Karsten Konrad

Model Generation
for Natural Language
Interpretation

and Analysis

LNAI 2953

®\®>@ @i@@

@ Springer

Lecture Notes in Artificial Intelligence 2953
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Springer
Berlin
Heidelberg
New York
Hong Kong
London

Milan

Paris

Tokyo

Karsten Konrad

Model Generation
for Natural Language
Interpretation

and Analysis

Springer

http://www.springerlink.com

eBook ISBN: 3-540-24640-1
Print ISBN: 3-540-21069-5

©2005 Springer Science + Business Media, Inc.
Print ©2004 Springer-Verlag
Berlin Heidelberg

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

http://ebooks.springerlink.com
http://www.springeronline.com

For Daisy

This page intentionally left blank

Foreword

This monograph is a revised version of Karsten Konrad’s doctoral dissertation.
It focuses on a topic of rapidly increasing importance in computer science: the
development of inference tools tailored to applications in Natural Language
Processing. Technology in mathematical theorem proving has undergone an
impressive development during the last two decades, resulting in a variety of
attractive systems for applications in mathematical deduction and knowledge
processing. Natural Language Processing has become a theme of outstanding
relevance in information technology, mainly due to the explosive growth of the
World-Wide Web, where by far the largest part of the information is encoded
in natural language documents. The book appears at a pivotal moment, when
much attention is being paid to the task of adding a semantic layer to the
Web, and representation and processing of NL-based semantic information
pops up as the primary requirement for further technological progress.

Konrad’s book argues for the Model generation paradigm as a framework,
which supports specific tasks of natural language interpretation and NL-based
inference in a natural way. It presents extensions in several respects: restricted
techniques of model generation for higher-order logics, which are useful for
the construction of semantic representations, as well as refined methods for
minimal model generation. The latter support the use of world knowledge
in natural language inference and realize a concept of preferential reasoning.
The proposed method is similar in its results to NL applications of weighted
abduction, but it obtains these results in a more systematic and transparent
way.

Konrad applies his variant of model generation to selected topics in NL
semantics: the well-known problem of reference resolution for anaphoric defi-
nite noun phrases, and the selection of readings for reciprocal pronouns. His
method provides natural and general solutions for a variety of phenomena,
which hitherto had to be treated by enumeration of variants. The inference
problems are delegated to the KIMBA model generator, an innovative imple-
mentation of the inference method in the constraint programming framework.

VIII Foreword

Certainly the book does not offer final solutions, but it opens a perspective
on a fascinating and highly relevant field of future research, and it offers tools
to start out with. The book is nicely written, it provides motivation and
background to readers who are unfamiliar with part of this interdisciplinary
research area. I strongly recommend it to readers both from the NLP and the
deduction communities.

Manfred Pinkal

Table of Contents

Motivation e 1
1.1 The Subject of This Volume, 1
1.2 Interpretation, Analysis, Computation 2
121 Interpretation...............coviiniivnnniiinnennn.n 2
122 Analysis.........cooiiiiiiiiiiiii i 3
123 Computationovevrniiiiiiinnnrinnneennann 4
1.3 Acknowledgmentsot 5

Part I Logics

2

Model Generationouiiiiitiiiii.. 9
2.1 INtroducCtion vvr vttt ittt e ettt e 9
2.2 Preliminariesvirit it ettt e e 9
2.3 TOPICS « oo e v et e 10
2.3.1 Models and Decidability............................ 10
232 Herbrand Models......... ..., 11
233 Finite MOdelS . ..ot vti i e e 11
2.3.4 Representationseeeeiiiiiiiiniiinaaen, 12
235 Minimality ... 12
2.3.6 Subset Minimalityccoviviiiiiiiiinnn... 12
2.3.7 Domain Minimalityc oot 13
2.3.8 Predicate-Specific Minimality 13
2.3.9 Enumeratione.veeinenenoneenenaneenans 14
2.3.10 Model Enumeration with Theorem Provers 14
2.3.11 Enumeration with Finite Model Generators........... 14
24 Methods oo ittt e e e e 15
2.4.1 Analytical Tableauxcciiiiveeiinn... 15
242 Ground TableauX.ovevinrirnennennnnnnnnns 16
2.4.3 Free Variable Tableaux.............ovvirvninennn.. 16
2.44 Positive Unit Hyper-resolution 17
245 A Method Complete for Finite Satisfiability 19

X

Table of Contents

2.4.6 The Davis-Putnam Procedure....................... 20
2.4.7 Calculus and Procedure, 20
2.4.8 Branches as Models................. ... 21
249 Efficiency i 22
2.5 Related Work 22
Higher-Order Model Generation........................... 25
3.1 The A-Calculus in Linguisticsot 25
3.1.1 Composition of Meaningoovvuienn.... 26
3.1.2 Quantification in Natural Language.................. 26
3.1.3 Quantifiers as Higher-Order Expressions.............. 27
3.14 First-Order Limitationsccoouvuinean... 29
3.1.5 A Motivation for a New Kind of Logic 30
3.2 Higher-Order Logic 31
321 SYNtaX .. oveii e 31
32 TYPeS « ittt 31
323 TEIMS .ttt e 32
324 SemantiCsouvieett . 32
3.2.5 Functional Interpretations 33
32.6 Logical Constantsc.c.oovierinernneunnnenn.. 33
3277 Defining a LogiC......covvvirinii i 34
3.2.8 Standard Frames and Generalised Interpretations.. 35
3.2.9 Model Generation for Generalised Frames? 35
3.2.10 Equivalency for Higher-Order Atoms................. 36
3.2.11 Function Domains and Quantification 37
3.3 A Fragment of Higher-Order Logic......................... 38
3301 SYNtax «ovv e 39
332 SemantiCsoeeiiit i 40
333 Constant Framesc.c.iiiiiiiiiia... 40
334 Interpretations and Denotations 40
335 AnMOL LOGIC. oo 42
336 CONNECHVES .. .''vetitiiee et iiiinnenans 42
337 Quantifiers i 43
33.8 Definitionscoouiriiiii i e 44
339 Equalityc.oiiiii 45
34 Constructing Models it 45
3.4.1 Determining Models Intelligently 46
3.42 Formulas as Constraints..............c...cueenn... 46
343 Solving ConstraintS.c.c.oovuerveveneeunnnenn.. 46
3.4.4 Translating Formulas into Constraints 48
345 An Exampleot 50
3.4.6 Properties of the Translation........................ 51
3.4.7 Refutation Soundness oo, 51
3.4.8 Completeness for MQL Satisfiability 52

349 Enumerating Models.............. ... ool 53

Table of Contents X1

4 Minimal Model Generation 55
4.1 Preliminariescovvv et i e e e 55
4.2 Decidability of Local Minimality 55

Part II Linguistics

S The Analysis of Definites 59
5.1 Introductionc.iiiiiii 59
5.1.1 The Semantics of Definite Descriptions............... 60
5.1.2 Definites and Deduction........... ...t 60
5.1.3 How Models Interpret Sentences..................... 61
5.14 Discourse Models. ..., 62

5.1.5 Models for Definites 63
5.1.6 Uniqueness and Lots of Rabbits 65

5.2 Some Representationscvveiiiiiiiinnannn.. 67
52.1 Simple Casesoueiit e 67
5.2.2 Donkeys, Context Sets, and Anaphoric Use 68
5.2.3 Quantifiers and Donkey Sentences 68
5.2.4 Context Set Restrictionsccoveniiun... 69
5.2.5 The Treatment of Names, 71
5.2.6 Restrictions with Knowledge 71
5.2.7 TImplicit Knowledge and Accommodation 72
528 Bridgingiiii e 73
5.29 Simple Cases Revisitedcoiiiia .. 74
5.2.10 Non-resolvable Anaphora in DRT.................... 74
5.2.11 Definites Are Not Anaphora 75
5212 NON-EXISIENCE . . . oo vve ettt et ns 76

5.3 What We Have Learned so Far 76
6 Reciprocityo i 79
6.1 Introductioniuiiimtinen it 79
6.2 Exploring the Meaning of Each Other 80
6.2.1 Reciprocals for Larger Groupsc.covenon .. 81
6.2.2 Classifying Reciprocal Meaning 82
6.2.3 Strong ReCIproCityc.uviuiiiniinnnnnnenn. 82
6.2.4 One-Way Weak Reciprocity..............oooviiiat. 83
6.2.5 Inclusive Alternative Orderingooovn. .. 83
6.2.6 Intermediate Reciprocityt 84
6.2.7 Intermediate Alternative Reciprocity................. 84
6.2.8 Strong Alternative Reciprocity 85
6.2.9 Parameterisationiiiiiiiiiiiiiia... 85
6.2.10 The Landscape of Reciprocitycovin.. 85
6.2.11 Parameterised Definitions 86
6.2.12 Interpreting Reciprocals, 87

XII

Table of Contents
6.2.13 The Strongest Meaning Hypothesis 87
6.2.14 A Counter-Exampleccoouniiiinninna... 88
6.2.15 The SMH Does Not Compute (Yet).................. 88
6.3 Inference to Best Reciprocal Meaning 89
6.3.1 To Strong Meaning through Minimality 90
6.3.2 Predicate Minimisationo.iioo.. 91
6.3.3 A Logical Encoding of Less IsMore.................. 92
6.3.4 A First Attempt at Computation.................... 92
6.3.5 First Method: Minimality by Proof 93
6.3.6 Second Method: Minimality by Bounded Search 93
6.3.7 Third Method: A Two-Stage Combination 93
638 AnExample......... i 94
6.3.9 Conservative Minimality 96
6.4 EXPerimentsoooiiiimiiininiiii e 98
6.4.1 Pitchers and Pearls 98
6.4.2 The Boston Pitchers 9
643 Pearls. 99
644 Measles 100
6.45 Marmiagesovtiiin it e 101
6.5 Loose Endsoviviiniii i e 102
6.6 How We Can Understand Each Other 102
Abduction......... 105
7.1 What Is Abduction? o i 105
7.1.1 A Formal Definition of Abduction 106
7.2 Models for Anaphora Resolution 107
7.2.1 Chasing the Criminal 107
7.2.2 Explaining Resolutionscooviin... 108
7.2.3 DASCUSSION + vttt vttt et e e e e 109
7.2.4 Incremental Inference instead of Generate-and-Test 110
7.2.5 An Alternative by Conservative Minimality 111
7.3 Weighted Abduction ..., 113
73.1 Logic Programming and Abduction 113
7.3.2 Abductive Explanations oo 114
7.3.3 Weights and CostS. vviniin it 115
734 Applicationsiiiii it 117
7.3.5 Definite Reference 117
7.3.6 Composite Noun Phrases 118
7.3.7 Resolving Ambiguity............coviiiiiiiiin... 119
738 DISCUSSION .+« vttt ettt e i 120
7.3.9 Similaritiesouriiii i i 121

7.3.10 Differences and Comparisoncouuveon.. 122

Table of Contents XIII

8 Implementation i 125
8.1 Introductioncoiiiiiiiii i 125

8.2 System Architecturet 126

83 The Syntaxt i 127
83.1 Logical Constantsc...ureueneninnonennnnn. 127

832 Formulascoviiuiiiiiii it 128

8.3.3 Problem Specifications 129

834 A Small Example............c.. i 129

835 Definitions e 130

84 The SemantiCsvceueeeninien i, 130
8.4.1 Logic Definition Structures 131

8.4.2 Propagator Procedures................. ..o, 131

843 CONNECHVES .. vteit ettt et 131

8.4.4 Monadic Quantifiers i i, 133

8.4.5 DiadicQuantifiersoveriiiiiiiiin.., 134

84.6 The Translationcuvuiiiiinninnnenan.n. 136

8.5 Proof Engines and Controlling Search 137
8.5.1 Proof Engines.c.covuiiiiiiiniiinnnnennas 138

852 Search i 141

8.6 System Performancecoiiiiiiiiiiiii, 142
8.6.1 Identifying Single Solutions 143

8.6.2 KIMBA as a Propositional Theorem Prover 144

8.6.3 Generating Minimal Models 145

9 Conclusion 149
9.1 Why Inference Is Worth the Effort......................... 149

9.2 Contributionsttt e 151

9.3 Models as Meaningcuuvuunermneeennennennaeen. 152

A Some Example Problems 155
Al The JobPuzzleo 155

A.2 Reciprocals: The Boston Pitchers.......................... 155
Referencest e 159

This page intentionally left blank

1

Motivation

To understand a proposition means to know what is the
case if it is true.
(Wittgenstein, Tractatus)

1.1 The Subject of This Volume

Computational semantics describes and determines the meaning of human
language using computational tools. The research reported in this thesis in-
vestigates the use of a new such tool in the interpretation and analysis of
logic-based semantic representations: model generation.

Model generation refers to the automatic construction of interpretations
that satisfy logical specifications. Model generation is a successful area in au-
tomated theorem proving, and systems for generating models have found var-
ious applications outside of linguistics. However, model generation has, until
recently, not been a topic of research in the computational semantics com-
munity. While conventional automated theorem provers enjoy some interest
as inference modules in natural-language processing, the potential of systems
that prove satisfiability by generating models is still widely unknown. Two
reasons for this can be identified.

First, model generation is a surprisingly small research area. In the forty
years that automated theorem proving has been investigated, work has con-
centrated on deductive methods that prove unsatisfiability and entailment in
classical first-order logics. These methods have been developed originally for
proving mathematical theorems without human interaction. In this context,
model generation has been considered only as a specialised tool for computing
counterexamples of dubious theorems, or for proving the existence of certain
small structures in finite mathematics. Hence, a linguist who wants to apply
some techniques developed in automated theorem proving is likely to find
much more material on first-order deduction than on model generation.

Second, natural-language semantics concentrates on representation rather
than on inference. With the explicit goal of developing formal representa-
tions that are suitable for language-oriented inference, semanticists define

2 1 Motivation

and investigate formal representation languages for the meaning of human
language. However, semanticists almost never implement inference systems
for these languages. Only recently, there has been a growing interest in using
the well-developed inference techniques from automated theorem proving for
building natural-language systems. Still, only a small group of semanticists
actually work on inference in semantics, and there is too effort for exploring
new techniques that have been developed elsewhere.

This thesis aims at presenting model generation to a larger audience of
researchers who are interested in logic-oriented computational semantics. The
subject of this thesis is the use of automatically generated models in the in-
terpretation and analysis of semantic representations, and the computational
methods that are needed for generating such models.

1.2 Interpretation, Analysis, Computation

One of the principal goals of modern linguistic semantics, as initiated by Frege
and Russell, has been to develop a computational theory of the conditions un-
der which a statement can be uttered truthfully. Behind this interest lies the
insight that the meaning of a statement uttered in a situational context can
often be captured completely by such. The correspondence theory of mean-
ing and truth is not a universal one because utterances have a wide range of
purposes that cannot be conceived by knowing their truth value alone. Nev-
ertheless, many modern semantic theories determine the meaning of natural-
language utterances by a relationship between linguistic form and the truth
conditions of some formal semantic representations.

The relation of form and meaning can be given as a translation from
syntactical structures into semantic representations that preserves truth and
entailment with regard to the original utterance. In semantic formalisms such
as Discourse Representation Theory (DRT) by Kamp and Reyle [1], the rep-
resentations computed from natural-language sentences are logical formulas.
The process that determines the meaning of such formulas is called interpre-
tation.

1.2.1 Interpretation

Since Tarski formulated the first mathematically sound truth-conditional se-
mantic for a logic, interpretations are conceived as recursively defined math-
ematical structures that assign truth values to the well-formed formulas of a
logical language. Interpreting a formula in a logic simply means to apply such
an interpretation.

In logic-based natural-language semantics, interpretation is understood as
a related, but different concept. Here, interpretation refers to processes that
compute the truth conditions for a natural-language sentence L uttered in a
given context consisting of situational and world knowledge.

More formally, interpreting a semantic representation ¢ for L within in
context I" means to compute facts A that must be assumed to be true if ¢ is

1.2 Interpretation, Analysis, Computation 3

true in I'. The assumptions A that we look for formulate “explanations” why
L is true in the situation described by I". Computing semantic interpretations
is an inference process that identifies suitable sets of facts A for ¢ and I" such
that the following condition holds:

TuAk¢

Suppose that there exists a logical interpretation M such that M(I"U {¢}) is
true, i.e., that there is amodel M that satisfies both I" and the representation
¢. If we could represent M as a set of facts Ay, we could prove immediately
that the following condition holds:

PUAu ¢

This implies that one can use models A as semantic interpretations if there
is a way to represent M within the logical language as a set of facts Aaq. For
an important class of models, the Herbrand models, this is indeed possible. A
Herbrand model can be represented unambiguously as a set of ground liter-
als. Furthermore, every first-order specification I' U {¢} that is satisfiable at
all must also be satisfiable by at least one Herbrand model.

Unfortunately, not every Herbrand model M of I" U {¢} is suitable as an
explanation for the truth of a semantic representation ¢ in context I". There
are, in general, many models that interpret a logical specification I"'U{¢} to be
true even though they do not have a correspondence to the truth conditions
that we look for in a semantic interpretation.

What we actually want to perform here is abduction, i.e., that kind of
inference that finds the best explanation. One of the topics of this thesis is to
determine the relationship between abduction and the generation of models
in the interpretation of semantic representations.

1.2.2 Analysis

Semantic analysis identifies the valid semantic representations within a set of
possible readings by common-sense reasoning. For this, too, our models M
for ¢ and I' are interesting. In fact, the existence of a model M for a spec-
ification is a valuable information on its own. If a semantic representation ¢
is inconsistent within a context I', then I U {¢} will have no model at all.
“Be consistent!” is one of the most important constraints for human commu-
nication and most discourses obey this maxim. If a semantic representation
has no model within its situational context, we can assume that either the
representation itself is faulty, or there is a discourse anomaly. Consider for in-
stance the discourse Katja’s husband knows her sister. She is not married. A
natural-language parser might provisionally propose two different resolutions
for the pronoun She:

(1.1) Katja; ’s husband knows her sister. Shey is not married.

(1.2) Katja’s husband knows her sister;. Shey is not married.

4 1 Motivation

Only the second reading makes sense since the first reading leads to an in-
consistency—we know that Katja is married because this information was
implicitly given. A parser which has no access to common-sense reasoning
will not be able to distinguish a valid from an inconsistent reading.

Model generation is useful for distinguishing valid and invalid semantic
representations. Given a sentence L, a listener will in general have an intuition
for the assumptions A that must hold if L is to be true in a context I'. A
computational tool that enumerates sets of assumptions A’ for the semantic
representations ¢ of L can be used to investigate whether the assumption sets
A’ meet the listener’s expectations or not. If not, the sets A’ can help us to
detect flaws in the original representation.

For this form of semantic analysis, we need inference for proving the sat-
isfiability of semantic representations in context. In this thesis, I will discuss
some existing model generation methods that have been developed originally
for other applications than linguistics. As we will see, there is no off-the-shelf
method available that is sufficient for the task at hand. For semantic analysis,
we need specialised technical machinery, and I will show how to tailor the
existing tools to our needs.

1.2.3 Computation

Technically, this thesis is about developing a model generation method that
is suitable for the interpretation and analysis of logical semantic representa-
tions. One of the stumbling stones for conventional model generation in this
context is higher-order logic. Model generation, like automated deduction, has
concentrated on first-order predicate logic or fragments thereof. The standard
language of classical first-order predicate logics can be very awkward in places,
especially for representing natural language. Since the early 1970s, when Mon-
tague [2] initiated the use of the simply typed A-calculus in natural-language
semantics, semanticists use, among other means, higher-order logics with spe-
cific linguistic quantifications as a more convenient form of representation.
The following are two possible representations of the sentence Two women
love John, one with a Montague-style syntax and linguistic quantification,
and one in a standard first-order form.

(1.3) Two(w)(love()j))
(1.4) dzy Jzg wlz1) A wz2) A x1 # 29 Alove(j){(x1) A love(j)(z2)

It is easy to see that the Montague-style representation (1.3) is both closer
and more natural with respect to the original sentence than the formula in
standard syntax (1.4). The use of such Montague-style formalisations can have
both theoretical and practical advantages for first-order inference, as has been
shown by McAllester and Givan [3]. Linguists use higher-order logics because
of its expressivity and because the semantics of natural language utterances
can be constructed in a compositional way.

1.3 Acknowledgments 5

All model generation methods expect their input in a form similar (1.4). As
natural-language semantics makes use of logical languages that are more ex-
pressive than classical first-order predicate logic, a model generation method
that is suitable for natural-language processing must be able to deal with
such languages too. However, the use of more expressive logics may change
the computational tractability of inference. Although the extra expressive
power is often worth the price, we would like to have efficient techniques that
can be used in practice and as the basis of scientific evaluation in compu-
tational semantics. The mutually exclusive design goals of expressivity and
computational tractability can be dealt with in systems that use the more
expressive power of the richer formalism, but in fact inhabit a fragment that
has better computational properties. One of the contributions of this thesis is
the development of an efficient model generation method for Montague-style
higher-order logical specifications that has the same complexity as first-order
model generation.

1.3 Acknowledgments

Starting at the beginning, I would like to thank Michael Kohlhase and Jorg
Siekmann for introducing me to the exciting interdisciplinary research in au-
tomated reasoning and formal semantics. They gave me the opportunity to
be a part of a very active group which, among other privileges, provided me
with access to knowledge of logical systems and how to implement them.
The knowledge that I needed desperately was donated by several people, but
I have to thank especially my colleagues Michael Kohlhase and Christoph
Benzmiiller who spend a lot of their valuable time by initiating me into the
mysteries of higher-order logics, both with an amount of patience that I still
find incredible.

My other collegues at the computer science department, Lassaad Cheikh-
rourou, Detlef Fehrer, Armin Fiedler, Helmut Horacek, Andreas Meier, Erika
Melis, Martin Pollet, and Volker Sorge not only let me be a part of their work-
load sometimes, but also accepted my “exotic” interest in natural language
semantics—they are after all in a group whose primary goal is to develop
techniques for planning and presenting mathematical proofs. I suspect that
most of them believe that my research interests were only a clever scheme of
mine to avoid doing any real work, but they did not let it show too much.

In the computational linguistics department, my colleague Claire Gardent
provided the linguistic background that was essential for the present work.
Our discussions and close cooperation strongly influenced what I did and how
I did it. Some of my “best” ideas died an instant death as soon as I gave
her the opportunity to examine them from an experienced linguist’s point of
view. I am therefore not only grateful for the work that we did together, but
also for a lot of unnecessary work that she prevented me from doing.

6 1 Motivation

Johan Bos kindly let us plug KIMBA into the DORIS system as an infer-
ence module and wrote the translation routine that was necessary for this. Of
our students at the computer science department, I would like to thank An-
dreas Franke for giving me more than a hand with KIMBA’s integration into
MATHWEB such that it could be used as part of the DORIS system. Carsten
Brockmann at the computational linguistics department was equally helpful
for the modification of KIMBA into a web-based applet.

David Wolfram of the computer science department at The Australian
National University, Canberra, gave me the opportunity to further develop
the idea of higher-order model generation as a guest of his university for ten
weeks. Frangois Bry and his group at the Ludwig-Maximilian University in
Munique also were several times my hosts. They showed me the beauty of
“lean” model generation and have answered some of my questions about the
connections of model generation and abduction. Martin Miiller and Christian
Schulte of the Programming Systems Lab, Saarbriicken, were the ones I could
always turn to for technical support with Oz.

My girlfriend Katja often had to notice that whatever she had just told
me did not find a way into my mind: it was still busy with such important
questions as whether giving measles to each other should be interpreted by
IAO or IAR reciprocity. There is also no question that she had to endure
bad moods and inexplicable behavior beyond whatever can be expected from
a PhD student’s girlfriend. Sorry love, I promise that I will never write a
dissertation again.

Michael Kohlhase, Christoph Benzmiiller, Jorg Siekmann, and Manfred
Pinkal had a closer look at parts of this thesis at various stages of its devel-
opment. I am more than grateful for the constructive criticism and helpful
remarks they gave me. Needless to say, all remaining errors are my own.

Finally, I always had and have the support of my family, although I think
my dad would like me to stop doing research now. He does not consider it to
be proper work at all because there is too much fun involved.

Part 1

Logics

This page intentionally left blank

2

Model Generation

Approach your problem from the right end and begin
with the answers. Then one day, perhaps you will find
the final question. (van Gulik)

Overview: This chapter presents research topics in model generation that will
be relevant for later chapters. It also gives an introduction to some of the most
popular methods for generating models.

2.1 Introduction

Model generation is important for the automation of reasoning. Its applica-
tions are in many different fields such as [4,5], [6,7], [8], [9], [10], software
verification [11], [12], and [13]. For this, and other reasons, model generation
developed into a rich field of research of its own.

In Section 2.3, we give an introduction to the topics of model generation
that are especially interesting for computational semantics and that will play
some role in later chapters. Such topics are for instance minimal model gener-
ation and model enumeration. On the other hand, the methods discussed here
are not those that we will actually use for natural-language analysis and inter-
pretation, but survey the standard technical machinery of model generation.
The staple techniques of model generation include the use of (hyper-)tableaux
calculi and that of efficient propositional decision procedures. In Section 2.4,
we discuss both PUHR tableaux and the Davis-Putnam procedure, because
these two methods exemplify the two most common approaches to model
generation. Section 2.5 gives some pointers to selected works that investigate
other methods and topics in model generation.

2.2 Preliminaries

We assume the reader to be familiar with first-order logics and inference pro-
cedures such as presented, e.g., in Fitting’s textbook on first-order logic and
automated theorem proving [14].

10 2 Model Generation

o aj a3 B B B2
ANB A B|-(AAB)| -A -B
-(A v B) -A -B|| AvB A B

—-(A = B) A -B|| A=B -A B
A< B |[A=BB= A[|-(A«<B)-AABAA-B

Fig. 2.1. o and B-Formulae and Components

v [@) || & | ()
VazF | [t/z]F || ~VzF|[t/z]-F
—3zF|[t/z]-F| 3zF | [t/z]F

Fig. 2.2. +- and é-Formulae and Instantiations

A specification is a finite set of closed formulas, a theory a possibly infi-
nite one. Unless indicated otherwise, I use “formula” in lieu of closed formula,
i.e., formulas F do by default not contain free variables.

An atom a is a formula that does not contain any logical connectives. A
literal | is either an atom a or its negation —a. If a literal | is an atom a, then
its complement | is —a, otherwise its complement is a.

Following Smullyan [15], we classify formulas as implicitly conjunctive (a),
disjunctive (8), existentially quantified (6) or universally quantified (vy). Fig-
ure 2.1 shows the components of a- and 3-formulae, while figure 2.2 shows the
relationship between - and é-formulae and their instantiations. We denote a
substitution that instantiates a variable z with a term ¢ with [t/z].

2.3 Topics

In the following, some selected concepts and research topics in model genera-
tion are introduced.

2.3.1 Models and Decidability

Models are interpretations of the symbols of a logical theory T such that
T becomes true. For a first-order theory, each is associated with a nonempty
domain D of individuals. This domain sometimes is called the.

First-order interpretations are pairs Z = ([],D) of an interpretation
function [] that maps predicate and constant symbols to predicates and
constants of the appropriate type, and a domain D of individuals that provides
entities for the interpretation of constants. Every interpretation of a term ¢,
[t], must be an element of D.

A model M for a classical propositional logic is simply a mapping [} from
Boolean constants ¢ into the truth values. We call a problem combinatorial
if it is equivalent to finding an assignment for finitely many variables with
finite domains, and verifying in polynomial time whether the assignment is a

2.3 Topics 11

solution or not. All combinatorial problems are decidable, because we can use
a brute-force algorithm that simply tries out all possible variable assignments.
Satisfiability of specifications in classical propositional logic is a combinatorial
problem.

The predicate calculus, on the other hand, is undecidable. We know that
there is no method that will be able to prove satisfiability in general. Hence,
there can also be no procedure that is always able to compute a model for
an arbitrary satisfiable first-order specification. However, there exist methods
that are complete for finite satisfiability, i.e., that are decision procedures for
specifications that either are unsatisfiable or can be satisfied by a finite model
(see Section 2.4.5).

2.3.2 Herbrand Models

An important class of models are the Herbrand models. Within these, con-
stants and other terms are interpreted as themselves, i.e., [t] = ¢ for all terms.
This implies that the universe of discourse is a set of the terms that can be
built from the signature of the interpreted theory. In a classical first-order
logic, a Herbrand model M and its associated domain D can be specified
completely by the set GROUND(M) of all ground literals that are satisfied
by M. The domain D of M are the terms that occur in this set of literals.
We identify Herbrand models M with their representation as sets of ground
literals.

Herbrand models are an important class of models because each satisfi-
able first-order theory must have at least one Herbrand model. Methods in
automated deduction make use of this property when proving unsatisfiability.
If a theory is inconsistent, it suffices to show that it cannot have a Herbrand
model. This, in general, is simpler to show than the non-existence of arbitrary
models. Unless indicated otherwise, we use the term “model” for Herbrand
models.

2.3.3 Finite Models

Not all first-order Herbrand models for a formula may have a finite represen-
tation as a finite set of ground literals. For instance, the formula p(f{(a)) A
Ve p(f(x)) = p(f(f(x))) is satisfiable, but only by an infinite model of the
form M = {p(f(a)), p(f(f(a))), p(f(f(f(a)))),...}. The universe of discourse
D of this model is infinite. A finite model is a model with a finite universe
of discourse. Most model generation methods are restricted to the generation
of such finite models (see Section 2.5).

A serious problem for completeness in model generation is Skolemisation.
A Skolem term is a term that represents an equivalence class of J-formulas
up to a renaming of variables [16,17]. Skolemisation is a convenient method
for eliminating existential quantifiers in theorem proving, but for model gen-
eration purposes it has serious drawbacks. Skolem terms often introduce new
function symbols which extend the domain of the Herbrand models of the in-
put specification. While Skolemisation does not turn a satisfiable specification

12 2 Model Generation

into an unsatisfiable one, it may transform a finitely satisfiable specification
into one that has only infinite Herbrand models. For instance, the formula
p(a,a) AVz (p(z,z) = Jy p(z,y)) has a finite Herbrand model {p(a,a)},
while a Skolemised form p(a,a) AVz (p(z,z) = p(z, f(x))) has not. As men-
tioned before, infinite models are a problem because there can be no method
that detects their existence in general.

2.3.4 Representations

A finite representation GROUND(M) still can be awkward in places because
of their size. Herbrand models are therefore represented more compactly by
their positive part alone, i.e., by the set of positive literals Pos(M). The
interpretation function / that is derived from M simply interprets all literals
P as false if P is not in M. Note that the universe of discourse D of a
might actually be smaller than the terms that occur in the complete model.
Throughout this volume, we will usually present models as sets of atoms that
leave out all negative literals.

2.3.5 Minimality

An important research topic in model generation is the generation of models
with certain properties, the most important property of which is some form
of minimality. In the following, we summarize the forms of minimality that
have been investigated in the literature.

2.3.6 Subset Minimality

A model M for a specification @ is called subset-minimal iff for all models
M’ of @ the following holds: Pos(M’) C Pos(M) = Pos(M’) = Pos(M).
Subset-minimality is the most important form of minimality and has been the
focus of a great deal of attention in the literature. Minimal model reasoning
is at the heart of the circumscriptive approach to common sense reasoning.
Circumscription, as introduced by McCarthy [18], is one way to formalise non-
monotonic logics, and it has been applied to reasoning about actions, planning,
and the semantics of logic programs. The logical consequence relation f=.
of circumscriptive reasoning can be formalised asfollows: I' =, @ iff & is
true in all subset-minimal models of I". This consequence relation is stronger
than the classical consequence relation f=. For instance A A B k=, —C, but
obviously A A B & =C. It is non-monotonic because A A B =, ~C holds, but
AABAC k. —~C does not.

Circumscription needs methods that can verify the subset-minimality of
models. Several such methods have been proposed in the literature on circum-
scriptive reasoning [19-21]. There are also other methods from model genera-
tion to generate subset-minimal models [22,23]. Yet, there is no method avail-
able that enumerates the minimal models of a specification both in a space-
and time-efficient way. Most solutions proposed are not able to handle larger
examples because of exponentional worst-case complexity. For instance, the

2.3 Topics 13

system of Bry and Yahya [22] needs a potentially expensive lookup mechanism
for models that have been computed earlier (see Section 2.4.4).

