Y, but such assumptions cannot conveniently be expressed in counterfactual contin- 
gency tables. As a result, the author of the claim to be refuted could always argue that the 
tables used in the counterexample may be inconsistent with the agreed ass~rnpt ions .~~ 

Such difficulties do not plague the structural representation of confounding. In this 
formalism, the appropriate object for exemplifying or refuting causal statements is a 
causal model, as defined in Chapter 3 and used throughout this book. Here, hypotheti- 
cal responses (pAO and pBO) and contingency tables are not the primitive quantities but 
rather are derivable from a set of equations that already embody the assumptions we wish 
to respect. Every parameterization of a structural model implies (using the do(-)  opera- 
tor) a specific set of counterfactual contingency tables that satisfies the input assumptions 
and exhibits the statistical properties displayed in the graph. For example, any parame- 
terization of the graph in Figure 6.3 generates a set of counterfactual contingency tables 
that already embodies the assumptions that Z is not on the causal pathway between X 
and Y and that Z has no causal effect on Y, and almost every such parameterization will 
generate a counterexample to claim (Q*). Moreover, we can also disprove ( Q * )  by a 
casual inspection of the diagram and without generating numerical counterexamples. In 

26 Readers who attempt to construct a counterexample to statement (Q*) using counterfactual con- 
tingency tables will certainly appreciate this difficulty. 
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Figure 6.3, for example, shows vividly that the risk difference P ( y  I x l )  - P ( y  I x2) is 
not collapsible on Z and, simultaneously, that X and Y are (stably) unconfounded. 

The difference between the two formulations is even more pronounced when we come 
to substantiate, not refute, generic claims about confounding. Here it is not enough to 
present a single contingency table; instead, we must demonstrate the validity of the claim 
for all tables that can possibly be constructed in compliance with the input assumptions. 
This task, as the reader surely realizes, is a hopeless exercise within the framework of 
contingency tables; it calls for a formalism in which assumptions can be stated succinctly 
and in which conclusions can be deduced by mathematical derivations. The structural 
semantics offers such formalism, as demonstrated by the many generic claims proven in 
this book (examples include Theorem 6.4.4 and Corollary 6.5.2). 

As much as I admire the rigor introduced by Greenland and Robins's analysis through 
the framework of exchangeability, I am thoroughly convinced that the opacity and inflexi- 
bility of counterfactual contingency tables are largely responsible for the slow acceptance 
of the GR framework among epidemiologists and, as a byproduct, for the lingering con- 
fusion that surrounds confounding in the statistical literature at large. I am likewise 
convinced that formulating claims and assumptions in the language of structural models 
will make the mathematical analysis of causation accessible to rank-and-file researchers 
and thus lead eventually to a total and natural disconfounding of confounding. 

6.6 CONCLUSIONS 

Past efforts to establish a theoretical connection between statistical associations (or col- 
lapsibility) and confounding have been unsuccessful for three reasons. First, the lack of 
mathematical language for expressing claims about causal relationships and effect bias 
has made it difficult to assess the disparity between the requirement of effect unbiasedness 
(Definition 6.2.1) and statistical criteria purporting to capture unbia~edness.~' Second, 
the need to exclude barren proxies (Figure 6.3) from consideration has somehow escaped 
the attention of researchers. Finally, the distinction between stable and incidental un- 
biasedness has not received the attention it deserves and, as we observed in Example 
6.3.3, no connection can be formed between associational criteria (or collapsibility) and 
confounding without a commitment to the notion of stability. Such commitment rests crit- 
ically on the conception of a causal model as an assembly of autonomous mechanisms 
that may vary independently of one another (Aldrich 1989). It is only in anticipation 
of such independent variations that we are not content with incidental unbiasedness but 
rather seek conditions of stable unbiasedness. The mathematical formalization of this 
conception has led to related notions of DAG-isomorph (Pearl 1988b, p. 128), stability 

27 The majority of papers on collapsibility (e.g. Bishop 1971; Whitternore 1978; Wermuth 1987; 
Becher 1992; Geng 1992) motivate the topic by citing Simpson's paradox and the dangers of ob- 
taining confounded effect estimates. Of these, only a handful pursue the study of confounding or 
effect estimates; most prefer to analyze the more manageable phenomenon of collapsibility as a 
stand-alone target. Some go as far as naming collapsibility "nonconfoundedness" (Grayson 1987; 
Steyer et al. 1997). 
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(Pearl and Verma 1991), and faithfilness (Spirtes et al. 1993), which assist in the eluci- 
dation of causal diagrams from sparse statistical associations (see Chapter 2). The same 
conception has evidently been shared by authors who aspired to connect associational 
criteria with confounding. 

The advent of structural model analysis, assisted by graphical methods, offers a math- 
ematical framework in which considerations of confounding can be formulated and man- 
aged more effectively. Using this framework, this chapter explicates the criterion of stable 
unbiasedness and shows that this criterion (i) has implicitly been the target of many in- 
vestigations in epidemiology and biostatistics, and (ii) can be given operational statistical 
tests similar to those invoked in testing collapsibility. We further show (Section 6.5.3) 
that the structural framework overcomes basic cognitive and methodological barriers that 
have made confounding one of the most confused topics in the literature. It is therefore 
natural to predict that this framework will become the primary mathematical basis for 
future studies of confounding. 
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CHAPTER SEVEN 

The Logic of Structure-Based Counterfactuals 

And the Lord said, 
"Zflfina' in the city of SodomJifry good men, 
I will pardon the whole place for their sake." 

Genesis 18:26 

Preface 

This chapter provides a formal analysis of structure-based counte~actuals, a concept 
introduced briefly in Chapter 1 that will occupy the rest of our discussion in this book. 
Through this analysis, we will obtain sharper mathematical definitions of other concepts 
that were introduced in earlier chapters, including causal models, action, causal effects, 
causal relevance, error terms, and exogeneity. 

After casting the concepts of causal model and counterfactuals in abstract mathemati- 
cal terms, we will demonstrate by examples how counterfactual questions can be answered 
from both deterministic and probabilistic causal models (Section 7.1). In Section 7.2.1, we 
will argue that policy analysis is an exercise in counterfactual reasoning and demonstrate 
this thesis in a simple example taken from econometrics. This will set the stage for our 
discussion in Section 7.2.2, where we explicate the empirical content of counterfactuals in 
terms of policy predictions. Section 7.2.3 discusses the role of counterfactuals in the inter- 
pretation and generation of causal explanations. Section 7.2 concludes with discussions 
of how causal relationships emerge from actions and mechanisms (Section 7.2.4) and how 
causal directionality can be induced from a set of symmetric equations (Section 7.2.5). 

In Section 7.3 we develop an axiomatic characterization of counterfactual and causal 
relevance relationships as they emerge from the structural model semantics. Section 7.3.1 
will identify a set of properties, or axioms, that allow us to derive new counterfactual re- 
lations from assumptions, and Section 7.3.2 demonstrates the use of these axioms in 
algebraic derivation of causal effects. Section 7.3.3 introduces axioms for the relation- 
ship of causal relevance and, using their similarity to the axioms of graphs, describes the 
use of graphs for verifying relevance relationships. 

The axiomatic characterization developed in Section 7.3 enables us to compare struc- 
tural models with other approaches to causality and counterfactuals, most notably those 
based on Lewis's closest-world semantics (Sections 7.4.1-7.4.4). The formal equiva- 
lence of the structural approach and the Neyman-Rubin potential-outcome framework is 
discussed in Section 7.4.4. Finally, we revisit the topic of exogeneity and extend our dis- 
cussion of Section 5.4.3 with counterfactual definitions of exogenous and instrumental 
variables in Section 7.4.5. 
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The final part of this chapter (Section 7.5) compares the structural account of causal- 
ity with that based on probabilistic relationships. We elaborate our preference toward the 
structural account and highlight the difficulties that the probabilistic account is currently 
facing. 

7.1 STRUCTURAL MODEL SEMANTICS 

How do scientists predict the outcome of one experiment from the results of other experi- 
ments run under totally different conditions? Such predictions require us to envision what 
the world would be like under various hypothetical changes and so invoke counte~uctual 
inference. Though basic to scientific thought, counterfactual inference cannot easily be 
formalized in the standard languages of logic, algebraic equations, or probability. The 
formalization of counterfactual inference requires a language within which the invariant 
relationships in the world are distinguished from transitory relationships that represent 
one's beliefs about the world, and such distinction is not supported by standard algebras, 
including the algebra of equations, Boolean algebra, and probability calculus. Structural 
models offer such distinction, and this section presents a structural model semantics of 
counterfactuals as defined in Balke and Pearl (1995), Galles and Pearl (1997,1998), and 
Halpern (1998).' Related approaches have been proposed in Simon and Rescher (1966), 
Robins (1986), and Ortiz (1999). 

We start with a deterministic definition of a causal model, which consists (as we 
have discussed in earlier chapters) of functional relationships among variables of inter- 
est, each relationship representing an autonomous mechanism. Causal and counterfactual 
relationships are defined in this model in terms of response to local modifications of those 
mechanisms. Probabilistic relationships emerge naturally by assigning probabilities to 
background conditions. After demonstrating, by examples, how this model facilitates the 
computation of counterfactuals in both deterministic and probabilistic contexts (Section 
7.1.2), we then present a general method of computing probabilities of counterfactual ex- 
pressions using causal diagrams (Section 7.1.3). 

7.1.1 Definitions: Causal Models, Actions, and Counterfactuals 

A "model," in the common use of the word, is an idealized representation of reality that 
highlights some aspects and ignores others. In logical systems, however, a model is a 
mathematical object that assigns truth values to sentences in a given language, where 
each sentence represents some aspect of reality. Truth tables, for example, are models 
in propositional logic; they assign a truth value to any Boolean expression, which may 
represent an event or a set of conditions in the domain of interest. A joint probability 
function, as another example, is a model in probability logic; it assigns a truth value to 
any sentence of the form P ( A  I B) < p, where A and B are Boolean expressions rep- 
resenting events. A causal model, naturally, should encode the truth values of sentences 

' Similar models, called "neuron diagrams" (Lewis 1986, p, 200; Hall 1998) are used informally by 
philosophers to illustrate chains of causal processes. 



7.1 Structural Model Semantics 

that deal with causal relationships; these include action sentences (e.g., " A  will be true 
if we do B"), counterfactuals (e.g., "A would have been different were it not for B"), 
and plain causal utterances (e.g., "A may cause B" or " B  occurred because of A"). Such 
sentences cannot be interpreted in standard propositional logic or probability calculus be- 
cause they deal with changes that occur in the external world rather than with changes in 
our beliefs about a static world. Causal models encode and distinguish information about 
external changes through an explicit representation of the mechanisms that are altered in 
such changes. 

Definition 7.1.1 (Causal Model) 
A causal model is a triple 

M = (U, V, F ) .  

where: 

( i)  U is a set of background variables, (also called exogenous2), that are deter- 
mined by factors outside the model; 

(ii) V is a set ( V, , V2, . . . , V, ) of variables, called endogenous, that are determined 
by variables in the model - that is, variables in U U V; and 

(iii) F is a set offinctions ( f  f2,  . . . , f,, ] such that each fi is a mapping from (the 
respective domains o f )  U U (V \ K )  to V,  and such that the entire set F forms 
a mapping from U to V. In other words, each J;. tells us the value c$ given 
the values of all other variables in U U V ,  and the entire set F has a unique solu- 
tion v ( u ) . ~  Symbolically, the set of equations F can be represented by writing 

vi = f i (pai ,  u i ) ,  i = 1 ,  . . . , n ,  

where pai is any realization ofthe unique minimal set of variables PAi in 
V \ (connoting parents) suficient for representing fi. Likewise, Ui U 
stands for the unique minimal set of variables in U suficient for representing 

f i  a4 

Every causal model M can be associated with a directed graph, G ( M ) ,  in which each 
node corresponds to a variable and the directed edges point from members of PA; and 
Ui toward x. We call such a graph the causal diagram associated with M .  This graph 
merely identifies the endogenous and background variables that have direct influence on 
each V i ;  it does not specify the functional form of J;.. The convention of confining the 
parent set PA; to variables in V stems from the fact that the background variables are of- 
ten unobservable. In general, however, we can extend the parent sets to include observed 
variables in U. 

We will try to refrain from using the term "exogenous" in referring to background conditions, be- 
cause this term has acquired more refined technical connotations (see Sections 5.4.3 and 7.4). The 
term "predetermined" is used in the econometric literature. 

Wniqueness is ensured in recursive (i.e. acyclic) systems. Halpern (1998) allows multiple solutions 
in nonrecursive systems. 
A set of variables X is suficient for representing a function y = f (x, z )  if f is trivial in Z - that 
is, if for every x, z, z' we have f ( x ,  z )  = f (x. z ' ) .  
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Definition 7.1.2 (Submodel) 
Let M be a causal model, X a set of variables in V, and x a particular realization of X .  
A submodel Mx of M is the causal model 

where 

In words, Fx is formed by deleting from F all functions fi corresponding to members of 
set X and replacing them with the set of constant functions X = x. 

Submodels are useful for representing the effect of local actions and hypothetical 
changes, including those implied by counterfactual antecedents. If we interpret each 
function fi in F as an independent physical mechanism and define the action do(X = 
X) as the minimal change in M required to make X = x hold true under any u ,  then M, 
represents the model that results from such a minimal change, since it differs from M 
by only those mechanisms that directly determine the variables in X. The transforma- 
tion from M to Mx modifies the algebraic content of F, which is the reason for the name 
"modifiable structural equations" used in Galles and Pearl (1998).~ 

Definition 7.1.3 (Effect of Action) 
Let M be a causal model, X a set of variables in V, and x a particular realization of X .  
The effect of action do(X = x) on M is given by the submodel M,. 

Definition 7.1.4 (Potential Response) 
Let Xand Y be two subsets of variables in V. The potential response of Y to action do(X = 
x ) ,  denoted Y, (u ) ,  is the solution for Y of the set of equations F, .6 

We will confine our attention to actions in the form of do(X = x) .  Conditional actions 
of the form "do(X = x) if Z = z" can be formalized using the replacement of equations 
by functions of 2, rather than by constants (Section 4.2). We will not consider disjunc- 
tive actions of the form "do(X = x or Z = z)," since these complicate the probabilistic 
treatment of counterfactuals. 

Definition 7.1.5 (Counterfactual) 
Let X and Y be two subsets of var-iables in V. The countei$actual sentence "The value 
that Y would have obtained, had X been x" is interpreted as denoting the potential re- 
sponse Yx ( u )  . 

Structural modifications date back to Marschak (1950) and Simon (1953). An explicit translation 
of interventions into "wiping out" equations from the model was first proposed by Strotz and Wold 
(1960) and later used in Fisher (1970), Sobel (1990), Spirtes et al. (1993), and Pearl (1995a). A 
similar notion of submodel was introduced by Fine (1985), though not specifically for representing 
actions and counterfactuals. 
If Y is a set of variables Y = (Y1, Y2, . . . ), then Y,(u) stands for a vector of functions (Yl.t (u),  
Y2x(u), ... ). 
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Definition 7.1.5 thus interprets the counterfactual phrase "had X been x" in terms of a hy- 
pothetical modification of the equations in the model; it simulates an external action (or 
spontaneous change) that modifies the actual course of history and enforces the condition 
"X = x" with minimal change of mechanisms. This is a crucial step in the semantics of 
counterfactuals (Balke and Pearl 1994b), as it permits x to differ from the current value of 
X(u) without creating logical contradiction; it also suppresses abductive inferences (or 
backtracking) from the counterfactual antecedent X = x.' In Chapter 3 (Section 3.6.3) 
we used the notation Y (x , u) to denote the subjunctive conditional "the value that Y would 
obtain in unit u, had X been x" (as used in the Neyman-Rubin potential-outcome model). 
Throughout the rest of this book we will use the notation Y,(u) to denote counterfactu- 
als tied specifically to the structural model interpretation of Definition 7.1.5 (paralleling 
(3.51)); Y(x, u) will be reserved for generic subjunctive conditionals, uncommitted to 
any specific semantics. 

Definition 7.1.5 endows the atomic mechanisms { A )  themselves with interventional- 
counterfactual interpretation, because vi = f , ( p a i ,  ui) is the value of V, in the submodel 
Mu\,, . In other words, f, (pai ,  ui) stands for the potential response of V, when we hold 
constant all other variables in V. 

This formulation generalizes naturally to probabilistic systems as follows. 

Definition 7.1.6 (Probabilistic Causal Model) 
A probabilistic causal model is a pair 

where M is a causal model and P(u) is a probability function dejined over the domain 
of U. 

The function P(u), together with the fact that each endogenous variable is a function of 
U, defines a probability distribution over the endogenous variables. That is, for every set 
of variables Y V, we have 

The probability of counterfactual statements is defined in the same manner, through the 
function Yx(u) induced by the submodel M,: 

Likewise, a causal model defines a joint distribution on counterfactual statements. 
That is, P(Yx = y, Z, = z )  is defined for any (not necessarily disjoint) sets of vari- 
ables Y, X, Z, and W. In particular, P(Y, = y ,  X = x') and P(Y, = y, Y,I = y') are 
well-defined for x # x' and are given by 

Simon and Rescher (1966, p. 339) did not include this step in their account of counterfactuals and 
noted that backward inferences triggered by the antecedents can lead to ambiguous interpretations. 
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and 

P(Yx = y ,  Yx1 = y') = C P(u). 
{U I Yx(u)=y & Yxl(u)=yl} 

If x and x' are incompatible then Yx and Y,l cannot be measured simultaneously, and 
it may seem meaningless to attribute probability to the joint statement "Y would be y if 
X = x and Y would be y' if X = x'." Such concerns have been a source of recent ob- 
jections to treating counterfactuals as jointly distributed random variables (Dawid 1997). 
The definition of Yx and YXl in terms of two distinct submodels, driven by a standard 
probability space over U, explains away these objections (see Section 7.2.2) and further 
illustrates that joint probabilities of counterfactuals can be encoded rather parsimoniously 
using P(u) and F. 

Of particular interest to us would be probabilities of counterfactuals that are condi- 
tional on actual observations. For example, the probability that event X = x "was the 
cause" of event Y = y may be interpreted as the probability that Y would not be equal 
to y had X not been x ,  given that X = x and Y = y have in fact occurred (see Chap- 
ter 9 for an in-depth discussion of the probabilities of causation). Such probabilities are 
well-defined in the model just described; they require the evaluation of expressions of 
the form P(Y,l = y ' 1 X = x. Y = y) with x' and y' incompatible with x and y , re- 
spectively. Equation (7.4) allows the evaluation of this quantity as follows: 

P(Y,, = y', X = x,  Y = y) 
P(Yy = y' I X = x ,  Y = y) = 

P(X = x ,  Y = y) 

In other words, we first update P(u) to obtain P(u I x ,  y) and then use the updated dis- 
tribution P(u I x ,  y) to compute the expectation of the index function Y,/(u) = y'. 

This substantiates the three-step procedure introduced in Section 1.4, which we now 
summarize in a theorem. 

Theorem 7.1.7 
Given model (M, P(u)), the conditional probability P(BA I e) of a counte@actual sen- 
tence " I f  it were A then B," given evidence e, can be evaluated using thefol!owing three 
steps. 

1. Abduction - Update P(u) by the evidence e to obtain P(u I e). 

2. Action - ModifL. M by the action do(A), where A is the antecedent of the coun- 
tevactual, to obtain the submodel MA. 

3. Prediction - Use the modijied model (MA, P(u I e)) to compute the probability 
of B, the consequence of the counterJactua1. 
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(I (Court order) 

T 

c (Captain) 6 Figure 7.1 Causal relationships in the example of the two- 
man firing squad. 

A B (Riflemen) 

D (Death) 

To complete this section, we introduce two additional objects that will prove useful in 
subsequent discussions: worlds8 and theories. 

Definition 7.1.8 (Worlds and Theories) 
A causal world w is a pair ( M ,  u ) ,  where M is a causal model and u is a particular re- 
alization of the background variables U .  A causal theory is a set of causal worlds. 

A world w can be viewed as a degenerate probabilistic model for which P(u) = 1. Causal 
theories will be used to characterize partial specifications of causal models, for example, 
models sharing the same causal diagram or models in which the functions f; are linear 
with undetermined coefficients. 

7.1.2 Evaluating Counterfactuals: Deterministic Analysis 

In Section 1.4.1 we presented several examples demonstrating the interpretation of ac- 
tions and counterfactuals in structural models. We now apply the definitions of Section 
7.1.1 to demonstrate how counterfactual queries, both deterministic and probabilistic, can 
be answered formally using structural model semantics. 

Example 1: The Firing Squad 

Consider a two-man firing squad as depicted in Figure 7.1, where A ,  B, C ,  D, and U 
stand for the following propositions: 

U = court orders the execution; 

C = captain gives a signal; 

A = rifleman A shoots; 

B = rifleman B shoots; 

D = prisoner dies. 

Assume that the court's decision is unknown, that both riflemen are accurate, alert, 
and law-abiding, and that the prisoner is not likely to die from fright or other extraneous 
causes. We wish to construct a formal representation of the story, so that the following 
sentences can be evaluated mechanically. 

Adnan Darwiche called my attention to the importance of this object. 
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S1 Prediction - If rifleman A did not shoot then the prisoner is alive: 

S2 Abduction - If the prisoner is alive, then the captain did not signal: 

1 D  * 1c. 
S3 Transduction - If rifleman A shot, then B shot as well: 

S4 Action - If the captain gave no signal and rifleman A decides to shoot, then the 
prisoner will die and B will not shoot. 

1 C  DA & l B A -  

S5 Counte~actual - If the prisoner is dead, then the prisoner would be dead even 
if rifleman A had not shot: 

Evaluating Standard Sentences 

To prove the first three sentences we need not invoke causal models; these sentences 
involve standard logical connectives and thus can be handled using standard logical de- 
duction. The story can be captured in any convenient logical theory (a set of propositional 
sentences), for example, 

where each theory admits the two logical models 

ml: {U,C,A,B,D)  and m,: ( ~ U , ~ C , ~ A , ~ B , ~ D ) .  

In words, any theory T that represents our story should imply that either all five proposi- 
tions are true or all are false; models ml and m2 present these two possibilities explicitly. 
The validity of S1-S3 can easily be verified, either by derivation from T or by noting that 
the antecedent and consequent in each sentence are both part of the same model. 

Two remarks are worth making before we go on to analyze sentences S4 and S5. 
First, the two-way implications in TI  and T2 are necessary for supporting abduction; 
if we were to use one-way implications (e.g. C & A) then we would not be ablc 
to conclude C from A .  In standard logic, this symmetry removes all distinctions be- 
tween the tasks of prediction (reasoning forward in time), abduction (reasoning from 
evidence to explanation), and transduction (reasoning from evidence to explanation and 
then from explanation to predictions). Using two-way implication, these three modes of 
reasoning differ only in the interpretations they attach to antecedents and consequents of 
conditional sentences - not in their methods of inference. In nonstandard logics (e.g., 
logic programming), where the implication sign dictates the direction of inference and 
even contraposition is not licensed, metalogical inference machinery must be invoked to 
perform abduction (Eshghi and Kowalski 1989). 
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Second, the feature that renders S1-S3 manageable in standard logic is that they all 
deal with epistemic inference - that is, inference from beliefs to beliefs about a static 
world. Sentence S2, for example, can be explicated to state: If we find that the prisoner 
is alive then we have the license to believe that the captain did not give the signal. The 
material implication sign (=J) in logic does not extend beyond this narrow meaning, to 
be contrasted next with the counterfactual implication. 

Evaluating Action Sentences 
Sentence S4 invokes a deliberate action, "rifleman A decides to shoot." From our discus- 
sion of actions (see e.g. Chapter 4 or Definition 7.1.3), any such action must violate some 
premises, or mechanisms, in the initial theory of the story. To formally identify what 
remains invariant under the action, we must incorporate causal relationships into the the- 
ory; logical relationships alone are not sufficient. The causal model corresponding to our 
story is as follows. 

Model M 

Here we use equality rather than implication in order to (i) permit two-way inference and 
(ii) stress that, unlike logical sentences, each equation represents an autonomous mecha- 
nism (an "integrity constraint" in the language of databases) - it remains invariant unless 
specifically violated. We further use parenthetical symbols next to each equation in order 
to identify explicitly the dependent variable (on the 1.h.s.) in the equation, thus represent- 
ing the causal asymmetry associated with the arrows in Figure 7.1. 

To evaluate S4, we follow Definition 7.1.3 and form the submodel M A ,  in which the 
equation A = C is replaced by A (simulating the decision of of rifleman A to shoot re- 
gardless of signals). 

Model MA 
(U> 

C = U  (C 1 
A (A) 
B = C  (B) 
D = A v B  (Dl 

Facts: 7 C  

Conclusions: A ,  D, l B ,  lU, 1 C  

We see that, given l C ,  we can easily deduce D and 1 B  and thus confirm the validity 
of S4. 

It is important to note that "problematic" sentences like S4, whose antecedent vio- 
lates one of the basic premises in the story (i.e., that both riflemen are law-abiding) are 
handled naturally in the same deterministic setting in which the story is told. Traditional 
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logicians and probabilists tend to reject sentences like S4 as contradictory and insist on 
reformulating the problem probabilistically so as to tolerate exceptions to the law A = 
c . ~  Such reformulations are unnecessary; the structural approach permits us to process 
commonplace causal statements in their natural deterministic habitat without first im- 
mersing them in nondeterministic decor. In this framework, all laws are understood to 
represent "defeasible" default expressions - subject to breakdown by deliberate interven- 
tion. The basic laws of physics remain immutable, of course, but their applicability to 
any given scenario is subject to modification by agents' actions or external intervention. 

Evaluating Counterfactuals 

We are now ready to evaluate the counterfactual sentence S5. Following Definition 7.1.5, 
the counterfactual DTA stands for the value of D in submodel MTA . This value is ambigu- 
ous because it depends on the value of U, which is not specified in MTA . The observation 
D removes this ambiguity; upon finding the prisoner dead we can infer that the court has 
given the order (U) and, consequently, if rifleman A had refrained from shooting then 
rifleman B would have shot and killed the prisoner, thus confirming DTA. 

Formally, we can derive DYA by using the steps of Theorem 7.1.7 (though no prob- 
abilities are involved). We first add the fact D to the original model M and evaluate U ;  
then we form the submodel MTA and reevaluate the truth of D in MYA, using the value 
of U found in the first step. These steps are explicated as follows. 

Step I 

Model M 
(U) 

C = U  (C 1 
A = C  (A) 
B = C  (B) 
D = A v B  (D) 

Facts: D 

Conclusions: U, A ,  B, C, D 

Step 2 

Model Md 
(U) 

C = U  (C) 
1 A  ( A )  
B = C  ( B )  
D = A v B  ( D )  

Facts: U 

Conclusions: U, l A ,  C, B, D 

This problem, I speculate, was one of the primary forces for the emergence of probabilistic causal- 
ity in the 1960s (see Section 7.5 for review). 
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Note that it is only the value of U, the background variable, that is carried over from 
step 1 to step 2; all other propositions must be reevaluated subject to the new modification 
of the model. This reflects the understanding that background factors U are not affected 
by either the variables or the mechanisms in the model {fi); hence, the counterfactual 
consequent (in our case, D) must be evaluated under the same background conditions as 
those prevailing in the actual world. In fact, the background variables are the main car- 
riers of information from the actual world to the hypothetical world; they serve as the 
"guardians of invariance" (or persistence) in the dynamic process that transforms the for- 
mer into the latter (an observation by David Heckerman, personal communication). 

Note also that this two-step procedure of evaluating counterfactuals can be combined 
into one. If we use an asterisk to distinguish postmodification from premodification vari- 
ables, then we can combine M and M, into one logical theory and prove the validity 
of S5 by purely logical deduction in the combined theory. To illustrate, we write S5 as 
D DzA* (read: If D is true in the actual world, then D would also be true in the 
hypothetical world created by the modification lA*)  and prove the validity of D* in the 
combined theory as follows. 

Combined Theory 
(U) 

C* = U C = U  (C 1 
1 A* A = C  (A) 
B* = C* B = C  ( B )  
D * = A * v B *  D = A v B  (Dl 

Facts: D 

Conclusions: U, A ,  B, C ,  D, i A * ,  C*, B*, D* 

Note that U need not be "starred," reflecting the assumption that background conditions 
remain unaltered. 

It is worth reflecting at this point on the difference between S4 and S 5 .  The two ap- 
pear to be syntactically identical, as both involve a fact implying a counterfactual, and yet 
we labeled S4 an "action" sentence and S5 a "counterfactual" sentence. The difference 
lies in the relationship between the given fact and the antecedent of the counterfactual 
(i-e., the "action" part). In S4, the fact given (1C)  is not affected by the antecedent (A); 
in S5, the fact given (D) is potentially affected by the antecedent (1A). The difference 
between these two situations is fundamental, as can be seen from their methods of eval- 
uation. In evaluating S4, we knew in advance that C would not be affected by the model 
modification do(A); therefore, we were able to add C directly to the modified model M A .  
In evaluating S5, on the other hand, we were contemplating a possible reversal, from D 
to l D ,  attributable to the modification do(1A). As a result, we first had to add fact D to 
the preaction model M, summarize its impact via U, and reevaluate D once the modifi- 
cation do(1A) takes place. Thus, although the causal effect of actions can be expressed 
syntactically as a counterfactual sentence, this need to route the impact of known facts 
through U makes counterfactuals a different species than actions (see Section 1.4). 

We should also emphasize that most counterfactual utterances in natural language 
presume, often implicitly, knowledge of facts that are affected by the antecedent. For 
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example, when we say that "B would be different were it not for A," we imply knowl- 
edge of what the actual value of B is and that B is susceptible to A. It is this sort of 
relationship that gives counterfactuals their unique character - distinct from action sen- 
tences - and, as we saw in Section 1.4, it is this sort of sentence that would require a more 
detailed specification for its evaluation: some knowledge of the functional mechanisms 
J(pai ,  ui) would be necessary. 

7.1.3 Evaluating Counterfactuals: Probabilistic Analysis 

To demonstrate the probabilistic evaluation of counterfactuals (equations (7.3)-(7.5)), let 
us modify the firing-squad story slightly, assuming that: 

1.  there is a probability P(U) = p that the court has ordered the execution; 

2. rifleman A has a probability q of pulling the trigger out of nervousness; and 

3. rifleman A's nervousness is independent of U .  

With these assumptions, we wish to compute the quantity P ( 1  DTA I D) - namely, the 
probability that the prisoner would be alive if A had not shot, given that the prisoner is 
in fact dead. 

Intuitively, we can figure out the answer by noting that 7DTA is true if and only if the 
court has not issued an order. Thus, our task amounts to that of computing P(7U I D), 
which evaluates to q(1 - p)/[l - (1 - q)(l - p)]. However, our aim is to demonstrate 
a general and formal method of deriving such probabilities, based on (7.4), that makes 
little use of intuition. 

The probabilistic causal model (Definition 7.1.6) associated with the new story con- 
tains two background variables, U and W, where W stands for rifleman A's nervousness. 
This model is given as follows. 

Model (M, P(u, w)) 
(U, W )  - P(u, w) 

C = U  ( C )  
A = C v W  (A)  
B = C  (B) 
D = A v B  (Dl 

In this model, the background variables are distributed as 

Following Theorem 7.1.7, our first step (abduction) is to compute the posterior probabil- 
ity P(u, w I D), accounting for the fact that the prisoner is found dead. This is easily 
evaluated to: 
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Figure 7.2 Twin network representation of the firing squad. 

P(u ,w)  if u = 1 or w = 1, 

if u = 0 and w = 0. 

The second step (action) is to form the submodel MYA while retaining the posterior 
probability of (7.8). 

Model (M-A,  P(u, w I Dl) 
(U, W )  -- P(u, w I D) 

C = U  (C 1 
1 A  (A) 
B = C  ( B )  
D = A v B  ( D )  

The last step (predction) is to compute P(1D) in this probabilistic model. Noting that 
1 D = 1 U, the result (as expected) is 

7.1.4 The Twin Network Method 

A major practical difficulty in the procedure just described is the need to compute, store, 
and use the posterior distribution P(u ( e), where u stand for the set of all background 
variables in the model. As illustrated in the preceding example, even when we start with 
Markovian model in which the background variables are mutually independent, condi- 
tioning on e normally destroys this independence and so makes it necessary to carry over 
a full description of the joint distribution of U, conditional on e .  Such description may 
be prohibitively large if encoded in the form of a table, as we have done in (7.8). 

A graphical method of overcoming this difficulty is described in Balke and Pearl 
(1994b); it uses two networks, one to represent the actual world and one to represent 
the hypothetical world. Figure 7.2 illustrates this construction for the firing-squad story 
analyzed. 

The two networks are identical in structure, save for the arrows entering A*, which 
have been deleted to mirror the equation deleted from M Y A .  Like Siamese twins, the 
two networks share the background variables (in our case, U and W) ,  since those re- 
main invariant under modification. The endogenous variables are replicated and labeled 
distinctly, because they may obtain different values in the hypothetical versus the actual 
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Figure 7.3 %in network representation of the counterfactual Y, in the 

z G-"g z* model x - z - . 

world. The task of computing P(1D)  in the model ( M Y A ,  P(u,  v I D)) thus reduces to 
that of computing P ( l D *  I D) in the twin network shown, setting A* to false. 

In general, if we wish to compute the counterfactual probability P(Y, = y j z ) ,  
where X, Y, and Z are arbitrary sets of variables (not necessarily disjoint), Theorem 7.1.7 
instructs us to compute P(y)  in the submodel ( M , ,  P(u I z)),  which reduces to comput- 
ing an ordinary conditional probability P(y* 1 z )  in an augmented Bayesian network. 
Such computation can be performed by standard evidence propagation techniques. The 
advantages of delegating this computation to inference in a Bayesian network are that 
the distribution P(u I z )  need not be explicated, conditional independencies can be ex- 
ploited, and local computation methods can be employed (such as those summarized in 
Section 1.2.4). 

The twin network representation also offers a useful way of testing independencies 
among counterfactual quantities. To illustrate, suppose that we have a chainlike causal 
diagram, X -, Z -, Y, and that we wish to test whether Yx is independent of X given Z 
(i.e., Y, lL X I 2). The twin network associated with this chain is shown in Figure 7.3. 
To test whether Y, lL X I Z holds in the original model, we test whether Z d-separates 
X from Y * in the twin network. As can be easily seen (via Definition 1.2.3), condition- 
ing on Z renders the path between X and Y* d-connected through the collider at Z and 
hence Y, _U. X I Z does not hold in the model. This conclusion is not easily discernible 
from the chain model itself or from the equations in that model. In the same fashion, we 
can see that whenever we condition on either Y or on {Y, Z J ,  we form a connection be- 
tween Y* and X; hence, Yx and X are not independent conditional on those variables. 
The connection is disrupted, however, if we do not condition on either Y or Z ,  in which 
case Y, IL X. 

The twin network reveals an interesting interpretation of counterfactuals of the form 
Z,,,, , where Z is any variable and PAz stands for the set of Z's parents. Consider the 
question of whether 2, is independent of some given set of variables in the model of Fig- 
ure 7.3. The answer to this question depends on whether Z* is d-separated from that set of 
variables. However, any variable that is d-separated from Z* would also be d-separated 
from U Z ,  so the node representing UZ can serve as a proxy for representing the coun- 
terfactual variable 2,. This is not a coincidence, considering that Z is governed by the 
equation z = fz ( x  , uz) . By definition, the distribution of Z, is equal to the distribution of 
Z under the condition where X is held fixed at x .  Under such condition, Z may vary only 
if UZ varies. Therefore, if Uz obeys a certain independence relationship then Z, (more 
generally, Z,,,) must obey that relationship as well. We thus obtain a simple graphical 
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Figure 7.4 Causal diagram illustrating the relation- 
ship between price (P) and demand ( Q ) .  

representation for any counterfactual variable of the form Z,,, . Using this representa- 
tion, we can easily verify from Figure 7.3 that (Y* V. X I (2, UZ, Y})G and (Y" IL X ( 
{Ur , UZ, Y)) G both hold in the twin network and therefore 

must hold in the model. The verification of such independencies is important for decid- 
ing the identification of plans, because these independencies permit us to reduce coun- 
terfactual probabilities to ordinary probabilistic expression on observed variables (see 
Section 7.3.2). 

7.2 APPLICATIONS AND INTERPRETATION OF STRUCTURAL 
MODELS 

7.2.1 Policy Analysis in Linear Econometric Models: An Example 

In Section 1.4 we illustrated the nature of structural equations modeling using the canon- 
ical economic problem of demand and price equilibrium (see Figure 7.4). In this chapter, 
we use this problem to answer policy-related questions. 

To recall, this example consists of the two equations 

where q is the quantity of household demand for a product A ,  p is the unit price of prod- 
uct A ,  i is household income, w is the wage rate for producing product A,  and ul and 
u 2 represent error terms - unmodeled factors that affect quantity and price, respectively 
(Goldberger 1992). 

This system of equations constitutes a causal model (Definition 7.1.1) if we define 
V = { Q ,  P) and U = {Ul,  U2, I, W} and assume that each equation reprcsents an au- 
tonomous process in the sense of Definition 7.1.3. It is normally assumed that I and W 
are observed, while U1 and U2 are unobservable and independent in I and W. Since the 
error terms U1 and U2 are unobserved, a complete specification of the model must include 
the distribution of these errors, which is usually taken to be Gaussian with the covariance 
matrix X i j  = cov(ui, u,). It is well known in economics (dating back to Wright 1928) 
that the assumptions of linearity, normality, and the independence of {I, W )  and {U1, U2} 
permit consistent estimation of all model parameters, including the covariance matrix 
C i j .  However, the focus of this book is not the estimation of parameters but rather their 
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utilization in policy predictions. Accordingly, we will demonstrate how to evaluate the 
following three queries. 

1. What is the expected value of the demand Q if the price is controlled at P = po? 

2. What is the expected value of the demand Q if the price is reported to be P = 

PO? 

3. Given that the current price is P = po, what would be the expected value of the 
demand Q if we were to control the price at P = pl? 

The reader should recognize these queries as representing (respectively) actions, predic- 
tions, and counterfactuals - our three-level hierarchy. The second query, representing 
prediction, is standard in the literature and can be answered directly from the covariance 
matrix without reference to causality, structure, or invariance. The first and third queries 
rest on the structural properties of the equations and, as expected, are not treated in the 
standard literature of structural equations." 

In order to answer the first query, we replace (7.10) with p = po, leaving 

P = Po. 

with the statistics of U1 and I unaltered. The controlled demand is then q = bl po +dl i + 
ul, and its expected value (conditional on I = i) is given by 

E[Q I do(P = PO), il = blpo + d ~ i  + E(U1 I i).  

Since Ul is independent of I, the last term evaluates to 

and, substituted into (7.13), yields 

The answer to the second query is obtained by conditioning (7.9) on the current ob- 
servation {P = po, I = i, W = w) and taking the expectation, 

E(Q I PO, i, w) = blpo + dli + E(U, I po, i, w). 

The computation of E [Ul I po, i, w] is a standard procedure once C i j  is given (Whittaker 
1990, p. 163). Note that, although Ul was assumed to be independent of I and W, this 
independence no longer holds once P = po is observed. Note also that (7.9) and (7.10) 

lo 1 have presented this example to well over a hundred econometrics students and faculty across 
the United States. Respondents had no problem answering question 2, one person was able to 
solve question 1 ,  and none managed to answer question 3. Chapter 5 (Section 5.1) suggests an 
explanation. 
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both participate in the solution and that the observed value po will affect the expected 
demand Q (through E(Ul I po, i, w ) )  even when bl = 0, which is not the case in query 1. 

The third query requires the expectation of the counterfactual quantity Q P = p l ,  con- 
ditional on the current observations {P = PO, I = i, W = w } .  According to Definition 
7.1.5, Qp=p1 is governed by the submodel 

the density of ul should be conditioned on the observations { P = po, I = i, W = w  }. 
We therefore obtain 

The expected value E(Ul I pol i, w )  is the same as in the solution to the second query; 
the latter differs only in the term blpl .  A general matrix method for evaluating counter- 
factual queries in linear Gaussian models is described in Balke and Pearl (1995). 

At this point, it is worth emphasizing that the problem of computing counterfactual 
expectations is not an academic exercise; it represents in fact the typical case in almost 
every decision-making situation. Whenever we undertake to predict the effect of pol- 
icy, two considerations apply. First, the policy variables (e.g., price and interest rates 
in economics, pressure and temperature in process control) are rarely exogenous. Pol- 
icy variables are endogenous when we observe a system under operation; they become 
exogenous in the planning phase, when we contemplate actions and changes. Second, 
policies are rarely evaluated in the abstract; rather, they are brought into focus by cer- 
tain eventualities that demand remedial correction. In troubleshooting, for example, we 
observe undesirable effects e that are influenced by other conditions X = x and wish to 
predict whether an action that brings about a change in X would remedy the situation. 
The information provided by e is extremely valuable, and it must be processed (using ab- 
duction) before we can predict the effect of any action. This step of abduction endows 
practical queries about actions with a counterfactual character, as we have seen in the 
evaluation of the third query (7.17). 

The current price po reflects economic conditions (e.g. Q )  that prevail at the time of 
decision, and these conditions are presumed to be changeable by the policies considered. 
Thus, the price P represents an endogenous decision variable (as shown in Figure 7.4) 
that becomes exogenous in deliberation, as dictated by the submodel M P = p l .  The hypo- 
thetical mood of query 3 translates into a practical problem of policy analysis: "Given 
that the current price is P = po, find the expected value of the demand (Q) if we change 
the price today to P = PI." The reasons for using hypothetical phrases in practical 
decision-making situations are discussed in the next section. 

7.2.2 The Empirical Content of Counterfactuals 

The word "counterfactual" is a misnomer, since it connotes a statement that stands con- 
trary to facts or, at the very least, a statement that escapes empirical verification. Coun- 
terfactuals are in neither category; they are fundamental to scientific thought and carry 
as clear an empirical message as any scientific law. 
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Consider Ohm's law, V = IR. The empirical content of this law can be encoded in 
two alternative forms. 

1. Predictive form: If at time to we measure current I. and voltage Vo then, ceteris 
paribus, at any future times t > to, if the current flow is I(t) then the voltage will 
be 

2. Countelfactual fomz: If at time to we measure current I. and voltage Vo then, 
had the current flow at time to been I' instead of lo, the voltage would have been 

On the surface, it seems that the predictive form makes meaningful and testable em- 
pirical claims whereas the counterfactual form merely speculates about events that have 
not (and could not have) occurred, since it is impossible to apply two different currents 
into the same resistor at the same time. However, if we interpret the counterfactual form 
to be neither more nor less than a conversational shorthand of the predictive form, the 
empirical content of the former shines through clearly. Both enable us to make an infinite 
number of predictions from just one measurement (Io, Vo), and both derive their validity 
from a scientific law that ascribes a time-invariant property (the ratio V/I) to any object 
that conducts electricity. 

But if counterfactual statements are merely a roundabout way of stating sets of pre- 
dictions, why do we resort to such convoluted modes of expression instead of using the 
predictive mode directly? One obvious answer is that we often use counterfactuals to 
convey not the predictions themselves but rather the logical ramifications of those pre- 
dictions. For example, the intent of saying: "if A were not to have shot, then the prisoner 
would still be alive" may be merely to convey the factual information that B did not shoot. 
The counterfactual mood, in this case, serves to supplement the fact conveyed with log- 
ical justification based on a general law. The less obvious answer rests with the ceteris 
paribus (all else held equal) qualification that accompanies the predictive claim, which is 
not entirely free of ambiguities. What should be held constant when we change the cur- 
rent in a resistor - the temperature? the laboratory equipment? the time of day? Certainly 
not the reading on the voltmeter! 

Such matters must be carefully specified when we pronounce predictive claims and 
take them seriously. Many of these specifications are implicit (and hence superfluous) 
when we use counterfactual expressions, especially when we agree on the underlying 
causal model. For example, we do not need to specify under what temperature and pres- 
sure the predictions should hold true; these are implied by the statement "had the current 
flow at time to been If, instead of lo." In other words, we are referring to precisely those 
conditions that prevailed in our laboratory at time to. The statement also implies that we 
do not really mean for anyone to hold the reading on the voltmeter constant; variables 
should run their natural course, and the only change we should envision is in the mecha- 
nism that (according to our causal model) is currently determining the current. 
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To summarize, a counterfactual statement might well be interpreted as conveying a 
set of predictions under a well-defined set of conditions - those prevailing in the factual 
part of the statement. For these predictions to be valid, two components must remain in- 
variant: the laws (or mechanisms) and the boundary conditions. Cast in the language of 
structural models, the laws correspond to the equations (J} and the boundary conditions 
correspond to the state of the background variables U. Thus, a precondition for the va- 
lidity of the predictive interpretation of a counterfactual statement is the assumption that 
U will not change when our predictive claim is to be applied or tested. 

This is best illustrated by using a betting example. We must bet heads or tails on the 
outcome of a fair coin toss; we win a dollar if we guess correctly and lose one if we don't. 
Suppose we bet heads and win a dollar, without glancing at the outcome of the coin. Con- 
sider the counterfactual "Had I bet differently I would have lost a dollar." The predictive 
interpretation of this sentence translates into the implausible claim: "If my next bet is 
tails, I will lose a dollar." For this claim to be valid, two invariants must be assumed: the 
payoff policy and the outcome of the coin. Whereas the former is a plausible assumption 
in a betting context, the latter would be realized in only rare circumstances. It is for this 
reason that the predictive utility of the statement "Had I bet differently I would have lost 
a dollar" is rather low, and some would even regard it as hindsighted nonsense. It is the 
persistence across time of U and f ( x ,  u) that endows counterfactual expressions with 
predictive power; absent this persistence, the counterfactual loses its obvious predictive 
utility. 

However, there is an element of utility in counterfactuals that does not translate imme- 
diately to predictive payoff and thus may serve to explain the ubiquity of counterfactua~s 
in human discourse. I am thinking of explanatory value. Suppose, in the betting story, 
coins were tossed afresh for every bet. Is there no value whatsoever to the statement 
"Had I bet differently I would have lost a dollar?' I believe there is; it tells us that we 
are not dealing here with a whimsical bookie but instead with one who at least glances 
at the bet, compares it to some standard, and decides a win or a loss using a consistent 
policy. This information may not be very useful to us as players, but it may be useful to, 
say, state inspectors who come every so often to calibrate the gambling machines and so 
ensure the state's take of the profit. More significantly, it may be useful to us players, 
too, if we venture to cheat slightly - say, by manipulating the trajectory of the coin, or 
by installing a tiny transmitter to tell us which way the coin landed. For such cheating 
to work, we should know the payoff policy y = f (x, u), and the statement "Had I bet 
differently I would have lost a dollar" reveals important aspects of that policy. 

Is it far-fetched to argue for the merit of counterfactuals by hypothesizing unlikely 
situations where players cheat and rules are broken? I suggest that such unlikely oper- 
ations are precisely the norm for gauging the explanatory value of sentences. It is the 
nature of any causal explanation that its utility be proven not over standard situations but 
rather over novel settings that require innovative manipulations of the standards. The util- 
ity of understanding how television works comes not from turning the knobs correctly but 
from the ability to repair a TV set when it breaks down. Recall that every causal model 
advertises not one but rather a host of submodels, each created by violating some laws. 
The autonomy of the mechanisms in a causal model thus stands for an open invitation to 
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remove or replace those mechanisms, and it is only natural that the explanatory value of 
sentences be judged by how well they predict the ramifications of such replacements. 

Counterfactuals with Intrinsic Nondeterminism 

Recapping our discussion, we see that counterfactuals may earn predictive value under 
two conditions: (1) when the unobserved uncertainty-producing variables (U) remain 
constant (until our next prediction or action); or (2) when the uncertainty-producing 
variables offer the potential of being observed sometime in the future (before our next 
prediction or action). In both cases, we also need to ensure that the outcome-producing 
mechanism f (x, u) persists unaltered. 

These conclusions raise interesting questions regarding the use of counterfactuals in 
microscopic phenomena, as none of these conditions holds for the type of uncertainty 
that we encounter in quantum theory. Heisenberg's die is rolled afresh billions of times 
each second, and our measurement of U will never be fine enough to remove all uncer- 
tainty from the response equation y = f (x, u). Thus, when we include quantum-level 
processes in our analysis we face a dilemma: either dismiss a11 talk of counterfactuals (a 
strategy recommended by some researchers, including Dawid 1997) or continue to use 
counterfactuals but limit their usage to situations where they assume empirical meaning. 
This amounts to keeping in our analysis only those U that satisfy conditions ( I )  and (2) 
of the previous paragraph. Instead of hypothesizing U that completely remove all uncer- 
tainties, we admit only those U that are either (1) persistent or (2) potentially observable. 

Naturally, coarsening the granularity of the background variables has its price: the 
mechanism equations vi = J;:(pai, ui) lose their deterministic character and hence should 
be made stochastic. Instead of constructing causal models from a set of deterministic 
equations I f ; } ,  we should consider models made up of stochastic functions { f i * } ,  where 
each f,* is a mapping from V U U to some intrinsic probability distribution P*(v ; )  over 
the states of Vi. This option leads to a causal Bayesian network (Section 1.3) in which 
the conditional probabilities P*(vi ( pai, ui) represent intrinsic nondeterminism (some- 
times called "objective chance"; Skyrms 1980) and in which the root nodes represent 
background variables U that are either persistent or potentially observable. In this rep- 
resentation, counterfactual probabilities P(Y, = y ) e) can still be evaluated using the 
three steps (abduction, action, and prediction) of Theorem 7.1.7. In the abduction phase, 
we condition the prior probability P(u) of the root nodes on the evidence available, e ,  
and so obtain P(u ( e). In the action phase, we delete the arrows entering variables in set 
X and instantiate their values to X = x .  Finally, in the prediction phase, we compute the 
probability of Y = y resulting from the updated manipulated network. 

This evaluation can, of course, be implemented in ordinary causal Bayesian networks 
(i.e., not only in ones that represent intrinsic nondeterminism), but in that case the re- 
sults computed would not represent the probability of the counterfactual Y, = y. Such 
evaluation amounts to assuming that units are homogeneous, with each possessing the 
stochastic properties of the population - namely, P(vi I pai, u) = P(vi I pai). Such an 
assumption may be adequate in quantum-level phenomena, where units stands for spe- 
cific experimental conditions, but it will not be adequate in macroscopic phenomena, 
where units may differ appreciably from each other. In the example of Chapter 1 (Sec- 
tion 1.4.4, Figure 1.6), the stochastic attribution amounts to assuming that no individual 
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is affected by the drug (as dictated by model 1) while ignoring the possibility that some 
individuals may, in fact, be more sensitive to the drug than others (as in model 2). 

7.2.3 Causal Explanations, Utterances, and Their Interpretation 

It is a commonplace wisdom that explanation improves understanding and that he who 
understands more can reason and learn more effectively. It is also generally accepted 
that the notion of explanation cannot be divorced from that of causation; for example, 
a symptom may explain our belief in a disease, but it does not explain the disease it- 
self. However, the precise relationship between causes and explanations is still a topic of 
much discussion (Cartwright 1989; Woodward 1997). Having a formal theory of causal- 
ity and counterfactuals in both deterministic and probabilistic settings casts new light on 
the question of what constitutes an adequate explanation, and it opens new possibilities 
for automatic generation of explanations by machine. 

A natural starting point for generating explanations would be to use a causal Bayesian 
network (Section 1.3) in which the events to be explained (explanadum) consist of some 
combination e of instantiated nodes in the network, and where the task is to find an in- 
stantiation c of a subset of e's ancestors (i.e. causes) that maximizes some measure of 
"explanatory power," namely, the degree to which c explains e. However, the proper 
choice of this measure is unsettled. Many philosophers and statisticians argue for the 

P ( e ' c )  as the proper measure of the degree to which c is a bet- likelihood ratio L = m, 
ter explanation of e than c . In Pearl (1988b, chap. 5 )  and Peng and Reggia (1986), 
the best explanation is found by maximizing the posterior probability P(c I e ) .  Both 
measures have their faults and have been criticized by several researchers, including 
Pearl (1988b), Shimony (1991,1993), Suennondt and Cooper (1993), and Chajewska and 
Halpern (1997). To remedy these faults, more intricate combinations of the probabilistic 
parameters [P(e I c), P(e I c ' ) ,  P(c), P(c' )] have been suggested, none of which seems 
to capture well the meaning people attach to the word "explanation." 

The problem with probabilistic measures is that they cannot capture the strength of 
a causal connection between c and e; any proposition h whatsoever can, with a small 
stretch of imagination, be thought of as having some influence on e, however feeble. 
This would then qualify h as an ancestor of e in the causal network and would permit h 
to compete and win against genuine explanations by virtue of h having strong spurious 
association with e. 

To rid ourselves of this difficulty, we must go beyond probabilistic measures and 
concentrate instead on causal parameters, such as causal effects P(y ( do(x)) and coun- 
terfactual probabilities P(Y,I = y' I x,  y), as the basis for defining explanatory power. 
Here x and x' range over the set of alternative explanations, and Y is the set of response 
variables observed to take on the value y. The expression P(Y,/ = y ' I x, y) is read as: 
the probability that Y would take on a different value, y', had X been x' (instead of the 
actual values x). (Note that P(y ( do(x)) P(Y, = y).) The developments of compu- 
tational models for evaluating causal effects and counterfactual probabilities now make 
it possible to combine these parameters with standard probabilistic parameters and so 
synthesize a more faithful measure of explanatory power that may guide the selection 
and generation of adequate explanations. 
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These possibilities trigger an important basic question: Is "explanation" a concept 
based on general causes (e.g., "Drinking hemlock causes death") or singular causes (e.g., 
"Socrates' drinking hemlock caused his death")? Causal effect expressions P( y ( do(x)) 
belong to the first category whereas counterfactual expressions P(YXf = y ' I x ,  y) be- 
long to the second, since conditioning on x and y narrows down world scenarios to those 
compatible with the most specific information at hand: X = x and Y = y. 

The classification of causal statements into general and singular categories has been 
the subject of intensive research in philosophy (see e.g. Good 1961; Kvart 1986; Cartwright 
1989; Eells 1991; see also discussions in Sections 7.5.4 and 10.1.1). This research has at- 
tracted little attention in cognitive science and artificial intelligence, partly because it has 
not entailed practical inferential procedures and partly because it is based on problem- 
atic probabilistic semantics (see Section 7.5 for discussion of probabilistic causality). In 
the context of machine-generated explanations, this classification assumes both cogni- 
tive and computational significance. We discussed in Chapter 1 (Section 1.4) the sharp 
demarcation line between two types of causal queries, those that are answerable from the 
pair (P(M), G ( M ) )  (the probability and diagram, respectively, associated with model 
M) and those that require additional information in the form of functional specifica- 
tion. Generic causal statements (e.g., P(y ( do(x))) often fall into the first category 
(as in Chapter 3) whereas counterfactual expressions (e.g., P(Yxt = y ( x ,  y ) )  fall 
into the second, thus demanding more detailed specifications and higher computational 
resources. 

The proper classification of explanation into a general or singular category depends 
on whether the cause c attains its explanatory power relative to its effect e by virtue of c's 
general tendency to produce e (as compared with the weaker tendencies of c's alterna- 
tives) or by virtue of c being necessary for triggering a specific chain of events leading to 
e in the specific situation at hand (as characterized by e and perhaps other facts and obser- 
vations). Formally, the difference hinges on whether, in evaluating explanatory powers 
of various hypotheses, we should condition our beliefs on the events c and e that actually 
occurred. 