The minimal model reasoning method proposed by Niemeld [24] seems to
be the only one on the market that has no exponential space requirements by
design. In a tableaux setting, the method is able to locally verify the minimal
model property of an open saturated tableau branch, but does not prevent that
minimal models are sometimes generated multiple times in different branches.
Also, the method is restricted (in its original form) to propositional logics.

2.3.7 Domain Minimality

A second definition of model minimality is domain minimality. A Herbrand
model M for a specification ¢ is domain-minimal if the size |D(M)| of
its universe of discourse is minimal, i.e., there is no model M’ of @ such
that |D(M’})] < |D(M)]. Reasoning with domain minimal models has been
investigated by Hintikka [25] and Lorenz [26] as an alternative form of cir-
cumscription where the focus lies on minimizing the domain size rather the
facts. Unlike subset-minimality, verifying domain-minimality is computation-
ally tractable for every model generation method that is guaranteed to find a
domain-minimal model first. A method that enumerates models in increasing
size of the domain can be derived from the EP calculus presented in Sec-
tion 2.4.5.

2.3.8 Predicate-Specific Minimality

Let p be a certain predicate symbol, and p(M) be the subset of atoms in
Pos(M) whose head predicate symbol is p. We call a model M of a specifi-
cation @ p-minimal if there is no model M’ of @ such that |p(M)| < |p(M)}.

Applications such as diagnosis and planning often employ some forms of
p-minimal models. For instance, logical specifications in model-based diagno-
sis are used for describing the correct behavior of a device, while a certain
predicate abis used for abnormal behavior. The following specification may
describe an AND-gate in a circuit:

on(iny) A on(ing) = on(outy) V ab(AN D)

The formula specifies that on{out;), the output of our AND-gate AND;, must
hold if both inputs in; and ing are on as well, otherwise the device AND; is
abnormal. A set of such rules could be used to describe the in/out-behavior
of an integrated circuit. A diagnosis is then a model of such a description
I" together with a set of observations & that indicate a faulty device. The
observations @ correspond to the in/out-states of parts of the circuit. The
models that are interesting are those that explain the truth of I" U @ which
refer to a minimum of devices in the predicate ab. These minimal models
show how the error indicated by @ can be caused without assuming more
faulty devices than necessary. The specific task in diagnosis is to compute
models that minimize not all atoms, but only the atoms that depend on the

14 2 Model Generation

predicate ab. Other parts of the model are of no interest. We call models that
are minimal with respect to a certain set of predicates predicate-specific
minimal models.

2.3.9 Enumeration

The minimal models of a logical problem specification usually represent dif-
ferent solutions of the problem. As a consequence, we are often not interested
in just computing one single model for a specification, but want to enumerate
models instead. This implies that the generation method is complete with
regard to the solutions we are interested in. For many applications, the form
of completeness that is asked for is completeness for finite satisfiability [27].

2.3.10 Model Enumeration with Theorem Provers

Some theorem provers decide fragments of first-order logics. For instance, the
theorem proving system implements a decision procedure for the [28]. Within
such decidable fragments, the related proof procedure can sometimes be mod-
ified such that a model is constructible from a failed refutation proof attempt.
Yet, high-speed theorem proving calculi are not designed for enumerating the
models of a specification. The general use of Skolemisation makes it impos-
sible for conventional automated theorem provers to be complete for finite
satisfiability.

On the other hand, calculi for model generation theorem proving can si-
multaneously be refutation complete and complete for finite satisfiability if
we do not Skolemise (see Section 2.4.5). The system by Bry and Torge [27]
implements this idea. It is the only theorem prover currently available whose
underlying hyper-tableaux calculus is provably complete for finite satisfiabil-
ity. The original [29] system uses Skolemisation, and therefore shows the
same enumeration incompleteness with regard to finite satisfiability as other
theorem provers.

2.3.11 Enumeration with Finite Model Generators

Unlike model generation theorem provers, are programs whose only purpose
is the generation of finite models and not the refutation proof of a theorem.
One of the best known systems for finite model generation is Slaney’s [30].

Finite model generators apply propositional decision procedures to first-
order specifications that have been translated into propositional logic using a
given universe of discourse. Programs such as FINDER are frequently used for
applications that require the exhaustive search for finite models within very
large search spaces [4]. By using efficient decision procedures, finite model gen-
erators can solve combinatorial problems that are far beyond the capabilities
of first-order methods.

As a welcome side-effect, the use of complete propositional decision proce-
dures results in a finitely complete form of model generation where all finite
models of a specification up to a renaming of constant symbols are generated.

2.4 Methods 15

Every propositional model is also a unique finite model of the input first-order
specification. By iterative deepening over the size of the domain, all finite
models can be successively enumerated in a space- and time-efficient way.

2.4 Methods

Most of the calculi developed in automated deduction that prove unsatisfi-
ability can also sometimes be used for proving satisfiability. For many non-
classical logics such as a variety of modal logics, the proof procedures available
are not only refutation complete, but actually decide theories in these logics.
Also, efficient procedures for testing satisfiability in (classical) propositional
logics are a major research topic in Automated Reasoning and Artificial In-
telligence [31-35].

Model generation as a field distinguishes itself from research on SAT and
decision procedures in two aspects. First, the logics considered are undecidable
in general and have some unrestricted notion of quantification over individ-
uals. This means that the logical languages used are not tailored to be a
decidable fragment of first-order logics such as those used in knowledge repre-
sentation [36]. Second, the methods generate objects from which models can
be derived.

The border line between model generation and other research on satisfiabil-
ity is not a strict one. For instance, propositional decision and SAT procedures
have been used successfully for first-order model generation in planning [8] and
finite mathematics [37].

Model generation as a field of research is associated with a variety of
tableaux methods, the most prominent being Positive Unit Hyper-Resolution
(PUHR). We present this tableaux method in Section 2.4.4 as a standard de-
vice in model generation. An important improvement of PUHR with regard
to our intended application is completeness for finite satisfiability, which is
exemplified in the Extended Positive (EP) tableaux calculus in Section 2.4.5.
The core method for model generation that we will use throughout this vol-
ume is constraint-based finite model generation. This approach shares many
properties with the Davis-Putnam procedure, a propositional decision proce-
dure that we will discuss in Section 2.4.6. Constraint-based model generation
is then the main topic of the next chapter.

2.4.1 Analytical Tableaux

Many calculi for model generation are based on analytical tableaux, although
conventional tableaux calculi with an unrestricted syntax are rarely used for
model generation. In the following, we show why standard tableaux methods
are not suitable for finite model generation in general.

16 2 Model Generation

2.4.2 Ground Tableaux

The set of expansion rules shown in Figure 2.3 defines a sound and refuta-
tion complete theorem proving calculus for first-order predicate logics called
ground tableaux [38].

] ai —~-F N F)
AR a; F () d(sko(d))

Fig. 2.3. Tableaux expansion in conventional tableaux

In conventional analytical tableaux, an arbitrary input formula is anal-
ysed by applying expansion rules, thus creating the well-known tree-structure
of tableaux proofs. A branch in such a tableau is closed if it contains an
elementary contradiction, such as an atom a and its negation —a. A closed
tableau is a tableau where all branches are closed. A closed formula proves
that the input formula is unsatisfiable. Figure 2.4 shows a closed tableau for
the formula (Vz —p(z)) A (p(a) V p(b)) The tableau proof instantiates the ~-
formula Vz —p(zx) twice, creating two new formulas, —p(a) and —p(b). These
are used for showing that the disjunction p(a) V p(b) can not be satisfied.

(Ve —p(z)) A (p(a) V p(b))
Yz —-p(x)
p(a) V p(b)
—p(a)
—p(b)
p(a)|p(b)
* *

Fig. 2.4. A tableau proof for refuting (Vz —p(z)) A (p(a) V p(bd))

Branches are frequently identified with the set of formulas they contain.
A branch is called saturated if no application of an expansion rule can add
new elements to this set. In analytical tableaux, the atoms in a saturated open
branch define a positive model of the input formula.

The «-rule of ground tableaux is a serious source of inefficiency. When ap-
plying the rule, we must “guess” the right terms and number of instantiations
that are necessary in order to close all branches. There is, in principle, no limit
for the number of instantiations that might be necessary to close a branch.
For model generation, we must use all different terms that occur in the same
branch as the ~y-formula while Skolemisation in the é-rule successively might
introduce new terms. This quickly leads to infinite branches.

2.4.3 Free Variable Tableaux

The free variable tableaux is a basis of many deduction systems. It is par-
ticulary easy to implement, and some systems consist only of a few lines of
Prolog code [39]. In a free variable tableaux, the instantiation of ~-formulas

2.4 Methods 17

by ground terms is replaced by an instantiation with some variable z that is
new to the tableau and whose instantiation has to be determined later (see
Figure 2.5). A branch containing two formulas E and —F can be closed iff there
is a variable assignment, i.e., aunifier &, such that o(E) = ¢(F). The unifier o
can be computed efficiently by first-order unification, and ¢ is then applied
to the whole tableau in order to remove all occurrences of the free variables
in E and F.

By using unification, the selection of a term that instantiates a y-formula
can be delayed until this instantiation actually helps closing a branch. This is
a considerable advantage in practice. Still, the selection can be wrong, because
there might be several formula pairs E and F in a branch that are suitable for
closing it. Applying a unifier has a global effect on the whole tableau, and a
wrong choice in one part of a tableau might require additional v-instantiations
in another part. In order to have a fair expansion of y-formulas, implementa-
tions often use iterative deepening over the number of y-instantiations that
are allowed in one branch.

¥
¥(x)

Fig. 2.5. Free variable tableaux expansion

The quantifier rules in a free variable tableaux still are a source of model
incompleteness. Once a branch contains one 7y-formula, it can be extended
by an unlimited number of successive applications of the ~-rule. Hence, even
if a branch has a model, we might not be able to detect it because one or
several y-formulas prevent the finite saturation of a branch. In practice, there
are nevertheless methods that can be used for detecting models in potentially
infinite branches. A formula that contains a variable represents an infinite
set of ground Herbrand terms, and if a branch provably cannot be closed,
such methods are even able to generate infinite models. However, infinite
model generation requires a considerable amount of technical machinery and
still cannot prevent model incompleteness because of Skolemisation. For a
survey of the state-of-the-art techniques in this area, we refer to Klingenbeck’s
thesis [40].

2.4.4 Positive Unit Hyper-resolution

Positive Unit Hyper-Resolution () tableaux is the theoretical basis of the
theorem prover [29,41]. Introduced by Bry and Yahya [22], this calculus ad-
dresses the efficiency problem that the blind instantiation of y-formulas poses
for conventional analytical tableaux calculi. PUHR tableaux is a ground cal-
culus, i.e., the formulas in a branch do not contain free variables.

PUHR tableaux are constructed from an initially empty branch by apply-
ing the inference rule in Figure 2.6. The single PUHR tableaux rule is a sound
and refutation complete calculus for clausal specifications.

18 2 Model Generation

a
by | b2 |...bacilbs a1 A...Aayp =b;V...Vb, is a ground
=bs |=bs]...| =b, instance of a clause in the input &
ﬁbl‘!—]. _'b'n,

ﬁbn

Fig. 2.6. The PUHR tableaux expansion rule

If a branch 6 contains all body atoms aj ... an, of some ground instance of
aclause C=a; A...Aap, = by V... Vb, in the input specification @, then
f is split into n branches, each extended by some atom b,. In addition, each
branch also contains the complements of the atoms b; with j > i. If C has
no atoms b;, i.e., n = 0, then the branch is closed. A branch is also closed
if it contains an atom and its negation. PUHR tableaux satisfy a regularity
condition that forbids the application of a ground clause C if one of the atoms
b; already occurs in the current branch.

The input to the PUHR calculus is a set of range-restricted rules F; A
.AFmn=Ei1V...VE,,ie, first-order clauses with free variables where all
variables in E; V... VE, also occur in Fy A...AF,,. By using a special domain
predicate dom for introducing variables on the left-hand side, all first-order
specifications can be translated into this form. A rule is applied only if the
left-hand side as a whole can be instantiated with the atoms that occur in the
current branch. PUHR tableaux can avoid the effect of the blind instantiation
of y-formulas because implicative rules need only be instantiated if all their
preconditions are met.

A branch of a PUHR tableaux is frequently identified with the set of
atoms it contains. These atoms define a partial interpretation. A saturated
PUHR tableau © for a clausal specification ¢ has, among others, the following
properties:

— Every open branch of @ is a positive model of of &.

— Every subset-minimal model of ¢ appears as a branch of ©.

~ Iftwo models M and M’ appear in © and Pos(M) C Pos(M’), then the
branch containing M appears left of the branch of M’.

PUHR tableaux can be used for the generation of subset-minimal models if
non-minimal models are eliminated. In order to do so, we traverse a tableau in
a depth-first left-to-right manner and check for every generated model whether
it is not a superset of some earlier computed model. This requires a potentially
expensive lookup mechanism. We either have to keep track of all models that
have been computed earlier, or we must repeat parts of the earlier tableau
proof.

2.4 Methods 19

PUHR tableaux, like other clausal calculi, must employ Skolemisation in
order to have a clausal input that is equivalent to the original first-order
specification. As mentioned before, Skolemisation may cause infinite Herbrand
models. A saturated PUHR tableau always has a branch for each minimal
model, but this theoretical property is often of no relevance in practice because
a tableau that contains infinite models cannot be saturated by finitely many
expansion steps. In this case, a branch will be expandable infinitely many
times, and we will not be able to verify the existence of its model in general.

2.4.5 A Method Complete for Finite Satisfiability

The simple PUHR calculus presented in the last section is in many ways
interesting for both theoretical and practical research and has inspired many
related works. One of the various derivations based on the PUHR tableaux
addresses the question of how Skolemisation can be eliminated in order to get
completeness for the generation of minimal models. The Extended Positive
(EP) tableaux calculus by Bry and Torge [27] uses a special é-rule which
avoids Skolemisation. Fig. 2.7 displays EP’s expansion rules.

o

8 2 ¥ (@) D)
B1|B2 a; D[¢/z]
3z F(z)

Flea/=]. . .[Flee /z]|Flenew/]

Fig. 2.7. The EP calculus

EP accepts so-called Positive Restricted Quantification (PRQ) rules as its
input. These rules are rules of the form YZ(C — 35 F) where C is aconjunction
of atoms and F is a disjunction of atoms and PRQ rules. The rules do not
contain function symbols. Every first-order specification in classical logic can
be translated into a PRQ specification.

In the V-rule in Fig. 2.7 above, ¢ is a tuple of constants occurring in the ex-
panded node. These constants are determined by evaluating C, a conjunction
of atoms, against the already constructed interpretation, i.e., the Herbrand
model determined by the set of ground positive literals occurring in the cur-
rent branch. The V-rule handles both universally and implicative formulas,
and, like the original PUHR rule from which it is derived, only extends the
current branch if there is a complete match of the implication’s left side with
the already constructed interpretation.

The J-rule (originally called the §*-rule in [27]) instantiates existentially
quantified formulas = with constants {ci,...,cc} that occur in the current
branch and that form the current domain D. It also extends the tableau with
a new branch that instantiates x with a new constant ¢,,,. By this, the use of
a Skolem term with a potentially dangerous introduction of function symbols

20 2 Model Generation

is avoided. The reuse of constants also ensures that EP constructs models with
minimal domains first when using a left-to-right traversion of the tableau.

With the elimination of Skolem terms, and function symbols as a whole,
EP is complete for finite satisfiability. Like PUHR tableaux, EP is refutation
complete and simultaneously searches for models and proofs.

2.4.6 The Davis-Putnam Procedure

All tableaux methods presented in Sections 2.4.1-2.4.5 are refutation com-
plete proof calculi for first-order logics. They not only compute models and
refutation proofs simultaneously, but also determine the domain of the models
they compute. A quite different approach to model generation is the use of
where the universe of discourse must be chosen in advance.

Given a domain of individuals D, one translates the input specification ¢
into ground formulas or ground clauses by translating é-formulas into disjunc-
tions and ~y-formulas into conjunctions. The result are propositional theories
for which efficient decision procedures are available. A propositional model de-
termines the truth value of all ground literals and can be translated back into
a model of the first-order input specification. If the specification is unsatisfi-
able, one simply extends D by an additional entity and starts the translation
into propositional logics again. By iterative deepening on the size of D, all
finite models of the input can be enumerated.

A simple, yet efficient decision procedure is the Davis-Putnam procedure'.
In its original form, as presented in [43], it was intended to be a theorem-
proving technique suitable for automation, covering both classical proposi-
tional and first-order logics. The first-order version was not as efficient as
resolution, which was introduced soon after, but the propositional version is
still among the fastest [14].

2.4.7 Calculus and Procedure

The Davis-Putnam procedure works on ground clauses a; V...V a,, V =b; V
...V-b, that we will write in the following as literal sets {l1,...,l,+m}. Like
all sets, a literal set does not contain the same elements twice. Additionally,
we remove all clauses from our input that contain both some literal | and its
complement 1, i.e., that are tautologies.

Like a tableaux calculus, the Davis-Putnam procedure manipulates se-
quences of formulas that we organise into branches. Unlike tableaux, how-
ever, we do not have a tree-like proof structure, but each branch is kept sep-
arately. A branch can be modified destructively by removing formulas. Like
in a tableaux, a saturated open branch proves the satisfiability of the input.
A branch is closed if it contains the empty clause {}, or a unit clause {l;}
together with the complementary clause {1 }.

Figure 2.8 shows the rules of the Davis-Putnam calculus. The first rule
eliminates clauses {ly,...l,} if there is a unit clause {l;} in the same branch.

"It is more precisely referred to as the Davis-Logeman-Loveland procedure [42].

2.4 Methods 21

This is sound because every interpretation that validates {l;} must also val-
idate {l1,...ln}. The second rule is propositional unit resolution. If both
{li,1g,... 1} and {H} are in the same branch, we can simplity {l,l2,...1,} to
{l2,.. .1} because we know already that literal {; must be interpreted as false
in the current branch.

P ! {l,...ls}

lyeeln r
th.- b} {in) (i, la}

remove {l1,...l,} re:ld(:iv?l;[fl"b Iﬂl}n} {L} {1}

Fig. 2.8. The Davis-Putnam calculus

The final rule splits a branch if there is a literal I; that occurs both pos-
itively and as its complement in some non-unit clauses. This results in two
new branches, one that contains the unit clause {l;} and one that contains
the unit clause {I1}.

The Davis-Putnam procedure defines an effective order of rule applications
for the calculus. The first two rules are always applied exhaustively on a
branch until no further simplification is possible. Then, a literal is selected
for splitting, and the process of simplification that is defined by the first two
rules starts again. As a heuristic, the procedure selects literals that occur in
as many other formulas as possible in order to maximize the effect of the
simplification rules.

2.4.8 Branches as Models

The output of the Davis-Putnam procedure is a finite set of branches. If at
least one of them is open, then the input is satisfiable. Unlike the tableaux
calculi discussed before, a single branch can actually represent several mod-
els. Consider for instance the set of literal sets {{a, b}, {d,e, ¢}, {—c}}.This
set can be simplified by applying unit resolution to the last two formulas,
and we obtain the saturated open branch {{a, b}, {d,e}, {~c}}. The models
represented in a branch are defined by all atoms that occur in paths through
the set of clauses that select one literal in each clause. In our example, we
obtain the following positive models:

{a,d}, {a, e}, {b,d}, {b,e}

As in the case of first-order models, the interpretation / derived from a
positive model M meets the following condition: /(c) = true iff ¢ € M for all
atoms c.

With a slight variation of the splitting rule, the Davis-Putnam procedure
actually enumerates all models of its input in separate branches. Figure 2.9
shows the rule that can now split a branch on literal |; if this literal occurs in
any non-unit formula in the branch.

22 2 Model Generation

il
{la}{l}

Fig. 2.9. The modified splitting rule for enumeration

2.4.9 Efficiency

The Davis-Putnam-procedure is the basis of a family of model generation pro-
grams (see Section 2.3.11) that all have been used with some success in finite
mathematics. The Davis-Putnam programs have been applied to combinato-
rial problems with very large search spaces that are beyond the capabilities
of first-order methods.

At a first glance, it is not obvious why the Davis-Putnam procedure is
more effective for prepositional decision problems than so many other proof
procedures. The splitting rule for instance requires that the set of clauses is
split into independent partitions that can be manipulated destructively while
a tableaux allows us to keep common parts of different branches in the same
branch the tree-like proof structure. In fact, if the modified splitting rule
would be applied for all literals before simplification takes place, a Davis-
Putnam proof would have the same complexity than a truth-table method,
i.e., there would always be 2™ branches with n being the number of different
literals in the input problem.

The success of the Davis-Putnam procedure can be explained by the po-
tential of simplification due to the the first two rules. Any unit clause in the
current branch is used for simplifying all other clauses in which it occurs. If
a literal | occurs in the same polarity in a clause C in the branch, then C
is removed immediately, which shortens the branch. If | occurs as I in some
non-unit clause C’, then C’' can be shortened at least by one literal. These
shortened clauses are possibly unit clauses, and can be used immediately for
simplification. Splitting on some literal introduces two new branches, each of
these simplifiable. As an effect, many potential splittings on literals may never
become necessary, either because the literals involved are eliminated from the
branch entirely, or because the literal or its complement remain as a unit
clause in the branch. In this case, the interpretation of the literal is already
given.

2.5 Related Work

There currently is no overview article or an annotated bibliography available
that gives a throughout introduction to the various topics, methods, and ap-
plications in model generation. Hasegawa [44] focuses on model generation
theorem proving such as the PUHR tableaux approach. For finite model gen-
eration, the article by Slaney, Fujita and Stickel [4] sketches the techniques
of different programs, while Zhang and Stickel [45] explain in detail how the
Davis-Putnam procedure can be implemented efficiently.

2.5 Related Work 23

There are several model generation programs available that have been de-
veloped in the automated deduction community. A family of model generators
is based on the Davis-Putnam procedure, for instance, [45], and [37]. Both
[46] and its predecessor [47] use techniques from constraint solving instead
or in addition to those that have been pioneered by FINDER [30].

[48] is a model generation theorem prover that is based on a PUHR-like
tableaux calculus. The system implements some interesting refinements of
PUHR, for instance an optimised proof procedure for horn clauses.

While PUHR tableaux as used in SATCHMO and MGTP is a ground cal-
culus, the hyper-tableaux derivation of PUHR by Baumgartner et al. uses
free variables [49,50] in order to suppress unnecessary ground instantiations
when proving theorems. Also for theorem proving applications, variants of
SATCHMO have been developed that apply rules in a more goal oriented way
by ordering them with respect to relevancy measure [51]. Abdennadher and
Schiitz [52] present a PUHR tableaux calculus that can handle existentially
quantified variables whose domain of instantiation is restricted by constraints.

This volume concentrates on the generation of finite Herband models for
natural-language semantic representations. There are some methods available
in other application areas that generate certain classes of infinite models.
The methods proposed by Klingenbeck [40] and Peltier [53] investigate that
have finite representations. For an overview of techniques in infinite model
generation, we refer to Klingenbeck [40].

There are many model generation methods that are related to some form
of first-order (hyper)resolution (see [54] for a summary).

Unlike proof presentation in theorem proving, the computation of an ap-
propriate representation of models or parts thereof is a relatively new re-
search topic in model generation. Horacek and Konrad [55] propose linguisti-
cally motivated techniques for presenting finite Herbrand models in a human-
oriented way.

This page intentionally left blank

3

Higher-Order Model Generation

By keenly confronting the enigmas that surround us,
and by considering and analysing the observations I had
made, I ended up in the realms of mathematics.

(M.C. Escher)

Overview: The simply typed A-calculus can be taken as the basis of a formalism
in which we assign meaning to the basic expressions of a natural language and
explain the meaning of larger constituents by the composition of the meaning
of their parts. However, under a conventional higher-order semantic for the A-
calculus, we cannot give a model generation method based on the well-known
techniques of first-order model generation. By weakening the semantic of higher-
order logic, we formulate a logical language that has the compositional expressivity
of a higher-order logic but the finitely representable models of a first-order one. A
generic model generation technique for this language is presented and discussed,
and a refinement for minimal model generation is introduced.

3.1 The A-Calculus in Linguistics

The simply typed A-calculus has been invented by Church [56] with the goal of
providing a uniform language with which to describe functions. In the 1950s,
its untyped variant was the starting point for the functional programming
paradigm in computer science, notably as the theoretical basis of the pro-
gramming language LISP. It has become a standard tool of computational
semantics at least since the 1970s when Montague [2] first introduced his
theory of quantification in natural language.

The simply typed A-calculus is a an expressive, elegant, and uniform
method of composing functions out of more primitive functions. The tools for
building its complex expressions are function application and A-abstraction.
The operation of B-reduction is the essence of computation, whereas A-
abstraction is the essence of function definition.

26 3 Higher-Order Model Generation

In computational semantics, the A-calculus can be taken as the basis of
a formalism in which we assign a formal meaning to the basic expressions
of a natural language and explain the meaning of larger constituents by the
composition of the meaning of their parts.

3.1.1 Composition of Meaning

In a standard first-order predicate logic, we can represent the meaning of
a sentence like a man loves a woman as a formula, e.g., as 3z Jy man(z) A
woman(y) Alove(z,y) where the non-logical constants man, woman and love are
given a postulated meaning that corresponds to the meaning of the associated
words in the natural language.

What we cannot represent directly as one first-order logical expression is
the contribution that the meaning of the verb phrase has to the meaning of
the whole sentence. This means that some constituent like loves a woman
has no corresponding first-order logical form, at least not without additional
pieces of machinery. In this sense, standard first-order predicate logic lacks
compositionality.

One of the primary goals of semantics construction is to develop a truly
compositional method for constructing meaning representations that define
the meaning of complex constituents in terms of the meaning of its parts. The
stumbling stone for giving any such compositional construction mechanism
for natural-language semantics is quantification.

3.1.2 Quantification in Natural Language

Russell [57] notes the disturbing variety among the logical contributions of
subject constituents to simple sentences. Consider for instance the following
sentences.

Sentence |Logical Form

Peter died died(peter)

A man died dx man(z) A died(x)

The man died |died(tz man(z))

One man died |3z man(z) A died(z) AVy man(y) A died(y) = z =1y
Every man died|Vx man(xz) = died(zx)

As we can see, structurally small changes in the subject constituent of the
natural language sentences lead to very different logical forms. The variety of
logical representations seemingly prohibits a compositional method for con-
structing the semantics of sentences.

The contemporary solution to this problem is based on the use of gener-
alised quantifiers and generalised determiners. A generalised quantifier
applies to a property and produces a truth value. Such quantifiers in natural
language are proper names like Peter that in the sentence Peter died takes
a property, died, in order to produce the truth of the sentence Peter died.
A generalised determiner can then be taken to be a relation between two or
more sets. In the case of diadic determiners we have two sets, one contributed

3.1 The A-Calculus in Linguistics 27

by the restriction from the noun and one contributed by the predicate that
supplies the scope of quantification. In the sentence every man died, the word
every is a diadic determiner that formulates a relation between the set of men
and the set of died entities. Like Peter, the phrase every man is a quantifier,
because it applies to a property. What is puzzling in natural language is the
infinite variety of such quantifiers that can be constructed easily from the set
of available determiners and nouns, and the variety of logical contributions
they show when sentences are translated into first-order logic. A compositional
treatment of linguistic quantification requires some uniform way of construct-
ing complex generalised quantifiers from their parts. Such a uniform way exists
for the A-calculus.

3.1.3 Quantifiers as Higher-Order Expressions

The simply typed A-calculus can represent generalised quantifiers as second-
order functions that take a set and return a truth value. Indeed, we can even
calculate suitable semantic representations for quantifiers by solving higher-
order equations. In the following, the quantifiers every man and some man
are treated as higher-order variables EVERYMAN* and SOMEMAN*. Typical
equations that we have to solve are

(3.1) EVERYMAN*(died) = Vz man(z) = died(x)
(3.2) SoMEMAN*(died) = 3z man(z) A ~died(z)

The right-hand side of the equation is the logical form that we would like to
have for the whole sentence. Solving the equations gives us the two results

(3.3) EVERYMAN* = AP Vz man(z) = P(z)
(3.4) EVERYMAN" = AP Vz man(z) = died(z)
for the first equation and

(3.5) SOMEMAN* = AP 3z man(z) A P(z)
(3.6) SOMEMAN* = AP 3z man(z) A died(z)

for the second equation. Of these four solutions, only two, namely (3.3)
and (3.5), are linguistically valid. The other two are vacuous abstractions
that do not correspond to the semantics of the natural-language quantifiers.
The application of result (3.4) to the representation of a different verb shows
why we must discard such solutions.

(3.7) EVERYMAN*(sleep) =def
(AP Yz man(z) = died(z))(sleep) =g
V& man(z) = died(x)

28 3 Higher-Order Model Generation

Clearly, the resulting first-order logical form is not the intended semantic
representation of every man sleeps. Vacuous abstractions can be dealt with
automatically by extending higher-order equational reasoning with syntactic
filter mechanisms [58].

By discarding the linguistically invalid solutions, we obtain some suitable
semantics for the linguistic quantifiers every man and some man in the form
of A-terms. But how are such semantics composed from their parts? Now that
we have the logical form of the quantifiers at our hands, we simply use higher-
order equational reasoning again for computing the semantics of their parts,
namely of the determiners every and some. Their semantic representations,
when applied to the representation of the noun man, should yield the non-
vacuous quantifiers that we have computed above. Hence, the higher-order
equations that we must solve now are as follows.

(3.8) EVERY*(man) = AP Vz man(z) = P(x)
(3.9) SOME*(man) = AP 3z man(z) A P(x)

By solving these, and discarding the vacuous solutions, we obtain definitions
in higher-order logic for our determiners.

(3.10) EVERY = A\Q AP Vz Q(z) = P(x)
(3.11) SoME = \@Q AP 3z Q(z) A P(x)

With these definitions, we can represent simple sentences like every man drinks
or no Greek lies in a compositional way that is closer to the syntax of the
original sentence than a standard first-order logical form. At the same time,
we can always reduce the representation to a purely first-order logical form
by expanding the definition and performing B-reduction.

(3.12) EVERY(man)(drink) =def
(AQ AP Yz Q(x) = P(z))(man)(drink) =g
(AP Vz man(z) = P(z))(drink) =g

Yz man(z) = drink(x)

One of the central ideas of Montague’s approach is the treatment of proper
names such as Peter. As mentioned earlier, proper names act as quantifiers
in sentences. At the same time, they appear as individual constants in the
logical form. This discrepancy is resolved by introducing quantifiers for proper
names that, when applied to their scope of quantification, introduce the first-
order constant into the logical form. For instance, the proper name Pefter is
represented by a quantifier PETER = AP P(peter) where peter is an individual
constant. By raising the type of proper names to quantifiers, we can treat them
as required by a compositional approach.

(3.13) PETER(drink) Zdef
(AP P(peter))(drink) =g
drink (peter)

3.1 The A-Calculus in Linguistics 29

3.1.4 First-Order Limitations

It seems that we now have the best of two worlds. While a compositional
higher-order logic is used at the representation level, we actually still have a
standard first-order logical form that is immediately computable by definition
expansion and S-reduction. However, the approach has its limits in that sen-
tences with certain quantifiers cannot be reduced to first-order formulas at
all. Consider the following.

(3.14) More boys than girls drink.

MORETHAN is a three-place generalised determiner that takes three sets in-
stead of two. Its definition can be derived from the following equation.

(3.15) MORETHAN"(boy)(girl)(drink) = |boy N drink| > |girl N drink|

The right-hand side of the equation states that the set of boys that drink has
a greater cardinality than the set of girls that drink. The linguistically valid
solution of the equation is

(3.16) MORETHAN = APAQAR |[PNR| > |QN R|

Unlike as in previous examples, we cannot give a higher-order formalisation
of cardinality comparision such that a definition expansion of MORETHAN
will produce a first-order formula. The reason for this is a result of the com-
pactness of first-order logics which prohibits us to formulate conditions which
distinguish finite and infinite sets. From this, it follows that comparing the
cardinality of two first-order predicates that might denote arbitrary sets is
not directly expressible in first-order predicate calculus. There is, however,
an indirect approach that makes use of a first-order axiomatisation of mathe-
matical set theory. Such an axiomatisation' treats sets as first-order entities,
and specifies their properties in terms of first-order formulas. Axiomatic set
theory can be taken as the basis of a formalisation of mathematics as a whole.
Naturally, we would therefore be able to give an expression that captures the
semantic of the sentence (3.14). Unfortunately, all models that depend on a
first-order axiomatisation of set theory have an infinite universe of discourse
because they must have a distinct entity in the universe for every set. Hence,
for our purposes, such an approach is not practicable.