Formal analysis of these alternatives is given in Chapters 9 and 10, where we discuss 
the necessary and sufficient aspects of causation as well as the notion of single-event 
causation. In the balance of this section we will be concerned with the interpretation and 
generation of explanatory utterances, taking the necessary aspect as a norm. 

The following list, taken largely from Galles and Pearl (1997), provides examples of 
utterances used in explanatory discourse and their associated semantics within the mod- 
ifiable structural model approach described in Section 7.1.1. 

" X  is a cause of Y" if there exist two values x and x' of X and a value u of U such 
that Yx(u) # Y,f(u). 

"X is a cause of Y in the context Z = z" if there exist two values x and x' of X and 
a value u of U such that Yx,(u) # Yx!,(u). 

"X is a direct cause of Y" if there exist two values x and x' of X and a value u of U 
such that Y,, (u) # Y,!, (u), where r is some realization of V \ {X, Y } .  

"X is an indirect cause of Y" if X is a cause of Y and X is not a direct cause of Y. 
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"Event X = x always causes Y = y" if: 
(i) Yx (u) = y for all u; and 
(ii) there exists a value u' of U such that Y,/(u') # y for some x' # x. 

"Event X = x may have caused Y = y" if: 
(i) X = x and Y = y are true; and 
(ii) there exists a value u of U such that X(u) = x, Y(u) = y, and Y,/(u) # y for 

some x' # x.  

"The unobserved event X = x is a likely cause of Y = y" if: 
(i) Y = y is true; and 
(ii) P(Y, = y,  Y,I # y I Y = y) is high for all x' # x. 

"Event Y = y occurred despite X = x" if: 
(i) X = x and Y = y are true; and 
(ii) P(Yx = y) is low. 

The preceding list demonstrates the flexibility of modifiable structural models in for- 
malizing nuances of causal expressions. Additional nuances (invoking such notions as 
enabling, preventing, sustaining, producing, etc.) will be analyzed in Chapters 9 and 10, 
Related expressions include: "Event A explains the occurrence of event B"; "A would 
explain B if C were the case"; "B occurred despite A because C was true." The ability to 
interpret and generate such explanatory sentences, or to select the expression most appro- 
priate for the context, is one of the most intriguing challenges of research in man-machine 
conversation. 

7.2.4 From Mechanisms to Actions to Causation 

The structural model semantics described in Section 7.1.1 suggests solutions to two prob- 
lems in cognitive science and artificial intelligence: the representation of actions and the 
role of causal ordering. We will discuss these problems in turn, since the second builds 
on the first. 

Action, Mechanisms, and Surgeries 
Whether we take the probabilistic paradigm that actions are transformations from proba- 
bility distributions to probability distributions or the deterministic paradigm that actions 
are transformations from states to states, such transformations could in principle be infi- 
nitely complex. Yet in practice, people teach each other rather quickly the normal results 
of actions in the world, and people predict the consequences of most actions without 
much trouble. How? 

Structural models answer this question by assuming that the actions we normally in- 
voke in common reasoning can be represented as local surgeries. The world consists of a 
huge number of autonomous and invariant linkages or mechanisms, each corresponding 
to a physical process that constrains the behavior of a relatively small group of variables. 
If we understand how the linkages interact with each other (usually, they simply share 
variables), then we should also be able to understand what the effect of any given action 
would be: simply respecify those few mechanisms that are perturbed by the action; then 
let the mechanisms in the modified assembly interact with one another and see what state 
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will evolve at equilibrium. If the specification is complete (i.e., if M and U are given), 
then a single state will evolve. If the specification is probabilistic (i.e., if P(u) is given), 
then a new probability distribution will emerge; if the specification is partial (i.e., if some 
f, are not given), then a new, partial theory will be created. In all three cases we should 
be able to answer queries about postaction states of affair, albeit with decreasing level of 
precision. 

The ingredient that makes this scheme operational is the locality of actions. Standing 
alone, locality is a vague concept because what is local in one space may not be local in 
another. A speck of dust, for example, appears extremely diffused in the frequency (or 
Fourier) representation; conversely, a pure musical tone requires a long stretch of time 
to be appreciated. Structural semantics emphasizes that actions are local in the space of 
mechanisms and not in the space of variables or sentences or time slots. For example, 
tipping the leftmost object in an array of domino tiles does not appear to be "local" in 
physical space, yet it is quite local in the mechanism domain: only one mechanism is 
perturbed, the gravitational restoring force that normally keeps that tile in a stable erect 
position; all other mechanisms remain unaltered, as specified, obedient to the usual equa- 
tions of physics. Locality makes it easy to specify this action without enumerating all its 
ramifications. The listener, assuming she shares our understanding of domino physics, 
can figure out for herself the ramifications of this action, or any action of the type: "tip 
the ith domino tile to the right." By representing the domain in the form of an assem- 
bly of stable mechanisms, we have in fact created an oracle capable of answering queries 
about the effects of a huge set of actions and action combinations - without us having to 
explicate those effects. 

Laws versus Facts 

This surgical procedure sounds trivial when expressed in the context of structural equa- 
tion models. However, it has encountered great difficulties when attempts were made to 
implement such schemes in classical logic. In order to implement surgical procedures in 
mechanism space, we need a language in which some sentences are given different status 
than others. Sentences describing mechanisms should be treated differently than those 
describing other facts of life (e.g., observations, assumptions, and conclusions), because 
the former are presumed to be stable whereas the latter are transitory. Indeed, the equa- 
tions describing how the domino tiles interact with one another remain unaltered even 
though the states of the tiles themselves are free to vary with circumstances. 

Admitting the need for this distinction has been a difficult transition in the logical 
approach to actions and causality, perhaps because much of the power of classical logic 
stems from its representational uniformity and syntactic invariance, where no sentence 
commands special status. Probabilists were much less reluctant to embrace the distinc- 
tion between laws and facts, because this distinction has already been programmed into 
probability language by Reverend Bayes in 1763: Facts are expressed as ordinary propo- 
sitions and hence can obtain probability values and can be conditioned on; laws, on 
the other hand, are expressed as conditional probability sentences (e.g., P(accident I 
careless driving) = high) and hence should not be assigned probabilities and cannot be 
conditioned on. It is because of this tradition that probabilists have always attributed non- 
propositional character to conditional sentences (e.g., birds fly), refused to allow nested 
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conditionals (Levi 1988), and insisted on interpreting one's confidence in a conditional 
sentence as a conditional probability judgment (Adams 1975; see also Lewis 1976). Re- 
markably, these constraints, which some philosophers view as limitations, are precisely 
the safeguards that have kept probabilists from confusing laws and facts, protecting them 
from some of the traps that have ensnared logical approaches. l 1  

Mechanisms and Causal Relationships 
From our discussion thus far, it may seem that one can construct an effective repre- 
sentation for computing the ramification of actions without appealing to any notion of 
causation. This is indeed feasible in many areas of physics and engineering. For instance, 
if we have a large electric circuit consisting of resistors and voltage sources, and if we are 
interested in computing the effect of changing one resistor in the circuit, then the notion 
of causality hardly enters the computation. We simply insert the modified value of the re- 
sistor into Ohm's and Kirchhoff's equations and proceed to solve the set of (symmetric) 
equations for the variables needed. This computation can be performed effectively with- 
out committing to any directional causal relationship between the currents and voltages. 

To understand the role of causality, we should note that (unlike our electrical circuit 
example) most mechanisms do not have names in common everyday language. We say: 
"raise taxes," or "make him laugh," or "press the button" - in general, do(q), where q is 
a proposition, not a mechanism. It would be meaningless to say "increase this current" or 
"if this current were higher . . . " in the electrical circuit example, because there are many 
ways of (minimally) increasing that current, each with different ramifications. Evidently, 
common-sense knowledge is not as entangled as a resistor network. In the STRIPS lan- 
guage (Fikes and Nilsson 1971), to give another example, an action is not characterized 
by the name of the mechanisms it modifies but rather by the action's immediate effects 
(the ADD and DELETE lists), and these effects are expressed as ordinary propositions. 
Indeed, if our knowledge is organized causally then this specification is sufficient, be- 
cause each variable is governed by one and only one mechanism (see Definition 7.1.1). 
Thus, we should be able to figure out for ourselves which mechanism it is that must be 
perturbed in realizing the effect specified, and this should enable us to predict the rest of 
the scenario. 

This linguistic abbreviation defines a new relation among events, a relation we nor- 
mally call "causation": Event A causes B if the perturbation needed for realizing A entails 
the realization of B. l 2  Causal abbreviations of this sort are used very effectively for spec- 
ifying domain knowledge. Complex descriptions of what relationships are stable and 
how mechanisms interact with one another are rarely communicated explicitly in terms 
of mechanisms. Instead, they are communicated in terms of cause-effect relationships 

" The distinction between laws and facts was proposed by Poole (1985) and Geffner (1992) as a fun- 
damental principle for nonmonotonic reasoning. In database theory, laws are expressed by special 
sentences called integrity constraints (Reiter 1987). The distinction seems to be gaining broader 
support as a necessary requirement for formulating actions in artificial intelligence (Sandewall 
1994; Lin 1995). 

l 2  The word "needed" connotes minimality and can be translated as: ". . . if every minimal perturba- 
tion realizing A entails B." The necessity and sufficiency aspects of this entailment relationship 
are formalized in Chapter 9 (Section 9.2). 
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between events or variables. We say, for example: "If tile i is tipped to the right, it causes 
tile i + 1 to tip to the right as well"; we do not communicate such knowledge in terms of 
the tendencies of each domino tile to maintain its physical shape, to respond to gravita- 
tional pull, and to obey Newtonian mechanics. 

7.2.5 Simon's Causal Ordering 
Our ability to talk directly in terms of one event causing another, (rather than an action 
altering a mechanism and the alteration, in turn, producing the effect) is computation- 
ally very useful, but at the same time it requires that the assembly of mechanisms in our 
domain satisfy certain conditions that accommodate causal directionality. Indeed, the 
formal definition of causal models given in Section 7.1.1 assumes that each equation is 
designated a distinct privileged variable, situated on its left-hand side, that is considered 
"dependent" or "output." In general, however, a mechanism may be specified as a func- 
tional constraint 

without identifying any "dependent" variable. 
Simon (1953) devised a procedure for deciding whether a collection of such syrnmet- 

ric G functions dictates a unique way of selecting an endogenous dependent variable for 
each mechanisms (excluding the background variables, since they are determined out- 
side the system). Simon asked: When can we order the variables (V,, V2, . . . , V,) in such 
a way that we can solve for each V, without solving for any of Vi's successors? Such 
an ordering, if it exists, dictates the direction we attribute to causation. This criterion 
might at first sound artificial, since the order of solving equations is a matter of com- 
putational convenience whereas causal directionality is an objective attribute of physical 
reality. (For discussion of this issue see De Kleer and Brown 1986; Iwasaki and Simon 
1986; Druzdzel and Simon 1993.) To justify the criterion, let us rephrase Simon's ques- 
tion in terms of actions and mechanisms. Assume that each mechanism (i.e. equation) 
can be modified independently of the others, and let A be the set of actions capable of 
modifying equation Gk (while leaving other equations unaltered). Imagine that we have 
chosen an action ak from Ak and that we have modified Gk in such a way that the set of 
solutions (Vl(u), V2 (u), . . . , V,(u)) to the entire system of equations differs from what it 
was prior to the action. If X is the set of endogenous variables constrained by Gk, then 
we can ask which members of X would change by the modification. If only one mem- 
ber of X changes, say Xk, and if the identity of that distinct member remains the same 
for all choices of ak and u, then we designate Xk as the dependent variable in Gk. 

Formally, this property means that changes in ak induce a functional mapping from 
the domain of Xk to the domain of {V \ Xk); all changes in the system (generated by ak) 
can be attributed to changes in Xk. It would make sense, in such a case, to designate Xk 
as a "representative" of the mechanism Gk, and we would be justified in replacing the 
sentence "action ak caused event Y = y" with "event Xk = xk caused Y = y" (where Y 
is any variable in the system). The invariance of Xk to the choice of ak is the basis for 
treating an action as a modality do(Xk = xk) (Definition 7.1.3). It provides a license for 
characterizing an action by its immediate consequence(s), independent of the instrument 



7.2 Applications and Interpretation of Structural Models 

that actually brought about those consequences, and it defines in fact the notion of "local 
action" or "local surgery." 

It can be shown (Nayak 1994) that the uniqueness of Xk can be determined by a 
simple criterion that involves purely topological properties of the equation set (i.e., how 
variables are grouped into equations). The criterion is that one should be able to form a 
one-to-one correspondence between equations and variables and that the correspondence 
be unique. This can be decided by solving the "matching problem" (Serrano and Gos- 
sard 1987) between equations and variables. If the matching is unique, then the choice 
of dependent variable in each equation is unique and the directionality induced by that 
choice defines a directed acyclic graph (DAG). In Figure 7.1, for example, the direction- 
ality of the arrows need not be specified externally; they can be determined mechanically 
from the set of symmetrical constraints (i.e., logical propositions) 

that characterizes the problem. The reader can easily verify that the selection of a priv- 
ileged variable from each equation is unique and hence that the causal directionality of 
the arrows shown in Figure 7.1 is inevitable. 

Thus, we see that causal directionality, according to Simon, emerges from two as- 
sumptions: (1) the partition of variables into background (U) and endogenous (V) sets; 
and (2) the overall configuration of mechanisms in the model. Accordingly, a variable 
designated as "dependent" in a given mechanism may well be labeled "independent" 
when that same mechanism is embedded in a different model. Indeed, the engine causes 
the wheels to turn when the train goes uphill but changes role in going downhill. 

Of course, if we have no way of determining the background variables, then several 
causal orderings may ensue. In (7.18), for example, if we were not given the informa- 
tion that U is a background variable, then either one of {U, A, B, C )  could be chosen as 
background, and each such choice would induce a different ordering on the remaining 
variables. (Some would conflict with common-sense knowledge, e.g., that the captain's 
signal influences the court's decision.) However, the directionality of A + D t B 
would be maintained in all those orderings. The question of whether there exists a parti- 
tion {U, V) of the variables that would yield a causal ordering in a system of symmetric 
constraints can also be solved (in polynomial time) by topological means (Dechter and 
Pearl 1991). 

Simon's ordering criterion fails when we are unable to solve the equations one at a 
time and so must solve a block of k equations simultaneously. In such a case, all the k 
variables determined by the block would be mutually unordered, though their relation- 
ships with other blocks may still be ordered. This occurs, for example, in the economic 
model of Figure 7.4, where (7.9) and (7.10) need to be solved simultaneously for P and 
Q and hence the correspondence between equations and variables is not unique; either 
Q or P could be designated as "independent" in either of the two equations. Indeed, 
the information needed for classifying (7.9) as the "demand" equation (and, respectively, 
(7.10) as the "price" equation) comes not from the way variables are assigned to equa- 
tions but rather from subject-matter considerations. Our understanding that household 
income directly affects household demand (and not prices) plays a major role in this 
classification. 
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In cases where we tend to assert categorically that the flow of causation in a feed- 
back loop goes clockwise, this assertion is normally based on the relative magnitudes of 
forces. For example, turning the faucet would lower the water level in the water tank, but 
there is practically nothing we can do to the water tank that would turn the faucet. When 
such information is available, causal directionality is determined by appealing, again, to 
the notion of hypothetical intervention and asking whether an external control over one 
variable in the mechanism necessarily affects the others. This consideration then consti- 
tutes the operational semantics for identifying the dependent variables & in nonrecursive 
causal models (Definition 7.1.1). 

The asymmetry that characterizes causal relationships in no way conflicts with the 
symmetry of physical equations. By saying that "X causes Y and Y does not cause X," 
we mean to say that changing a mechanism in which X is normally the dependent vari- 
able has a different effect on the world than changing a mechanism in which Y is normally 
the dependent variable. Because two separate mechanisms are involved, the statement 
stands in perfect hannony with the symmetry we find in the equations of physics. 

Simon's theory of causal ordering has profound repercussions on Hume's problem 
of causal induction, that is, how causal knowledge is acquired from experience (see 
Chapter 2). The ability to deduce causal directionality from an assembly of symmetri- 
cal mechanisms (together with a selection of a set of endogenous variables) means that 
the acquisition of causal relationships is no different than the acquisition (e.g., by experi- 
ments) of ordinary physical laws, such as Hooke's law of suspended springs or Newton's 
law of acceleration. This does not imply that acquiring physical laws is a trivial task, free 
of methodological and philosophical subtleties. It does imply that the problem of causal 
induction - one of the toughest in the history of philosophy - can be reduced to the more 
familiar problem of scientific induction. 

7.3 AXIOMATIC CHARACTERIZATION 

Axioms play important roles in the characterization of formal systems. They provide a 
parsimonious description of the essential properties of the system, thus allowing compar- 
isons among alternative formulations and easy tests of equivalence or subsumption among 
such alternatives. Additionally, axioms can often be used as rules of inference for deriv- 
ing (or verifying) new relationships from a given set of premises. In the next subsection, 
we will establish a set of axioms that characterize the relationships among counterfac- 
tual sentences of the form Y,(u) = y in both recursive and nonrecursive systems. Using 
these axioms, we will then demonstrate (in Section 7.3.2) how the identification of causal 
effects can be verified by symbolic means, paralleling the derivations of Chapter 3 (Sec- 
tion 3.4). Finally, Section 7.3.3 establishes axioms for the notion of causal relevance, 
contrasting those that capture informational relevance. 

7.3.1 The Axioms of Structural Counterfactuals 

We present three properties of counterfactuals - composition, effectiveness, and re- 
versibility - that hold in all causal models. 
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Property 1 (Composition) 
For any three sets of endogenous variables X, Y, and W in a causal model, we have 

Composition states that, if we force a variable (W) to a value w that it would have had 
without our intervention, then the intervention will have no effect on other variables in 
the system. That invariance holds in all fixed conditions do(X = x). 

Since composition allows for the removal of a subscript (i.e., reducing Yxw(u) to 
Yx(u)), we need an interpretation for a variable with an empty set of subscripts, which 
(naturally) we identify with the variable under no interventions. 

Definition 7.3.1 (Null Action) 

Corollary 7.3.2 (Consistency) 
For any set of variables Y and X in a causal model, we have 

Proof 
Substituting X for W and 0 for X in (7.19), we obtain XB(u) = x Y@(u) = YX(u). 
Null action (Definition 7.3.1) allows us to drop the 0 ,  leaving X(u) = x Y(u) = 
YAu). 

The implication in (7.20) was called "consistency" by Robins (1987).13 

Property 2 (Effectiveness) 
For all sets of variables X and W, X, ,  (u) = x. 

Effectiveness specifies the effect of an intervention on the manipulated variable itself - 
namely, that if we force a variable X to have the value x ,  then X will indeed take on the 
value x. 

Property 3 (Reversibility) 
For any two variables Y and W and any set of variables X, 

Reversibility precludes multiple solutions due to feedback loops. If setting W to a value 
w results in a value y for Y, and if setting Y to the value y results in W achieving the 

l 3  Consistency and composition are used routinely in economics (Manski 1990; Heckman 1996) and 
statistics (Rosenbaum 1995) within the potential-outcome framework (Section 3.6.3). Consistency 
was stated formally by Gibbard and Harper (1976, p. 156) and Robins (1987) (see equation (3.52)). 
Composition is stated in Holland (1986, p. 968) and was brought to my attention by J. Robins. 
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value w, then W and Y will naturally obtain the values w and y (respectively), without 
any external setting. In recursive systems, reversibility follows directly from composi- 
tion. This can easily be seen by noting that, in a recursive system, either Yx,(u) = Yx(u) 
or W,,(u) = Wx(u). Thus, reversibility reduces to (Yx,(u) = y) & (W,(u) = w) ===+ 

Y,(u) = y (another form of composition) or to (Yx(u) = y) & (W,,(u) = u)) 
Yx(u) = y (which is trivially true). 

Reversibility reflects "memoryless~~ behavior: the state of the system, V, tracks the 
state of U regardless of U's history. A typical example of irreversibility is a system of 
two agents who adhere to a "tit-for-tat" strategy (e-g., the prisoners' dilemma). Such a 
system has two stable solutions - cooperation and defection - under the same external 
conditions U, and thus it does not satisfy the reversibility condition; forcing either one of 
the agents to cooperate results in the other agent's cooperation (Y, (u) = y , W, (u)  = w ) ,  
yet this does not guarantee cooperation from the start (Y(u) = y ,  W(u) = w). In such 
systems, irreversibility is a product of using a state description that is too coarse, one 
where not all of the factors that determine the ultimate state of the system are included 
in U. In a tit-for-tat system, a complete state description should include factors such as 
the previous actions of the players, and reversibility is restored once the missing factors 
are included. 

In general, the properties of composition, effectiveness, and reversibility are inde- 
pendent - none is a consequence of the other two. This can be shown (Galles and Pearl 
1997) by constructing specific models in which two of the properties hold and the third 
does not. In recursive systems, composition and effectiveness are independent while re- 
versibility holds trivially, as just shown. 

The next theorem asserts the so~ndness '~  of properties 1-3, that is, their validity. 

Theorem 7.3.3 (Soundness) 
Composition, egectiveness, and reversibility are sound in structural model semantics; 
that is, they hold in all causal models. 

A proof of Theorem 7.3.3 is given in Galles and Pearl (1997). 
Our next theorem establishes the completeness of the three properties when treated as 

axioms or rules of inference. Completeness amounts to sufficiency; all other properties 
of counterfactual statements follow from these three. Another interpretation of complete- 
ness is as follows: Given any set S of counterfactual statements that is consistent with 
properties 1-3, there exists a causal model M in which S holds true. 

A formal proof of completeness requires the explication of two technical properties - 
existence and uniqueness -that are implicit in the definition of causal models (Definition 
7.1.1). 

Property 4 (Existence) 
For any variable X and set of variables Y, 

l4 The terms soundness and completeness are sometimes referred to as necessity and suficiency, 
respectively. 
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Property 5 (Uniqueness) 
For every variable X and set of variables Y, 

Definition 7.3.4 (Recursiveness) 
A model M is recursive if, for any two variables Y and Wand for any set of variables X ,  
we have 

In words, recursiveness means that either Y does not affect W or W does not affect Y. 
Clearly, any model M for which the causal diagram G ( M )  is acyclic must be recursive. 

Theorem 7.3.5 (Recursive Completeness) 
Composition, efectiveness, and recursiveness are complete (Galles and Pearl 1998; 
Halpern 1998). l5 

Theorem 7.3.6 (Completeness) 
Composition, efectiveness, and reversibility are complete for all causal models (Halpern 
1998). 

The practical importance of soundness and completeness surfaces when we attempt to 
test whether a certain set of conditions is sufficient for the identifiability of some coun- 
terfactual quantity Q.  Soundness, in this context, guarantees that if we symbolically 
manipulate Q using the three axioms and manage to reduce it to an expression that in- 
volves ordinary probabilities (free of counterfactual terms), then Q is identifiable (in the 
sense of Definition 3.2.3). Completeness guarantees the converse: if we do not succeed 
in reducing Q to a probabilistic expression, then Q is nonidentifiable - our three axioms 
are as powerful as can be. 

The next section demonstrates a proof of identifiability that uses effectiveness and 
decomposition as axioms. 

7.3.2 Causal Effects from Counterfactual Logic: An Example 

We revisit the smoking-cancer example analyzed in Section 3.4.3. The model associated 
with this example is assumed to have the following structure (see Figure 7.5): 

V = {X (smoking), Y (lung cancer), Z (tar in lungs), 

u = {Ul, u21, u1 U- u2, 

l5 Galles and Pearl (1997) proved recursive completeness assuming that, for any two variables, one 
knows which of the two (if any) is an ancestor of the other. Halpern (1998) proved recursive com- 
pleteness without this assumption, provided only that (7.24) is known to hold for any two variables 
in the model. Walpem further provided a set of axioms for cases where the solution of Y,(u) is not 
unique or does not exist. 
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Figure 7.5 Causal diagram illustrating the effect of smok- 
ing on lung cancer. 

This model embodies several assumptions, all of which are represented in the diagram 
of Figure 7.5. The missing link between X and Y represents the assumption that the ef- 
fect of smoking cigarettes (X) on the production of lung cancer (Y) is entirely mediated 
through tar deposits in the lungs. The missing connection between U1 and U2 represents 
the assumption that even if a genotype (U1) is aggravating the production of lung cancer, 
it nevertheless has no effect on the amount of tar in the lungs except indirectly (through 
cigarette smoking). We wish to use the assumptions embodied in the model to derive an 
estimable expression for the causal effect P(Y = y ( do(x)) P(Y, = y) that is based 
on the joint distribution P(x, y, z ) .  

This problem was solved in Section 3.4.3 by a graphical method, using the axioms of 
do calculus (Theorem 3.4.1). Here we show how the counterfactual expression P(Y, = 
y) can be reduced to ordinary probabilistic expression (involving no counterfactuals) by 
purely symbolic operations, using only probability calculus and two rules of inference: 
effectiveness and composition. Toward this end, we first need to translate the assump- 
tions embodied in the graphical model into the language of counterfactuals. In Section 
3.6.3 it was shown that the translation can be accomplished systematically, using two 
simple rules (Pearl 1995a, p. 704). 

Rule I (exclusion restrictions): For every variable Y having parents PAY and for every 
set of variables Z c V disjoint of PA y, we have 

Ypay(~) = Ypayz(~)- (7.25) 

Rule 2 (independence restrictions): If Z 1 ,  . . . , Z k  is any set of nodes in V not con- 
nected to Y via paths containing only U variables, we have 

Ypnv 1 (Zlpaz, 7 - . - 7 ZkpaZk 1. (7.26) 

Equivalently, (7.26) holds if the corresponding U terms (UZ, ,  . . . , UZ, )  are jointly 
independent of U y  . 

Rule 1 reflects the insensitivity of Y to any manipulation in V, once its direct causes PAy 
are held constant; it follows from the identity vi = f,(pai, ui) in Definition 7.1.1. Rule 2 
interprets independencies among U variables as independencies between the counterfac- 
tuals of the corresponding V variables, with their parents held fixed. Indeed, the statistics 
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of Y,,, is governed by the equation Y = f y  ( p a  Y ,  u Y); therefore, once we hold PA 
fixed, the residual variations of Y are governed solely by the variations in Uy . 

Applying these two rules to our example, we see that the causal diagram in Figure 7.5 
encodes the following assumptions: 

Equations (7.27)-(7.29) follow from the exclusion restrictions of (7.25), using 

PAx = 0, PAY = {Z}, and PAZ = {X). 

Equation (7.27), for instance, represents the absence of a causal link from Y to 2, while 
(7.28) represents the absence of a causal link from Z or Y to X. In contrast, (7.30) fol- 
lows from the independence restriction of (7.26), since the lack of a connection between 
(i.e., the independence of) Ul and U2 rules out any path between Z and {X, Y} that con- 
tains only U variables. 

We now use these assumptions (which embody recursiveness), together with the prop- 
erties of composition and effectiveness, to compute the tasks analyzed in Section 3.4.3. 

Task 1 
Compute P ( Z ,  = z) (i.e., the causal effect of smoking on tar). 

p(z,  = z )  = P(Z, = z I x) from (7.30) 

= P(Z = z I x )  by composition 

= P(z I x). 

Task 2 
Compute P(YZ = y) (i.e., the causal effect of tar on cancer). 

Since (7.30) implies Yz lL Z, I X, we can write 

P(Y, = y I x) = P(YZ = y I x, Zx = z) from (7.30) 

= P(Yz = y I x, z )  by composition 

Substituting (7.33) into (7.32) yields 

by composition 
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Task 3 
Compute P(Yx = y) (i.e., the causal effect of smoking on cancer). 

For any variable Z, by composition we have 

Since Yx,(u) = Yz (u) (from (7.29)), 

Y,(u) = YXz,(u) = Yz(u), where zx = zx(u). 

Thus, 

= x P(Yz = y I 2, = z) P(Zx = z) by composition 

from (7.35) 

from (7.30) 

The probabilities P(Y, = y) and P(Zx = z) were computed in (7.34) and (7.31), respec- 
tively. Substituting gives us 

The right-hand side of (7.37) can be computed from P(x, y ,  z) and coincides with the 
front-door formula derived in Section 3.4.3 (equation (3.42)). 

Thus, P(Yx = y) can be reduced to expressions involving probabilities of observed vari- 
ables and is therefore identifiable. More generally, our completeness result (Theorem 
7.3.5) implies that any identifiable counterfactual quantity can be reduced to the cor- 
rect expression by repeated application of composition and effectiveness (assuming 
recursiveness). 

7.3.3 Axioms of Causal Relevance 

In Section 1.2 we presented a set of axioms for a class of relations called graphoids 
(Pearl and Paz 1987; Geiger et al. 1990) that characterize informational relevance.I6 We 
now develop a parallel set of axioms for causal relevance, that is, the tendency of cer- 
tain events to affect the occurrence of other events in the physical world, independent of 
the observer-reasoner. Informational relevance is concerned with questions of the form: 
"Given that we know Z, would gaining information about X gives us new information 

l6 "Relevance" will be used primarily as a generic name for the relationship of being relevant or ir- 
relevant. It will be clear from the context when "relevance" is intended to negate "irrelevance." 
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about Y?" Causal relevance is concerned with questions of the form: "Given that Z is 
fixed, would changing X alter Y ? T e  show that causal relevance complies with all the 
axioms of path interception in directed graphs except transitivity. 

The notion of causal relevance has its roots in the philosophical works of Suppes (1970) 
and Salmon (1984), who attempted to give probabilistic interpretations to cause-effect 
relationships and recognized the need to distinguish causal from statistical relevance (see 
Section 7.5). Although these attempts did not produce a probabilistic definition of causal 
relevance, they led to methods for testing the consistency of relevance statements against 
a given probability distribution and a given temporal ordering among the variables (see 
Section 7.5.2). Here we aim at axiomatizing relevance statements in themselves - with 
no reference to underlying probabilities or temporal orderings. 

The axiomization of causal relevance may be useful to experimental researchers in 
domains where exact causal models do not exist. If we know, through experimentation, 
that some variables have no causal influence on others in a system, then we may wish 
to determine whether other variables will exert causal influence (perhaps under different 
experimental conditions) or may ask what additional experiments could provide such in- 
formation. For example, suppose we find that a rat's diet has no effect on tumor growth 
while the amount of exercise is kept constant and, conversely, that exercise has no effect 
on tumor growth while diet is kept constant. We would like to be able to infer that con- 
trolling only diet (while paying no attention to exercise) would still have no influence on 
tumor growth. A more subtle inference problem is deciding whether changing the am- 
bient temperature in the cage would have an effect on the rat's physical activity, given 
that we have established that temperature has no effect on activity when diet is kept con- 
stant and that temperature has no effect on (the rat's choice of) diet when activity is kept 
constant. 

Galles and Pearl (1997) analyzed both probabilistic and deterministic interpretations 
of causal irrelevance. The probabilistic interpretation, which equates causal irrelevance 
with inability to change the probability of the effect variable, has intuitive appeal but is 
inferentially very weak; it does not support a very expressive set of axioms unless further 
assumptions are made about the underlying causal model. If we add the stability assump- 
tion (i.e., that no irrelevance can be destroyed by changing the nature of the individual 
processes in the system), then we obtain the same set of axioms for probabilistic causal 
irrelevance as the set governing path interception in directed graphs. 

In this section we analyze a deterministic interpretation that equates causal irrelevance 
with inability to change the effect variable in any state u of the world. This interpretation 
is governed by a rich set of axioms without our making any assumptions about the causal 
model: many of the path interception properties in directed graphs hold for deterministic 
causal irrelevance. 

Definition 7.3.7 (Causal Irrelevance) 
A variable X is causally irrelevant to Y, given Z (written X + Y I Z) if, for every set W 
disjoint of X U Y U 2, we have 

V(u, z ,  x, x', w ) ?  Y,,,,(u) = Y,~zw(u), 

where x und x' are two distinct values of X. 
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V = {X, W ,  y binary 

U = {UI, U2 binary 

Figure 7.6 Example of a causal model that requires the examination of submodels to determine 
causal relevance. 

This definition captures the intuition "If X is causally irrelevant to Y, then X cannot af- 
fect Y under any circumstance u or under any modification of the model that includes 
do(Z = z)." 

To see why we require the equality Y,,, (u) = Y,l,, (u) to hold in every context W = 
w, consider the causal model of Figure 7.6. In this example, Z = 0, W follows X, and 
hence Y follows X; that is, Yx=,)(u) = Yx,l (u) = u*. However, since y (x, w , u 2 )  is 
a nontrivial function of x, X is perceived to be causally relevant to Y. Only holding W 
constant would reveal the causal influence of X on Y. To capture this intuition, we must 
consider all contexts W = w in Definition 7.3.7. 

With this definition of causal irrelevance, we have the following theorem. 

Theorem 7.3.8 
For any causal model, the following sentences must hold. 

Weak Right Decomposition:" 

( X f ,  Y W  ( 2 )  & (X-+ Y ( Z W )  => ( X +  Y 12). 

Left Decomposition: 

(XW f i  y 1 2 )  (X St y 1 2 )  & (W + Y 12). 

Strong Union: 

(X f ,  Y ( Z )  * (X+ Y ( Z W )  VW. 

Right Intersection: 

( X +  Y I ZW) & ( X f i  W 1 Z Y )  =+ ( X f ,  YW ( 2 ) .  

Left Intersection: 

( X f , Y I Z W )  & ( W + Y ( Z X )  * ( X W + Y l Z ) .  

This set of axioms bears a striking resemblance to the properties of path interception in : 
directed graph. Paz and Pearl (1994) showed that the axioms of Theorem 7.3.8, togethe 
with transitivity and right decomposition, constitute a complete characterization of thc 

l7 Galles and Pearl (1997) used a stronger version of right decomposition: (X f ,  Y W 1 2 )  = 
(X $, Y 1 Z). But Bonet (1999) showed that it must be weakened to render the axiom syster 
sound. 



7.3 Axiomatic Characterization 

relation (X + Y I Z)G when interpreted to mean that every directed path from X to Y 
in a directed graph G contains at least one node in Z (see also Paz et al. 1996). 

Galles and Pearl (1997) showed that, despite the absence of transitivity, Theorem 7.3.8 
permits one to infer certain properties of causal irrelevance from properties of directed 
graphs. For example, suppose we wish to validate a generic statement such as: "If X has 
an effect on Y, but ceases to have an effect when we fix Z, then Z must have an effect 
on Y." That statement can be proven from the fact that, in any directed graph, if all paths 
from X to Y are intercepted by Z and there are no paths from Z to Y, then there is no 
path from X to Y. 

Remark on the Transitivity of Causal Dependence 
That causal dependence is not transitive is clear from Figure 7.6. In any state of (U1, U2), 
X is capable of changing the state of W and W is capable of changing Y, yet X is inca- 
pable of changing Y. Galles and Pearl (1997) gave examples where causal relevance in the 
weak sense of Definition 7.3.7 is also nontransitive, even for binary variables. The ques- 
tion naturally arises as to why transitivity is so often conceived of as an inherent property 
of causal dependence or, more formally, what assumptions we tacitly make when we 
classify causal dependence as transitive. 

One plausible answer is that we normally interpret transitivity to mean the follow- 
ing: "If (I) X causes Y and (2) Y causes Z regardless of X, then (3) X causes Z." The 
suggestion is that questions about transitivity bring to mind chainlike processes, where 
X influences Y and Y influences Z but where X does not have a direct influence over Z. 
With this qualification, transitivity for binary variables can be proven immediately from 
composition (equation (7.19)) as follows. 

Let the sentence "X = x causes Y = y," denoted x += y, be interpreted as the joint 
condition {X(u) = x ,  Y(u) = y, Yxl(u) = y' # y} (in words, x and y hold, but chang- 
ing x to x' would change y to y'). We can now prove that if X has no direct effect on Z, 
that is, if 

then 

Proof 
The 1.h.s. of (7.40) reads 

X(u) = x ,  Y(u) = y, Z(u) = Z, Yxl(u) = y', Zy'(u) = z'. 

From (7.39) we can rewrite the last term as Zylx'(u) = z'. Composition further permits 
us to write 

Y,! (u) = y' & Z,','(U) = 2' =+ Z,~(U) = z', 

which, together with X(u) = x and Z(u) = z, implies x + z. 

Weaker forms of causal transitivity are discussed in Chapter 9 (Lemmas 9.2.7 and 9.2.8). 



The Logic of Structure-Based Counterfactuals 

7.4 STRUCTURAL AND SIMILARITY-BASED 
COUNTERFACTUALS 

7.4.1 Relations to Lewis's Counterfactuals 

Causality from Counterfactuals 
In one of his most quoted sentences, David Hume tied together two aspects of causation, 
regularity of succession and counterfactual dependency: 

we may define a cause to be an object followed by another, and where all the objects, sim- 
ilar to the first, are followed by object similar to the second, Or, in other words, where, if 
the first object had not been, the second never had existed. (Hume 174811959, sec. VII). 

This two-faceted definition is puzzling on several accounts. First, regularity of suc- 
cession, or "correlation" in modem terminology, is not sufficient for causation, as even 
nonstatisticians know by now. Second, the expression "in other words" is a too strong, 
considering that regularity rests on observations whereas counterfactuals rest on mental 
exercise. Third, Hume had introduced the regularity criterion nine years earlier,I8 and 
one wonders what jolted him into supplementing it with a counterfactual companion. 
Evidently, Hume was not completely happy with the regularity account, and must have 
felt that the counterfactual criterion is less problematic and more illuminating. But how 
can convoluted expressions of the type "if the first object had not been, the second never 
had existed" illuminate simple commonplace expressions like "A caused B"? 

The idea of basing causality on counterfactuals is further echoed by John Stuart Mill 
(1843), and it reached fruition in the works of David Lewis (1973b, 1986). Lewis called 
for abandoning the regularity account altogether and for interpreting "A has caused B" as 
" B  would not have occurred if it were not for A." Lewis (1986, p. 161) asked: "Why not 
take counterfactuals at face value: as statements about possible alternatives to the actual 
situation . . . ?" 

Implicit in this proposal lies a claim that counterfactual expressions are less arnbigu- 
ous to our mind than causal expressions. Why else would the expression "B would be 
false if it were not for A" be considered an explication of "A caused B," and not the other 
way around, unless we could discern the truth of the former with greater certitude than 
that of the latter? Taken literally, discerning the truth of counterfactuals requires generat- 
ing and examining possible alternatives to the actuaI situation as well as testing whether 
certain propositions hold in those alternatives - a mental task of nonnegligible propor- 
tions. Nonetheless, Hume, Mill, and Lewis apparently believed that going through this 
mental exercise is simpler than intuiting directly on whether it was A that caused B. How 
can this be done? What mental representation allows humans to process counterfactu- 
als so swiftly and reliably, and what logic governs that process so as to maintain uniform 
standards of coherence and plausibility? 

'"n Treatise of Human Nature, Hume wrote: "We remember to have had frequent instances of the 
existence of one species of objects; and also remember, that the individuals of another species of 
objects have always attended them, and have existed in a regular order of contiguity and succes- 
sion with regard to them" (Hume 1739, p. 156). 
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Figure 7.7 Graphical representation of Lewis's closest-world 
semantics. Each circular region corresponds to a set of worlds 
that are equally similar to w . The shaded region represents the set 
of closest A-worlds; since all these worlds satisfy B, the coun- 
terfactual sentence A [I, B is declared true in w .  

Structure versus Similarity 

According to Lewis's account (1973b), the evaluation of counterfactuals involves the no- 
tion of similarity: one orders possible worlds by some measure of similarity, and the 
counterfactual A C+ B (read: " B  if it were A") is declared true in a world w just in case 
B is true in all the closest A-worlds to w (see Figure 7.7).19 

This semantics still leaves questions of representation unsettled. What choice of sim- 
ilarity measure would make counterfactual reasoning compatible with ordinary concep- 
tions of cause and effect? What mental representation of worlds ordering would render 
the computation of counterfactuals manageable and practical (in both man and machine)? 

In his initial proposal, Lewis was careful to keep the formalism as general as possi- 
ble; save for the requirement that every world be closest to itself, he did not impose any 
structure on the similarity measure. However, simple observations tell us that similarity 
measures cannot be arbitrary. The very fact that people communicate with counterfactuals 
already suggests that they share a similarity measure, that this measure is encoded parsi- 
moniously in the mind, and hence that it must be highly structured. Kit Fine (1975) further 
demonstrated that similarity of appearance is inadequate. Fine considers the counterfac- 
tual "Had Nixon pressed the button, a nuclear war would have started," which is generally 
accepted as true. Clearly, a world in which the button happened to be disconnected is 
many times more similar to our world, as we know it, than the one yielding a nuclear blast. 
Thus we see not only that similarity measures could not be arbitrary but also that they must 
respect our conception of causal laws.*' Lewis (1979) subsequently set up an intricate 
system of weights and priorities among various aspects of similarity - size of "miracles" 
(violations of laws), matching of facts, temporal precedence, and so forth - in attempt- 
ing to bring similarity closer to causal intuition. But these priorities are rather post hoc 
and still yield counterintuitive inferences (J. Woodward, personal communication). 

Such difficulties do not enter the structural account. In contrast with Lewis's the- 
ory, counterfactuals are not based on an abstract notion of similarity among hypothetical 
worlds; instead, they rest directly on the mechanisms (or "laws," to be fancy) that pro- 
duce those worlds and on the invariant properties of those mechanisms. Lewis's elusive 
"miracles" are replaced by principled minisurgeries, do(X = x ) ,  which represent the 
minimal change (to a model) necessary for establishing the antecedent X = x (for all u). 

l 9  Related possible-world semantics were introduced in artificial intelligence to represent actions and 
database updates (Ginsberg 1986; Ginsberg and Smith 1987; Winslett 1988; Katsuno and Mendel- 
zon 1991). 

20 In this respect, Lewis's reduction of causes to counterfactuals is somewhat circular. 
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Thus, similarities and priorities - if they are ever needed - may be read into the do(.) 
operator as an afterthought (see discussion following (3.11) and Goldszmidt and Pearl 
1992), but they are not basic to the analysis. 

The structural account answers the mental representation question by offering a par- 
simonious encoding of knowledge from which causes, counterfactuals, and probabilities 
of counterfactuals can be derived by effective algorithms. However, this parsimony is ac- 
quired at the expense of generality; limiting the counterfactual antecedent to conjunction 
of elementary propositions prevents us from analyzing disjunctive hypotheticals such as 
"if Bizet and Verdi were compatriots." 

7.4.2 Axiomatic Comparison 
If our assessment of interworld distances comes from causal knowledge, the question 
arises of whether that knowledge does not impose its own structure on distances, a struc- 
ture that is not captured in Lewis's logic. Phrased differently: By agreeing to measure 
closeness of worlds on the basis of causal relations, do we restrict the set of counterfac- 
tual statements we regard as valid? The question is not merely theoretical. For example, 
Gibbard and Harper (1976) characterized decision-making conditionals (i.e., sentences 
of the form "If we do A ,  then B") using Lewis's general framework, whereas our do(.) 
operator is based directly on causal mechanisms; whether the two formalisms are identi- 
cal is uncertain.*' 

We now show that the two formalisms are identical for recursive systems; in other 
words, composition and effectiveness hold with respect to Lewis's closest-world frame- 
work whenever recursiveness does. We begin by providing a version of Lewis's logic for 
counterfactual sentences (from Lewis 1973~). 

Rules 

(1) If A and A B are theorems, then so is B. 

(2) If ( B I  & - - - ) C is a theorem, then so is ( ( A  [I, B 1 )  - - . ) ===+ 
(A D+ C). 

Axioms 

(1) All truth-functional tautologies. 

(3) ( A  El+ B )  & (B El+ A) ===+ (A [I, C)  = (B C H  C). 

(4) ((A v B) [I, A) v ((A v B) [I, B) v 
(((A v B) D+ C) - (A D+ C) & (B D+ C)). 

21 Ginsberg and Smith (1987) and Winslett (1988) have also advanced theories of actions based on 
closest-world semantics; they have not imposed any special structure for the distance measure to 
reflect causal considerations. 
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The statement A [I, B stands for "In all closest worlds where A holds, B holds as 
well." To relate Lewis's axioms to those of causal models, we must translate his syntax. 
We will equate Lewis's world with an instantiation of all the variables, including those 
in U, in a causal model. Values assigned to subsets of variables in a causal model will 
stand for Lewis's propositions (e.g., A and B in the stated rules and axioms). Thus, let 
A stand for the conjunction XI = xl, . . . , X ,  = x,, and let B stand for the conjunction 
Y1 = yl, . . . , Y,,, = y,. Then 

Conversely, we need to translate causal statements such as Yx(u) = y into Lewis's 
notation. Let A stand for the proposition X = x and B for the proposition Y = y. Then 

Axioms (1)-(6) follow from the closest-world interpretation without imposing any 
restrictions on the distance measured, except for the requirement that each world w be 
no further from itself than any other world w ' # w .  Because structural semantics defines 
an obvious distance measure among worlds, d(w, w'), given by the minimal number 
of local interventions needed for transforming w into w', all of Lewis's axioms should 
hold in causal models and must follow logically from effectiveness, composition, and 
(for nonrecursive systems) reversibility. This will be shown explicitly first. However, to 
guarantee that structural semantics does not introduce new constraints we need to show 
the converse: that the three axioms of structural semantics follow from Lewis's axioms. 
This will be shown second. 

To show that Axioms (1)-(6) hold in structural semantics, we examine each axiom in 
t m .  

(I) This axiom is trivially true. 

(2) This axiom is the same as effectiveness: If we force a set of variables X to have 
the value x ,  then the resulting value of X is x. That is, Xx(u) = x. 

(3) This axiom is a weaker form of reversibility, which is relevant only for non- 
recursive causal models. 

(4) Because actions in structural models are restricted to conjunctions of literals, 
this axiom is irrelevant. 

(5) This axiom follows from composition. 

(6) This axiom follows from composition. 

To show that composition and effectiveness follow from Lewis's axioms, we note that 
composition is a consequence of axiom (5) and rule (1) in Lewis's formalism, while ef- 
fectiveness is the same as Lewis's axiom (2). 
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In sum, for recursive models, the causal model framework does not add any restric- 
tions to counterfactual statements beyond those imposed by Lewis's framework; the very 
general concept of closest worlds is sufficient. Put another way, the assumption of recur- 
siveness is so strong that it already embodies all other restrictions imposed by structural 
semantics. When we consider nonrecursive systems, however, we see that reversibility is 
not enforced by Lewis's framework. Lewis's axiom (3) is similar to but not as strong as 
reversibility; that is, even though Y = y may hold in all closest w-worlds and W = w in 
all closest y-worlds, Y = y still may not hold in the actual world. Nonetheless, we can 
safely conclude that, in adopting the causal interpretation of counterfactuals (together 
with the representational and algorithmic machinery of modifiable structural equation 
models), we are not introducing any restrictions on the set of counterfactual statements 
that are valid relative to recursive systems. 

7.4.3 Imaging versus Conditioning 

If action is a transformation from one probability function to another, one may ask whether 
every such transformation corresponds to an action, or if there are some constraints that 
are peculiar to those transformations that originate from actions. Lewis's (1976) formu- 
lation of counterfactuals indeed identifies such constraints: the transformation must be 
an imaging operator. 

Whereas Bayes conditioning P(s I e) transfers the entire probability mass from states 
excluded by e to the remaining states (in proportion to their current P(s)), imaging works 
differently; each excluded state s transfers its mass individually to a select set of states 
S*(s) that are considered "closest" to s. Indeed, we saw in (3.11) that the transformation 
defined by the action do(Xi = xi) can be interpreted in terms of such a mass-transfer 
process; each excluded state (i.e., one in which X i  # x i )  transferred its mass to a select 
set of nonexcluded states that shared the same value of pai. This simple characterization 
of the set S*(s) of closest states is valid for Markovian models, but imaging generally 
permits the selection of any such set. 

The reason why imaging is a more adequate representation of transformations associ- 
ated with actions can be seen through a representation theorem due to Gardenfors (1988, 
thm. 5.2, p. 113; strangely, the connection to actions never appears in Gardenfors's anal- 
ysis). Gardenfors's theorem states that a probability update operator P(s) + PA($) is 
an imaging operator if and only if it preserves mixtures; that is, 

for all constants 1 > a > 0, all propositions A ,  and all probability functions P and P'. 
In other words, the update of any mixture is the mixture of the updates.22 

This property, called homomorphy, is what permits us to specify actions in terms of 
transition probabilities, as is usually done in stochastic control and Markov decision pro- 
cesses. Denoting by PA(s I s') the probability resulting from acting A on a known state 
s f ,  the homomorphism (7.43) dictates that 

22 Property (7.43) is reflected in the (US) postulate of Katsuno and Mendelzon (1991): (K1 v K2)op = 
( K I o p )  v (K20p) ,  where o is an update operator, similar to our do(-) operator. 
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this means that, whenever s' is not known with certainty, PA(s) is given by a weighted 
sum of PA (S 1 s ') over s I ,  with the weight being the current probability function P ( s l ) .  

This characterization, however, is too permissive; although it requires any action- 
based transformation to be describable in terms of transition probabilities, it also accepts 
any transition probability specification, howsoever whimsical, as a descriptor of some 
action. The valuable information that actions are defined as local surgeries is ignored in 
this characterization. For example, the transition probability associated with the atomic 
action Ai = do(Xi = xi) originates from the deletion of just one mechanism in the 
assembly. Hence, the transition probabilities associated with the set of atomic actions 
would normally constrain one another. Such constraints emerge from the axioms of ef- 
fectiveness, composition, and reversibility when probabilities are assigned to the states 
of U (Galles and Pearl 1997). 

7.4.4 Relations to the Neyman-Rubin Framework 
A Language in Search of a Model 
The notation Y,(u) that we used for denoting counterfactual quantities is borrowed from 
the potential-outcome framework of Neyman (1923) and Rubin (1974), briefly introduced 
in Section 3.6.3, which was devised for statistical analysis of treatment effects.23 In that 
framework, YVr (u) (often written Y(x, u)) stands for the outcome of experimental unit 
u (e.g., an individual or an agricultural lot) under a hypothetical experimental condi- 
tion X = x.  In contrast to the structural modeling, however, the variable Y,(u) in the 
potential-outcome framework is not a derived quantity but is taken as a primitive - that 
is, as an undefined symbol that represents the English phrase "the value that Y would as- 
sume in u ,  had X been x." Researchers pursuing the potential-outcome framework (e.g. 
Robins 1987; Manslu 1995; Angrist et al. 1996) have used this interpretation as a guide for 
expressing subject-matter information and for devising plausible relationships between 
counterfactual and observed variables, including Robins's consistency rule X = x + 
Y, = Y (equation (7.20)). However, the potential-outcome framework does not provide 
a mathematical model from which such relationships could be derived or on the basis of 
which the question of completeness could be decided - that is, whether the relationships 
at hand are sufficient for managing all valid inferences. 

The structural equation model formulated in Section 7.1 provides a formal seman- 
tics for the potential-outcome framework, since each such model assigns coherent truth 
values to the counterfactual quantities used in potential-outcome studies. From the struc- 
tural perspective, the quantity Y, (u) is not a primitive but rather is derived mathematically 
from a set of equations F that is modified by the operator do(X = x)  (see Definition 
7.1.4). Subject-matter information is expressed directly through the variables participat- 
ing in those equations, without committing to their precise functional form. The variable 

2Q related (if not identical) framework that has been used in economics is the switching regressiorl. 
For a brief review of such models, see Heckman (1996; see also Heckman and Honor6 1990 and 
Manski 1995). Winship and Morgan (1999) provided an excellent overview of the two schools. 
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U represents any set of background factors relevant to the analysis, not necessarily the 
identity of a specific individual in the population. 

Using this semantics, in Section 7.3 we established an axiomatic characterization of 
the potential-response function Y,(u) and its relationships with the observed variables 
X ( u )  and Y(u). These basic axioms include or imply restrictions such as Robins's consis- 
tency rule (equation (7.20)), which were taken as given by potential-outcome researchers. 

The completeness result further assures us that derivations involving counterfactual 
relationships in recursive models may safely be managed with two axioms only, effec- 
tiveness and composition. All truths implied by structural equation semantics are also 
derivable using these two axioms. Likewise - in constructing hypothetical contingency 
tables for recursive models (see Section 6.5.3) - we are guaranteed that, once a table sat- 
isfies effectiveness and composition, there exists at least one causal model that would 
generate that table. In essence, this establishes the formal equivalence of structural equa- 
tion modeling, which is popular in economics and the social sciences (Goldberger 1991), 
and the potential-outcome framework as used in statistics (Rubin 1974; Holland 1986; 
Robins 1 9 8 6 ) . ~ ~  In nonrecursive models, however, this is not the case. Attempts to evalu- 
ate counterfactual statements using only composition and effectiveness may fail to certify 
some valid conclusions (i.e., true in all causal models) whose validity can only be recog- 
nized through the use of reversibility. 

Graphical versus Counterfactual Analysis 

This formal equivalence between the structural and potential-outcome frameworks cov- 
ers issues of semantics and expressiveness but does not imply equivalence in concep- 
tualization or practical usefulness. Structural equations and their associated graphs are 
particularly useful as means of expressing assumptions about cause-effect relationships. 
Such assumptions rest on prior experiential knowledge, which - as suggested by am- 
ple evidence - is encoded in the human mind in terms of interconnected assemblies of 
autonomous mechanisms. These mechanisms are thus the building blocks from which 
judgments about counterfactuals are derived. Structural equations { fi } and their graphical 
abstraction G (M) provide direct mappings for these mechanisms and therefore constitute 
a natural language for articulating or verifying causal knowledge or assumptions. The 
major weakness of the potential-outcome framework lies in the requirement that assump- 
tions be articulated as conditional independence relationships involving counterfactual 
variables. For example, an assumption such as the one expressed in (7.30) is not easily 
comprehended even by skilled investigators, yet its structural image Ul ll U2 evokes an 
immediate process-based interpretati~n.~~ 

24 This equivalence was anticipated in Holland (1988), Pratt and Schlaifer (1988), Pearl (1995a), and 
Robins (1995). Note, though, that counterfactual claims and the equation deletion part of our model 
(Definition 7.1.3) are not made explicit in the standard literature on structural equation modeling. 

25 These views are diametrically opposite to those expressed by Angrist et al. (1996), who stated: 
"Typically the researcher does not have a firm idea what these disturbances really represent, and 
therefore it is difficult to draw realistic conclusions or communicate results based on their prop- 
erties." I have found that researchers who are knowledgeable in their respective subjects have a 
very clear idea what these disturbances really represent, and those who don't would certainly not 
be able to make realistic judgments about counterfactual dependencies. 
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A happy symbiosis between graphs and counterfactual notation was demonstrated in 
Section 7.3.2. In that example, assumptions were expressed in graphical form, then trans- 
lated into counterfactual notation (using the rules of (7.25) and (7.26)), and finally sub- 
mitted to algebraic derivation. Such symbiosis offers a more effective method of analysis 
than methods that insist on expressing assumptions directly as counterfactuals. Additional 
examples will be demonstrated in Chapter 9, where we analyze probability of causation. 
Note that, in the derivation of Section 7.3.2, the graph continued to assist the procedure 
by displaying independence relationships that are not easily derived by algebraic means 
alone. For example, it is hardly straightforward to show that the assumptions of (7.27)- 
(7.30) imply the conditional independence (Y, lL Z,  ( (2, X)) but do not imply the con- 
ditional independence (Y, U 2, I 2). Such implications can, however, easily be tested in 
the graph of Figure 7.5 or in the twin network construction of Section 7.1.3 (see Figure 7.3). 