What is really disturbing about our discovery here is that the statement
(3.16) itself does not look more “difficult” to model in any way than previous
examples. Given a situation in which we have n boys and m girls who either
drink or do not drink, it should be very easy to verify whether the statement
holds or not. Yet, we cannot give a self-contained first-order formalisation that
expresses the simple cardinality constraint of the set of boys and the set of
girls that we have in our example.

" A first-order formalisation of set theory that has been developed specifically for
automated deduction can be found in Boyer et al. [59].

30 3 Higher-Order Model Generation

3.1.5 A Motivation for a New Kind of Logic

The simply typed A-calculus gives us a formalism for representing not only the
semantics of complete sentences, but also of the semantics of their parts. Func-
tional application and S-reduction provide a simple, yet powerful composi-
tional construction mechanism for semantic representations. By using higher-
order definitions for quantifiers and determiners, we obtain compositional rep-
resentations that still are reducible to a standard first-order format in many
cases.

Nevertheless, certain forms of quantification do not have first-order for-
malisations that are suitable for the application of conventional model gen-
eration methods. First-order compactness prohibits even simple cardinality
constraints such as needed for the determiner more. This is disturbing for
our intended application of model generation in the interpretation of natural
language.

‘What we would like to have for natural-language semantics is an expressive
language in which we can experiment with higher-order definable concepts,
such as generalised determiners, in the usual way. For this, as we have seen,
we cannot stay in the domain of first-order logic in all cases. On the other
hand, there is, to my knowledge, no model generation method at all that can
deal with higher-order logic in any form. The technical difficulties of model
generation in the context of higher-order semantics will be disussed in Sec-
tion 3.2.9. Here, I will sketch only one, namely that conventional higher-order
models can often not be reduced to the interpretation of predicate symbols
over small universes of discourse. The performance of all model generation
methods presented in Chapter 2 depends on having small domains of indi-
viduals, whether they are derived from the Herbrand interpretation of term
occurences or being given adjacentily as in the case of finite model generators.
First-order models are often small and simple structures because they must
only define the interpretation of predicates and functions over such small do-
mains. In higher-order logics, the argument of a function symbol can be any
expression of appropriate type, and quantification can range not only over
individuals, but also over entities of higher type. Even in cases where we only
have a small number of individuals in our universe of discourse, the number of
distinct functions that can be derived from them grows exponentionally with
both the number of individuals and the arity of the functions involved. Any
model computation that must deal with complete domains of functions instead
of just a domain of individuals will inevitably face intractable combinatorial
problems.

Our intended application requires that we identify an interesting fragment
of higher-order logic that captures the linguistically motivated forms of quan-
tification that we have mentioned earlier as well as being open to efficient
methods of model generation. This is possible by considering a higher-order
logic where the domains of all entities of arbitrary type can be restricted
to finite (and small) subsets of the full domain that is given by the stan-

3.2 Higher-Order Logic 31

dard semantics. In other words, we aim at a higher-order logic whose notion
of quantification is not only explicitely limited to finite domains, but whose
range of quantification can further be restricted such that higher-order forms
of quantification stay tractable. In a model where the denotations of predicate
symbols are guaranteed to be finite sets, we will be able to formalise the truth
conditions that we need for certain forms of natural-language quantification,
and find computational means to deal with them when generating models.
There is a price that we will have to pay for this additional expressivity: we
will no longer be able to formally capture the meaning of infinite concepts or
discourse situations with infinitely many participants. For the overwhelming
majority of natural-language utterances, this restriction plays no role. Our
working hypothesis is that a concentration on finiteness is even a necessity for
exploring practicable model generation methods in computational semantics.

3.2 Higher-Order Logic

In the following, the syntax and semantics of higher-order logics are presented
in order to provide a compact reference. Apart from the notational conven-
tions, most of the introduced concepts are as usual, and are discussed in more
detail for instance in Barendregt’s textbook on the A-calculus [60].

3.2.1 Syntax

The simply typed A-calculus is a formal language whose expressions, i.e.,
whose terms, are composed from constants, variables, function applications
and A-abstractions. Each of these terms carries a type, i.e., a symbolic anno-
tation which makes sure that the functions defined in our language can only
be applied to arguments of the appropriate domain.

3.2.2 Types

We have a set BASETYPE of base types that consists of the type ¢ of
individuals and the type o of truth values. The set TYPE of types then
is defined as the smallest set such that

- BASETYPE C TYPE, and
— if @ € TYPE and 8 € TYPE, then a— 3 € TYPE.

The type constructor—is right-associative, and a type of the form ¢t— (¢— 0)
for instance will be written as ¢—¢—o.

Unless indicated otherwise, we will use @ and B for denoting arbitrary
types, and @, denotes any syntactic or semantic structure ¢ whose type is
a. The basic expressions of the simply typed A-calculus are typed constants
and typed variables. For these symbols we will use the following notational
conventions.

32 3 Higher-Order Model Generation

Symbol Type Denotation

¢, jon, peter,.. .|t individual constants

o T T L individual variables

p, love, man,...|a1 —...— a, —o|predicate constants

P Q. B a1 —>...—ra, —>o|predicate variables

Cos Bogsssa o constants of arbitrary type

Koy Yoy onir o variables of arbitrary type
3.2.3 Terms

We assume a countable signature X' of constant symbols, and a countable set
of variables V. The set TERM% of well-formed typed A-terms with respect
to X and V is the smallest set such that

- if X, €V, then X, € TERM§

- if Cy4 € X, then C, € TERMg

— if Tays € TERMS and U, € TERMS, then (Taus Uy)s € TERMS
~ if Ts € TERMS and X, € V, then (AXy Tp)ass € TERMS

If the type of a well-formed A-term is given by the context or implied by
our notation, we avoid its explicit mention. We will use T, U, and W for
denoting arbitrary A-terms. A term of the form (T U) is a called a function
application, and one of the form A X T a A-abstraction. To ease readability,
we follow the usual conventionfor A-terms and leave out brackets in every case
where the construction of an expression is uniquely determined.

In a A-abstraction AX T, the variable X is a bound variable. The set
free(T) denotes the free variables in T, i.e., those variables in T which are not
bound. A A-term T is a closed A-term iff free(T) is empty, otherwise it is
open.

Some A-terms are in a structural equality relation that is induced by gBn-
reduction:

AX THU —a U/X]T AXTX)—, T

where X is not free in T, and [U/X]T denotes the substitution of all free
occurrences of X in T by U. It is well known that the reduction relations 3, 7,
and Bn are terminating and confluent, so that we have unique normal forms
for A-terms. We chose the Bn-normal form as the standard syntactical form
of all A-terms.

Depending on which notational variant is more elegant or clear, we will
sometimes write (((... (T Up) Up—1)...) U1) either as T(U,), as T(U1,...,Uy,),
or as T(U,)...(U;). Function application is considered to be left-associative.

3.2.4 Semantics

The simply typed A-calculus can be taken as the basis of different logics. The
semantic of each such logic is defined by the postulated meaning of its logical
constants. In what follows, we first describe the interpretation of general A-
terms without considering a logical content.

3.2 Higher-Order Logic 33

3.2.5 Functional Interpretations

A frame {D.|a € TYPE} is a collection of domains for types a. A function
domain D,s is a domain that consists of functions f : D, — Dg. Itis
common practice to assume that the elements of function domains are total
functions. Alternatively, frames can also be based on partial functions, as has
been done for instance by Farmer [61].

An interpretation of the simply typed A-calculus with respect to a
signature % is a pair Z = {[], D) where D is a frame and [] is an evaluation
that assigns to each constant C, € X' an object in D,,.

A variable assignment ¢ for the set of variables V is a mapping from
variables X, € Vinto a domain D, of objects of appropriate type. A variable
assignment cU{X, := a} denotes a mapping ¢’ derived fromo wherec’(Y) =
aif Y = X, and o/(Y) = o(Y) otherwise.

The denotation [T for an arbitrary A-term T € TERMS with regard
to an interpretation Z = ([|,D) and a variable assignment o is recursively
defined as follows.

_[Cla=[C]iCex

_[X=o(X)if XeV

- [(U W)z = [V]z(IW]2)

- [(AXa Up)lZ = f € Dosyp such that f(a) = {[U]];U{X =<} forall a € D,

We assume in the definition of denotations that we are dealing with well-typed
terms, e.g., that (U W) denotes the application of a function term U,z to
a term Wg. The denotation of a closed term does not depend on the initial
variable assignment o, and we will simply write [T]z for the denotation [T]%
of a closed term T with respect to some arbitrary assignment ¢.

3.2.6 Logical Constants

A logic based on the simply typed A-calculus is a set of definitions that
determines the denotation of the set of logical constants in the signature X'
In a higher-order logic, we will have at least the logical constants V, o,
o0y aNd II(o 50y for all types a. All logical constants are given a postulated
meaning, i.e., a meaning that fixes their denotation in all interpretations.
For the purpose of this volume, we assume a family of logical constants in X'
that are distinguished by their type. Depending on our linguistic applications,
we will later extend our set of logical constants as needed. For now, we have

— unary logical connectives of type o—o, e.g., —,

- binary logical connectives of type o—+o0—0,e.2., V, A, =, &,

— monadic quantifier constants of type (¢ —0)—o,e.g., V and 3, for all
types «,

- diadic quantifier constants of type (¢—0)— (a@—0)— o0, e.g., EVERY,
SOME, etc., forall types a,and

— an equality sign = of type «—a— o for all types c.

34 3 Higher-Order Model Generation

The somewhat exotic diadic quantifiers are inspired from the linguistic theory
of quantification in natural language where they are known as generalised
determiners. We will later use the diadic quantifiers for exemplifying how
linguistic quantification can be encoded as constraints over finite models.

All constants that are not logical constants are called parameter con-
stants, short parameters.

3.2.7 Defining a Logic

In order to define a logic, we must first fix a domain of truth values D, that
appears in each frame D of the logic. For a classical two-valued logic, we chose
the domain D, to be {0,1} where 1 denotes truth and O denotes falsity.

As mentioned earlier, different logics may be based on varieties of logical
constants and denotations for them. The semantic of a logical constant for
a certain logic can be defined as a constraint that describes how a formula
governed by the constant is to be interpreted relative to the formula’s parts or
instantiations. For instance, a basic higher-order logic HOL can be defined by
giving the constraints of a minimal set of logical constants =, V, and IT(4 0}
as follows.

- [Tz =1-[T]F

VT, 0)12 = ma([T]%, [U]3)

~ [H(asoyso(MIF = 1 iff [T]F(u) =1 for all u € D,

To ease our notation, we will from now on use infix notation whenever a logical
constant denotes a binary connective, and adopt the common notation for
quantification that is known from first-order predicate calculus. For instance,
we will write T V U instead of V(T,U), and VX p(X) instead of V(AX p(X))
or Y(p).

The set of standard logical constants that are usually found in higher-order
logics can be derived from the basic set above by using higher-order defi-
nitions, i.e., by A-terms that replace all occurrences of the defined constants
and that make use only of other logical constants whose denotation is already
given. The definitions are as follows.

AXAY ~(-X vV *1Y)

AXAY =X VY

AXAY (X =2Y)A (Y = X)

APoso II(P)

APy ~II(-P)

- EVERY = APpsoArQa0 VX4 P(X) = Q(X)
- SOME = APyoAQas 3Xa P(X) A Q(X)
- == AQaARq YPy P(Q) = P(R)

A formula in HOC is a A-term of type o. Unless indicated otherwise, all
formulas that we consider are closed. An atom in HOL is aformula h(%;;) in
Brn-normal form that does not have a logical constant as its head h. A literal
in HOL is a ‘HEOL atom or its negation.

|
Wy >
W w mom

3.2 Higher-Order Logic 35

Our definition of the equality signs =, a1 1S a higher-order formalisation
of equality that has been proposed by Leibniz: two things are equal iff they
have the same properties.

3.2.8 Standard Frames and Generalised Interpretations

So far, we have not given a precise notion of the content of the function
domains D453 in our interpretations for the simply typed A-calculus. The
standard assumption is that every total function from D, to Dg is an element
of Dasys. The frames that are given by this construction are called standard
frames.

In a higher-order logic that is based on standard frames, the denotation
f of a A-abstraction AX,,3 Uy is a total function from the complete set of
total functions Dqg into the domain D,. Standard frames for higher-order
logic suffer from the drawback that there can be no calculus that axiomatises
logical consequence. In other words, there is no complete proof theory for a
higher-order logic based on standard frames. A method for demonstrating this
incompleteness of higher-order logic is to give an encoding of arithmetic and
applying Godel’s incompleteness theorem [62].

Henkin [63] introduced a weaker notion of higher-order semantics where
the domains D,3 may consist only of a subset of all total functions from
D, to Dg. In order to have a denotation for each A-term, the lower bound
for each of these subsets is the set of all functions of type a — 8 that are
expressible as A-terms, i.e., as computable functions. The frames obtained in
this way are called generalised frames, and a generalised interpretation
is an interpretation Z = ([}, P) whose frame D is a generalised one.

In a higher-order logic that is based on generalised interpretations, sound
and complete proof theories for the classical consequence relation can be given.
This even leads to mechanisable calculi, e.g., the variant of extensional higher-
order resolution by Benzmiiller and Kohlhase [64]. In recent years, Henkin’s
semantic for higher-order logic has become the standard theoretical basis of
higher-order automated deduction.

3.2.9 Model Generation for Generalised Frames?

We call aninterpretation Z = ([], D) a model of a set of formulas ¢ if
[Flz = 1 for all formulas F in &.

It would be very desirable to have a model generation method for a higher-
order logic whose semantic is based on Henkin’s generalised interpretations. A
model generator for higher-order logic would take a finite set ¢ of HOL formu-
las as its input and determine interpretations Z = ([|, D) such that [F]jz =1
for all F in @. Finite model generation for higher-order logic is possible at least
in theory because all function domains D, that are based on finite basic
domains D, and D, are finite themselves, as has been shown by Andrews [65].
The functions f from a finite domain D, into a finite domain Dg have a fi-
nite representation, for instance as a table. Hence, we could enumerate all

36 3 Higher-Order Model Generation

models for a specification & simply by enumerating all possible interpreta-
tions Z of the constants C that occur in the input and verifying in finite time
whether the interpretation is a model or not. Of course, such a method would
be intractable in general for all except trivial input specifications.

If we could design a more efficient method, higher-order model generation
could be put to use for instance to compute counterexamples in higher-order
automated theorem proving. Such a method, if it exists, would also be very
handy for exploring the meaning of natural-language semantic representations
that have higher-order logical forms, i.e., for the topic of research that this
volume is about. Unfortunately, there is some evidence that model generation
for generalised models is not mechanisable by using the technical machinery
that is available to us.

3.2.10 Equivalency for Higher-Order Atoms

In first-order logics, finite model generation methods can be reduced to meth-
ods that compute the interpretation of predicate symbols over some finite
domains of first-order entities. A model is determined completely by the in-
terpretation of a set of atoms of the form p(a,,...,a,) where the a, are
symbolic, i.e., are constants, ground terms or entities of a finite domain. In
the case of SATCHMO-like model generation theorem proving, the a; can be
complex terms ¢, but these are interpreted as themselves and one does not have
to consider the interpretation of function symbols. Hence, it is trivial to decide
whether two ground literals of the form p(aq,...,a,) and —=p(b,...,b,) are
contradictory. The efficiency of first-order model generation methods relies on
having a simple way for detecting such elementary inconsistencies while they
construct partial interpretations.

In the simply typed A-calculus, the arguments of predicates can be ar-
bitrarily complex terms or even formulas. Unlike as in first-order logics, the
equality of embedded terms cannot be reduced to some syntactical equality
relation. For instance, in a higher-order logic HOL that is based on generalised
frames, the following formulas are logically equivalent, i.e., must have the
same denotation in all models.

(3.17) Posol(@o)

(3.18) poso((Az @0)(c.))

(3.19) p, . (aA(bV-b))

(3.20) p,,((bV-b)Aa)

(3:21) poso(Fr ((g(z) V a) V ~g()))

The formulas (3.17) and (3.18) have the same n-normal form. Their logical
equivalency is therefore given by the syntactically determined equivalency of
formulas induced by fn-reduction. In contrast to this, a purely syntactical
approach is not sufficient for proving the equivalency of (3.17) to all other

3.2 Higher-Order Logic 37

formulas. The equivalency is given only semantically by the denotations of the
logical constants. In our examples, the proof problems are quite simple, but
as embedded terms can be arbitrarily complex formulas, the resulting proof
problems easily become undecidable. If we have two literals p(T) and —p(U),
we cannot decide in general whether they form an elementary contradiction
or not.

There is an analogous problem in higher-order automated theorem proving
where the first-order variant is efficiently computable, while the higher-order
instance of the same operation is undecidable. The operation we refer to is
unification which is essential for finding non-trivial proofs in many proof pro-
cedures. In higher-order automated theorem proving, unification problems are
frequently not solved by simply calling a procedure, but are treated as con-
straints of the proof problem and thus become part of the overall proof search.
By this, one avoids to call an external unification procedure which, in gen-
eral, might not terminate. In the same way, one could treat the equivalency
problem in higher-order model generation as a set of constraints: if two formu-
las p(ay,...,as) and -p(by,...,b,) have been computed as part of a partial
interpretation, we could simply add some additional formulas to the input
specification that make sure that the tuples {ai,...,an) and {(b1,...,bs) do
not have the same denotation. For instance, if we have two formulas p,_,,(ao)
and -p, ,(b,) in a partial interpretation, we prevent a and b from having the
same denotation by adding the formula -(a < b) to our input. In any model
that we obtain for the extended specification, a and b must denote different
truth values. In cases where our additional conditions can not be satisfied, we
will not be able to compute a model, as required.

Nevertheless, a treatment of equivalence in higher-order models still is
intractable in general. If a partially determined interpretation contains n pos-
itive occurrences of a formula with head p and m negative occurrences, we
have n x m pairs that generate additional formulas for the input problem.
These formulas might further add to the complexity of the model generation
problem, because the arguments of a predicate could be formulas that in-
troduce new equivalency conditions themselves. It seems that a simple and
efficient treatment of the basic formulas of a logic such as we have in first-order
finite model generation is not possible for higher-order logics.

3.2.11 Function Domains and Quantification

One of the criteria in first-order finite model generation for the complexity of
a model generation task is the number of ground atoms whose interpretation
must be determined. This number is roughly the same for all methods based on
propositional satisfiability procedures such as the Davis-Putnam procedure.
While only being a crude method for classifying model generation problems,
a smaller number of atoms generally indicates problems that are easier to
solve. Experiments in propositional planning show that the state-of-the-art
exhaustive SAT procedures can handle some hundreds of atoms while methods

38 3 Higher-Order Model Generation

that employ local probabilistic search sometimes find propositional models
with several thousand atoms whose interpretation must be determined [66].

The number of ground atoms that are derived from a first-order model
generation problem depends on two orthogonal parameters. First, the num-
ber of atoms usually grows with the complexity of the input. A specification
that consists of a large number of formulas will in general be harder to treat
than one that only consists of a few, although it is quite simple to find noto-
riously hard problems that have small formalisations. Second, the number of
ground atoms derivable from a first-order specification can grow exponention-
ally in the size of the universe of discourse. For certain problems in quasi-group
theory, the search space grows with such speed that even particulay efficient
systems like FINDER are able to search exhaustively only in a domain size of
a dozen elements.

If the number of atoms that must be considered in an interpretation is
taken as an indicator for a problem’s complexity, then higher-order model
generation for generalised frames will usually be much harder than first-order
model generation. Even in cases where we have a small domain D, of individ-
uals, the number of functions that can be defined from them is quite large.
In the presence of higher-order quantification, we can easily formulate state-
ments over the function domains Dgg that are intractable. As an example,
consider a first-order domain D, of size n, and the domain of diadic relations
D, s30- The number of different relations in D, iS 27" In order to build a
model for a formula of theform VR,.,,,,P(R), we will have to make sure that
all the 2" instantiations of P(R) are true. In a worst-case scenario, P itself
could be a formula that quantifies over some function domain.

3.3 A Fragment of Higher-Order Logic

As discussed in Section 3.2.9, a higher-order logic that is based on Henkin
semantics cannot be given a practically useful model generation method that
uses the same techniques that work for first-order model generation. The size
of the function domains Dg,s in generalised frames are an obstacle for a
computational treatment of quantification, and an unrestricted syntax will
leave us with formulas where even basic contradictions in atoms cannot easily
be detected. The solution that I propose for the first problem is to quantify
only over small subsets of the function domains D,s instead of consider-
ing the whole function space. The second problem is attacked by a restricted
syntax where the ground atoms that must be considered in the computation
of a denotation have a simple syntactic structure. By furthermore adopting
a Herbrand-like interpretation for constant symbols, we obtain a linguisti-
cally motivated logic MQL (Montague-style Quantification Language) that
combines the compositionality of a higher-order logic with the compactly rep-
resentable interpretations of a first-order logic.

3.3 A Fragment of Higher-Order Logic 39

3.3.1 Syntax

A formula F of the simply-typed A-calculus is called function-free quanti-
fied iff for all atoms h(%@,) that occur in F, each u; is either a variable or a
constant. A well-formed formula in MQL is a closed function-free quantified
formula of the simply-typed A-calculus.

The function-free quantified format does not have complex A-expressions
as arguments of non-logical constants. This means that the Sn-normal form
of an argument 4; in an atom h(%,) must always be a symbol. Note that
while every atom itself must of course be well-typed, the arguments may be
of arbitrary type.

Figure 3.1 gives some examples for well-formed MQ@L formulas and ex-
pressions that might occur as semantic representations of natural language.
The logical encodings are straightforward. In examples 7-10, we have MQL
formulas that formalise properties of higher-order objects. The constant color
denotes a second-order predicate of type (t— 0)— o, and color(red) specifies
that the constant red denotes a first-order set has the property of being a
color. In a first-order logic, one would have to reify colors as first-order en-
tities, and could not use them at the same time as predicate symbols and
arguments of other predicates.

[1 |Natural Language [MOL Representation |
2 |(loves Ken love(ken)

3 (loved by Ken Az love(z)(ken)

4 |loves him/herself Az love(z)(z)

5 |Every man loves Ken EVERY(man)(love(ken))

6 |Ken (as quantifier) AP P(ken)

7 |Ken loves Ken (AP P(ken))(love(ken))

8 |Some apples are red SoME(apple)(red)

9 |Red is a color color (, o}0(red)

10|Some colors are primary colors|SOME(color (,)s) (Primary)

Fig. 3.1. Examples for well-formed MQL expressions

The syntactic restriction that we have here is very similar to that of the
EP calculus (cf. 2.4.5) that also uses a function-free quantified input format
where no complex term may occur as an argument of a predicate symbol®.
EP’s syntax is motivated primarily by the need to avoid function symbols in
the context of Herbrand interpretations. Our main motivation instead is to
have only atoms h(%,,) in the recursive computation of a denotation that have
a simple syntactical structure. We do not have to care for embedded function
expressions whose denotation must be considered for instance when we check
for basic contradictions in a partial interpretation.

2 This format is not to be confused with the function-free fragment of first-order
logic, i.e., the set of formulas without function symbols whose prenex form starts
with an initial sequence of universal quantifiers followed by a sequence of existen-
tial ones [14]. EP’s input normal form is equivalent to full first-order logics, while
the function-free fragment is decidable.

40 3 Higher-Order Model Generation

3.3.2 Semantics

We cannot restrict the function domains D, s in a frame at will without
potentially violating the Denotatpflicht, i.e., the requirement that each ex-
pression that is necessary for computing a denotation has a denotation itself.

In order to meet the Denotatpflicht in Henkin’s construction of generalised
frames, each function domain includes all functions of appropriate type that
can be expressed as A-terms—this property is provided by the so-called com-
prehension axioms[63]. In principle, all functions that are expressible must
be made available, as Henkin’s semantics must assign a meaning to arbitrary
terms. In our simpler syntax, we may not encounter complex functional ex-
pressions that must be given an interpretation. In the recursive interpretation
of a closed MQL formula, the Denotatpflicht is already met if we can assign
a meaning to the formula’s components and instantiations down to the level
of simple, ground atoms.

The intuition behind the construction below is that we can further simplify
the interpretation if all u; in each atom h(%y) are interpreted “as themselves”.
The interpretations that we obtain in this way are term interpretations, i.e.,
a constant ¢, that occurs as an argument will be interpreted as some “indi-
vidual” ¢ of type « rather than some object of the domain D,. Higher-order
quantification and the Denotatpflicht for our term interpretations require that
there are appropriate sets of individuals of type « available. These sets are
provided in our formal framework by constant frames.

3.3.3 Constant Frames

A constant frame C is acollection {C,|a € TYPE} of sets C,, that obeys the
following conditions.

- CeC,C el
— C, is not empty
- {0,1} CC

A constant frame Cg for an MQL specification @ is a constant frame where
all parameter constants C,, that occur in @ are elements of C,, € C. A constant
frame Cg may also contain additional constants C, that do not occur in &.
A constant frame is an initial constant frame C3 if it contains only the
minimum number of constants with regard to ¢. A finite constant frame
is a constant frame where all sets C, are finite. Obviously, all initial constant
frames are finite.

3.3.4 Interpretations and Denotations

What we will do in the following is to define a classical two-valued semantic
for our logic MQL that is based on the concept of a finite constant frame Cg.

Let Cs be a finite constant frame for a logical specification $. An MQL
interpretation Z = ([],Cs) for & is an evaluation of all constants in Cg where
the evaluation function [] obeys the following conditions:

3.3 A Fragment of Higher-Order Logic 41

- [1I=1[0]=0

- [eo] € {0,1} for all Boolean parameters ¢,
[hass..—an—0] is a function f : (Cay,...,Cq,) — {0,1} for all n-ary predi-
cate parameters h

An interpretation Zg for a specification @ determines the denotation of all
parameter constants in Cg as needed for defining a denotation of an MQL for-
mula later on. As usual, we furthermore assume that the logic itself determines
an evaluation [C] of logical constants C in all interpretations.

Unlike conventional interpretations in higher-order logics, a MQL inter-
pretation does not give a denotation for individual constants or function con-
stants that are not predicates. This is actually not necessary because we will
adopt a Herbrand-like interpretation of constant symbols in cases where con-
stants appear as arguments of predicates. A Herbrand-like interpretation of
constants is particulary attractive for applications in linguistics, as has been
noted for instance by Baumgartner and Kiihn [67]. In logical representations
of natural language discourse, we often have the convention that individual
constants are interpreted as names for distinct individual entities (e.g., jon,
mary, etc.). The unique-name assumption, i.e., the practice of treating
different individual constants as different individuals, is one of the basic con-
straints of interpretation in many logic-based linguistic formalisms. Our logic
MQOL simply generalises this idea to constants of higher type.

Let Z = ([],Cs) be an interpretation for a specification @. The denota-
tion [F]z of a MQL formula in & is recursively defined as follows.

- [colz = [co] for all Boolean constants ¢, in Cs

- [h(@)]z = [h](@) for all predicate parameter constants hin Cg

— [oF]z = []([F]z) for all unary logical connectives o

- [F1oF3]z = [o]([F1]z, [F2lz) for all binary logical connectives o

- [Q(Taw)lz =
E[[Q]]((I(T p1)]z;- - -+ I(T pn)]z)) for all monadic quantifier constants Q and
all p; € C,.

= [Q(Taw)(Uao)lz =
[QIKICT pOlz; -, [(T po)Iz))({IV p1)]z, .-, [(U pr)]z)) for all diadic
quantifier constants Q and all p; € C,.

The recursion is a bit different from that of conventional higher-order logics.
The crucial points are as follows.

First, the denotation of an atom h(%) is that of the interpretation [A]
of the head predicate symbol h applied directly to the arguments %,. In a
recursive computation of a denotation, we now have only atoms h(i;,;) where
all u; are constants that actually are interpreted as themselves. The situation
is analogous to a first-order Herbrand interpretation where embedded terms
t that denote individuals are interpreted as themselves, i.e., [t] = t. Unlike
first-order logics, however, our constants u; can have any type and might be
interpreted as predicates when they occur in a predicate position.

42 3 Higher-Order Model Generation

Second, the denotation of quantified formulas is that of the interpretation
[Q] of the quantifier constant Q applied to tuples of truth values that come
from instantiations over the constant sets C,. Quantification in MQL does
not range over domains D,, but only over sets of constants C, that name
entities of type «. Hence, the truth of a quantified formula is determined by
the denotations of the formula’s instantiations using constants of appropriate
type. A set of constants C, that is used for quantification can be small, as
long as it contains at least the constants of type « that are part of the input
specification ¢ that we are about to interpret. Informally, a quantified for-
mula ITP, ,, @(P) is interpreted as a specification of properties Q over a set
of predicates P that have been given names in the specification ®. Addition-
ally, O(P) may also influence the interpretation of other named properties
P that do not occur in @. We may chose the domains of quantification C as
large as we want to as long as they remain finite. However, we can always
start with an initial constant frame C that is much smaller than a generalised
frame D, and whose domains of quantification only includes a basic set of dis-
tinguished entities. Their existence is implied by giving them distinct names
in the specification &.

3.3.5 An MQL Logic

Our logical language MQC contains the usual set of logical constants that
we find in the same form in conventional higher-order logics such as ‘HOL.
Additionally, we may add logical constants that are motivated by our linguistic
application, namely certain universal determiners whose semantic cannot be
given conveniently in the form of a higher-order definition.

Like the A-calculus, MQL can be taken as the basis of different actual
logics, all of them derived from different sets of logical constants and interpre-
tations for them. As usual, we assume that MQCL determines for each logical
constant one denotation that is mandatory in all interpretations.

3.3.6 Connectives

Because unary and binary connectives are predicates, they must be interpreted
now as functions from sets of Boolean constants Cyypeo into the set {0,1}.
This has no real consequences because we already include the truth values
0 and 1 into the set C, of each constant frame. We can therefore keep the
interpretation of unary and binary logical connectives as is, i.e., the functions
f that denote the logical connectives in a conventional higher-order logic HOL
work analogously in MQL.

For ‘HOL, we have only given some arithmetic constraints for the seman-
tics of the basic logical connectives —~and V. The full set of constraints that
defines the denotation of the standard set of logical connectives in all MQL
interpretations is as follows.

3.3 A Fragment of Higher-Order Logic 43

- H@=1-2
- [VI(z,y) = maz(z,y)

- |IA]](-'L': ?j) = min(:l:, y)

- [=l(z,9) = min(l - z,y)
- [elzy)=1—-|z—y|

The = and y are the truth values O or 1 that are provided by the recursive
computation of the denotation of a formula.

3.3.7 Quantifiers

The interpretation of quantifier constants in MQL must be adapted slightly in
comparison to HOL. The denotation of a quantifier constant is now a function
from one or two tuples of truth values into a truth value. The tuples of truth
values come from the denotation of formulas, and the size of the tuples is
always finite. Our notion of quantification is obviously different from that
of higher-order logic and first-order logic because quantification in MQL is
restricted to finite sets. However, due to this restriction we are more free to
define forms of quantification that are hard to capture in first-order logics.
Quantifier constants can now be given an operational semantic by defining
their denotations as computable functions over finite sets of truth values. For
instance, the semantic of the basic quantifier constants II(q) could be
given as follows.

(3.22) [H]((k1, ..., kn)) = min({k1, ..., kn))

Here, min denotes the function that selects from a tuple of integers the small-
est one. Given a set of truth values k; € {0,1}, we obviously can compute the
value of [IT]({k1,. .., kn)). The definition (3.22) expresses a constraint in the
sense that it relates [II]({(k1,...,kn)) to a set of variables k;.

From II, we can derive the full set of standard quantifier constants® by
higher-order definitions as usual. Alternatively, we can give constraints over
finite tuples of truth values to define denotations such as the following.

(3.23) [VI((k1,... kn)) =min({ki,..., kn))

(3.24) [F]((k1,. .., kn)) = maz({ky,... kn))

(3.25) [EVERY]((k1,...,kn))({l1,...,ln)) =1 iff k; <1 foralli <n
(3.26) [SoME]J({k1,...,kn))({l1,.. ., ln)) =1 iff kj=1; =1 for somei<n

The encoding of truth conditions into computable functions allows us to de-
fine the operational semantics of quantifiers that otherwise could not be for-
malised. For instance, we want a formula F = MORE(T o) (Uae) to be true
iff the denotation of T has more elements than that of U. We know that F is
true in an interpretation if more formulas T(C) than formulas U(C) are true

3 We use the standard first-order quantification in order to improve readability.

44 3 Higher-Order Model Generation

for the C that are in C,. Hence, the sum of the denotations k; = [T(C;)]z
must be larger than that of the denotations l; = [U(Cj)]z for all C; € C4.
This condition is expressed by the following constraint.

(3.27) [MORE]((kv,- .., k) ({1, .. 1n)) = 1 iff
Sk >0l

In first-order and higher-order logics, constraints such as (3.27) do not define
computable denotations for quantifiers, because the domains of quantification
can be infinite, and infinitely many truth values &; and !; may have to be
considered. The MORE quantifier in MQL has a computable denotation for all
interpretations, but only because we have sufficiently weakened the semantic
of our logical language to finite domains.

3.3.8 Definitions

The collection of quantifier constants in MQL can be extended simply by
defining new ones as A-terms. A definition expansion with subsequent (3n-
conversion eliminates all occurrences of the defined constants which therefore
do not need to have a denotation of their own in an interpretation.

A motivation for having definable logical constants is that we would for
instance like to experiment with alternative formalisations of linguistic quan-
tifiers in the context of semantic analysis. For instance, we have a diadic
linguistic quantifier where for instance ONE(man)(drink) is true iff there is
exactly one z € C, such that both man(z) and drink(x) are true. Hence, its
denotation in MQ@QL must be as follows.

(3.28) [ONE]({k1,- .., kn))((l1, ..., 1)) = 1 iff there is exzactly one i such
that kj = lj =1

The quantifier ONE can be implemented simply by a definition that formalises
the truth conditions in (3.28). The higher-order definition scheme for quanti-
fiers ONE of arbitrary type (a— 0)— (a— 0)—>o0 looks as follows.

(3.29) ONE=
APAQ X (P(X)ANQX)AVY (P(X)ANQ(X) =X =Y

For reasons of simplicity, MQ@C’s logical constants only include monadic and
diadic quantifier constants, but the device of definitions allows us to formalise
other forms of quantifications over finite sets as well. For instance, in Sec-
tion 3.1.4, we considered the example (3.30) where the cardinality of two sets
is part of the truth condition of a three-place quantifier.

(3.30) MORETHAN(boy)(girl)(drink) = |boy N drink| > |girl N drink|

The quantifier constant MORETHAN has a simple definition in MQL that
makes use the MORE quantifier.

(3.31) MORETHAN =
APAQAR MORE(Az P(z) A R(z))(Az Q(x) A R(x))

3.4 Constructing Models 45

We will sometimes approximate the meaning of generalised determiners whose
truth conditions cannot be exactly captured in our logic. An example is the
universal determiner MOST whose meaning is influenced by pragmatic con-
siderations. That is, the choice of which truth conditions actually hold if a
sentence like most men lie is true lies to some extend with the speaker. How-
ever, a formula MOST(P)(Q) in general induces at least that the majority
of elements in P will also have the property Q. This truth condition is for-
malised in the following higher-order definition, again with the help of the
MORE quantifier.

(3.32) MosT =
APAQ MoRE(Az P(z) A Q(z))(Ax P(x) A-Q(z))

While definitions often allow us to formulate complex truth conditions in a
compact and human-oriented way, the technical machinery that later deals
with the expanded logical forms can be kept very simple by considering only
a basic set of logical constants from which others are derived.

3.3.9 Equality

The equality signs =g a0 in our higher-order logic HOL have been given a
semantic via the following definition scheme.

(3.33) == AQaARa VPas P(Q) = P(R)

In MQL, the same formalisation (3.33) defines a form of equality that is
determined only by those properties P in D,y that have a representative
constant A in the set C,, with [A] = P. This implies that the content of
our constant frame Cg plays an important role in the way in which equality
is interpreted. Syntactically, we cannot use the definition of = to compare
arbitrary terms because the function-free quantified format prohibits formulas
P(Q) where P is a parameter and Q is not symbolic. Hence, a formula X = Y
in MQL is only well-formed if both X and Y are constants or bound variables.

For practical purposes, we will often use a simpler form of equality, the
Herbrand equality =, that identifies its two arguments X and Y as equal
if their ground instantiations are syntactically identical. Herbrand equality
obeys the rules of parameter constants, i.e., its arguments must be symbolic.
Its semantic is as follows.

(3.34) [=](Ca)(Do) =1 iff C and D are the same constant

3.4 Constructing Models

An interpretation Z in MQL depends on the adjacentily given semantics of
the logical constants and on the interpretation of the constants that occur as
predicate symbols. Constants that occur as arguments of non-logical constants
have a fixed interpretation as themselves as specified in Section 3.3.4. Variables
play no role because we only consider closed formulas.

46 3 Higher-Order Model Generation

Given an instantiation of a logic as a set of constraints that determines
the interpretation of logical constants, and an algorithm that instantiates the
recursive denotation scheme in Section 3.3.4, a MQL interpretation is deter-
mined completely by the interpretation of predicate symbols over the sets of
constants in a finite constant frame Cg. The number of different interpreta-
tions for a finite set of formulas @ and a finite constant frame Cg is finite itself.
Hence, we could enumerate all possible models for @ in a given constant frame
by a brute-force algorithm that simply enumerates all interpretations Z and
checks whether 7 is a model for the formulas of @. Such a brute-force algo-
rithm is bound to fail for efficiency reasons already for propositional theories,
and we would certainly not be able to compute many models for interesting
logical specifications that way.

3.4.1 Determining Models Intelligently

Formulas can be used for restricting the search space for valid interpretations.
The intuition of this approach has already been hinted at when we defined
the interpretations of logical constants as arithmetic constraints. The general
idea is based on treating formulas as constraints over variables that range over
truth values, and to use efficient techniques for solving such constraints.

3.4.2 Formulas as Constraints

Each complex formula can be seen as a constraint that defines how the deno-
tation of a formula depends on the denotations of its sub-formulas or instan-
tiations. Consider for instance the propositional formula F = (a, V b,) A ¢,.
Following the recursive definition of a denotation that has been given in Sec-
tion 3.3.4, each model M for F and some arbitrary constant frame C must
obey the following conditions:

[(aV b} Acjm = min([a Vv b], [c])
[aV blm = max([a], [b])

The interpretation of a, b, and ¢ is constrained by the fact that each must be
interpreted as a truth value. Hence, the following set of equations characterise
all models M of F:

falm 20, falm €1, [lavh) Adm =1,
[Blar =0, [olm <1, [(aVb)Adm = min([aV b]am, [e]m),
lddm =0, [t <1, lo v b]am = maz([a] s, [b] m)

3.4.3 Solving Constraints

In order to enumerate the models M for F, we could enumerate all evaluation
functions [] of the boolean constants in F and check whether the set of
equations is satisfied. Alternatively, we could instead try to solve the set of
(in)equations that we have computed by expanding the semantic of the logical

3.4 Constructing Models 47

constants. Each solution to this set corresponds to a valid interpretation of
the Boolean constants and hence denotes a model.

Efficiently solving sets of linear (in)equations over finite-domain integer
variables or, more generally, any computable set of relations between finite sets
of variables, is the realm of constraint solving. Decision procedures for classical
propositional logics can be seen as specialised constraint solvers for variables
that can only have two values. For instance, the Davis-Putnam procedure is
an efficient constraint solver that computes the instantiation of a finite set of
boolean variables, i.e., atoms, whose dependencies are given by ground clauses.

The set of inequations given in the last section is an instance of the so-
called Integer Programming (IP) Problem. IP has applications in operations
research and economics [68], and solving inequations over finite-domain in-
teger variables enjoys a great deal of interest in the constraint solving com-
munity. There are some off-the-shelf constraint solvers available that can deal
with large sets of inequations in practice. Some of these come as modules
for programming languages such as the finite-domain integer package of the
constraint programming language Oz [69].

The general idea of a is to have a two-part decision procedure. The first
part is responsible for constraint propagation. Propagation refers to a process
that first partially determines or restricts the value of variables out of the
information that is encoded in a set of constraints and the uses this partly
determined instantiation for inferring new constraints or simplifying old ones.
For instance, in the Davis-Putnam procedure presented in Section 2.4.6, the
rule for unit resolution is a typical propagation rule in that it uses the infor-
mation given by a unit clause for simplifying all clauses in which this unit
occurs. The variable that is determined here is the interpretation of the unit,
and this determined value is used for simplifying the constraints given by
other ground clauses. For IP and other constraint systems, the propagation
problem is a bit more complicated because the value of variables can range
over many values instead of only two as in the case of propositional logic.

The second part of a constraint solving procedure is distribution. In gen-
eral, distribution refers to a selection of a variable and a provisional restriction
of its range in order to get new information that can be used for propagation.
For completeness, a kind of backtracking mechanism must be able to reset
the choice of restriction if it does not lead to a solution. In logical inference
systems that have an analytical cut, the cut rule formulates a form of distri-
bution. In the Davis-Putnam procedure we have such a cut-rule that selects a
literal and splits into the case where the literal is interpreted as true and one
in which it is interpreted as false.

An important paradigm of constraint solving is to delay distribution and to
use as much information as possible for adding new constraints on the possible
values of variables. The idea behind this is that it is very costly in general
to backtrack a wrong decision while the efforts for propagation will pay off
in the end by leading to more educated guesses. An important advantage of
a larger set of constraints in practice is that we might be able to determine

48 3 Higher-Order Model Generation

more precisely which variables are important and which are not. Distribution
over a variable that occurs in many constraints will also help to simplify many
more constraints in the end than determining a variable that only occurs in
few or even only one constraint.

For the logical language MQL, we do not have an off-the-shelf constraint
solver that is comparable to the Davis-Putnam procedure for ground clause
sets. We could give a translation that maps MQL formulas over a given con-
stant frame into sets of inequations whose variables are the interpretations of
ground formulas. Such a set of equations can then be solved by a standard IP
constraint solver. However, there are constraint solvers available that can al-
ready deal more efficiently with the kind of constraints that we find expressed
in logical formulas, and whose constraint languages are more convenient than
the sometimes awkward language of arithmetic inequations. We therefore will
develop a generic translation from logics into constraints that does not directly
depend on the actual constraint solver that is available.

3.4.4 Translating Formulas into Constraints

Our task in this section is to define a translation from a set of MQL formulas
into a set of constraints with regard to a given constant frame C that defines
the range of quantification for different types. Our translation must follow the
definition of a MQL semantic and map each complex formula into a constraint
that reflects the relation that the interpretation of the formula has to the
interpretation of its parts or instantiations. At the same time, we want to
leave open which logical constants we have in our logic—we want to be able
to extend the basic set as necessary—as well the actual constraint language
that we are using. Our translation therefore is only a scheme that can be
instantiated by an actual translation.

Fig. 3.2 shows the translation of MQL specifications into constraints as
a tableaux inference system. We use signed formulas Vg: F where F is a
formulaand VF is a associated with the interpretation [F]. For a specification
& = {Fy,...,F.}, we start with an initial tableau © = {Vg,: Fy,...,VF :
Fn, Vi, = 1,..., Vg, = 1}. The top-level integer variables V, all are restricted
to 1 by the equations Vg, = 1.

Each of the rules given in our Constraint Tableaux (CT) system can ex-
pand the current tableau branch by new signed formulas and constraints.
Tableau expansion stops when the tableau is saturated, i.e., no rule can add
new information to the tableau.

The con2-rule expands signed formulas Vg: F; o Fy that are governed by a
binary logical connective o. The tableau is extended by new signed formulas
Ve, F1 and Vg, Fy for the components F; and Fa. The rule adds a constraint
Vi = [o](VE,, Vi,) for the connective o. The constraint describes the relation
between the variables V¢, Vi, and V¢, and is directly derived from the semantic
of the logical connective o. In the case of a conjunctive formula and an IP
constraint solver, this constraint could be the equation Vg = min(Vg,, Vi,).

3.4 Constructing Models 49

Ve:FioF2 Vo —F Va: A
Ve,: Fy Ve: F uni (A is an atom)
VFQ: Fﬁ l'cl — .sz
V= [EOH(VFI 5 sz) Vie= [[_']}(VF)

Var: Q(Ta—o)(Ua)
",{T C‘i}: (T Cl)

quan2

",(T Cn): (T C:)
Vw e1y: (U CY)

Vv omy: (U C™)
Vor = [QI(Vir c1ys -+ Vi emyD{((Viw c1ys -+ > Viu eny)

Vor: Q(Ta)
I/(T Cl): (T Cl)

quanl

Vir ony: (T C7)
Var = [Q)({(ViT c1),-- -, VT om)))
Fig. 3.2. The Constraint Tableaux (CT) expansion rules

The conl-rule corresponds to the con2-rule, but treats unary connectives and
will add only one new signed formula.

The uni-rule adds an equality constraint for all integer variables that rep-
resent the same atom. This unification of variables ensures that we actually
compute interpretations that are functions.

Finally, the quan2-rule and quanl-rules translates formulas governed by
diadic and monadic quantifier constants Q. Given a constant frame C, there
is a tuple of constants C, = {C4,...,Cp), n > 0 for each type a that occurs in
®. The order of constants may be arbitrary, but fixed. The guan-rules build
new formulas by applying each of the terms T (and U) to all constants in C,, of
the appropriate type, and recursively translates these instantiations into con-
straints. The rule then generates a constraint that relates the integer variable
of the whole quantified formula and the integer variables of its instantiations
as defined by the denotation of the quantifier in question.

Unlike conventional tableaux systems, the CT calculus does not split the
current tableau branch in any way during tableau construction.

50 3 Higher-Order Model Generation

3.4.5 An Example

We illustrate our tableaux system CT with a short example that uses arith-
metic constraints for implementing the semantics of logical constants.

Consider a constant frame C that contains a set C, = {john, pete, karl} for
individual constants and a set C,,, = {drink, man} for first-order predicates. A
first-order specification {Vz man(z) = drink(z))}, i.e., all men drink, would
be expanded first into the following tableau:

Vi: Vz man(z) = drink(z))
*Vi=1

Va: man(john) = drink(john)

Va: man(pete) = drink(pete)

Va: man(karl) = drink(karl)
* Vi = min({Vz, Va, V4))

The tableau contains two constraints, indicated by x. The first one, V; = 1,
is part of the initial tableau and restricts the value of the truth variable V;
to 1 because each top-level formula of a specification must be interpreted to
1 in a model. The second one, V; = min((V,, V3, Vy)) relates V3 to the truth
variables of the three possible instantiations.

Each of the newly generated signed formulas is governed by a logical con-
nective, and must therefore be expanded further by the bin-rule. This second
stage of expansions will give us the following tableau:

Vi: Vz man(z) = drink(z))
*Vi=1
Va: man(john) = drink(john)
Va: man(pete) = drink(pete)
Va: man(karl) = drink(karl)
* V1 = min((‘/z,Vz,%))
Vs: man(john)
Ve: drink(john)
* V2 = min(1 - Vs, Vi)
Vz: man(pete)
Vs: drink(pete)
* Va = min(l — V7, V&)
Vo: man(karl)
Via: drink(karl)
* Vi = min(1 — Vg, Vi0)

After these expansions, no rule is applicable any more. Our translation has
computed a set of constraints which can be solved by an IP constraint solver
after all variables V; have been restricted to integer values O and 1.

A solution is an instantiation ¢ = {V; = vy,...Vjo = v1p} for the integer
variables V; and truth values v; that satisfies the constraints. For instance,
a solution for our example is 0 = {V; = 1,V = 1,V3 = 1,V = 1,V5 =
0,Ve = 0,V7 =0,V =1,V = 1,Vjp = 1}. The variables that represent
atomic formulas, i.e., the variables {V, ..., Vio}, can be used for constructing
the representation sets for evaluation functions. The solution ¢ represents the
model M = ({drink(pete), man(karl), drink(karl)},C).

3.4 Constructing Models 51

3.4.6 Properties of the Translation

A specification @ is satisfiable with respect to a constant frame C for @ iff
@ has a model M = ([],Cs). A constraint tableau @ is satisfiable iff its set
of constraints can be satisfied by a solution o such that [F] = o(V¢) for an
evaluation function [] and all signed formulas Vg: F that occur in 6.

3.4.7 Refutation Soundness

Theorem 1. A constraint tableau for a specification @ and a constant frame
Cs is satisfiable if D is satisfiable with respect to Cg.

Proof. If & is satisfiable with respect to Cs, then @ has a model M = ([],Cs)
such that [F;] =1 forall F; € ¢. An initial tableau & for ¢ and Cs consists
of pairs Vg;: F; and equations V¢, = 1.We chose 0o(V;) = 1 for all Vg;. Then
oo obviously satisfies all constraints in &y and [F;Jss = o(VE;) holds for all
signed formulas V¢;: F; in ©y. Hence, Oy is satisfiable.

The set of constraints in a satisfiable tableau © can be satisfied by a
solution o such that [FJa = o(VE) for an evaluation function []| in M and
all signed formulas Vg,: F; that occur in ©. Let Vg: F be a signed formula
in ©. We show that each expansion © of Vg: F in a satisfiable tableau © is
satisfiable.

Let F = —F'. Then [Flas = [-][F]m. The expansion &’ of © by the
new signed formula Vir: F' and the constraint Vg = [—](VF) is satisfied by a
solution ¢’ such that ¢/(V) = (V) forall V # V&, and o'(V&) = [F]m =
[=1(VE) else. If F = F1 oF5 then [F]a = [o] ([F1]am, [F2]m), and an expansion
of @ by the new signed formulas Vf,: F; and Vg, : F2 and the constraint
Ve = [o](Ve,, Vk,) is satisfiable by a modification of the solution ¢ to a solution
o' with o/(Vg,) = [F1]m and o/ (VE,) = [F2]m.

If F = Q(TY)...(T,), with Q being a quantifier constant, then an inter-
pretation of F must formulate a constraint over all instantiations T;(p;) of
constants Cj of appropriate type for each T;. Again, the expansion of & by
the aforementioned constraint and the new signed formulas V(t¢;): (TC;) for
the instantiations is satisfiable by a suitably extended solution ¢’ such that
o'(Vitpp) = [(Tpj)Im.

Let F be an atomic formula and © be a tableau containing two signed
formulas V3 : F and V;: F. Because both are part of a satisfiable tableau,
[Flm = o(V1) = o(V2) holds for an evaluation function [|, and an extension
©’ of @ by the constraint V; = V; is obviously satisfied by o. O

Theorem 1 proves a form of refutation soundness. Starting with a satis-
fiable specification ¢ over a constant frame C, each tableau expansion will
create a satisfiable set of constraints. It is trivial to show that a solution o
that determines the interpretation [A] = o(Va) for each atom A in the tableau
also determines the interpretations of all occurences of complex formulas that
depend on these. Additionally, a solution must interpret the atoms in a way
such that the formulas of ¢ become true. Hence, the part of a solution ¢

52 3 Higher-Order Model Generation

that determines the evaluation of all atoms A in the saturated tableau for ¢
is equivalent to a model for the specification & relative to a given constant
frame Cg. Theorem 1 implies that a constraint translation of a satisfiable spec-
ification over a constant frame will lead to a tableau that can be solved. Our
method is complete in that we can be sure to find at least one solution that
represents a positive model.

3.4.8 Completeness for MQL Satisfiability

Our translation into constraints also gives us a decision procedure for the ex-
istence of models in a tableau. A saturated constraint tableau @ may contain
only finitely many signed formulas, and there can only be finitely many dif-
ferent evaluations ¢ for the atoms in © that represent models of ¢. Hence, we
can decide whether a tableau © contains a model. In the following, we show
that we can use this result for proving MQL satisfiability.

Lemma 1. Let® be satisfiable with respect to a constant frame Cg. Let Ci be
a constant frame for @ with |Co| = |CL| for all Co € Cs and all C!, € Cy. Then
& is also satisfiable with respect to Cj.

Proof. Let @ be satisfiable by a model M = (Cg,[]). Then [] has a finite
representation as a set {Ai,...,A;} of ground atoms. We show that & then
has a model M’ = ([|',C}5) with the representation set of |]’ being equal to
the set representation of |] up to a renaming of constant symbols.

Let © be an initial constraint tableau for ¢ and Cs and &) be an initial
constraint tableau for ¢ and Cj. It is easy to see that both tableaux are
identical modulo a bijective mapping of constant symbols p from Cs to Cj
such that p(hq) = R, for all h, that are in Cg but not in C}, and p(ha) = ke
else. We denote the renaming of all constant symbols in a formula F according
to p as p(F).

Every extension of a tableau @ for Cs has an equivalent extension in &’
such that each signed formula V: F in & has a corresponding signed formula
V: F' with F = p(F’). Because the constraints in both tableaux are isomorphic,
each tableaux has the same solutions o;. We select one solution ¢. Let Va: A
be an atomic formula in © such that [A] = o(Va) = 1. Then there is an
atomic formula A’ with A’ = p(A) in 6’ such that o(V{) = o(Va) and hence
[A] = [A']". Because A is in the representation set of |], A’ must be in the
representation set of the evaluation function [[, and vice versa. Hence the
representation sets for [] and []’ are equal up to arenaming p of constant
symbols. O

Theorem 2 (Satisfiability Completeness). There is an algorithm that
proves the satisfiability of an MQL specification $.

Proof. Let M = ([],Cs) be an arbitrary MQLC model for @. Starting with
a smallest initial constant frame C3, we can enumerate models for extensions
C} of C3 by adding arbitrary new constants h, to sets C, € €3 and solving

3.4 Constructing Models 53

the constraint tableaux for @ and Cj. As long as our extension strategy is fair
and complete, we will eventually reach a constant frame Cj with |C,| = |C.|
for all C, € Cs and all C,, € Cj. Lemma 1 shows that ¢ has a model M =
(I]',C5) that is equal to M up to a renaming of constant symbols. Hence,
the corresponding constraint tableau @ is satisfiable and we can prove that &
is satisfiable by producing a model of & relative to Cj. a

Theorem 2 implies that we are bound to find a model for a satisfiable MQL
specification ¢ when applying a fair iterative deepening strategy over the size
of the constant frame C. All models of MQL are finite, and we therefore have
a procedure for proving MQL satisfiability.

3.4.9 Enumerating Models

Our translation from logics into constraints is not complete in the sense that
we can guarantee to find a representative model A for every model of the
input @. The translation only considers formulas that can be expanded in some
way from input formulas, and will not determine the interpretation of ground
atoms that do not occur in the saturated tableau at all. The interpretation
of such atoms can be chosen freely and therefore can be ignored when we are
only interested in subset-minimal positive models. Still, we would like to have
a method that truly enumerates the MQL models of a specification.

The following theorem shows that a slight modification of our model gen-
eration method generates all isomorphic models of the input.

Theorem 3 (Model Completeness). There is an algorithm that enumer-
ates all models of a satisfiable specification @ up to a renaming of constant
symbols.

Proof. Given aspecification ¢ and an initial constant frame C3, we extend &
to a specification @' in the following way: For each ground atom A that can
be build from the constant frame C3, we add the formula A V —A to &. The
newly added formula obviously is satisfiable under the usual interpretation of
the logical constants v and .

The solutions for a constraint tableau &g for & and C$ determine the
evaluation of all atoms A and represent all isomorphic models in the size of
the constant frame C3. By iterative deepening over the size of the constant
frame, and by adding the tautologies A vV —A for all new atoms that we add,
we can now enumerate all MQC models up to isomorphism by enumerating
the solutions o for each resulting tableau. O

This page intentionally left blank

4

Minimal Model Generation

We now define a new class of models for MQL specification, the locally mini-
mal models. They are an amalgamation of domain minimal models and subset
minimal models known from first-order model generation. The property of
being a local minimal model in our logic MQL is decidable.

4.1 Preliminaries

The individual domain size |C,(M)| of a MQL model M is the number of
individuals constants ¢; that occur in a finite representation of M as a set of
ground literals.

A model M fora MQL specification ¢ is domain minimal if its individual
domain size C,(M) is minimal, i.e., there is no model M’ of ¢ such that
[C(M)] < [C.(M)]. A model Mfor ¢ is a locally minimal model iff it is
domain minimal and the condition Pos{M’) C Pos(M) = M = M’ holds
for all domain minimal models M’ of ¢.

Local minimality is both stronger and weaker than the classical subset-
minimal model property defined in Section 2.3.5. A locally minimal model
always has a minimal individual domain while minimal models may have
arbitrarily large domains. At the same time, a locally minimal model does
not have to be minimal with regard to all other finite models of ¢, but only
in comparison with those that have the same domain size.

4.2 Decidability of L.ocal Minimality

In this section, we prove that local minimality for finite models in MQOL is de-
cidable. The method is based on the observation that the minimal models M
up to a give size of the individual domain can be characterised by the literals
that occur negatively within M. Niemeld [24] originally used this characteri-
sation for defining a method for propositional minimal model reasoning.

56 4 Minimal Model Generation

Lemma 2. Let M = {A;,...,A,,—By,...,-Bn} be a local minimal model of
a MQL specification ¢. Then there is no model M’ with |C,(M")| = |C.(M)|
that satisfies ¢’ = ¢ A-BiA...A=Bp A=(ALALL.AAL)

Proof. Assume that M’ = {A},...,A},—B{,...,—Bj]} exists. Obviously, M’
is a domain minimal model of ¢. M’ satisfies all negative literals that are
satisfied by M, but only a subset of the positive literals {Ay,...,A,}. This
implies that the set of positive literals of M’, {A],...,AL}, is a real subset
of the positive literals {Ay,...,A,}, while the set of negated literals of M,
{-Bi,...,7By}, is a real subset of {-Bf,...,—Bj}. Hence, M’ and M must
be different and M’ is a model of ¢ with Pos(M') C Pos(M) but M’ # M.
This contradicts that M is a locally minimal model. O

Theorem 4 (Decidability of Locally Minimal Models). Given a model
M={Ay,...,A,,—By,...,-Bp,}

of a MQL specification ¢, it is decidable whether M is a locally minimal model
of ¢.

Proof. By lemma 2, there can be no model M’ that satisfies ¢/ = ¢ A B, A

W A-BL A=(AL AL AAL) in the same domain size as M if M is locally
minimal. Hence it suffices to show that ¢’ is unsatisfiable within the domain
size |C,(M)|. We chose an initial constant frame Cofor ¢'.If ¢’ is unsatisfiable,
then a saturated constraint tableau @ for ¢’ and our constant frame Cqy cannot
have a solution. Hence, the set of constraints in @ is unsatisfiable, which itself
is a decidable property. a

Part 11

Linguistics

This page intentionally left blank

5

The Analysis of Definites

The use of the seems to suggest shared experience or
knowledge: the listener/reader ‘has been there too’.
(Michael Swan, Practical English Usage)

Overview: Model generation is a tool for natural-language interpretation in con-
text. We apply a finite model generator to formalisations of singular definite
descriptions and show that minimal model generation permits a computational
treatment of definite noun phrases which directly reflects contemporary theories
of definiteness. Model generation can be used as a uniform tool for analysing
linguistic theories on definites.

5.1 Introduction

Given the semantic representation of a sentence and a specification of a context
as a set of formulas, a finite model generator will enumerate a set of finite
models satisfying both. The information in certain finite models encodes both
the context change as well as the truth conditions of the sentence. In the truth-
conditional sense of the word, model generation computes meaning. One of
the things that we can use this computed meaning for is to (re)formulate and
analyse linguistic theories.

The linguistic guinea pig that we' apply our analysis to are singular def-
inite descriptions. Our platform of experimentation is the finite model gen-
erator KIMBA (cf. Chapter 8) that implements a translation of MQL logical
specifications into constraints over finite-domain integer variables as well as
the computation of minimal models as presented in Chapter 4.

We show that minimal model generation permits a computational treat-
ment of singular definite noun phrases which can combine the theoretical
insights from contemporary theories of definiteness with the processing of
logically encoded knowledge about the situational context in which definite
sentences are interpretated.

! The research presented here, as well as that presented in Chapter 6 originates in
joint work with Claire Gardent.

60 5 The Analysis of Definites

5.1.1 The Semantics of Definite Descriptions

Singular definite descriptions are expressions that refer to a particular
individual entity without referring to its name, as in (5.1)— (5.3).

(5.1) The President of Germany
(5.2) The first man on the moon

(5.3) Washington’s mother

The analysis of singular definite descriptions, in the following called definites,
was one of the starting points of the logic-based approach to language philos-
ophy. Both Russell and Frege investigated the problem how the principle of
bivalence, i.e., the property of propositions to be either true of false, can be
maintained if a definite refers to a non-existing entity, such as in the following
famous example.

(5.4) The King of France is bald.

Russel’s treatment of definites in predicate logics makes use of a special iota
() operator. The expression tzP(z) denotes the x such that P(x) holds. Thus,
examples (5.4) can be formalised as follows.

(6.5) bald(vx kof(z))

This approach fails in cases where such an x does not exist, or when there
are too many z. Then, propositions like (5.5) can neither be interpreted as
true nor as false. Russell’s solution to this problem was a transformation from
what he calls the “misleading form” of the formula (5.5) into a logical form
that refers only to standard quantifiers 3 and V. The transformation was first
presented in his article “On Denoting” [57]. The result of the transformation
for (5.5) into first-order predicate logic looks as follows.

(5.6) dz kof(x) A bald(z) AVy kofly) > z =1y

In higher-order logics, Russell’s formalisation is equivalent to a Montague-
style linguistic quantification where THE is defined as in (5.7). This leads
to the representation (5.8) for sentence (5.4) which nicely hides the discrep-
ancy between the intended logical form and the “misleading” form of natural
language.

(6.77 THE= AP AQ 3z P(z) AQ(z) AVy Ply) =z =y
(5.8) THE(kof){bald)

5.1.2 Definites and Deduction

A formal representation such as (5.8) can be used for all kinds of inference.
For instance, consider the consequence relation that holds for the sentences
in example (5.9).

5.1 Introduction 61

(5.9) The King of France is bald |= There is a King of France.

This consequence relation can be verified mechanically by applying a first-
order theorem prover to the theorem (5.10).

(5.10) THE(kof)(bald) = 3z kof(x)

Given a logically encoded context, deduction can sometimes be used to ver-
ify whether a provisional resolution of an anaphor is valid. By anaphor we
mean any natural language expression whose referent can only be determined
by relating it to an antecedent referent in the discourse. Example (5.12) is
a typical proof task that is equivalent to the resolution of the anaphoric in-
formation given informally in (5.11). By proving (5.12), we show that the
proposed resolution in (5.11) is correct.

(5.11) Jon has a rabbit. The rabbit sleeps. =" The rabbit that Jon has
sleeps.

(5.12) rbt(ry) A has(jon,r1) A THE(rbt)(sleep) =
THE(Az rbt(z) A has(jon, z))(sleep)

Note that (5.12) has a standard first-order form when expanded, and prov-
ing the formula should present no difficulty to any state-of-the-art first-order
theorem prover. However, a purely deductive approach to the resolution of
definites will fail whenever the definite is not an anaphor. The interpretation
of a definite sometimes requires the accommodation of new individuals.
The term accommodation goes back to Lewis [70] and refers to the process
by which the listener adjust her assumptions by adding just enough informa-
tion to remedy the violation of some felicity condition. Consider the following
sentence.

(5.13) Jon’s rabbit is cute.

Here, we have no context in which we can resolve the definite Jon’s rabbit. The
interpretation of (5.13) requires that we accommodate the existence of some
rabbit that has the property of both being the rabbit of Jon and sleeping. If
we would insist on asserting the existence of a suitable referent in the context,
then example (5.13) cannot be interpreted as true.