The most compelling reason for molding causal assumptions in the language of graphs 
is that such assumptions are needed before the data are gathered, at a stage when the 
model's parameters are still "free" (i.e., still to be determined from the data). The usual 
temptation is to mold those assumptions in the language of statistical independence, which 
carries an aura of testability and hence of scientific legitimacy. (Chapter 6 exemplifies the 
difficulties associated with such temptations.) However, conditions of statistical indepen- 
dence -regardless of whether they relate to V variables, U variables, or counterfactuals - 
are generally sensitive to the values of the model's parameters, which are not available at 
the model construction phase. The substantive knowledge available at the modeling phase 
cannot support such assumptions unless they are stable, that is, insensitive to the values 
of the parameters involved. The implications of graphical models, which rest solely on 
the interconnections among mechanisms, satisfy this stability requirement and can there- 
fore be ascertained from generic substantive knowledge before data are collected. For 
example, the assertion (X 11 Y 1 2, U1), which is implied by the graph of Figure 7.5, 
remains valid for any substitution of functions in ( 5 )  and for any assignment of prior 
probabilities to Ul and U2. 

These considerations apply not only to the formulation of causal assumptions but 
also to the language in which causal concepts are defined and communicated. Many 
concepts in the social and medical sciences are defined in terms of relationships among 
unobserved U variables, also known as "errors" or "disturbance terms." We have seen 
in Chapter 5 (Section 5.4.3) that key econometric notions such as exogeneity and in- 
strumental variables have traditionally been defined in terms of absence of correlation 
between certain observed variables and certain error terms. Naturally, such definitions 
attract criticism from strict empiricists, who regard unobservables as metaphysical or def- 
initional (Richard 1980; Engle et al. 1983; Holland 1988), and also (more recently) from 
potential-outcome analysts, who regard the use of structural models as an unwarranted 
commitment to a particular functional form (Angrist et al. 1996). This new criticism will 
be considered in the following section. 

7.4.5 Exogeneity Revisited: Counterfactual and Graphical Definitions 

The analysis of this chapter provides a counterfactual interpretation of the error terms in 
structural equation models, supplementing the operational definition of (5.25). We have 
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seen that the meaning of the error term uy in the equation Y = fy ( p a  y ,  u y )  is captured 
by the counterfactual variable Y,,,. In other words, the variable U y  can be interpreted 
as a modifier of the functional mapping from PAy to Y. The statistics of such modifica- 
tions is observable when pay is held fixed. This translation into counterfactual notation 
may facilitate algebraic manipulations of U y  without committing to the functional form 
of fy. However, from the viewpoint of model specification, the error terms should be 
still viewed as (summaries of) omitted factors. 

Armed with this interpretation, we can obtain graphical and counterfactual defini- 
tions of causal concepts that were originally given error-based definitions. Examples of 
such concepts are causal influence, exogeneity, and instrumental variables (Section 5.4.3). 
In clarifying the relationships among error-based, counterfactual, and graphical defini- 
tions of these concepts, we should first note that these three modes of description can be 
organized in a simple hierarchy. Since graph separation implies independence but inde- 
pendence does not imply graph separation (Theorem 1.2.4), definitions based on graph 
separation should imply those based on error-term independence. Likewise, since for 
any two variables X and Y the independence relation Ux J l  U y  implies the counterfac- 
tual independence X,,, ll Yp,, (but not the other way around), it follows that definitions 
based on error independence should imply those based on counterfactual independence. 
Overall, we have the following hierarchy: 

graphical criteria error-based criteria counterfactual criteria. 

The concept of exogeneity may serve to illustrate this hierarchy. The pragmatic defini- 
tion of exogeneity is best formulated in counterfactual or interventional terms as follows. 

Exogeneity (Counterfactual Criterion) 
A variable X is exogenous relative to Y if and only if the effect of X on Y is identicaI to 
the conditional probability of Y given X - that is, if 

or, equivalently, 

this in turn is equivalent to the independence condition Y, lL X, named "weak ignora- 
bility" in Rosenbaum and Rubin (1983).*~ 

This definition is pragmatic in that it highlights the reasons economists should be con- 
cerned with exogeneity by explicating the policy-analytic benefits of discovering that 
a variable is exogenous. However, this definition fails to guide an investigator toward 

26 We focus the discussion in this section on the causal component of exogeneity, which the economet- 
ric literature has unfortunately renamed "superexogeneity" (see Section 5.4.3). We also postpone 
discussion of "strong ignorability," defined as the joint independence {Y, ,  Y , ! }  IL X, to Chapter 9 
(Definition 9.2.3). 
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verifying, from substantive knowledge of the domain, whether this independence condi- 
tion holds in any given system, especially when many equations are involved. To facilitate 
such judgments, economists (e.g. Koopmans 1950; Orcutt 1952) have adopted the error- 
based criterion of Definition 5.4.6. 

Exogeneity (Error-Based Criterion) 
A variable X is exogenous in M relative to Y if X is independent of all error terms that 
have an influence on Y that is not mediated by x . ~ ~  

This definition is more transparent to human judgment because the reference to error 
terms tends to focus attention on specific factors, potentially affecting Y, with which sci- 
entists are familiar. Still, to judge whether such factors are statistically independent is 
a difficult mental task unless the independencies considered are dictated by topological 
considerations that assure their stability. Indeed, the most popular conception of exo- 
geneity is encapsulated in the notion of "common cause"; this may be stated formally as 
follows. 

Exogeneity (Graphical Criterion) 
A variable X is exogenous relative to Y if X and Y have no common ancestor in G ( M )  
or, equivalently, if all back-door paths between X and Y are blocked (by colliding 
arrows).28 

It is easy to show that the graphical condition implies the error-based condition, which in 
turn implies the counterfactual (or pragmatic) condition of (7.46). The converse implica- 
tions do not hold. For example, Figure 6.4 illustrates a case where the graphical criterion 
fails and both the error-based and counterfactual criteria classify X as exogenous. We 
argued in Section 6.4 that this type of exogeneity (there called "no confounding") is un- 
stable or incidental, and we have raised the question of whether such cases were meant 
to be embraced by the definition. If we exclude unstable cases from consideration, then 
our three-level hierarchy collapses and all three definitions coincide. 

Instrumental Variables: Three Definitions 

A three-level hierarchy similarly characterizes the notion of instrumental variables (Bow- 
den and Turkington 1984; Pearl 199%; Angrist et al. 1996), illustrated in Figure 5.9. The 
traditional definition qualifies a variable Z as instrumental (relative to the pair (X, Y)) if 
(i) Z is independent of all error terms that have an influence on Y that is not mediated by 
X and (ii) Z is not independent of X. 

*' Independence relative to all errors is sometimes required in the literature (e.g. Dhrymes 1970, 
p. 169), but this is obviously too strong. 

28 AS in Chapter 6 (note 19), the expression "common ancestors" should exclude nodes that have no 
other connection to Y except through X and should include latent nodes for every pair of dependent 
errors. Generalization to conditional exogeneity relative to observed covariates is straightforward 
in all three definitions. 
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(a) (b) (c) (dl 

Figure 7.8 Z is a proper instrumental variable in the (linear) models of (a), (b), and (c), since it 
satisfies Z IL Uy . It is not an instrument in (d) because it is correlated with Uw , which influences Y. 

The counterfactual definition2' replaces condition (i) with (if): Z is independent of 
Y,. The graphical definition replaces condition (i) with (i"): every unblocked path con- 
necting Z and Y must contain an arrow pointing into X (alternatively, (2 lL y ) ~ ~ ) .  
Figure 7.8 illustrates this definition through examples. 

When a set S of covariates is measured, these definitions generalize as follows. 

Definition 7.4.1 (Instrument) 
A variable Z is an instrument relative to the total eflect of X on Y if there exists a set 
of measurements S = s ,  unafected by X ,  such that either of the following criteria 
holds. 

I. Counterfactual criterion: 
(i) ZILY, I S = s ;  
(ii) Z J h X  I S = s .  

2 .  Graphical criterion: 
(i) ( Z A Y  I S)cx;  
(ii) ( 2  Jh x I SIC. 

In concluding this section, I should reemphasize that it is because graphical definitions are 
insensitive to the values of the model's parameters that graphical vocabulary guides and 
expresses so well our intuition about causal effects, exogeneity, instruments, confound- 
ing, and even (I speculate) more technical notions such as randomness and statistical 
independence. 

29 There is, in fact, no agreed-upon generalization of instrumental variables to nonlinear systems. 
The definition here, taken from Galles and Pearl (1998), follows by translating the error-based def- 
inition into counterfactual vocabulary. Angrist et al. (1996), who expressly rejected all reference to 
graphs or error terms, assumed two unnecessary restrictions: that Z be ignorable (i.e. randomized; 
this is violated in Figures 7.8(b) and (c)) and that Z affect X (violated in Figure 7.8(c)). Simi- 
lar assumptions were made by Heckman and Vytlacil(1999), who used both counterfactuals and 
structural equation models. 
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7.5 STRUCTURAL VERSUS PROBABILISTIC CAUSALITY 

Probabilistic causality is a branch of philosophy that attempts to explicate causal relation- 
ships in terms of probabilistic relationships. This attempt is motivated by several ideas 
and expectations. First and foremost, probabilistic causality promises a solution to the 
centuries-old puzzle of causal discovery - that is, how humans discover genuine causal 
relationships from bare empirical observations, free of any causal preconceptions. Given 
the Humean dictum that all knowledge originates with human experience and the (less 
compelling but fashionable) assumption that human experience is encoded in the form of 
a probability function, it is natural to expect that causal knowledge be reducible to a set of 
relationships in some probability distribution that is defined over the variables of interest. 
Second, in contrast to deterministic accounts of causation, probabilistic causality offers 
substantial cognitive economy. Physical states and physical laws need not be specified in 
minute detail because instead they can be summarized in the form of probabilistic rela- 
tionships among macro states so as to match the granularity of natural discourse. Third, 
probabilistic causality is equipped to deal with the modern (i.e. quantum-theoretical) con- 
ception of uncertainty, according to which determinism is merely an epistemic fiction and 
nondeterminism is the fundamental feature of physical reality. 

The formal program of probabilistic causality owes its inception to Reichenbach 
(1956) and Good (1961), and it has subsequently been pursued by Suppes (1970), Skyms 
(1980), Spohn (1980), Otte (1981), Salmon (1984), Cartwright (1989), and Eells (1991). 
The current state of this program is rather disappointing, considering its original aspira- 
tions. Salmon has abandoned the effort altogether, concluding that "causal relations are 
not appropriately analyzable in terms of statistical relevance relations" (1984, p. 185); 
instead, he has proposed an analysis in which "causal processes" are the basic building 
blocks. More recent accounts by Cartwright and Eells have resolved some of the diffi- 
culties encountered by Salmon, but at the price of either complicating the theory beyond 
recognition or compromising its original goals. The following is a brief account of the 
major achievements, difficulties, and compromises of probabilistic causality as portrayed 
in Cartwright (1989) and Eells (1991). 

7.5.1 The Reliance on Temporal Ordering 

Standard probabilistic accounts of causality assume that, in addition to a probability 
function P, we are also given the temporal order of the variables in the analysis. This is 
understandable, considering that causality is an asymmetric relation whereas statistical 
relevance is symmetric. Lacking temporal information, it would be impossible to decide 
which of two dependent variables is the cause and which the effect, since every joint dis- 
tribution P(x,  y) induced by a model in which X is a cause of Y can also be induced by a 
model in which Y is the cause of X. Thus, any method of inferring that X is a cause of Y 
must also infer, by symmetry, that Y is a cause of X. In Chapter 2 we demonstrated that, 
indeed, at least three variables are needed for determining the directionality of arrows 
in a DAG and, more serious yet, no arrow can be oriented from probability information 
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alone - that is, without the added assumptions of stability or minimality. By imposing 
the constraint that an effect never precede its cause, the symmetry is broken and causal 
inference can commence. 

The reliance on temporal information has its price, as it excludes a priori the analysis 
of cases in which the temporal order is not well-defined, either because processes overlap 
in time or because they (appear to) occur instantaneously. For example, one must give up 
the prospect of determining (by uncontrolled methods) whether sustained physical exer- 
cise contributes to low cholesterol levels or if, conversely, low cholesterol levels enhance 
the urge to engage in physical exercise. Likewise, the philosophical theory of probabilis- 
tic causality would not attempt to distinguish between the claims "tall flag poles cause 
long shadows" and "long shadows cause tall flag poles" - where, for all practical pur- 
poses, the putative cause and effect occur simultaneously. 

We have seen in Chapter 2 that some determination of causal directionality can be 
made from atemporal statistical information, if fortified with the assumptions of mini- 
mality or stability. These assumptions, however, implicitly reflect generic properties of 
physical processes - invariance and autonomy (see Section 2.9.1) - that constitute the 
basis of the structural approach to causality. 

7.5.2 The Perils of Circularity 

Despite the reliance on temporal precedence, the criteria that philosophers have devised 
for identifying causal relations suffer from glaring circularity: In order to determine 
whether an event C is a cause of event E ,  one must know in advance how other factors 
are causally related to C and E. Such circularity emerges from the need to define the 
"background context" under which a causal relation is evaluated, since the intuitive idea 
that causes should increase the probability of their effects must be qualified by the con- 
dition that other things are assumed equal. For example, "studying arithmetic" increases 
the probability of passing a science test, but only if we keep student age constant; other- 
wise, studying arithmetic may actually lower the probability of passing the test because 
it is indicative of young age. Thus, it seems natural to offer the following. 

Definition 7.5.1 
An event C is causally relevant to E ifthere is at least one condition F in some background 
context K such that P ( E  I C, F )  > P(E I l C ,  F ) . ~ '  

But what kind of conditions should we include in the background context? On the one 
hand, insisting on a complete description of the physical environment would reduce prob- 
abilistic causality to deterministic physics (barring quantum-level considerations). On 
the other hand, ignoring background factors altogether - or describing them too coarsely - 
would introduce spurious correlations and other confounding effects. A natural compro- 
mise is to require that the background context itself be "causally relevant" to the variables 

30 The reader can interpret K to be a set of variables and F a particular truth-value assignment to 
those variables. 
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in question, but this very move is the source of circularity in the definition of probabilistic 
causality. 

The problem of choosing an appropriate set of background factors is similar to the 
problem of finding an appropriate adjustment for confounding, as discussed in several 
previous chapters in connection with Simpson's paradox (e.g., Sections 3.3, 5.1.3, and 
6.1). We have seen (e.g., in Section 6.1) that the criterion for choosing an appropriate 
set of covariates for adjustment cannot be based on probabilistic relationships alone but 
must rely on causal information. In particular, we must make sure that factors listed as 
background are not affected by C; otherwise, no C would ever qualify as a cause of E, 
because we can always find factors F that are intermediaries between C and E and that 
screen off E from c . ~ ~  Here we see the emergence of circularity: In order to determine 
the causal role of C relative to E (e.g., the effect of the drug on recovery), we must first 
determine the causal role of every factor F (e.g., gender) relative to C and E. 

Factors affecting both C and E can be rescued from circularity by conditioning on 
all factors preceding C but, unfortunately, other factors that cannot be identified through 
temporal ordering alone must also be weighed. Consider the betting example used in 
Section 7.1.2. I must bet heads or tails on the outcome of a fair coin toss; 1 win if I guess 
correctly and lose if I don't. Naturally, once the coin is tossed (and while the outcome 
is still unknown), the bet is deemed causally relevant to winning, even though the prob- 
ability of winning is the same whether I bet heads or tails. In order to reveal the causal 
relevance of the bet ( C ) ,  we must include the outcome of the coin (F) in the background 
context even though F does not meet the common-cause criterion - it does not affect my 
bet (C) nor is it causally relevant to winning (E) (unless we first declare the bet is rel- 
evant to winning). Worse yet, we cannot justify including F in the background context 
by virtue of its occurring earlier than C because whether the coin is tossed before or after 
my bet is totally irrelevant to the problem at hand. We conclude that temporal precedence 
alone is insufficient for identifying the background context, and we must refine the defini- 
tion of the background context to include what Eells (1991) called "interacting causes" - 
namely, (simplified) factors F that (i) are not affected causally by C and (ii) jointly with 
C (or 1 C )  increase the probability of E. 

Because of the circularity inherent in all definitions of causal relevance, probabilistic 
causality cannot be regarded as a program for extracting causal relations from temporal- 
probabilistic information; rather, it should be viewed as aprogram for validating whether a 
proposed set of causal relationships is consistent with the available temporal-probabilistic 
information. More formally, suppose someone gives us a probability distribution P and 
a temporal order 0 on a (complete) set of variables V. Furthermore, any pair of vari- 
able sets (say, X and Y) in V is annotated by a symbol R or I, where R stands for 
"causally relevant" and I for "causally irrelevant." Probabilistic causality deals with 
testing whether the proposed R and I labels are consistent with the pair (P, 0) and 
with the restriction that causes should both precede and increase the probability of 
their effect. 

3' We say that F "screens off" E from C if C and E are conditionally independent, given both F 
and 7 F. 
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Currently, the most advanced consistency test is the one based on Eells's (1991) cri- 
terion of relevance, which may be translated as follows. 

Consistency Test 
For each pair of variables labeled R ( X ,  Y), test whether 

(i) X precedes Y in 0, and 

(ii) there exist x, x' ,  y such that P(y I x ,  z) > P(  y I x ' ,  z) for some z in 2, 
where Z is a set of variables in the background context K such that I ( X ,  Z) 
and R(Z, Y). 

This now raises additional questions. 

(a) Is there a consistent label for every pair (P, O)? 

(b) When is the label unique? 

(c) IS there a procedure for finding a consistent label when it exists? 

Although some insights into these questions are provided by graphical methods (Pearl 
1996), the point is that, owing to circularity, the mission of probabilistic causality has 
been altered: from discovery to consistency testing. 

It should also be remarked that the basic program of defining causality in terms of 
conditionalization, even if it turns out to be successful, is at odds with the natural concep- 
tion of causation as an oracle for interventions. This program first confounds the causal 
relation P ( E  I do(C))  with epistemic conditionalization P (E  I C) and then removes 
spurious correlations through steps of remedial conditionalization, yielding P(E I C, F). 
The structural account, in contrast, defines causation directly in terms of Nature's invari- 
ants (i.e., submodel M, in Definition 7.1.2); see the discussion following Theorem 3.2.2. 

7.5.3 The Closed-World Assumption 

By far the most critical and least defensible paradigm underlying probabilistic causal- 
ity rests on the assumption that one is in the possession of a probability function on all 
variables relevant to a given domain. This assumption absolves the analyst from worry- 
ing about unmeasured spurious causes that might (physically) affect several variables in 
the analysis and still remain obscure to the analyst. It is well known that the presence 
of such "confounders" may reverse or negate any causal conclusion that might be drawn 
from probabilities. For example, observers might conclude that "bad air" is the cause 
of malaria if they are not aware of the role of mosquitoes, or that falling barometers are 
the cause of rain, or that speeding to work is the cause of being late to work, and so on. 
Because they are unmeasured (or even unsuspected), the confounding factors in such ex- 
amples cannot be neutralized by conditioning or by "holding them fixed." Thus, taking 
seriously Hume's program of extracting causal information from raw data entails coping 
with the problem that the validity of any such information is predicated on the untestable 
assumption that all relevant factors have been accounted for. 

This raises the question of how people ever acquire causal information from the envi- 
ronment and, more specifically, how children extract causal information from experience. 
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The proponents of probabilistic causality who attempt to explain this phenomenon through 
statistical theories of learning cannot ignore the fact that the child never operates in a 
closed, isolated environment. Unnoticed external conditions govern the operation of 
every learning environment, and these conditions often have the potential to confound 
cause and effect in unexpected and clandestine ways. 

Fortunately, that children do not grow in closed, sterile environments does have its 
advantages. Aside from passive observations, a child possesses two valuable sources of 
causal information that are not available to the ordinary statistician: manipulative exper- 
imentation and linguistic advice. Manipulation subjugates the putative causal event to 
the sole influence of a known mechanism, thus overruling the influence of uncontrolled 
factors that might also produce the putative effect. "The beauty of independent manipu- 
lation is, of course, that other factors can be kept constant without their being identified" 
(Cheng 1992). The independence is accomplished by subjecting the object of interest to 
the whims of one's volition in order to ensure that the manipulation is not influenced by 
any environmental factor likely to produce the putative effect. Thus, for example, a child 
can infer that shaking a toy can produce a rattling sound because it is the child's hand, 
governed solely by the child's volition, that brings about the shaking of the toy and the 
subsequent rattling sound. The whimsical nature of free manipulation replaces the sta- 
tistical notion of randomized experimentation and serves to filter sounds produced by the 
child's actions from those produced by uncontrolled environmental factors. 

But manipulative experimentation cannot explain all of the causal knowledge that 
humans acquire and possess, simply because most variables in our environment are not 
subject to direct manipulation. The second valuable source of causal knowledge is lin- 
guistic advice: explicit causal sentences about the workings of things which we obtain 
from parents, friends, teachers, and books and which encode the manipulative experience 
of past generations. As obvious and uninteresting as this source of causal information 
may appear, it probably accounts for the bulk of our causal knowledge, and understand- 
ing how this transference of knowledge works is far from trivial. In order to comprehend 
and absorb causal sentences such as "The glass broke because you pushed it," the child 
must already possess a causal schema within which such inputs make sense. To further 
infer that pushing the glass will make someone angry at you and not at your brother, even 
though he was responsible for all previous breakage, requires a truly sophisticated infer- 
ential machinery. In most children, this machinery is probably innate. 

Note, however, that linguistic input is by and large qualitative; we rarely hear parents 
explaining to children that placing the glass at the edge of the table increases the prob- 
ability of breakage by a factor of 2.85. The probabilistic approach to causality embeds 
such qualitative input in an artificial numerical frame, whereas the structural approach 
to causality (Section 7.1) builds directly on the qualitative knowledge that we obtain and 
transmit linguistically. 

7.5.4 Singular versus General Causes 
In Section 7.2.3 we saw that the distinction between general causes (e.g., "Drinking hem- 
lock causes death") and singular causes (e.g., "Socrates' drinking hemlock caused his 
death") plays an important role in understanding the nature of explanations. We have 
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also remarked that the notion of singular causation (also known as "token" or "single- 
event" causation) has not reached an adequate state of conceptualization or formaliza- 
tion in the probabilistic account of causation. In this section we elaborate the nature of 
these difficulties and conclude that they stem from basic deficiencies in the probabilistic 
account. 

In Chapter 1 (Figure 1.6) we demonstrated that the evaluation of singular causal claims 
requires knowledge in the form of counterfactual or functional relationships and that such 
knowledge cannot be extracted from bare statistical data even when obtained under con- 
trolled experimentation. This limitation was attributed in Section 7.2.2 to the temporal 
persistence (or invariance) of information that is needed to sustain counterfactual state- 
ments - persistence that is washed out (by averaging) in statistical statements even when 
enriched with temporal and causally relevant information. The manifestations of this 
basic limitation have taken an interesting slant in the literature of probabilistic causa- 
tion and have led to intensive debates regarding the relationships between singular and 
generic statements (see e.g. Good 1961; Cartwright 1989; Eells 1991; Hausman 1998). 

According to one of the basic tenets of probabilistic causality, a cause should raise 
the probability of the effect. It is often the case, however, that we judge an event x to be 
the cause of y when the conditional probability P(y I x) is lower than P(y ( x'). For 
example, a vaccine (x) usually decreases the probability of the disease (y) and yet we 
often say (and can medically verify) that the vaccine itself caused the disease in a given 
person u. Such reversals would not be problematic to students of structural models, who 
can interpret the singular statement as saying that "had person u not taken the vaccine 
(x') then u would still be healthy (y')." The probability of this counterfactual state- 
ment P(Y,r = y' Ix, y) can be high while the conditional probability P ( y  I x) is low, 
with both probabilities evaluated formally from the same structural model (Section 9.2 
provides precise relationships between the two quantities). However, this reversal is 
traumatic to students of probabilistic causation, who mistrust counterfactuals for vari- 
ous reasons - partly because counterfactuals carry an aura of determinism (Kvart 1986, 
pp. 256-63) and partly because counterfactuals are perceived as resting on shaky for- 
mal foundation "for which we have only the beginnings of a semantics (via the device of 
measures over possible worlds)" (Cartwright 1983, p. 34). 

In order to reconcile the notion of probability increase with that of singular causa- 
tion, probabilists claim that, if we look hard enough at any given scenario in which x is 
judged to be a cause of y, then we will always be able to find a subpopuIation Z = z in 
which x raises the probability of y - namely, 

In the vaccine example, we might identify the desired subpopulation as consisting of in- 
dividuals who are adversely susceptible to the vaccine; by definition, the vaccine would 
no doubt raise the probability of the disease in that subpopulation. Oddly, only few 
philosophers have noticed that factors such as being "adversely susceptible" are defined 
counterfactually and that, in permitting conditionalization on such factors, one opens a 
clandestine back door for sneaking determinism and counterfactual information back into 
the analysis. 

Perhaps a less obvious appearance of counterfactuals surfaces in Hesslow's example 
of the birth-control pill (Hesslow 1976), discussed in Section 4.5.1. Suppose we find that 
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Mrs. Jones is not pregnant and ask whether taking a birth-control pill was the cause of her 
suffering from thrombosis. The population of pregnant women turns out to be too coarse 
for answering this question unequivocally. If Mrs. Jones belongs to the class of women 
who would have become pregnant but for the pill, then the pill might actually have Iow- 
ered the probability of thrombosis in her case by preventing her pregnancy. If, on the 
other hand, she belongs to the class of women who would not have become pregnant re- 
gardless of the pill, then her taking the pill has surely increased the chance of thrombosis. 
This example is illuminating because the two classes of test populations do not have es- 
tablished names in the English language (unlike "susceptibility" of the vaccine example) 
and must be defined explicitly in counterfactual vocabulary. Whether a woman belongs 
to the former or latter class depends on many social and circumstantial contingencies, 
which are usually unknown and are not likely to define an invariant attribute of a given 
person. Still, we recognize the need to consider the two classes separately in evaluating 
whether the pill was the cause of Mrs. Jones's thrombosis. 

Thus we see that there is no escape from counterfactuals when we deal with token- 
level causation. Probabilists' insistence on counterfactual-free syntax in defining token 
causal claims has led to subpopulations delineated by none other but counterfactual ex- 
pressions: "adversely susceptible" in the vaccine example and "would not have become 
pregnant" in the case of Mrs. c ones.^^ 

Probabilists can argue, of course, that there is no need to refine the subclasses Z = z 
down to deterministic extremes, since one can stop the refinement as soon as one finds a 
subclass that increases the probability of y, as required in (7.47). This argument borders 
on the tautological, unless it is accompanied with formal procedures for identifying the 
test subpopulation Z = z and for computing the quantities in (7.47) from some reason- 
able model of human knowledge, however hypothetical. Unfortunately, the probabilistic 
causality literature is silent on questions of procedures and representation.33 

In particular, probabilists face a tough dilemma in explaining how people search for 
that rescuing subpopulation z so swiftly and consistently and how the majority of people 
end up with the same answer when asked whether it was x that caused y. For example 
(due to Debra Rosen, quoted in Suppes 1970), a tree limb ( x )  that fortuitously deflects 
a golf ball is immediately and consistently perceived as "the cause" for the ball finally 
ending up in the hole, though such collisions generally lower one's chances of reaching 
the hole (y). Clearly, if there is a subpopulation z that satisfies (7.47) in such examples 
(and I doubt it ever enters anyone's mind), it must have at least two features. 

(1) It must contain events that occur both before and after x .  For example, both the 
angle at which the ball hit the limb and the texture of the grass on which the ball 
bounced after hitting the limb should be part of z.  

- 

32 Cartwright (1989, chap. 3) recognized the insufficiency of observable partitions (e.g. pregnancy) 
for sustaining the thesis of increased probability, but she did not emphasize the inevitable coun- 
terfactual nature of the finer partitions that sustain that thesis. Not incidentally, Cartwright was a 
strong advocate of excluding counterfactuals from causal analysis (Cartwright 1983, pp. 34-5). 

33 Even Eells (1991, chap. 6) and Shafer (1996a), who endeavored to uncover discriminating patterns 
of increasing probabilities in the actual trajectory of the world leading to y,  did not specify what 
information is needed either to select the appropriate trajectory or to compute the probabilities as- 
sociated with a given trajectory. 
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(2) It must depend on x and y. For, surely, a different conditioning set z' would 
be necessary in (7.47) if we were to test whether the limb caused an alternative 
consequence y' - say, that the ball stopped two yards short of the hole. 

And this brings us to a major methodological inconsistency in the probabilistic ap- 
proach to causation: If ignorance of x and y leads to the wrong z and if awareness of x 
and y leads to the correct selection of z, then there must be some process by which peo- 
ple incorporate the occurrence of x and y into their awareness. What could that process 
be? According to the norms of probabilistic epistemology, evidence is incorporated into 
one's corpus of knowledge by means of conditionalization. How, then, can we justify ex- 
cluding from z the very evidence that led to its selection - namely, the occurrence of x 
and y ? 

Inspection of (7.47) shows that the exclusion of x and y from z is compelled on syn- 
tactic grounds, since it would render P (  y I x', z) undefined and make P( y I x, z) = 1. 
Indeed, in the syntax of probability calculus we cannot ask what the probability of event 
y would be, given that y has in fact occurred - the answer is (trivially) I .  The best we can 
do is detach ourselves momentarily from the actual world, pretend that we are ignorant 
of the occurrence of y, and ask for the probability of y under such a state of ignorance. 
This corresponds precisely to the three steps (abduction, action, and prediction) that gov- 
ern the evaluation of P(Y,/ = y' I x, y) (see Theorem 7.1.7), which attains a high value 
(in our example) and correctly qualifies the tree limb (x) as the cause of making the hole 
(y). As we see, the desired quantity can be expressed and evaluated by ordinary condi- 
tionalization on x and y, without explicitly invoking any subpopulation z.34 

Ironically, by denying counterfactual conditionals, probabilists deprived themselves 
of using standard conditionals - the very conditionals they were trying to preserve - and 
were forced to accommodate simple evidential information in roundabout ways. This 
syntactic barrier that probabilists erected around causation has created an artificial ten- 
sion between singular and generic causes, but the tension disappears in the structural 
account. In Section 10.1.1 we show that, by accommodating both standard and coun- 
terfactual conditionals (i.e. Y, ) ,  singular and generic causes no longer stand in need of 
separate analyses. The two types of causes differ merely in the level of scenario-specific 
information that is brought to bear on a problem, that is, in the specificity of the evidence 
e that enters the quantity P(Y, = y 1 e ) .  

7.5.5 Summary 

Cartwright (1983, p. 34) fisted several reasons for pursuing the probabilistic versus the 
counterfactual approach to causation: 

[the counterfactual approach] requires us to evaluate the probability of counterfactuals for 
which we have only the beginnings of a semantics (via the device of measures over possi- 
ble worlds) and no methodology, much less an account of why the methodology is suited 

34 The desired subpopulation z is equal to the set of all u that are mapped into X(u) = x ,  Y(u) = y ,  
and Y,, (u) = y '. 
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to the semantics. How do we test claims about probabilities of counterfactuals? We have 
no answer, much less an answer that fits with our nascent semantics. It would be prefer- 
able to have a measure of effectiveness that requires only probabilities over events that 
can be tested in the actual world in the standard ways. 

Examining the progress of the probabilistic approach in the past two decades, it seems 
clear that Cartwright's aspirations have materialized not in the framework she advocated 
but rather in the competing framework of counterfactuals, as embodied in structural mod- 
els. Full characterization of "effectiveness" ("causal effects'? in our vocabulary) in terms 
of "events that can be tested" emerged from Simon's (1953) and Strotz and Wold's (1960) 
conception of modifiable structural models and led to the back-door criterion (Theorem 
3.3.2) and to the more general Theorem 4.3.1, of which the probabilistic criteria (as in 
(3.13)) are but crude special cases. The interpretation of singular causation in terms of 
the counterfactual probability P(Y,f # y 1 x, y )  has enlisted the support of meaningful 
formal semantics (Section 7.1) and effective evaluation methodology (Theorem 7.1.7 and 
Sections 7.1.3-7.2.1), while the probabilistic criterion of (7.47) lingers in vagueness and 
procedureless debates. The original dream of rendering causal claims testable was given 
up in the probabilistic framework as soon as unmeasured entities (e.g., state of the world, 
background context, causal relevance, susceptibility) were allowed to infiltrate the an- 
alysis, and methodologies for answering questions of testability have moved over to the 
structural-counterfactual framework (see Chapter 9). 

The ideal of remaining compatible with the teachings of nondeterministic physics 
seems to be the only viable aspect remaining in the program of probabilistic causation, 
and this section questions whether maintaining this ideal justifies the sacrifices. It further 
suggests that the basic agenda of the probabilistic causality program is due for a serious 
reassessment. If the program is an exercise in epistemology, then the word "probabilistic" 
is oxymoronic - human perception of causality has remained quasi-deterministic, and 
these fallible humans are still the main consumers of causal talk. If the program is an 
exercise in modem physics, then the word "causality" is nonessential - quantum-level 
causality follows its own rules and intuitions, and another name (perhaps "qua-sality") 
might be more befitting. However, regarding artificial intelligence and cognitive science, 
I would venture to predict that robots programmed to emulate the quasi-deterministic 
macroscopic approximations of Laplace and Einstein would far outperform those built 
on the correct but counterintuitive theories of Born, Heisenberg, and Bohr. 
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CHAPTER EIGHT 

Imperfect Experiments: Bounding Effects and 
Counterfactuals 

Would that I could discover truth 
as easily as I can uncover falsehood. 

Cicero (44 B.c.) 

Preface 

In this chapter we describe how graphical and counterfactual models (Sections 3.2 and 
7.1 can combine to elicit causal information from imperfect experiments: experiments 
that deviate from the ideal protocol of randomized control. A common deviation oc- 
curs, for example, when subjects in a randomized clinical trial do not fully comply with 
their assigned treatment, thus compromising the identification of causal effects. When 
conditions for identification are not met, the best one can do is derive bounds for the 
quantities of interest - namely, a range of possible values that represents our ignorance 
about the data-generating process and that cannot be improved with increasing sample 
size. The aim of this chapter is to demonstrate (i) that such bounds can be derived by 
simple algebraic methods and (ii) that, despite the imperfection of the experiments, the 
derived bounds can yield significant and sometimes accurate information on the impact 
of a policy on the entire population as well as on a particular individual who participated 
in the study. 

8.1 INTRODUCTION 

8.1.1 Imperfect and Indirect Experiments 
Standard experimental studies in the biological, medical, and behavioral sciences invari- 
ably invoke the instrument of randomized control; that is, subjects are assigned at random 
to various groups (or treatments or programs), and the mean differences between partic- 
ipants in different groups are regarded as measures of the efficacies of the associated 
programs. Deviations from this ideal setup may take place either by failure to meet any 
of the experimental requirements or by deliberate attempts to relax these requirements. 
Indirect experiments are studies in which randomized control is either unfeasible or un- 
desirable. In such experiments, subjects are still assigned at random to various groups, 
but members of each group are simply encouraged (rather than forced) to participate 
in the program associated with the group; it is up to the individuals to select among 
the programs. 
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Recently, use of strict randomization in social and medical experimentation has been 
questioned for three major reasons. 

1. Perfect control is hard to achieve or ascertain. Studies in which treatment is as- 
sumed to be randomized may be marred by uncontrolled imper$ect compliance. 
For example, subjects experiencing adverse reactions to an experimental drug 
may decide to reduce the assigned dosage. Alternatively, if the experiment is 
testing a drug for a terminal disease, a subject suspecting that he or she is in the 
control group may obtain the drug from other sources. Such imperfect compli- 
ance renders the experiment indirect and introduces bias into the conclusions that 
researchers draw from the data. This bias cannot be corrected unless detailed 
models of compliance are constructed (Efron and Feldman 1991). 

2. Denying subjects assigned to certain control groups the benefits of the best avail- 
able treatment has moral and legal ramifications. For example, in AIDS research 
it is difficult to justify placebo programs because those patients assigned to the 
placebo group would be denied access to potentially life-saving treatment (Palca 
1989). 

3. Randomization, by its very presence, may influence participation as well as be- 
havior (Heckman 1992). For example, eligible candidates may be wary of apply- 
ing to a school once they discover that it deliberately randomizes its admission 
criteria. Likewise, as Kramer and Shapiro (1984) noted, subjects in drug trials 
may be less likely to participate in randomized trials than in nonexperimental 
studies, even when the treatments are equally nonthreatening. 

Altogether, researchers are beginning to acknowledge that mandated randomization may 
undermine the reliability of experimental evidence and that experimentation with human 
subjects often involves - and sometimes should involve - an element of self-selection. 

This chapter concerns the drawing of inferences from studies in which subjects have 
final choice of program; the randomization is confined to an indirect instrument (or as- 
signment) that merely encourages or discourages participation in the various programs. 
For example, in evaluating the efficacy of a given training program, notices of eligibility 
may be sent to a randomly selected group of students or, alternatively, eligible candidates 
may be selected at random to receive scholarships for participating in the program. Sim- 
ilarly, in drug trials, subjects may be given randomly chosen advice on recommended 
dosage level, yet the final choice of dosage will be determined by the subjects to fit their 
individual needs. 

Imperfect compliance poses a problem because simply comparing the fractions in 
the treatment and control groups may provide a misleading estimate for how effective 
the treatment would be if applied uniformly to the population. For example, if those 
subjects who declined to take the drug are precisely those who would have responded 
adversely, the experiment might conclude that the drug is more effective than it actually 
is. In Chapter 3 (see Section 3.5, Figure 3.7(b)), we showed that treatment effectiveness 
in such studies is actually nonidentiJiable. That is, in the absence of additional model- 
ing assumptions, treatment effectiveness cannot be estimated from the data without bias, 
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even when the number of subjects in the experiment approaches infinity and even when 
a record is available of the action and response of each subject. 

The question we attempt to answer in this chapter is whether indirect randomiza- 
tion can provide information that allows approximate assessment of the intrinsic merit 
of a program, as would be measured, for example, if the program were to be extended 
and mandated uniformly to the population. The analysis presented shows that, given a 
minimal set of assumptions, such inferences are indeed possible - albeit in the form of 
bounds, rather than precise point estimates, for the causal effect of the program or treat- 
ment. These bounds can be used by the analyst to guarantee that the causal effect of a 
given program must be higher than one measurable quantity and lower than another. 

Our most crucial assumption is that, for any given person, the encouraging instrument 
influences the treatment chosen by that person but has no effect on how that person would 
respond to the treatment chosen (see the definition of instrumental variables in Section 
7.4.5). The second assumption, one which is always made in experimental studies, is that 
subjects respond to treatment independently of one other. Other than these two assump- 
tions, our model places no constraints on how tendencies to respond to treatments may 
interact with choices among treatments. 

8.1.2 Noncompliance and Intent to Treat 

In a popular compromising approach to the problem of imperfect compliance, researchers 
perform an "intent to treat" analysis in which the control and treatment group are com- 
pared without regard to whether the treatment was actually received.' The result of such 
an analysis is a measure of how well the treatment assignment affects the disease, as op- 
posed to the desired measure of how well the treatment itself affects the disease. Estimates 
based on intent-to-treat analyses are valid only as long as the experimental conditions 
perfectly mimic the conditions prevailing in the eventual usage of the treatment. In par- 
ticular, the experiment should mimic subjects' incentives for receiving each treatment. 
In situations where field incentives are more compelling than experimental incentives, as 
is usually the case when drugs receive the approval of a government agency, treatment ef- 
fectiveness may vary significantly from assignment effectiveness. For example, imagine 
a study in which (a) the drug has an adverse effect on a large segment of the population 
and (b) only those members of the segment who drop from the treatment "arm" (sub- 
population) recover. The intent-to-treat analysis will attribute these cases of recovery to 
the drug because they are part of the intent-to-treat arm, although in reality these cases 
recovered by avoiding the treatment. 

Another approach to the problem is to use a correction factor based on an instrumen- 
tal variables formula (Angrist et al. 1996), according to which the intent-to-treat measure 
should be divided by the fraction of subjects who comply with the treatment assigned 
to them. Angrist et al. (1996) showed that, under certain conditions, the corrected for- 
mula is valid for the subpopulation of "responsive" subjects - that is, subjects who would 
have changed treatment status if given a different assignment. Unfortunately, this sub- 
population cannot be identified and, more seriously, it cannot serve as a basis for policies 

' This approach is currently used by the FDA to approve new drugs. 
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Treatment Latent 
Factors 

Figure 8.1 Graphical representation of causal depen- 
Treatment AssignedRv dencies pliance. in a randomized clinical trial with partial com- 

Observed Y Response 

involving the entire population because it is instrument-dependent: individuals who are 
responsive in the study may not remain responsive in the field, where the incentives for 
obtaining treatment differ from those used in the study. We therefore focus our analysis 
on the stable aspect of the treatment - the aspect that would remain invariant to changes 
in compliance behavior. 

8.2 BOUNDING CAUSAL EFFECTS 

8.2.1 Problem Formulation 

The basic experimental setting associated with indirect experimentation is shown in Fig- 
ure 8.1, which is isomorphic to Figures 3.7(b) and 5.9. To focus the discussion, we 
will consider a prototypical clinical trial with partial compliance, although in general the 
model applies to any study in which a randomized instrument encourages subjects to 
choose one program over another. 

We assume that Z, X, Y are observed binary variables, where Z represents the (ran- 
domized) treatment assignment, X is the treatment actually received, and Y is the ob- 
served response. The U term represents all factors, both observed and unobserved, that 
influence the way a subject responds to treatments; hence, an arrow is drawn from U to 
Y. The arrow from U to X denotes that the U factors may also influence the subject's 
choice of treatment X; this dependence may represent a complex decision process stand- 
ing between the assignment (Z) and the actual treatment (X). 

To facilitate the notation, we let z ,  x, y represent (respectively) the values taken by 
the variables Z,  X, Y, with the following interpretation: 

z E {zO, Z I  ), Z I  asserts that treatment has been assigned (zo, its negation); 

x E {xo, XI) ,  xl asserts that treatment has been administered (xo, its negation); and 

Y E {yo, y]), y1 asserts a positive observed response (yo, its negation). 

The domain of U remains unspecified and may, in general, combine the spaces of several 
random variables, both discrete and continuous. 

The graphical model reflects two assumptions. 

1. The assigned treatment Z does not influence Y directly but rather through the 
actual treatment X. In practice, any direct effect Z might have on Y would be 
adjusted for through the use of a placebo. 

2. The variables Z and U are marginally independent; this is ensured through the 
randomization of Z, which rules out a common cause for both Z and U. 
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These assumptions impose on the joint distribution the decomposition 

which, of course, cannot be observed directly because U is unobserved. However, the 
marginal distribution P(y, x ,  z) and, in particular, the conditional distributions 

are obser~ed ,~  and the challenge is to assess from these distributions the average change 
in Y due to treatment. 

Treatment effects are governed by the distribution P(y I do(x)), which - using the 
truncated factorization formula of (3.10) - is given by 

here, the factors P(y I x,  u) and P(u) are the same as those in (8.2). Therefore, if we 
are interested in the average change in Y due to treatment then we should compute the 
average causal efect, ACE(X + Y) (Holland 1988), which is given by 

Our task is then to estimate or bound the expression in (8.4) given the observed prob- 
abilities P(y, x I zo)  and P(y, x I zl), as expressed in (8.2). This task amounts to a 
constrained optimization exercise of finding the highest and lowest values of (8.4) sub- 
ject to the equality constraint in (8.2), where the maximization ranges over all possible 
functions 

that satisfy those constraints. 

8.2.2 The Evolution of Potential-Response Variables 

The bounding exercise described in Section 8.2.1 can be solved using conventional tech- 
niques of mathematical optimization. However, the continuous nature of the functions 
involved - as well as the unspecified domain of U - makes this representation inconve- 
nient for computation. Instead, we can use the observation that U can always be replaced 
by a finite-state variable such that the resulting model is equivalent with respect to all 
observations and manipulations of 2, X, and Y (Pearl 1994a). 

In practice, of course, only a finite sample of P ( y ,  x I z )  will be observed. But our task is one of 
identification, not estimation, so we make the large-sample assumption and consider P ( y ,  x ) z) as 
given. 
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ru=l ry =O Domain 

q3?J' of U Figure classes, 8.2 each inducing The partition a distinct of U functional into four mapping equivalence from 
X to Y for any given function y = f ( x ,  u). 

ry=3 
ry =2 

Consider the structural equation that connects two binary variables, Y and X, in a 
causal model: 

For any given u ,  the relationship between X and Y must be one of four functions: 

As u varies along its domain, regardless of how complex the variation, the only effect it 
can have on the model is to switch the relationship between X and Y among these four 
functions. This partitions the domain of U into four equivalence classes, as shown in Fig- 
ure 8.2, where each class contains those points u that correspond to the same function. We 
can thus replace U by a four-state variable, R(u),  such that each state represents one of 
the four functions. The probability P(u) would automatically translate into a probability 
function P(r), r = 0, 1,2, 3, that is given by the total weight assiged to the equivalence 
class corresponding to r. A state-minimal variable like R is called a "response" vari- 
able by Balke and Pearl (1994a,b) and a "mapping" variable by Heckerman and Shachter 
(1993.~ 

Because 2, X, and Y are all binary variables, the state space of U divides into 16 
equivalence classes: each class dictates two functional mappings, one from Z to X and 
the other from X to Y. To describe these equivalence classes, it is convenient to regard 
each of them as a point in the joint space of two four-valued variables R, and R,. The 
variable R, determines the compliance behavior of a subject through the mapping 

In the potential-outcome model (see Section 7.4.4), u stands for an experimental unit and R(u) cor- 
responds to the potential response of unit u to treatment x. The assumption that each experimental 
unit (e.g., an individual subject) possesses an intrinsic, seemingly "fatalistic" response function 
has met with some objections (Dawid 1997), owing to the complexity and inherent unobservabil- 
ity of the many factors that might govern an individual response to treatment. The equivalence- 
class formulation of R(u) mitigates those objections by showing that R(u) evolves naturally and 
mathematically from any complex system of stochastic latent variables, provided only that we ac- 
knowledge the existence of such variables through the equation y = f (x, u). Those who invoke 
quantum-mechanical objections to the latter step as well (e.g. Salmon 1998) should regard the func- 
tional relationship y = f (x, u)  as an abstract mathematical construct that represents the extreme 
points (vertices) of the set of conditional probabilities P(y ( x, u) satisfying the constraints of (8.1) 
and (8.2). 
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I xo if rx = 1 andz =zo, 

Imbens and Rubin (1997) call a subject with compliance behavior rx = 0, 1 ,2 ,3  (respec- 
tively) a never-taker, a complier, a dejier, and an always-taker. Similarly, the variable 
Ry determines the response behavior of a subject through the mapping: 

I yo if r, = 0; 

yo if ry = 1 andx =xo, 

yl if ry = l a n d x  = X I ;  

y = fib, ry) = 
yl if r, = 2 and x = xo, 

Following Heckerman and Shachter (1995), we call the response behavior ry = 0,1,2,  3 
(respectively) never-recover, helped, hurt, and always-recover. 

The correspondence between the states of variable R, and the potential response vari- 
ables, Yxo and Yr,, defined in Section 7.1 (Definition 7.1.4) is as follows: 

yl if r, = 1 or r, = 3, 
yx, = 

yo otherwise; 

yl if r, = 2 or r, = 3, 
yxo = yo otherwise. 

In general, response and compliance may not be independent, hence the double arrow 
Rx 4-- R, in Figure 8.3. The joint distribution over Rx x R, requires 15 independent 
parameters, and these parameters are sufficient for specifying the model of Figure 8.3, 
P(y, x,  z, r,, r,) = P(y I x, r,) P(x I r,, z) P(z) P(r,, r,), because Y and X stand in 
fixed functional relations to their parents in the graph. The causal effect of the treatment 
can now be obtained directly from (8.7), giving 

and 
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Figure 8.3 A structure equivalent to that of Figure 8.1 
but employing finite-state response variables RZ, R, , and 

RY. 

8.2.3 Linear Programming Formulation 

By explicating the relationship between the parameters of P ( y ,  x I z )  and those of 
P(r , ,  r , ) ,  we obtain a set of linear constraints needed for minimizing or maximizing 
ACE(X + Y) given P ( y  , x I z ) .  

The conditional dstribution P ( y ,  x I z )  over the observable variables is fully speci- 
fied by eight parameters, which will be written as follows: 

The probabilistic constraints 

further imply that p' = ( p o o . ~ ,  . . . , p l l . l )  can be specified by a point in 6-dimensional 
space. This space will be referred to as P .  

The joint probability P(rx , r,) has 16 parameters: 

A 
q j k  = P(rx = j ,  r y  = k ) ,  

where j ,  k  E { O , 1 ,  2,3}.  The probabilistic constraint 

implies that < specifies a point in 15-dimensional space. This space will be referred to 
as Q. 

Equation (8.10) can now be rewritten as a linear combination of the Q parameters: 
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Applying (8.6) and (8.7), we can write the linear transformation from a point q' in Q to a 
point p' in P: 

this can be written in matrix form as p' = RG. 
Given a point p' in P-space, the strict lower bound on ACE(X + Y) can be deter- 

mined by solving the following linear programming problem. 

subject to: 

R; = p', 

q j k  L 0 for j, k € { O ,  1,2,3).  

Moreover, for problems of this size, procedures are available for deriving symbolic 
expressions as well (Balke 1995), leading to the following lower bound on the treatment 
effect: 

ACE(X + Y) > max I P11.1 - P11.0 - P1O.O - P0l.l - p10.1 

-Pol.r - P1o.1 

Similarly, the upper bound is given by 

ACE(X + Y) 5 min 
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We may also derive bounds for (8.8) and (8.9) individually (under the same linear 
constraints), giving: 

I 1 - P0l.l 

P(YI  I do(x1)) i min 
1 - P01.0 

Po0.0 + Pll.0 + Pl0.l + P11.1 I 
These expressions give the tightest possible assumption-free4 bounds on the quantities 
involved. 

8.2.4 The Natural Bounds 

The expression for ACE(X -+ Y) (equation (8.4)) can be bounded by two simple for- 
mulas, each made up of the first two terms in (8.14a) and (8.14b) (Robins 1989; Manski 
1990; Pearl 1994a): 

Because of their simplicity and wide range of applicability, the bounds given by (8.17) 
were named the natural bounds (Balke and Pearl 1997). The natural bounds guarantee 
that the causal effect of the actual treatment cannot be smaller than that of the encour- 
agement (P(yl I zl) - P(yl I zo)) by more than the sum of two measurable quantities, 
P(  yl, xo I z + P( yo, xl I z o )  ; they also guarantee that the causal effect of the treatment 
cannot exceed that of the encouragement by more than the sum of two other measurable 

"Assumption-transparent" might be a better term; we make no assumptions about factors that de- 
termine subjects' compliance, but we rely on the assumptions of (i) randomized assignment and 
(ii) no side effects, as displayed in the graph (e.g., Figure 8.1). 
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quantities, P(yo, xo 1 z ,) + P( yl , xl  I zo). The width of the natural bounds, not surpris- 
ingly, is given by the rate of noncompliance: P(xl ( z o )  + P(xo 1 z l ) .  

The width of the sharp bounds in (8.14ab) can be substantially narrower, though. In 
Balke (1995) and Pearl (1995b), it is shown that - even under conditions of 50% non- 
compliance - these bounds may collapse to a point and thus permit consistent estimation 
of ACE(X + Y). This occurs whenever (a) the percentage of subjects complying with 
assignment zo is the same as those complying with 21 and (b) Y and Z are perfectly cor- 
related in at least one treatment arm x (see Table 8.1 in Section 8.5). 

Although more complicated than the natural bounds of (8.17), the sharp bounds of 
(8.14ab) are nevertheless easy to assess once we have the frequency data in the eight cells 
of P(y,  x I z). It can also be shown (Balke 1995) that the natural bounds are optimal 
when we can safely assume that no subject is contrarian - in other words, that no subject 
would consistently choose a treatment arm contrary to the one assigned. 

Note that, if the response Y is continuous, then one can associate yl and yo with the 
binary events Y > t and Y 5 t (respectively) and let t vary continuously over the range 
of Y. Equations (8.15) and (8.16) would then provide bounds on the entire distribution of 
the treatment effect P(Y < t I do(x)). 

8.2.5 Effect of Treatment on the Treated 
Much of the literature assumes that ACE(X + Y) is the parameter of interest, because 
ACE(X + Y) predicts the impact of applying the treatment uniformly (or randomly) 
over the population. However, if a policy maker is not interested in introducing new 
treatment policies but rather in deciding whether to maintain or terminate an existing pro- 
gram under its current incentive system, then the parameter of interest should measure 
the impact of the treatment on the treated, namely, the mean response of the treated sub- 
jects compared to the mean response of these same subjects had they not been treated 
(Heckman 1992). The appropriate formula for this parameter is 

which is similar to (8.4) except for replacing the expectation over u with the conditional 
expectation given X = x l .  

The analysis of ACE*(X + Y) reveals that, under conditions of no intrusion (i.e., 
P(xl I zo) = 0, as in most clinical trials), ACE*(X + Y) can be identified precisely 
(Bloom 1984; Angrist and Imbens 1991). The natural bounds governing ACE*(X + Y )  
in the general case can be obtained by similar means, which yield 
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The sharp bounds are presented in Balke (1995, p. 113). Clearly, in situations where treat- 
ment may be obtained only by those encouraged (by assignment), we have P(xl  I zo) = 
0 and 

Unlike ACE(X +- Y), ACE*(X +- Y) is not an intrinsic property of the treatment, since 
it varies with the encouraging instrument. Hence, its significance lies in studies where it 
is desired to evaluate the efficacy of an existing program on its current participants. 

8.2.6 Example: The Effect of Cholestyramine 
To demonstrate by example how the bounds for ACE(X + Y) can be used to provide 
meaningful information about causal effects, consider the Lipid Research Clinics Coro- 
nary Primary Prevention Trial data (Program 1984). A portion (covering 337 subjects) 
of this data was analyzed in Efron and Feldman (1991) and is the focus of this exam- 
ple. Subjects were randomized into two treatment groups of roughly equal size; in one 
group, all subjects were prescribed cholestyramine (zl), while subjects in the other group 
were prescribed a placebo (zo). Over several years of treatment, each subject's choles- 
terol level was measured many times, and the average of these measurements was used 
as the posttreatment cholesterol level (continuous variable C F ) .  The compliance of each 
subject was determined by tracking the quantity of prescribed dosage consumed (a con- 
tinuous quantity). 

In order to apply the bounds of (8.17) to data from this study, the continuous data 
is first transformed, using thresholds, to binary variables representing treatment assign- 
ment (Z), received treatment (X), and treatment response (Y) .  The threshold for dosage 
consumption was selected as roughly the midpoint between minimum and maximum 
consumption; the threshold for cholesterol level reduction was set at 28 units. After this 
"thresholding" procedure, the data samples give rise to the following eight probabilities:5 

These data represent a compliance rate of 

51 We make the large-sample assumption and take the sample frequencies as representing P ( J ,  x I z ) .  
To account for sample variability, all bounds should be supplemented with confidence intervals and 
significance levels, as in traditional analyses of controlled experiments. Section 8.5.1 assesses sam- 
ple variability using Gibbs sampling. 
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a mean difference (using P(zl ) = 0.50) of 

and an encouragement effect (intent to treat) of 

P(yl I zl)  - P(yl I z0) = 0.073 + 0.473 - 0.081 = 0.465. 