What we would like to have for examples such as (5.13) is a method that
interprets a sentence relative to a given context and accommodates new infor-
mation if necessary. The meaning of a sentences is then given by the change
that the interpretative process imposes on the context. A method that pro-
vides this is minimal model generation.

5.1.3 How Models Interpret Sentences

A logical model can be conceptualised as a set of basic assumptions under
which a given logical specification is true. These assumptions are what we
are after when we interpret a sentence. In example (5.13), the minimal set of
assumptions can be stated informally as follows.

62 5 The Analysis of Definites

— There is an individual named Jon who
- owns some rabbit r; and
— 7 has the property of being cute.

The assumptions encode truth-conditional meaning. For natural-language in-
terpretation, we need models whose entailed assumptions are either evident
or accommodated as required. When accommodation is necessary, it should
be restricted to sets of assumptions that at least are consistent with what we
know about the situation at hand. Further, it should be obvious that the sets
of assumptions must state all information that is required for validating the
truth of the interpreted sentence: the assumptions should explain completely
why a certain sentence can be true in the given context. Finally, we do not
want over-explanation in the form of irrelevant or unjustifiable information.
An interpretation must not state more information as is required by the task
at hand.

It lies in the nature of a model that all assumptions that can be derived
from it are true under the interpretation given by this model. If we use a
background theory that contains the necessary world knowledge, a model of
this background theory and a semantic representation will not entail logically
inconsistent facts.

Further, a model always gives sufficient information for the truth of a
theory. Every interpretation in the Tarskian sense of the word unambiguously
defines the truth value of the specifications that it validates. If a model lacks
any necessary information, it cannot be a model at all.

The elimination of irrelevant information is not an issue of model genera-
tion in general, but it is an issue for minimal model generation. Minimality
constraints for models usually restrict the positive assumptions that are made
by a model. The locally minimal models that we investigated in Chapter 4 are
models that satisfy a specification both without referring to more individual
entities than necessary and without making unnecessary assumptions relative
to all other models that can be found in the smallest domain. In the sense of
Occam’s Razor, locally minimal models are the simplest, and therefore often
the best explanations for the truth of a theory. In natural-language interpre-
tation, the locally minimal models are essential because they minimise the
accommodated individuals and the accommodated assumptions. For definite
descriptions, the minimisation of individuals ensures that a resolution with
referents in the context is preferred over the accommodation of new individu-
als. This preference has been advocated for on empirical grounds for instance
by Strawson [71].

5.1.4 Discourse Models

In what follows, we understand the concept of a discourse model as a logical
description of a context that is derived from a discourse. In general, the term
discourse model denotes an abstraction of a situation in a real or hypotheti-
cal world. In cognitive psychology, such discourse models have been used to

5.1 Introduction 63

explain inferences that people draw in understanding text [72]. In Artificial In-
telligence, Webber proposes them as describing the situation/state which the
speaker is talking about [73]. In the dynamic/DRT (Discourse Representation
Theory [74]) trend of natural language semantics, it represents the context
created by previous discourse and against which subsequent utterances will
be interpreted [74, 75].

Discourse models are abstractions in that we restrict some situation to
a finitary or otherwise limited view that focuses on the information that is
present in a discourse. In natural-language processing, the task of understand-
ing an utterance is frequently modelled by the task of creating a discourse
model by a hearer [72]. The crucial observation underlying the concept of a
discourse model is that the situation a speaker is talking about influences
the way in which discourse is interpreted. This intuition is made precise in
contemporary dynamic theories of meaning which view meaning as a relation
between contexts: a sentence is interpreted relative to a context and the in-
terpretation of that sentence yields a new context, the context against which
the next sentence will be interpreted. The context change that the models
of a semantic representation induce is what will be in the focus of our in-
terest, because this is where we expect to find a considerable part of the
truth-conditional meaning.

As our formal framework is that of classical logics, we will focus on phe-
nomena where we can widely ignore the effects of dynamic discourse structure.
A typical problem that we will not attack is illustrated by example (5.14).

(5.14) Jon’s rabbit is cute. The rabbit is white. Peter’s rabbit is cute,
too. The rabbit is black.

Definite descriptions sometimes act as anaphors whose binding to referents
is determined by the structure of the discourse. Hence, the association of the
definite The rabbit to its referent dynamically changes in example (5.14)
with the focus of the discourse. A convincing treatment of dynamic effects in
discourse models would require suitable data structures that can deal with
structural properties such as dynamic accessibility of and focus. As these
problems lie beyond the subject of this volume, our discourse models are
representations of situations and not that of discourses. In our analysis, we
will concentrate on single sentences that are interpreted with respect to a
given logical context.

5.1.5 Models for Definites

In MQL, we can reduce the semantics of the standard semantic representa-
tion of the generalised determiner THE to a higher-order definition that relies
only on the standard quantifiers 3 and V of predicate logic. As an alternative,
definition (5.15) makes the two separate conditions in the semantic of Russel-
lian definites more explicit. It is equivalent to the set-theoretical higher-order
formulation (5.17) that is sometimes found in the literature [76].

64 5 The Analysis of Definites

(5.15) THE = APXQ UNIQUE(P) A EVERY(P)(Q)
(5.16) UNIQUE= AP 3z P(z)AVy P(y) =z =y
(5.17) THE= APAQ |P|=1APCQ

Russell’s approach to definites leads to a first-order expressible form, and so
does an expansion of the definitions (5.15)—(5.17).

We use the Herbrand equality symbol ’=’ in the definition of the second-
order unicity predicate UNIQUE. As discussed in Section 3.3.9, the symbol =
is interpreted as a two-place predicate on elements of a constant frame C such
that C = D is true iff C and D are identical constants. Under MQL’s unique
name assumption for all interpretations, two constants are considered equal
iff they have the same name.

The finite model generator KIMBA for MQL logics will be discussed in de-
tail in Chapter 8. KIMBA computes, among other classes of models, the locally
minimal models of an input specification. With THE now at our hands, we can
apply KIMBA to sentences with singular definite descriptions and investigate
whether our semantic representations have the locally minimal models that
we expect. In the following, the logical specification of the discourse model
for (5.18) is given in (5.19), the semantic representation of the sentence with
the definite is the formula (5.20).

(5.18) Jon has a rabbit. The rabbit is cute.
(5.19) rbt(r1) A has(jon,r1)
(6.20) THE(rbt)(cute)

We apply KIMBA to the logical specification(5.21), i.e., the conjunction of the
logical description of the discourse model (5.19) and the semantic representa-
tion (5.20). A model for specification (5.21) must consider both the discourse
model and the semantic representation. The model generation process gener-
ates the facts (5.22) under which both parts of the specification are true.

(5.21) rbt(r1) A has(jon,r1) A THE(rbt)(cute)
(5.22) {has(jon,r1), rbt(r1), cute(ry)}

The minimal model clearly is an intuitive description of the meaning of the
sentence (5.18). In order to make the semantic representation (5.20) true in
the discourse model (5.19), the model generator adds the fact cute(r;) where
r1 has the property of being the only rabbit in the context. In other words, we
have computed an interpretation of a the sentence the rabbit is cute in a given
situational context. The example does not have any other locally minimal
models.

Our analysis implements the interpretation of definites as local to a context
which is restricted to a discourse. This focus is actually necessary for exam-
ples such as (5.23) where we cannot really expect to have a unique rabbit in
London.

5.1 Introduction 65

(5.23) There once was a rabbit in London. The rabbit was Welsh.

In our approach, quantification is restricted to the domain of discourse and
therefore (5.23) is not taken to claim that there is a unique Welsh rabbit
in London, but simply that there is a unique Welsh rabbit in London which
the speaker is talking about. The analysis is here similar to that described by
Groenendijk et al. [77]. Like them we relativise uniqueness to the domain of
discourse, not to the world.

The definition of THE correctly expands to an unsatisfiable specification
when we interpret the definite description in a discourse model where unique-
ness does not hold even locally. In the following, we have a specification (5.24)
where our model generator is unable to generate any model at all.

(5.24) Jon has two rabbits. The rabbit is cute. (*)
(5.25) rbt(r1) A has(jon,ry) A rbt(ra) A has(jon,r2) A THE(rbt)(cute)

KiMBA will run infinitely when applied to unsatisfiable specifications such
as (5.25). For practical purposes, we restrict the search space to a limited,
but reasonable number of extensions in the domain of individuals. The model
generation problem then becomes decidable.

5.1.6 Uniqueness and Lots of Rabbits

The definition of the generalised determiner THE in sense of Russell’s approach
actually defines two separate truth conditions for a definite. Our formulation
THE in higher-order logic makes these two conditions explicit.

(5.26) THE = APAQ UNIQUE(P) A EVERY(P)(Q)

The first condition is that the set P provided by the noun must have exactly
one member. The second condition is that this member of P is also a member
of Q, i.e., a member of the set given by the scope of quantification of the verb
phrase. We will call the first truth condition the unicity condition, and the
second condition the subset condition. The unicity condition seems to be
an essential part of the semantics of singular definite descriptions, but for a
variety of linguistic material, we can show that unicity with respect to a given
context is a constraint which is too strong.

First, as Heim [78] notes, quantifiers may weaken and even annihilate
uniqueness. Thus in (5.27), the definite description the carrot is unique only
per rabbit: there is one carrot per rabbit but there may be many rabbits and
therefore many carrots. In (5.28), uniqueness completely disappears: there
may even be several carrots per rabbit.

(6.27) Most rabbits who see one carrot, eat the carrot.

(5.28) If a rabbit sees a carrot, the rabbit eats the carrot.

66 5 The Analysis of Definites

Second, definites often have some implicit dependency on some other noun
phrase. Examples like the following are discussed for instance by Asher and
Wada [79] in the general context of anaphora resolution.

(5.29) When Jon’s rabbit dreams of carrots, the tail twitches.
(5.30) The tail is perhaps the least known of the edible parts of a rabbit.

Third, as example (5.30) indicates, not all uses of the singular definite article
the really belong to a definite description. In cases like the following, the
description is meant to be general.

(5.31) The rabbit is a vermin in Australia.

(5.32) The baseball cap is an unlikely place to be for the magician’s
rabbit.

Fifth, there are sentences such as (5.33) and (5.34) which explicitly deny that
the description they contain give unique specifications of existing entities.

(5.33) The best way to breed rabbits does not exist.
(5.34) There is no such thing as the magical rabbit.

Finally, the uniquely identifying property may not be given by the definite
description itself, but might have to be somehow inferred from the surrounding
context. In (5.35) from Haddock [80], there is no unique hat in the context
but the definite description the hat refers successfully to the hat that contains
a rabbit. In (5.36), the rabbit actually refers to the rabbit in the hat, because
to remove z from y, it must be the case that x is in y.

(5.35) A magician has two hats and two rabbits. One rabbit is in a hat. The
magician says: " Now watch attentively, I will make the rabbit in the
hat disappear.”

(5.36) Bugs and Bunny are rabbits. Bugs is in the hat. John removes the
rabbit from the hat.

In the face of such overwhelming evidence, it might seem best to give up
uniqueness. There are a number of proposals however which manage to rec-
oncile uniqueness with reality and on which we shall base our computational
treatment [77, 81, 82]. In such proposals, uniqueness is not solely determined
by the property denoted by the common noun occurring in the definite de-
scription. Additional contextual information also plays a role. In Cooper’s
approach [81] this property is a free variable whose value is determined by
the context of use. Kadmon [82] asserts that it can be “accommodated, im-
plicated or contextually supplied”. Other approaches identify the property
with the context set of the definite [77,83]. In what follows, we adopt and
experiment with a combination of these analyses.

5.2 Some Representations 67
5.2 Some Representations

We assume that the definite article the is assigned the semantic representa-
tion (5.1), which makes use of the definition of set intersection given in (5.2).

(6.37) THE = APy AP, AQ UNIQUE(P; N P;) AEVERY (P, N P2)(Q)
(65.38) N= AP AQ Az P(z) AQ(z)

Here, P; is a first-order property that uniquely identifies the individual ref-
erent in the set P, which is given by the noun. We call the argument P, the
identifying property. This form of representation requires that P, be given
and therefore somehow determined. Determining such an identifying property
is, as Kadmon remarks, an essentially pragmatic process which can involve ac-
commodation, implicature and/or inference. A context will make many prop-
erties available, most of them are irrelevant for determining uniqueness. In
what follows, we will manually determine and discuss arguments P, that give
us correct analyses.

5.2.1 Simple Cases

For many definites, we do not need to give special identifying properties in
order to obtain a correct analysis. In such cases, uniqueness holds for the
context and we can use an unspecific identifying property To = AX, X = X
that holds for all entities in all domains C4 of arbitrary type . In what follows,
T denotes the unspecific identifying property T, for first-order individuals.

(5.39) Jon has a rabbit. The rabbit is cute.
(5.40) rbt(ry) A has(jon,r1) A THE(rbt)(T)(cute)

The model generation problem for (5.40) is trivial. We already have a suitable
referent for our definite at hand, namely the rabbit ;. The unicity condition
constrains the resulting discourse model to one where 7 is the only rabbit, and
we therefore have no choice at all when generating a minimal model (5.40).
But what about cases where such an individual is missing in the context?

(5.41) Jon’s rabbit is cute.
(5.42) THE(Az rbt(z) A has(jon, z))(T)(cute)

Here, things are a bit more complicated. The minimal model (5.43) that we
get could hardly be called intuitive.

(5.43) {rbt(jon), has(jon, jon), cute(jon)}

What is missing in (5.42) is some necessary world knowledge that prohibits
an oversimplification. The possessive s that we modelled by the has predicate
has an implicit truth condition, namely that the possessor cannot be identical
with the possession. Alternatively, we could add the constraint that rabbits

68 5 The Analysis of Definites

cannot possess other rabbits, only humans can. In general, we will simply add
additional knowledge about relations as formulas to the specification. When
adding an irreflexivity axiom (5.44) for has, the model (5.45) that we generate
is correct.

(5.44) Vz —has(z,z)
(5.45) {rbt(c1), has(jon, c1), cute(c1)}

The constant ¢; is an automatically generated constant that comes from the
iterative extension of the first-order universe in our model generator KIMBA.
There is no model that can satisfy (5.42) with a domain of individuals that
only consists of the constant jon. Hence, KIMBA extends the universe and com-
putes the necessary facts in (5.45). Without a restriction to minimal models,
the following models could be generated as well. It should be clear from these
examples why we prefer minimal models in general.

(5.46) {rbt(c1), has(jon, c1), has(cy, jon), cute(eq)}
(5.47) {rbt{c1), has(jon, 1), cute(cy), cute(jon)}
(5.48) {rbt(cy), has(jon, cy), has(cy, jon), cute(ey), cute(jon)}

The information that the noun phrase of a definite provides, together with
some basic world knowledge, is usually sufficient for deciding between anaphor
resolution and accommodation. In (5.49), the adjective black in the noun
phrase his black rabbit makes it impossible to identify the white rabbit with
Jon’s rabbit in the discourse model—if we add the information that a white
entity cannot be a black entity. As a result, KIMBA accommodates a new
rabbit although we have already introduced a rabbit to the model.

(5.49) Jon loves his black rabbit. The white rabbit is boring.

5.2.2 Donkeys, Context Sets, and Anaphoric Use

In the following sections, we consider uses of definites where an analysis based
on an unspecific identifying property and minimal models is not sufficient in
general.

5.2.3 Quantifiers and Donkey Sentences

Quantifiers can weaken or annihilate uniqueness in definites. Thus in (5.50),
the definite descriptions the rabbit and the carrot cannot be understood as
referring to unique entities in the context. There may be many rabbits, and
also many carrots. A suitable semantic representation should be equivalent to
the first-order formula (5.51).

(5.50) If a rabbit sees a carrot, the rabbit eats the carrot.

(5.51) Vz Vy rbt(z) A crt(y) A see(z,y) = eat(z,y)

5.2 Some Representations 69

Sentences such as (5.50) have been introduced by Geach and are known as
“donkey sentences” in the literature. Donkey sentences are sentences where
the anaphoric connection we perceive between an indefinite and a pronoun
seems to conflict with the implicit existential quantification associated with
the indefinite. In the following example, the indefinite in question is some
donkey, the definite pronoun is it, and the

(5.52) If Pedro owns some donkey, he beats it.

The donkey sentences are the starting point for the dynamic/DRT approach to
natural-language semantics. In Kamp and Reyle’s DRT, sentences are treated
within dynamic semantic representations in which logical connectives and
bound variables model to some extend the dynamic behaviour of pronouns
in natural language. These Discourse Representation Structures (DRS) have
a first-order relativisation, i.e., translation. A semantic construction for a don-
key sentence in DRT yields a universal quantification in the antecedent, and
our donkey sentence (5.52) has the following relativisation.

(5.53) Vz donkey(z) A owns(pedro,z) = beat(pedro, x)

Example (5.54) shows a semantic representation in the spirit of a DRS for
sentence (5.50) where we still use our standard formalisation for definites.

(5.54) Vz Vy rbt(z) A crt(y) A see(z,y) =
THE(rbt)(T)(Az THE(crt)(T)(Ay eat(zx,y)))

This representation clearly is faulty. When we apply KIMBA to (5.54) and
a discourse model where we have several rabbits that each see a carrot, the
specification becomes unsatisfiable. The uniqueness that is derived from the
definition of THE and the unspecific identifying property T is too strong. In
what follows, we exchange the set T with identifying properties that are more
selective.

5.2.4 Context Set Restrictions

The class of identifying properties that we propose for definites in the scope
of quantifiers is derived from a syntactical restriction which originates in Kad-
mon’s By set [82]. The By set refers to the set of variables that are bound
higher up than the variable representing the definite noun phrase. This cor-
responds to the set of variables that are in the accessibility relation of the
definite in DRT. A similar restriction has been referred to as context sets
for instance by Westerstahl and others [83]. What we do is to introduce the
implicit equality relation that holds between the anaphoric definite and the
variables that are bound higher up in the semantic representation.

(5.55) Vz Vy rbt(z) A crt(y) A see(z,y) =
THE(rbtY(Ar r = zVr = y)(Az THE(crt)(A¢ ¢ = z V¢ =

y)(A eat(z,u)))

70 5 The Analysis of Definites

The idea is to relativise uniqueness to an equality relation over the set of
individuals in the discourse mode, in this case, to the individuals related to
the variables bound by a quantifier. The effect here is that uniqueness is
relativised to arbitrary rabbit-carrot pairs and hence there is no uniqueness.
Given such a specification and a discourse model with one rabbit, say Bugs,
that sees two carrots, KIMBA will return a model where Bugs sees and eats
both carrots. In contrast, given a discourse model where Bugs sees two carrots,
but explicitely eats only one, KIMBA will find the specification unsatisfiable
and no model will be generated.

The following example is very similar, which is hidden somewhat by the
different quantifier. The semantic representation is given in (5.57).

(5.56) Most rabbits that see a carrot, eat the carrot.

(6.57) MosTt(rbt)(Ax Yy crt(y) A see(z,y) =>
THE(crt)(Az z =z V z = y)(\u eat{z,u)))

Again, we have some quantifier variables that are used for identifying a ref-
erent in the definite. Because we use linguistic quantification with MOST, the
quantifier variable z is the bound variable in the A-abstraction of the scope
given by the relative sentence that sees a carrot and the verb phrase. Apart
from the fact that it is a challenging task to design a semantic construction
method for such sentences, our treatment of the definite remains the same.
With the identifying property Az z = x V z = y, uniqueness actually disap-
pears, and we can have for instance a majority of rabbits that see and eat
more than one carrot in the discourse model without losing satisfiability.

The semantic representations that we have experimented with so far use
identifying properties that are determined only by the context set as a whole.
We use the set of all accessible variables because it would be very difficult
in general to identify just the right variable automatically. In the examples
above, we have some syntactic parallelism between the entities represented by
the quantifier and the definite, e.g., a carrot and the carrot, but this syntactic
parallelism is not necessarily sufficient for identifying the right variable in all
cases. Example (5.58) is a variant of (5.56) where we would find it impossible
to detect the dependency between the quantifier and the definite by syntactic
means alone.

(5.58) Ewvery rabbit that sees a carrot, eats the healthy vegetable.

The encoding (5.59) works for instance in the discourse model (5.60) where
we have the minimal model (5.61). The formula No(rbf)(crt) gives the sor-
tal information that rabbits are not carrots, and EVERY(crt)(veg) adds the
knowledge that carrots are vegetables.

(6.59) EVERY(rbt)(Ax Vy crt(y) A see(z,y) =
THE(veg N hithy)(Az z =z V z = y)(Au eat(z,u)))

(5.60) crt(c1) A rbt(r1) A see(ri, c1) A No(rbt)(crt) A EVERY(crt)(veg)

5.2 Some Representations 71

(5.61) {crt(cy), hithy(c1), veg(cy), rbt(r1), see(ry, 1), eat(r1,c1)}

The encoding works just as well in cases where we have several rabbits and
carrots. In each case, the entity that is both healthy and a vegetable is identi-
fied with the carrot mentioned in the antecedent clause for each rabbit-carrot
pair.

5.2.5 The Treatment of Names

As we have discussed in the last section, some linguistic theories predict a
dependency between an anaphoric definite and the quantifier variables in
which scope it occurs. Such a dependency is actually a property of all sin-
gular anaphora. If an anaphor cannot be linked to a quantifier variable, it
remains unresolved and the discourse becomes ill-formed. What we have not
discussed so far is how names of individuals, which can be used just as well
for anaphor resolution, fit into the picture.

In DRT, names are modelled by unary predicates and their occurrence
introduces existential quantification over the whole representation. In MQL,
we have the names of individuals represented simply as constants because we
have a Herbrand-like interpretation of constants in all MQL interpretations.
In the context set restriction that we use, names must be considered as po-
tential referents for anaphoric definites. The following example illustrates the
extension of the context set to names.

(5.62) When Jon visits a doctor, the man is happy.

(5.63) Vz doc(z) A visit(jon,z) =
THE(man){(Au u = z V u = jon)(happy)

The discourse is ambiguous because it is not entirely clear to whom the man
refers to, Jon or the doctor. An identifying property Au v =z Vu = jon that
leaves the computation of the actual resolution to the model generator allows
us to compute two minimal models, one where Jon is the man and is happy
when he visits any doctor, and one where every (male) doctor is happy when
Jon visits him.

5.2.6 Restrictions with Knowledge

What is interesting in our minimal-model-based approach to anaphor reso-
lution is that additional contextual knowledge can be added which controls
the resolution. For instance in example (5.62), if we add the information that
Jon only visits female doctors, the computed models change accordingly. Note
that an encoding of definites with context sets makes it impossible to accom-
modate new individuals for the definite—if we use context sets, we implicitly
assume an anaphoric use of the definite. For some definites, the suitable iden-
tifying properties that are based on some pragmatically given restrictions still
allow accommodation.

72 5 The Analysis of Definites

5.2.7 Implicit Knowledge and Accommodation

In example (5.64), the uniqueness in the definite the rabbit relates to the rabbit
in the hat. The proposed logical specification is given in (5.65).

(5.64) Bugs and Bunny are rabbits. Bugs is in the hat. Jon removes the
rabbit from the hat.

(5.65) THE(rbt)(Av inhat(v))(Az (THE(hat)(T)(Ay rmv(jon,z,y))))

The context set restriction from the last section would not help here because
both Bugs and Bunny are in the context set. Instead, we use an identifying
property Az inhat(z) that is a pragmatic restriction inferable only from what
we know about the world: removing z out of y implies that = was in y°.
Hence, the rabbit that is removed from the hat must have been in the hat.
The locally minimal model generated by KIMBA for specification (5.65) is as
expected (5.66).

(5.66) {rbt(bugs), rbt(bunny), inhat(bugs), rmv(jon, bugs, hat)}

Now suppose there is no rabbit known to be in a hat. In that case, KIMBA
accommodates the fact that one of the rabbit was indeed in the hat, and
yields two possible minimal interpretations that satisfy the representation. In
the first case (5.68), Bugs is in the hat, and in the second case (5.68), Bunny
is in the hat.

(5.67) {rbt(bugs), rbt(bunny), inhat(bugs), rmv(jon, bugs, hat)}
(5.68) {rbt(bugs), rbt(bunny), inhat(bunny), rmv(jon, bunny, hat)}

In general, KIMBA will accommodate any fact that is necessary provided that
it is consistent with the rest of the specification. An interesting question that
would be worth exploring in this context is that of computable constraints on
accommodation. We leave the question open for now and return to it later in
Section 5.2.9.

Another variation® on (5.64) is the following:

(5.69) Bugs and Bunny are rabbits. Bugs is in the hat. Jon removes the
birthday present from the hat.

In this case, we may infer that the birthday present is Bugs. And so does
KIMBA in the locally minimal model.

% For simplicity, we ignore temporal issues here.

3 Thanks to Bonnie Webber for this particular version of the example. Zeevat [84]
proposes a similar example namely: “A man died in a car accident last night. The
Amsterdam father of four had been drinking.”

5.2 Some Representations 73

5.2.8 Bridging

Bridging refers to the dependency of a definite to some other noun phrase
such as in the following example.

(5.70) Jon’s rabbit dreams. The tail twitches.

As The tail here refers to the tail of Jon’s rabbit, an acceptable interpretation
of The tail twitches must resolve the definite to the tail of Jon’s rabbit. A
correct treatment of bridging requires that we make explicit the relationship
of rabbits and tails by a formula such as (5.71). The formula states that for
each rabbit we have a unique tail that is a part of that rabbit.

(5.71) Vz rbt(z) = UNIQUE(Ay tail(y) A has(z,y))

If we add formula (5.71) to the logically encoded context, the locally minimal
model of the semantic representation THE(tail){ T)(twitch) represents the cor-
rect reading. The model identifies a tail which is introduced by formula (5.71)
as that (only) tail that both belongs to Jon’s rabbit and which also twitches.
Note that the semantic representation does not give a specific identifying
property.

However, in cases such as the following, it is reasonable that a suitable
identifying property must somehow introduce the implicit dependency be-
tween the definite and the dependent noun.

(5.72) If a rabbit dreams, the tail twitches.

Example (5.72) is a donkey sentence that cannot be dealt with by simply
relating the definite to the context set because we only have a variable for
rabbits, and not a variable for tails. Below, we give the semantic representa-
tions that do the trick, and the natural-language sentence that they actually
stand for.

(5.73) When Jon’s rabbit dreams, the tail of Jon’s rabbit twitches.

(56.74) THE(Az rbt(z) A has(jon,z))(T)(dream) =
THE(taily(Au THE(Av rbt(v) A has(jon,v))
(T){(Av of{u, v)))(twitch)

(5.78) If a rabbit dreams, the tail of it twitches.

(5.76) Vz rbt(z) = THE(tail)(Au THE(rbt)
(TY(Av of{u, v)))(twitch)

As we can see, instead of an identifying property that simply relates two
variables, we introduce an of-relation between two variables. As in the case
of quantifier scoping, bridging introduces a relation, but this relation may
be more complex than the simple equality of entities. The of-relation is a
placeholder for a variety of actual relations that can hold between the definite

74 5 The Analysis of Definites

and the dependent noun. For instance, in (5.77), the waiting room refers to
the waiting rooms of the doctors’ offices, not the waiting room of each doctor.
Still, we can use of as long as we only want to make sure that an analysis
with local uniqueness remains possible.

(5.77) If Jon visits a doctor, the waiting room empties.

(5.78) Vz doctor(z) A visit(jon,z) =
THE(waitrm)(Av ofz, v))(empties)

5.2.9 Simple Cases Revisited

The identifying properties P, that we have used so far can be roughly classified
into two categories.

—~ The identifying property is T for simple cases.

-~ The identifying property relates the definite to a set of variables that are
bound higher up in the semantic representation. A suitable relation cannot
be determined from syntactical structure alone, but must sometimes be
inferred from world knowledge.

It is not easy to classify the use of a definite as a simple case or as one
where we need a non-trivial restriction on P;. The problem is that the simple
cases with the identifying property T sometimes work for sentences where a
correct analysis should yield an unsatisfiable specification. This occurs mainly
in connection with accommodation and the dynamic behaviour of definites
that should be interpreted exclusively as anaphora.

(5.79) Jon has no rabbit. The rabbit is cute. (*)
(5.80) No(rbt)(Azhas(jon,z)) A THE(rbt)(T)(cute)

What we have here is a sentence (5.79) where a naive modelation of a discourse
model in (5.80) will not prevent that we can generate a minimal model. Model
generation implements an almost unconstrained form of accommodation. In
our example, KIMBA simply accommodates an individual that is a cute rabbit
but necessarily not Jon’s one. Hence, formalisation (5.80) is at least odd as
a semantic representation of (5.79). What is missing in our representation is
that the definite should be treated as an anaphor.

5.2.10 Non-resolvable Anaphora in DRT

Solving the problem of anaphor resolution in the presence of dynamic quan-
tifier scope and accessibility relations is the domain of dynamic logics. We
might be tempted to say that our problem here is really that of a static logic
representation. Arguably, we must be careful to use a suitable relativisation
of intrinsically dynamic phenomena, such as the accessibility of discourse ref-
erents, in our logic MQL. Consider for instance the following sentence.

(5.81) Jon has no rabbit. He likes it.

5.2 Some Representations 75

In DRT, the semantic construction process yields a DRT whose first-order
form is given by (5.82). The pronoun it is resolved with a referent that is
actually not accessible. The equation y = = which states that it refers to the
non-existing rabbit results in a formula which is not well-formed. DRT on this
ground rejects the semantic construction of (5.82).

(56.82) —Jy (—3z rbt(x) A has(jon,z)) A like(jon,y) Ny =z

If we use a DRT relativisation (5.83) for the example (5.79) where the definite
is treated in the same spirit as an anaphor, we also have an ill-formed formula.

(5.83) —(3z rbt(z) A has(jon, z)) A THE(rbt)(Au u = x)(cute)

5.2.11 Definites Are Not Anaphora

The DRT-solution to non-resolvable anaphora relies on a semantic construc-
tion process that detects some syntactically ill-formed uses of anaphora before
a semantic representation is presented. The ill-formedness in the representa-
tion comes from equations where one of the variable occurs free. The equations
are introduced by the provisional instantiation of pronouns, i.e., by anaphor
resolution.

For definites, there is no equivalent and generally useful filter mechanism
does not exist because definites are not always anaphora. As mentioned earlier,
definites sometimes presuppose the existence of discourse referents that have
not been introduced yet (5.84), or trigger bridging (5.85) which only relates
the definite to a previously mentioned referent in some indirect way. Finally,
we have the use of singular the-phrases like (5.86) that are meant as general
statements.

(5.84) Jon’s new rabbit is black.
(5.85) Jon has a new rabbit. The tail is black.

(5.86) The rabbit is a vermin in Australia.

In any of these cases, if we use identifying properties that restrict the inter-
pretation of definites to anaphoric uses, we will obtain unsatisfiable specifica-
tions. Unfortunately, linguistics so far has not provided us with computational
methods for distinguishing anaphoric and non-anaphoric uses of definites.

Model generation for locally minimal models prefers anaphoric use over
non-anaphoric use, because locally minimal models minimise the universe.
This preference seems to match the empirical data. Apart from that, we must
allow accommodation in all cases where we have consistency of the assumed
facts in the model. In cases where only accommodation of new individuals
yields a model, model generation on its own does not really have a means to
distinguish valid and non-valid forms of accommodation.

76 5 The Analysis of Definites

5.2.12 Non-existence

An interesting phenomenon axe sentences which explicitely deny the unique-
ness that the definite implicitly formulates.

(5.87) The golden mountain does not exist.

According to Russell, sentences such as (5.87) have two possible analyses, one
where negation has a wide scope over the quantificational complex which rep-
resents the contribution of the definite, and one with narrow scope. The first
analysis is equivalent to our formulation (5.88), while the second is equivalent
to (5.89) for our example (5.87).

(5.88) THE(goldMountain)(T)(Ax —T(x))
(5.89) —THE(goldMountain)(T)(T)

Both analyses are not intuitive, as can be shown by investigating their models.
In (5.88), we state that there is a unique golden Mountain that has the prop-
erty of non-existence—note that T denotes the property that all individuals in
the discourse model have. This formalisation is unsatisfiable, because model
generation must accommodate an individual on the one hand, and show that it
does not belong to the discourse model at the same time. This is inconsistent.

As Kamp and Reyle argue [1], the second formalisation (5.89) says some-
thing which is closer to the intuitive meaning of (5.87). It says that there is
no unique object which has the property of being the golden mountain that
exist. Unfortunately, our model generator proves that the formalisation still
is not correct. It has a non-minimal model (5.90) that instantiates another
potentially valid interpretation of the formalisation.

(5.90) {goldMountain(c;), goldMountain(cs)}

Informally, Russell’s semantic representation can be validated by assuming
that there are two golden mountains ¢; and c3. The model (5.90) reveals
the subtle problem that the Russellian encodings for definites do not always
preserve entailment. In this special case, we cannot simply fix the problem
by giving a suitable identifying property because an identifying property that
determines an empty set is not possible.

The example shows that it sometimes pays to consider non-minimal models
as well as minimal ones when we use model generation in the analysis of
semantic representations.

5.3 What We Have Learned so Far

We have shown that model generation can provide interesting insights from
existing semantic theories of definites with a computational interpretation
that combines reasoning on linguistic and world knowledge. Given a suit-
able uniquely identifying property and a logical encoding of the context, the

5.3 What We Have Learned so Far 77

model generator either identifies the referent of a definite noun phrase with
some already existing entity (coreference) or adds a new entity to the model
(accommodation). We have determined some classes of identifying proper-
ties for our formalisation for some well-known examples from the literature.
This by itself is not entirely trivial, and we know of no existing approach to
the semantics of definites that can treat the range of examples that we have
presented so far.

For the analysis of definites, the model generator KIMBA provides an ad-
equate notion of minimality. Locally minimal models validate a specification
within the smallest possible domain of individuals. As a result, our method
for definites favours coreference over accommodation whenever coreferences
can be assumed consistently. As has been stated first by Strawson [71], a cor-
rect computational treatment of definites asks for a method that can handle
accommodation in this way.

Our approach often makes the meaning postulates explicit which are nec-
essary for natural-language interpretation. A formalisation which leaves out
this important part of a meaning quickly leads to oversimplification. We can
use model generation as a software engineering tool and apply it to complex
formalisations where we may not be sure that we actually have a correct se-
mantic representation. For practical research in model-theoretic semantics,
model generation helps to formulate and verify linguistic theories and allows
us to experiment with their predictions.

Minimal model generation correctly treats the class of definites that we
have called “simple cases”, i.e., where the identifying property can be safely
chosen as T, provided that we have a correct logic modelation of the context
of an utterance and a suitable representation in which the definite is embed-
ded. These simple case not only include some anaphoric uses of definites, but
also some common forms of bridging and accomodation. These often require
reasoning about the world which model generation provides as a built-in fea-
ture.

For other examples, we have shown that minimal model generation is gen-
eral enough to allow for an implementation of contemporary linguistic theo-
ries [77,78,81-83]. Our “identifying properties” can uniformally represent the
various proposed constraints on the interpretation of definites.

Unfortunately, these theories do not yield specific methods for computing
the identifying properties in general. For instance, as we have seen in Sec-
tion 5.2.6, the use of a syntactic constraint such as a context set does block
accommodation. If we want to employ the context set restriction correctly,
we must somehow decide when to use it and when we should stay with a less
restrictive formalisation that allows accommodation. It is unlikely that this
problem has a sound computable answer. In Section 5.2.4, we have shown for
instance that there can be no purely syntactic method that identifies anaphoric
uses of definites. It remains unclear how we can then satisfactory model an
automatic context set restriction when we cannot even decide whether a def-
inite is used as an anaphor or not. The contemporary theories state that the

78 5 The Analysis of Definites

relation which determines the unicity of a definite must be ‘referred from the
context’ or ‘is essentially a process of accommodation, implicature and/or in-
ference’. The semantic theories that we know remain vague on the nature of
the consequence relation that determines the inference that is referred to.

However, as Kamp and Reyle [1] note, it would be a non-trivial task to
identify and describe the different purposes to which singular the-phrases can
be put, let alone the actual constraints on their interpretation. Hence, our
analysis remains incomplete in that we do not have more reliable computa-
tional means which automatically determine identifying properties from the
linguistic data. What we have presented in this chapter is only a starting point
for a more throughout analysis of definites.

6

Reciprocity

Once, indeed, a problem was brought to me, and I solved
it, obtaining very many solutions; I went into it fully, and
found that there were 2678 valid answers. I marvelled at
this, only to discover - when I spoke of it - that I was
reckoned a simpleton or an incompetent, and strangers
looked on me with suspicion.

(Abu Kamil)

Overview: Linguistic theories on reciprocal expressions identify a semantic prin-
ciple, the Strongest Meaning Hypothesis, as the key concept for determining the
logical contributions of reciprocals. Based on this theory, we present a new and
simple method for computing reciprocal meaning by model generation.

6.1 Introduction

Research on the English reciprocal expressions each other and one another has
uncovered a variety of meaning contributions that a reciprocal can provide.
Consider the following sentences.

(6.1) The students like each other.

(6.2) The students gave each other measles.

(6.3) The students stare at each other in surprise.
(6.4) The students follow each other into the ballroom.

In each case, the reciprocal implicitly formulates truth conditions for the in-
terpretation of the relation that is expressed by the verb phrase. These truth
conditions are different for each example. For instance, we can accept (6.1) to
be true only if for each pair = and y of different students holds that z likes y.
An analogous interpretation would be invalid in the case of (6.2)—(6.4) where
not all pairs in the reciprocal group the students can consistently be in the
scope relation.

80 6 Reciprocity

Dalrymple et al. [85] argues that the variety of reciprocal meaning can be
reduced to six different classes of reciprocal semantics. The correct choice
amongst these classes is determined by a purely semantic principle, the
Strongest Meaning Hypothesis. In its most general form, this principle can
be stated as follows.

Strongest Meaning Hypothesis (SMH): The meaning of an ex-
pression S in a context I' is that meaning which corresponds to the in-
terpretation of the logically strongest semantic representation ¢ avail-
able for S that is consistent with I'.

The SMH as formulated here lies at the border of semantics construction and
natural-language interpretation. Each of the sentences (6.1)—(6.4) exemplifies
a separate class of reciprocal semantics and the truth conditions expressed in
the other examples are either too strong or too weak to cover the meaning
of the reciprocal. The SMH identifies that class of reciprocity as the correct
one whose contribution to the scope relation is the strongest one that still is
consistent with the information provided by the context.

It can be argued that the variation of meaning in reciprocal expressions
lies more in the way in which the scope relations can be interpreted over the
antecedent groups rather than in some variation of the semantics of reciprocal
expressions. We present a new theory of reciprocals where the SMH can be un-
derstood as a principle of interpretation alone. In our approach, we implement
the preference for certain interpretations as a form of minimal model reason-
ing. Our version of the SMH maximises the logical contribution of the recip-
rocal to the scope relation in the set of logical models of a discourse. We use
only one semantic representation for reciprocal expressions and model their
complex behaviour by a refinement of a well-known minimal model constraint
that has found some use for instance in diagnosis applications. As usual, we
will experimentally verify our theory with our model generator KIMBA.

6.2 Exploring the Meaning of Each Other

In the linguistic literature, the starting point for the semantic analysis of
reciprocals are often sentences such as

(6.5) Jon and Bill saw each other.

where two discourse participants are in a reciprocal relation expressed by the
verb phrase. Such sentences are particularly easy to analyse. The English
reciprocal expressions each other and one another are frequently represented
as diadic quantifiers over some first-order set called the antecedent group,
and a binary first-order relation called the scope relation. In what follows,
we will use the symbol Rcp for such reciprocal quantifiers. In higher-order
logics, example (6.5) is then represented as follows.

(6.6) Rop({jon,bill})(Ayrz saw(z,y))

6.2 Exploring the Meaning of Each Other 81

Here, {jon, bill} denotes the antecedent group, i.e., a first-order property that
holds exactly for jon and bill, namely Az (x = jon V x = bill).

When groups P, ofjust two members are considered, each group member
is required to stand in some scope relation R, ,, to the other member, where
R is provided by the verb phrase. This truth condition for reciprocals can
be formalised by definition (6.7)". The formalisation uses the set exclusion
operator ‘/ which is specified by the A-term in definition (6.8).

(6.7) Rcp = APAR EVERY(P)(Az EVERY(P/{z})(Ay R(z,y))
(6.8) /=APXQMz P(z) A-Q(z)

The minimal model (6.9) of the semantic representation (6.6) under the def-
inition (6.7) is as expected, and represents nicely the natural-language inter-
pretation of (6.5).

(6.9) {saw(bill, jon),saw(jon, bill)}

6.2.1 Reciprocals for Larger Groups

The application of the semantic representation (6.7) to larger antecedent
groups suggests for instance that

(6.10) House of Commons etiquette requires legislators to address only the
speaker of the House and refer to each other indirectly.

states that each legislator is required to refer to every other one indirectly. For
example (6.10), this is indeed the intended meaning. However, the research
on reciprocals has shown that the truth conditions implied by definition (6.7)
turn out to be the wrong ones for many cases where the antecedent group
has more than two members. Statement (6.11) from J.M. Barrie’s Peter Pan
exemplifies a meaning of the reciprocal where every member is claimed to
relate to at least one other group member, but not necessarily to relate to
every other one.
(6.11) “The captain!” said the pirates, staring at each other in sur-
prise.
It is impossible for the pirates to stare at each other such that each pirate
stares at every other pirate at the same time. The truth conditions for the
reciprocal that is implied by this example is obviously weaker than the one
that we have for our first example. In other words, the binary relation R whose
interpretation is partially determined by the semantics of the reciprocal can
be interpreted more freely. As the following sentences further illustrate, R
may instantiate a variety of relations.

(6.12) The blocks are stacked on top of each other.
(6.13) Five Boston pitchers sat alongside each other.
(6.14) Most people at the party are married to each other.

! An equivalent definition is given by Carpenter [76).

82 6 Reciprocity

Example (6.12) can be interpreted as true in contexts where the blocks men-
tioned are stacked in any way that is possible, including for instance a pyramid
or a tower of blocks. Sentence (6.12) can never have the literal meaning that
each block has the property of being stacked on top of each other one.

Sentence (6.13) describes a situation where five Boston pitchers sit on a
bench. Naturally, we expect the ones in the middle each to have just two other
pitchers sitting alongside, and the ones at the end to have just one pitcher on
their side. The possible relation R for the situation at hand is more constrained
than the previous one in that each pitcher must have another pitcher he sits
alongside to. In sentence (6.12), the lowest layer of blocks may not on top of
any other ones.

Finally, the reciprocal in (6.14) only means that we have a spouse for most
persons that are at the party. The binary relation R must be one that assigns
to each man in the group of most persons that is referred to a woman he is
married to, and vice versa. The relation R in question does not even relate all
married people with each other directly or indirectly.

6.2.2 Classifying Reciprocal Meaning

Dalrymple et al. [85] provides a classification system whose classes approx-
imate the various forms of reciprocal meaning. Based on the earlier works
of Langendoen [86], they propose six classes of reciprocal meaning: Strong
Reciprocity, Strong Alternative Reciprocity, Intermediate Reciprocity, One-
Way Weak Reciprocity, Intermediate Alternative Reciprocity, and Inclusive
Alternative Ordering. Every occurrence of a reciprocal expression falls under
one or several of these categories and each class can be given a precise se-
mantic representation in higher-order logic. In what follows, we describe the
aforementioned classes of reciprocal semantics and give their formalisations
in higher-order logic.

6.2.3 Strong Reciprocity

The strictest form of reciprocity, Strong Reciprocity (SR) refers to recip-
rocals where the relation R holds for each member x of the antecedent set P
and each other member y. As discussed above, the following statement (6.15)
is an example for SR.

(6.15) Legislators must refer to each other indirectly.

The truth condition for such a reciprocal is twofold. First, the reciprocal can
only be true in contexts where the antecedent set—in our case, the set of
legislators—has at least two members. Second, we have the aforementioned
condition on the binary relation R. In (6.15), R is the property of referring
indirectly, and its strong meaning is that R(z,y) holds for each legislator z
and each other legislator y. All this leads to the following formalisation for
reciprocity.

6.2 Exploring the Meaning of Each Other 83

(6.16) RcPgr =
APAR CARDZ?(P) A
EVERY(P)(Az EVERY(P/{z})(Ay R(=z,y))

The quantifier CARDZ?, je., CARDinality > 2, has a higher-order definition
(6.17) that makes use of standard first-order quantification and equality.

(6.17) CARDZ? = AP 3z Jy —(z = y) A P(z) A P(y)))

6.2.4 One-Way Weak Reciprocity

The example from Peter Pan exhibits a form of reciprocity where each member
of the antecedent set must be the subject of the relation R and be related with
at least one other member as the object. Strong Reciprocity does not hold.

(6.18) “The captain!” said the pirates, staring at each other in sur-
prise.

The form of reciprocity in example (6.18) is called One-Way Weak Reci-
procity (OWR). Its formalisation is as follows.

(6‘19) RCPOWR =
APAR CARDZ%(P) A
EVERY(P)(Ax SOME(P/{z})(Ay R(z,y))

One-Way Weak Reciprocity is a strictly weaker form than Strong Reciprocity,
i.e., One-Way Weak Reciprocity does hold in all cases where Strong Reci-
procity holds, but not necessarily vice versa. The weakening corresponds di-
rectly to the exchange of one of the second of the two universal determiners
EVERY in SR by the existential determiner SOME.

6.2.5 Inclusive Alternative Ordering

A further weakening of the reciprocity conditions occurs in examples such
as (6.20) where not every member of the antecedent set P must be a subject
of the relation R. Instead, it suffices that every member of P is at least the
object of the relation.

(6.20) He and scores of other inmates slept on foot-wide wooden planks
stacked atop each other—like sardines in a can—in garage-sized
holes in the ground.

A slight modification of the definition of RCPow g suffices to obtain the for-
malisation of Inclusive Alternative Ordering (IAO). IAO is the weakest
known form of reciprocity.

(6.21) RCPIAO =
APAR CARDZ?(P) A
EvVERY(P)(Az SOME(P/{z})(M\y R(z,y) V R(y,x))

84 6 Reciprocity

6.2.6 Intermediate Reciprocity

Dalrymple et al. [85] cite the following statement from the New York Times
for exemplifying a form of reciprocal meaning called Intermediate Reci-
procity (IR). The statement can be true despite the impossibility of each
group member sitting alongside.

(6.22) As the preposterous horde crowded around, waiting for the likes of
Evans and Mike Greenwell, five Boston pitchers sat alongside
each other: Lorry Andersen, Jeff Reardon, Jeff Gray, Dennis Lamp
and Tom Bolton.

Informally, IR states that the the relation R relates all members of P directly
or indirectly via a sequence of members of P. In other words, every two dif-
ferent elements z and y must be in the transitive closure of R with respect to
P. The IR form of reciprocity is modelled by the following definition.

(6.23) RCP]R =
APAR CARDZ%(P) A
EvERY(P)(Az EVERY(P/{z})(Ay TRANSCL(P)(R)(z,y)))

The formula TRANSCL(R)(P)(z,y) denotes that there is a sequence zg, . . ., 2z,
of elements of P such that zp = z, z, =y and R(z;, z;41) for all i < n.

6.2.7 Intermediate Alternative Reciprocity

Examples (6.24)> and (6.25) exhibit yet another variant of reciprocity whose
truth conditions are different from all other ones that we have investigates
so far.

(6.24) The students in Mrs. Smith’s class gave each other measles.

(6.25) Instead, countless stones—each weighting an average of 300 pounds—
are arranged on top of each other and are held in place by their
own mass and the force of flying buttresses against the walls.

The form of reciprocity here is called Intermediate Alternative Reci-
procity (IAR) and is characterised by a relation R that connects all members
of the antecedent set in the fashion of a strongly connected acyclic graph. It
suffices that each member z is related to every other member y via a chain
of R-relations where we ignore which way the pairs are connected. In the
situation described by sentence (6.25), we have a cathedral which is built of
stones arranged in a pattern like a brick wall. The relation we have here is not
symmetric, but every brick is part of single connected structure. Dalrymple
et al. claim that the sentence would be false in a context where the stones are
arranged in a multiplicity of piles.

The formalisation of IAR is a variant of Intermediate Reciprocity where
the concept of a transitive closure is weakened.

? It can be argued that this example illustrates IAO rather that TAR.

6.2 Exploring the Meaning of Each Other 85

(626) RCPIAR =
APAR CARDZ?(P) A
EVERY(P)(Az EVERY(P/{z})
(Ay TRANSCL(P)(Audv R(u,v) V R(v,u))(z,y)))

The formula TRANSCL(P)(Aulv R(u,v) V R(v,u)) denotes that there is a
sequence 2o, ..., 2, of elements of P such that zyp = z, 2, =y and R(z;, z:41)
or R(zi41,2) for all i < n.

6.2.8 Strong Alternative Reciprocity

Strong Alternative Reciprocity is a weakened form of Strong Reciprocity and
an exceptional class as there still are, as far as we know, no examples that
can univocally be identified with it. All known examples of SAR also meet
the truth conditions of SR. Hence, the SAR class owes its existence only to
the parameterisation and classification scheme of Dalrymple et al. that we
describe later in Section 6.2.9. SAR’s definition in higher-order logic is as
follows.
(6.27) RcpPgp =

APAR CARDZ?(P) A

EVERY(P)(Az EVERY(P/{z})(Ay R(z,y)V R(y,z))

6.2.9 Parameterisation

The differences between the various definitions of RCP can be parameterised.
This parameterisation was helpful to Dalrymple et al. to discover new forms
of reciprocity that have not previously been considered in the literature.

The first parameter of variation determines how the scope relation R
should cover the domain P. The examples we have seen each fall into the
following categories.

— each pair of different individuals in P may be required to participate in
the relation R directly (FUL).

— each pair of different individuals in P may be required to participate in
the relation R directly or indirectly (LIN).

~ each individuals in P may be required to participate in the relation R with
another one (TOT).

The second parameter concerns how FUL,LIN, and TOT operate on the recip-

rocal’s parameter R: whether the relation R that reciprocity requires between

individuals in the domain is actually the extension of the reciprocal’s scope,

or the extension where we ignore the direction in which the relation R holds

by adding inverse pairs R~1. By RV, we denote the parameter where we use

the extension R U R™! in this way.

6.2.10 The Landscape of Reciprocity

The following table shows how the two parameters determine the various se-
mantics of reciprocals. It presents the complete landscape of reciprocal mean-

86 6 Reciprocity

SR

N

SAR IR

OWR IAR

Sy g F

IAO

Fig. 6.1. The partial order on the logical contribution of reciprocals

ing expressible by the variations of the two parameters. The landscape defines
a partial order of the semantic contributions of the reciprocal meanings that
is shown in Figure 6.1.

FuL|LiN| ToT
[R][SR [IR [OWR
RV||SAR|IAR| IAO
The Strong Reciprocity (SR) form of reciprocity requires that each pair of
different individuals directly participates in the scope relation R. Interme-
diate Reciprocity (IR) and One-Way Weak reciprocity (OWR) weaken the
first parameter to LIN resp. TOT. SAR, i.e., Strong Alternative Reciprocity,
is the weakening of SR that uses the notion RY of directedness over the scope
relation. Intermediate Alternative Reciprocity (IAR) and Intermediate Alter-
native Ordering (IAO) are the corresponding weakenings of IR and OWR
resp. with regard to RV.

Of the forms of reciprocity mentioned so far, SAR, OWR and IAR have
been discovered by Dalrymple et al. and have not previously been considered
in the literature.

6.2.11 Parameterised Definitions

The parameterisation in the last section gives us an elegant and uniform way
to present the different formalisations for reciprocal quantification. The vari-
ations of the first parameter is given by the following sequence of definitions.

(6.28) FuL=
APAQ EVERY(P)(Az EVERY(P/{z})(Ay Q(z,y)))
(6.29) LiN=

APAQ EVERY(P)
(Az EVERY(P/{z})(Ay TRANSCL(Q)(P)(z,y)))

6.2 Exploring the Meaning of Each Other 87

(6.30) Tor =
APAQ EVERY(P)(Az SoME(P/{z})(\y Q(z,v)))

The first parameter of reciprocals is defined as a diadic quantifier over a first-
order set P and a binary first-order relation Q. Every definition shows how
each of the three types FUL, LIN, and TOT constrains the relation Q that holds
between pairs of elements = and y in P. In the case of FUL, each pair must
be directly in the relation Q, while LIN specifies that each pair of different
elements z and y to be in the transitive closure or Q with regard to P. Finally,
TOT states that every = must be in the relation R with some arbitrary y.

The second parameter of reciprocal meaning determines whether the argu-
ment Q in the definition of the first element is actually the relation R provided
by the verb phrase of the reciprocal, or the relation RY, i.e., the relation R
extended by its inverse R~!. We define an extension operator RELY on bi-
nary relations which allows us to use the extension R as part of higher-order
formalisations.

(6.31) RELY = AQMyAr Q(z,v) V Q(y, 1)

Every form of reciprocal semantics that Dalrymple et al. consider as valid can
now be given a compact higher-order definition as follows.

(6.32) RcPggr = APAR CARDZ%(P) AFUL(P)(R)

(6.33) RCPsar = APAR CaRDZ?(P) A FUL(P)(RELY(R))
(6.34) RcPrr = APAR CARDZ2(P) A LIN(P)(R)

(6.35) RCPr4r = APAR CARDZ?(P) A LIN(P)(RELY(R))
(6.36) RcPowr = APAR CarDZ%(P) A ToT(P)(R)
(6.37) RcPra0 = APAR CArRDZ*(P) A ToT(P)(RELY(R))

6.2.12 Interpreting Reciprocals

The interpretation of reciprocal expressions requires that we correctly iden-
tify the truth conditions that the reciprocal provides. As we have seen in the
previous sections, reciprocals contribute different meanings in different con-
texts. The parameterisation in Section 6.2.9 identifies six candidate meanings,
each of which will impose different constraints on the reciprocal’s relation R.
The actual selection amongst this set can be modelled by applying a certain
semantic principle.

6.2.13 The Strongest Meaning Hypothesis

Many expressions in natural language, for instance homonyms, may ambigu-
ously refer to different semantics where the choice of which one is actually

88 6 Reciprocity

meant relies with the speaker. As Dalrymple et al. argue, this is not the case
for reciprocals where the literal meaning is determined only by the context
in which the reciprocal is uttered. Hence, reciprocal meaning is independent
from the speaker. The device for identifying the correct reciprocal semantic is
a simple principle, the Strongest Meaning Hypothesis (SMH).

Strongest Meaning Hypothesis for Reciprocals: The semantic
representation of a reciprocal expression S in a context I' is that rep-
resentation ¢ whose logical contribution to the reciprocal relation is
the strongest consitent one with respect to I'.

In the case of reciprocals, the semantic representations that are available in
general are those which use any one of the six quantifiers SR, IR, OWR,
SAR, IAR, and IAO. The “strongest” contribution to the scope relation is
determined by the partial order shown in in Figure 6.1. Although this ordering
is only a partial one, there are very few linguistic examples where a reciprocal
can for instance be interpreted as both OWR and TAR, but not as IR. Likewise,
there is no example where both IR and SAR hold, but not SR, simply because
SAR never has been attested so far. For practical purposes, we have a total
order SR > SAR > IR > IAR > OWR > IAO on the logical contributions
of the reciprocal semantics.

It is easy to verify that most of the natural-language examples given earlier
obey the rule that the correct interpretation of the scope relation in a given
context is the logically strongest one possible. A weakening of the correct
scope relation leads to interpretations that are not acceptible to a hearer,
while a scope relation that comes from an overly strong reciprocal semantic
even leads to inconsistencies with the contextual knowledge.

6.2.14 A Counter-Example

The linguistic theory sometimes predicts a reciprocal semantic that is too
strong. The graphs in Figure 6.2 depict discourse situations for example (6.38)
with four snipers. The two graphs show two ways in which they could train
their rifles at each other.

(6.38) The snipers train their rifles at each other.

The example is problematic for the linguistic theory since the lefthand scope
relation is an instance of IR. In the figure, each member of the reciprocal group
is connected with each other one by a sequence of other group members.
If we would accept IR as the reciprocal semantics, then we would have to
discard the right-hand relation as a valid interpretation of the scope relation.
Example (6.38) is an instance of OWR that is mistaken as IR reciprocity by
the linguistic theory.

6.2.15 The SMH Does Not Compute (Yet)

There is, to our knowledge, no computational method that implements an
interpretation of reciprocal expressions and that makes use of the theoretical

6.3 Inference to Best Reciprocal Meaning 89

Fig. 6.2. IR or OWR?

insights from the linguistic theories. This is not really surprising, as reciprocals
seem to be one of the phenomena of natural language whose computational
treatment requires an excessive amount of technical machinery. The most basic
problem in this context is that the SMH can only select from a set of reciprocal
semantics if it is already known which ones are consistent with the context
and which ones are not. Apart from the fact that the problem is undecidable
in general, even common reciprocal expressions are very problematic from a
computational point of view. For instance, the semantics IR and IAR refer to
a computation of transitive closure relations that can be a challenging task
once the unverse of discourse becomes larger than a few elements.

Fortunately, the interpretation of reciprocals can be seen from a different
point of view where the SMH is understood as a constraint that strengthens
the scope relation itself rather than one that chooses the right semantic rep-
resentation for the reciprocal. As we will see, this alternative use of the SMH
leads to an acceptable computational method for interpreting reciprocals by
model generation.

6.3 Inference to Best Reciprocal Meaning

The goal of this section is to design a model generation method that can
interpret reciprocal expressions. Our approach is based on some insights from
the linguistic theory presented in the last section, namely that the reciprocal
meaning ranges from a very weak form of reciprocity (IAO) to the strongest
one (SR), and that the logical contribution of the reciprocal is determined by
the Strongest Meaning Hypothesis. In contrast to the theory of Dalrymple
et al., we understand the SMH as a principle of interpretation rather than
a principle of semantics construction. The following alternative form of the
SMH will be the basis of our computational treatment of reciprocals.

Maximise Meaning Hypothesis (MMH): The valid interpretations
of a reciprocal expression S in a context I' are those which (a) are
consistent both with the weakest form of reciprocal semantics and the
context, and (b) whose logical contributions to the scope relation are
the strongest.

90 6 Reciprocity

The MMH refers only to the weakest semantic representation for reciprocals,
namely IAO. The “strongest contribution” of reciprocal interpretations comes
from a maximisation of the content of the scope relation over the antecedent
set. We argue that this is a precise characterisation of the behavior of recip-
rocals. Consider again the following examples.

(6.39) The men like each other. (SR)
(6.40) The snipers train their rifles at each other. (OWR)

The two example sentences are compatible with the weakest form of reci-
procity, IAO, which only requires that the antecedent group P that partic-
ipates in the reciprocal expression has at least two members and that the
reciprocal relation R relates each member of the group P with at least one
other member. This is, however, not sufficient for a correct interpretation.

In both cases, we have a strengthening of the reciprocal’s semantic that
is precisely predicted by the MMH. In the SR example, this strenghtening
includes all available pairs {x,y) to the scope relation where z and y are two
different men. The reason for this strenghtening is that the liking relation
does not have truth conditions that further constrain how we interpret it on a
set of men. In contrast to this, the truth conditions for training a rifle in the
OWR example entail that no sniper z can be the subject of the scope relation
for more than one other sniper y. Hence, the strengthening here only makes
sure that that each x in P must be the subject of the scope relation R for
exactly one other y.

As we can see in these first examples, our understanding of a reciprocal
is that of a constituent whose semantic representation is unambiguous, but
whose actual range of valid interpretations is determined by some additional
constraint on the scope relation and the context. This implies that the truth
conditions of the scope relation determine the logical contribution of the re-
ciprocal rather than the other way around.

6.3.1 To Strong Meaning through Minimality

Based on a suitable semantic representation, we will later give the MMH an
implementation as a minimal model constraint. This might seem paradoxical
at first because the MMH implies a maximisation of logical contribution, i.e.,
assumptions in a model, rather than a minimisation. However, as we will see,
both tasks are actually equivalent.

Consider for instance three men a, b, and ¢ in some context I". One of the
locally minimal models for a semantic representation (6.41) of example (6.39)
with respect to I" is given by (6.42).

(6.41) man(a) A man(b) A man{c) A RCP;s0{man)(like)

(6.42) {man(a), man(b), man(c), like(a, b), like(b, c)}

6.3 Inference to Best Reciprocal Meaning 91

The MMH implies that the weak IAO form of reciprocity is the only semantic
representation of reciprocals. The model (6.42) satisfies the logical encoding
of reciprocity that we have chosen, but does not represent a meaning that is
predicted by the linguistic theory. However, we can turn model (6.42) into a
model that corresponds to a valid natural-language interpretation of the recip-
rocal sentence by adding new consistent assumptions. A completion of (6.42)
according to the MMH is given by (6.43).

(6.43) {man(a), man(b), man(c), like(a,b), like(b, c), like(a, c), like(b, a),
like(c,a)}

By adding the new atoms to the set of atoms that is validated by the model,
we have actually minimised those atoms that are not validated in (6.42). In
other words, we have minimised the complement set of the predicate like.
What we need is a form of minimality that can minimise the denotations of
certain predicates or their complements in the set of generated models.

6.3.2 Predicate Minimisation

Predicate-specific minimality, as presented shortly in Section 2.3.5, minimises
the occurrences of certain “costly” predicates. In applications of predicate-
specific minimality, a model is generally considered to be an explanation for
some kind of observation, and the predicates whose occurrences are to be min-
imised are those that are relevant for distinguishing good explanations from
those that are not plausible or may not be attractive for economic reasons.

For instance, an assumption of the form ab(d) in a diagnosis application
could be used to encode that the behaviour of the part d of a circuit is faulty.
The model of a suitable logical encoding of the circuit and an observed error
can then be taken as an explanation how the error is caused. The minimisation
of assumptions ab(d) in a model minimises the number of faulty parts that are
needed to explain the error in the circuit. By considering only models that are
ab-minimal, one implements the general principle of diagnosis that the cause
of an error lies more probably in the failure of one part of a device than in a
simultaneous failure of several parts.

Likewise, predicate-specific minimality can be used to optimise the move-
ment of a robot in a planning application where the movement of a robot from
a point z to a point y at a time ¢ corresponds to an assumption go(z,y,t).
Each model of the plan task encodes how the robot must move in order to
solve a certain task, and by minimising the go predicate, one could effectively
optimise the (costly) movements of the robot.

In the case of reciprocal expressions, the observation that we want to
explain is the truth of the reciprocal sentence, and the assumptions that we
want to minimise correspond to those pairs z and y in the reciprocal group
that are not in the scope relation. An explanation is best in the sense of
the MMH if it explains the truth of a reciprocal sentence while assuming a
maximum of pairs {z,y) in the scope relation. As indicated earlier, what we

92 6 Reciprocity

minimise here is actually the complement of some binary relation, but by
using a suitable logical encoding, we can reduce this problem completely to
predicate-specific minimal model generation.

6.3.3 A Logical Encoding of Less Is More

Let ab be an arbitrary but fixed predicate symbol of of type ¢ — ¢— 0. For
each MQL model M of a specification ¢, the ab-index, in short index, is the
number of atoms validated by M whose head is ab. The index of a model
refers to some number of ‘“costly” assumptions that the model implies. The
minimisation of the index predicate ab can implement the MMH if we can give
a suitable semantic representation that makes explicit the connection between
costly assumptions and pairs {z,y) that are not in the reciprocal relation,
As usual, we make use of our standard MQL logic presented in Sec-

tion 3.3.5. Our higher-order definition of reciprocal semantics has two parts.
The first part (6.44) defines the basic constraint on reciprocals that we know
from the linguistic theory, namely that each reciprocal must at least meet the
truth conditions of IAO reciprocity. We formalise IAO here exactly as we will
use it later for model generation.
(6.44) Iao =

APAR CARDZ%(P) A

EVERY(P)(Az 3y ~(z = y) A P(y) A (R(z,y) V R(y,2))

(6.45) CARDZ? = AP 323y P(z) A P(y) A—~(z =)

The definition is equivalent to the previously given definition of IAO reci-
procity in higher-order logic, except that we use Herbrand equality instead of
Leibniz equality. In MQL semantics, we consider two individual constants to
be different if they have different names, and Herbrand equality is a compu-
tationally very simple form of equality that implements this.