According to (8.17), ACE(X + Y) can be bounded by 

These are remarkably informative bounds: although 38.8% of the subjects deviated 
from their treatment protocol, the experimenter can categorically state that, when applied 
uniformly to the population, the treatment is guaranteed to increase by at least 39.2% the 
probability of reducing the level of cholesterol by 28 points or more. 

The impact of treatment "on the treated" is equally revealing. Using equation (8.20), 
ACE*(X + Y) can be evaluated precisely (since P ( x l  zo) = 0): 

In other words, those subjects who stayed in the program are much better off than they 
would have been if not treated: the treatment can be credited with reducing cholesterol 
levels by at least 28 units in 76.2% of these subjects. 

8.3 COUNTERFACTUALS AND LEGAL RESPONSIBILITY 

Evaluation of counterfactual probabilities could be enlightening in some legal cases in 
which a plaintiff claims that a defendant's actions were responsible for the plaintiff's mis- 
fortune. Improper rulings can easily be issued without an adequate treatment of counter- 
factuals. Consider the following hypothetical and fictitious case study, specially crafted 
in Balke and Pearl (1994a) to accentuate the disparity between causal effects and causal 
attribution. 

The marketer of PeptAid (antacid medication) randomly mailed out product samples 
to 10% of the households in the city of Stress, California. In a follow-up study, researchers 
determined for each individual whether they received the PeptAid sample, whether they 
consumed PeptAid, and whether they developed peptic ulcers in the following month. 

The causal structure for this scenario is identical to the partial compliance model 
given by Figure 8.1, where zl asserts that PeptAid was received from the marketer, xl 
asserts that PeptAid was consumed, and yl asserts that peptic ulceration occurred. The 
data showed the following distribution: 
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P(yo, xo I zo) = 0.32, P(yo, xo I Z I )  = 0.02, 

These data indicate a high correlation between those who consumed PeptAid and those 
who developed peptic ulcers: 

In addition, the intent-to-treat analysis showed that those individuals who received the 
PeptAid samples had a 45% greater chance of developing peptic ulcers: 

The plaintiff (Mr. Smith), having heard of the study, litigated against both the market- 
ing firm and the PeptAid producer. The plaintiff's attorney argued against the producer, 
claiming that the consumption of PeptAid triggered his client's ulcer and resulting med- 
ical expenses. Likewise, the plaintiff's attorney argued against the marketer, claiming 
that his client would not have developed an ulcer if the marketer had not distributed the 
product samples. 

The defense attorney, representing both the manufacturer and marketer of PeptAid, 
rebutted this argument, stating that the high correlation between PeptAid consumption 
and ulcers was attributable to a common factor, namely, pre-ulcer discomfort. Individu- 
als with gastrointestinal discomfort would be much more likely both to use PeptAid and 
to develop stomach ulcers. To bolster his clients' claims, the defense attorney introduced 
expert analysis of the data showing that, on average, consumption of PeptAid actually 
decreases an individual's chances of developing ulcers by at least 15%. 

Indeed, the application of (8.14ab) results in the following bounds on the average 
causal effect of PeptAid consumption on peptic ulceration: 

this proves that PeptAid is beneficial to the population as a whole. 
The plaintiff's attorney, though, stressed the distinction between the average treatment 

effects for the entire population and for the subpopulation consisting of those individu- 
als who, like his client, received the PeptAid sample, consumed it, and then developed 
ulcers. Analysis of the population data indicated that, had PeptAid not been distributed, 
Mr. Smith would have had at most a 7% chance of developing ulcers - regardless of any 
confounding factors such as pre-ulcer pain. Likewise, if Mr. Smith had not consumed 
PeptAid, he would have had at most a 7% chance of developing ulcers. 

The damaging statistics against the marketer are obtained by evaluating the bounds on 
the counterfactual probability that the plaintiff would have developed a peptic ulcer if he 
had not received the PeptAid sample, given that he in fact received the sample PeptAid, 
consumed the PeptAid, and developed peptic ulcers. This probability may be written in 
terms of the parameters q 1 3 ,  93 1, and 9 3 3  as 
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since only the combinations {r,  = 1, ry  = 31, {r ,  = 3, r, = I),  and {r ,  = 3, r, = 3) sat- 
isfy the joint event (X = X I ,  Y = yl , Y,, = yl } (see (8.6), (8.7), and (8.1 1)). Therefore, 

This expression is linear in the q parameters and may be bounded using linear program- 
ming to give 

Similarly, the damaging evidence against PeptAid's producer is obtained by evaluat- 
ing the bounds on the counterfactual probability 

If we minimize and maximize the numerator (subject to (8.13)), we obtain 

Substituting the observed distribution P ( y ,  x 1 z) into these formulas, the following 
bounds were obtained: 

Thus, at least 93% of the people in the plaintiff's category would not have developed ul- 
cers had they not been encouraged to take PeptAid (zo) or, similarly, had they not taken 
PeptAid (xo). This lends very strong support for the plaintiff's claim that he was ad- 
versely affected by the marketer and producer's actions and product. 
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In Chapter 9 we will continue the analysis of causal attribution in specific events, 
and we will establish conditions under which the probability of correct attribution can be 
identified from both experimental and nonexperimental data. 

8.4 A TEST FOR INSTRUMENTS 

As defined in Section 8.2, our model of imperfect experiment rests on two assumptions: 
Z is randomized, and Z has no side effect on Y. These two assumptions imply that Z is 
independent of U, a condition that economists call "exogeneity" and which qualifies Z 
as an instrumental variable (see Sections 5.4.3 and 7.4.5) relative to the relation between 
X and Y. For a long time, experimental verification of whether a variable Z is exogenous 
or instrumental has been thought to be impossible (Imbens and Angrist 1994), since the 
definition involves unobservable factors (or disturbances, as they are usually called) such 
as those represented by u . ~  The notion of exogeneity, like that of causation itself, has 
been viewed as a product of subjective modeling judgment, exempt from the scrutiny of 
nonexperimental data. 

The bounds presented in (8.14ab) tell a different story. Despite its elusive nature, 
exogeneity can be given an empirical test. The test is not guaranteed to detect all viola- 
tions of exogeneity, but it can (in certain circumstances) screen out very bad would-be 
instruments. 

By insisting that each upper bound in (8.14b) be higher than the corresponding lower 
bound in (8.14a), we obtain the following testable constraints on the observed distribution: 

If any of these inequalities is violated, the investigator can deduce that at least one of 
the assumptions underlying our model is violated as well. If the assignment is carefully 
randomized, then any violation of these inequalities must be attributed to some direct 
influence that the assignment process has on subjects' responses (e.g., a traumatic ex- 
perience). Alternatively, if direct effects of Z on Y can be eliminated - say, through an 
effective use of a placebo - then any observed violation of the inequalities can safely 
be attributed to spurious correlation between Z and U: namely, to assignment bias and 
hence loss of exogeneity. 

The Instrumental Inequality 
The inequalities in (8.21), when generalized to multivalued variables, assume the form 

The tests developed by economists (Wu 1973) merely compare estimates based on two or more 
instruments and, in case of discrepency, do not tell us objectively which estimate is incorrect. 
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which is called the instrumental inequality. A proof is given in Pearl (1995b,c). Extend- 
ing the instrumental inequality to the case where Z or Y is continuous presents no special 
difficulty. If f ( y  ] x, z) is the conditional density function of Y given X and 2, then the 
inequality becomes 

max[f (y I x ,  z)P(x I z)ldy I 1 Vx. jy 
However, the transition to a continuous X signals a drastic change in behavior, and it 
seems that the structure of Figure 8.1 induces no constraint whatsoever on the observed 
density (Pearl 1995~). 

From (8.21) we see that the instrumental inequality is violated when the controlling 
instrument Z manages to produce significant changes in the response variable Y while the 
treatment X remains constant. Although such changes could in principle be explained 
by strong correlations between U, X, and Y (since X does not screen off Z from Y ) ,  the 
instrumental inequality sets a limit on the magnitude of the changes. 

The similarity of the instrumental inequality to Bell's inequality in quantum physics 
(Suppes 1988; Cushing and McMullin 1989) is not accidental; both inequalities delineate 
a class of observed correlations that cannot be explained by hypothesizing latent com- 
mon causes. The instrumental inequality can, in a sense, be viewed as a generalization of 
Bell's inequality for cases where direct causal connection is permitted to operate between 
the correlated observables, X and Y. 

The instrumental inequality can be tightened appreciably if we are willing to make 
additional assumptions about subjects' behavior - for example, that no individual can 
be discouraged by the encouragement instrument or (mathematically) that, for all u ,  we 
have 

Such an assumption amounts to having no contrarians in the population, that is, no sub- 
jects who will consistently choose treatment contrary to their assignment. Under this 
assumption, the inequalities in (8.21) can be tightened (Balke and Pearl 1997) to yield 

for all y E {yo, yl). Violation of these inequalities now means either selection bias or 
direct effect of Z on Y or the presence of defiant subjects. 

8.5 CAUSAL INFERENCE FROM FINITE SAMPLES 

8.5.1 Gibbs Sampling 

This section describes a method of estimating causal effects and counterfactual probabil- 
ities from a finite sample, as presented in Chickering and Pearl (1997).~ The method is 

A similar method, though lacking the graphical perspective, is presented in Imbens and Rubin 
(1997). 
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Figure 

m e .  

8.4 Model used to represent the independencies in P ( { X }  U {vR) U {ACE(X 

applicable within the Bayesian framework, according to which (i) any unknown statisti- 
cal parameter can be assigned prior probability and (ii) the estimation of that parameter 
amounts to computing its posterior distribution, conditioned on the sampled data. In our 
case the parameter in question is the probability P(r,, r,) (or P(r) for short), from which 
we can deduce ACE(X + Y). 

If we think of P(r) not as probability but rather as the fraction v, of individuals in the 
population who possess response characteristics given by R = r, then the idea of assign- 
ing probability to such a quantity would fit the standard philosophy of Bayesian analysis; 
v,  is a potentially measurable (albeit unknown) physicaI quantity and can therefore admit 
a prior probability, one that encodes our uncertainty in that quantity. 

. . 
Assume there are m subjects in the experiment. We use zi ,  x'  , y' to denote the ob- 

served value of 2, X, Y, respectively, for subject i. Similarly, we use r i  to denote the 
(unobserved) compliance (r,) and response (r,) combination for subject i .  We use X' to 
denote the triple {z ' , xi ,  y i  ) . 

Given the observed data X from the experiment and a prior distribution over the un- 
known fractions v,, our problem is to derive the posterior distribution for ACE(X + Y). 
The posterior distributions of both VR and ACE(X + Y) can be derived using the graphi- 
cal model shown in Figure 8.4, which explicitly represents the independencies that hold in 
the joint (Bayesian) distribution defined over the variables (X, VR,  ACE(X + Y)). The 
model can be understood as m realizations of the response-variable model (Figure 8.3), 
one for each triple in X, connected together using the node representing the unknown 
fractions VR = (v,,, vr2, . . . , v,,,).  The model explicitly represents the assumption that, 
given the fractions VR,  the probability of a subject belonging to any of the 16 compli- 
ance-response subpopulations does not depend on the compliance and response behavior 
of the other subjects in the experiment. From (8.10), ACE(X + Y) is a deterministic 
function of VR and consequently ACE(X + Y )  is independent of all other variables in 
the domain once these fractions are known. 

In principle, then, estimating ACE(X 4 Y) reduces to the standard inference task 
of computing the posterior probability for a variable in a fully specified Bayesian net- 
work. (The graphical techniques for this inferential computation are briefly summarized 
in Section 1.2.4.) In many cases, the independencies embodied in the graph can be ex- 
ploited to render the inference task efficient. Unfortunately, because the r' are never 
observed, deriving the posterior distribution for ACE(X + Y) is not tractable in our 
model, even with the given independencies. To obtain an estimate of the posterior distri- 
bution of ACE(X + Y), an approximation technique known as Gibbs sampling can be 
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(a) (b) 

Figure 8.5 (a) The prior distribution of ACE(X += Y )  induced by flat priors over the parameters 
VCR (b) The distribution for ACE(X -+ Y )  induced by skewed priors over the parameters. 

used (Robert and Casella 1999). A graphical version of this technique, called "stochastic 
simulation," is described in Pearl (1988b, p. 210); the details (as applied to the graph of 
Figure 8.4) are discussed in Chickering and Pearl (1997). Here we present typical results, 
in the form of histograms, that demonstrate the general applicability of this technique to 
problems of causal inference. 

8.5.2 The Effects of Sample Size and Prior Distribution 
The method takes as input (I)  the observed data X, expressed as the number of cases ob- 
served for each of the 8 possible realizations of { z ,  x ,  y),  and (2) a Dirichlet prior over 
the unknown fractions VR, expressed in terms of 16 parameters. The system outputs the 
posterior distribution of ACE(X + Y), expressed in a histogram. 

To show the effect of the prior distribution on the output, we present all the results us- 
ing two different priors. The first is a flat (uniform) dstribution over the 16-vector v~ that 
is commonly used to express ignorance about the domain. The second prior is skewed to 
represent a strong dependency between the compliance and response characteristics of 
the subjects. Figure 8.5 shows the distribution of ACE(X + Y) induced.by these two 
prior distributions (in the absence of any data). We see that the skewed prior of Figure 
8.5(b) assigns almost all the weight to negative values of ACE(X += Y). 

To illustrate how increasing sample size washes away the effect of the prior distribu- 
tion, we apply the method to simulated data drawn from a distribution P ( x ,  y I z )  for 
which ACE is known to be identified. Such a distribution is shown Table 8.1. For this 
distribution, the resulting upper and lower bounds of (8.14ab) collapse to a single point: 
ACE(X + Y) = 0.55. 

Figure 8.6 shows the output of the Gibbs sampler when applied to data sets of various 
sizes drawn from the distribution shown in Table 8.1, using both the flat and the skewed 
prior. As expected, as the number of cases increases, the posterior distributions become 
increasingly concentrated near the value 0.55. In general, because the skewed prior for 
ACE(X + Y )  is concentrated further from 0.55 than the uniform prior, more cases are 
needed before the posterior distribution converges to the value 0.55. 

8.5.3 Causal Effects from Clinical Data with Imperfect Compliance 
In this section we analyze two clinical data sets obtained under conditions of imper- 
fect compliance. Consider first the Lipid Research Clinics Coronary Primary Prevention 
data described in Section 8.2.6. The resulting data set (after thresholding) is shown 
in Table 8.2. Using the large-sample assumption, (8.14ab) gives the bounds 0.39 5 
ACE(X += Y) 5 0.78. 
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Table 8.1. Distribution Resulting 
in an Identifiable ACE(X -+ Y )  

z X Y P(Xl Y ,  z )  

4-4 0.55 0.55 1 0.55 1 Figure tified treatment 8.6 Output effect histograms using two for priors. iden- 
0.55 (a), (b), (c), and (d) show the posteri- 

(a1 (b1 (c) (dl 
ors for ACE(X +- Y )  using the flat prior 
and data sets that consisted of 10, 100, 
1,000 and 10,000 subjects, respectively; 
(e), (f), (g), and (h) show the posteriors 
for ACE(X +- Y )  using the skewed prior 
with the same respective data sets. (Hor- 
izontal lines span the interval (- 1, +1) .) 

Figure 8.7 shows posterior densities for ACE(X + Y), based on these data. Rather 
remarkably, even with only 337 cases in the data set, both posterior distributions are 
highly concentrated within the large-sample bounds of 0.39 and 0.78. 

As a second example, we consider an experiment described by Sommer et al. (1986) 
that was designed to determine the impact of vitamin A supplementation on childhood 
mortality. In the study, 450 villages in northern Sumatra were randomly assigned to par- 
ticipate in a vitamin A supplementation scheme or serve as a control group for one year. 
Children in the treatment group received two large doses of vitamin A ( x * ) ,  while those 
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Table 8.2. Observed Data for the Lipid Study 
and the Vitamin A Study 

Lipid Study Vitamin A Study 

z x y  Observations Observations 

Figure 8.7 Output histograms for the Lipid data: (a) using flat priors; (b) using skewed priors. 

(a> (b) 

Figure 8.8 Output histograms for the vitamin A data: (a) using flat priors; (b) using skewed priors. 

in the control group received no treatment ( x o ) .  After the year had expired, the number 
of deaths yo were counted for both groups. The results of this study are also shown in 
Table 8.2. 

Under the large-sample assumption, the inequalities of (8.14ab) yield the bounds 
-0.19 5 ACE(X -+ Y) 5 0.01. Figure 8.8 shows posterior densities for ACE(X + Y),  
given the data, for two priors. It is interesting to note that, for this study, the choice of 
the prior distribution has a significant effect on the posterior. This suggests that if the cli- 
nician is not very confident in the prior then a sensitivity analysis should be performed. 



Imperfect Experiments: Bounding Effects and Counterfactuals 

Figure 8.9 Prior ((a) and (b)) and posterior ((c) and (d)) distributions for a subpopulation f ( v R )  
specified by the counterfactual query: "Would Joe have improved had he taken the drug, given that 
he did not improve without it?" Part (a) corresponds to the flat prior, (b) to the skewed prior. 

In such cases, the asymptotic bounds are more informative than the Bayesian estimates, 
and the major role of the Gibbs sampler would be to give an indication of the sharpness 
of the boundaries around those bounds. 

8.5.4 Bayesian Estimate of Single-Event Causation 
In addition to assessing causal effects, the Bayesian method just described is also capable 
(with only minor modification) of answering a variety of counterfactual queries con- 
cerning individuals with specific characteristics. Queries of this type were analyzed and 
bounded in Section 8.3 under the large sample assumption. In this section, we demon- 
strate a Bayesian analysis of the following query. What is the probability that Joe wouId 
have had an improved cholesterol reading had he taken cholestyramine, given that: (1) Joe 
was in the control group of the Lipid study; (2) Joe took the placebo as prescribed; and 
(3) Joe's cholesterol level did not improve. 

This query can be answered by running the Gibbs sampler on a model identical to 
that shown in Figure 8.4, except that the function ACE(X + Y )  (equation (8.10)) is 
replaced by another function of v ~ ,  one that represents our query. If Joe was in the con- 
trol group and took the placebo, that means he is either a complier or a never-taker. 
Furthermore, because Joe's cholesterol level did not improve, Joe's response behavior 
is either never-recover or helped. Consequently, he must be a member of one of the 
following four compliance-response populations: {(r, = 0, r, = I), (r, = 0, r, = 2), 
(r, = 1, r, = I), (r, = 1, r, = 2)). Joe would have improved had he taken cholestyra- 
mine if his response behavior is either helped (r, = 1) or always-recover (r, = 3).  It 
follows that the query of interest is captured by the function 

Figures 8.9(a) and (b) show the prior distribution of f (vR) that follows from the 
flat prior and the skewed prior, respectively. Figures 8.9(c) and (d) show the posterior 
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distribution P (  f (vR ( X)) obtained from the Lipid data when using the flat prior and the 
skewed prior, respectively. For reference, the bounds computed under the large-sample 
assumption are 0.51 5 f (vR I X) 5 0.86. 

Thus, despite 39% noncompliance in the treatment group and despite having just 337 
subjects, the study strongly supports the conclusion that - given his specific history - 
Joe would have been better off taking the drug. Moreover, the conclusion holds for both 
priors. 

8.6 CONCLUSION 

This chapter has developed causal-analytic techniques for managing one of the major 
problems in clinical experiments: the assessment of treatment efficacy in the face of im- 
perfect compliance. Estimates based solely on intent-to-treat analysis - as well as those 
based on instrumental variable formulas - can be misleading in that they may lie en- 
tirely outside the theoretical bounds. The formulas established in this chapter provide 
instrument-independent guarantees for policy analysis and, in addition, should enable 
analysts to determine the extent to which efforts to enforce compliance may increase 
overall treatment effectiveness. 

The importance of indirect experimentation is not confined to studies involving hu- 
man subjects. Experimental conditions equivalent to those of imperfect compliance occur 
whenever the variable whose causal effect we seek to assess cannot be manipulated di- 
rectly yet could be partially influenced by indirect means. Vpical applications involve 
the diagnosis of ongoing processes for which the source of malfunctioning behavior must 
be identified using indirect means because direct manipulation of suspected sources is 
either physically impossible or prohibitively expensive. An example of the latter would 
be interrupting the normal operation of a production line so as to achieve direct control 
over a physical parameter that is suspected of malfunctioning. Partial control over that 
parameter, in the form of indirect influence, would be much more convenient and would 
allow the production to continue. 

Methodologically, the message of this chapter has been to demonstrate that, even 
in cases where causal quantities are not identifiable, reasonable assumptions about the 
salient relationships in the domain can be harnessed to yield useful quantitative infor- 
mation about the causal forces that operate in the domain. Once such assumptions are 
articulated in graphical form, they can easily be submitted to algebraic methods that 
yield the desired bounds or, alternatively, invite Gibbs sampling technique to facilitate 
Bayesian estimation of the causal quantities of interest. 
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CHAPTER NINE 

Probability of Causation: Interpretation and 
Identification 

Come and let us cast lots to find out 
who is to blame for this ordeal. 

Jonah 1:7 

Preface 

Assessing the likelihood that one event was the cause of another guides much of what 
we understand about (and how we act in) the world. For example, according to com- 
mon judicial standard, judgment in favor of the plaintiff should be made if and only if 
it is "more probable than not" that the defendant's action was the cause for the plain- 
tiff's damage (or death). But causation has two faces, necessary and suficient; which 
of the two have lawmakers meant us to consider? And how are we to evaluate their 
probabilities? 

This chapter provides formal semantics for the probability that event x was a neces- 
sary or suficient cause (or both) of another event y. We then explicate conditions under 
which the probability of necessary (or sufficient) causation can be learned from statisti- 
cal data, and we show how data from both experimental and nonexperimental studies can 
be combined to yield information that neither study alone can provide. 

9.1 INTRODUCTION 

The standard counterfactual definition of causation (i.e., that E would not have occurred 
were it not for C) captures the notion of "necessary cause." Competing notions such 
as "sufficient cause" and "necessary and sufficient cause" are of interest in a number of 
applications, and these, too, can be given concise mathematical definitions in structural 
model semantics (Section 7.1). Although the distinction between necessary and suffi- 
cient causes goes back to J. S. Mill (1843), it has received semiformal explications only 
in the 1960s -via conditional probabilities (Good 1961) and logical implications (Mackie 
1965). These explications suffer from basic semantical difficulties,' and they do not yield 
effective procedures for computing probabilities of causes as those provided by the struc- 
tural account (Sections 7.1.3 and 8.3). 

The limitations of the probabilistic account are discussed in Section 7.5; those of the logical account 
will be discussed in Section 10.1.4. 
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In this chapter we explore the counterfactual interpretation of necessary and sufficient 
causes, illustrate the application of structural model semantics to the problem of identi- 
fying probabilities of causes, and present, by way of examples, new ways of estimating 
probabilities of causes from statistical data. Additionally, we argue that necessity and 
sufficiency are two distinct facets of causation and that both facets should take part in the 
construction of causal explanations. 

Our results have applications in epidemiology, legal reasoning, artificial intelligence 
(AI), and psychology. Epidemiologists have long been concerned with estimating the 
probability that a certain case of disease is "attributable" to a particular exposure, which 
is normally interpreted counterfactually as "the probability that disease would not have 
occurred in the absence of exposure, given that disease and exposure did in fact occur." 
This counterfactual notion, which Robins and Greenland (1989) called the "probability 
of causation," measures how necessary the cause is for the production of the effect.* It is 
used frequently in lawsuits, where legal responsibility is at the center of contention (see 
e.g. Section 8.3). We shall denote this notion by the symbol PN, an acronym for proba- 
bility of necessity. 

A parallel notion of causation, capturing how suficient a cause is for the production 
of the effect, finds applications in policy analysis, AI, and psychology. A policy maker 
may well be interested in the dangers that a certain exposure may present to the healthy 
population (Khoury et al. 1989). Counterfactually, this notion can be expressed as the 
"probability that a healthy unexposed individual would have contracted the disease had 
he or she been exposed," and it will be denoted by PS (probability of sufficiency). A natu- 
ral extension would be to inquire for the probability of necessary and sufficient causation 
(PNS) - that is, how likely a given individual is to be affected both ways. 

As the examples illustrate, PS assesses the presence of an active causal process capa- 
ble of producing the effect, while PN emphasizes the absence of alternative processes - 
not involving the cause in question - that is still capable of expaining the effect. In legal 
settings, where the occurrence of the cause (x) and the effect (y) are fairly well estab- 
lished, PN is the measure that draws most attention, and the plaintiff must prove that 
y would not have occurred but for x (Robertson 1997). Still, lack of sufficiency may 
weaken arguments based on PN (Good 1993; Michie in press). 

It is known that PN is in general nonidentifiable, that is, it cannot be estimated from fre- 
quency data involving exposures and disease cases (Greenland and Robins 1988; Robins 
and Greenland 1989). The identification is hindered by two factors. 

1. Confounding - Exposed and unexposed subjects may differ in several relevant 
factors or, more generally, the cause and the effect may both be influenced by a 
third factor. In this case we say that the cause is not exogenous relative to the 
effect (see Section 7.4.5). 

Greenland and Robins (1988) further distinguish between two ways of measuring probabilities of 
causation: the first (called "excess fraction") concerns only whether the effect (e.g. disease) occurs 
by a particular time; the second (called "etiological fraction") requires consideration of when the 
effect occurs. We will confine our discussion here to events occurring within a specified time pe- 
riod, or to "all or none" outcomes (such as birth defects) for which the probability of occurrence 
but not the time to occurrence is important. 
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2. Sensitivity to the generativeprocess - Even in the absence of confounding, proba- 
bilities of certain counterfactual relationships cannot be identified from frequency 
information unless we specify the functional relationships that connect causes and 
effects. Functional specification is needed whenever the facts at hand (e.g. dis- 
ease) might be affected by the counterfactual antecedent (e.g. exposure) (see the 
examples in Sections 1.4,7.5, and 8.3). 

Although PN is not identifiable in the general case, several formulas have nevertheless 
been proposed to estimate attributions of various kinds in terms of frequencies obtained 
in epidemiological studies (Breslow and Day 1980; Hennekens and Buring 1987; Cole 
1997). Naturally, any such formula must be predicated upon certain implicit assumptions 
about the data-generating process. Section 9.2 explicates some of those assumptions and 
explores conditions under which they can be r e l a ~ e d . ~  It offers new formulas for PN and 
PS in cases where causes are confounded (with outcomes) but their effects can neverthe- 
less be estimated (e.g., from clinical trials or from auxiliary measurements). Section 9.3 
exemplifies the use of these formulas in legal and epidemiological settings, while Sec- 
tion 9.4 provides a general condition for the identifiability of PN and PS when functional 
relationships are only partially known. 

The distinction between necessary and sufficient causes has important implications 
in AI, especially in systems that generate verbal explanations automatically (see Sec- 
tion 7.2.3). As can be seen from the epidemiological examples, necessary causation is 
a concept tailored to a specific event under consideration (singular causation), whereas 
sufficient causation is based on the general tendency of certain event types to produce 
other event types. Adequate explanations should respect both aspects. If we base expla- 
nations solely on generic tendencies (i.e., sufficient causation) then we lose important 
specific information. For instance, aiming a gun at and shooting a person from 1,000 me- 
ters away will not qualify as an explanation for that person's death, owing to the very low 
tendency of shots fired from such long distances to hit their marks. This stands contrary 
to common sense, for when the shot does hit its mark on that singular day, regardless of 
the reason, the shooter is an obvious culprit for the consequence. If, on the other hand, 
we base explanations solely on singular-event considerations (i.e., necessary causation), 
then various background factors that are normally present in the world would awkwardly 
qualify as explanations. For example, the presence of oxygen in the room would qualify 
as an explanation for the fire that broke out, simply because the fire would not have oc- 
curred were it not for the oxygen. That we judge the match struck, not the oxygen, to be 
the actual cause of the fire indicates that we go beyond the singular event at hand (where 
each factor alone is both necessary and sufficient) and consider situations of the same 
general type - where oxygen alone is obviously insufficient to start a fire. Clearly, some 
balance must be struck between the necessary and the sufficient components of causal 
explanation, and the present chapter illuminates this balance by formally explicating the 
basic relationships between these two components. 

A set of sufficient conditions for the identification of etiological fractions are given in Robins and 
Greenland (1989). These conditions, however, are too restrictive for the identification of PN, which 
is oblivious to the temporal aspects associated with etiological fractions. 
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9.2 NECESSARY AND SUFFICIENT CAUSES: CONDITIONS OF 
IDENTIFICATION 

9.2.1 Definitions, Notation, and Basic Relationships 

Using the counterfactual notation and the structural model semantics introduced in Sec- 
tion 7.1, we give the following definitions for the three aspects of causation discussed in 
the introduction. 

Definition 9.2.1 (Probability of Necessity, PN) 
LetX and Y be two binary variables in a causal model M. Let x and y stand (respectively) 
for the propositions X = true and Y = true, and let x' and y' denote their complements. 
The probability of necessity is defined as the expression 

PN P(Yx/ =false I X = true, Y = true) 

a 
= p(y:f I x, y). 

In other words, PN stands for the probability of yif (that event y would not have occurred 
in the absence of event x), given that x and y did in fact occur. 

Observe the slight change in notation relative to that used in Section 7.1. Lowercase 
letters (e-g., x and y) denoted values of variables in Section 7.1 but now stand for propo- 
sitions (or events). Note also the abbreviations yx for Yx = true and yi for Yx = false. 4 

Readers accustomed to writing "A > B" for the counterfactual "B if it were A" can 
translate (9.1) to read PN ' P(x ' 3 y ' 1 x ,  y) .5 

Definition 9.2.2 (Probability of Sufficiency, PS) 

PS mcasures the capacity of x to produce y and, since "production" implies a transition 
from the absence to the presence of x and y, we condition the probability P(yx) on sit- 
uations where x and y are both absent. Thus, mirroring the necessity of x (as measured 
by PN), PS gives the probability that setting x would produce y in a situation where x 
and y are in fact absent. 

Definition 9.2.3 (Probability of Necessity and Sufficiency, PNS) 

PNS A P(yx, y i j ) .  

These were proposed by Peyman Meshkat (in class homework) and substantially simplify the 
derivations. 
Definition 9.2.1 generalizes naturally to cases where X and Y are multivalued, say x E {x,, xz, . . . , 
xk)  and y E { y ~ ,  y2, . . . , y ~ } .  We say that event C = Vie, (X = x i )  is "counterfactually neces- 
sary" for E = Vj,,(Y = yj), written C > E ,  if Y, falls outside E whenever X = x is outside 
C. Accordingly, the probability that C was a necessary cause of E is defined as PN P(C > E I 
C, E). For simplicity, however, we will pursue the analysis in the binary case. 
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PNS stands for the probability that y would respond to x both ways, and therefore mea- 
sures both the sufficiency and necessity of x to produce y. 

Associated with these three basic notions are other counterfactual quantities that have 
attracted either practical or conceptual interest. We will mention two such quantities but 
will not dwell on their analyses, since these can be easily inferred from our treatment of 
PN, PS, and PNS. 

Definition 9.2.4 (Probability of Disablement, PD) 

PD A P(y:/ I y). 

PD measures the probability that y would have been prevented if it were not for x; it is 
therefore of interest to policy makers who wish to assess the social effectiveness of vari- 
ous prevention programs (Fleiss 1981, pp. 75-6). 

Definition 9.2.5 (Probability of Enablement, PE) 

PE A P(yx I y'). 

PE is similar to PS, save for the fact that we do not condition on x f .  It is applicable, for 
example, when we wish to assess the danger of an exposure on the entire population of 
healthy individuals, including those who were already exposed. 

Although none of these quantities is sufficient for determining the others, they are not 
entirely independent, as shown in the following lemma. 

Lemma 9.2.6 
The probabilities of causation (PNS, PN, and PS) satisfy the following relationship: 

PNS = P(x, y)PN + P(xt, yr)PS. 

Proof 
The consistency conditions of (7.19), X = x a Yx = Y, translate in our notation into 

Hence we can write 

Taking probabilities on both sides and using the disjointness of x and x ' ,  we obtain 

which proves Lemma 9.2.6. 
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To put into focus the aspects of causation captured by PN and PS, it is helpful to char- 
acterize those changes in the causal model that would leave each of the two measures 
invariant. The next two lemmas show that PN is insensitive to the introduction of poten- 
tial inhibitors of y, while PS is insensitive to the introduction of alternative causes of y. 

Lemma 9.2.7 
Let PN(x, y )  stand for the probability that x is a necessary cause of y. Let z = y A q be 
a consequence of y that is potentially inhibited by q'. Ifq ll {X, Y, GI ) ,  then 

fN(x, Z) P(zi1 I X ,  Z) = P(y41 I x, y) PN(x, y). 

Cascading the process Y,(u) with the link z = y A q amounts to inhibiting the output 
of the process with probability P(qf). Lemma 9.2.7 asserts that, if q is randomized, we 
can add such a link without affecting PN. The reason is clear; conditioning on x and z 
implies that, in the scenario considered, the added link was not inhibited by q'. 

Proof of Lemma 9.2.7 
We have 

Using z = y A q, it follows that 

q =+ (z = y), q * (zir = y:,), and q '  * z'; 

therefore, 

- - P(y'l' x'  Y) = P(y$ I x, y) = PN(x, y). 
P(Y? x) 

Lemma 9.2.8 
k t  PS(x, y) stand for the probability that x is a suficient cause of y, and let z = y v r 
be a consequence of y that may also be triggered by r. Ifr IL {X, Y, Y,) ,  then 

PS(x, z) P(zx I x', 2') = P(yx I x', yf)  A PS(x, y). 

Lemma 9.2.8 asserts that we can add alternative (independent) causes (r) without af- 
fecting PS. The reason again is clear; conditioning on the event x' and y' implies that 
the added causes (r) were not active. The proof of Lemma 9.2.8 is similar to that of 
Lemma 9.2.7. 
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Since all the causal measures defined so far invoke conditionalization on y ,  and since 
y is presumed to be affected by x ,  we know that none of these quantities is identifiable 
from knowledge of the causal diagram G ( M )  and the data P(v) alone, even under con- 
ditions of no-confounding. Moreover, none of these quantities determines the others in 
the general case. However, simple interrelationships and useful bounds can be derived 
for these quantities under the assumption of no-confounding, an assumption that we call 
exogeneity. 

9.2.2 Bounds and Basic Relationships under Exogeneity 

Definition 9.2.9 (Exogeneity) 
A variable X is said to be exogenous relative to Y in model M if and only if 

In other words, the way Y would potentially respond to conditions x or x' is independent 
of the actual value of X .  

Equation (9.7) is a strong version of those used in Chapter 5 (equation (5.30)) and in 
Chapter 6 (equation (6.10)) in that it involves the joint variable {Y,, Y,!} .  This definition 
was named "strong ignorability" in Rosenbaum and Rubin (1983), and it coincides with 
the classical error-based criterion for exogeneity (Christ 1966, p. 156; see Section 7.4.5) 
and with the back-door criterion of Definition 3.3.1. The weaker definition of (5.30) is 
sufficient for all the results in this chapter except equations (9.11), (9.12), and (9.19), for 
which strong exogeneity (9.7) is needed. 

The importance of exogeneity lies in permitting the identification of { P(  y, ) , P ( y,!)} , 
the causal efSect of X on Y, since (using x =$ (y, = y)) 

with similar reduction for P(y,/). 

Theorem 9.2.10 
Under condition of exogeneity, PNS is bounded as follows: 

Both bounds are sharp in the sense that, for every joint distribution P ( x ,  y),  there exists 
a model y = f ( x ,  u ) ,  with u independent of x, that realizes any value of PNS permitted 
by the bounds. 

Proof 
For any two events A and B, we have the sharp bounds 
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Equation (9.9) follows from (9.3) and (9.10) using A = y,, B = y:!, P(y,) = P(y I x), 
and P(y$) = P(yf I x'). 

Clearly, if exogeneity cannot be ascertained, then PNS is bound by inequalities similar 
to those of (9.9), with P( y,) and P(y1,) replacing P(y I x) and P(  y ' 1 x'), respectively. 

Theorem 9.2.11 
Under condition of exogeneity, the probabilities PN, PS, and PNS are related to each 
other as follows: 

PN = 
PNS 

P(Y I x ) '  

PS = 
PNS 

P(Y' I x') ' 

Thus, the bounds for PNS in (9.9) provide corresponding bounds for PN and PS. 

The resulting bounds for PN, 

place limits on our ability to identify PN in experimental studies, where exogeneity holds. 

Corollary 9.2.12 
Zfx and y occur in an experimental study and if P(y,) and P(y,l) are the causal effects 
measured in that study, then for any point p in the range 

there exists a causal model M that agrees with P(y,) and P(y,l) and for which PN = p. 

Other bounds can be established for nonexperimental events if we have data from both ex- 
perimental and observational studies (as in Section 9.3.4). The nonzero widths of these 
bounds imply that probabilities of causation cannot be defined uniquely in stochastic 
(non-Laplacian) models where, for each u , Y, ( u )  is specified in probability P(Yx (u) = y) 
instead of a single n ~ m b e r . ~  

Proof of Theorem 9.2.11 
using x + (y, = y), we can write x A y, = x A y and so obtain 

Robins and Greenland (1989), who used a stochastic model of Y,(u), defined the probability of 
causation as 

instead of the counterfactual definition in (9.1). 



9.2 Necessary and Sufficient Causes: Conditions of Identification 

- - PNS 

P(Y I x) '  

which establishes (9.11). Equation (9.12) follows by identical steps. 

For completeness, we write the relationship between PNS and the probabilities of enable- 
ment and disablement: 

9.2.3 Identifiability under Monotonicity and Exogeneity 

Before attacking the general problem of identifying the counterfactual quantities in (9.1)- 
(9.3), it is instructive to treat a special condition, called monotonicity, which is often 
assumed in practice and which renders these quantities identifiable. The resulting proba- 
bilistic expressions will be recognized as familiar measures of causation that often appear 
in the literature. 

Definition 9.2.13 (Monotonicity) 
A variable Y is said to be monotonic relative to variable X in a causal model M if and 
only if the function Yx(u) is monotonic in x for all u. Equivalently, Y is monotonic rela- 
tive to X if and only if 

Monotonicity expresses the assumption that a change from X = false to X = true can- 
not, under any circumstance, make Y change from true to false.7 In epidemiology, this 
assumption is often expressed as "no prevention," that is, no individual in the population 
can be helped by exposure to the risk factor. 

Theorem 9.2.14 (Identifiability under Exogeneity and Monotonicity) 
I f X  is exogenous and Y is monotonic relative to X ,  then the probabilities PN, PS, and 
PNS are all identijable and are given by (9.11)-(9.12), with 

PNS = P(y  I x )  - P(y  ( x'). 

Our analysis remains invariant to complementing x or y (or both); hence, the general condition of 
monotonicity should read: Either yl A y,t = false or y:, A yx = false. For simplicity, however, we 
will adhere to the definition in (9.20). Note: monotonicity implies that (5.30) entails (9.7). 
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The r.h.s. of (9.21) is called "risk difference" in epidemiology, and is also misnomered 
"attributable r i s k  (Hennekens and Buring 1987, p. 87). 

From (9.11) we see that the probability of necessity is identifiable and given by the 
excess risk ratio 

often misnomered as the "attributable fraction" (Schlesselman 1982), "attributable-rate 
percent" (Hennekens and Buring 1987, p. 88), or "attributable proportion" (Cole 1997). 
Taken literally, the ratio presented in (9.22) has nothing to do with attribution, since it is 
made up of statistical terms and not of causal or counterfactual relationships. However, 
the assumptions of exogeneity and monotonicity together enable us to translate the no- 
tion of attribution embedded in the definition of PN (equation (9.1)) into a ratio of purely 
statistical associations. This suggests that exogeneity and monotonicity were tacitly as- 
sumed by the many authors who proposed or derived (9.22) as a measure for the "fraction 
of exposed cases that are attributable to the exposure." 

Robins and Greenland (1989) analyzed the identification of PN under the assumption 
of stochastic monotonicity (i.e., P(Y,(u) = y) > P(Yxl(u) = y)) and showed that this 
assumption is too weak to permit such identification; in fact, it yields the same bounds as 
in (9.13). This indicates that stochastic monotonicity imposes no constraints whatsoever 
on the functional mechanisms that mediate between X and Y. 

The expression for PS (equation (9.12)) is likewise quite revealing, 

since it coincides with what epidemiologists call the "relative difference" (Shep 1958), 
which is used to measure the susceptibility of a population to a risk factor x. Susceptibility 
is defined as the proportion of persons who possess "an underlying factor sufficient to 
make a person contract a disease following exposure" (Khoury et al. 1989). PS offers a 
formal counterfactual interpretation of susceptibility, which sharpens this definition and 
renders susceptibility amenable to systematic analysis. 

Khoury et al. (1989) recognized that susceptibility in general is not identifiable and 
derived (9.23) by making three assumptions: no-confounding, monot~nicity,~ and inde- 
pendence (i.e., assuming that susceptibility to exposure is independent of susceptibility 
to background not involving exposure). This last assumption is often criticized as un- 
tenable, and Theorem 9.2.14 assures us that independence is in fact unnecessary; (9.23) 
attains its validity through exogeneity and monotonicity alone. 

Equation (9.23) also coincides with what Cheng (1997) calls "causal power," namely, 
the effect of x on y after suppressing "all other causes of y ." The counterfactual definition 
of PS, P(yx I x', y'), suggests another interpretation of this quantity. It measures the 

* Monotonicity is not mentioned in Khoury et al. (1989), but it must have been assumed implicitly to 
make their derivations valid. 
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probability that setting x would produce y in a situation where x and y are in fact absent. 
Conditioning on y' amounts to selecting (or hypothesizing) only those worlds in whicfi 
"all other causes of y" are indeed suppressed. 

It is important to note, however, that the simple relationships among the three notions 
of causation (equations (9.1 1)-(9.12)) hold only under the assumption of exogeneity; the 
weaker relationship of (9.5) prevails in the general, nonexogenous case. Additionally, 
all these notions of causation are defined in terms of the global relationships Yx(u) and 
Y,I (u), which are too crude to fully characterize the many nuances of causation; the de- 
tailed structure of the causal model leading from X to Y is often needed to explicate more 
refined notions, such as "actual cause" (see Chapter 10). 

Proof of Theorem 9.2.14 
Writing yxl v y:f = true, we have 

and 

Yxf = Yxl A (YX VY:) = (yx' A h )  V (yXl Ay:) = yx! Ay,, (9.25) 

since monotonicity entails y,! A y: = false. Substituting (9.25) into (9.24) yields 

Yx = Yx' V (yx A y$ ). (9.26) 

Taking the probability of (9.26) and using the disjointness of yXl and y$, we obtain 

P(Y,) = P(yx4 + P(y,, Y:!) 

or 

Equation (9.27), together with the assumption of exogeneity (equation (9.8)) establishes 
equation (9.21). 

9.2.4 Identifiability under Monotonicity and Nonexogeneity 

The relations established in Theorems 9.2.10-9.2.14 were based on the assumption of ex- 
ogeneity. In this section, we relax this assumption and consider cases where the effect of 
X on Y is confounded, that is, when P(yx) # P(y I x). In such cases P ( y , )  may still be 
estimated by auxiliary means (e.g., through adjustment of certain covariates or through 
experimental studies), and the question is whether this added information can render the 
probability of causation identifiable. The answer is affirmative. 

Theorem 9.2.15 
If Y is monotonic relative to X ,  then PNS, PN, and PS are identGable whenever the 
causal efects P(yx) and P(yXl) are identiJiabb: 
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In order to appreciate the difference between equations (9.29) and (9.22), we can expand 
P(y) and write 

The first term on the r.h.s. of (9.31) is the familiar excess risk ratio (as in (9.22)) and 
represents the value of PN under exogeneity. The second term represents the correction 
needed to account for X's nonexogeneity, that is, P(yxl) # P(y I x'). 

Equations (9.28)-(9.30) thus provide more refined measures of causation, which can 
be used in situations where the causal effect P(y,) can be identified through auxiliary 
means (see Example 4, Section 9.3.4). It can also be shown that expressions in (9.28)- 
(9.30) provide lower bounds for PNS, PN, and PS in the general, nonmonotonic case 
(J. Tian, personal communication). 

Remarkably, since PS and PN must be nonnegative, (9.29)-(9.30) provide a simple 
necessary test for the assumption of monotonicity: 

which tightens the standard inequalities (from x r  A y =$ yx, and x A y' ==+ y:) 

J. Tian has shown that these inequalities are in fact sharp: every combination of experi- 
mental and nonexperimental data that satisfies these inequalities can be generated from 
some causal model in which Y is monotonic in X. That the commonly made assumption 
of "no prevention" is not entirely exempt from empirical scrutiny should come as a relief 
to many epidemiologists. Alternatively, if the no-prevention assumption is theoretically 
unassailable, then (9.32) can be used for testing the compatibility of the experimental and 
nonexperimental data, that is, whether subjects used in clinical trials are representative 
of the target population as characterized by the joint distribution P(x , y) . 

Proof of Theorem 9.2.15 
Equation (9.28) was established in (9.27). To prove (9.30), we write 
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because x' A y ' = x' A ylf  (by consistency). To calculate the numerator of (9.34), we 
conjoin (9.26) with x' to obtain 

We then take the probability on both sides, which gives (since y , ~  and ylf  are disjoint) 

Substituting into (9.34), we finally obtain 

which establishes (9.30). Equation (9.29) follows via identical steps. 

One common class of models that permits the identification of P(yx) under conditions 
of nonexogeneity was exemplified in Chapter 3. It was shown in Section 3.2 (equation 
(3.13)) that, for every two variables X and Y in a positive Markovian model M, the causal 
effect P(y,) is identifiable and is given by 

where pax are (realizations of) the parents of X in the causal graph associated with M. 
Thus, we can combine (9.35) with Theorem 9.2.15 to obtain a concrete condition for the 
identification of the probability of causation. 

Corollary 9.2.16 
For any positive Markovian model M, if the function Y,(u) is monotonic then the prob- 
abilities of causation PNS, PS, and PN are identijable and are given by (9.28)-(9.30), 
with P(y , )  as given in (9.35). 

A broader identification condition can be obtained through the use of the back-door and 
front-door criteria (Section 3.3), which are applicable to semi-Markovian models. These 
were further generalized in Galles and Pearl (1995) (see Section 4.3.1) and lead to the 
following corollary. 

Corollary 9.2.17 
Let GP be the class of semi-Markovian models that satisfy the graphical criterion oj 
Theorem 4.3.1. If Yx(u) is monotonic, then the probabilities of causation P N S ,  PS, and 
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PN are identiJiable in GP and are given by (9.28)-(9.30), with P(y,) determined by the 
topology of G ( M )  through the algorithm of Section 4.3.3. 

9.3 EXAMPLES AND APPLICATIONS 

9.3.1 Example 1: Betting against a Fair Coin 
We must bet heads or tails on the outcome of a fair coin toss; we win a dollar if we guess 
correctly and lose if we don't. Suppose we bet heads and win a dollar, without glancing 
at the actual outcome of the coin. Was our bet a necessary cause (or a sufficient cause, 
or both) for winning? 

This example is isomorphic to the clinical trial discussed in Section 1.4.4 (Figure 1.6). 
Let x stand for "we bet on heads," y for "we win a dollar," and u for "the coin turned up 
heads." The functional relationship between y,  x ,  and u is 

which is not monotonic but nevertheless permits us to compute the probabilities of cau- 
sation from the basic definitions of (9.1)-(9.3). To exemplify, 

because x A y ==+ u and Yx! (u) = false. In words, knowing the current bet (x) and cur- 
rent win ( y )  permits us to infer that the coin outcome must have been a head (u), from 
which we can further deduce that betting tails (x') instead of heads would have resulted 
in a loss. Similarly, 

PS = P(yx I x', y') = P(yx I u )  = 1 

(because x' A y' u) and 

We see that betting heads has 50% chance of being a necessary and sufficient cause of 
winning. Still, once we win, we can be 100% sure that our bet was necessary for our win, 
and once we lose (say, on betting tails) we can be 100% sure that betting heads would 
have been sufficient for producing a win. The empirical content of such counterfactuals 
is discussed in Section 7.2.2. 

It is easy to verify that these counterfactual quantities cannot be computed from the 
joint probability of X and Y without knowledge of the functional relationship in (9.36), 
which tells us the (deterministic) policy by which a win or a loss is decided (Section 1.4.4). 
This can be seen, for instance, from the conditional probabilities and causal effects asso- 
ciated with this example, 
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because identical probabilities would be generated by a random payoff policy in which 
y is functionally independent of x - say, by a bookie who watches the coin and ignores 
our bet. In such a random policy, the probabilities of causation PN, PS, and PNS are all 
zero. Thus, according to our definition of identifiability (Definition 3.2.3), if two mod- 
els agree on P and do not agree on a quantity Q, then Q is not identifiable. Indeed, the 
bounds delineated in Theorem 9.2.10 (equation (9.9)) read 0 j PNS j f , meaning that 
the three probabilities of causation cannot be determined from statistical data on X and 
Y alone, not even in a controlled experiment; knowledge of the functional mechanism is 
required, as in (9.36). 

It is interesting to note that whether the coin is tossed before or after the bet has no 
bearing on the probabilities of causation as just defined. This stands in contrast with some 
theories of probabilistic causality (e.g. Good 1961), which attempt to avoid determinis- 
tic mechanisms by conditioning all probabilities on "the state of the world just before" 
the occurrence of the cause in question (x). When applied to our betting story, the inten- 
tion is to condition all probabilities on the state of the coin (u), but this is not fulfilled 
if the coin is tossed after the bet is placed. Attempts to enrich the conditioning set with 
events occurring after the cause in question have led back to deterministic relationships 
involving counterfactual variables (see Cartwright 1989, Eells 1991, and the discussion in 
Section 7.5.4). 

One may argue, of course, that if the coin is tossed after the bet then it is not at all 
clear what our winnings would be had we bet differently; merely uttering our bet could 
conceivably affect the trajectory of the coin (Dawid 1997). This objection can be dif- 
fused by placing x and u in two remote locations and tossing the coin a split second 
after the bet is placed but before any light ray could arrive from the betting room to the 
coin-tossing room. In such a hypothetical situation, the counterfactual statement "our 
winning would be different had we bet differently" is rather compelling, even though the 
conditioning event (u) occurs after the cause in question (x). We conclude that tempo- 
ral descriptions such as "the state of the world just before x" cannot be used to prop- 
erly identify the appropriate set of conditioning events (u)  in a problem; a deterministic 
model of the mechanisms involved is needed for formulating the notion of "probability 
of causation." 

9.3.2 Example 2: The Firing Squad 

Consider again the firing squad of Section 7.1.2 (see Figure 9.1); A and B are riflemen, C 
is the squad's captain (who is waiting for the court order, U), and T is a condemned pris- 
oner. Let u be the proposition that the court has ordered an execution, x the proposition 
stating that A pulled the trigger, and y that T is dead. We assume again that P(u) = 1, 
that A and B are perfectly accurate marksmen who are alert and law-abiding, and that T 
is not likely to die from fright or other extraneous causes. We wish to compute the proba- 
bility that x was a necessary (or sufficient, or both) cause for y (i.e., we wish to calculate 
PN, PS, and PNS). 
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C (Captain) 6 Figure 9.1 Causal relationships in the two- 

x: A shoots A B (Riflemen) man firing-squad example. 

T (Prisoner) 

y: Tdies 

Definitions 9.2.1-9.2.3 permit us to compute these probabilities directly from the 
given causal model, since all functions and all probabilities are specified, with the truth 
value of each variable tracing that of U. Accordingly, we can write9 

Similarly, we have 

P(y,f) = P(Yx,(u) = true) P(u) + P(Yx,(ut) = true) P(u') 

In order to compute PNS, we must evaluate the probability of the joint event y,, A yx. 
Given that these two events are jointly true only when U = true, we have 

The calculation of PS and PN is likewise simplified by the fact that each of the con- 
ditioning events, x A y for PN and x' A y' for PS, is true in only one state of U. We thus 
have 

reflecting that, once the court orders an execution (u), T will die (y) from the shot of 
rifleman B ,  even if A refrains from shooting ( x ' ) .  Indeed, upon learning of T's death, 
we can categorically state that rifleman A's shot was not a necessary cause of the death. 

Similarly, 

PS = P(yx I x ' ,  y') = P(y, I u') = 1, 

Recall that P(Yx(uf ) = true) involves the submodel M,, in which X is set to "true" independently 
of U. Thus, although under condition u' the captain has not given a signal, the potential outcome 
Yx(uf) calls for hypothesizing that rifleman A pulls the trigger (x) unlawfully. 
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Table 9.1 

Exposure 

High ( x )  Low ( x ' )  

Deaths (y) 30 16 
Survivals (y') 69,130 59,010 

matching our intuition that a shot fired by an expert marksman would be sufficient for 
causing the death of T, regardless of the court decision. 

Note that Theorems 9.2.10 and 9.2.11 are not applicable to this example because x is 
not exogenous; events x and y have a common cause (the captain's signal), which ren- 
ders P(y I x ' )  = 0 # P(y,.) = f. However, the monotonicity of Y (in x) permits us 
to compute PNS, PS, and PN from the joint distribution P ( x ,  y) and the causal effects 
(using (9.28)-(9.30)), instead of consulting the functional model. Indeed, writing 

P(x, y) = P(x', y') = f 

and 

P ( x ,  y') = P ( x t ,  y )  = 0, 

we obtain 

and 

as expected. 

9.3.3 Example 3: The Effect of Radiation on Leukemia 

Consider the following data (Table 9.1, adapted1' from Finkelstein and Levin 1990) com- 
paring leukemia deaths in children in southern Utah with high and low exposure to radi- 
ation from the fallout of nuclear tests in Nevada. Given these data, we wish to estimate 
the probabilities that high exposure to radiation was a necessary (or sufficient, or both) 
cause of death due to leukemia. 

"' The data in Finkelstein and Levin (1990) are given in "person-year" units. For the purpose of il- 
lustration we have converted the data to absolute numbers (of deaths and nondeaths) assuming a 
ten-year observation period. 
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Assuming monotonicity - that exposure to nuclear radiation had no remedial effect 
on any individual in the study - the process can be modeled by a simple disjunctive mech- 
anism represented by the equation 

where u represents "all other causes" of y and where q represents all "enabling" mecha- 
nisms that must be present for x to trigger y . Assuming that q and u are both unobserved, 
the question we ask is under what conditions we can identify the probabilities of causa- 
tion (PNS, PN, and PS) from the joint distribution of X and Y. 

Since (9.44) is monotonic in x ,  Theorem 9.2.14 states that all three quantities would 
be identifiable provided X is exogenous; that is, x should be independent of q and u. 
Under this assumption, (9.21)-(9.23) further permit us to compute the probabilities of 
causation from frequency data. Taking fractions to represent probabilities, the data in 
Table 9.1 imply the following numerical results: 

30 - 16 
PNS = P(y I x) - P(y  I x ' )  = = 0.0001625, (9.45) 

30 + 69,130 16 + 59,010 

PNS 
- - 

PNS 
PN = = 0.37535, 

P(y I x) 30/(30 + 69,130) 

PS = 
PNS - - PNS 

= 0.0001625. 
1 - P(y I x ' )  1 - 16/(16 + 59,010) 

Statistically, these figures mean that: 

1. There is a 1.625 in ten thousand chance that a randomly chosen child would both 
die of leukemia if exposed and survive if not exposed; 

2. There is a 37.544% chance that an exposed child who died from leukemia would 
have survived had he or she not been exposed; 

3. There is a 1.625 in ten thousand chance that any unexposed surviving child would 
have died of leukemia had he or she been exposed. 