The second part (6.46) of reciprocal semantics formalises the connection
between the index of a model and those pairs of group members that are
not in the scope relation. Note that we exclude assumptions ab(z,x); group
members that are in the scope relation with themselves do not play any role
for the index of the model. The higher-order definition (6.47) combines the
two parts of the reciprocal’s representation.

(6.46) PRICE =
APAR EVERY(PY(Az —ab(z,z) A
Yy (P(y) A ~(z = y) A—R(z,9)) & ab(z,y))

(6.47) Rcp =
APAR 1a0(P)(R) A PRICE(P)(R)
6.3.4 A First Attempt at Computation

Definition (6.47) allows us to represent reciprocal sentences according to our
theory. Each model of the reciprocal sentence and the context will give us an

6.3 Inference to Best Reciprocal Meaning 93

essential information, the ab-index. The index of a model gives us a means to
compare models with respect to a relative satisfaction of the MMH. A model
M that has a smaller index than a model M’ is a better explanation for
the truth of the reciprocal sentence according to the MMH. All finite model
generation methods can be modified such that their output enumerates models
with decreasing index, simply by filtering out all models that have predecessors
with a smaller index.

In the case of a domain closure, i.e., whenever we focus only on models
that are domain minimal or otherwise restricted in the size of the universe, we
can even decide which models have the smallest index. In our model generator
KIMBA, three methods for the computation of such predicate-specific minimal
models are particularly easy to implement.

6.3.5 First Method: Minimality by Proof

The first method is to prove for each generated model that there is no other
model that has a smaller index. This method works similar to the computation
of locally minimal models as presented in Chapter 4, but requires even less
technical machinery. Suppose that ¢ is the logical specification, and M is a
generated model with fixed index n. If n is greater than O for M, we simply
start KIMBA again, but with a constraint on the interpretation of all ab-atoms
that their sum must always be less than n. This constraint is actually a finite-
domain integer constraint, which we can simply add to the other constraints
that KIMBA generates while translating the logical input into a system of
constraints. If KIMBA manages to generate a model M’ with an index m < n,
then the previously computed M is not ab-minimal, and we can discard it.

6.3.6 Second Method: Minimality by Bounded Search

The second method is to use branch-and-bound search. In this method, we
use the index of each generated model as an upper bound for the index of
all models that are generated later. In KIMBA, we can compute from each
partial interpretation Z a preliminary index that defines a lower bound of the
index of those models which are derived from Z. If this lower bound becomes
greater than the upper bound that we have obtained from the previously
computed models, then we know that a further exploration of the search space
will not give us better explanations. By discarding those parts of the search
space where we cannot expect to find better explanations, KIMBA efficiently
enumerates models with decreasing index. If the index of a model is minimal,
then all models that can be generated from that point on will also be ab-
minimal.

6.3.7 Third Method: A Two-Stage Combination

The third method is a a two-stage variation of the second one. In the first
stage of the computation, one uses a branch-and-bound search where each
computed model carries an index that is truly smaller than the upper bound

94 6 Reciprocity

given by the previously computed models. That is, for each index n, we will
compute only one representative model, and all later models must have an
index m < n. This branch-and-bound constraint restricts the search space
more quickly in general than that of the second method, and we will quickly
compute a model M whose index is some minimal index u. Then, in a second
stage, we restart the model search again with the second method, but this
time we restrict the search from the start to models whose index is u. This
restriction will produce only ab-minimal models.

While all three methods for computing ab-minimal models are equally
simple to implement, the second method is more efficient in many cases than
the first because the search for the abductive explanations is implemented as
a simple constraint that can effectively decrease the search space. The third
then is more efficient than the second because it enumerates only the ab-
minimal models in a much smaller search space that is already constrained by
the most minimal index.

6.3.8 An Example

In order to illustrate the effect that the implementation of the MMH has, let
us reconsider the example (6.48).

(6.48) The snipers train their rifles at each other.

As we know already, this is an example of the OWR form of reciprocity. We
now interpret (6.48) in a simple discourse situation where we have a group of
three snipers. The formalisation is as follows.

(6.49) sniper(peter) A sniper(paul) A sniper(mary)
(6.50) No(sniper)(Az CARDZZ(Ay train(z,y)))
(6.51) RcP(sniper)(train)

Formula (6.49) formalises that there are three snipers, namely Peter, Paul, and
Mary. Formula (6.50) expresses the world knowledge that no sniper trains
his or her rifle at more than one other individual. Finally, formula (6.51)
represents the reciprocal sentence.

We first apply our model generator KIMBA to the formalisation without
using any model minimality constraints. A typical model generated by KIMBA
is the following.

(6.52) {ab(mary, paul), ab(paul, peter), ab(peter, mary),

ab(peter, paul), sniper(mary), sniper(paul),

sniper(peter), train(mary, peter), train(paul, mary)}
Figure 6.3 shows the search space of the example. Each diamond represents
a model, while each circle is a branch point in the search. The search space
has 25 such branch points, and leads to 26 different models. These solutions
correspond to the different interpretations that one obtains by the IAO form
of reciprocity.

6.3 Inference to Best Reciprocal Meaning 95

Fig. 6.3. The snipers example without any minimality constraint

Fig. 6.4. The snipers example with branch-and-bound search

Fig. 6.5. The snipers example with MMH minimality

In Figure 6.4, we have the same example, but this time we have used the
branch-and-bound search of KIMBA for eliminating parts of the search space
where we know that no ab-minimal models can be expected. There are now
fifteen branch points in the search space, and sixteen models. Of these, the
last eight are ab -minimal, and each minimal model contains exactly three ab-
atoms. The eight minimal models correspond to the eight possible ways in
which three snipers can train their weapons at each other.

Finally, in Figure 6.5, we have used the two-stage minimal model compu-
tation where those parts of the search space are discarded that lead to models
whose index is higher than three. There are now only those models left that
are ab-minimal. The red squares indicate a failure in the search where a lo-
cally computed index becomes too high. Below are the eight different scope
relations that are found in the models.

96 6 Reciprocity

(6.53
(6.54

) {train(mary, peter), train(paul, peter), train(peter, mary)}
)
(6.55) {train(mary, peter), train(paul, mary), train(peter, mary)}
)
)

{train(mary, peter), train(paul, peter), train(peter, paul) }

(6.56
(6.57
(6.58) {train(mary, paul), train(paul, peter), train(peter, paul)}

{train(mary, peter), train(paul, mary), train(peter, paul)}

{train(mary, paul), train(paul, peter), train(peter, mary)}

(6.59) {train(mary, paul), train(paul, mary), train(peter, mary)}
(6.60) {train(mary, paul), train(paul, mary), train(peter, paul) }

We have mentioned in Section 6.2.9 that the logical contribution of the recipro-
cal in our example sentence is not identified correctly by the linguistic theory.
The scope relation for a larger group that is implied by the classification sys-
tem is IR, because some of the interpretations meet the truth conditions of
IR reciprocity. As we can see above, this does not pose a problem for our ap-
proach, as it distinguishes interpretations only by the number of assumptions
they provide to the scope relation. Hence, the relation (6.57), an instance of
IR reciprocity, occurs as well as a relation like (6.60), that is an example of
OWR, in the set of our valid interpretations.

6.3.9 Conservative Minimality

The minimisation of a certain predicate ab so far seems to be an adequate
form of minimality that identifies those models whose content each describes
a valid logical contribution of the reciprocal. However, as discussed in some
detail in Chapter 5, we have also argued for the use of local minimality for
obtaining a correspondence of logical models and some valid natural-language
interpretations. This form of minimality must be considered as well in the
interpretation of reciprocal expressions, for instance in the following sentence.

(6.61) Peter, Paul, and Mary like each other.

The liking relation implies SR reciprocity, and in this form of reciprocity, all
members of the reciprocal group are in the reciprocal relation. SR reciprocals
therefore have only one possible scope relation once the reciprocal group is
determined. KIMBA’s method for computing the ab-minimal models yields
model (6.63) as one of the interpretations of the logical encoding (6.62), as
required. Unfortunately, we also have the models (6.64)—(6.69).

(6.62) Rcp({peter, paul, mary})(like)

(6.63) {like(mary, paul), like(mary, peter), like(paul, mary),
like(paul, peter), like(peter, mary), like(peter, paul) }

(6.64) {like(mary, paul), like(mary, peter), like(paul, mary),
like(paul, peter), like(peter, mary), like(peter, paul),
like(mary, mary)}

6.3 Inference to Best Reciprocal Meaning 97

(6.65) {like(mary, paul), like(mary, peter), like(paul, mary),
like(paul, peter), like(peter, mary), like(peter, paul), like(paul, paul)}

(6.66) {like(mary, paul), like(mary, peter), like(paul, mary),
like(paul, peter), like(peter, mary), like(peter, paul), like(peter, peter)}

(6.67) {like(mary, paul), like(mary, peter), like(paul, mary),
like(paul, peter), like(peter, mary), like(peter, paul),
like(mary, mary), like(paul, paul)}

(6.68) {like(mary, paul), like(mary, peter), like(paul, mary),
like(paul, peter), like(peter, mary), like(peter, paul),
like(paul, paul), like(mary, mary)}

(6.69) {like(mary, paul), like(mary, peter), like(paul, mary),
like(paul, peter), like(peter, mary), like(peter, paul),
like(peter, peter), like(paul, paul)}

(6.70) {like(mary, paul), like(mary, peter), like(paul, mary),
like(paul, peter), like(peter, mary), like(peter, paul),
like(peter, peter), like(paul, paul), like(mary, mary)}

The last seven models are ab-minimal, but they contain information that is not
implied by the natural-language sentence. This is because the model generator
is free to assume a fact like like (mary, mary) unless it is not inconsistent. The
unwanted assumptions are easy to identify because they do not occur in any
locally minimal model of the input.

On the other hand, the model (6.63) that we want to obtain as an inter-
pretation of the natural-language input is itself not a locally minimal model of
our semantic representation. It contains assumptions that are unnecessary for
validating the truth of the input with respect to local minimality. Our theory
of reciprocal meaning explicitely requires the presence of such non-minimal
assumptions.

In order to identify models for reciprocal sentences that correspond to
natural-language interpretations, we arguably must identify those ab -minimal
models that are locally minimal relative to all other ab-minimal models. In
our example, the first model is locally minimal relative to all other predicate-
minimal models, and hence is the only one that should be accepted. What we
have in mind is a new form of minimality that we define formally as follows.

Conservative Minimality: Ler ¢ be a set of satisfiable MQL for-
mulas. Then there exists a nonempty set of models D whose domain
D, of first-order individuals has a minimal size. Let C be the set of
those models in D that are ab-minimal. A model M € C' is conserva-
tive minimal iff Pos(M') C Pos(M) implies M' = M for all models
M eC.

Conservative minimality is the desired combination of local minimality and
ab-minimisation. We have chosen the term “conservative” because this form

98 6 Reciprocity

of minimality is a conservative extension of local minimality. If D does not
contain models with ab-atoms, then all conservative models are also locally
minimal models. The new form of minimality is compatible for instance with
our earlier approaches for computing the interpretations of singular definite
descriptions.

But how exactly can we compute such models? This can be done by a
variation of the standard search for locally minimal models. The models that
we want to obtain are domain minimal models that (a) are predicate-specific
minimal and (b) that are subset-minimal with respect to all other predicate-
specific minimal models. The constraint (a) is met by identifying the predicate-
specific models M of the input that have some smallest possible domain D,.
For (b), we use the same technique as for locally minimal models and prove
for each model M that there is no other model M’ that satisfies the input
with a true subset of the assumptions in M and that is also predicate-specific
minimal. Hence, a predicate-specific minimal model is compared only to other
predicate-specific minimal models. A modification of KIMBA’s minimal model
search is straightforward and has been caried out for the following examples.

6.4 Experiments

In what follows, we will investigate how our approach computes the logi-
cal contributions of the reciprocal in the context for some selected examples
from the literature. As we will see, a correct analysis of reciprocals sometimes
requires a surprisingly complex specification of the properties of the scope
relation.

6.4.1 Pitchers and Pearls

IR hold for scope relations R where each group member z is related to each
other group member y by a sequence of members ¢y,..., ¢, such that z = ¢;,
Y = cp, and R(c;,cip1) for all i < n. Some linguistic examples for IR are
discourses such as (6.1) or (6.2) where the scope relation is equivalent to a
linear or circular ordering of individuals.

(6.71) The Boston pitchers sit alongside each other.

(6.72) The pearls in the necklace are separated from each other by semi-
precious jewels.

The truth conditions that IR formulates on its own are quite different from
those that can hold in discourse (6.71) and (6.72). In Figure 6.6, we have
four graphical representations of IR scope relations, each with four discourse
participants. Only the first, leftmost one would be acceptable as a relation
for (6.71) in a discourse situation with four Boston pitchers. The situation
implied by sentence (6.71) requires a relation that is symmetric. The relations
2 and 3 do not meet this requirement. Relation 4 depicts a situation where one
group member is related to three other ones, which conflicts with the world
knowledge that a person cannot sit alongside more than two persons.

6.4 Experiments 99

og/\bo\/o\;) [‘

Fig. 6.6. IR relations

6.4.2 The Boston Pitchers

A correct interpretation of example (6.71) requires a suitable analysis of the
sitting alongside relation. The properties of this relation can be captured by
relating it to a position, i.e., a total ordering of individuals. In our case, this
position could denote the position of the pitcher on the bench on which they
sit. A formalisation of a sitting alongside relation sital must then express the
following properties.

— For each two individuals x and y, if sital(z,y) holds, then z is either in a
predecessor or a successor position of y.

— At each possible position we have at most one individual z.

— An individual cannot be at two different positions.

— For each position i, if some z is in a position ¢ for a given relation, then
there are exactly ¢ individuals whose position p is smaller or equal to :.

The complete specification must also define concepts such as a successor re-
lation and some total order on positions, but otherwise is straightforward.
Section A.2 gives a logical encoding that can be taken as the input for our
model generator KIMBA, and evaluates the results for a discourse situation
with four Boston pitchers.

6.4.3 Pearls

In example (6.73), the logical specification of the properties of the scope re-
lation is much easier than in the “Pitcher” example.

(6.73) The pearls in the necklace are separated from each other by semi-
precious jewels.

If we assume that we have a simple, round necklace, then it suffices to specify
that no pearl can be separated by semi-precious levels from more than two
other pearls, and that the relation itself is symmetric. There also are far
fewer models than in the case of the pitchers—we have three models in a
“necklace” with four pearls. All of them are instances of the relation depicted
in Figure 6.7.

What is interesting here is that the interpretation of the relation provided
by the verb phrase is heavily influenced by properties implied by the reciprocal
group. The “pearls in the necklace” arguably imply a circular relation that is
not part of the truth conditions of the scope relation on its own.

100 6 Reciprocity

Fig. 6.7. The IR relation for pearls in a necklace

6.4.4 Measles

The linguistic theory describes TAR scope relations as relations where each
group member is related directly or indirectly via the reciprocal relation with-
out considering the direction of the relation.

(6.74) The students gave each other measles.

The formalisation of IAR in Higher-Order Logics relies on a specification that
uses the transitive closure relation of the scope relation. In our approach,
it suffices to specify the characteristic properties of the scope relation for a
discourse situation. For this, we again use a position relation that describes
the distance of some person that has measles to the one who was a source of
the measle infection in the discourse situation. The properties of the giving
measles relation are then as follows.

— No one can be given measles by more than one other person.

— If someone has measles, then there must be at least one person that is the
source of the measles, i.e., whose position is 1.

— If some person x gives measles to a second person y, then xz’s position is
the successor of the position of y.

— If some person z gives measles to a second person y, then both persons
have measles.

Our specification of what giving measles means is quite different from what
IAR formulates as the truth conditions of the scope relation. Indeed, it is
easy to show that IAR insufficiently describes the reciprocal relation in (6.74).
Figure 6.8 shows a selection of IAR relations over a group of four elements
that all would not be acceptable as instances of the giving measles relation
while those relations in Figure 6.9 are.

The model generator KIMBA generates 64 different conservative minimal
models for the “Measle” example with four discourse participants. These mod-
els all are instances of the relations depicted in Figure 6.9. While relations 1
and 2 each have 24 instances, i.e., permutations, the relation 3 has twelve,
and relation 4 only four instances.

6.4 Experiments 101

P 9 AP Al

Fig. 6.8. IAR relations that are not compatible with measles

A P
Q/OO):D 0 QJ\O \Oo

Fig. 6.9. IAR relations that are compatible with measles

6.4.5 Marriages
Example (6.74) exemplifies the OWR form of reciprocity.

(6.75) The people in the room all are married to each other.

A formalisation of the relation expressed by the verb phrase includes the
following facts.

— If some person z is married to some person y, then ¥ is also married to z.
— No one can be married to more than one other person.

In a discourse situation with four discourse participants, we have three models
that all are an instance of the relation depicted in Figure 6.10.

Fig. 6.10. The OWR relation for being married with each other

Interestingly, if we add a fifth person to the discourse, then the model
generation problem becomes unsatisfiable for this universe of discourse. The
model generator solves this problem by accommodating a new individual who
becomes the spouse of the “odd” person.

102 6 Reciprocity
6.5 Loose Ends

There are some cases where the strong meaning predicted by the SMH as well
as the MMH seems to be too strong. Consider the following example from
Philip [87] that has also been discussed in detail in Winter [88].

(6.76) The three boys tickle each other.

Although it can happen that a boy tickles two objects at the same time, the
natural interpretation of (6.76) is one where each boy tickles only one other
boy. As Winter notes, this potential counter-example of meaning maximisa-
tion might come from some gap in our world-knowledge about the predicate
to tickle. There seems to be a default assumption that one tickles only one
other object in a situation. However, this “uniqueness” assumption can be
overridden, i.e., is not a hard constraint on the interpretation of to tickle.

Winter also mentions a counter-example for the SMH where the truth
conditions are actually too weak. This example is as follows.

(6.77) Mary and Sue gave birth to each other. (*)

In (6.77), both SMH and MMH predicts semantics/interpretations where ei-
ther Mary gave birth to Sue or Sue gave birth to Mary. This is not the in-
tended meaning of the clearly inconsistent statement. There seems to be a
lower bound for the weakening of logical contribution at least in the case of
the “giving birth” relation. It can be argued that sentence (6.77) implies a
discourse anomaly as one of Grice’s maxims on conversation states that a
contribution should not give redundant information. The weakening of the
reciprocal’s contribution leads to such a redundancy, as the contribution of
the reciprocal becomes nil.

6.6 How We Can Understand Each Other

The approach of Dalrymple et al. [85] to reciprocal meaning exemplifies a
formal, theoretic solution that tries to classify ambiguity in meaning by some
collection of semantic representations and a non-computational method that
models how the correct reading is selected. In theory, the method is not com-
putational because the criteria that must be verified for making a selection
are undecidable.

In contrast to this, the approach by model generation strengthens the
logical contribution of the weak semantic representation as a process based
on computational constraints. Once any model can be computed at all for
our logical form, the process of interpretation is an inference problem that
is guaranteed to terminate. The algorithm may fail for complexity reasons,
but in principle it should be able to give at least one linguistically acceptable
interpretation if the reciprocal’s logical form is satisfiable with respect to its
context and a restriction to finite domains.

6.6 How We Can Understand Each Other 103

Empirically, the predictions are the same in most cases because maximising
the scope relation often results in yielding a logically stronger meaning on the
entailment scale. In particular, the present approach captures the meanings
postulated by Dalrymple et al. But the examples also show that there are cases
where the predictions differ. Intuition dictates that the sentence the snipers
train their rifles at each other has a natural OWR interpretation, but the
classification scheme incorrectly gives us IR as the strongest meaning. Model
generation, however, not only gives us the correct interpretations, it is also
linguistically more appealing as it needs only one semantic representation. The
model generator is the only computational tool that we need for determining
preferable readings from this single representation.

One crucial feature of minimal model generation is that it permits compar-
ing and ranking of natural-language interpretations against each other. In the
case of reciprocals, the ranking is given mainly by the size of the scope rela-
tion. We have already found other useful ranking criteria as well. For instance,
Chapter 5 shows that in the case of definite descriptions, the ranking defined
by local minimality permits capturing the preference of binding over bridg-
ing over accommodation. Similarly the work of Baumgartner and Kiihn [67],
which we will discuss in Section 7.2, shows that a predicate minimisation to-
gether with a preference for logically consequent resolutions can be used to
model the preferences in the interpretation of pronominal anaphora.

This suggests that one of the most promising application of model gen-
erators is as a device for developing and testing preference systems for the
interpretation of natural language. Inference and knowledge based reasoning
are needed in natural-language processing not only to check for consistency
and informativity as illustrated for instance in Blackburn et al. [89], but also
to express preferences between possible interpretations. For this, model gen-
eration seems to be a natural tool to use.

This page intentionally left blank

7

Abduction

Overview: Abduction is inference to the best explanation. It is widely recognised
as a form of inference that can conceptualise the problem of interpreting dis-
courses. Model generation as we have used it is a form of abduction. We discuss
the relation between our approach to abduction to others that have been applied
to linguistics.

7.1 What Is Abduction?

The term “abduction” was first used by Pierce [90] who defined it as follows.

The surprising fact, C, is observed; but if A were true, C would be a
matter of course. Hence, there is reason to suspect that A is true.

In other words, abduction originally refers to an unsound inference rule that
concludes A from the facts C and A = C. Abduction in this sense is inference
to some arbitrary explanation A for C. Without some further restrictions, ab-
ductive inference would have few applications, as there usually are too many
explanations that can be obtained from some rules which have C as their con-
sequence. The actual method of inference is in general only secondary to what
could be called the overgeneration problem of abduction. The usefulness
of an explanation depends on additional application-dependent constraints of
suitable explanations. The term abduction, as it is commonly used today,
refers to all forms of inference that yield “best”, i.e. suitable, explanations for
observed facts in some way.

Since Hobbs et al. presented their inspiring work, abduction is widely
recognised as a form of inference that can conceptualise the problem of in-
terpreting discourses. In this context, the best explanations sought for are
sets of assumptions that explain the truth of a speaker’s utterances in a way
that is compatible with contextual information and the common ground of
knowledge shared by speaker and hearer.

106 7 Abduction

Model generation becomes a form of abduction whenever some models
with desirable properties are identified as best solutions for a problem. Thus,
in previous chapters, we have used model generation as a form of abduction
where the best explanations are minimal models. For the interpretation of
singular definite descriptions, we have argued for local minimality as that
desirable property that characterises best explanations. In the case of recip-
rocal expressions, we have proposed conservative minimality which combines
the minimal model constraints of logical minimality, domain minimality, and
predicate-specific minimality.

The principal goal of this chapter is to discuss how minimal model gen-
eration fits exactly into the larger picture of abduction in natural-language
processing, and how our approach compares to other work that uses inference
in natural-language semantics.

7.1.1 A Formal Definition of Abduction

Let ¢ be a logical formula called observation, I" be a set of formulas called
context or background theory, and ¥ be a set of formulas called allowable
hypothesis. An abductive explanation is a set A of assumptions such that
the following holds [67].

- ACVY
- TudkEé¢
- I'U A is satisfiable

The term abduction refers to all forms of inference that generate best ab-
ductive explanations from specifications I', ¢, and ¥. The definition of an
abductive explanation that has been given above is a general one that fits dif-
ferent forms of abduction without exactly capturing the characteristic prop-
erties that distinguish best abductive explanations from those explanations
that are not considered suitable for the intended application.

For instance, in diagnosis applications, the allowable hypothesis ¥ is a
set of assumptions that describes the cause a failure in some complex device
described by I', and ¢ is a specification of an observable faulty behavior. An
abductive explanation A is then a set that exlains why I" shows that behavior.
A characteristic property of abductive explanations in diagnosis applications
is a minimisation of A such that the failure of the device is explained by a
minimal number of faulty device parts.

In our approach of semantic interpretation as minimal model generation,
the formula ¢ consists of some semantic representation for a sentence, and
I' is the logical specification of a discourse model and the necessary world
knowledge. The set of allowable hypothesis ¥ is the set of all atoms that can
be built from a suitable signature. The set A of assumptions is a set of atoms
that defines a model of I' U {¢}. We have characterised best explanations
as minimal models whose forms of minimality have been found suitable as
constraints of valid natural-language interpretations.

7.2 Models for Anaphora Resolution 107

There is some other work that has investigated how different forms of
abduction can be used for conceptualising the interpretation of discourses.
Baumgartner and Kiihn [67] presents an abductive solution to anaphora reso-
lution in a model generation framework. Their approach uses predicate-specific
minimality. In Hobbs et al. [91], we find weighted abduction, a variation
of logic programming. A best explanation is an explanation where the set A
of assumptions is minimal with respect to a numerical cost obtained from 4
itself and from the computation process that leads to A. Weighted abduc-
tion has been used for the interpretation of anaphora, compound nominals,
syntactic ambiguities and metonomies.

In what follows, we will compare the results of this work with what can be
achieved by the form of minimal model generation that we have developed.

7.2 Models for Anaphora Resolution

Baumgartner and Kiihn [67] proposes model generation as a method for com-
puting the resolution of anaphoric expressions. More specifically, they ad-
dress the problem of establishing the links between pronominal and definite
anaphora to their referents.

The model generation calculus that is used to attack the problem is based
on hyper-tableaux as presented in Section 2.4.4. While a considerable part
of the authors’ efforts go into the design of a hyper-tableaux method that
incrementally computes best abductive explanations, the logical encoding and
the abductive inference method is more general and can be used as well for
other model generation approaches. In the following, we exemplify abductive
anaphoric resolution as proposed by Baumgartner and Kiihn.

7.2.1 Chasing the Criminal

Example (7.1) outlines the general problem of abductive anaphoric resolution.
We have a definite description the criminal that has two possible referents,
namely a politician and a gangster. Both referents are introduced by the
antecedent sentence. It is not inconsistent per se to assume that a politician is
a criminal, but we know that each gangster is a criminal. Hence, the reading
where the criminal refers to the gangster in the context is preferred. The
resolution of the anaphoric definite obviously is an abductive inference task:
we have two linguistically consistent' interpretations, of which only one is the
best, i.e., preferred one.

(7.1) A politician chased a gangster. The criminal died.

! Note that is a consequence of the weak logical encoding. The representation (7.4)
does not formalise unicity which we have identified as one of the essential truth
conditions of many definites in Chapter 5.

108 7 Abduction

For example (7.1), we use a logical encoding that formalises the information
given in the first sentence by the first-order formula (7.2), the world knowledge
by formula (7.3), and the sentence with the definite by formula (7.4).

(7.2) pol(p) A gan(g) A chase(p, g)
(7.3) Vz gan(z) = crim(z)
(7.4) Iz crim(x) A anaph,(z) A die(z)

The predicate anaph; is used to indicate in the model which discourse par-
ticipant has been used for resolving the anaphor expressed by the definite
description.

pol(p)
gan(p)
chase(p, g)
crim(g)
etm®) | ats)
D) | anaphy (9

Fig. 7.1. Model construction for discourse (7.1)

The first-order Herbrand models of the formulas (7.2)—(7.4) are given by
the tableaux in Figure 7.1. There are two branches, each containing the atoms
that define an interpretation. While both branches are consistent and therefore
are models of the input, only the second one corresponds to the preferred
reading.

Baumgartner and Kiihn investigate how resolutions can be eliminated that
do not correspond to preferred interpretations. The anaphor resolution per-
formed in the first branch leads to the assumption that the politician is a
criminal. This is not a logically consequence of the information given by the
discourse. In the second model, we have that the gangster is a criminal, a
fact which logically follows from the world knowledge. This difference can be
used to characterise the preference for the second model as a reading of the
discourse.

7.2.2 Explaining Resolutions

Baumgartner and Kiihn argue that the semantic content of the anaphoric
expression should be implied by the context, and not only be consistent. For
our example, the semantic content of the definite the criminal is given by
formula (7.5).

(7.5) 3z crim(z) A anaph, (z)

If we take (7.5) as an observation that must be explained, then we can instan-
tiate the abduction scheme for our example as follows.

7.2 Models for Anaphora Resolution 109

(7.6) I = {pol(p), gan(p), chase(p, g), Yz gan(z) = crim(z)}
(7.7) ¢ = 3z anaph;(x) A crim(x)

(7.8) ¥ = {anaph,(p),anaph,(g)}
There are three candidate explanations.
(7.9) A1 ={}

(7.10) Ag = {anaph;(p)}

(7.11) Ag = {anaph,(g)}

(7.12) Ay = {anaph, (p), anaph, (9)}

The abductive explanation (7.9) can be eliminated because it does not satisfy
the condition that I" U A; = ¢. Explanation (7.12) is eliminated by linguistic
knowledge. It does not give a unique resolution of the anaphoric definite.
Explanation (7.10) is not acceptable as well because it does not satisfy I" U
Ay |= ¢. The observation ¢ becomes a logical consequence of I" U Ag only if
we add the additional assumption crim(p) which, however, is not part of the
background theory I'. Only (7.11) remains as a valid abductive explanation
for the truth of observation ¢.

Baumgartner and Kiihn give an extension of the standard hyper-tableaux
calculus that maintains a minimal model property such that each open branch
is a anaph;-minimal model of the input. Additionally, it can be verified at any
time whether the semantic information of an anaphoric expression is implied
by the background information. Thus, it can be tested whether a model pro-
vided by the tableaux meets the conditions of a best abductive explanation.
This ensure that each model computed corresponds to a valid natural-language
interpretation of the input. As their analysis of anaphors is based on closed,
finite domains, Baumgartner and Kiihn intuitively define an interesting new
form of minimality for propositional logics that combines predicate minimisa-
tion and logical conditions on the consequence relation of models and input
theories.

7.2.3 Discussion

The ambiguity that natural language shows on various levels leads to a combi-
natorial explosion when computing the candidate interpretions of discourses.
In this context, a tableaux approach for model generation in general has the
advantage that it can be space efficient. A tableaux expansion may restrict the
search space to only one model candidate at a time. If an interpretation given
by a tableaux branch is discarded by ading new information, then backtrack-
ing can be used to compute a new consistent reading in a different branch.
Additionally, a tableaux can be built such that already computed knowledge
does not have to be recomputed completely when new data is added. Thus,
model generation by tableaux, as proposed by Baumgartner and Kiihn, offers
both a solution to the combinatorial explosion of alternative readings and
incrementality, the ability to deal with new discourse information.

110 7 Abduction

7.2.4 Incremental Inference instead of Generate-and-Test

Baumgartner and Kiihn identify those resolutions as preferable that explain
the semantic content of the anaphoric expression by logical consequence from
the context. Their approach works well for instance for singular pronouns as
in example (7.13).

(7.13) Peter loves Mary. Hey sends hery letters every day.

Pronouns provide almost no semantical information of their own. The obser-
vations that must be explained in (7.13) are the simple formulas below.

(7.14) dz male(x) A anaph,(z)
(7.15) 3z female(z) A anaphy(z)

The background information includes the information that Peter is male and
Mary is female. It is then no problem to identify the resolution of the pronouns
with the best and only explanation A = {anaph, (peter), anaph,(mary)}. The
method of how explanations are computed preserves one of the main advan-
tage of the tableaux framework, namely that the computation of a model
remains local with respect to the currently expanded branch. This is espe-
cially useful in cases where we have ambiguities.

(7.18) Peter knows Mary’s cousin. He; is married to hery sister.

Here, we have one best explanation where the first pronoun refers to Peter and
the second pronoun refers to Mary. This leads to the preferred reading where
Peter is married to Mary’s sister. Two alternative readings remain accessible
in the tableau, one where Peter is married to the sister of Mary’s cousin, and
one where Mary’s cousin is married to Mary’s sister. These two readings are
not investigated further since the semantic content of the pronouns is not im-
plied by the background knowledge. Hence, a further tableaux expansion can
provisionally concentrate on one branch that contains the preferred reading.
However, a sentence like (7.17) may later close the current branch by adding
inconsistent background knowledge. The method then must backtrack and
chose a new interpretation of the discourse from the available open branches.
This new branch is then expanded up to the point where it is either closed or
saturated.

(7.17) Peter is now forty, and he still is a single.