Glymour (1998) analyzed this example with the aim of identifying the probability 
P(q) (Cheng's "causal power"), which coincides with PS (see Lemma 9.2.8). Glymour 
concluded that P ( q )  is identifiable and is given by (9.23), provided that x,  u, and q are 
mutually independent. Our analysis shows that Glymour's result can be generalized in 
several ways. First, since Y is monotonic in X, the validity of (9.23) is assured even 
when q and u are dependent, because exogeneity merely requires independence between 
x and {u, q} jointly. This is important in epidemiological settings, because an individ- 
ual's susceptibility to nuclear radiation is likely to be associated with susceptibility to 
other potential causes of leukemia (e.g., natural kinds of radiation). 

Second, Theorem 9.2.11 assures us that the relationships between PN, PS, and PNS 
(equations (9.1 1)-(9.12)), which Glymour derives for independent q and u , should re- 
main valid even when u and q are dependent. 
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i 
Y Leukemia 

Figure 9.2 Causal relationships in the radiation-leukemia example, where W represents confound- 
ing factors. 

Finally, Theorem 9.2.15 assures us that PN and PS are identifiable even when x is 
not independent of {u, q ) ,  provided only that the mechanism of (9.44) is embedded in a 
larger causal structure that permits the identification of P(yx) and P(y,l). For example, 
assume that exposure to nuclear radiation (x) is suspect of being associated with terrain 
and altitude, which are also factors in determining exposure to cosmic radiation. A model 
reflecting such consideration is depicted in Figure 9.2, where W represents factors affect- 
ing both X and U. A natural way to correct for possible confounding bias in the causal 
effect of X on Y would be to adjust for W, that is, to calculate P(yx) and P(yxf) using 
the standard adjustment formula (equation (3.19)) 

(instead of P(y I x) and P(y I x')), where the summation runs over levels of W. This 
adjustment formula, which follows from (9.351, is correct regardless of the mechanisms 
mediating X and Y, provided only that W represents all common factors affecting X and 
Y (see Section 3.3.1). 

Theorem 9.2.15 instructs us to evaluate PN and PS by substituting (9.48) into (9.29) 
and (9.30), respectively, and it assures us that the resulting expressions constitute consis- 
tent estimates of PN and PS. This consistency is guaranteed jointly by the assumption of 
monotonicity and by the (assumed) topology of the causal graph. 

Note that monotonicity as defined in (9.20) is a global property of all pathways be- 
tween x and y. The causal model may include several nonmonotonic mechanisms along 
these pathways without affecting the validity of (9.20). However, arguments for the va- 
lidity of monotonicity must be based on substantive information, since it is not testable 
in general. For example, Robins and Greenland (1989) argued that exposure to nuclear 
radiation may conceivably be of benefit to some individuals because such radiation is 
routinely used clinically in treating cancer patients. The inequalities in (9.32) constitute 
a statistical test of monotonicity (albeit a weak one) that is based on both experimental 
and observational studies. 
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Table 9.2 

Experimental Nonexperimental 

X x' X X' 

Deaths (y) 16 14 2 28 
Survivals (y') 984 986 998 972 

9.3.4 Example 4: Legal Responsibility from Experimental and 
Nonexperimental Data 
A lawsuit is filed against the manufacturer of drug x ,  charging that the drug is likely to 
have caused the death of Mr. A, who took the drug to relieve symptom S associated with 
disease D .  

The manufacturer claims that experimental data on patients with symptom S show 
conclusively that drug x may cause only minor increase in death rates. However, the plain- 
tiff argues that the experimental study is of little relevance to this case because it represents 
the effect of the drug on all patients, not on patients like Mr. A who actually died while 
using drug x. Moreover, argues the plaintiff, Mr. A is unique in that he used the drug on 
his own volition, unlike subjects in the experimental study who took the drug to comply 
with experimental protocols. To support this argument, the plaintiff furnishes nonexper- 
imental data indicating that most patients who chose drug x would have been alive were 
it not for the drug. The manufacturer counterargues by stating that: (1) counterfactual 
speculations regarding whether patients would or would not have died are purely meta- 
physical and should be avoided (Dawid 1997); and (2) nonexperimental data should be 
dismissed a priori on the grounds that such data may be highly confounded by extraneous 
factors. The court must now decide, based on both the experimental and nonexperimen- 
tal studies, what the probability is that drug x was in fact the cause of Mr. A's death. 

The (hypothetical) data associated with the two studies are shown in Table 9.2. The 
experimental data provide the estimates 

the nonexperimental data provide the estimates 

Assuming that drug x can only cause (can never prevent) death, Theorem 9.2.15 is 
applicable and (9.29) yields 

Thus, the plaintiff was correct; barring sampling errors, the data provide us with 100% 
assurance that drug x was in fact responsible for the death of Mr. A. Note that a straight- 
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forward use of the experimental excess risk ratio would yield a much lower (and incor- 
rect) result: 

Evidently, what the experimental study does not reveal is that, given a choice, termi- 
nal patients avoid drug x. Indeed, if there were any terminal patients who would choose 
x (given the choice), then the control group (x') would have included some such pa- 
tients (due to randomization) and so the proportion of deaths among the control group 
P(y , ! )  would have been higher than P(xl , y), the population proportion of terminal pa- 
tients avoiding x .  However, the equality p(~,! )  = P(y, x') tells us that no such patients 
were included in the control group; hence (by randomization) no such patients exist in 
the population at large and therefore none of the patients who freely chose drug x was a 
terminal case; all were susceptible to x. 

The numbers in Table 9.2 were obviously contrived to represent an extreme case and 
so facilitate a qualitative explanation of the validity of (9.29). Nevertheless, it is instruc- 
tive to note that a combination of experimental and nonexperimental studies may unravel 
what experimental studies alone will not reveal and, in addition, that such combination 
may provide a necessary test for the assumption of no-prevention, as outlined in Sec- 
tion 9.2.4 (equation (9.32)). For example, if the frequencies in Table 9.2 were slightly 
different, they could easily yield a negative value for PN in (9.53) and thus indicate vi- 
olation of the fundamental inequalities of (9.32)-(9.33). Such violation might be due 
either to nonmonotonicity or to incompatibility of the experimental and nonexperimental 
groups. 

This last point may warrant a word of explanation, lest the reader wonder why two 
data sets - taken from two separate groups under different experimental conditions - 
should constrain one another. The explanation is that certain quantities in the two sub- 
populations are expected to remain invariant to all these differences, provided that the 
two subpopulations were sampled properly from the population at large. These invariant 
quantities are simply the causal effects probabilities, P(yXl) and P(yx). Although these 
counterfactual probabilities were not measured in the observational group, they must (by 
definition) nevertheless be the same as those measured in the experimental group. The 
invariance of these quantities is the basic axiom of controlled experimentation, without 
which no inference would be possible from experimental studies to general behavior of 
the population. The invariance of these quantities, together with monotonicity, implies 
the inequalities of (9.32)-(9.33). 

9.3.5 Summary of Results 

We now summarize the results from Sections 9.2 and 9.3 that should be of value to prac- 
ticing epidemiologists and policy makers. These results are shown in Table 9.3, which 
lists the best estimand of PN (for a nonexperirnental event) under various assumptions and 
various types of data - the stronger the assumptions, the more informative the estimates. 

We see that the excess risk ratio (ERR), which epidemiologists commonly equate 
with the probability of causation, is a valid measure of PN only when two assumptions 
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Table 9.3. PN as a Function of Assumptions and AvaiEable Data 

Assumptions Data Available 

Exogeneity Monotonicity Additional Experimental Observational Combined 

+ + ERR ERR ERR 

covariate 
control 

bounds bounds 

corrected 
ERR 

bounds 

corrected 
ERR 

corrected 
ERR 

- - - - bounds 

Note: ERR stands for the excess risk ratio, 1 - P ( y  I x l ) / P ( y '  I x ' ) ;  corrected ERR is given in (9.31). 

can be ascertained: exogeneity (i.e., no confounding) and monotonicity (i.e., no preven- 
tion). When monotonicity does not hold, ERR provides merely a lower bound for PN, as 
shown in (9.13). (The upper bound is usually unity.) The nonentries (-) in the right-hand 
side of Table 9.3 represent vacuous bounds (i.e., 0 5 PN 5 1). In the presence of con- 
founding, ERR must be corrected by the additive term [P(y / x') - P(y,l)]/P(x, y), 
as stated in (9.31). In other words, when confounding bias (of the causal effect) is pos- 
itive, PN is higher than ERR by the amount of this additive term. Clearly, owing to 
the division by P(x, y), the PN bias can be many times higher than the causal effect 
bias P(y I x') - P(y,!). However, confounding results only from association between 
exposure and other factors that affect the outcome; one need not be concerned with asso- 
ciations between such factors and susceptibility to exposure (see Figure 9.2). 

The last row in Table 9.3, corresponding to no assumptions whatsoever, leads to vac- 
uous bounds for PN, unless we have combined data. This does not mean, however, that 
justifiable assumptions other than monotonicity and exogeneity could not be helpful in 
rendering PN identifiable. The use of such assumptions is explored in the next section. 

9.4 IDENTIFICATION IN NONMONOTONIC MODELS 

In this section we discuss the identification of probabilities of causation without making 
the assumption of monotonicity. We will assume that we are given a causal model M in 
which all functional relationships are known, but since the background variables U are 
not observed, their distribution is not known and the model specification is not complete. 

Our first step would be to study under what conditions the function P(u) can be iden- 
tified, thus rendering the entire model identifiable. If M is Markovian, then the problem 
can be analyzed by considering each parents-child family separately. Consider any ar- 
bitrary equation in M, 
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where Uy = {U1, . . . , Urn] is the set of background (possibly dependent) variables that 
appear in the equation for Y. In general, the domain of Uy can be arbitrary, discrete, or 
continuous, since these variables represent unobserved factors that were omitted from the 
model. However, since the observed variables are binary, there is only a finite number 
(2(2*)) of functions from PAy to Y and, for any point Uy = u, only one of those func- 
tions is realized. This defines a partition of the domain of U y  into a set S of equivalence 
classes, where each equivalence class s E S induces the same function f (" from PA to 
Y (see Section 8.2.2). Thus, as u varies over its domain, a set S of such functions is real- 
ized, and we can regard S as a new background variable whose values correspond to the 
set { f (S) : s E S }  of functions from PAy to Y that are realizable in U y .  The number of 

( z k )  11 such functions will usually be smaller than 2 . 
For example, consider the model described in Figure 9.2. As the background vari- 

ables (Q, U) vary over their respective domains, the relation between X and Y spans 
three distinct functions: 

f ('1 : Y = true, f (2) : Y = false, and f (3) : Y = X. 

The fourth possible function, Y $ X, is never realized because fy (-) is monotonic. The 
cells ( q ,  u )  and (q', u)  induce the same function between X and Y; hence they belong to 
the same equivalence class. 

If we are given the distribution P(uy) then we can compute the distribution P ( s ) ,  
and this will determine the conditional probabilities P ( y  I pay)  by summing P(s) over 
all those functions f ('I that map pay into the value true, 

To ensure model identifiability, it is sufficient that we can invert the process and deter- 
mine P(s) from P ( y  ( p a y ) .  If we let the set of conditional probabilities P ( y  I pay)  be 
represented by a vector p' (of dimensionality zk) and P(s) by a vector <, then (9.56) de- 
fines a linear relation between p' and q that can be represented as a matrix multiplication 
(as in (8.13)), 

where R is a 2k x IS1 matrix whose entries are either 0 or 1. Thus, a sufficient condition 
for identification is simply that R, together with the normalizing equation G j  = 1, be 
invertible. 

In general, R will not be invertible because the dimensionality of { can be much larger 
than that of j. However, in many cases, such as the "noisy O R  mechanism 

" Balke and Pearl (1994a,b) called these S variables "response variables," as in Section 8.2.2; Heck- 
erman and Shachter (1995) called them "mapping variables." 
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symmetry permits ij to be identified from P(y  1 p a y )  even when the exogenous vari- 
ables Uo, U1, . . . , Uk are not independent. This can be seen by noting that every point u 

for which Uo = false defines a unique function f because, if T is the set of indices i 
for which Ui is true, the relationship between PAy and Y becomes 

Y = u,, v Xi 
i s T  

and, for Uo = false, this equation defines a distinct function for each T. The number of 
induced functions is 2k + 1, which (subtracting 1 for normalization) is exactly the number 
of distinct realizations of PAY. Moreover, it is easy to show that the matrix connecting p' 
and q' is invertible. We thus conclude that the probability of every counterfactual sentence 
can be identified in any Markovian model composed of noisy OR mechanisms, regard- 
less of whether the background variables in each family are mutually independent. The 
same holds, of course, for noisy AND mechanisms or any combination thereof (including 
negating mechanisms), provided that each family consists of one type of mechanism. 

To generalize this results to mechanisms other than noisy OR and noisy AND, we 
note that - although fy(.) in this example was monotonic (in each Xi) - it was the re- 
dundancy of f y  (-) and not its monotonicity that ensured identifiability. The following is 
an example of a monotonic function for which the R matrix is not invertible: 

This function represents a noisy OR gate for U3 = false; it becomes a noisy AND gate 
for U3 = true and Ul = U2 = false. The number of equivalence classes induced is six, 
which would require five independent equations to determine their probabilities; the data 
P(y  1 pay)  provide only four such equations. 

In contrast, the mechanism governed by the following function, although nonmono- 
tonic, is invertible: 

where XOR(.) stands for exclusive OR. This equation induces only two functions from 
PAy to Y :  

XOR(XI, . . . , Xk) if XOR(Ul, . . ., Uk) = false, 

lXOR(XI,  . . . , Xk) if XOR(Ul, . . . , Uk) = true. 

A single conditional probability, say P(y  I XI ,  . . . , xk), would therefore suffice for com- 
puting the one parameter needed for identification: P [XOR(Ul, . . . , Uk) = true]. 

We summarize these considerations with a theorem. 

Definition 9.4.1 (Local Invertibility) 
A model M is said to be locally invertible if, for every variable Vi E V, the set of 2k + 1 
equations 
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has a unique solution for qi(s), where each ~ ( " ( ~ a ~ )  corresponds to the function 
fi(pai, ui) induced by ui in equivalence class s .  

Theorem 9.4.2 
Given a Markovian model M = (U, V, { f ,  1 )  in which the functions {h)  are known and 
the exogenous variables U are unobserved, ifM is locally invertible then the probability 
of every countegactual sentence is identifiable from the joint probability P(v) .  

Proof 
If (9.60) has a unique solution for qi(s), then we can replace U with S and obtain an 
equivalent model as follows: 

M' = ( S ,  V ,  {f:)), where f.' = ~ ( ~ ' ( ~ a i ) .  

The model M', together with qi(s), completely specifies a probabilistic causal model 
(M', P(s)) (owing to the Markov property), from which probabilities of counterfactuals 
are derivable by definition. 

Theorem 9.4.2 provides a sufficient condition for identifying probabilities of causation, 
but of course it does not exhaust the spectrum of assumptions that are helpful in achieving 
identification. In many cases we might be justified in hypothesizing additional structure 
on the model - for example, that the U variables entering each family are themselves in- 
dependent. In such cases, additional constraints are imposed on the probabilities P(s), 
and (9.60) may be solved even when the cardinality of S far exceeds the number of con- 
ditional probabilities P(y ) pau) .  

9.5 CONCLUSIONS 

This chapter has explicated and analyzed the interplay between the necessary and suffi- 
cient components of causation. Using counterfactual interpretations that rest on structural 
model semantics, we demonstrated how simple techniques of computing probabilities of 
counterfactuals can be used in computing probabilities of causes, deciding questions of 
identification, uncovering conditions under which probabilities of causes can be esti- 
mated from statistical data, and devising tests for assumptions that are routinely made 
(often unwittingly) by analysts and investigators. 

On the practical side, we have offered several useful tools (partly summarized in 
Table 9.3) for epidemiologists and health scientists. This chapter formulates and calls at- 
tention to subtle assumptions that must be ascertained before statistical measures such 
as excess risk ratio can be used to represent causal quantities such as attributable risk or 
probability of causes (Theorem 9.2.14). It shows how data from both experimental and 
nonexperimental studies can be combined to yield information that neither study alone 
can reveal (Theorem 9.2.15 and Section 9.3.4). Finally, it provides tests for the commonly 
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made assumption of "no prevention" and for the often asked question of whether a clin- 
ical study is representative of its target population (equation (9.32)). 

On the conceptual side, we have seen that both the probability of necessity (PN) and 
probability of sufficiency (PS) play a role in our understanding of causation and that each 
component has its logic and computational rules. Although the counterfactual concept 
of necessary cause (i.e., that an outcome would not have occurred "but for" the action) is 
predominant in legal settings (Robertson 1997) and in ordinary discourse, the sufficiency 
component of causation has a definite influence on causal thoughts. 

The importance of the sufficiency component can be uncovered in examples where 
the necessary component is either dormant or ensured. Why do we consider striking a 
match to be a more adequate explanation (of a fire) than the presence of oxygen? Re- 
casting the question in the language of PN and PS, we note that, since both explanations 
are necessary for the fire, each will command a PN of unity. (In fact, the PN is actu- 
ally higher for the oxygen if we allow for alternative ways of igniting a spark). Thus, it 
must be the sufficiency component that endows the match with greater explanatory power 
than the oxygen. If the probabilities associated with striking a match and the presence of 
oxygen are denoted p ,  and p,, respectively, then the PS measures associated with these 
explanations evaluate to PS(match) = p, and PS(oxygen) = p,, clearly favoring the 
match when p, >> p,. Thus, a robot instructed to explain why a fire broke out has no 
choice but to consider both PN and PS in its deliberations. 

Should PS enter legal considerations in criminal and tort law? I believe that it should - 
as does Good (1993) - because attention to sufficiency implies attention to the conse- 
quences of one's action. The person who lighted the match ought to have anticipated the 
presence of oxygen, whereas the person who supplied - or could (but did not) remove - 
the oxygen is not generally expected to have anticipated match-striking ceremonies. 

However, what weight should the law assign to the necessary versus the sufficient 
component of causation? This question obviously lies beyond the scope of our investi- 
gation, and it is not at all clear who would be qualified to tackle the issue or whether our 
legal system would be prepared to implement the recommendation. I am hopeful, how- 
ever, that whoever undertakes to consider such questions will find the analysis in this 
chapter to be of some use. The next chapter combines aspects of necessity and suffi- 
ciency in explicating a more refined notion: "actual cause." 
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CHAPTER TEN 

And now remains 
That weJind out the cause of this effect, 
Or rather say, the cause of this defect, 
For this eflect defective comes by cause. 

Shakespeare (Hamlet II.ii.lOO-4) 

Preface 

This chapter offers a formal explication of the notion of "actual cause," an event rec- 
ognized as responsible for the production of a given outcome in a specific scenario, as 
in: "Socrates drinking hemlock was the actual cause of Socrates death." Human intu- 
ition is extremely keen in detecting and ascertaining this type of causation and hence is 
considered the key to constructing explanations (Section 7.2.3) and the ultimate criterion 
(known as "cause in fact") for determining legal responsibility. 

Yet despite its ubiquity in natural thoughts, actual causation is not an easy concept to 
formulate. A typical example (introduced by Wright 1988) considers two fires advancing 
toward a house. If fire A burned the house before fire B, we (and many juries nation- 
wide) would surely consider fire A " the actual cause" for the damage, though either fire 
alone is sufficient (and neither one was necessary) for burning the house. Clearly, actual 
causation requires information beyond that of necessity and sufficiency; the actual pro- 
cess mediating between the cause and the effect must enter into consideration. But what 
precisely is a "process" in the language of structural models? What aspects of causal pro- 
cesses define actual causation? How do we piece together evidence about the uncertain 
aspects of a scenario and so compute probabilities of actual causation? 

In this chapter we propose a plausible account of actual causation that can be formu- 
lated in structural model semantics. The account is based on the notion of sustenance, to 
be defined in Section 10.2, which combines aspects of necessity and sufficiency to mea- 
sure the capacity of the cause to maintain the effect despite certain structural changes in 
the model. We show by examples how this account avoids problems associated with the 
counterfactual dependence account of Lewis (1986) and how it can be used both in gen- 
erating explanations of specific scenarios and in computing the probabilities that such 
explanations are in fact correct. 

1 0 .  INTRODUCTION: THE INSUFFICIENCY OF NECESSARY 
CAUSATION 

10.1.1 Singular Causes Revisited 
Statements of the type "a car accident was the cause of Joe's death," made relative to 
a specific scenario, are classified as "singular," "single-event," or "token-level" causal 
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statements. Statements of the type "car accidents cause deaths," when made relative to a 
type of events or a class of individuals, are classified as "generic" or "type-level" causal 
claims (see Section 7.5.4). We will call the cause in a single-event statement an actual 
cause and the one in a type-level statement a general cause. 

The relationship between type and token causal claims has been controversial in the 
philosophical literature (Woodward 1990; Hitchcock 1995), and priority questions such 
as "which comes first?" or "can one level be reduced to the other?" (Cartwright 1989; 
Eells 1991; Hausman 1998) have diverted attention from the more fundamental question: 
"What tangible claims do type and token statements make about our world, and how is 
causal knowledge organized so as to substantiate such claims?" The debate has led to 
theories that view type and token claims as two distinct species of causal relations (as 
in Good 1961, 1962), each requiring its own philosophical account (see e.g. Sober 1985; 
Eells 1991, chap. 6) - "not an altogether happy predicament" (Hitchcock 1997). In con- 
trast, the structural account treats type and token claims as instances of the same species, 
differing only in the details of the scenario-specific information that is brought to bear 
on the question. As such, the structural account offers a formal basis for studying the 
anatomy of the two levels of claims, what information is needed to support each level, 
and why philosophers have found their relationships so hard to disentangle. 

The basic building blocks of the structural account are the functions {f, }, which rep- 
resent lawlike mechanisms and supply information for both type-level and token-level 
claims. These functions are type-level in the sense of representing generic, counterfac- 
tuaI relationships among variables that are applicable to every hypothetical scenario, not 
just ones that were realized. At the same time, any specific instantiation of those relation- 
ships represents a token-level claim. The ingredients that distinguish one scenario from 
another are represented in the background variables U .  When all such factors are known, 
U = u, we have a "world" on our hands (Definition 7.1.8) - an ideal, full description 
of a specific scenario in which all relevant details are spelled out and nothing is left to 
chance or guessing. Causal claims made at the world level would be extreme cases of 
token causal claims. In general, however, we do not possess the detailed knowledge nec- 
essary for specifying a single world U = u ,  and we use a probability P(u) to summarize 
our ignorance of those details. This takes us to the level of probabilistic causal models 
( M ,  P(u)) (Definition 7.1.6). Causal claims made on the basis of such models, with no 
reference to the actual scenario, would be classified as type-level claims. Causal effects 
assertions, such as P(Y, = y) = p, are examples of such claims, for they express the 
general tendency of x to bring about y ,  as judged over all potential scenarios.' In most 
cases, however, we possess partial information about the scenario at hand - for example, 
that Joe died, that he was in a car accident, and perhaps that he drove a sports car and 
suffered a head injury. The totality of such episode-specific information is called "evi- 
dence" ( e )  and can be used to update P(u) into P(u I e). Causal claims derived from the 
model (M, P(u ( e)) represent token claims of varying shades, depending on the speci- 
ficity of e.  

Occasionally, causal effect assertions can even be made on the basis of an incomplete probabilistic 
model, where only G ( M )  and P(v )  are given -this is the issue of identification (Chapter 3). But 
no token-level statement can be made on such basis alone without some knowledge of { A )  or P ( u )  
(assuming, of course, that x and y are known to have occurred). 
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Figure 10.1 
necessary. 
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causing the light, though neither is 

Thus, the distinction between type and token claims is a matter of degree in the struc- 
tural account. The more episode-specific evidence we gather, the closer we come to the 
ideals of token claims and actual causes. The notions of PS and PN (the focus of Chap- 
ter 9) represent intermediate points along this spectrum. Probable sufficiency (PS) is 
close to a type-level claim because the actual scenario is not taken into account and is, in 
fact, excluded from consideration. Probable necessity (PN) makes some reference to the 
actual scenario, albeit a rudimentary one (i.e., that x and y are true). In this section we 
will attempt to come closer to the notion of actual cause by taking additional information 
into consideration. 

10.1.2 Preemption and the Role of Structural Information 
In Section 9.2, we alluded to the fact that both PN and PS are global (i-e. input-output) 
features of a causal model, depending only on the function Yx(u) and not on the structure 
of the process mediating between the cause (x) and the effect (y). That such structure 
plays a role in causal explanation is seen in the following example. 

Consider an electrical circuit consisting of a light bulb and two switches, as shown 
in Figure 10.1. From the user's viewpoint, the light responds symmetrically to the two 
switches; either switch is sufficient to turn the light on. Internally, however, when switch 1 
is on it not only activates the light but also disconnects switch 2 from the circuit, rendering 
it inoperative. Consequently, with both switches on, we would not hesitate to proclaim 
switch 1 as the "actual cause" of the current flowing in the light bulb, knowing as we do 
that switch 2 can have no effect whatsoever on the electric pathway in this particular state 
of affairs. There is nothing in PN and PS that could possibly account for this asymrne- 
try; each is based on the response function Yx(u) and is therefore oblivious to the internal 
workings of the circuit. 

This example is representative of a class of counterexamples, involving preemption, 
that were brought up against Lewis's counterfactual account of causation. It illustrates 
how an event (e.g., switch 1 being on) can be considered a cause although the effect per- 
sists in its absence. Lewis's (1986) answer to such counterexamples was to modify the 
counterfactual criterion and let x be a cause of y as long as there exists a counterfactual 
dependence chain of intermediate variables between x to y ;  that is, the output of every 
link in the chain is counterfactually dependent on its input. Such a chain does not exist 
for switch 2 because, given the current state of affairs (i.e., both switches being on), no 
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Figure 10.2 Causal relationships in the desert traveler example. 

part of the circuit would be affected (electrically) by turning switch 2 on or off. This can 
be shown more clearly in the following example. 

Example 10.1.1 (The Desert Traveler - after P. Suppes) A desert traveler T has two 
enemies. Enemy 1 poisons T's canteen, and enemy 2, unaware of enemy 1's action, 
shoots and empties the canteen. A week later, T is found dead and the two enemies 
confess to action and intention. A jury must decide whose action was the actual cause 
of T's death. 

Let x and p be (respectively) the propositions "enemy 2 shot" and "enemy 1 poisoned the 
water," and let y denote "T is dead:' In addition to these events we will also use the in- 
termediate variable C (connoting cyanide) and D (connoting dehydration), as shown in 
Figure 10.2. The functions J;:(pai, u) are not shown explicitly in Figure 10.2, but they are 
presumed to determine the value of each child variable from those of its parent variables 
in the graph, in accordance with the usual understanding of the story:2 

When we substitute c and d into the expression for y, we obtain a simple disjunction 

which is deceiving in its symmetry. 
Here we see in vivid symbols the role played by structural information. Although it 

is true that x v x'p is logically equivalent to x v p, the two are not structurally equiva- 
lent; x v p is completely symmetric relative to exchanging x and p ,  whereas x v x'p tells 
us that, when x is true, p has no effect whatsoever - not only on y, but also on any of the 
intermediate conditions that could potentially affect y .  It is this asymmetry that makes 
us proclaim x and not p to be the cause of death. 

According to Lewis, the difference between x and p lies in the nature of the chains 
that connect each of them to y. From x ,  there exists a causal chain x -+ d -+ y such 
that every element is counterfactually dependent on its antecedent. Such a chain does 
not exist from p to y because, when x is true, the chain p -, c -, y is preempted (at c); 

For simplicity, we drop the "A" symbol in the rest of this chapter 
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that is, c is "stuck" at false regardless of p. Put another way, although x does not satisfy 
the counterfactual test for causing y ,  one of its consequences (d) does; given that x and 
p are true, y would be false were it not for d. 

Lewis's chain criterion retains the connection between causation and counterfactuals, 
but it is rather ad hoc; after all, why should the existence of a counterfactual dependence 
chain be taken as a defining test for a concept as crucial as "actual cause," by which 
we decide the guilt or innocence of defendants in a court of law? The basic counterfac- 
tual criterion does embody a pragmatic rationale; we would not wish to punish a person 
for a damage that could not have been avoided, and we would like to encourage peo- 
ple to watch for circumstances where their actions could make a substantial difference. 
However, once the counterfactual dependence between the action and the consequence 
is destroyed by the presence of another cause, what good is it to insist on intermediate 
counterfactual dependencies along a chain that connects them? 

10.1.3 Overdetermination and Quasi-Dependence 

Another problem with Lewis's chain is its failure to capture cases of simultaneous dis- 
junctive causes. For example, consider the firing squad in Figure 9.1, and assume that 
riflemen A and B shot together and killed the prisoner. Our intuition regards each of the 
riflemen as a contributory actual cause of the death, though neither rifleman passes the 
counterfactual test and neither supports a counterfactual dependence chain in the pres- 
ence of the other. 

This example is representative of a condition called overdetemination, which presents 
a tough challenge to the counterfactual account. Lewis answered this challenge by offer- 
ing yet another repair of the counterfactual criterion. He proposed that chains of coun- 
terfactual dependence should be regarded as intrinsic to the process (e.g., the flight of the 
bullet from A to D) and that the disappearance of dependence due to peculiar surround- 
ings (e-g., the flight of the bullet from B to D) should not be considered an intrinsic loss 
of dependence; we should still count such a process as quasi-dependent "if only the sur- 
roundings were different " (Lewis 1986, p. 206). 

Hall (1998) observed that the notion of quasi-dependence raises difficult questions: 
"First, what exactly is a process? Second, what does it mean to say that one process is 
'just like' another process in its intrinsic character? Third, how exactly do we 'measure 
the variety of the surroundings'?" We will propose an answer to these questions using 
an object called a causal beam (Section 10.3.1), which can be regarded as a structural- 
semantic explication of the notion of a "process." We will return to chains and beams 
and to questions of preemption and overdetermination in Section 10.2, after a short ex- 
cursion into Mackie's approach, which also deals with the problem of actual causation - 
though from a different perspective. 

10.1.4 Mackie's INUS Condition 

The problems we encountered in the previous section are typical of many attempts by 
philosophers to give a satisfactory logical explication to the notion of single-event cau- 
sation (here, "actual causation"). These attempts seem to have started with Mill's obser- 
vation that no cause is truly sufficient or necessary for its effect (Mill 1843, p. 398). The 
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numerous accounts subsequently proposed - based on more elaborate combinations of 
sufficiency and necessity conditions - all suffer from insurmountable difficulties (Sosa 
and Tooley 1993, pp. 1-8). Mackie's treatment (1965) appears to be the earliest attempt 
to offer a semiformal explication of "actual causation" within this logical framework; his 
solution, known as the TNUS condition, became extremely popular. 

The INUS condition states that an event C is perceived to be the cause of event E 
if C is "an insuficient but necessary part of a condition which is itself unnecessary but 
suficient for the result" (Mackie 1965).~ Although attempts to give INUS precise formu- 
lation (including some by Mackie 1980) have not resulted in a coherent proposal (Sosa 
and Tooley 1993, pp. 1-8), the basic idea behind INUS is appealing: If we can think of 
(S1, S2, S3, . . . ) as a collection of every minimally sufficient set of conditions (for E), 
then event C is an INUS condition for E if it is a conjunct of some Si. Furthermore, C is 
considered a cause of E if C is an INUS condition for E and if, under the circumstances, 
C was sufficient for one of those Si.  Thus, for example, if E can be written in disjunctive 
normal form as 

then C is an INUS condition by virtue of being a member of a disjunct, CD, which is 
minimal and sufficient for E. Thus C would be considered a cause of E if D were present 
on the occasion in q~es t ion .~  

This basic intuition is shared by researchers from many disciplines. Legal scholars, for 
example, have advocated a relation called NESS (Wright 1988), standing for "necessary 
element of sufficient set," which is a rephrasing of Mackie's INUS condition in a simpler 
mnemonic. In epidemiology, Rothman (1976) proposed a similar criterion for recogniz- 
ing when an exposure is said to cause a disease: "We say that the exposure E causes 
disease if a sufficient cause that contains E is the first sufficient cause to be completed" 
(Rothman and Greenland 1998, p. 53). Hoover (1990, p. 218) related the INUS condition 
to causality in econometrics: "Any variable that causes another in Simon's sense may be 
regarded as an INUS condition for that other variable." 

However, the language of logical necessity and sufficiency is inadequate for expli- 
cating these intuitions (Kim 1971). Similar conclusions are implicit in the analysis of 
Cartwright (1989, pp. 25-34), who starts out enchanted with INUS's intuition and ends 
up having to correct INUS's mistakes. 

The basic limitation of the logical account stems from the lack of a syntactic dis- 
tinction between formulas that represent stable mechanisms (or "dispositional relations," 
to use Mackie's terminology) and those that represent circumstantial conditions. The 
simplest manifestation of this limitation can be seen in contraposition: "A implies B" 

The two negations and the two "buts" in this acronym make INUS one of the least helpful mnemon- 
ics in the philosophical literature. Simplified, it should read: "a necessary element in a sufficient 
set of conditions, NESS" (Wright 1988). 
Mackie (1965) also required that every disjunct of E that does not contain C as a conjunct be ab- 
sent, but this would render Mackie's definition identical to the counterfactual test of Lewis. I use a 
broader definition here to allow for simultaneous causes and overdetemination; see Mackie (1980, 
pp. 43-7). 
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is logically equivalent to "not B implies not A," yet this inversion is not supported by 
causal implications; from "disease causes a symptom" we cannot infer that eliminating a 
symptom will cause the disappearance of the disease. The failure of contraposition fur- 
ther entails problems with transduction (inference through common causes): if a disease 
D causes two symptoms, A and B, then curing symptom A would entail (in the logical 
account) the disappearance of symptom B. 

Another set of problems stems from syntax sensitivity. Suppose we apply Mackie's 
INUS condition to the firing squad story of Figure 9.1. If we write the conditions for the 
prisoner's death as: 

then A satisfies the INUS criterion and we can plausibly conclude that A was a cause of 
D. However, substituting A = C ,  which is explicit in our model, we obtain 

and suddenly A no longer appears as a conjunct in the expression for D. Shall we con- 
clude that A was not a cause of D? We can, of course, avoid this disappearance by 
forbidding substitutions and insisting that A remain in the disjunction together with B 
and C .  But then a worse problems ensues: in circumstances where the captain gives a sig- 
nal (C) and both riflemen fail to shoot, the prisoner will still be deemed dead. In short, 
the structural information conveying the flow of influences in the story cannot be encoded 
in standard logical syntax. 

Finally, let us consider the desert traveler example, where the traveler's death was 
expressed in (10.2) as 

y = x v x'p. 

This expression is not in minimal disjunctive normal form because it can be rewritten as 

y = x  v p ,  

from which one would obtain the counterintuitive result that x and p are equal partners in 
causing y. If, on the other hand, we permit nonrninimal expressions like y = x v x'p then 
we might as well permit the equivalent expression y = xp' v p ,  from which we would 
absurdly conclude that not poisoning the water (p') would be a cause for our traveler's 
misfortune, provided someone shoots the canteen (x). 

We return now to structural analysis, in which such syntactic problems do not arise. 
Dispositional information is conveyed through structural or counterfactual expressions 
(e.g., vi = f;(pai, u)) in which u is generic, whereas circumstantial information is con- 
veyed through propositional expressions (e.g., X(u) = x)) that refer to one specific world 
U = u. Structural models do not permit arbitrary transformations and substitutions, even 
when truth values are preserved. For example, substituting the expression for c in y = 
d v c would not be permitted if c (cyanide intake) is understood to be governed by a sep- 
arate mechanism, independent of that which governs y. 

Using structural analysis, we will now propose a formal setting that captures the intu- 
itions of Mackie and Lewis. Our analysis will be based on an aspect of causation called 
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sustenance, which combines elements of sufficiency and necessity and also takes struc- 
tural information into account. 

10.2 PRODUCTION, DEPENDENCE, AND SUSTENANCE 

The probabilistic concept of causal sufficiency, f S (Definition 9.2.2), suggests a way of 
rescuing the counterfactual account of causation. Consider again the symmetric over- 
determination in the firing-squad example. The shot of each rifleman features a PS value 
of unity (see (9.43)), because each shot would cause the prisoner's death in a state u' in 
which the prisoner is alive. This high PS value supports our intuition that each shot is an 
actual cause of death, despite a low PN value (PN = 0). Thus, it seems plausible to argue 
that our intuition gives some consideration to sufficiency, and that we could formulate an 
adequate criterion for actual causation using the right mixture of PN and PS components. 

Similar expectations are expressed in Hall (1998). In analyzing problems faced by 
the counterfactual approach, Hall made the observation that there are two concepts of 
causation, only one of which is captured by the counterfactual account, and that failure 
to capture the second concept may well explain its clashes with intuition. Hall calls the 
first concept "dependence" and the second "production." In the firing-squad example, 
intuition considers each shot to be an equal "producer" of death. In contrast, the counter- 
factual account tests for "dependence" only, and it fails because the state of the prisoner 
does not "depend" on either shot alone. 

The notions of dependence and production closely parallel those of necessity and suf- 
ficiency, respectively. Thus, our formulation of PS could well provide the formal basis 
for Hall's notion of production and serve as a step toward the formalization of actual 
causation. However, for this program to succeed, a basic hurdle must first be overcome: 
productive causation is oblivious to scenario-specific information (Pearl 1999), as can be 
seen from the following considerations. 

The dependence aspect of causation appeals to the necessity of a cause x in main- 
taining the effect y in the face of certain contingencies, which otherwise will negate y 
(Definition 9.2.1): 

Theproduction aspect, on the other hand, appeals to the capacity of a cause (x) to bring 
about the effect (y) in a situation (u') where both are absent (Definition 9.2.2): 

X(uf) = x', Y(uf) = y', Yx(uf) = y. 

Comparing these two definitions, we note a peculiar feature of production: To test 
production, we must step outside our world momentarily, imagine a new world u' with 
x and y absent, apply x ,  and see if y sets in. Therefore, the sentence "x produced y" 
can be true only in worlds u' where x and y are false, and thus it appears (a) that nothing 
could possibly explain (by consideration of production) any events that did materialize 
in the actual world and (b) that evidence gathered about the actual world u could not be 
brought to bear on the hypothetical world u' in which production is defined. 

To overcome this hurdle, we resort to an aspect of causation called sustenance, which 
enriches the notion of dependence with features of production while remaining in a world 
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enemy 1 into the actual cause of death, contrary to intuition and contrary to the actual 
scenario (which excludes cyanide intake). The notion of "causal beam" (Pearl 1998b) is 
devised to make the choice of W minimally disruptive to the actual ~cenar io .~ 

10.3 CAUSAL BEAMS AND SUSTENANCE-BASED CAUSATION 

10.3.1 Causal Beams: Definitions and Implications 

We start by considering a causal model M, as defined in Section 7.1, and selecting a sub- 
set S of sustaining parent variables for each family and each u.  Recall that the arguments 
of the functions ( f i )  in a causal model were assumed to be minimal in some sense, since 
we have pruned from each f i  all redundant arguments and retained only those called pa; 
that render f , (pa; ,  u )  nontrivial (Definition 7.1.1). However, in that definition we were 
concerned with nontriviality relative to all possible u;  further pruning is feasible when 
we are situated at a particular state U = u.  

To illustrate, consider the function f i  = ax1 + bux2. Here PA; = {XI,  X 2 ) ,  because 
there is always some value of u that would make f, sensitive to changes in either xl or 
x2. However, given that we are in a state for which u = 0, we can safely consider X2 to 
be a trivial argument, replace fi with f io = ax,, and consider XI as the only essential 
argument of f i t .  We shall call fiO the projection of f, on u = 0; more generally, we will 
consider the projection of the entire model M by replacing every function in { f i }  with its 
projection relative to a specific u and a specific value of its nonessential part. This leads 
to a new model, which we call causal beam. 

Definition 10.3.1 (Causal Beam) 
For model M = (U, V ,  { f i  }) and state U = u ,  a causal beam is a new model Mu = 
( u ,  V, {fi")) in which the set of functions fiu is constructed from { f i )  as follows. 

1. For each variable V ,  E V, partition PAi into two subsets, PAi = S U 3, where S 
(connoting "sustaining ") is any subset of PAi satisJjling6 

fi(S(u), S ,  u )  = f i (S(u),  s7, U )  for all 7. (10.6) 

In words, S is any set of PA suficient to entail the actual value of Vi ( u )  , regard- 
less of how we set the other members of P A i .  

2. For each variable Vi E V,  find a subset W of 3 for which there exists some re- 
alization W = w that renders the function f i  ( s  , 3, ( u )  , u )  nontrivial in s ; that 
is, 

f i (s t ,  S, ( u ) ,  U )  # Vi(u) for some s'. 

Halpern and Pearl (1999) permit the choice of any set W such that its complement, Z = V - W, is 
sustained by x; that is, Z,, (u) = Z(u) for all w. 
Pearl (1998b) required that S be minimal, but this restriction is unnecessary for our purposes (though 
all our examples will invoke minimally sufficient sets). As usual, we use lowercase letters (e.g., 
s, S) to denote specific realizations of the corresponding variables (e.g., S ,  5) and use S,(u) to de- 
note the realization of S under U = u and do(X = x). Of course, each parent set PAi, would have 
a distinct partition PAi = Si U q, but we drop the i index for clarity. 
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Here, 3 should not intersect the sustaining set of any other variable I$, j # i .  
(Likewise, setting W = w should not contradict any such setting elsewhere.) 

3. Replace fi(s, i, u )  by its projection f iu(s) ,  which is given by 

f iU(s)  = h ( s ,  S,(u), u). 

Thus the new parent set of & becomes PA; = S, and every f " function is responsive to 
its new parent set S. 

Definition 10.3.2 (Natural Beam) 
A causal beam Mu is said to be natural ifcondition 2 of Definition 10.3.1 is satis3ed with 
W = 0 for all V,  E V. 

In words, a natural beam is formed by "freezing" a11 variables outside the sustaining set 
at their actual values, S (u ) ,  thus yielding the projection f ,"(s)  = f; ( s ,  S(u) ,  u ) .  

Definition 10.3.3 (Actual Cause) 
We say that event X = x was an actual cause of Y = y in a state u (abbreviated "x 
caused y") ifand only ifthere exists a natural beam Mu such that 

and 

Y,I # y in Mu for some x' # x .  

Note that (10.8) is equivalent to 

which is implied by X(u)  = x and Y ( u )  = y. But (10.9) ensures that, after "freezing the 
trivial surroundings" represented by 3, Y = y would not be sustained by some value x' 
of X. 

Definition 10.3.4 (Contributory Cause) 
We say that x is a contributory cause of y in a state u i f  and only i f  there exists a causal 
beam, but no natural beam, that satisfies (10.8) and (10.9). 

In summary, the causal beam can be interpreted as a theory that provides a sufficient and 
nontrivial explanation for each actual event V, ( u )  = vi under a hypothetical freezing of 
some variables (3 )  by the do(.) operator. Using this new theory, we subject the event 
X = x to a counterfactual test and check whether Y would change if X were not x .  If 
a change occurs in Y when freezing takes place at the actual values of S (i-e., W = M), 
we say that "x was an actual cause of y." If changes occur only under a freeze state that 
is removed from the actual state (i.e., W # PI),  we say that "x  was a contributory cause 
of y." 

Remark: Although W was chosen to make Vi responsive to S ,  this does not guar- 
antee that S(u)  is necessary and sufficient for V,  ( u )  because local responsiveness 
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does not preclude the existence of another state s"  # S(u) for which ,fiL((s'') = 
Vi(u). Thus, (10.8) does not guarantee that x is both necessary and sufficient for 
y. That is the reason for the final counterfactual test in (10.9). It would be too re- 
strictive to require that w render f "  nontrivial for every s of S; such a W may 
not exist. If (10.8)-(10.9) are satisfied, then W = w represents some hypothetical 
modification of the world model under which x is both sufficient and necessary 
for y.  

Remarks on Multivariate Events: Although Definitions 10.3.3 and 10.3.4 apply 
to univariate as well as multivariate causes and effects, some refinements are in 
order when X and Y consist of sets of variables.' If the effect considered, E, is 
any Boolean function of a set Y = {Y1, . . . , Yk)  of variables, then (10.8) should 
apply to every member Yi of Y and (10.9) should be modified to read Y,I 
1 E  instead of Y,! # y. Additionally, if X consists of several variables then it is 
reasonable to demand that X be minimal - in other words, to demand that no sub- 
set of those variables passes the test of (10.8)-(10.9). This requirement strips X 
from irrelevant, overspecified details. For example, if drinking poison qualifies 
as the actual cause of Joe's death then, awkwardly, drinking poison and sneezing 
would also pass the test of (10.8)-(10.9) and qualify as the cause of Joe's death. 
Minimality removes "sneezing" from the causal event X = x. 

Incorporating Probabilities and Evidence 

Suppose that the state u is uncertain and that the uncertainty is characterized by the prob- 
ability P(u). If e is the evidence available in the case, then the probability that x caused 
y can be obtained by summing up the weight of evidence P(u I e) over all states u in 
which the assertion "x caused y" is true. 

Definition 10.3.5 (Probability of Actual Causation) 
Let U,, be the set of states in which the assertion "x is an actual cause of y" is true 
(Dejnition 10.3.2), and let U, be the set of states compatible with the evidence e. The 
probability that x caused y in light of evidence e ,  denoted P(caused(x, y I e)), is given 
by the expression 

P(caused(x, y 1 e)) = 
P(UX, n 

P(U,> 

10.3.2 Examples: From Disjunction to General Formulas 

Overdetermination and Contributory Causes 

Contributory causation is typified by cases where two actions concur to bring about an 
event yet either action, operating alone, would still have brought about the event. In such 
cases the model consists of just one mechanism, which connects the effect E to the two 

' These were formulated by Joseph Halpern in the context of the definition presented in Halpern and 
Pearl (1999). 
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actions through a simple disjunction: E = A,  v A2. There exists no natural beam to 
qualify either A, or A2 as an actual cause of E. If we fix either A,  or A2 at its current 
value (namely, true), then E will become a trivial function of the other action. However, 
if we deviate from the current state of affairs and set A2 to false (i.e., forming a beam 
with W = {A2) and setting W to false), then E would then become responsive to Al and 
so pass the counterfactual test of (10.9). 

This example illustrates the sense in which the beam criterion encapsulates Lewis's 
notion of quasi-dependence. Event E can be considered quasi-dependent on A,  if we 
agree to test such dependence in a hypothetical submodel created by the do(A2 = false) 
operator. In Section 10.2 we argued that such a hypothetical test - though it conflicts with 
the current scenario u - is implicitly written into the charter of every causal model. A 
causal beam may thus be considered a formal explication of Lewis's notion of a quasi- 
dependent process, and the combined sets W represent the "peculiar surroundings" of 
the process that (when properly modified) renders X = x necessary for Y = y. 

Disjunctive Normal Form 

Consider a single mechanism characterized by the Boolean function 

y = f (x,  z,  r, h,  t ,  u) = xz v rh v t ,  

where (for simplicity) the variables X, Z, R ,  H ,  T are assumed to be causally indepen- 
dent of each other (i.e., none is a descendant of another in the causal graph G ( M ) ) .  We 
next illustrate conditions under which x would qualify as a contributory or an actual cause 
for y. 

First, consider a state U = u where all variables are true: 

X(u) = Z(u) = R(u) = H(u) = T(u) = Y(u) = true. 

In this state, every disjunct represents a minimal set of sustaining variables. In particular, 
taking S = (X, Z) ,  we find that the projection f "(x, z) = f (x, z, R(u), H(u), T(u)) 
becomes trivially true. Thus, there is no natural beam Mu, and x could not be the actual 
cause of y. Feasible causal beams can be obtained by using w = {r', t'} or w = {h', t ' } ,  
where primes denote complementation. Each of these two choices yields the projection 
f "(x, z) = xz. Clearly, Mu meets the conditions of (10.8) and (10.9), thus certifying x 
as a contributory cause of y. 

Using the same argument, it is easy to see that, at a state u' for which 

X(u') = Z(ul) = true and R(ul) = T(u') = false, 

a natural beam exists; that is, a nontrivial projection f "'(x, z) = xz is realized by setting 
the redundant (S) variables R ,  H ,  and T to their actual values in u'. Hence, x qualifies 
as an actual cause of y. 

This example illustrates how Mackie's intuition for the INUS condition can be expli- 
cated in the structural framework. It also illustrates the precise roles played by structural 
(or "dispositional") knowledge (e.g., f , ( p a i ,  u)) and circumstantial knowledge (X(u) = 
true), which were not clearly distinguished by the strictly logical account. 
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The next example illustrates how the INUS condition generalizes to arbitrary Boolean 
functions, especially those having several minimal disjunctive normal forms. 

Single Mechanism in General Boolean Fonn 

Consider the function 

y = f (x, Z ,  h, U) = X Z '  v X'Z v xhf, 

which has the equivalent form 

Y = f (x, Z, h ,  U) = XZ' v xfz v zh'. 

Assume, as before, that (a) we consider a state u in which X, 2, and H are true and 
(b) we inquire as to whether the event x : X = true caused the event y : Y = false. In 
this state, the only sustaining set is S = { X ,  2 ,  R),  because no choice of two variables 
(valued at this u )  would entail Y = false regardless of the third. Since S is empty, the 
choice of beam is unique: Mu = M, for which y = f "(x, z, h) = xz' v x'z v xh'. This 
Mu passes the counterfactual test of (10.9), because f "(xf, z, h) = true; we therefore 
conclude that x was an actual cause of y.  Similarly, we can see that the event H = true 
was an actual cause of Y = false. This follows directly from the counterfactual test 

Yh(u) = false and Yh'(u) = true. 

Because Definitions 10.3.3 and 10.3.4 rest on semantical considerations, identical 
conclusions would be obtained from any logically equivalent form of f (not necessarily 
in minimal disjunctive form) - as long as f represents a single mechanism. In sim- 
ple, single-mechanism models, the beam criterion can therefore be considered the se- 
mantical basis behind the INUS intuition. The structure-sensitive aspects of the beam 
criterion will surface in the next two examples, where models of several layers are 
considered. 

10.3.3 Beams, Preemption, and the Probability of Single-Event Causation 

In this section we apply the beam criterion to a probabilistic version of the desert trav- 
eler example. This will illustrate (i) how structural information is utilized in problems 
involving preemption and (ii) how we can compute the probability that one event "was 
the actual cause of another," given a set of observations. 

Consider a modfication of the desert traveler example in which we do not know 
whether the traveler managed to drink any of the poisoned water before the canteen was 
emptied. To model this uncertainty, we add a bivalued variable U that indicates whether 
poison was drunk (u = 0) or not (u = 1). Since U affects both D and C ,  we obtain the 
structure shown in Figure 10.3. To complete the specification of the model, we need to 
assign functions f i ( p a i ,  u )  to the families in the diagram and a probability distribution 
P(u). To formally complete the model, we introduce the dummy background variables 
Ux and Up, which represent the factors behind the enemies' actions. 
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YX time to "P 
first drink 

Enemy-2 X= 1 P= 1 Enemy-1 
shoots canteen poisons water 

dehydration D C cyanide intake 

Y death 

Figure 10.3 Causal relationships for the probabilistic desert traveler. 

The usual understanding of the story yields the following functional relationships: 

together with the evidential information 

(We assume that T will not survive with an empty canteen ( x )  even after drinking un- 
poisoned water before the shot (p'u').) 

In order to construct the causal beam Mu, we examine each of the three functions and 
form their respective projections on u. For example, for u = I we obtain the functions 
shown in (10.1), for which the (minimal) sustaining parent sets are: X (for C), X (for 
D ) ,  and D (for Y). The projected functions become 

and the beam model Mu=l is natural; its structure is depicted in Figure 10.4. To test 
whether x (or p) was the cause of y ,  we apply (10.8)-(20.9) and obtain 

Y, = I and Y,J = 0 in Mu,,, 

Y, = I and Y,,! = 1 in Mu=,. 

Thus, enemy 2 shooting at the container (x) is classified as the actual cause of T's death 
( y ), whereas enemy 1 poisoning the water ( p) was not the actual cause of y .  

Next, consider the state u = 0, which denotes the event that our traveler reached for 
a drink before enemy 2 shot at the canteen. The graph corresponding to is shown 
in Figure 10.5 and gives 
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Figure 10.4 Natural causal beam representing the state u = 1. 

Figure 10.5 Natural causal beam representing the state u = 0. 

Y, = 1 and Y,t = 1 in Mu=o, 

Y, = 1 and Y,, = 0 in Mu=o. 

Thus, in this state of affairs we classify enemy 1's action to be the actual cause of T's 
death, while enemy 2's action is not considered the cause of death. 

If we do not know which state prevailed, u = 1 or u = 0, then we must settle for the 
probability that x caused y. Likewise, if we observe some evidence e reflecting on the 
probability P(u), such evidence would yield (see (10.1 1)) 

P(caused(x, y I e)) = P(u = 1 I e) 

and 

P(caused(p, y I e)) = P(u = 0 I e). 

For example, a forensic report confirming "no cyanide in the body" would rule out state 
u = 0 in favor of u = 1, and the probability of x  being the cause of y becomes 100%. 
More elaborate probabilistic models are analyzed in Pearl (1999). 

10.3.4 Path-Switching Causation 

Example 10.3.6 Let x be the state of a two-position switch. In position 1 ( x  = 1)' 
the switch turns on a lamp (z = I), and turns off a flashlight (w = 0). In position 0 
( x  = O), the switch turns on the flashlight (w = 1) and turns off the lamp ( z  = 0). 
Let Y = 1 be the proposition that the room is lighted. 

The causal beams Mu and Mu? associated with the states in which the switch is in posi- 
tion 1 and 2 (respectively) are shown in the graphs of Figure 10.6. Once again, Mu entails 
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Figure 10.6 Natural beams that represent 
path switching in Example 10.3.6. 

y= 1 

Y, = 1 and Y,, = 0. Likewise Mu! entails Y, = 1 and Y,J = 0. Thus "switch in posi- 
tion 1" and "switch in position 2" are both considered actual causes for "room is lighted," 
although neither is a necessary cause. 

This example further highlights the subtlety of the notion of "actual cause"; chang- 
ing X from 1 to 0 merely changes the course of the causal pathway while keeping its 
source and destination the same. Should the current switch position (X = 1) be consid- 
ered the actual cause of (or an "explanation of ") the light in the room? Although X = 
1 enables the passage of electric current through the lamp and is in fact the only mecha- 
nism currently sustaining light, one may argue that it does not deserve the title "cause" 
in ordinary conversation. It would be odd to say, for instance, that X = 1 was the cause 
of spoiling an attempted burglary. However, recalling that causal explanations earn their 
value in the abnormal circumstances created by structural contingencies, the possibility 
of a malfunctioning flashlight should enter our mind whenever we designate it as a sep- 
arate mechanism in the model. Keeping this contingency in mind, it should not be too 
odd to name the switch position as a cause of spoiling the burglary. 

10.3.5 Temporal Preemption 
Consider the example mentioned in the preface of this chapter, in which two fires are ad- 
vancing toward a house. If fire A burned the house before fire B then we would consider 
fire A "the actual cause" for the damage, even though fire B would have done the same 
were it not for A .  If we simply write the structural model as 

where H stands for "house burns down," then the beam method would classify each fire 
as an equally contributory cause, which is counterintuitive - fire B is not regarded as 
having made any contribution to H. 

This example is similar to yet differs from the desert traveler; here, the way in which 
one cause preempts the other is more subtle in that the second cause becomes ineffective 
only because the effect has already happened. Hall (1998) regards this sort of preemp- 
tion as equivalent to ordinary preemption, and he models it by a causal diagram in which 
H, once activated, inhibits its own parents. Such inhibitory feedback loops lead to irre- 
versible behavior, contrary to the unique-solution assumption of Definition 7.1.1. 

A more direct way of expressing the fact that a house, once burned, will remain 
burned even when the causes of fire disappear is to resort to dynamic causal models (as 
in Figure 3.3), in which variables are tirne-indexed. Indeed, it is impossible to capture 
temporal relationships such as "arriving first" by using the static causal models defined 
in Section 7.1; instead, dynamic models must be invoked. 
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(a) !b) 

Figure 10.7 (a) Causal diagram associated with the dynamic model of (10.17). (b) Causal beam as- 
sociated with starting fire A and fire B at different times, showing no connection between fire B and 
the state of the house at x = x * .  

Let the state of the fire V(x, t )  at location x and time t take on three values: g (for 
green), f (for on fire), and b (for burned). The dynamic structural equations characteriz- 
ing the propagation of fire can then be written (in simplified form) as: 

( f if V(x, t - 1) = g and V(x - 1, t - 1) = f,  

( g otherwise. 

The causal diagram associated with this model is illustrated in Figure 10.7(a), des- 
ignating three parents for each variable V(x, t): the previous state V(x + 1, t - I) of 
its northern neighbor, the previous state V(x - 1, t - 1) of its southern neighbor, and 
the previous state V(x, t - 1) at location x .  The scenario emanating from starting fire A 
and fire B one time unit apart (corresponding to actions do(V(x* + 2, t* - 2) = f )  and 
do(V(x* - 2, t* - 1) = f ) )  is shown in Figure 10.7(b). Black and grey bullets repre- 
sent, respectively, space-time regions in states f (on fire) and b (burned). This beam is 
both natural and unique, as can be seen from (10.17). The arrows in Figure 10.7(b) rep- 
resent a natural beam constructed from the (unique) minimally sufficient sets S at each 
family. The state of the parent set S that this beam assigns to each variable constitutes an 
event that is both necessary and sufficient for the actual state of that variable (assuming 
variables in 3 are frozen at their actual values). 

Applying the test of (10.9) to this beam, we find that a counterfactual dependence 
exists between the event V(x* - 2, t* - 2) = f (representing the start of fire A)  and 
the sequence V(x*, t ) ,  t > t* (representing the state of the house through time). No 
such dependence exists for fire B. On that basis, we classify fire A as the actual cause 
of the house fire. Remarkably, the common intuition of attributing causation to an event 
that hastens the occurrence of the effect is seen to be a corollary of the beam test in the 
spatiotemporal representation of the story. However, this intuition cannot serve as the 
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defining principle for actual causation, as suggested by Paul (1998). In our story, for ex- 
ample, each fire alone did not hasten (or delay, or change any property of) the following 
event: E = the owner of the house did not enjoy breakfast the next day. Yet we still 
consider fire A, not B, to be the actual cause of E, as predicted by the beam criterion. 

The conceptual basis of this criterion can be illuminated by examining the construc- 
tion of the minimal beam shown in Figure 10.7(b). The pivotal step in this construction 
lies in the space-time region (x*, t*), which represents the house at the arrival of fire. 
The variable representing the state of the house at that time, V(x*, t*), has a two-parent 
sustaining set, S = {V(x* + 1, t* - 1) and V(x*, t* - I)), with values f and g ,  respec- 
tively. Using (10.17), we see that the south parent V(x* - 1, t* - 1) is redundant, because 
the value of V(x*, t*)  is determined (at f )  by the current values of the other two parents. 
Hence, this parent can be excluded from the beam, rendering V(x*, t*) dependent on 
fire A. Moreover, since the value of the south parent is g ,  that parent cannot be part of 
any minimally sustaining set, thus ensuring that V(x*, t*)  is independent of fire B. (We 
could, of course, add this parent to S ,  but V(x*, t*) would remain independent of fire B.) 
The next variable to examine is V(x*, t* + I), with parents V(x* - 1, t*), V ( x * ,  t*), and 
V(x* - 1, t*) valued at b, f,  and f ,  respectively. From (10.17), the value f of the middle 
parent is sufficient to ensure the value b for the child variable; hence this parent qualifies 
as a singleton sustaining set, S = {V(x*, t*)), which permits us to exclude the other two 
parents from the beam and so render the child dependent on fire A (through S) but not 
on fire B. The north and south parents are not, in themselves, sufficient for sustaining 
the current value (b )  of the child node (fires at neighboring regions can cause the house 
to catch fire but not to become immediately "burned"); hence we must keep the mid- 
dle parent in S and, in so doing, we render all variables V(x*, t), t > t*, independent of 
fire B. 

We see that sustenance considerations lead to the intuitive results through two crucial 
steps: (1) permitting the exclusion (from the beam) of the south parent of every variable 
V(x*, t ) ,  t > t*, thus maintaining the dependence of V(x*, t) on fire A; and (2) requiring 
the inclusion (in any beam) of the middle parent of every variable V(x*, t ) ,  t > t*, thus 
preventing the dependence of V(x*, t) on fire B. Step (1) corresponds to selecting the 
intrinsic process from cause to effect and then suppressing the influence of its nonintrin- 
sic surrounding. Step (2) prevents the growth of causal processes beyond their intrinsic 
boundaries. 

10.4 CONCLUSIONS 

We have seen that the property of sustenance (Definition 10.2.1), as embodied in the 
beam test (Definition 10.3.3), is the key to explicating the notion of actual causation (or 
"cause in fact," in legal terminology); this property should replace the "but for" test in 
cases involving multistage scenarios with several potential causes. Sustenance captures 
the capacity of the putative cause to maintain the value of the effect in the face of struc- 
tural contingencies and includes the counterfactual test of necessity as a special case, 
with structural contingencies suppressed (i.e., W = 0). We have argued that (a) it is 
the structural rather than circumstantial contingencies that convey the true meaning of 
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causal claims and (b) these structural contingencies should therefore serve as the basis 
for causal explanation. We further demonstrated how explanations based on such contin- 
gencies resolve difficulties that have plagued the counterfactual account of single-event 
causation - primarily difficulties associated with preemption, overdetermination, tempo- 
ral preemption, and switching causation. 

Sustenance, however, does not totally replace production, the second component of 
sufficiency - that is, the capacity of the putative cause to produce the effect in situations 
where the effect is absent. In the match-oxygen example (see Section 9 . 9 ,  for instance, 
oxygen and a lit match each satisfy the sustenance test of Definition 10.3.3 (with W = 0 
and 3 = (d); hence, each factor would qualify as an actual cause of the observed fire. 
What makes oxygen an awkward explanation in this case is not its ineptness at sustaining 
fire against contingencies (the contingency set W is empty) but rather its inability to pro- 
duce fire in the most common circumstance that we encounter, U = u', in which a match 
is not struck (and a fire does not break out). 

This argument still does not tell us why we should consider such hypothetical cir- 
cumstances (U = u') in the match-oxygen story and not, say, in any of the examples 
considered in this chapter, where sustenance ruled triumphantly. With all due respect to 
the regularity and commonality of worlds U = u' in which a match is not struck, those 
are nevertheless contrary-to-fact worlds, since a fire did break out. Why, then, should 
one travel to such a would-be world when issuing an explanation for events (fire) in the 
actual world? 

The answer, I believe, lies in the pragmatics of the explanation sought. The tacit tar- 
get of explanation in the match-oxygen story is the question: "How could the fire have 
been prevented?" In view of this target, we have no choice but abandon the actual world 
(in which fire broke out) and travel to one (U = u') in which agents are still capable of 
preventing this fire.8 

A different pragmatics motivates the causal explanation in the switch-light story of 
Example 10.3.6. Here one might be more concerned with keeping the room lit, and the 
target question is: "How can we ensure that the room remains lit in the face of unfore- 
seen contingencies?" Given this target, we might as well remain in the comfort of our 
factual world, U = u, and apply the criterion of sustenance rather than production. 

It appears that pragmatic issues surrounding our quest for explanation are the key to 
deciding which facet of causation should be used, and that the mathematical formulation 
of this pragmatics is a key step toward the automatic generation of adequate explanations. 
Unfortunately, I must now leave this task for future investigation. 
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EPILOGUE 

The Art and Science of Cause and Effect 

A public lecture delivered November 1996 as part of 
the UCLA Faculty Research Lectureship Program 

The topic of this lecture is causality - namely, our awareness of what causes what in the 
world and why it matters. 

Though it is basic to human thought, causality is a notion shrouded in mystery, con- 
troversy, and caution, because scientists and philosophers have had difficulties defining 
when one event truly causes another. 

We all understand that the rooster's crow does not cause the sun to rise, but even this 
simple fact cannot easily be translated into a mathematical equation. 

Today, I would like to share with you a set of ideas which I have found very useful 
in studying phenomena of this kind. These ideas have led to practical tools that I hope 
you will find useful on your next encounter with a cause and effect. 

It is hard to imagine anyone here who is not dealing with cause and effect. 

Whether you are evaluating the impact of bilin- 
gual education programs or running an experiment 
on how mice distinguish food from danger or spec- 
ulating about why Julius Caesar crossed the Rubi- 
con or diagnosing a patient or predicting who will 
win the presidential election, you are dealing with 
a tangled web of cause-effect considerations. 

The story that I am about to tell is aimed at 7 
helping researchers deal with the complexities of 
such considerations, and to clarify their meaning. 

This lecture is divided into three parts. 

I begin with a brief historical sketch of the 
difficulties that various disciplines have had with , 
causation. I 

Next I outline the ideas that reduce or elimi- 
nate several of these historical difficulties. 
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Finally, in honor of my engineering back- 
ground, I will show how these ideas lead to sim- 
ple practical tools, which will be demonstrated in 
the areas of statistics and social science. 

In the beginning, as far as we can tell, causd- 
ity was not problematic. 

The urge to ask why and the capacity to find 
causal explanations came very early in human 
development. 

The bible, for example, tells us that just a few 
hours after tasting from the tree of knowledge, 
Adam is already an expert in causal arguments. 

When God asks: "Did you eat from that tree?' 

This is what Adam replies: "The woman whom 
you gave to be with me, She handed me the fruit 
from the tree; and 1 ate." 

Eve is just as skillful: "The serpent deceived me, and I ate." 

The thing to notice about this story is that God did not ask for explanation, only for 
the facts - it was Adam who felt the need to explain. The message is clear: causal ex- 
planation is a man-made concept. 

Another interesting point about the story: explanations are used exclusively for pass- 
ing responsibilities, 

Indeed, for thousands of years explanations had no other function. Therefore, only 
Gods, people, and animals could cause things to happen, not objects, events, or physical 
processes. 

Natural events entered into causal explarrations much later because, in the ancient 
world, events were simply predeterntined. 

Storms and earthquakes were controlled by the 
angry gods [slide 21 and could not in themselves 
assume causal responsibility for the consequences. 

Even an erratic and unpredictable event such 
as the role of a die [?I was not considered a chance 
event but rather a divine message demanding 
proper interpretation. 

One such message gave the prophet Jonah the 
scare of his life when he was identified as God's 
renegade and was thrown overboard [4]. 

Quoting from the book of Jonah: "And the 
sailors said: 'Come and let us cast lots to find out 
who is to blame for this ordeal.' So they cast lots 
and the lot fell on Jonah." 
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Obviously, on this luxury Phoe- 
nician cruiser, "casting lots" was 
used not for recreation but for 
communication - a one-way mo- 
dem for processing messages of vi- 
tal importance. . -- =--A 

--&%-- 
-.s n In s m q ,  the agents of - fi, . . / & -  - 

causal forces in the ancient world - - - 9 
were either deities, who cause 
things to happen for a purpose, or human beings and animals, who possess free will, for 
which they are punished and rewarded. 

This nation of causaticm was naive, but clear and unproblematie. 

The problems began, as usual, with engineerin 
stmcted to do useful jobs [5] .  

As engineers grew ambitious, they decided that 
the earth, too, can be moved fiif, but not with a sin- 
gle lever. 

Systems consisting of many pulleys and 
wheels [7], one driving another, were needed for 
projects of such magnitude. 

And, once people started building multistage 
systems, an interesting thing happened to causa2- 
ity - physical objects begw acquiring caxwi 
character. 

When a system like that hoke down, it was 
futile to blame God or the operatar - instad, a 
broken rope or a rusty pulley were more useful 
explanations, simply because these could be replace 

At that point in history, Gods and humans ce 
forces - lifeless objects and processes became partn 

A wheel turned and stopped because the wheel p 
human operator became secondary. 

Not surprisingly, these new agents of causation 
of their predecessors - Gods and humans. 

Natural objects beeame not only 
carriers of credit and blame but aTso 1 
carriers of force, will, and even 
purpose. 

Aristotle regarded explanation 
in terms of a purpose to be the only 
complete and satisfactory expla- 
nation for why a thing is what it is. 
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380 MP He even called it aJinal cause - namely, the final 
arr?pra*dor6&4 
-mbrn--- aim of scientific inquiry. 
mnhiiCnasrra~rn 
*Smarn~nr&'U*a 

A w+*r5*prt1=+- From that point on, causality served a dual role: 
-r'tysk*g= 
4 - burp w causes were the targets of credit and blame on one 

B 
mmrS@~Harr *xa  
--+n-~-- hand and the carriers of physical flow of control 
n o a r w W f o h r a -  
m*'r*m*rr'A-* on the other. 
a r r ~ n * % - ~ t a ~ l r  
mpnnnlaanhrnvrnom 
n r v d o ~ & v n h ~ n n v k  
o r i o m h h r r b ~ m * ,  

This duality survived in relative tranquility [8] 
w'll*1=m=+-v until about the time of the Renaissance, when it 
Mf600wrnlm~ 

encountered conceptual difficulties. 
PY .rmnyn4$ .naCdo 8s 
o*.k*rlwrnr=nlralr 
rnrnW-~mrr '*~  
rnrwn*~~krmn What happened can be seen on the title page 

- p m w v  
P ~ ' = - = F Q D ~  [9] of Recordes's book "The Castle of Knowl- 
?minu h u n h  
~ * I * ~ n w ~ ~ +  edge,"the fkst science book in English, published 
~ & M r n > * a n  *A 
I mdspnrmrr in 1575. 
'SmmPnar,Im 
,,-o-mrYC% 
-590~a000ooo00oo0 The wheel of fortune is turned, not by the wis- 
rY%+wwDkm+&f=4 

h -."~WJ.FWIW dom of God, but by the ignorance of man. 
a;m)r*mr)n&dmn 
.&e&rma**rrStp*n 
s p p ~ * r r ~ . r ~ ~ r u ~ a ~ r  And, as God's role as the final cause was taken 
n h n p r u m e ~ o k  
wn 0.r- let- over by human knowledge, the whole notion of 
mk rnnn~Vwr**  nerpaa 
p.hnnp- +-- causal explanation came under attack. 

The erosion started with tfie work of GaEileo 1101. 

Most of us know Galileo as the man who was brought before by the inquisition and 
imprisoaed [ 111 for defending the heliocentric theory of the world. 

But while all that was going on, Gafileo also managed to quietly engineer the most 
profound revolution that science has ever known. 

This revolution, expounded in his 1638 book 
"Discorsi'" [12], published in Leyden, far from 
Rome, consisl of two maxims: 

One, description first, explanation second - 
that is, the "how" precedes the "why"; and 

Two, description is carried out in the language 
of mathematics; namely, equations. 

Ask not, said Galileo, whether an object falls 
because it is pulled from below or pushed from 
above. 

Ask how well you can predict the time it takes 
for the object to travel a certain distance, and how 
&at time; will vary from object to object and as the 
angle of the traek changes. 

Moreover, said Galileo, do not attempt to an- 
swer such questions in the qualitative and slippery 

j nuances of human language; say it in the form of 
2 mthematical equations [13]. 
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It is hard for us to appreciate today how strange 
that idea sounded in 1638, barely 50 years after 
the introduction of algebraic notation by Vieta. To 
~roclaim algebra the universal language of science 
i Y - - 
would sound today like proclaiming Esperanto the 
language of economics. 

Why would Nature agree to speak algebra? Of 
all languages? 

But you can't argue with success. 

The distance traveled by an object turned out 
indeed to be proportional to the square of the time. 

Even more successful than predicting out- 
comes of experiments were the computationa1 as- 
pects of algebraic equations, 

They enabled engineers, for the first time in 
history, to ask "bow to" questions in additio~ll to 
"what if" questions. 

In addition to asking: "What if we narrow the 
beam, will it carry the load?", they began to ask 
more difficult questions: "How to shape the beam so that it will carry the load?' [14] 

This was made possible by the availability of methods for solving equations. 

The algebraic machinery does not discriminate among variables; instead of predicting 
behavior in tenns of parameters, we can turn things around and solve for the parameters 
in terms of the desired behavior. 

Let us concentrate now on Galilee's first 
maxim - "description first, explanation second" - 
because that idea was taken very seriously by the 
scientists and changed the character of science 
from speculative to empirical. 

Physics became flooded with empirical laws 
that were extremely useful. 

Snell's law f15], Hooke's law, Ohm's law, and 
Joule's law are examples of purely empirical gen- 
eralizations that were discovered and us& much 
before they were expllstined by more fundamental 
principles. 

Philosophers, however, were reluctant to give 
up the idea of causd explanation and continued to 
search for the origin and justification of those suc- 
cessful Galilean equations. 

For example, Descartes ascribed cause to eter- 
nal truth. 
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Finally, about one hundred years after Galileo, 
a Scottish philosopher by the name of David Hume 
f163 carried Galileo's first maxim to an extreme 
t171. 

Hwne argued convincingly that the why is not 
merely second to the how, but that the why is to- 
tally superfluous as it is subsumed by the how. 

On page 156 of Hurne's "Treatise of Human 
Nature" [I$], we find the paragraph that shook up 
causation so thoroughly that it has not recovered 
to this day. 

I always get a kick reading it: "Thus we re- 
member to have seen that species of object we call 
&me, and to have felt that species of sensation we 
call heat. We likewise call to mind their constant 
conjunction in all past instances. Without any far- 
ther ceremony, we call the one cause and the other 

e$ect, and infer the: existence of the one from that of the other.'' 

Thus, causal connections according to Hume are the product of observations. Cau- 
sation is a learnable habit of the mind, almost as fictional as optical illusions and as 
transitory as Pavlov's conditioning. 

It is hard to believe that Hume was not aware 
D I S C O R S I  of the difficulties inherent in his proposed recipe. 

He knew quite well that the rooster crow stands 
in constant conjunction to the sunrise, yet it does 
not cawe the sun to rise. 

He knew that the barometer reading stands in 
constant conjunction to the rain but does not cause 
the rain. 

Today these difficulties fall under the rubric of 
spurious correlations, namely 'korrelations that 
do not imply causation." 

N w ,  taking Hume's dictum that all knowl- 
edge corns from experience encoded in the mind 
as correlation, and our observation that correlation 
does not imply causation, we are led into our first 
riddle of causation: How do people ever acquire 
knowledge of cumtlbia? 

We saw in the rooster example that regular- 
ity uf succession is not sufficient; what wouM be 
sufficient? 
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What patterns of experience would justify call- 
ing a connection "causal"? 

Moreover: What patterns of experience con- 
vince people that a connection is "causal"? 

If the first riddle concerns the learning of 
causal connection, the second concerns its usage: 
What diflerence does it make if I told you that a 
certain connection is or is not causal? 

Continuing our example? what difference does I 
it make if 1 told you that the rooster does cause the 
sun to rise? 

This may sound trivial. 

The obvious answer is that knowing "what 
causes what" makes a big difference in how we act. 

If the rooster's crow causes the sun to rise, 
we could make the night shorter by waking up 
our rooster earlier and making frh crow - say, by 
telling him the latest rooster joke. 

But this riddle is not as trivial as it seems. 

If causal information has an empirical meaning beyond regularity of succession, then 
that information should show up in the laws of physics. 

But it does not! 

The philosopher Bertrand Russell made this argument [I91 in 1913: 

"All philosophers," says Russell, "imagine that causca.tion is one af the fundamental 
axioms of science, yet oddly enough, in advanced 
sciences, the word 'cause' never occurs.. . . The 
law of causality, I believe, is a relic of bygone age, 
surviving, like the monarchy, only h a u s e  it is er- 
roneously supposed to do no harm." 

Another philosopher, Patrick Suppes, who ar- 
gued for the importance of causality, noted that: 

"There is scarcely an issue of 'Physical Re- 
view' that does not contain at. least one article us- 
ing either 'cause' or 'causatity' in its title." 

What we conclude from this exchange is that 
physicists talk, write, and think ane way and for- 
mulate physics in another. $Tqp 

$ j  
Such bilingual activity would be forgiven if 

causality was used merely as a convenient commu- J 
nication device - a shorthand for expressing com- b 

g 
plex patterns of physical xelationslGps that would $. g! 
otherwise take many equations to write. 
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After all! Science is full of 
abbreviations: We use "multiply x 
by 5" instead of "add x to itself 5 
times"; we say "density" instead of 
"the ratio of weight to volume." 

Why pick on causality? 

"Because causality is differ- 
ent ," Lord Russell would argue, "It 
could not possibly be an abbmvi- 
ation, because the laws of physics 
are all symmetrical, going both 
ways, while causal relations are 
unidirectional, going from cause to 
effect ." 

write this law in a wild variety of syntactic forms, 
e knw any two of the three quantities, the third is 

dete 

Yet, in ordinary discourse we &y that force causes acceleration - not that accelera- 
tion causes force, and we feel very strongly about this distinction. 

Likewise, we say that the ratio flu helps us 
determifie the mass, not that it causes the mass. 

Such distinctions are not supported by the 
equations of physics, and this leads us to ask 
whether the whole causal vocabulary is purely 
metaphysical, "surviving, like the monarchy . . . ". 

Fortunately, very few physicists paid atten- 
tion to Russell's enigma. They continued to write 
equations in the office and talk cause-effect in the 
c~feteria; with astonishing success they smashed 
the atom, invented the transistor and the laser* 

The same is true for engineering. 

But in another arena the tension could not go 
1 unnoticed, because in that arena the demand for 

distinguishing causal from other relationships was 
very explicit. 

This arena is statistics, 

The story begins with the discovery of corre- 
lation, about one hundred years ago. 
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Francis Galton [20J, inventor of fingerprinting 
and cousin of Charles Darwin, quite understand- 
ably set out to prove that talent and virtue run in 
families. 

Galton's investigations drove him to consider 
various ways of measuring how properties of one 
class of individuals or objects are related to those 
of another class. 

In 1888, he measured the length of a person's 
foream and the size of that person's head and 
asked to what d e e e  can one of these quantities 
predict the other (213. 

He stumbled upon the following ery: ff 
you plot one quantity against the other and scale 
the two axes properly, then the slope of the best-fit 
line has some nice mathematical properties. The 
slope is 1 only when one quantity can predict the 
other precisely; it is zero whenever the prediction 
is no better than a random guess, and, most re- 
markably, the slope is the same no matter if you 
plot X against Y or Y against X. 

"It is easy to see," said Galton, "that co-relat 
variations of the two organs being partly due to co 

Here we have, for the first time, an objective 
measure of how two variables are "related" to each 
other, based strictly on the data, clear of human 
judgment or opinion. 

Galton's discovery dazzled one of his disci- 
ples, Karl Pearson [22], now considered to be one 
of the founders of modern statistics. 

Pearson was 30 years old at the time, an ac- 
complished physicist and philosopher about to turn 
lawyer, and this is how he describes, 45 years later 
[23], his initial reaction to Gdtoa'a discovery: 

"I felt like a buccaneer of Drake's days . . . . 
"I interpreted . . . Galton to mean that there was 

a category broader than causation, namely corre- 
lation, of which causation was only the limit, and 
that this new conception of correlation brought 
psychology, anthropology, medicine, and sociol- 
ogy in large parts into the field of mathematical 
treatment ." 

ion must the 
mmon cau 



Now, Pearson has been de- 
PURGING CAUSALITY FROM PHYSICS? ,&'..bed a a man "With the kind of 

BERTRAND RUSSELL (1913): drive and determination that took 
In advanced sebi-ices the word "cause" 
never occurs. Causality is a relic of 
bygone ago. 

PATRICK SUPPES (I 970): 
''Causaliff' is commonly used by 
physicists " 

The symmetry enigma: f " a 
m. a a f / m  

Nannibal over the Alps and Mwco 
Polo to China.'' 

When Pearson felt like a buc- 
caneer, you can be sure he gets his 
bounty. 

The year 1911 saw the publica- 
tion of the third edition of his book 
"The Ckammar of Science." It con- 
tained a new chapter titled "Contin- 
gency and Correiation - The Insuf- 
ficiency of Causation," and this is 
what Pearson says in that chapter: 

"Beyond such discarded fu'undamentds as 'matter' and 'force' lies still another fetish 
amidst the &mM1e mcma of modem science, namely, the category of cause and 
effect ." 

And what does Pearson substitute for the archaic category of cause and effect? You 
wouldn't believe your em:  coradiiager~cy fables [24]. 

"Such a table. is termed a contingency table, and the ultimate scientific statement of 
descrigtIian of fk relation btwec;sn two things can always be thrown back upon such a 
contingency table.. . . 

"Once the reader resrJkzes the nature af such a table, he will have grasped the essence 
of the conception of association between cause and effect." - 

Thus, Pearson categorblly denies the need for an independent concept of causal 
relation beyand comelation, 

He held this view throughout his life and, ac- 
cordingly, did not mention causation in any of his 
technical papers. 

His crusade against animistic concepts such as 
"will" and "force" was so fierce and his rejection 
of determinism so absolute that he exfermirtated 
causation from statistics before it had a chance to 
take root. 

/ It took another 25 years and another strong- 
willed person, Sir Ronald Fishet [25], for statis- 

: ticians to furnulate the randomized experiment - 
the only scientifically proven method of testing 
causal relations h m  data, and to this day, the one 
and only cgusal concept permitted in mainstream 

= statistics. 
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And that i s  roughly where things stand today, 

If we count the number of doctom1 theses, re- 
search papers, or textbooks pages witten on causa- 
tion, we. get the impression ..that Pems~n still.ruIes 
statistics. 

The "Encyclopedia- of Statistical Science" de- 
votes twelve pages. to correlation but. only. two 
pages to causation - and spends one of those pages 
demonstrating that "corr61;ltion does not imply 
causation." 

Let us hear what modern statisticians say about 
causality. 

Phil-ip Dawid, the cunent editor of "Biomet- 
xika" (the journal founded by Pegson), admits: 
"Causal inference is one of the "q~ost important, 
most subtle, &d most neglected of all the prob- 
lems of statistics."' 

T e ~ y  Speed, former president of .the Biomet- 
ric Society (whom you might remember as an ex- 
pert witness at the Q. J. Simpson murder trial), 
declares: "Considerations of causality should be 
treated as they have always been treated in statis- 
tics: preferably not at all but, if necessary, then 
with very great care." 

Sir David Cox and Nanny Wermuth, in a book published just a few months ago, 
apologize as follows: "We did not in this book use the words causa~ or causality. . . . Our - - 
reason for caution is that it is rare that firm con- 
clusions about causality can be drawn from one 
study." 

This position of caution 
alyzed many fields that 1 
ance, especially economics and soci 

A leading social scientist stated i 
would be very healthy if more res 
don thinking of and using terms suc 
effect ." 

Can this state af affairs be the wo 
person? Even a buccaneer like Pears 

I doubt it, 

But how else can 
the field that has given the world s 
concepts as the testing of hyparh 
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design of experiment, would give up so early on 
causation? 

One obvious explanation is, of course, that cau- 
sation is much harder to measure than correlation. 

Correlations can be estimated directly in a sin- 
gle uncontrolled study, while causal conclusions 
require controlled experiments. 

But this is too simplistic; statisticians are not 
easily deterred by difficulties, and children man- 
age to learn cause effect relations without running 
controlled experiments. 

The answer, I believe lies deeper, and it has to 
c%a with the official language of statistics - namely, 
the language of probability. 

, .  
. This may come as a surprise to some of you but 

the w6rd &use is not in the vocabulary of prob- 
Ability theory; we cannot express in the language 
of probabilities the senteam, mud does not cause 

the two are mutually correlated or dependent - meaning that 

press a certain concept explicitly, we can't ex- 
ty around that concept. 

owledge be transferred reliably from one study 
years ago, such transference requires the preci- 

sion and computational benefits i f  a formal language. 

of language and notation, but first T 
wish to conclude ths historical sur- 
vey with a tale from another field in 
which causation has had its share of 
difficulty. 

This time it is computer sci- 
ence - the science of symbols - a 
field that is relatively new yet one 
that has placed a tremendous em- 
phasis on language and notation and 
therefore may offer a useful per- 
spective on the problem. 

When researchers began to en- 
code causal relationships using 
computers, the two riddles of causa- 
tion were awakened with renewed 
vigor. 
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Put yourself in the shoes of this robot 1261 who 
is trying to make sense of what is going on in a 
kitchen or a laboratory. 

Conceptually, the robot's problems are the 
same as those faced by an economist seeking to 
model the national debt or an epidemiologist at- 
tempting to understand the spread of a disease. 

Our robot, economist, and epidemiologist d 
need to track down cause-effect relations from 

I 
the environment, using limited actions and noisy 
observations. 

This puts them right at Hume's first riddle of 
causation: how? 

The second riddle of causation also plays a role 
in the robot's world. , . ..-- 

Assume we wish to take a shortcut and teach 
our robot all we know about cause and effect in this room [27]. 

How should the robot organize and make use of this information? 

Thus, the two philosophical riddles of causation are now translated into concrete and 
practical questions: 

How should a robot acquire causal information through interaction with its envi- 
ronment? How should a robot process causal information received fram its creator- 
programmer? 

Again, the second riddle is not as trivial as it might seem. Lord Russell's warning 
that causal relations and physical equations are incompatible now surfaces as an appar- 
ent flaw in logic. 

For example, when given the information, "If the grass is wet, then it rained" and 
"If we break this bottle, the grass will get wet," the computer will conclude "If we break 
this bottle, then it rained" [28]. 

The swiftness and specificity 
with which such programming bugs 
surface have made Artificial Xntel- 
ligence programs an ideal labora- 
tory for studying the fine print of 
causation. 

This brings us to the second part 
of the lecture: how the second riddle 
of causation can be solved by cum- 
bining equations with graphs, and 
how this solution makes the first 
riddle less formidable. 



The overriding ideas in this solution are: 

First - treating causation as a summary of be- 
havior under interventions; and 

Second - using equations and graphs as a math- 
ematical language within which causal thoughts 
can be represented and manipulated. 

And to put the two together, we need a third 
concept: Treating intenrentions as a surgery over 
equations. 

Let us start with an area that uses causation 
extensively and never had any trouble with it: en- 
gineering. 

Here is an engineering drawing [29] of a circuit 
diagram that shows cause-effect relations among 
the signals in the circuit. The circuit consists of 
and gates and or gates, each performing some log- 
ical function between input and output. Let us ex- 
amine this diagram closely, since its simpiici ty and 
familiarity are very deceiving. This diagram is, in 
fact, one of the greatest marvels of science. It is 
capable of conveying more information than mil- 

lions of algebraic equations or probability b c t i o n s  or logicaf expressions. What makes 
this diagram so much more powerful is the ability to p d i d  not merely how the circuit 
behaves under normal conditions but also how the circuit will behave under millions of 
abrzoml conditions, For example, given this circuit diagram, we can easily tell what 
the output will be if some input changes from 0 to 1. This is  normal and can easily be 
expressed by a simple input-output equation. Now comes the abnormal part. We can 

set Y to 0 (zero), or tie it to X, or change this 
any of the millions of combinations of these 

operations. The designer of this cir- 
cuit did not anticipate or even con- 
sider such weird interventions, yet, 
mimculclusly, we can predict their 
consequences. How? Where dues 
this rqresmtational power come 
from? 

It comes from what early econ- 
amists called autononay. Namely, 
the gates in this diagram represent 
independent mechanisms - it is 
easy to change one without chang- 
ing the other. The diagram takes 
advantage of this independence and 
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describes the normal fuactionint; oft 
ing precisely those building bE& tha 
unaltered ta&r inbervenfioip, 

My colleagues from Boelter Ha 
wondering why I stand here before 
ing about an engineering triviality as 
eighfh wonder of the w&d. I have 
for doing this. First, I will tsy to sho 
a 'lot of uflexp1oit.d wisdom in prac 
gheers take for granted. 

method on and off f i r  over 75 wars. t 

venience to suppress the diagrammatic represen- 1 , 1 , 
tation, together with its benefits. Flndly, these di- 
agrams capture, in my opinion, the very essence of causation - the ability to predict the 
consequewes of abnormal evmalities and new mrtnipufations. In 3. Wight's diagram 
f 301, fa exmp1e:, it is possible to predict what coat pMern the guitrm-pig litter is likely 
to have if we change efivirommntd fwbrs, shown here by as input (E) ,  or even ge- 
netic factors, show as inte-bb nodes befw&n parents md offsprings (H). Such 
predictions cannot be made on the basis of algebraic or mrrelationd analysis. 

Viewing causality this way explains why scientists pursue causal explanations with 
such zeal and why attaining a causat model is stccomMed witb a sense of gaining 'Veep 
unders-ding" and "being in control." 

Deep understanding [31] means knowing not merefy hrrw things behaved yeskr- 
day but also how things will behave under new hypothetical circumstances, control 
kingone such cimstance. Inter- 
estingly, when we have such under- 
standing we feel "in cmtrol'* even if 
we have no practical way of controt- 
ling things. For example, we have 
no practical way to control c e b -  
tial motion, and still the theory of 
gravitation gives US a feezing of w- 
derstanding md mfrol, because it 
provides a blureprk~ far hypotheti- 
cd  control. 'We can predict the ef- 
fect on tidal waves of un;expcteci 
new events - say, the bei~lg 
hit by a metea or $be gmvitaxi~nal 
constang sudde~Sy M r r i s h g  by a 



llg factor of 2 - and, just as important, 
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the gravitational theory gives us the 
assurance that ordinary manipula- 
tion of earthly things will not con- 
trol tidal waves. It is not surpris- 
ing that causal models are viewed 
as the litmus test for distinguishing 
deliberate reasoning from reactive 
or instinctive response. Birds and 
monkeys may possibly be trained to 

form complex tasks such as fix- 
a broken wire, but that requires 
-and-error training. Deliberate 

easoners, on the other hand, can 
anticipate the consequences of new 
manipulations without ever drying 
those manipulations. 

Let us magnjfy [32] a portion of the cjfcuit diagram so that we can understand why 
the diagram can predict outcomes that equations c m  not. Let us also switch from logi- 
cal gates to linear equatioas (to make everyone here more comfortable), and assume we 
are dealing with a sysgem cont&ing just two components: a multiplier and an adder. 
The rnrallipligr takes the input. and multiplies it by a factor of 2; the adder takes its input 
and adds a 1 to it. The equations describing these two components are given here on the 
left. 

But are these equations eguivale~f to the diagram on the right? Obviously not! 
If they were, then let us switch the variables around, and the resulting two equations 
should be equivalent to the circuit shown below. But these two circuits are different. 
The top one tells us that if we plzysicagly manipulate Y it will affect: 2, while the bottom 
one shows that mnipuiatiq Y wilf affect X and will have no effect on 2. Moreover, 
performing some additional algebraic operations on our equations, we can obtain two 

new equations, shown at the bot- 
tom, which point to no structure at 
all; they simply represent two con- 
straints on three variables without 
telling us how they influence each 
other. 

Let us examine more closely the 
mental process by which we deter- 
mine the effect of physically ma- 
nipulating Y - say, setting Y to 0 
1331. 

Clearly, when we set Y to 0, 
the relation between X and Y is no 
longer given by the multiplier - a 
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new mechanism now controls Y, in 
which X has no say. In the q u a c  
tional representation, this mounts 
to replacing the equation. Y = 2.X 
by a. new quation Y = Q and solv- 
ing a new set of equations, which 
gives Z = 1. Jf we perEom this 
surgery on the loww pair of equa- 
tions, representing the lower madel, 
we get of wume a different solu- 
tion. The second equation will 
to be replaced, whicb will yield 2 Y - 2 Y + Z - l = Q  m,~.&bl~ 
X = 0 and leave 2 unconstJr&ned. 2x+2Y-32+3=0 

We now see how this model of 
intervention leads to a fomaI definition af causation: ""Y: is acause of 2 if we can change 
Z by manipufati~g Y, namely, if &ef i.mgic&y remtovhg the equ~tion for Y, the solu- 
tion for Z will depend on the new vdue we substitute ~ Q F  Y." We also see how vital the 
diagram is in this process. 17ze diagram fells us which egm$iun is to h dekted when 
we manipulate Y. That infomatin is totally washed out when we transform the equa- 
tions into algebraically equivalent form, as shown at the bottom of the screen. From 
this pair of equations dm@, it is impassible to predict the result of setting Y to 0, be- 
cause we do not b w  what surgery ta perform - there is no such 
far Y." 

In sumnry, i~tervenrian amaunts $0 Q su~gery on equations 
and catk.sation means pmdicti~g the cmseqwnces of szcch a surgery, 

This is a universal theme that gms beyond physicaf systems. In fact, the idea of 
modeling interventions by "wiping out"' equations was first proposed in 1960 by an 
economist, Herman Wold, but his teachings have dl but disappeared from the economics 
literature. History books attribute tfiis mystericws disapparance to Ward" personality, 
but T tend to believe that the reason goes deeper: Early econome~cians were very careful 
mathematicians; they fought hard 
ta keep their algebra clean md  for* 
mal, and they could not agree to 
have it contamhated by gimmicks 

as diagrams, as we sw 

on the sc=n, the swf3ery ope2*ation 
makes no mathematical sense with- 
out the diagram, as it i s  sensitive to 
the way we write the equations. 

Before expounding on the prop- 
erties af this new mathematical up- 
eration, let me demorrstrdecj how 
useEtt.1 it is for clarifying cancepts 
in statistics and economics, 



#Example 2. Policy analysis I 
Why do we prefer controlled ex- 

periment over uncontrolled studies? 
Assume we wish to study the effect 
of some drug treatment on recovery 
of patients suffering from a given 
disorder, The mechanism govern- 
ing the behavior of each patient is 
siinilar in structure to the circuit di- 
agram we saw earlier. Recovery 
is a function of both the treatment 
and other factors, such as socioeco- 
nomic conditions, life style, diet, 
age, et cetera. Only one such factor 
is shuwn here [34]. Under uncon- 

trolled conditions, the choice of treatment is up to the patients and may depend on the 
patients' socioeconomic backgrounds. This creates a problem, because we can't tell if 
changes in recovery rates are due b treatment or to those background factors. What we 
wish to do is compare patiefits of like backgrounds, and that is precisely what Fisher's 
randomized aprirnent w~~mplishes. How? It actually consists of two parts, random- 
ization and intewetzbion. 

]Entervention means that we chmge the natural behavior of the individual: we separate 
subjiects into two grwps, called treatment and control, and we convince the subjects to 
obey the experimental policy. We assign treatment to some patients who, under normal 
circumstances, will not seek treatment, and we give placebo to patients who otherwise 
would receive treatment. That, in our new vocab3l~ary, means surgery - we are severing 
one functional link and replacing it with another. Fisher's great insight was that con- 
necting the new link to a random coin flip guarantees that the link we wish to break 

is actually broken. The reason is that a random 
coin is assumed to be unaffected by anything we 
can measure on a macroscopic level - including, 
of course, a patient's socioeconomic background. 

This picture provides a meaningful and formal 
rationale for the universally accepted procedure of 
randomized trials. In contrast, ow next example 
use the surgery idea to point out inadequacies in 
widely accepted procedures. 

The exarnpfe [35] involves a government ofi- 
cia1 trying to evaluate the economic consequences 
of some policy - say, taxation. A deliberate de- 
cision to raise or lower taxes is a surgery on the 
model of the economy because it modifies the con- 
ditions prevailing while the model was built. Eco- 
nomic models are built on the basis of data taken 
over some: period of time, and during this period 
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of time taxes were loured and raised h response 
to some economic condition* or political presswe. 
However, when. we evaluate a policy, we wish to 
compare alternative policies under the same eco- 
nomic caditions - nrtmely, we wish to sever this 
link that, in the past, has tied policies to those con- 
ditions. In this setup, it is of come impossible to 
curnext our policy to a coin toss and r n ~  a con- 
trolled exprime~t; we do no2 have the time! for 
that, and we might nzin the economy b f ~ e  the 
experiment is over. Nevertheless the analysis that 
we should conduct is to infer thc: behavior of this 
mutilated model from d w  g ~ v m e d  by a nonmu- 
tilated model. 

I said should conduct because you will not 
find such analysis in any economics textbook. As 
I mentioned earlier, the surgery idea of Herman 
Wold was stamped out of the ecommics literature 
in the 19?0s, and all discussions on: policy stnalysls 
that I cadd find assume that the matilated model 
prevails throughout. That taxation is under goy- 
emment control at the time of evaluation is assumed to be sufficient far treating taxation 
as an exogenous variable Ehrougb~tit, when in fact taxation is an endogenous variable 
during the model-building phase and turns exogmous only when evaluated. Of course, I 
am not claiming that reinstating the surgery model 
would enable the government to balance its: bud- 
get overnight, but it i s  certainly something worth 
trying. 

Let us now examine how the surgery interpre- 
tation resolves Russell's enigma concerning the 
clash between the directimality of causal rela- 
tions and the symmetry of physical equations. The 
equ~tions of physics are indeed symmetri~l, but 
when we compare .rhe phrases 'Y causes &" versus 
"B causes A," we are: not talking about a single 
set of equations. Rather, we are comparing two 
world modeis, represented by two diffmnt s@$ of 
equations: one in which the equation far A is Bur- 
gically removed; the other where the r;qwti,un for 
B is removed. Russell would probably stop us at 
this point and ask "How can you talk abut  nivo 
world models when in fact h t e  is only one world 
model, given by all the equatio~~s of physics put 
together?" The answer Is: yes. If you wish to 



1 11 include the entire universe in the 
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I FROM PHYSICS TO CAUSALITY 11 model, causality disappears be- 
cause interventions disappear - the 
manipulator and the manipulated 

Physics: loose their distinction. However, 
Symmetric equations of motion scientists rarely consider the en- 

tirety of the universe as an object of 
Causal models: investigation. In most cases the sci- 
Symmetric equations of motion entist carves a piece fiom the uni- 

Circurnsciptfon (in YS, out) verse a d  proclaims that piece in - 
Loc%lhy (autonomy of namely, the focus of investigation. 
Intervention z surgery The rest of the universe is then con- 

sidered out or backgra~nd and is 
summarized by what we call bound- 
ary conditions. This choice of ins 

and outs creates asymmetry intb  way we bok at things, and it is this asymmetry that per- 
mits us to taUr about "~uQide infm-vention" and hence about causality and cause-effect 
directionality, 

This can b illust;r& quite nicely using Descartes' classical drawing [36]. As a 
whole, this hand-eye system knows nutbing about causation. It is merely a messy 
plasma of particles and photons trying their very best to obey Schroedinger's equation, 
which is symetric, 

However, carve a chunk from it - say, the object part [37] - and we can talk about 
the motion of the hand causing this light ray to change angle. 

Carve it another way, focusing on the brain 
part [38], and lo and behold it is now the light ray 
that causes the hand to move - precisely the oppo- 
site direction. The lesson is that it is the way we 
came up the universe that determines the direc- 
tionality we associate with cause and effect. Such 
carving is tacitly assumed in every scientific in- 
vestigation. In artificial intelligence it was called 
"circumscription" by J. McCarthy. In economics, 
circumscription amounts to deciding wlzich vari- 
ables we deemed endogenous and which exoge- 
nous, in the model or external to the model. 

Let us s m a r i z e  the essential differences be- 
tween equationid and causal models [39]. Both use 
a set of symmetric equations to describe normal 
conditions. The causal model, however, contains 
three additional ingredients: (i) a distinction be- 
tween the in and the ouf; (ii) an assumption that 

pT-" e# each equation corresponds to an independent 
-2r we mechanism and hence must be preserved as a 
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separate mathematical sentence; 
and (iii) interventions that are inter- 
preted as surgeries over those mech- 
anism. This brings us closer to real- 
izing the dream of making causality 
a friendly part of physics. But one 
ingredient is missing: the algebra. 
We discussed earlier how important 
the computational facility of alge- 
bra was to scientists and engineers 
in the Galilean era. Can we ex- 
pect such algebraic facility to serve 
causality as well? Let me rephrase 
it differently: Scientific activity, as 
we know it, consists of two basic 
components: 

Observations [40) and interventions [41]. 

The combination of the two is what we call a laboratory [42], a place where we con- 
trol some of the conditions and obsme others. It so h a p n  d that standard algebras 
have served the observsttionaX component very well but thus A! m have not benefitted the 
interventional component. This is true for the algebra of kquations, Boolean algebra, 
and probability calculus - all are geared to serve observational sentences but not inter- 
ventiunal sentences. 

Take, for example, probability theory. If we wish to find the chance it rained, given 
that we see the grass wet, we can express our question in a formal sentence written like 
that: P (Rain I Wet), to be read: the prabability of Rain, given Wet [43]. The vertical bar 
stands for the phrase: "@vex that we see." Not only can we express this question in a 
f o m l  sentence, we c;arz also use the machinery of probability theory and transform the 
sentence into other expressions. In OW example, the sentence on the left can be trans- 
formed to the one on tfre right, if we find it more convenient or informative. 

But suppose we ask a different question: "What is the chance it rained if we make 
the grass wet?" We cannot even 
express our query in the syntax of 
probability, because the vertical bar 
is already taken to mean "given that 
I see." We can invent a new symbol 
do, and each time we see a do after 
the bar we read it giveva that we do - 
but this does not help us compute 
the answer to our question, because 

iB 
the rules of probability do not apply 
to this new reading. We know intu- 
itively what the answer should be: 
P (Rain), because making the grass d 



wet does not change the chance of 
rain. But can this intuitive answer, 
and others like it, be derived me- 

Availabkafgebra of d n g  
e.g., What is the chance it rained 

if we see the grass wet? 

Needz;d: algebra of doing 
a.g., What is the chance it reined 

if we make the grass wet? 
P (rain I do(wef)) = ? f = P (rat@) 

chanicdly, so as to comfort our 
thoughts when intuition fails? 

The answer is yes, and it takes 
a new algebra. First, we assign a 
symbol to the new operator "given 
that I do." Second, we find the rules 
for manipulating sentences contain- 
ing this new symbol. We do that 
by a process analogous to the way 
mathematicians found the rules of 
standard algebra. 

Imagine that y w  are: a ma&ematician in the sixteenth century, you are now an expert 
in the algebra of addiriofpt itnd you &el m urgent need to introduce a new operator, mul- 
tiplication, because you are tired of adding a number to itself all day long [MI. The first 
thing you do is assign the new operator a symbol: multiply. Then you go down to the 
meaning of the operator, from which you can deduce its rules of transformations. For 
example: the commutative law of multiplication can be deduced that way, the associative 
law, and so on. We now learn all this in high school. 

we can deduce the rules that govern our new symbol: 
bability theory. We have a new op- 

given to us by the surgery 
given in the next slide [45]. 

ou to read these equations right now, 
cdus. It consists of three rules that 

ns and observations into other expres- 
an irrelevant observation, the third to 

ignore an isrelevant action, the sec- 
ond dlows us to exchange an ac- 
tion with an observation of the same 
fact, What are those symbols on the 
right? They are the "green fights" 
that the diagram gives us when- 
ever the transformation is legal. We 
will see them in action on our next 

This brings us to part three of 
the lecture, where I will demon- 
strate how the ideas presented thus 
far can be as& to solve new prob- 
lems of practical importance. 
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Consider the century-old debate 
concerning the effect of smoking on 
lung cancer [46). In 1964, the Sur- 
geon General issued a report link- 
ing cigarette s m u ~  to bath, 
cancer, and most particularly iung 
cancer. The report was based on 
nuinexperimental studies in which 
a strong correlation was found be- 
tween smoking and lung cancer, 
and the claim was that the cum- 
lation found is catrsaf: If we ban 
smoking, then the rate of cancer 
cases will be roughly the s m  as 

P(y I do(x1, z, W )  = Pfy  I do(x}, w) 

Rule 2: Actbn/obserrvation exchange 
PCV Wx) ,  Mz), w) = RY *txl, tw) 

Ruk 3: Ignoring mtians 

the one we find today ammg non- 
smokers in the population. 

These studies came under severe attacks from the tobacco industry, backed by some 
very prominent statisticians, mang them Sir Rmald Fisher; T b  claim was that the 
observed correlations c a ~ l  dsu be expiained by a @dl in which there is no causd con- 
nection bemeen smokiflig md lung cancer. Instead, an unabs-erved genotype might exist 
that simuftaneously causes cancer and produces an inborn craving fw oicutine. Formally, 
this claim would be writtea in our notation as: P (Cancer / do(Smake)) = F (Cancer), 
meaning that making the populatkon smoke or stop smoking would haye no effect on the 
rate of cancer cases, C6ntroffed experiments could decide between the two models, but 
these are impossiHe (and now &so ifbgal) to conducg. 

a hypotheti- 
sides decide 

to meet and iran out their differences. The tobacco 
industry concedes that there might be same weak 
causal link between smoking and cancer and rep- 
resentatives of the health graup concede that there 
might be some weak links to genetic factors. AG- 
cwdingfy, they draw this combined 
question bails down to assessing, 
the strengths of the various finks. 



=X,P(cIdo(s) ,do{ t} )P( tIs)  

= I ; , P ( c I d o ( t ) ) P ( t l s )  

=ZdZtP(cIdO( t f ,  i) P(s'Ido(t})P(rls) F%hPrObabiftyAxioms 

= Z s , I ; t P ( ~ I t , ~ ' ) P ( i i d o ( t ) ) ~ ( ~ ~ )  Mle-2 0 
= Z8,1;1 P (c  I 2, s') P ($1 P(t Is) 

causal link model is based on the 
understanding that smoking affects 
lung cancer through the accumula- 
tion of tar deposits in the lungs, per- 
haps we can measure the amount af 
tar deposits in the lungs of sampled 
individuals, and this might provide 
the necessary information for q w -  
tifying the links. Both sides agree 
that this is a reasonable suggestion, 
so they submit a new query to the 
statistician: Can we find the effect 
of smoking on cancer assuming that 
an intermediate measurement of tar 

deposits is available? The statistician comes back with good news: it is compztfable and, 
moreover, the solution is given in cIossed mathematical form. How? 

The statistician receives the 
problem and treats it as a problem 

High S~hool algebra: We need 
to compute P(Cancer), under hy- 
pothetical action, from nonexpexi- 
mental data - from expres- 
sions hVOIVing ncr or: we additional factors in the anaiysis. need to eliminate the "do" symbol 

from initid exp=ssion* The 
elimination proceeds like ordinary 
solution of algebraic - in 

analysis. each stage [47], a new rule is ap- 
plied, licensed by some subgraph 
of the diagram, eventually leading 

to a formula involving ao "do" symbols, which denotes an expression that is computable 

You are probably wondering 
whether this derivation solves the 
smoking-cancer debate. The an- 
swer is no. Even if we could get 
the data on tar deposits, our model 
is quite simplistic, as it is based on 
wrtain assumptions that both par- 
ties might not agree to - for in- 
stance, that there is no direct link 
between smoking and lung can- 
cer mebizit& by tar deposits. The 

odd need to be refined 
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then, and we might a d  up with a 
p p h  containing twenty variables 
or more. There is ncr need to panic 
when someone fells us: 'Fu did 
not take this or that Pactor into ac- 
count ." On the contrary, the graph 
we~comes such new i&w, b@cau!3@ 
it is so easy to add factas and mea- 
surements into the model. Simple 
tests are now availabfe that permit 
an investigator to merely glance at 
the graph and decide if we can com- 
pute the effect of one variabfe on 
another. 

Our next example illustrates how 
ical means - proven by the new al- 
gebra. The problem is called tha 
dj~strnertf pmb2er.w or "the covari- 
ate selection prdlern" and repre- 
sents the practical side of Simpson's 
paradox f48I6 

Simpsods paradox, first no- 
ticed by Karl Pearson in 1899, con- 
cerns the disturbing observation 
that every statistical relationship 
between two variables &ay be re- 
versed by including additional fac- 
tors in the analysis. Far exmple, 
you might run a study a d  find that 
students who smoke get him grade: 
in every age group, &at is, smoking 
predicts lower grades. If you fur- 
tker adjust for parent imome; you 
find that smoking predicts higher 
grades again, in every age-income 
p u p ,  and so on. 

Equally disturbing is the fact 
that no sne has be611 able to tell us 
which factars should be included 
in the mafirsis. Such fwfors can 
now be ideatifid by simple gaphi- 
cal means. The classical case dern- 
onstrating Simpson's paradox took 
place in 1975, *hen UC-Berkeley 

Iong-standing problem is solved by purely graph- 

THE ADJUSTMENT PROBLEM 'I 

Me all #an-ancestors of (X, P, 2) 

user
Highlight



STEP 3: Delete all arcs emanating firom X 

was investigated for sex bias in 
graduate admission. In this study, 
overall data showed a higher rate of 
admission among male applicmts; 
but, broken down by departments, 
data showed a slight bias in favor 
of admitting female applicmts. The 
explanation is simple: female appli- 
cants tended to apply to more com- 
petitive departments than males, 
and in these departments, the rate of 
admission was low for both males 
and females. 

To illustrate this point, imag- 
ine a fishing boat with two difEt:rent nets, a lwge mesh and a small net [49]. A school 

of fish swim toward the boat and 
seek to pass it. The female fish try 
for the small-mesh challenge, while 
the male fish try for the easy route. 
The males go through and only fe- 
males are caught. Judging by the 
final catch, preference toward fe- 
males is clearly evident. However, 
if analyzed separately, each indi- 
vidual net would surely trap males 
more easily than females. 

STEP 4: Cortnect my f#FO parents 
a c m m  d.lilrl 

Another example involves a 
contxaversy called "reverse regres- 
sion,"whkh occupied the social 

science literature in the 1970s, Should we, in salary discrimination cases, compare 
salaries of equally qualified men 
and wornen or instead compare 
qualiiicrttions of equally paid men 
and women? 

Remarkably, the two choices 
led to opposite conclusions. It 
turned out that men earned a higher 
salary than equally qualified wom- 
en and, simultaneotdsly, men were 
more qualified than equally paid 
women. The moral is that all con- 
clusions are extremely sensitive to 
which variables we choose to hold 
constant when we are comparing, 
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and that is why the adjustment prob- 
lem is so critical in the analysis of 
observational studies. 

Consider an observational study 
where we wish to find the effect 
of X on Y, for example, treatment 
on response [50]. We can think of 
many factors that are relevant to tfre 
problem; some are affected by the 
treatment, some are affecting the 
treatment, and some are affecting 
both treatment and response. Some 
of these factors may be unmeasur- 
able, such as genetic trait or life 
style; others are measurable, such as gender, age, and salary level. Our problem is 
to select a subset of these factors for measurement and adjustment so that, if we com- 
pare subjects under the same value of those measurements and average, we get the right 
result. 