While the example appears to be trivial, it should be made clear that even
many contemporary approaches to anaphora resolution use inference only for
verifying that a provisional coreference of a pronoun to its referent is consistent
with the context. The approach by Baumgartner and Kiihn actually computes
the resolutions of anaphoric expressions, and it does so in an incremental way
that is more efficient than a generate-and-test approach which must in the end
consider all possible mappings of pronouns to referents. The approach makes

7.2 Models for Anaphora Resolution 111

use of the ability of tableaux to deal with incremental information, which could
be a serious advantage in comparison to those methods that must recompute
all inferences when a discourse is extended.

7.2.5 An Alternative by Conservative Minimality

The linguistic theory behind abductive anaphora resolution considers prefer-
able readings as abductive explanations for the semantic content of the
anaphoric expression. This theory can be implemented by other forms of model
generation as well, for instance by conservative minimality. The intuitive idea
is to minimise the logical contribution that each anaphora provides to the
model of the discourse.

In the case of discourse (7.17), we can use the formulas (7.19)—(7.21) as
a logical specification that approximates its meaning. Further, we add the
formula (7.22) that adds a ab-assumption for each discourse participant that
meets the semantic content of the definite description the criminal.

(7.18) A politician chased a gangster. The criminal died.

(7.19) pol(p) A gan(g) A chase(p, g)

(7.20) Vz gan(z) = crim(z)

(7.21) Fz crim(z) A die(z)

(7.22) Vz crim(z) = ab(x)

There are two locally minimal models for the formulas (7.19)—(7.22).
(7.23) Mj = {pol(p), gan(g), chase(p, g), crim(g), die(g), ab(g)}

(7.24) My =
{pol(p), gan(g), chase(p, g), crim(g), crim(p), die(p), ab(g), ab(p) }

Only the first model M, is a conservatively minimal model that has a mini-
mum ab-cost. Our encoding implies a penalty for each individual that has the
property of being a criminal. Hence, a model where the definite is resolved
with a discourse participant that already meets the properties described by
the definite itself has necessarily a lower ab-cost than one where the properties
for the referent must be accommodated. Intuitively, the definite description is
resolved with that individual that “fits better” in the given discourse situation.
This concept of a preferred resolution is analogous to that in the tableaux ap-
proach, only that it is implemented by a minimisation of ab-costs rather than
additional inference steps in the model computation. The presence of anaph,-
predicates in the encoding is not necessary any more because the minimisation
of anaphoric links is already implemented by the ab-minimisation.

We make use of these insights and propose a new universal determiner
THE as an alternative to that known from Chapter 5. Instead of unicity, i.e., a
strict constraint on the truth conditions of a definite, we now imply abductive
resolution by ab-predicate minimisation. The definition in our MQL logic is
as follows.

112 7 Abduction
(7.25) THE = APAQ (3zP(z) A Q(z)) AVx P(z) = ab(x)

The sentence The criminal died then has the representation THE(crim)(die),
and conservative minimality ensures that we identify the correct preferred
reading in the set of models.

Baumgartner and Kiihn consider pronominal anaphora to be a special case
of definite anaphora. The determiner THE can in this sense be used to rep-
resent pronouns as well. The first argument of THE contains the semantic
contribution of the anaphor. This semantic contribution is the gender gender
information in the case of pronouns. Thus, we can have the logical represen-
tations (7.27)—(7.29) for the discourse (7.26). Formula (7.29) is the semantic
representation of He sends her letters every day..

(7.26) Peter loves Mary. He, sends hery letters every day.
(7.27) love(peter, mary)

(7.28) No(male)(female) A male(peter) A female(mary)
(7.29) THE(male)(Ax THE(female)(\y sendlet(z,y))

The conservatively minimal model of the input contains the assumption
sendLet(peter,mary), which corresponds to the correct resolution of the pro-
nouns as required.

The alternative approach of abductive resolution by conservative mini-
mality does not correspond exactly to the hyper-tableaux approach. Baum-
gartner and Kiihn concentrate on anaphora. They do not consider definite
descriptions where an accommodation of new discourse participants is neces-
sary. We have discussed examples such as (7.30) in detail in Chapter 5. The
tableaux approach is based on a domain closure assumption, i.e., all infer-
ences are restricted to a given universe of discourse that is defined by the
first-order constants in the current branch. While new linguistic data may
add new discourse participants, the abductive inferences that establish the
links between anaphora (or definites) and their referents will not. In contrast
to this, the minimal model approach allows accommodation as needed for in-
stance in (7.30), but on the other hand will not indicate a discourse anomaly
when a pronoun does not have a referent such as in example (7.31).

(7.30) Jon’s rabbit is cute.
(7.31) She hates my house. (*)

It is no technical problem to add a domain closure assumption to a model
generator, either by a logical encoding or a simple modification in the search
for models. However, if such a domain closure is used, an example like (7.29)
cannot be treated correctly any more.

7.3 Weighted Abduction 113
7.3 Weighted Abduction

Hobbs et al. [91] considers the interpretation of natural-language texts as a
process that yields one preferable explanation of why a text is true. This
process is modelled by weighted abduction, a form of abductive inference
that is based on abductive logic programming.

7.3.1 Logic Programming and Abduction

Logic Programming refers to forms of computation where the programs and
the input that define a particular computation are given as logical statements,
and the process of executing a computation is made explicit by inference. The
relation between logic and algorithms is summed up by Robert Kowalski’s
equation

Algorithm = Logic+Control

Logic programming systems can be characterised as theorem provers where
the way in which proofs are computed is controlled by some fixed control
strategy that can be used by a programmer for defining algorithms. The logical
language used usually is less expressive than first-order predicate logic, but
may be extended by non-logical commands that control the inference process
and the input-output of a computation. The best-known example of a logic
programming language is Prolog whose logical part is restricted to first-order
Horn clauses.

A query to a logic programming system is some formula ¢ that is refuted
with respect to a database I" which consists of logically encoded knowledge.
An answer to a query is some instantiation o of free variables in ¢ such that
o(—¢) is inconsistent with respect to I”.

Abductive logic programming systems are logic programming systems
where facts that are needed for a proof be assumed as hypothesis instead
of being proved. Abductive logic programming systems answer queries ¢ not
only by returning an instantiation, but also by some set of additional hypoth-
esis A. The relation between the query ¢, the background knowledge I" and
the assumptions A meet the formal definition of abductive explanations given
in Section 7.1.

Weighted Abduction computes a set of assumptions that explains the
truth of a semantic representation as a “best” answer of a query to an ab-
ductive logic programming system. In weighted abduction, the literals in the
query and in the clauses in the database carry numerical values called weights
which determine a system of preference for which facts can be taken as allow-
able hypothesis. Weighted abduction is a method of abductive inference that
is closely related to Prolog-style logic programming. That is, the query and
the database are restricted to first-order Horn logic and answers are computed
by the usual backward-chaining of a Prolog system. The Horn clauses in the
database themselves carry numerical values which determine inference costs
for deriving information when using them.

114 7 Abduction

7.3.2 Abductive Explanations

Before we investigate the intuition behind weighted abduction, we first give a
simple example for a set of explanations that can be computed by abductive
logic programming.

Let (7.2) be the logical form of sentence (7.1) that we want to interpret
in a context (7.3) where we have some car a and some red object b, and the
world knowledge that every car is a vehicle.

(7.32) The vehicle is red.
(7.33) ¢ = vehicle(z) A red(x)
(7.34) I' ={car(a), red(b),Vz car(z) = vehicle(x)}

Let us further assume that the set of allowable hypothesis is the set of atoms
that can be built from all predicates in ¢ and I" and the individuals in back-
ground theory I'. Thus, the set of allowable hypothesis is given in (7.35). The
answers (7.36)—(7.43) each give some abductive explanation why ¢ could be
a logical consequence of I', and at the same time instantiate the query ¢.

(7.35) ¥ = {red(a), red(b), car(a), car(b), vehicle(a), vehicle(b)}
(7.36) Ay = {vehicle(a), red(a)}

(7.37) Ay = {vehicle(b), red(b)}

(7.38) Az = {vehicle(a), red(a), car(a)}

(7.39) Ay = {vehicle(a), red(a), car(b)}

(7.40) Ay = {vehicle(b), red(b), car(a)}

(7.41) Ag = {vehicle(b), red(b), car(b)}

(7.42) A, = {vehicle(a), red(a), car(b), vehicle(b)}

(7.43) Ag = {vehicle(b), red(b), car(b), vehicle(a)}

For our purpose of natural-language interpretation, there are too many expla-
nations. The situation is very similar to model generation where the number
of models for a semantic representation is in general much higher than the set
of valid natural-language interpretations. However, some explanations can be
eliminated immediately as they use redundant assumptions—these explana-
tions correspond to the models that are not minimal in model generation.

In many cases, redundant assumptions will never be considered as hy-
pothesis by an abductive logic programming system. A fact can only become
a candidate hypothesis if it either is used directly for refuting a literal of
the query or can be reached by some chain of rule applications as a literal
that must be refuted. For instance, Ag will actually never be generated by

7.3 Weighted Abduction 115

a Prolog-style abductive logic programming system, as there is no sequence
of backward-chaining applications of rules in I" such that all assumptions Ag
can be reached. Only the explanations A;-A4 may actually occur as answers.

For natural-language interpretation, we must find a way to eliminate all
explanations that are not linguistically valid. For this, there are at least three
approaches available.

The first method is to use a more appropriate logical encoding. The definite
description in our example is actually modelled by an implicitly existentially
quantified formula that does not include the uniqueness condition of singu-
lar definites. In a richer logical encoding that models unicity, such as the one
discussed in Chapter 5, no explanations except As and A7 model the observa-
tion. Hence, all other explanations violate one of the conditions for abductive
explanations.

A second approach to the problem is that by Baumgartner and Kiihn that
we have discussed in Section 7.2. Here, that explanation for the resolution of
an anaphor is preferred that can be explained by logical consequence from
the context. In our example, the definite the vehicle triggers an additional
inference process that prefers the logically consequent link of the definite the
vehicle to the car a instead of the accommodated link to the red object b.
The link is a logical consequence of an information given by the context I,
namely that every car is a vehicle.

The third method is to encode the linguistic knowledge implicitly into a
system of preferences for abductive explanations. We have implemented this
idea for model generation in Section 7.2.5 where the ab-index of each minimal
model is used to characterise best explanations. In weighted abduction, this
system of preference is implemented by the weights and costs of the logical
encoding.

7.3.3 Weights and Costs

The linguistic information that we must implicitly encode in our example is
as follows. First, as Hobbs et al. argue, the determiner ‘the’ indicates an en-
tity that is “the most salient, mutually identifiable entity of that description”.
In other words, the part of the query that represents this entity should be
difficult to assume, and rather be shown as some logical consequence of the
contextual knowledge. We can encode this implicitly by giving this part of the
query high assumption costs, say 100. Then, the cost of that part the query
that does not depend on the definite description must be lower, say 20. We
consider each fact in the background knowledge to be easily accessible, and
give it a minimum cost of 1. The rule that formalises that each car is a vehicle
must have some low weight, as it is a rule that encodes easily accessible world
knowledge. We choose a weight of 5. If something is a vehicle, we may assume
with some low probability that it also is a car. For this form of abductive in-
ference, we assign an assumption cost of 70; it is less than the cost for assuming

116 7 Abduction

that some arbitrary object is a car, but still high. We write costs and weight
as superscript values, and our query and the background knowledge is now
as follows.

(7.44) ¢ = vehicle*®(z) A red®®(z)
(7.45) I = {car'(a), red" (b),Yz car(z)7® =5 vehicle(zx)}

In order to answer the query ¢, the weighted abduction system will refute
the negation of ¢ using the background knowledge I'. If an atom cannot be
proven, it is taken as a hypothesis where its assumption cost goes into the
overall costs of the proof. If a rule is used to derive new atoms that must
be proven, then the rule’s weight goes into the cost of the whole proof. For
our example, the following explanations can be computed by abductive logic
programming proof attempts.

(7.46) A, = {vehicle'®(a), red®®(a)}
(7.47) A = {vehicle'®(b), red' (b)}

(7.48) Az = {vehicle®(b), car’®(b), red" (a)}
(7.49) A4 = {vehicle®(a), car*(a), red®(a)}

Solution A; simply takes vehicle(a) and red(a) as two hypothesis that obvi-
ously are abductive explanations of the query. However, the assumptions costs
are 100 + 20 = 120, which makes this explanation the most expensive that
can be computed by weighted abduction. Solution A, is slightly cheaper (101)
since it only assumes vehicle(b) and then uses the easily accessible knowledge
that b is red. Then, Az includes some abductive inference where vehicle(b)
is “proven” by the assumption that b is a car. The derivation cost is 5, as
our rule has a weight of 5, and the assumption cost for car(b) is 70. Again,
we make use of the fact that b is red. Hence, the cost of the answer Agz is
5+ 70 + 1 = 76. The best solution, however, is A4 which derives that a is a
red vehicle by proving that it is a vehicle at a very low cost of 6, and assuming
that a is red with cost 20. The overall cost of 26 is the lowest possible for our
example.

Our example illustrates the intuition behind weighted abduction as a
method that uses numerical annotations in the logical specification to con-
trol the search for a best abductive explanation. By branch-and-bound-search,
such a best explanation can often be determined quickly. Weighted abduction
implements abductive inference in natural-language interpretation in a way
that suppresses some effects of the combinatorial explosion caused by the large
number of abductive explanations. However, as Hobbs et al. state themselves,
the actual numerical values are ad hoc, and the high amount of interaction
during computation it very difficult to engineer some universal and reliable
system of annotations. There is, at present, no linguistic theory behind weights
and costs. Nevertheless, weighted abduction has been used with some success
in the TACITUS natural language system on a range of examples.

7.3 Weighted Abduction 117

7.3.4 Applications

Hobbs et al. [91] gives a variety of applications for (weighted) abductive in-
ference in natural-language interpretation. In the following, we will shortly
present some of these applications.

7.3.5 Definite Reference

Weighted abduction can deal with different kinds of definite reference such
as we have discussed in some detail in Chapter 5. Weighted abduction im-
plements the empirically testified preference of anaphoric resolution over ac-
commodation by high assumption costs of definite descriptions in the query.
Examples of bridging, such as (7.50), are dealt with in a similar way as in our
analysis. The existence of the referent for the definite the engine is proven by
using2 arule (7.51) that has some low inference cost. In other words, from the
existence of a car we can follow with low inference costs that there also is an
engine that belongs to the car. This engine is used for proving the existence
of the engine in sentence (7.50).

(7.50) Ibought a new car last week. The engine is already giving me trouble.
(7.51) Vz car(z) = 3y engine(y) A ofz,y)

Note that the logical form here is actually not Horn. Formula (7.51) must be
translated into a Horn clause that approximates the semantics of (7.51) and
that is acceptable by the abductive logic programming system. This may for
instance require a special predicate that implements negation as failure.

Weighted abduction can correctly model examples such as (7.52) where
the definite description is actually a determinative definite noun phrase that
includes all information needed for its resolution. In examples such as this,
there is no way to prove the existence of the definite referent from the context.
Hence, the abductive explanation that simply assumes the existence of Jon’s
rabbit should be the cheapest one possible.

(7.52) Jon’s rabbit is cute.

Weighted abduction gives a clear preference for only one single solution, as
there is not really some tractable way of determining “second best” solutions.

In both weighted abduction and minimal model generation, sentences such
as (7.53) are a problem because there is an ambiguity that cannot be resolved
by the usual heuristics. Does the old man refer to Konrad himself or maybe
his supervisor? Domain-minimal model generation prefers the reading where
Konrad is the old man, while weighted abduction may chose some arbitrary
reading depending on how the weights and costs are chosen.

(7.53) Konrad’s PhD is terrible. The old man should really read it again.

% Here, as in the following examples, we assume that suitable values for weights and
costs have been chosen, and leave them out for having a simpler presentation.

118 7 Abduction

7.3.6 Composite Noun Phrases

Weighted abduction has been used in the analysis of complex noun phrases
that are composed of given and new information. An example for such noun
phrases is given in (7.54) in the form of the definite the Boston office.

(7.54) The Boston office called.

Ignoring the problem we must somehow expand the metonymy to “[Some
person at] the Boston office called”, the primary interpretative problem in
sentence (7.55) is to determine the implicit relation between the person that
called and the office, and the relation between Boston and the office. The
approach proposed by Hobbs et al. treats the sentence roughly’ as a for-
mula (7.55).

(7.55) 3z3y call(x) A person(z) A rel(z,y) A office(y) A nn(y, boston)

The relation rel is a placeholder for a relation that holds between an individ-
val and a location, while nn stands for some relation that holds between a
location and another one. The logical encoding informally states that some
person called who somehow is related to some office that somehow is related
to Boston. By giving rel(z,y) and nn(y, boston) high assumption costs, we en-
force an explanation that uses some instances for relations that are derivable
from the background knowledge. The following are examples for rules in the
database that may be used for such a derivation.

(7.56) VzVy in(z,y) = nn(z,y)
(7.57) VaVy works-for(z,y) = rel(z,y)

Suppose that we have given the additional information in the database that
01 is an office in Boston and that a person jon works for office 01. Then (7.58)
can be taken as an explanation for (7.55) where call(jon) is the only new
information that must be assumed. The explanation corresponds to a natural-
language interpretation of sentence (7.55), namely that jon is the person who
called and works for the office o; in Boston.

(7.58) A = {call(jon), person(jon), rel(jon, 0,), office(o,),
nn(o1, boston), works-for(jon, 01), in(01, boston)}

Examples such as (7.54) illustrate how some missing information in the se-
mantic representation of a sentence can be filled in by abductive reasoning.
Based on a similar logical encoding, the KIMBA model generator is able to re-
produce the analysis of the example without using any heuristic control other
than the world knowledge that persons are neither cities nor offices. Local
minimality suffices here to identify the correct interpretation.

The weights and costs in weighted abduction are often used in a way that
simulates the effects of local minimality. In our example, weighted abduction
makes sure that a maximum of information that is easily accessible in the

3 Again, we ignore temporal issues.

7.3 Weighted Abduction 119

database is used, while call(jon) remains the only true assumption. In model
generation, we do not distinguish assumptions and provable facts, but the
characteristic properties of a minimal model make sure that information which
can be derived as a logical consequence of the context are preferred. The
effect of the two approaches to abductive interpretation often is the same: the
implementation of conversational conventions as computable constraints.

A difficulty with the abductive approach in general is that there may be
many rules such as (7.56) and (7.57) that give possible instantiations for the
placeholder relations. While weights may control which instances are chosen,
it is not entirely clear how any system of weights can guarantee that the se-
lection is correct. Likewise, model generation will produce a variety of models
where we cannot decide which ones truly represent preferable interpretations.
This is especially true when contextual information is missing in the back-
ground knowledge. Model generation seems to be somewhat more sensible to
missing knowledge than weighted abduction which only makes assumptions
that can be reached by some backward-chaining interpretation of the rules in
the database.

7.3.7 Resolving Ambiguity

Common-sense reasoning helps listeners to associate words with the correct
concepts. A typical example of word-level lexical ambiguities is given by ex-
ample (7.59).

(7.59) The plane tazied to the terminal.

The interpretative process must identify which semantic concepts are behind
such words as “plane”, “taxied”, and “terminal”, all of which carry more
than one meaning. We can express a classification of concepts as rules in
the database. The following rules give some background knowledge to the
ambiguous words.

(7.60) Vzx airport-terminal(xz) = terminal(x)

(7.61) Vz computer-terminal(z) = terminal(x)

(7.62) VzVy ride-cab(z,y) A person(z) = taxi(z,y)

(7.63) Yz move-on-ground(z) A airplane(z) = Jy taxi(z,y)
(7.64) Vz wood-smoother(xz) = plane(x)

(7.65) Vz airplane(z) = plane(z)

Terminal is a hyponym of both airport-terminal and computer-terminal, as
stated by the rules (7.60) and (7.61). Taxiing may refer to the process of a per-
son riding a cab, or an air-plane moving on the ground, as stated by rules (7.62)
and (7.63). Finally, the word “plane” may refer to a wood-smoother or an air-
plane.

120 7 Abduction

The task of weighted abduction in the example is to compute an answer for
the query (7.66) that somehow makes explicit that the sentence (7.59) refers
to an air-plane moving on the ground to an airport terminal. An essential
hint that we give to the system is rule (7.67) which expresses the common
knowledge that whenever we have an airport, we also have an air-plane and
an airport-terminal.

(7.66) JxIy plane(z) A taxi(z,y) A terminal(y)
(7.67) Vz airport(z) = 3xJy plane(z) A airport-terminal(y)

The analysis intuitively derives a minimal explanation (7.68) as follows. First,
if plane(z) in the query is explained by airplane(c;), then the fact airplane(x)
that is part of one of the rule (7.63) for taxi(z,y) has already been as-
sumed. Hence, the interpretation that uses this rule is cheaper than that where
taxi(z,y) requires more assumptions with respect to a person and some cab.
If we further explain terminal(y) by airport-terminal(cs), we can reduce the as-
sumption costs of airport-terminal(cy) and airplane(c;) by using the rule (7.67)
that assumes an airport c3. The cost of assuming a fact in weighted abduc-
tion is computed on the basis of the cheapest way to derive it as a candidate
hypothesis. Any additional uses of an assumption in the computation of an
explanation are free. As a result, the reuse of assumptions is preferred.

(7.68) A = {plane(cy), taxi(c1, ca), terminal(cy), airplane(cy),
airport-terminal(cz), airport(cs) }

In model generation, we have no device analogous to the derivation costs in
weighted abduction. In our example, the reuse of information makes the expla-
nation (7.68) cheaper than other ones, even though it requires an assumption
airport(cz) which is not required in other explanations. In comparison, the
preference for a certain model is entirely determined by the atoms that con-
stitute its representation. When we use minimal model generation on a similar
logical encoding, the preferred interpretation that is computed is some model
that corresponds to an explanation (7.69). The model uses less individuals as
it does not require an airport. The correct interpretation is computed only
if we leave out the “hint” that is necessary in weighted abduction. Domain
minimality actually prevents us from identifying the most intended interpre-
tation.

(7.69) A = {plane(cy), taxi(c1, c2), terminal(cz), airplane(cy),
computer-terminal(ca) }

7.3.8 Discussion

Apart from the applications presented in Section 7.3.4, weighted abduction
has been put to work on such different phenomena as discourse structure,
metonymy, redundancy, and various combinations of pragmatic problems. The

7.3 Weighted Abduction 121

examples that have been investigated are real-world texts from equipment fail-
ure reports, naval operation reports, and newspaper articles on terrorist ac-
tivities. For a more thorough presentation of the method and its applications,
we refer to Hobbs et al. [91].

In the previous chapters, we have presented model generation as a rea-
soning method that can be seen as a competitor of weighted abduction as a
computational tool for text interpretation. Before we discuss the differences
of the methods, we would like to point out that apart from technicalities, the
approaches themselves are very similar.

7.3.9 Similarities

First, weighted abduction and minimal model generation conceptualise text
interpretation as a task that computes an explanation for truth. The intuition
behind this can be taken as a universal approach to natural-language under-
standing. Even questions or statements with a high pragmatic content can
be captured in principle by interpretation as abduction, since interpretation
in general explains the truth of a speaker’s intentions, emotions, and believes
as well as the plain truth of an utterance. Given a suitable logical theory
of intentions, emotions, and believes, abductive reasoning explains pragmatic
phenomena as well as semantic ones—if we can solve the representational and
complexity problems that are inevitable when reasoning about pragmatics.
By generating abductive explanations of why a text has a conversationally
sensible rhetoric structure, weighted abduction can even be used for discourse
structure construction as well as for interpretation. There are few reasons to
suspect that minimal model generation may not be useful as well for such
inference tasks.

Second, the computation of truth is based on well-known methods in au-
tomated reasoning. Minimal model generation and weighted abduction are
basically classical first-order inference methods whose purpose is the compu-
tation of best explanations. The use of standard tools, or rather of standard
tools that have been tweaked to fit a special purpose, leads to a semantic
representation language that often can only approximate the meaning of the
natural-language input in the sense of a truth-conditional natural-language
semantics. However, this disadvantage is paid for by the actual ability to in-
vestigate the phenomenon of inference by experimentation.

Third, both model generation and weighted abduction face the same prin-
cipal problem of abductive inference, namely the combinatorial explosion of
explanations for an observation. As natural-language semantics is still dom-
inated by the topic of representation, the criteria that distinguish a valid
natural-language interpretation and the methods how these can be determined
remain almost entirely unknown. Inference as abduction gives a practical tool
for investigating these criteria, either in the form of a model generator or an
abductive logic programming system.

122 7 Abduction

7.3.10 Differences and Comparison

Apart from some minor technical details, the main difference of interpretation
as weighted abduction to interpretation as model generation is the way in
which the two approaches deal with the overgeneration problem of abductive
explanations.

In weighted abduction, the main filter mechanism for unwanted explana-
tion is actually the method with which answers for queries are computed.
Given a query A and a database I’ = {B = A, B,C = D}, the abductive
logic programming system will try to refute —A either by assuming A as a
hypothesis or by using the rule B = A and the fact B by backward-chaining.
The literals C and D cannot be reached at all with query A, and thus will
never be part of an answer. In this sense, abductive logic programming is
goal-oriented, as it only uses assumptions if they contribute something to the
goal of explaining the query. Rules that do not contribute to the computa-
tion of an answer will never be executed. This can result in a considerable
advantage in tractability as the knowledge base grows larger. However, the
downside of the general approach is that without further technical machinery,
there is no guarantee that the answers which are computed meet the formal
conditions of abductive explanations. That is, abductive logic programming
as implemented in weighted abduction sometimes gives sets of assumptions A
which are not consistent with the database I" of background knowledge.

In principle, it should be possible to augment weighted abduction with
some proof method for finite satisfiability. However, as weighted abduction
does not efficiently enumerate explanations, it seems to be a considerable
technical problem to combine weighted abduction and a consistency check
such that the resulting method still works in practice. The conversational
maxim of consistency is not guaranteed by the current implementation. This
has some serious disadvantage for natural-language interpretation: as long as
consistency is not maintained by the proof procedure, there may be cases
where a better logical encoding actually leads to inconsistent “explanations”.
There is little point in further developing truth-conditional theories in compu-
tational semantics if a better logical modelling negatively interacts with the
inference process!

In model generation, there is no goal-orientedness or flow of control in
principle. Model generation by itself has no operational filter mechanism that
eliminates irrelevant literals such as C and D in our example. The answer to
this problem is some form of minimality which prefers models that can explain
the same observations with some subset of assumptions. The price that we
have to pay for maintaining the formal properties of abductive explanations
is a complexity problem. There seems to be no way to prevent a rule from in-
teracting with the computation process once it is provided with the database,
not even if it seems to be irrelevant for the task at hand. Furthermore, the
computation of minimal models is considerably harder than that of simply
proving satisfiability.

7.3 Weighted Abduction 123

The weights in weighted abduction are a method for controlling the search
for explanations. These weights can define a fine grained system of preferences
that includes the plausibility of certain assumptions as well as some measure
for the difficulty of inferring certain knowledge. However, weights currently
have no theory that determines how they must be selected. As we have shown,
our computational treatment of linguistic phenomena by minimal model con-
straints can be firmly based on contemporary linguistic theories.

This page intentionally left blank

8

Implementation

Keep It Simple!
(Charles H. Moore)

Overview: This chapter describes the finite model generator KiMBA.

8.1 Introduction

Natural-language interpretation needs model generation methods that selec-
tively enumerate the models of semantic representations. Finite model gen-
eration based on constraint solving provides such enumeration capabilities in
an easily accessible way.

The finite model generator KIMBA' is based on the MQL specification
language presented in Section 3.3 and its translation into constraints presented
in Section 3.4. KIMBA implements an efficient enumeration procedure for finite
models and can also enumerate models with certain minimal model properties.

The specification language MQL itself does not have an efficiently com-
putable clause normal form, but KIMBA can avoid normalisation thanks to
the properties of the translation. The basic two-valued logic MQL described
in Section 3.3.5 can be generalised in the implementation to a collection of
logics with finitely many truth values. The user may redefine the semantics
of logical connectives and thus design her own logics.

In the following, I start by sketching the general system architecture of
KIMBA in Section 8.2. Then I discuss both the syntax of the specification
language in Section 8.3, and, in Section 8.4, the way how semantics is assigned
to it in the form of logic definition structures and propagator procedures.
Finally, I outline the control mechanism of the search for models and the
variety of proof procedures that are part of KIMBA in Section 8.5 and give
some results about KIMBA’s performance in Section 8.6.

! The original Kimba, the Jungle Emperor, is a small white lion from a Japanese
cartoon series in the 1970s. KIMBA is the small brother of LEO [92].

126 8 Implementation

8.2 System Architecture

The system architecture of KIMBA is depicted in figure 8.1. A logical input
is first translated into a combinatorial constraint problem over finite-domain
integer variables. This translation relates to one certain frame of constants
that is determined by the problem itself and a current universe of first-order
individuals. Together with a control strategy that describes how and which
models are to be generated, the combinatorial problem is handed to the con-
straint solver.

Constraint Solver

——
- -

E Y

Fig. 8.1. KIMBA’s system architecture at a glance

The actual constraint solving process consists of two separate processes
that are called iteratively. The first process is propagation which restricts the
possible values of the finite-domain variables using the knowledge encoded in
the constraints. Changing the value of a variable often imposes new constraints
to the values of other variables as well, and propagation is applied until the
set of constraints is stable, i.e., no further constraints can be derived and
added. The second process, distribution, selects variables and restricts their
values provisionally. The selection of the variable(s) and the actual form of
their restriction is done heuristically. After a distribution step, constraints will
propagate again, and so forth.

The iterative process of propagation and distribution continues until all
variables are uniquely determined or a failure occurs. A model in KIMBA
is represented internally as a list for the set of atoms that has been build
from the constant frame that defines the range of quantification during model

8.3 The Syntax 127

construction. The table’s entries are pairs of atoms and finite-domain integer
variables whose values each represent the truth value of the associated atom.
Each change of a value in this table results in a different interpretation. By
distributing over the variables’ values, the constraint solver systematically
enumerates all finite models with regard to the constant frame from which
the set of atoms is derived.

A failure, i.e., an assignment that leads to an unsatisfiable set of con-
straints, evokes backtracking, and the value of the variable that lead to the
failure is constrained differently. The control strategy may both add con-
straints to the constraint problem itself, or start some additional inference
process for each solution that is produced by the constraint solver. For in-
stance, the constraint solver may produce some model for which the control
strategy then proves whether it is a locally minimal model.

The constraint solving module of the finite model generator can be seen
as independent from the logic and the problem specification considered. Once
a suitable translation from the logical language into a constraint language is
given, solving a model generation problem reduces to the application of any
constraint solver that can deal with the constraint language in question. In
KIMBA, the constraint solver used is provided by Oz [69], the constraint logic
programming language in which KIMBA is implemented.

The main part of KIMBA is actually the translation from the input into a
constraint language for finite-domain integer variables. The other parts of the
system consist mainly of the implementation of the basic data structures and
operations such as 8-reduction. KIMBA has been implemented in the spirit
of as exemplified by the leanT?P tableaux prover [39]. The philosophy of
lean deduction is it to have automated reasoning systems that are as small as
possible. Lean automated reasoning aims at providing simple systems suitable
for research and education rather than high-speed systems where efficiency is
bought by complexity in the implementation. The whole KIMBA system is only
about 30kBytes of Oz code, including a minimalistic graphical user interface
for loading problems, controlling the parameters of the search, and visualising
the results.

8.3 The Syntax

The syntax of KIMBA is derived from the MQL variant of Church’s simply
typed A-calculus presented in Section 3.3.

8.3.1 Logical Constants

Figure 8.2 shows the basic set of logical connectives and quantifier constants.
Other quantifiers, connectives and determiners can be defined as A-terms in
the problem specification, or permanently added to the system in the logical
definition structures (see Section 8.4). The Herbrand equality =’ from MQL
is denoted simply by the equality sign =.

128 8 Implementation

- not v forall
% or = exists
A and EVERY|every
= |implies SOME |[some
< |equiv MORE [more

Fig. 8.2. Standard Connectives and Quantifiers

|Quantifier| Example