Let us follow together the steps that would be required to test if two candidate mea- 
surements;, Z1 and Z2, would be sufficient [51]. The steps are rather simple, and can be 
performed manually even on lwge graphs. However, to give you the feet of their mech- 
anizability, I will go through tkem rather quickly. Here we go f52-561. 

At the end of these manipulations, we end up with the answer to our question: "if X 
is disconnected from Y, then Z1 and Z2 are appropriate measurements." 

I now wish to summarize briefly the central message of this lecture. It is true that 
testing for cause and effect is dificult. Discovering causes of effects is even more dif- 
ficult. But causality is not mystical or pnetaphysic~l. It can be understood in terms 
of simple processes, and it can be expressed in a 
friendly mathmatical language, ready for corn- 
puter analysis. 

What I have presented to you today is a sort 
of pocket calculator, an abacus [57], to help us 
investigate certain problems of cause and effect 
with mathematical precision. This does not salve 
all tbe problems of causality, but the power of 
symbols and marhematics should not be underes- 
timated [581. 

Many scientific discoveries have been delayed 
over the centuries for the lack of a mathematical 
language that can amplify ideas and let scientists 
communicate results. I am convinced that many 
discoveries have been delayed in our century for 
Iack of a mathematical language that can handle 

Ftg ,  155 Little Johnny 
"'catctltar ~ n g  machrrrc*" 



causation. For example, I am sure that Karl P w -  

Epilogue 

son could have thought up the idea of randomized 
experiment in 1901 if he had allowed causal dia- 
grams into his mathematics. 

But the really challenging problems are still 
ahead: We still do not have a causal understanding 
of poverty and cancer and intolerance, and only 
the accumujlation of data and the insight of great 
minds will eventually lead to such undersmding. 

The data is all over the place, the insight is 
yours, and now an abacus is at your disposal, too. 
I hope the combination amplifies each of these 

u. 

Acknowledgments 

Slide 1 (Durer, Adam and Eve, 1504 engraving) courtesy of the Fogg Art Museum, Har- 
vard University Art Museums, Gift of William Gray from the collection of Francis Calley 
Gray. Photo by Rick SiaEord; image copyright Q President and Fellows of Harvard Cof- 
lege, Harvard University. Slide 2 (Dore, The Flight of Lot) copyright William H. Wise 
& Co. Slide 3 (Egyptiw wall painting of Nefemnpe playing a board game) courtesy of 
the Oriental Institute of the University of Chicago. 

The following images weze reproduced from antiquarian book catalogs, courtesy of 
Bernard Quaritch, Ltd. (London): slides 4, 5, 6, 7, 8, 9, 15, 27, 31, 36, 37, 38, 40, 42, 
and 58. 

Slides 10 and 11 copyright The Courier Press. Slides 13 and 14 reprinted with the per- 
missian of Nacmillan ~ i b m y  Refmenee USA, from The Album of Science, by I.  Bernard 
Cotren. Copyright O 1980 Charles Scribner's Sons. 

Slide 16 courtesy of the Librq of California State University, Long Beach. Slides 
20 a d  22 reprinted with the pesmissian of Cambridge University Press. Slide 25: copy- 
right photograph by A. C. Bm$gton Br~wn, reproduced witb permission. 

Slide 30: fmm S. Wright (1920) ia Pmceedings ofthe Nntioml Academy of Sciences, 
vol. 6; reproduced with the permission af the American Philosaphical Society and the 
University of Chicago Press, Slide 57 reprinted with the permission of Vandenhoeck & 
Ruprecht and The A.lnT Press, 

NOTE: Color versions of sLidt$19,26,28-29,32-35, and 43-56 may be downloaded 
from. (http:f/ www.cs.u~3.a~&u~-judea / ) . 



Bibliography 

Adams, E. (1975). The Logic of Conditionals, chap. 2. Dordrecht: Reidel. 
Agresti, A. (1983). Fallacies, statistical. In S. Kotz and N. L. Johnson (Eds.), Encyclopedia of Statistical 

Science, vol. 3, pp. 24-8. New York: Wiley. 
Aldrich, J. (1989). Autonomy. Oxford Economic Papers 41: 15-34. 
Aldrich, J. (1993). Cowles' exogeneity and core exogeneity. Discussion paper (no. 9308), Department of 

Economics, University of Southampton, England. 
Aldrich, J. (1995). Correlations genuine and spurious in Pearson and Yule. Statistical Science 10: 364-76. 
Andersson, S. A., D. Madigan, and M. D. Perlman (1997). A characterization of Markov equivalence classes 

for acyclic digraphs. Annals of Statistics 24: 505-41. 
Andersson, S. A., D. Madigan, M. D. Perlman, and T. S. Richardson (1999). Graphical Markov models in 

multivariate analysis. In S. Ghosh (Ed.), Multivariate Analysis, Design of Experiments, and Survey 
Sampling, pp. 187-229. New York: Marcel Dekker. 

Angrist, J. D., and G. W. Imbens (1991). Source of identifying information in evaluation models. Discussion 
paper (no. 1568), Department of Economics, Harvard University, Cambridge, MA. 

Angrist, J. D., G. W. Imbens, and D. B. Rubin (1996). Identification of causal effects using instrumental 
variables [with comments]. Journal of the American Statistical Association 91: 444-72. 

Bagozzi, R. P., and R. E. Burnkrant (1979). Attitude organization and the attitude-behavior relationship. 
Journal of Personality and Social Psychology 37: 913-29. 

Balke, A. (1995). Probabilistic counterfactuals: Semantics, computation, and applications. Ph.D. thesis, 
Computer Science Department, University of California, Los Angeles. 

Balke, A., and J. Pearl (1994a). Counterfactual probabilities: Computational methods, bounds, and appli- 
cations. In R. Lopez de Mantaras and D. Poole (Eds.), Uncertainty in Artijcial Intelligence, vol. 10, 
pp. 46-54. San Mateo, CA: Morgan Kaufrnann. 

Balke, A., and J. Pearl (1994b). Probabilistic evaluation of counterfactual queries. In Proceedings of the 
12th National Conference on Artijcial Intelligence, vol. I ,  pp. 230-7. Menlo Park, CA: MIT Press. 

Balke, A., and J. Pearl (1995). Counterfactuals and policy analysis in structural models. In P. Besnard 
and S. Hanks (Eds.), Uncertainty in Art$cial Intelligence, vol. 11, pp. 11-18. San Francisco: Morgan 
Kaufmann. 

Balke, A., and J. Pearl (1997). Bounds on treatment effects from studies with imperfect compliance. Jour- 
nal of the American Statistical Association 92: 1172-6. 

Barigelli, B., and R. Scozzafava (1984). Remarks on the role of conditional probability in data exploration. 
Statistics and Probability Letters 2: 15-18. 

Bayes, T. (1763). An essay toward solving a problem in the doctrine of chance. Philosophical Transactions 
of the Royal Society 53: 370-418. 

Becher, H. (1992). The concept of residual confounding in regression models and some applications. Sta- 
tistics in Medicine 1 1 : 1747-58. 



Bibliography 

Berkson, J. (1946). Limitations of the application of fourfold table analysis to hospital data. Biometrics 
Bulletin 2: 47-53. 

Bertsekas, D. P., and J. M. Tsitsiklis (1996). Neum-dynamic Programming. Belmont, MA: Athena. 
Bickel, P. J., E. A. Hammel, and J. W. O'Connell(1975). Sex bias in graduate admissions: Data from Berke- 

ley. Science 187: 398-404. 
Bishop, Y. M. M. (1971). Effects of collapsing multidimensional contingency tables. Biometrics 27: 545-62. 
Bishop, Y. M. M., S. E. Fienberg, and P. W. Holland (1975). Discrete Multivariate Analysis: Theory and 

Practice. Cambridge, MA: MIT Press. 
Blalock, H. M., Jr. (1962). Four-variable causal models and partial correlations. American Journal of So- 

ciology 68: 182-94. 
Bloom, H. S. (1984). Accounting for no-shows in experimental evaluation designs. Evaluation Review 8: 

225-46. 
Blumer, A., A. Ehrenfeucht, D. Haussler, and M. K. Warmuth (1987). Occam's razor. Information Pro- 

cessing Letters 24: 377-80. 
Blyth, C. R. (1972). On Simpson's paradox and the sure-thing principle. Journal of the American Statistical 

Association 67: 364-6. 
Bollen, K. A. (1989). Structural Equations with Latent Variables. New York: Wiley. 
Bonet, B. (1999). Axioms for causal relevance: New results. Technical report (no. TR-268), Cognitive Sys- 

tems Lab, University of California, Los Angeles. 
Bowden, R. J., and D. A. Turkington (1984). Instrumental Variables. Cambridge University Press. 
Breckler, S. J. (1990). Applications of covariance structure modeling in psychology: Cause for concern? 

Psychological Bulletin 107: 260-73. 
Breslow, N. E. and N. E. Day (1980). Statistical Methods in Cancer Research, vol. 1 (The Analysis of 

Case-Control Studies). Lyon: IARC. 
Cartwright, N. (1983). How the h w s  of Physics Lie. Oxford, U.K.:  Clarendon. 
Cartwright, N. (1989). Nature's Capacities and Their Measurement. Oxford, U.K.: Clarendon. 
Cartwright, N. (1995a). False idealisation: A Philosophical threat to scientific method. Philosophical Stud- 

ies 77: 339-52. 
Cartwright, N. (1995b). Probabilities and experiments. Journal of Econometrics 67: 47-59. 
Cartwright, N. (1999). Causality: Independence and determinism. In A. Gammerman (Ed.), Causal Models 

and Intelligent Data Management, pp. 51-63. Berlin: Springer-Verlag. 
Chajewska, U., and J. Y. Halpern (1997). Defining explanation in probabilistic systems. In D. Geiger and 

P. P. Shenoy (Eds.), Uncertainty in ArtiJicial Intelligence, vol. 13, pp. 62-71. San Francisco: Morgan 
Kaufmann. 

Cheng, P. W. (1992). Separating causal laws from causal facts: Pressing the limits of statistical relevance. 
Psychology of Learning and Motivation 30: 215-64. 

Cheng, P. W. (1997). From covariation to causation: A causal power theory. Psychological Review 104: 
367-405. 

Chickering, D. M. (1995). A transformational characterization of Bayesian network structures. In P. Besnard 
and S. Hanks (Eds.), Uncertainty in ArtiJicial Intelligence, vol. 11, pp. 87-98. San Francisco: Morgan 
Kaufmann. 

Chickering, D. M., and J. Pearl (1997). A clinician's tool for analyzing non-compliance. Computing Sci- 
ence and Statistics 29: 424-31. 

Chou, C. P., and P. Bentler (1995). Estimations and tests in structural equation modeling. In R. H. Hoyle 
(Ed.), Structural Equation Modeling, pp. 37-55. Thousand Oaks, CA: Sage. 

Christ, C. (1966). Econometric Models and Methods. New York: Wiley. 
Cliff, N. (1983). Some cautions concerning the application of causal modeling methods. Multivariate Be- 

havioral Research 18: 115-26. 
Cohen, M. R., and E. Nagel (1934). An Introduction to Logic and the Scient$c Method. New York: Har- 

court, Brace. 
Cole, P. (1997). Causality in epidemiology, health policy, and law. Journal of Marketing Research 27: 

10279-85. 



Bibliography 

Cooper, G. F. (1990). Computational complexity of probabilistic inference using Bayesian belief networks. 
Artificial Intelligence 42: 393-405. 

Cooper, G. F., and E. Herskovits (1991). A Bayesian method for constructing Bayesian belief networks 
from databases. In Proceedings of the Conference on Uncertainty in AI, pp. 86-94. San Mateo, CA: 
Morgan Kaufmann. 

Cox, D. R. (1958). The Planning of Experiments. New York: Wiley. 
Cox, D. R. (1992). Causality: Some statistical aspects. Journal of the Royal Statistical Society, Ser. A 155: 

291-301. 
Cox, D. R., and N. Wermuth (1993). Linear dependencies represented by chain graphs. Statistical Science 

8: 204-18. 
Cox, D. R., and N. Wermuth (1996). Multivariate Dependencies - Models, Analysis and Interpretation. 

London: Chapman & Hall. 
Crtimer, H. (1946). Mathematical Methods of Statistics. Princeton, NJ: Princeton University Press. 
Cushing, J. T., and E. McMullin (Eds.) (1989). Philosophical Consequences of Quantum Thoery: Rejec- 

tions on Bell's Theorem. South Bend, IN: University of Notre Dame Press. 
Darlington, R. B. (1990). Regression and Linear Models. New York: McGraw-Hill. 
Darnell, A. C. (1994). A Dictionary of Econometrics. Brookfield, VT: Edward Elgar. 
Davidson, R., and J. G. MacKinnon (1993). Estimation and Inference in Econometrics. New York: Oxford 

University Press. 
Dawid, A. P. (1979). Conditional independence in statistical theory. Journal of the Royal Statistical Society, 

Ser. B 41: 1-31. 
Dawid, A. P. (1997). Causal inference without counterfactuals. Technical report, Department of Statistical 

Science, University College. To appear [with discussion] in Journal of the American Statistical Asso- 
ciation (2000). 

Dean, T. L., and M. P. Wellman (1991). Planning and Control. San Mateo, CA: Morgan Kaufmann. 
Dechter, R. (1996). Topological parameters for time-space tradeoff. In E. Horvitz and F. Jensen (Eds.), Pro- 

ceedings of the 12th Conference on Uncertainty in Art$cial Intelligence, pp. 220-7. San Francisco: 
Morgan Kaufmann. 

Dechter, R., and J. Pearl (1991). Directed constraint networks: A relational framework for casual modeling. 
In J. Mylopoulos and R. Reiter (Eds.), Proceedings of the 12th International Joint Conference of Ar- 
@cia1 Intelligence (IJCAI-91, Sydney, Australia), pp. 1164-70. San Mateo, CA: Morgan Kaufmann. 

De Finetti, B. (1974). Theory of Probabiliry: A Critical Introductory Treatment, 2 vols. (Tran. by A. Machi 
and A. Smith). London: Wiley. 

De Kleer, J., and J. S. Brown (1986). Theories of causal ordering. Artificial Intelligence 29: 33-62. 
Dempster, A. P. (1990). Causality and statistics. Journal of Statistics Planning and Inference 25: 261-78. 
Dhrymes, P. J. (1970). Econometrics. New York: Springer-Verlag. 
Dong, J. (1998). Simpson's paradox. In P. Armitage and T. Colton (Eds.), Encyclopedia of Biostatistics, 

pp. 4108-10. New York: Wiley. 
Dor, D., and M. Tarsi (1992). A simple algorithm to construct a consistent extension of a partially ori- 

ented graph. Technical report (no. R-185), Computer Science Department, University of California, 
Los Angeles. 

Dmzdzel, M. J., and H. A. Simon (1993). Causality in Bayesian belief networks. In D. Heckerman and 
A. Marndani (Eds.), Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence, pp. 
3-11, San Mateo, CA: Morgan Kaufmann. 

Duncan. 0. D. (1975). Introduction to Structural Equation Models. New York: Academic Press. 
Eells, E. (1991). Probabilistic Causality. Cambridge University Press. 
Eells, E., and E. Sober (1983). Probabilistic causality and the question of transitivity. Philosophy of Science 

50: 35-57. 
Efron, B., and D. Feldman (1991). Compliance as an explanatory variable in clinical trials. Journal of the 

American Statistical Association 86: 9-26. 
Engle, R. F., D. F. Hendry, and J. F. Richard (1983). Exogeneity. Econometrica 51: 277-304. 
Epstein, R. J. (1987). A History of Econometrics. New York: Elsevier. 



Bibliography 

Eshghi, K., and R. A. Kowalski (1989). Abduction compared with negation as failure. In G. Levi and M. 
Martelli (Eds.), Proceedings of the 6th International Conference on Logic Programming, pp. 234-54. 
Cambridge, MA: MIT Press. 

Everitt, B. (1995). Simpson's paradox. In B. Everitt (Ed.), The Cambridge Dictionary of Statistics in the 
Medical Sciences, p. 237. Cambridge University Press. 

Feller, W. (1950). Probability Theory and its Applications. New York: Wiley. 
Fikes, R. E., and N. J. Nilsson (1971). STRIPS: A new approach to the application of theorem proving to 

problem solving. Artijicial Intelligence 2: 189-208. 
Fine, K. (1975). Review of Lewis' counterfactuals. Mind 84: 451-8. 
Fine, K. (1985). Reasoning with Arbitrary Objects. New York: Blackwell. 
Finkelstein, M. O., and B. Levin (1990). Statistics for Lawyers. New York: Springer-Verlag. 
Fisher, F. M. (1970). A correspondence principle for simultaneous equations models. Econometrica 38: 

73-92. 
Fisher, R. A. (1951). The Design of Experiments, 6th ed. Edinburgh, U.K.: Oliver & Boyd. 
Fleiss, J. L. (1981). Statistical Methods for Rates and Proportions, 2nd ed. New York: Wiley. 
Freedman, D. (1987). As others see us: A case study in path analysis [with discussion]. Joumal of Educa- 

tional Statistics 12: 101-223. 
Freedman, D. A. (1997). From association to causation via regression. In V. R. McKim and S. P. Turner 

(Eds.), Causalio in Crisis? pp. 113-61. South Bend, IN: University of Notre Dame Press. 
Frisch, R. (1938). Autonomy of economic relations. Reprinted [with Tinbergen's comments] in D. F. Hendry 

and M. S. Morgan (Eds.), The Foundations of Econometric Analysis, pp. 407-23. Cambridge Univer- 
sity Press. 

Frydenberg, M. (1990). The chain graph Markov property. Scandinavian Journal of Statistics 17: 333-53. 
Gail, M. H. (1986). Adjusting for covariates that have the same distribution in exposed and unexposed co- 

horts. In S. H. Moolgavkar and R. L. Prentice (Eds.), Modem Statistical Methods in Chronic Disease 
Epidemiology, pp. 3-18. New York: Wiley. 

Galles, D., and J. Pearl (1995). Testing identifiability of causal effects. In P. Besnard and S. Hanks (Eds.), 
Uncertainty in ArtiJicial Intelligence, vol. 11, pp. 185-95. San Francisco: Morgan Kaufmann. 

Galles, D., and J. Pearl (1997). Axioms of causal relevance. Art$cial Intelligence 97: 9-43. 
Galles, D., and J. Pearl (1998). An axiomatic characterization of causal counterfactuals. Foundations of 

Science 3: 151-82. 
Gardenfors, P. (1988). Causation and the dynamics of belief. In W. Harper and B. Skyrms (Eds.), Causation 

in Decision, Belief Change and Statistics, vol. 11, pp. 85-104. Dordrecht: Kluwer. 
Geffner, H. (1992). Default Reasoning: Causal and Conditional Theories. Cambridge, MA: MIT Press. 
Geiger, D., T. S. Verma, and J. Pearl (1990). Identifying independence in Bayesian networks. Networks 20: 

507-34. 
Geng, Z. (1992). Collapsibility of relative risk in contingency tables with a response variable. Journal of 

the Royal Statistical Society 54: 585-93. 
Gibbard, A., and L. Harper (1976). Counterfactuals and two kinds of expected utility. In W. L. Harper, R. 

Stalnaker, and G. Pearce (Eds.), Ifs, pp. 153-69. Dordrecht: Reidel. 
Ginsberg, M. L. (1986). Counterfactuals. ArtiJicial Intelligence 30: 35-79. 
Ginsberg, M. L., and D. E. Smith (1987). Reasoning about action I: A possible worlds approach. In F. M. 

Brown (Ed.), The Frame Problem in Artificial Intelligence, pp. 233-58. Los Altos, CA: Morgan Kauf- 
mann. 

Glymour, C. (1998). Psychological and normative theories of causal power and the probabilities of causes. 
In G. F. Cooper and S. Moral (Eds.), Uncertainty in Artificial Intelligence, pp. 166-72. San Francisco: 
Morgan Kaufmann. 

Glymour, C., and G. Cooper (Eds.) (1999). Computation, Causation, andDiscovery. Cambridge, MA: MIT 
Press. 

Goldberger, A. S. (1972). Structural equation models in the social sciences. Econometrica 40: 979-1001. 
Goldberger, A. S. (1973). Structural equation models: An overview. In A. S. Goldberger and 0 .  D. Duncan 

(Eds.), Structural Equation Models in the Social Sciences, pp. 1-18. New York: Seminar Press. 
Goldberger, A. S. (1991). A Course of Econometrics. Cambridge, MA: Harvard University Press. 



Bibliography 

Goldberger, A. S. (1992). Models of substance [comment on N. Wermuth, "On block-recursive linear re- 
gression equations"]. Brazilian Journal of Probability and Statistics 6: 1-56. 

Goldszmidt, M., and J. Pearl (1992). Rank-based systems: A simple approach to belief revision, belief 
update, and reasoning about evidence and actions. In B. Nebel, C. Rich, and W. Swartout (Eds.), 
Proceedings of the 3rd International Conference on Knowledge Representation and Reasoning, pp. 
661-72. San Mateo, CA: Morgan Kaufmann. 

Good, I. J. (1961). A causal calculus, I. British Journal for the Philosophy of Science 11: 305-18. 
Good, I. J. (1962). A causal calculus, 11. British Journal for the Philosophy of Science 12: 43-51; 13: 88. 
Good, I. J. (1993). A tentative measure of probabilistic causation relevant to the philosophy of the law. 

Journal of Statistical Computation and Simulation 47: 99-105. 
Good, I. J., and Y. Mittal (1987). The amalgamation and geometry of two-by-two contingency tables. An- 

nals of Statistics 15: 694-711. 
Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross spectral methods. 

Econornetrica 37: 424-38. 
Granger, C. W. J. (1988). Causality testing in a decision science. In W. Harper and B. Skyrms (Eds.), Cau- 

sation in Decision, Belief Change and Statistics, vol. I, pp. 1-20. Dordrecht: Kluwer. 
Grayson, D. A. (1987). Confounding confounding. American Journal of Epidemiology 126: 546-53. 
Greene, W. H. (1997). Econometric Analysis. Upper Saddle River, NJ: Prentice-Hall. 
Greenland, S. (1998). Confounding. In P. Armitage and T. Colton (Eds.), Encyclopedia of Biostatistics, pp. 

905-6. New York: Wiley. 
Greenland, S., M. Morgenstern, C. Poole, and J. Robins (1989). Re: Confounding confounding. American 

Journal of Epidemiology 129: 1086-9. 
Greenland, S., and R. Neutra (1980). Control of confounding in the assessment of medical technology. In- 

ternational Journal of Epidemiology 9: 361-7. 
Greenland, S., J. Pearl, and J. M. Robins (1999a). Causal diagrams for epidemiologic research. Epidemiol- 

ogy 10: 37-48. 
Greenland, S., and J. M. Robins (1986). Identifiability, exchangeability, and epidemiological confounding. 

International Journal of Epidemiology 15: 413-19. 
Greenland, S., and J. Robins (1988). Conceptual problems in the definition and interpretation of attributable 

fractions. American Journal of Epidemiology 128: 1185-97. 
Greenland, S., J. M. Robins, and J. Pearl (1999b). Confounding and collapsibility in causal inference. Sta- 

tistical Science 14: 29-46. 
Haavelmo, T. (1943). The statistical implications of a system of simultaneous equations. Econornetrica 11: 

1-12. Reprinted in D. F. Hendry and M. S. Morgan (Eds.), The Foundations of Econometric Analysis, 
pp. 477-490. Cambridge University Press. 

Hall, N. (1998). Tho concepts of causation (submitted). 
Halpern, J. Y. (1998). Axiomatizing causal reasoning. In G. F. Cooper and S. Moral (Eds.), Uncertainty in 

Artijicial Intelligence, pp. 202-10. San Francisco: Morgan Kaufmann. 
Halpern, J. Y., and J. Pear1 (1999). Actual causality. Technical report (no. R-266), Cognitive Systems Lab, 

University of California, Los Angeles. 
Hauck, W. W., J. M. Heuhaus, J. D. Kalbfleisch, and S. Anderson (1991). A consequence of omitted covari- 

ates when estimating odds ratios. Journal of Clinical Epidemiology 44: 77-81. 
Hausman, D. M. (1998). Causal Asymmetries. Cambridge University Press. 
Heckerman, D., D. Geiger, and D. Chickering (1994). Learning Bayesian networks: The combination of 

- knowledge and statistical data. in R. Lopez de Mantaras and D. Poole (Eds.), Uncertainty in Artijicial 
Intelligence, vol. 10, pp. 293-301. San Mateo, CA: Morgan Kaufmann. 

Heckerman, D., A. Mamdani, and M. P. Wellman (1995). Real-world applications of Bayesian networks. 
Communications of the ACM 38: 24-68. 

Heckerman, D., C. Meek, and G. Cooper (1999). A Bayesian approach to causal discovery. In C. Glymour 
and G. Cooper (Eds.), Computation, Causation, and Discovely, pp. 143-67. Cambridge, MA: MIT 
Press. 

Heckerman, D., and R. Shachter (1995). Decision-theoretic foundations for causal reasoning. Journal of 
Artijicial Intelligence Research 3: 405-30. 



Bibliography 

Heckrnan, J. J. (1992). Randomization and social policy evaluation. In C. Manski and I. Garfinkle (Eds.), 
Evaluations: Welfare and Training Programs, pp. 201-30. Cambridge, MA: Harvard University Press. 

Heckman, J. J. (1996). Comment on "Identification of causal effects using instrumental variables." Journal 
of the American Statistical Association 91: 459-62. 

Heckrnan, J. J., and B. E. Honor6 (1990). The empirical content of the Roy model. Econometrica 58: 1121- 
49. 

Heckman, J. J., and E. J. Vytlacil (1999). Local instrumental variables and latent variable models for iden- 
tifying and bounding treatment effects. Proceedings of the National Academy of Sciences, USA 96: 
4730-4. 

Hendry, D. F. (1995). Dynamic Econometrics. New York: Oxford University Press. 
Hendry, D. F,, and M. S. Morgan (1995). The Foundations of Econometric Analysis. Cambridge University 

Press. 
Hennekens, C. H., and J. E. Buring (1987). Epidemiology in Medicine. Boston: Little, Brown. 
Hesslow, G. (1976). Discussion: Two notes on the probabilistic approach to causality. Philosophy of Science 

43: 290-2. 
Hitchcock, C. (1995). The mishap of Reichenbach's fall: Singular vs. general causation. Philosophical Stud- 

ies 78: 257-91. 
Hitchcock, C. R. (1996). Causal decision theory and decision theoretic causation. Nous 30: 508-26. 
Hitchcock, C. (1997). Causation, probabilistic. In Stanford Encyclopedia of Philosophy. Online at (http:/I 

plato.stanford.edu/entries/causation-probabilistic}. 
Hoel, P. G., S. C. Port, and C. J. Stone (1971). Introduction to Probability Theory. Boston: Houghton-Mifflin. 
Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association 81: 

945-60. 
Holland, P. W. (1988). Causal inference, path analysis, and recursive structural equations models. In C. Clogg 

(Ed.), Sociological Methodology, pp. 449-84. Washington, DC: American Sociological Association. 
Holland, P. W. (1995). Some reflections on Freedman's critiques. Foundations of Science 1: 50-7. 
Holland, P. W., and D. B. Rubin (1983). On Lord's paradox. In H. Wainer and S. Messick (Eds.), Principals 

of Modern Psychological Measurement, pp. 3-25. Hillsdale, NJ: Erlbaum. 
Hoover, K. D. (1990). The logic of causal inference. Economics and Philosophy 6: 207-34. 
Hoover, K. (1999). Causality in Macroeconomics. Cambridge University Press. 
Howard, R. A. (1960). Dynamic Programming and Markov Processes. Cambridge, MA: MIT Press. 
Howard, R. A. (1990). From influence to relevance to knowledge. In R. M. Oliver and J. Q. Smith (Eds.), 

Injluence Diagrams, Belief Nets, and Decision Analysis, pp. 3-23. New York: Wiley. 
Howard, R. A., and J. E. Matheson (1981). Influence diagrams. In Principles andApplications of Decision 

Analysis. Menlo Park, CA: Strategic Decisions Group. 
Hume, D. (1739). A Treatise of Human Nature. London: John Noon. 
Hume, D. (174811958). An Enquiry Concerning Human Understanding. Reprinted by Open Court Press 

(LaSalle, IL). 
Humphreys, P., and D. Freedman (1996). The grand leap. British Journal for the Philosophy of Science 47: 

113-23. 
Hurwicz, L, (1962). On the structural form of interdependent systems. In International Congress for Logic, 

Methodology, and Philosophy (Ed.), Logic, Methodology, and Philosophy of Science, pp. 232-9. Stan- 
ford, CA: Stanford University Press. 

Imbens, G. W. (1997). Book reviews. Journal of Applied Econometrics 12: 91-4. 
Imbens, G. W., and J. D. Angrist (1994). Identification and estimation of local average treatment effects. 

Econometrica 62: 467-75. 
Imbens, G. W., and D. R. Rubin (1997). Bayesian inference for causal effects in randomized experiments 

with noncompliance. Annals of Statistics 25: 305-27. 
Intriligator, M. D., R. G. Bodkin, and C. Hsiao (1996). Econometric Models, Techniques, and Applications, 

2nd ed. Saddle River, NJ: Prentice-Hall. 
Isham, V. (1981). An introduction to spatial point processes and Markov random fields. International Sta- 

tistical Review 49: 21-43. 
Iwasaki, Y., and H. A. Simon (1986). Causality in device behavior. Artificial Intelligence 29: 3-32. 



Bibliography 

James, L. R., S. A. Mulaik, and J. M. Brett (1982). Causal Analysis: Assumptions, Models, and Data 
(Studying Organizations, no. 1). Beverly Hills, CA: Sage. 

Jeffrey, R. (1965). The Logic of Decisions. New York: McGraw-Hill. 
Jensen, F. V. (1996). An Introduction to Bayesian Networks. New York: Springer. 
Jordan, M. I. (1998). Learning in Graphical Models, ser. D., vol. 89 (Behavioural and Social Sciences). 

Dordrecht: Kluwer. 
Katsuno, H., and A. 0. Mendelzon (1991). On the difference between updating a knowledge base and revis- 

ing it. In Principles of Knowledge Representation and Reasoning: Proceedings of the 2nd International 
Conference (Boston), pp. 387-94. San Mateo, CA: Morgan Kaufmann. 

Khoury, M. J., W. D. Flanders, S. Greenland, and M. J. Adams (1989). On the measurement of susceptibil- 
ity in epidemiologic studies. American Journal of Epidemiology 129: 183-90. 

Kiiveri, H., T. P. Speed, and J. B. Carlin (1984). Recursive causal models. Journal of the Australian Math- 
ematical Society 36: 30-52. 

Kim, J. (1971). Causes and events: Mackie on causation. Journal of Philosophy 68: 426-71. Reprinted in 
E. Sosa and M. Tooley (Eds.), Causation. Oxford University Press. 

Kim, J. H., and J. Pearl (1983). A computational model for combined causal and diagnostic reasoning in in- 
ference systems. In Proceedings IJCAI-83 (Karlsruhe, Germany), pp. 190-3. San Mateo, CA: Morgan 
Kauffman. 

King, G., R. 0 .  Keohane, and S. Verba (1994). Designing Social Inquiry: ScientiJic Inference in Qualitative 
Research. Princeton, NJ: Princeton University Press. 

Kleinbaum, D. G., L. L. Kupper, and H. Morgenstern (1982). Epidemiologic Research. Belmont, CA: Life- 
time Learning. 

Kline, R. B. (1998). Principles and Practice of Structural Equation Modeling. New York: Guilford. 
Koopmans, T. C. (1950). When is an equation system complete for statistical purposes? In T. C. Koopmans 

(Ed.), Statistical lnference in Dynamic Economic Models (Cowles Commission Monograph no. 10). 
New York: Wiley. Reprinted in D. F. Hendry and M. S .  Morgan (Eds.), The Foundations of Economet- 
ric Analysis, pp. 527-37. Cambridge University Press. 

Koopmans, T. C. (1953). Identification problems in econometric model construction. In W. C. Hood and 
T. C. Koopmans (Eds.), Studies in Econometric Method, pp. 27-48. New York: Wiley. 

Koopmans, T. C., H. Rubin, and R. B. Leipnik (1950). Measuring the equation systems of dynamic econom- 
ics. In T. C. Koopmans (Ed.), Statistical Inference in Dynamic Economic Models (Cowles Commission 
Monograph no. lo), pp. 53-237. New York: Wiley. 

Korb, K. B., and C. S. Wallace (1997). In search of the philosopher's stone: Remarks on Humphreys and 
Freedman's critique of causal discovery. British Journal for the Philosophy of Science 48: 543-53. 

Koster, J. T. A. (1999). On the validity of the Markov interpretation of path diagrams of Gaussian structural 
equations systems with correlated errors. Scandinavian Journal of Statistics 26: 413-31. 

Kramer, M. S., and S. Shapiro (1984). Scientific challenges in the application of randomized trials. Journal 
of the American Medical Association 252: 2739-45. 

Kuroki, M., and M. Miyakawa (1999). Identifiability criteria for causal effects of joint interventions. Jour- 
nal of the Japan Statistical Society. 

Kvart, I. (1986). A Theory of Counte@actuals. Indianapolis, IN: Hackett. 
Laplace, P. S. (1814). Essaiphilosophique sur les probabilites. Paris: Courcier. Reprinted (1912) in English 

(F. W. Truscott and F. L. Emory, Trans.) by Wiley (New York). 
Lauritzen, S. L. (1982). Lectures on Contingency Tables, 2nd ed. Aalborg, Denmark: University of Aalborg 

Press. 
Lauritzen, S. L. (1996). Graphical Models. Oxford, U.K .: Clarendon. 
Lauritzen, S. L., A. P. Dawid, B. N. Larsen, and H. G. Leimer (1990). Independence properties of directed 

Markov fields. Networks 20: 491-505. 
Lauritzen, S. L., and D. J. Spiegelhalter (1988). Local computations with probabilities on graphical struc- 

tures and their application to expert systems [with discussion]. Journal of the Royal Statistical Society, 
Ser. B 50: 157-224. 

Leamer, E. E. (1985). Vector autoregressions for causal inference? Carnegie-Rochester Conference Series 
on Public Policy 22: 255-304. 



Bibliography 

Lee, S., and S. A. Hershberger (1990). A simple rule for generating equivalent models in covariance struc- 
ture modeling. Multivariate Behavioral Research 25: 313-34. 

Lemmer, J. F. (1993). Causal modeling. In D. Heckerman and A. Mamdani (Eds.), Proceedings of the 9th 
Conference on Uncertainty in ArtiJicial Intelligence, pp. 143-51. San Mateo, CA: Morgan Kaufmann. 

LeRoy, S. F. (1995). Causal orderings. In K. D. Hoover (Ed.), Macroeconometrics: Developments, Ten- 
sions, Prospects, pp. 211-27. Boston: Kluwer. 

Levi, I. (1988). Iteration of conditionals and the Ramsey test. Synthese 76: 49-81. 
Lewis, D. (1973a). Causation. Journal of Philosophy 70: 556-67. 
Lewis, D. (1973b). Countedactuals. Cambridge, MA: Harvard University Press. 
Lewis, D. (1973~). Counterfactuals and comparative possibility. In W. L. Harper, R. Stalnaker, and G. 

Pearce (Eds.), If, pp. 57-85. Dordrecht: Reidel. 
Lewis, D. (1976). Probabilities of conditionals and conditional probabilities. Philosophical Review 85: 297- 

315. 
Lewis, D. (1979). Counterfactual dependence and time's arrow. Nous 13: 418-46. 
Lewis, D. (1986). Philosuphical Papers, vol. 11. New York: Oxford University Press. 
Lin, F. (1995). Embracing causality in specifying the indeterminate effects of actions. In Proceedings of the 

14th International Joint Conference on Artijcial Intelligence (IJCAI-95, Montreal). San Mateo, CA: 
Morgan Kaufmann. 

Lindley, D. V., and M. R. Novick (1981). The role of exchangeability in inference. Annals of Statistics 9: 
45-5 8. 

Lucas, R. E., Jr. (1976). Econometric policy evaluation: A critique. In K. Brunner and A. H. Meltzer (Eds.), 
The Phillips Curve and Labor Markets, vol. 1, pp. 19-46. Amsterdam: North-Holland. 

MacCallum, R. C., D. T. Wegener, B. N. Uchino, and L. R. Fabrigar (1993). The problem of equivalent 
models in applications of covariance structure analysis. Psychological Bulletin 114: 185-99. 

Mackie, J. L. (1965). Causes and conditions. American Philosophical Quarterly 214: 261-4. Reprinted in 
E. Sosa and M. Tooley (Eds.), Causation. Oxford University Press 

Mackie, J. L. (1980). The Cement of the Universe: A Study of Causation. Oxford, U.K.: Clarendon. 
Maddala, G. S. (1992). Introduction to Econometrics. New York: Macmillan, 
Manski, C. F. (1990). Nonpararnetric bounds on treatment effects. American Economic Review, Papers and 

Proceedings 80: 319-23. 
Manski, C. F. (1995). IdentiJication Problems in the Social Sciences. Cambridge, MA: Harvard University 

Press. 
Marschak, J. (1950). Statistical inference in economics. In T. Koopmans (Ed.), Statistical Inference in Dy- 

namic Economic Models (Cowles Commission Monograph no. 10). pp. 1-50. New York: Wiley. 
Maudlin, T. (1994). Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics. 

Oxford, U.K.: Blackwell. 
McDonald, R. P. (1997). Haldane's lungs: A case study in path analysis. Multivariate Behavioral Research 

32: 1-38. 
McKim, V. R., and S. P. Turner (Eds.) (1997). Causality in Crisis? South Bend, IN: University of Notre 

Dame Press 
Meek, C. (1995). Causal inference and causal explanation with background knowledge. In P. Besnard and 

S. Hanks (Eds.), Uncertainty in ArriJicial Intelligence, vol. 11, pp. 403-10. San Francisco: Morgan 
Kaufmann . 

Meek, C., and C. Glymour (1994). Conditioning and intervening. British Journal for the Philosophy of Sci- 
ence 45: 1001-21. 

Mesarovic, M. D. (1969). Mathematical theory of general systems and some economic problems. In H. 
W. Kuhn and G. P. Szego (Eds.), Mathematical Systems and Economics, vol. I ,  pp. 93-116. Berlin: 
Springer-Verlag . 

Michie, D. (in press). Adapting Good's q theory to the causation of individual events. In K. Furukawa, D. 
Michie, and S. Muggleton (Eds.), Machine Intelligence, vol. 15. Oxford University Press. 

Miettinen, 0 .  S., and E. F. Cook (1981). Confounding essence and detection. American Journal of Epidemi- 
ology 114: 593-603. 

Mill, J. S. (1843). System of logic, vol. 1. London: John Parker. 



Bibliography 

Mitchell, T. M. (1982). Generalization as search. Artijicial Intelligence 18: 203-26. 
Moertel, C., T. Fleming, E. Creagan, J. Rubin, M. O'Connell, and M. Amek (1985). High-dose vitamin C 

versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy: 
A randomized double-blind comparison. New England Journal of Medicine 312: 137-41. 

Moole, B. R. (1997). Parallel construction of Bayesian belief networks. Master's thesis, Department of 
Computer Science, University of South Carolina, Columbia. 

Mueller, R. 0 .  (1996). Basic Principles of Structural Equation Modeling. New York: Springer. 
Muthen, B. (1987). Response to Freedman's critique of path analysis: Improve credibility by better method- 

ological training. Journal of Educational Statistics 12: 178-84. 
Nayak, P. (1994). Causal approximations. ArtiJicial Intelligence 70: 277-334. 
Neyman, J. (1923). Sur les applications de la thar des probabilities aux experiences Agaricales: Essay des 

principle. Excerpts reprinted (1990) in English (D. Dabrowska and T. Speed, Trans.) in Statistical Sci- 
ence 5: 463-72. 

Niles, H. E. (1922). Correlation, causation, and Wright theory of path coefficients. Genetics 7: 258-73. 
Novick, M. R. (1983). The centrality of Lord's paradox and exchangeability for all statistical inference. In 

H. Wainer and S. Messick (Eds.), Principals of Modem Psychological Measurement. Hillsdale, NJ: 
Erlbaum. 

Nozick, R. (1969). Newcomb's problem and two principles of choice. In N. Rescher (Ed.), Essays in Honor 
of Carl G .  Hempel, pp. 114-46. Dordrecht: Reidel. 

Orcutt, G. I-I. (1952). Toward a partial redirection of econometrics. Review of Economics and Statistics 34: 
195-213. 

Ortiz, C. L., Jr. (1999). Explanatory update theory: Applications of counterfactual reasoning to causation. 
ArtiJicial Intelligence 108: 125-78. 

Otte, R. (1981). A critque of Suppes' theory of probabilistic causality. Synthese 48: 167-89. 
Palca, J. (1989). AIDS drug trials enter new age. Science 246: 19-21. 
Paul, L. A. (1998). Keeping track of the time: Emending the counterfactual analysis of causation. Analysis 

3: 191-8. 
Paz, A., and J. Pearl (1994). Axiomatic characterization of directed graphs. Technical report (no. R-234), 

Computer Science Department, University of California, Los Angeles. Online at (http:Nwww.cs.ucla. 
edul-judeal) . 

Paz, A., J. Pearl, and S. Ur (1996). A new characterization of graphs based on interception relations. Jour- 
nal of Graph Theory 22: 125-36. 

Pearl, J. (1978). On the connection between the complexity and credibility of inferred models. International 
Journal of General Systems 4 :  255-64. 

Pearl, J. (1982). Reverend Bayes on inference engines: A distributed hierarchical approach. In Proceedings 
of the AAAI National Conference on AI (Pittsburgh), pp. 133-6. Online at (http://www.cs.ucla.edu/ 
-judea/) . 

Pearl, J. (1985). Bayesian networks: A model of self-activated memory for evidential reasoning. In Pro- 
ceedings, Cognitive Science Society, pp. 329-34. Greenwich, CT: Ablex. 

Pearl, J. (1988a). Embracing causality in formal reasoning. ArtiJicial Intelligence 35: 259-71. 
Pearl, J. (1988b). Probabilistic Reasoning in Intelligent Systems. San Mateo, CA: Morgan Kaufmann. 
Pearl, J. (1990). Probabilistic and qualitative abduction. In Proceedings of AAAl Spring Symposium on Ab- 

duction (Stanford, CA), pp. 155-8. Menlo Park, CA: AAAI. 
Pearl, J. (1993a). Belief networks revisited. ArtiJicial Intelligence 59: 49-56. 
Pearl, J. (1993b). Comment: Graphical models, causality, and intervention. Statistical Science 8: 266-9. 
Pearl, J. (1993~). On the statistical interpretation of structural equations. Technical report (no. R-200), Com- 

puter Science Department, University of California, Los Angeles. Online at (http:Nwww.cs.ucla.edul 
-judea/). 

Pearl, J. (1994a). From Bayesian networks to causal networks. In A. Gammerman (Ed.), Bayesian Networks 
and Probabilistic Reasoning, pp. 1-31. London: Alfred Walter. 

Pearl, J. (1994b). A probabilistic calculus of actions. In R. Lopez de Mantaras and D. Poole (Eds.), Uncer- 
tainty in ArtiJicial Intelligence, vol. 10, pp. 454-62. San Mateo, CA: Morgan Kaufmann. 

Pearl, J. (1995a). Causal diagrams for empirical research. Biornetrika 82: 669-710. 



Bibliography 

Pearl, J. (1995b). Causal inference from indirect experiments. Artijicial Intelligence in Medicine 7: 561- 
82. 

Pearl, J. (199%). On the testability of causal models with latent and instrumental variables. In P. Besnard 
and S. Hanks (Eds.), Uncertainty in Artificial Intelligence, vol. 11, pp. 435-43. San Mateo, CA: Mor- 
gan Kaufmann. 

Pearl, J. (1996). Structural and probabilistic causality. In D. R. Shanks, K. J. Holyoak, and D. L. Medin 
(Eds.), The Psychology of Learning and Motivation, vol. 34, pp. 393-435. San Diego, CA: Academic 
Press. 

Pearl, J. (1998a). Graphs, causality, and structural equation models. Sociological Methods and Research 
27: 226-84. 

Pearl, J. (1998b). On the definition of actual cause. Technical report (no. R-259), Department of Computer 
Science, University of California, Los Angeles. 

Pearl, J. (1999). Probabilities of causation: Three counterfactual interpretations and their identification. To 
appear in Synthese 121. 

Pearl, J., and R.  Dechter (1996). Identifying independencies in causal graphs with feedback. In E. Horvitz 
and F. Jensen (Eds.), Proceedings of the 12th Conference on Uncertainty in Artijicial Intelligence, pp. 
240-6. San Francisco: Morgan Kaufmann. 

Pearl, J., and P. Meshkat (1998). Testing regression models with fewer regressors. In D. Heckerman and J. 
Whittaker (Eds.), Artijicial Intelligence and Statistics. San Francisco: Morgan Kaufmann. 

Pearl, J., and A. Paz (1987). Graphoids: A graph-based logic for reasoning about relevance relations. In B. 
Du Boulay et al. (Eds.), Advances in Artijicial Intelligence, vol. 11, pp. 357-63. Amsterdam: North- 
Holland. 

Pearl, J., and J. M. Robins (1995). Probabilistic evaluation of sequential plans from causal models with hid- 
den variables. In P. Besnard and S. Hanks (Eds.), Uncertainty in Artijicial Intelligence, vol. 11, pp. 
444-53. San Francisco: Morgan Kaufmann. 

Pearl, J., and T. Verma (1987). The logic of representing dependencies by directed acyclic graphs. In Pro- 
ceedings of the 6th National Conference on A1 (AAAI-87, Seattle, WA), pp. 374-9. San Mateo, CA: 
Morgan Kaufmann. 

Pearl, J., and T. Verma (1991). A theory of inferred causation. In J. A. Allen, R. Fikes, and E. Sandewall 
(Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the 2nd International 
Conference, pp. 441-52. San Mateo, CA: Morgan Kaufmann. 

Pearson, K., A. Lee, and L. Bramley-Moore (1899). Genetic (reproductive) selection: Inheritance of fertil- 
ity in man. Philosophical Transactions of the Royal Society, Ser. A 73: 534-9. 

Peng, Y., and J. A. Reggia (1986). Plausibility of diagnostic hypotheses. In Proceedings of the 5th National 
Conference on A1 (AAAI-86, Philadelphia), pp. 140-5. San Mateo, CA: Morgan Kaufmann. 

Poole, D. (1985). On the comparison of theories: Prefemng the most specific explanations. In Proceedings 
of International Conference on Artijicial Intelligence (IJCAI-85, Los Angeles), pp. 144-7. San Mateo, 
CA: Morgan Kaufmann. 

Popper, K. R. (1959). The Logic of Scient$c Discovery. New York: Basic Books. 
Pratt, J. W., and R. Schlaifer (1988). On the interpretation and observation of laws. Journal of Econometrics 

39: 23-52. 
Price, H. (1991). Agency and probabilistic causality. British Journal for the Philosophy of Science 42: 157- 

76. 
Price, H. (1996). Tim's  arrow and Archimedes' point: New directions for the physics of time. New York: 

Oxford University Press. 
Program [Lipid Research Clinic Program] (1984). The Lipid Research Clinics Coronary Primary Preven- 

tion Trial results, parts I and 11. Journal of the American Medical Association 251: 351-74. 
Quandt, R. E. (1958). The estimation of the parameters of a linear regression system obeying two separate 

regimes. Journal of the American Statistical Association 53: 873-80. 
Reichenbach, H. (1956). The Direction of Eme. Berkeley: University of California Press. 
Reiter, R. (1987). A theory of diagnosis from first principles. Artijicial Intelligence 32: 57-95. 
Richard, J. F. (1980). Models with several regimes and changes in exogeneity. Review of Economic Studies 

47: 1-20. 



Bibliography 

Richardson, T. (1996). A discovery algorithm for directed cyclic graphs. In E. Horvitz and F. Jensen (Eds.), 
Proceedings of the 12th Conference on Uncertainty in ArtiJicial Intelligence, pp. 454-61. San Fran- 
cisco: Morgan Kaufmann. 

Robert, C. P., and G. Casella (1999). Monte Carlo Statistical Methods. New York: Springer-Verlag. 
Robertson, D. W. (1997). The common sense of cause in fact. Texas Law Review 75: 1765-1800. 
Robins, J. M. (1986). A new approach to causal inference in mortality studies with a sustained exposure 

period - applications to control of the healthy worker survivor effect. Mathematical Modeling 7: 1393- 
1512. 

Robins, J. M. (1987). Addendum to "A new approach to causal inference in mortality studies with sus- 
tained exposure periods - applications to control of the healthy worker survivor effect." Computers 
and Mathematics, with Applications 14: 923-45. 

Robins, J. M. (1989). The analysis of randomized and non-randomized AIDS treatment trials using a new 
approach to causal inference in longitudinal studies. In L. Sechrest, H. Freeman, and A. Mulley (Eds.), 
Health Service Research Methodology: A Focus on AIDS, pp. 113-59. Washington, DC: U.S. Public 
Health Service. 

Robins, J. M. (1993). Analytic methods for estimating HIV treatment and cofactors effects. In D. G. Os- 
trow and R. Kessler (Eds.), Methodological Issues in AIDS Behavioral Research, pp. 213-90. New 
York: Plenum. 

Robins, J. M. (1995). Discussion of "Causal diagrams for empirical research by J. Pearl. Biometrika 82: 
695-8. 

Robins, J. M. (1997). Causal inference from complex longitudinal data. In Latent Variable Modeling with 
Applications to Causality, pp. 69-117. New York: Springer-Verlag. 

Robins, J. M. (1999). Testing and estimation of directed effects by reparameterizing directed acyclic with 
structural nested models. In C. Glymour and G. Cooper (Eds.), Computation, Causation, and Discov- 
ery. Cambridge, MA: MIT Press. 

Robins, J. M., D. Blevins, G. Ritter, and M. Wulfsohn (1992). g-estimation of the effect of prophylaxis ther- 
apy for pneumocystis carinii pneumonia on the survival of AIDS patients. Epidemiology 3: 319-36. 

Robins, J. M., and S. Greenland (1989). The probability of causation under a stochastic model for individ- 
ual risk. Biometries 45: 1125-38. 

Robins, J. M., and S. Greenland (1992). Identifiability and exchangeability for direct and indirect effects. 
Epidemiology 3: 143-55. 

Robins, J. M., and L. Wasserman (1999). On the impossibility of inferring causation from association with- 
out background knowledge. In C. N. Glymour and G. F. Cooper (Eds.), Computation, Causation, and 
Discovery, pp. 305-21. Cambridge, MA: AAAI / MIT Press. 

Rosenbaum, P. R. (1984). The consequences of adjustment for a concomitant variable that has been affected 
by the treatment. Journal of the Royal Statistical Society, Ser. A 147: 656-66. 

Rosenbaum, P. R. (1995). Observational Studies. New York: Springer-Verlag. 
Rosenbaum, P., and D. Rubin (1983). The central role of propensity score in observational studies for causal 

effects. Biometrika 70: 41-55. 
Rothman, K. J. (1976). Causes. American Journal of Epidemiology 104: 587-92. 
Rothman, K. J. (1986). Modem Epidemiology. Boston: Little, Brown. 
Rothman, K. J., and S. Greenland (1998). Modern Epidemiology, 2nd ed. Philadelphia: Lippincott-Raven. 
Roy, A. D. (1951). Some thoughts on the distribution of earnings. Oxford Economic Papers 3: 135-46. 
Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. 

Journal of Educational Psychology 66: 68&701. 
Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomization. Annals of Statistics 

6: 34-58. 
Rubin, D. B. (1990). Formal models of statistical inference for causal effects. Journal of Statistical Plan- 

ning and Inference 25: 279-92. 
Salmon, W. C. (1984). Scient@c Explanation and the Causal Structure of the World. Princeton, NJ: Prince- 

ton University Press. 
Salmon, W. C. (1998). Causality and Explanation, New York: Oxford University Press. 
Sandewall, E. (1994). Features and Fluents, vol. 1. Oxford, U.K.: Clarendon. 



Bibliography 

Savage, L. J. (1954). The Foundations of Statistics. New York: Wiley. 
Schlesselman, J. J. (1982). Case-Control Studies: Design Conduct Analysis. New York: Oxford University 

Press. 
Schumaker, R. E., and R. G. Lomax (1996). A Beginner's Guide to Structural Equation Modeling. Mah- 

wah, NJ: Erlbaum. 
Serrano, D., and D. C. Gossard (1987). Constraint management in conceptual design. In D. Sriram and R. 

A. Adey (Eds.), Knowledge Based Expert Systems in Engineering: Planning and Design, pp. 211-24. 
Boston: Computational Mechanics Publications. 

Shachter, R. D. (1986). Evaluating influence diagrams. Operations Research 34: 871-82. 
Shachter, R. D., S. K. Andersen, and P. Szolovits (1994). Global conditioning for probabilistic inference in 

belief networks. In R. Lopez de Mantaras and D. Poole (Eds.), Uncertainty in Artificial Intelligence, 
pp. 514-24. San Francisco: Morgan Kaufmann. 

Shafer, G. (1996a). The Art of Causal Conjecture. Cambridge, MA: MIT Press. 
Shafer, G. (1996b). Probabilistic Expert Systems. Philadelphia: Society for Industrial and Applied Mathe- 

matics. 
Shafer, G. (1997). Advances in the understanding and use of conditional independence. Annals of Mathe- 

matics andArtificia1 Intelligence 21: 1-11. 
Shapiro, S. H. (1997). Confounding by indication? Epidemiology 8: 110-11. 
Shep, M. C. (1958). Shall we count the living or the dead? New England Journal of Medicine 259: 1210-14. 
Shimony, S. E. (1991). Explanation, irrelevance and statistical independence. In Proceedings of the 9th Con- 

ference on Artificial Intelligence (AAAI-91, Anaheim, CA), pp. 482-7. Boston: AAAI / MIT Press. 
Shimony, S. E. (1993). Relevant explanations: Allowing disjunctive assignments. In D. Heckerman and 

A. Mamdani (Eds.), Proceedings of the 9th Conference on Uncertainty in Artjficial Intelligence, pp. 
200-7. San Mateo, CA: Morgan Kaufmann. 

Shipley, B. (1997). An inferential test for structural equation models based on directed acyclic graphs and 
its nonparametric equivalents. Technical report, Department of Biology, University of Sherbrooke, 
Quebec. 

Shoharn, Y. (1988). Reasoning about Change: Eme and Causation from the Standpoint of Artijicial Intel- 
ligence. Cambridge, M A :  MIT Press. 

Simon, H. A. (1953). Causal ordering and identifiability. In W. C. Hood and T. C. Koopmans (Eds.), Studies 
in Econometric Method, pp. 49-74. New York: Wiley. 

Simon, H. A., and N. Rescher (1966). Cause and counterfactual, Philosophy and Science 33: 323-40. 
Simpson, E. H. (1951). The interpretation of interaction in contingency tables. Journal of the Royal Statis- 

tical Society, Ser. B 13: 238-41. 
Sims, C. A. (1977). Exogeneity and causal ordering in macroeconomic models. In New Methuds in Busi- 

ness Cycle Research: Proceedings from a Conference (November 1975), pp. 23-43. Minneapolis, MN: 
Federal Reserve Bank. 

Singh, M., and M. Valtorta (1995). Construction of Bayesian network structures from data - A brief survey 
and an efficient algorithm. International Journal of Approximate Reasoning 12: 111-31. 

Skyrms, B. (1980). Causal Necessity. New Haven, CT: Yale University Press. 
Sobel, M. E. (1990). Effect analysis and causation in linear structural equation models. Psychometrika 55: 

495-515. 
Sobel, M. E. (1998). Causal inference in statistical models of the process of socioeconomic achievement. 

Sociological Methods and Research 27: 318-48. 
Sober, E. (1985). Two concepts of cause. In P. Asquith and P. Kitcher (Eds.), PSA: Proceedings of the 

Biennial Meeting of the Philosophy of Science Association, vol. 11, pp. 405-24. East Lansing, MI: 
Philosophy of Science Association. 

Sober, E., and M. Barrett (1992). Conjunctive forks and temporally asymmetric inference. Australian Jour- 
nal of Philosophy 70: 1-23. 

Somrner, A., I. Tarwotjo, E. Djunaedi, K. P. West, A. A. Loeden, R. Tilden, and L. Mele (1986). Impact 
of vitamin A supplementation on childhood mortality: A randomized controlled community trial. The 
Lancet i: 1169-73. 



Bibliography 

Sosa, E., andM. Tooley (Eds.) (1993). Causation (Oxford Readings in Philosophy). Oxforduniversity Press. 
Spiegelhalter, D. J., S. L. Lauritzen, P. A. Dawid, and R. G. Cowell (1993). Bayesian analysis in expert 

systems [with discussion]. Statistical Science 8: 219-83. 
Spirtes, P. (1995). Directed cyclic graphical representation of feedback. In P. Besnard and S. Hanks (Eds.), 

Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, pp. 491-8. San Mateo, 
CA: Morgan Kaufmann. 

Spirtes, P., and C. Glymour (1991). An algorithm for fast recovery of sparse causal graphs. Social Science 
Computer Review 9: 62-72. 

Spirtes, P., C. Glymour, and R. Scheines (1993). Causation, Prediction, and Search. New York: Springer- 
Verlag. 

Spirtes, P., C. Meek, and T. Richardson (1995). Causal inference in the presence of latent variables and 
selection bias. in P. Besnard and S. Hanks (Eds.), Uncertainty in Artificial Intelligence, vol. 1 1 ,  pp. 
499-506. San Francisco: Morgan Kaufmann. 

Spirtes, P., and T. Richardson (1996). A polynomial time algorithm for determinant DAG equivalence in 
the presence of latent variables and selection bias. Proceedings of the 6th International Workshop on 
Art@cial Intelligence and Statistics (January 4-7, Fort Lauderdale, FL). 

Spirtes, P., T. Richardson, C. Meek, R. Scheines, and C. Glymour (1996). Using d-separation to calculate 
zero partial correlations in linear models with correlated errors. Technical report (no. CMU-PHIL-72), 
Department of Philosophy, Carnegie-Mellon University, Pittsburgh. 

Spirtes, P., T. Richardson, C. Meek, R. Scheines, and C. Glymour (1998). Using path diagrams as a struc- 
tural equation modelling tool. Sociological Methods and Research 27: 182-225. 

Spirtes, P., and T. Verma (1992). Equivalence of causal models with latent variables. Technical report (no. 
CMU-PHIL-33), Carnegie-Mellon University, Pittsburgh. 

Spohn, W. (1980). Stochastic independence, causal independence, and shieldability. Journal of Philosoph- 
ical Logic 9: 73-99. 

Spohn, W. (1983). Deterministic and probabilistic reasons and causes. Erkenntnis 19: 371-96. 
Stalnaker, R. C. (1968). A theory of conditionals. In N. Rescher (Ed.), Studies in Logical Theory (Ameri- 

can Philosophical Quarterly Monograph Series, vol. 2). Oxford, U.K.: Blackwell. Reprinted in W. L. 
Harper, R. Stalnaker, and G. Pearce (Eds.), Ifs, pp. 41-55. Dordrecht: Reidel. 

Stalnaker, R. C. (1972). Letter to David Lewis, 1972. In W. L. Harper, R. Stalnaker, and G. Pearce (Eds.), 
vs, pp. 151-2. Dordrecht: Reidel. 

Stelzl, I. (1986). Changing a causal hypothesis without changing the fit: Some rules for generating equiva- 
lent path models. Multivariate Behavioral Research 21: 309-31. 

Steyer, R., S. Gabler, and A. A. Rucai (1996). Individual causal effects, average causal effects, and uncon- 
foundedness in regression models. In F. Faulbaum and W. Bandilla (Eds.), Softstat-95, Advances in 
Statistical Sofnyare 5 ,  pp. 203-10. Stuttgart: Lucius & Lucius. 

Steyer, R., A. A. von Davier, S, Gabler, and C. Schuster (1997). Testing unconfoundedness in linear regres- 
sion models with stochastic regressors. In W. Bandilla and F. Faulbaum (Eds.), SofStat-97, Advances 
in Statistical Software 6 ,  pp. 377-84. Stuttgart: Lucius & Lucius. 

Stone, R. (1993). The assumptions on which causal inferences rest. Royal Statistical Society 55: 455-66. 
Strotz, R. H., and H. 0. A. Wold (1960). Recursive versus nonrecursive systems: An attempt at synthesis. 

Econornetrica 28: 417-27. 
Suermondt, H. J., and G. F. Cooper (1993). An evaluation of explanations of probabilistic inference. Com- 

puters and Biomedical Research 26: 242-54. 
Suppes, P. (1970). A Probabilistic Theory of Causality. Amsterdam: North-Holland. 
Suppes, P. (1988). Probabilistic causality in space and time. In B. Skyrms and W. L. Harper (Eds.), Causa- 

tion, Chance, and Credence. Dordrecht: Kluwer. 
Suppes, P., and M. Zaniotti (1981). When are probabilistic explanations possible? Synthese 48: 191-9. 
Tian, J., A. Paz, and J. Pearl (1998). Finding minimal separating sets. Technical report (no. R-254), Uni- 

versity of California, Los Angeles. 
Tversky, A ., and D. Kahneman (1980). Causal schemata in judgments under uncertainty. In M . Fishbein 

(Ed.), Progress in Social Psychology, pp. 49-92. Hillsdale, NJ: Erlbaum. 



Bibliography 

Verma, T. S. (1993). Graphical aspects of causal models. Technical report (no. R-191), Computer Science 
Department, University of California, Los Angeles. 

Verma, T., and J. Pearl (1988). Causal networks: Semantics and expressiveness. In Proceedings of the 4th 
Workshop on Uncertainty in Artificial Intelligence (Mountain View, CA), pp. 352-9. Reprinted in R. 
Shachter, T. S. Levitt, and L. N. Kanal (Eds.), Uncertainty in Artijicial Intelligence, vol. 4, pp. 69-76. 
Amsterdam: Elesevier. 

Verma, T., and J. Pearl (1990). Equivalence and synthesis of causal models. In Proceedings of the 6th Con- 
ference on Uncertainty in Artificial Intelligence (July, Cambridge, MA), pp. 220-7. Reprinted in P. 
Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer (Eds.), Uncertainty in Artijicial Intelligence, 
vol. 6, pp. 255-68. Amsterdam: Elsevier. 

Verma, T., and J. Pearl (1992). An algorithm for deciding if a set of observed independencies has a causal 
explanation. In D. Dubois, M. P. Wellman, B. D'Ambrosio, and P. Smets (Eds.), Proceedings of the 8th 
Conference on Uncertainty in ArtijTcial Intelligence, pp. 323-30. Stanford, CA: Morgan Kaufmann. 

Vovk, V. G. (1996). Another semantics for Pearl's action calculus. In Computational Learning and Pmba- 
bilistic Reasoning, pp. 124-44. New York: Wiley. 

Wainer, H. (1989). Eelworms, bullet holes, and Geraldine Ferraro: Some problems with statistical adjust- 
ment and some solutions. Journal of Educational Statistics 14: 121-40. 

Waldmann, M. R., K. J. Holyoak, and A. Fratiannea (1995). Causal models and the acquisition of category 
structure. Journal of Experimental Psychology 124: 181-206. 

Weinberg, C. R. (1993). Toward a clearer definition of confounding. American Journal of Epidemiology 
137: 1-8. 

Wermuth, N. (1987). Parametric collapsibility and the lack of moderating effects in contingency tables with 
a dichotomous response variable. Journal of the Royal Statistical Society, Ser. B 49: 353-64. 

Wermuth, N. (1992). On block-recursive regression equations [with discussion]. Brazilian Journal of Prob- 
ability and Statistics 6: 1-56. 

Wermuth, N., and S. L. Lauritzen (1983). Graphical and recursive models for contingency tables. Biometrika 
70: 537-52. 

Wermuth, N., and S. L. Lauritzen (1990). On substantive research hypotheses, conditional independence 
graphs and graphical chain models [with discussion]. Journal of the Royal Statistical Society, Ser. B 
52: 21-72. 

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Chichester, U.K.: Wiley. 
Whittemore, A. S. (1978). Collapsibility of muItidimensiona1 contingency tables. Journal of the Royal Sta- 

tistical Society, Ser. B 40: 328-40. 
Wickramaratne, P. J., and T. R. Holford (1987). Confounding in epidemiologic studies: The adequacy of 

the control group as a measure of confounding. Biornetrics 43: 751-65. 
Winship, C., and S. L. Morgan (1999). The estimation of causal effects from observational data. Annual 

Review of Sociology 25: 659-707. 
Winslett, M. (1988). Reasoning about action using a possible worlds approach. In Proceedings of the 7th 

National Conference on Artijicial Intelligence (Minneapolis, MN), pp. 89-93. Menlo Park, CA: Mor- 
gan Kaufmann. 

Woodward, J. (1990). Supervenience and singular causal claims. In D. Knowles (Ed.), Explanation and its 
Limits, pp. 211-46. Cambridge University Press. 

Woodward, J. (1995). Causation and explanation in econometrics. In D. Little (Ed.), On the Reliability of 
Economic Models, pp. 9-61. Boston: Kluwer. 

Woodward, J. (1997). Explanation, invariance and intervention. Philosophy of Science 64: 526-S41. 
Wright, P. G. (1928). The Tarzfon Animal and Vegetable Oils. New York: Macmillan. 
Wright, R. W. (1988). Causation, responsibility, risk, probability, naked statistics, and proof: Pruning the 

bramble bush by clarifying the concepts. Iowa Law Review 73: 1001-77. 
Wright, S. (1921). Correlation and causation. Journal of Agricultural Research 20: 557-85. 
Wright, S. (1923). The theory of path coefficients: A reply to Niles' criticism. Genetics 8: 239-55. 
Wright, S. (1925). Corn and hog correlations. Technical report (no. 1300), U.S. Department of Agriculture, 

Washington, DC. 



Bibliography 

Wu, D. M. (1973). Alternative tests of independence between stochastic regressors and disturbances. Econo- 
metrica 41: 733-50. 

Yanagawa, T. (1984). Designing case-contol studies. Environmental Health Perspectives 32: 219-25. 
Yule, G. U. (1903). Notes on the theory of association of attributes in statistics. Biometn'ka 2: 121-34. 
Zidek, J. (1984). Maximal Simpson disaggregations of 2 x 2 tables. Biometrika 71: 187-90. 



Name Index 

Adarns, E., 225 
Adarns, M. J., 284,292 
Ader, H., 171 
Agresti, A., 176 
Aldrich, J., 28,63,97, 165,171,174,183,199 
Ames, M ., 95 
Andersen, S. K., 21 
Anderson, S., 183 
Andersson, S. A., 51,141,148 
Angrist, J. D., 90,102, 170,243-5, 247-8,261,269 

Bagozzi, R. P., 149 
Baldwin, R., 329 
Balke, A., 37, 90, 96, 202, 205, 213, 217, 264, 

267-71,275,281,305 
Barigelli, B., 177 
Barrett, M., 58 
Bayes, T., 14,73,96,224 
Becher, H., 183,199 
Bell, J. S., 275 
Bentler, P., 144, 152, 171 
Berkson, J., 17,21,163 
Bertsekas, D. P., 76 
Bickel, P. J., 128, 130 
Bishop, Y. M. M ., 177,199 
Blalock, H. M., 138 
Blevins, D., 95 
Bloom, N. S., 269 
Blumer, A., 46 
Blyth, C. R., 174,177,181 
Bodkin, R. G., 136 
Bohr, N., 257 
Bollen, K. A., 135,141,144,148,152,159,164-5 
Bonet, B., 236 
Born, M., 257 
Bowden, R. J., 90,153,169,247 
Brarnley-Moore, L., 176 
Breckler, S. J., 148 
Breslow, N. E., 194, 285 
Brett, J. M., 135,159 

Brown, J. S., 226 
Buring, J. E., 285,292 
Burnkrant, R. E., 149 

Carlin, J. B., 14,19,30,141 
Cartwright, N., 41,43, 60,62,127-8, 136, 160-1, 

175,221-2,249,254-7,297,310,314 
Casella, G., 277 
Chajewska, U., 221 
Cheng, P. W., 253,292,300,308 
Chickering, D. M., 41, 51,60, 146,275, 277,281 
Chou, C. P., 144,152 
Christ, C., 169, 289 
Cliff, N., 43 
Cochran, W. G., 66 
Cohen, M. R., 176 
Cole, P., 285,292 
Cook, E. F., 196 
Cooper, G. F., 21,41,60,64,221 
Cowell, R. G., 21 
Cox, D. R., 14,22,25,76,78, 81,93,97, 119,141, 

185,341 
Crhmer, H., 141 
Creagan, E., 95 
Cushing, J. T., 275 

Darlington, R. B., 139 
Damell, A. C., 165,167 
Darwiche, A., 207 
Davidson, R., 39 
von Davier, A. A., 199 
Dawid, A. P., 11, 18, 21,34, 78, 105,206,220,264, 

281,297,302,341 
Day, N. E., 194,285 
Dean, T. L., 76 
Dechter, R., 21,96,227 
De Finetti, B., 178-9, 196 
De Kleer, J., 226 
Dempster, A. P., 25 
Descartes, R., 335,350 



Name Index 

Dhrymes, P. J. 169,247 
Djunaedi, E., 278 
Dong, J., 176 
Dor, D., 51 
Druzdzel, M. J., 31, 226 
Duncan, 0. D., 26,134,138 

Eells, E., 43, 48,62, 175, 222, 249, 251-2, 254-5, 
297,310 

Efron, B., 260, 270 
Ehrenfeucht, A ., 46 
Einstein, A., 257 
Engle, R. F., 39,97, 165,167-9,183, 245 
Epstein, R .  J., 138 
Eshghi, K., 208 
Everitt, B., 176 

Fabrigar, L. R., 148 
Feldman, D., 260,270 
Feller, W., 2 
Fienberg, S. E., 72, 177 
Fikes, R. E., 114,225 
Fine, K., 112,204, 239 
Finkelstein, M. O., 299 
Fisher, F. M., 32,70,96,204 
Fisher, R. A., 43,340,348,353 
Flanders, W. D., 284,292 
Fleiss, J. L., 287 
Fleming, T., 95 
Fratiannea, A ., 60 
Freedman, D. A., 41,63,97-8,105,134,148,164 
Frisch, R., 68 
Frydenberg, M., 19 

Gabler, S., 183, 199 
Gail, M. H., 183 
Galieo, G., 334-6, 342 
Galles, D., 86, 114, 116-7, 131, 202, 204, 222, 

230-1,235-7,243,248,295 
Galton, F., 339 
Gardenfors, P., 43,112,242 
Geffner, H., 225 
Geiger, D., 12,18,41,60,104,142,234 
Geng, Z., 199 
Gibbard, A., 99,100,108,112,181,229,240 
Ginsberg, M. L., 239-40 
Glymour, C., 16, 18, 30,41,48, 50, 52,60,63,70, 

72, 79,83,86, 108-9,142, 148,150, 175, 179, 
200,204,300,308,329 

Goldberger, A. S., 28,69,97,104,134,136,148, 
171,215,244 

Goldszmidt, M., 70, 72-3,109,240 
Golish, R., 329 
Good, I. J., 42, 55,74, 177, 222,249, 254,283-4, 

297,308,310,328-9 
Gossard, D. C., 227 
Granger, C. W. J., 39,56 
Grayson, D. A., 78,183,194,199 

Greene, W. H., 165 
Greenland, S., 7, 80, 165, 175, 183, 185, 187, 190, 

193-200,257,284-5,290,292,301,308,314 

Haavelmo, T., 26,68,134-5, 137,158 
Hagenaars, J., 171 
Hall, N., 202, 313,316,325,329 
Halpern, J. Y., 202-3,221,231,257,318,320,329 
Hammel, E. A., 128,130 
Harper, L., 99-100,108,112,181,229,240 
Hauck, W. W., 183 
Hausman, D. M., 254, 310 
Haussler, D., 46 
Heckerrnan, D., 21,41,60,64,264-5,305 
Heckrnan, J. J., 98, 165, 171, 229, 243,248, 260, 

269,281 
Heisenberg, W., 220,257 
Hendry, D. F., 39,97,136,162,165,167-9,183,245 
Hennekens, C. H., 285,292 
Hershberger, S. A., 146 
Herskovits, E., 41, 60, 64 
Hesslow, G., 127,254 
Heuhaus, J. M., 183 
Hitchcock, C. R., 108-9,310 
Hoel, P. G., 2 
Holford, T. R., 196 
Holland, P. W., 35 43,54,98,102,134,137-8,162, 

175,177,229,244-5,257,263 
Hollander, M ., 281 
Holyoak, K. J., 60 
Honork, B. E., 243 
Hoover, K., 72,160,171,314 
Howard, R. A., 19,76,111 
Hsiao, C., 136 
Hume, D., 41,228,238,249,336,343 
Humphreys, P., 41 
Hurwicz, L., 160 

Imbens, G. W., 90,102,170,243,244-5.247-8, 
261,265,269,275,281 

Intriligator, M. D., 136 
Isham, V., 14 
Iwasaki, Y., 226 

Jacobsen, S., 281 
James, L. R., 135,159 
Jeffrey, R., 108-9 
Jensen, F. V., 20 
Jordan, M. I ., 41 

Kahneman, D., 22 
Kalbfleisch, J. D., 183 
Katsuno, H., 239,242 
Keohane, R. O., 25 
Khoury, M. J., 284, 292 
Kiiveri, H., 14,19, 30, 141 
Kim, J. H., 17,20,314 
King, G., 25 



Name Index 

Kleinbaum, D. G., 194 
Kline, R. B., 164 
Koopmans, T. C., 135,137,154,247 
Korb, K. B., 41 
Koster, J. T. A., 142, 200 
Kowalski, R. A., 208 
Kramer, M. S., 260 
Kupper, L. L., 194 
Kuroki, M., 126 
Kvart, I., 222, 254,329 

Laplace, P. S., 26-7,96, 257 
Larsen, B. N., 18 
Lauritzen, S. L., 14,16,18-22,105,141,281 
Leamer, E. E., 136,165,167,171,183 
Lee, A., 176 
Lee, S., 146 
Leimer, H. G., 18 
Leipnik, R. B., 154 
Lemmer, J. F., 62 
LeRoy, S. F., 136 
Levi, I., 225 
Levin, B., 299 
Lewis, D., 34, 37, 70, 112, 201-2, 225, 238-42, 

309,311,313-15 
Liebniz, G. W., 336 
Lin, F., 225 
Lindley, D. V., 176-80,196 
Lister, A., 329 
Lloyd, S., 59 
Loeden, A. A., 278 
Lomax, R. G., 136 
Lucas, R. E., 28,137 

MacCallum, R. C., 148 
Mackie, J. L., 283,313-15, 321 
MacKinnon, J. G., 39 
Maddala, G. S., 167-8 
Madigan, D., 51,141, 148 
Mamdani, A., 21 
Manski, C. F., 90,98,229,243,268,281 
Marschak, J., 70,137,158,160,204 
Matheson, J. E., 19, 111 
Maudlin, T., 26 
McCarthy, J., 350 
McDonald, R. P., 143,163, 171 
McKim, V. R., 41 
McMullin, E ., 275 
Meek, C., 51,61,64,108-9,142,146,150,175,179 
Mele, L., 278 
Mendelowitz, E., 329 
Mendelzon, A. O., 239,242 
Mesarovic, M. D,, 160 
Meshkat, P., 143,286, 329 
Michie, D., 284,308, 328 
Miettinen, 0. S., 196 
Mill, J. S., 238, 283, 313 
Mitchell, T. M., 60 

Mittal, Y., 177 
Miyakawa, M., 126 
Moertel, C., 95 
Moole, B. R., 51 
Morgan, M. S., 169 
Morgan, S. L., 243 
Morgenstern, H., 194 
Mueller, R. O., 164 
Mulaik, S. A., 135, 159, 171 
Muthen, B., 137, 159 

Nagel, E., 176 
Nayak, P., 227 
Neutra, R., 185,187 
Neyrnan, J., 66,96,98,102,134,180,201,205,243 
Niles, H. E., 176 
Nilsson, N. J., 114, 225 
Novick, M. R., 108,176-80,196 
Nozick, R., 108 

Occam, W., 42-3,46 
O'Connell, J. W.,128, 130 
O'Connell, M., 95 
Orcutt, G. H., 169,247 
Ortiz,, C. L., 202 
Otte, R., 249 

Palca, J., 260 
Paul, L. A., 327 
Paz, A., 11-2,80,118,234,236-7 
Pearl, J., 2, 11-12, 14-22, 30-1, 37,41,46-51, 55, 

57,59,68,70,72-3,79-81,85-6,90-1,95-6, 
101, 104-5, 109, 111, 113-14, 116-18, 121, 
123, 125-6,142-3,146,148, 150, 175,183, 
190,198-200,202,204-5,213,217,221-2, 
227,230-2,234-7,240,243-4,247-8,252, 
263-4, 26&9,271, 275, 277, 295, 305, 
31648,320,324,329 

Pearl, M ., 200,308 
Pearson, K., 78,105,174,176, 339-41, 354-5,358 
Peng, Y., 221 
Perlman, M. D., 51,141,148 
Poole, D., 225 
Popper, K. R., 46 
Port, S. C., 2 
Pratt, J. W., 7&9,93,97, 175,244 
Price, H., 59,109 

Quandt, R. E., 98 

Reggia, J. A., 221 
Reichenbach, H., 30,42-3,55,58-9,61,249 
Reiter, R., 225 
Rescher, N., 202,205 
Richard, J. F., 39,97,138,162, 165, 167-9, 183,245 
Richardson, T., 61,141, 142, 146-8, 150 
Ritter, G., 95 
Robert, C. P., 277 
Robertson, D. W., 284,308 



Name Index 

Robins, J. M., 35, 41, 72, 80, 86, 90-1, 95, 99, 
102-5,118-19,120-1,123,125-6,131,134,165, 
175,183,187,189-90,192,196-200,202,229, 
243-4,257,268,281,284-5,290,292,301 

Roizen, I., 329 
Rosenbaum, P. R., 70,78, 80,87,92-3,95, 100, 

229,246,289 
Rothman, K. J., 7,183,194-6,314 
Roy, A. D., 98 
Rubin, D. B., 35, 66,70, 78, 80,87,90, 92,95-6, 

98,100, 102, 134, 170, 175, 180, 185, 201,205, 
243-8,257,261,265,275,289 

Rubin, H., 154 
Rubin, J., 95 
Rucai, A. A., 183 
Russell, B., 337-8,343, 349 

Salmon, W. C., 58,62,235,249,264 
Sandewall, E., 225 
Savage, L. J., 109,181 
Scheines, R., 16, 18, 30,41,48, 52, 60,63, 70, 72, 

79, 83, 86, 142, 148, 150, 175,200,204 
Schlaifer, R., 78-9,93,97, 175, 244 
Schlesselman, J. J., 183, 292 
Schumaker, R. E., 136 
Schuster, C., 199 
Schwartz, G., 329 
Scozzafava, R., 177 
Serrano, D., 227 
Shachter, R. D., 21,111,264-5, 305 
Shafer, G., 21,25,255, 257 
Shapiro, S. H., 78,260 
Shep, M. C., 292 
Shimony, S. E., 221 
Shipley, B., 142,200 
Shoham, Y., 42 
Simon, H. A,, 31, 68,70, 137,154, 158, 160, 171, 

202,204-5,226-8,257,328-9 
Simpson, E. H., 78,139,173-80,354 
Sims, C. A., 160 
Singh, M., 41 
Skyrms, B., 43,62,74,108,220,249 
Smith, D. E., 239,240 
Sobel, M. E., 32,70,96, 102,164,204 
Sober, E., 43,58,310 
Sommer, A., 278 
Sosa, E., 314 
Speed, T. P., 14, 19, 30, 141,341 
Spiegelhalter, D. J., 20-1 
Spirtes, P., 16, 18, 30, 41, 48, 50, 52, 60-1, 63, 70, 

72,79, 83, 86, 96,104, 142, 146, 147-8, 150, 
175,200,204 

Spohn, W., 11,56, 249 
Stalnaker, R. C., 34,108 
Stelzl, I., 146 
Steyer, R., 183, 199-200 
Stone, C. J., 2 
Stone, R., 187,189-90,200 

Strotz, R. H., 32, 70,95-6,204,257 
Suennondt, H. J., 221 
Suppes, P., 1-2,42,48,55-6,58,62,74, 235,249, 

255,275,337 
Szolovits, P., 21 

Tarsi, M., 51 
Tarwotjo, I., 278 
Tian, J., 80,118,147,171,329 
Tilden, R., 278 
Tooley, M., 314 
Trichler, D., 200 
Tsitsiklis, J. M., 76 
Turkington, D. A., 90, 153, 169, 247 
Turner, S. P., 41 
Tversky, A ., 22 

Uchino, B. N., 148 
Ur, S., 237 

Valtorta, M., 41 
Verba, S., 25 
Verma, T., 12, 18-19, 30,41,46-7,49-52, 59,68, 

104,142-3,146-8,200,234 
Vieta, F., 335 
Vovk, V. G., 96 
Vytlacil, E. J., 248 

Wainer, H., 66,93 
Waldmann, M. R., 60 
Wallace, C. S., 41 
Warmuth, M. K., 46 
Wasserman, L., 41 
Wegener, D. T., 148 
Weinberg, C. R., 78, 187, 196 
Wellman, M. P., 21,76 
Wermuth, N., 14,22,97-8, 104, 141,148,177, 199, 

341 
West, K. P., 278 
Whittaker, J., 97, 141, 216 
Whitternore, A. S., 177, 199 
Wickramaratne, P. J., 196 
Winship, C., 243 
Winslett, M., 239-40 
Wold, H. 0. A., 32, 70,95-6,204,257, 347, 349 
Woodward, J., 109,160,221,239,310, 329 
Wright, P. G., 215 
Wright, R. W., 309, 314 
Wright, S., 26,60, 67,69, 134, 135, 137,138, 140, 

148,345,358 
Wu, D. M., 274 
Wulfsohn, M., 95 

Yanagawa, T., 194 
Yule, G. U., 176, 354 

Zaniotti, M., 58 
Zidek, J., 177 



Subject Index 

abduction, 20,205n, 206,208 
actions 

concurrent and sequential, 118-26 
conditional, 113-14 
and counterfactuals, 112, 204,211 
in decision theory, 109-12 
effect of, definition, 204 
effect of, evaluation, 209 
locality of, 224 
in noncausal models, 225-8 
vs. observations, 23, 85-6 
reactive vs. deliberative, 108-9, 346 
reasoning about, 85-6, 108-12,209, 223-5 
specification by effects, 225 
stochastic, 75, 113-14 
as surgeries, 23,223-4,348-50 
see also intervention 

actual causation, 309-29 
dependence, 312-13, 316 
overdetermination, 313, 320-1 
preemption, 311-13,322-7 
probability of, 320 
production, 316, 328 
sustenance, 317-20 
test for, 318-19 
see also singular causes 

adjacency (in graphs), 12 
adjustment for covariates, 78-84,355-6 

affected by treatment, 76, 81,93, 119, 13911, 178, 
185 

physical control vs., 119, 17511 
sufficient set, 80, 195 
see also confounding bias 

attribution, 33 
attributable risk, 290 
Bayesian estimation of, 280-1 
bounds on, 271-4 
as explanation, 332-3 
nonuniqueness, 35, 290 

autonomy, 22,28,63,344 

axioms 
of causal relevance, 234-7 
of closest-world counterfactuals, 240 
of conditional independence, 11,195 
of do calculus, 85-6 
of path interception in graphs, 236-7 
of probability calculus, 3 
of structural counterfactuals, 228-31 

back-door criterion, 79-81 
adjustment using, 79 
confounding and, 190 
as d-separation, 87 
for parameter identification, 150-2 

background knowledge 
Bayesian approach, 96 
expressed in causal assertions, 22,96-7 
expressed as conditional independencies, 21-2 

barren proxies, 186,199 
Bayes conditionalization in, 73, 109, 112, 242, 252 
Bayes's inversion formula, 5, 20 
Bayesian inference, 4-8 
Bayesian method 

and background knowledge, 96 
causal discovery with, 64 
in diagnostics, 6, 20 
for estimating effects, 275-6 
example, 7-8 
limitations, 96-7 
rationale, 5-6 

Bayesian networks, causal, 21-6 
definition, 23-4 
example, 23 
properties, 24 

Bayesian networks, probabilistic, 13-21 
construction, 15 
definition, 14 
example, 15 
inference with, 20 

Bell's inequality, 275 



Subject Index 

Berkson's paradox, 17,21,163 
blocking, 16 
bounds 

on causal effects, 262-70 
on counterfactual probability, 271-3 
on instrun~ental variables, 274-5 
on probability of causation, 289-91 

bow pattern, 90,120 

causal assumptions 
definition, 39 
language for, 134-5,139 
subjective, 96 
testable implications, 39, 140-4 

causal beam, 318-19 
causal decision theory, 10811 
causal diagram, 30,203 

vs. path diagrams, 67 
causal directionality, 338, 349-50 

from change, 72 
from independencies, 43,47-8 
local conditions for, 54-7 
from structure (Simon), 226-8,349-50 

causal discovery, 41-64 
as game against Nature, 43-5 
with measure variables, 50 
with unmeasured variables, 51-4 

causal effect 
adjustment formula for, 79-80 
Bayesian estimation of, 275-80 
bounds on, 262-9 
computation of, 72-7, 231-4 
from counterfactual logic, 231-4 
definition of, 70 
identification of, 77-8, 86 
parametric estimation of, 95 
in policy making, 33,215-17,348 
symbolic derivation of, 86-8 
on the treated, 269-70 

causal intuition, 26 
causal models 

and change, 22,61 
definition, 203 
functional, 26, 104 
Laplacian, 26 
Markovian, 30,69 
minimal, 46, 61 
nonparametric, 69 
nonrecursive, 28, 95-6, 142 
preference of, 45-7 
probabilistic, 205 
quasi-deterministic, 26, 104 
semi-Markovian, 30,69 
structural, 27,44, 203 
testing, 61, 140-5,148-9,274-5 

causal parameters 
definition, 39 
identification of, 77-8 

causal relevance 
in probabilistic causality, 250-2 
in structural models, 234-7 

causal theory, 207 
causal world, 207, 310 
causation 

counterfactual approach, 34,108, 238-45 
logical approach, 313-16 
Hume on, 238 
and the law, 271-4,283-5,302-3,308-9 
manipulative approach, 21-4, 70-2, 85-8, 

157-9,223-8 
probabilistic approach, 62-3,74, 249-56 
structural approach, 26-30,34,68-70,159-65, 

202-12,223-8,238-42 
chain rule, 5,14 
closed-world assumption, 186, 252-3 
collapsibility, 193 

no-confounding as distinct from, 186f, 188f, 
194-5f, 197-8 

collider, 17 
compatibility (Markov), 16 
composition (axiom), 229,237 
concomitants, see covariates 
conditional independence 

axioms of, 11,195 
causal origin of, 21,25,31 
definition, 3, 11 
graphical representation of, 18, 96, 142 
judgment of, 21 
notation, 11 
stability of, 31 
contingency tables, 36f, 198-9, 340 

confounders, 12,78,194-5 
confounding bias 

associational criteria for, 185, 187 
collapsibility and, 193-4 
control of, 78-84 
definition, 184 
exchangeability and, 196-9 
stable no-confounding, 19 1-2 
teaching about, 196, 199 
see also exogeneity; ignorability 

consistency constraints (on counterfactuals), 99 
control for covariates 

nomenclature, 17511 
physical vs, analytical, 98,127, 164 
see also adjustment for covariates 

correlation, 10 
discovery of, 339-40 
partial, 141 
test for zero partial, 142 

counterfactual dependence, 311-13,316 
counterfactuals, 33 

and actions, 112 
axioms of, 228-3 1,240 
closest-world interpretation, 34-5, 112, 239 
computation of, 37,206, 210-14 



Subject Index 

definition, 204 
empirical content, 34, 217-20 
and explanation, 221-2,3 11-1 3 
in functional models, 33-8 
graphical representation of, 213-14 
Hume on, 238 
independence of, 99-100,104,214-15 
insufficiency of Bayesian networks, 35-8 
and legal responsibility, 271-4,302-3,309 
in natural discourse, 34, 218,222-3 
and nondeterminism, 220,290n 
objections to, 206, 220,254, 256-7,264, 297 
physical laws as, 218 
and policy analysis, 215-17 
probability of, 33-7,205-6, 212-14, 271-3 
as random variables, 98-9 
reasoning with, 231-4 
representation, 34, 240 
and singular causation, 254-7, 310,316-17 
structural interpretation, 35,98, 204 

covariates 
adjustment for, 78-84,355 
selection problem, 78,139, 355 
time-varying, 74-6, 118-26 

cut-set conditioning, 21 

DAGs (directed acyclic graphs), 13 
observational equivalence of, 19,145-9 
partially directed, 49-51 

DAG isomorph, see stability 
direct effects, 126-31 

average, 130-1 
definition, 127, 163-5 
example (Berkeley), 128-30 
identification (nonparametric), 128 
identification (parametric), 150-4 

do calculus, 85-9 
applications of, 87-9, 114-18,120-8 
rules of, 85 

do(.) operator, 70,351-2 
d-separation, 16 

and conditional independence, 18 
in cyclic graphs, 18, 96, 142 
definition, 16-17 
examples, 17 
and model testing, 142-7 
theorem, 18 
and zero partial correlations, 142 

econometric models 
examples, 27-8,215-17 
policy analysis, 2,27-8, 33 

edges 
bidirected, 12 
directionality of, 19-20 
in graphs, 12 

equivalent models 
generating, 146-8 

significance of, 148-9 
testing for, 19, 145-6 

error terms, 27 
counterfactual interpretation, 214-15, 24.411, 

245-6 
demystified, 162-3,169-70 
and exogeneity, 169-70,247 
and instrumental variables, 247-8 
testing correlation of, 162 

etiological fraction, 284n 
evidential decision theory, 108-9 
examples 

alarms and burglaries, 7-8 
bactrim, PCP, and AIDS, 118-19 
betting on coins, 296-7 
birth col~trol and thrombosis, 127 
cholestyramine and cholesterol, 270-1,280-1 
desert traveler, 312, 323-4 
drug, gender, and recovery, 174-5 
firing squad, 207-13,297-9 
legal responsibility, 302-3 
match and oxygen, 285,308,328 
PeptAid and ulcer, 271-3 
price and demand, 215-17 
process control, 74-6 
radiation and leukemia, 299-301 
sex discrimination in college adrmssion, 127-30, 

354-5 
smoking, tar, and cancer, 83-5,232,353-4 
two fires, 325-6 
vitamin A and mortality, 278-9 

excess risk ratio (ERR), 303-4 
and attribution, 292 
corrected for confounding, 294, 304 

exchangeability 
causal understanding and, 179 
confounding and, 196-9 
De Finetti's, 178 

exclusion restrictions, 101, 232-3 
exogeneity, 97n, 165-70 

controversies regarding, 165, 167, 169-70, 
245 

counterfactual and graphical definitions, 
245-7 

definition, causal, 166,289 
error-based, 169-70,247 
general definition, I68 
hierarchy of definitions, 246 
use in policy analysis, 165-6 
see also confounding bias; ignorability 

expectation, 9-10 
conditional, 9 
controlled vs. conditional, 97, 137n, 162 

explaining away, 17 
explanation, 25,58,222-3 
explanations, 221-3, 308-9 

as attribution, 332-3 
purposive, 333-4 



Subject Index 

factorization 
Markov, 16 
truncated, 24 

faithfulness, 48 
see also stability 

family (in a graph), 13 
front-door criterion, 81-3 

applications, 83-5 
functional models, 26 

advantages, 32 
and counterfactuals, 33 
intervention in, 32 
as joint distributions, 31 
nonparametric, 67,69,94, 154-7 

G-estimation, 102-4, 123,72 
Gibbs sampling 

in Bayesian inference, 21 
for estimating attribution, 280 
for estimating effects, 275-6 

graphical models 
in social science, 38-40,97 
in statistics, 12-20 

graphoids, 11-12,234 
graphs 

complete, 13 
cyclic, 12-13,28,95-6,142 
directed, 12 
as models of intervention, 68-70 
mutilated, 23 
notation and probabilities, 12 
and relevance, 11 

homomorphy, in imaging, 242 
Hume's dilemma, 41,238, 249, 336,343 

IC algorithm, 50 
IC* algorithm, 52 
identification, 77 

of direct effects, 126-31 
by graphs, 89-94,114-18 
of plans, 118-26 

identifying models, 91-2, 114-15 
ignorability, 79-80, 246,248n, 289 

and back-door criterion, 80,100 
judgment of, 79,100,102 
see also exogeneity 

imaging, 112,242-3 
independence, 3 

conditional, 3, 11 
indirect effects, 165 
inference 

causal, 22-3,32,85-9,209 
counterfactual, 33-9,210-13,231-4 
probabilistic, 20, 30, 31 

inferred causation, 44,45 
algorithms for, 50,52 
local conditions for, 54-7 

influence diagrams, ll ln 
instrumental variables, 90, 153, 168, 247-8, 

274-5 
definitions of, 247-8 
formula, 90, 153 
tests for, 274-5 

intent to treat analysis, 261 
intervention, 22-3 

atomic, 70 
calculus of, 85-9 
as conditionalization, 23,72-4 
examples, 28-9,32 
joint, 91 
notation, 6 7 ~ 7 0  
stochastic, 113-14 
as transformation, 72-4,112,242-3 
truncated factorization formula for, 24,72,74 
as variable, 70-2, 111 
see also actions 

intransitive dependence, 43, 57 
INUS condition, 313-15,321-2 
invariance 

of conditional independence, 31,48, 63 
of mechanisms, see autonomy 
of structural parameters, 63, 160-2, 

join-tree propagation, 20 

Laplacian models, 26, 257 
latent structure, 45 

projection of, 52 
recovery of, 52 

Lewis's counterfactuals, 238-40 
likelihood ratio, 7 
Lucas's critique, 28, 137 

machine learning, 60-1,343 
manipulated graph, 86, 220 
Markov 

assumptions underlying, 30 
chain, 58 
compatibility, 16 
factorization, 16 
networks, 14,50 
parents, 14 

Markov condition 
causal, 30 
in causal discovery, 58 
ordered, 19 
parental (local), 19 

Markov decision process (MDP), 76,242 
mechanisms, 22 

modified by actions, 223-6 
message passing, 20 
model equivalence, 145-9 
monotonicity, 291 

Newcomb's paradox, 108, 157n 
noisy OR gate, 31 



Subject Index 

noncompliance, 90, 261,281 
nonidentifying models, 93-4 

Occam's razor, 45-7,60 
overdetermination, 313, 320 

parents 
causal, 27,203 
in graphs, 13 
Markovian, 14 

partial effects, 152-3 
path coefficients, 240 

from regression, 150-1 
see also structural parameters 

paths 
back-door, 79 
blocked, 16 
directed, 12 
in graphs, 12 

pattern, 49-50 
marked, 52 

PC algorithm, 50 
potential outcome framework 

causal assumptions in, 96,99,102, 104,134 
formal basis for, 204, 243-4 
statistical legitimacy of, 96 
structural interpretation of, 98, 263-4 
symbiosis with graphs, 231-4,245 
translation from graphs to, 98-102, 232-3 

potential response, 204 
preemption, 311-13,322-7 
probabilistic causality, 62-3, 74,249-57 

aspirations and achievements, 249, 257 
circularity in, 250-2 
rejection of counterfactuals, 254-7 
singular causation in, 254-6 

probabilistic parameters, 38 
probability 

conditional, 3 
density, 10 
joint, 6 
marginal, 3 

probability of causation, 33,283-308 
Bayesian estimation of, 280-1 
bounds, 289-90 
definition, 286-7 
and explanation, 285,307-8 
identification, 291-5, 304-7 
probability of necessity (PN), 286 
probability of sufficiency (PS), 286 
properties of, 284,287-8 

probability theory, 2-10 
actions in, 109-10 
axioms, 3 
Bayes interpretation, 2 
relation to causality, 1-2 
relation to logic, 1-2 
sample space, 6 

process control, 74-6 
product decomposition, 16,69 
production, 316,328 

probability of, 286 
propensity score, 95 

quantum mechanics and causation, 26, 62, 220, 
257,26411,275 

quasi-determinism, 26, 257 

randomized experiments, 33,259,340, 347-8 
recursiveness (axiom), 231 
regression, 10,141,150-1 
Reichenbach's principle, 30, 58,61 
relevance, 234-7, 251 
reversibility (axiom), 229,242 
root nodes, 13, 25 

Salmon's interactive fork, 58,62 
sampling 

non-i.i.d., 96 
variability, 95, 275-81 

screening off, 4,10,58,25ln 
see also conditional independence 

selection bias, 17,163 
SEM (structural equation modeling), 133 

see also structural equations 
semi-Markovian models, 30, 69,76, 141, 146 

see also latent structure 
set (-) operator, see do (.) operator 
similar worlds, 112, 239-40 
Simon's causal ordering, 226-8 
Simpson's paradox, 78, 128, 138-9, 174-82, 

354-5 
examples of, 78, 130t, 175t, 354-5 
history of, 176-7 
lessons from, 180, 182 
nonstatistical character of, 177-8 
sure-thing principle and, 181 

single-door criterion, 150-1 
singular causes, 222,253-6,309-11 

and explanation, 222 
and probability increase, 254 
see also actual causation 

skeleton, 12 
spurious association, 21,55-6, 162-3,336 
stability 

of causal relationships, 24-5 
of conditional independencies, 31, 48,63 
and explanation, 25-6 
in predictive tasks, 31-2 

stable distributions, 48-9, 63 
stable no-confounding, 191-2 
statistical concepts 

definition, 39 
limitations of, 96-7, 139, 161-2, 167, 175-7, 

185-8 



Subject Index 

statistical parameters, 77 
definition, 38, 168-9 
reparameterization, 169n 

statistical time, 58 
stochastic models, 26-7, 220, 257, 29011 
stochastic policies, 75-6, 113-14 
structural equations, 27-38, 133-65 

in economics, 27-8,68-9,97,135-8,215-17 
error terms in, 97, 162-3 
interpretation difficulties, 97, 105, 135-7, 

159-60,161 
interventional interpretation, 157-8 
invariance, 161 
historical perspective, 134-8 
nonlinear, 28-9, 203,209 
nonparametric, 69,154-6 
operational definition. 137n, 160-3 
zero coefficients in, 97n 

structural model, 27,44, 202 
structural parameters 

identification by regression, 149-54 
invariance of, 160-2 
policy implications of, 149,157-8,215-17 
single-door theorem, 150 

submodel, causal, 204 
sufficient set, 80 

confounders and, 195 
superexogeneity, see exogeneity 
suppressor effect, 139 

see also Simpson's paradox 
sure-thing principle, 181 
surrogate experiments, 88-9 

susceptibility, 254-5,292 
sustenance, 317-20 
switching regression, 98n. 243n 

temporal bias, of statistical associations, 59 
temporal information, 56 
temporal preemption, 325-7 
temporal vs. causal ordering, 42,249-50 
TETRAD I1 program, 41,63 
total effect, 151-2, 164 

see also causal effect 
transitivity 

of causal dependence, 237,288 
of probabilistic dependence, 43,57 

treatment, time varying, 74-6, 118-26 
see also intervention 

truncated factorization, 24,72,74,78 
twin networks, 37,213-14 

v-structure, 19 
variable 

control, 61 
exogenized, 217 
instrumental, 90,153,168,247-8,274-5 
latent, 44,45 
omitted, 162-3 
random, 8 
virtual control, 54,57,61 

variance, 9 

world, causal, 207 



1

CAUSALITY CORRECTIONS
IMPLEMENTED IN 2nd PRINTING

Updated 9/26/00

page v *insert* “TO RUTH” centered in middle of page

page xv *insert* in second paragraph “David Galles” after “Dechter”

page 2 *replace* “2000” with “2004” in 2nd paragraph, line 8 of 1.1.2

page 3 *insert* “, � ” after “( � )” in footnote 1
*replace* “and not” with “not, and implies,” in footnote 1

page 19 *append* (continue italics) to end of Theorem 1.2.7, “(We exclude ��� when
speaking of its “nondescendants”.)”

page 30 *replace* in line 7 from top “mutually” with “jointly”
*insert* “parental” before “Markov” in first line of 2nd paragraph after Theorem
1.4.1
*append* to end of footnote 16 “but I am not aware of any nonparametric ver-
sion.”

page 52 *insert* “stable” after “IC*, that takes a” in 2nd paragraph after Theorem
2.6.2,
*replace* “sampled” with “stable” in Input line of IC* Algorithm.
*append* “(with respect to some latent structure).” to same line

page 68 *replace* in line 1 after Eq. (3.2), “mutually” with “jointly”

page 72 *replace* “(1990, 1999)” with “(1990, 2001)” on line 6

page 89 *replace* in paragraph starting “Indeed, if condition...”. Should be “condi-
tions require” not “condition require”

page 126 *insert* “and Robins (1997)” after “Pearl and Robins (1995)”, line 2.

page 130 *replace* the “ � ” with “ � ” in the formula (second line of section 4.5.4.)
Should read “ ���
	������������������� ”
*replace* “we can compute the difference” with “we should replace the con-
trolled difference” in last line of page



2

page 131 *replace* from top of page through the end of section 4.5.4 with the follow-
ing:

� � �������	�
������ � ������� � �������� ��� � � �������	�
���	��� � �� �������� � �������� �
with some average of this difference over all departments. This average should
measure the increase in admission rate in a hypothetical experiment in which we
instruct all female candidates to retain their department preferences but change
their gender identification (on the application form) from female to male.

In general, the average direct effect is defined as the expected change in 	 in-
duced by changing � from � to ��� while keeping the other parents of 	 constant
at whatever value they obtain under �! � � � . This hypothetical change is what law
makers instruct us to consider in race or sex discrimination cases: “The central
question in any employment-discrimination case is whether the employer would
have taken the same action had the employee been of a different race (age, sex,
religion, national origin etc.) and everything else had been the same.” (In Carson
versus Bethlehem Steel Corp., 70 FEP Cases 921, 7th Cir. (1996)).

The formal expression for this hypothetical change involves probabilities of
(nested) counterfactuals (see Section 7.1 for semantics and computation) that
cannot be written in terms of the �! � � � operator.9 Therefore, the average direct
effect cannot in general be identified, even from data obtained under randomized
control of all variables. However, if certain assumptions of “no confounding”
are deemed valid,10 then the average direct effect can be reduced to"$#&% #(' �
	 �*) +,�-/.103254 ���
	��76� � ���� � �������8� � � 	������ ���� � � ���39 � � � � � ��� �
� � � (4.11)

and the techniques developed in Section 4.4 for identifying control-specific
plans, � �;: ���=< � �1> ��?�?�? � �A@�� , become applicable.

9Using the counterfactual notation of Section 7.1, the general expression for the average direct effect isBDC(E C '3FHGJILKNMOF	G C '	P�Q&I�RSMDF	G C I
where T KNU&V�W=XZY

. The subscript []\	T C represents the operation of setting ^ to [&\ and, simultaneously,
setting T to whatever value it would have obtained under the setting ^ K [ . This general expression reduces
to (4.11) if T C]_`_ G C 'ba holds for all c . Likewise, the average indirect effect is defined as

MDF	G C P Q ' IdReMOF	G C I
.

10See details in Technical Report R-273 posted on www.cs.ucla.edu/ f judea.
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page 164 *replace* ... “ �! � ��� : ��� � ” with “ �� � ��������� � ” in line 8 after Definition 5.4.3.

page 165 *replace* last two sentences of section 5.4.2 with:
The expressions corresponding to these policies are
� �;: � �! � � � � �� � � � � and � �;: � �� � � ��� , and this pair of distributions fully
represents the policy implications of indirect effects. Similar conclusions have
been expressed by Robins and Greenland (1992). (But see Chapter 4, footnote
9, page 131.)

page 177 *delete* “tormented” in paragraph 3, line 2

page 184 *append* to end of Definition 6.2.1 (continue italics - except ‘unbiased’):
“If (6.10) holds, we say that � �;: � � � is unbiased.”

page 236 *replace* “& � ��� 	 � ” with “& � � �
� 	 � ” in first formula of Theorem

7.3.8

page 240 *replace* the last sentence in the last paragraph of section 7.4.1 with:
However, this effectiveness is partly acquired by limiting the counterfactual an-
tecedent to conjunction of elementary propositions. Disjunctive hypotheticals,
such as “if Bizet and Verdi were compatriots,” usually lead to multiple solutions
and hence to nonunique probability assignments.

page 246 *insert* in footnote 26 after “(see Section 5.4.3).” “Epidemiologists refer to
(7.46) as “no-confounding” (see (6.10)).”

page 255 *replace* in the 2nd line “pregnant” with “nonpregnant”

page 259 *insert* close parentheses after “(Sections 3.2 and 7.1”, line 2 of Preface

page 284 *replace* “Michie in press” with “Michie 1999” in the last line of paragraph
4

page 329 *replace* “(1999)” with “(2000)” in last line of page

page 332 *replace* in paragraph starting “Even an erratic and ...”. Change “role” to
“roll”

page 354 line 2 from bottom, *replace* “mediated by tar deposits” with “unmediated
by tar deposits”

page 361 *update* Dawid 1997 citation. *replace* “To appear ...” with “Also [with
discussion] in Journal of the American Statistical Association 95:407–48, 2000.”

page 363 *append* to Halpern (1998) citation, “Also, Journal of Artificial Intelligence
Research 12:317–37, 2000.”
*update* Halpern and Pearl (1999) citation. *replace* “(1999)” with “(2000)”,
*replace* “Actual causality.” with “Causes and explanations.”, and *append*
“www.cs.ucla.edu/ � judea/”

page 364 *update* Hoover 1999 citation. *replace* “(1999)” with “(2001)”
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page 365 *update* Kuroki citation. *append* “29: 105–17.” after “Journal of the
Japan Statistical Society”.

page 366 *update* Michie citation. *replace* “(in press)” with “(1999)” and *insert*
“pp. 60-86” before “vol. 15”

page 368 *update* Pearl 1999 citation. *remove* “To appear in” and replace “121”
with “121:93–149.”

page 369 *insert* in Robins 1997 citation, “M. Berkane (Ed.),” before “Latent Vari-
able Modeling...”

page 370 *add* to Shipley 1997 citation, “Also in Structural Equation Modelling,
7:206–18, 2000.”

page 381 *insert* “27–8”, after “(examples) price and demand” and before “215-17”
*replace* “245” with “245–7”, at end of “(exogeneity) controversies regard-
ing...245”
*combine* “explanation” and “explanations” to read “explanation, 25, 58, 221–
3, 285, 308–9”

page 382 *insert* “131” after “indirect effects,” and before “165”
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ADDENDUM TO CORRECTIONS
IMPLEMENTED IN 2nd PRINTING

Updated 12/14/00

page 28 *replace* “income ��� � ” with “income ��� � ” in the caption of Figure 1.5

page 48 *replace* in line before Definition 2.4.1, “when one of the coins becomes
slightly biased.” with “when the coins become slightly biased.”

page 51 *append* to line 7, Rule ��� to read:
Orient � – � into � ��� whenever there are two chains � – 	 � � and 	 � � ���
such that 	 and � are nonadjacent and � and � are adjacent.

page 231 *replace* Definition 7.3.4 and 2 lines following to read:
Definition 7.3.4 (Recursiveness)
Let � and 	 be singleton variables in a model, and let ��� 	 stand for the
inequality 	 #�
 �� � �) 	 
 �� � for some values of ����� , and � . A model � is
recursive if, for any sequence � < � � > ��?�?�? � ��� , we have

� < � � > � � > � ��� ��?�?�? � � ��� < � � � � � � �� � < (7.24)

Clearly, any model � for which the causal diagram � ��� � is acyclic must be
recursive.

page 382 *change* “Markov (assumptions underlying, 30)” to “Markov (assumption,
30, 69)”

page 382 *append* “69” after ”causal, 30” in “Markov condition (causal, 30)”

page 384 *add* as subentry after “structural model, 27, 44, 202” “Markovian, 30, 69”.
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PRINTING CORRECTIONS
TO BE IMPLEMENTED BY CAMBRIDGE

Updated 3/13/07

page 52 *replace* in line 17-18 ”protection” with ”projection”

page 73 *replace* equation between (3.11) and (3.12)

� � ��� � � �! � � �� � � ) � � ��� � ���
� ��� � �
��� � � �! � �A�� � �
� ��� �� �
��� � � �! � � �� � � ) � ��� � � � � � �

� ��� �� � � � � � ?
should be:

� � ��� � � �! � � �� � � ) � � ��� � ���
� ��� � � � � � � �1�� � �! � �A�� � �
� ��� �� � � � � � � �� � �! � � �� � � ) � ��� � � � � � � �1�� �

� ��� �� � � � � � � �� � ?
page 82 *replace* at end of paragraph 2: “since there is no back-door path from � to

� , we simply have” with “since there is no unblocked back-door path from � to
� in Figure 3.5, we simply have”

page 82 *replace* in Definition 3.3.3 (Front-Door): “(ii) there is no back-door path
from X to Z; and” to “there is no unblocked back-door path from X to Z; and”

page 103 *replace* last paragraph on page 103 (including footnote 15) with:
To place this result in the context of our analysis in this chapter, we note that
one class of semi-Markovian models satisfying assumption (3.62) corresponds to
graphs in which all arrowheads pointing to � � originate from observed variables.
Indeed, in such models, the parents ��� � )�� � � ����� < of variable � � satisfy the
back-door condition of Definition 3.3.1,

� � �
	�	 	�� ��� � �� 2 � �
which implies (3.62).15 This class of models falls under Theorem 3.2.5, which
states that all causal effects in this class are identifiable and are given by the
truncated factorization formula of (3.14); the formula coincides with (3.63) after
marginalizing over the uncontrolled covariates.

15Condition (3.62) is too restrictive and lacks intuitive basis; a graphical, more general condition leading
to (3.63) is formulated in (4.5), Theorem 4.4.1, read: � F��
� � K [ I is identifiable and is given by (3.63) if
every action-avoiding back-door path from ^�� to

G
is blocked by some subset ��� of non-descendants of^ � . (by “action-avoiding” we mean a path containing no arrow entering an ^ variable later than ^ � ) see�

http://bayes.cs.ucla.edu/BOOK-2K/yudkowsky.html � .
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page 174 *replace* in 4th line from end of page: “is not a statement about � being a
positive causal factor for � , properly written” with “is not a statement about �
having a positive influence on � , properly written”

page 195 *replace* ”Figure 6.1” with ”Figure 6.3” in 5th line before end of 3rd para-
graph




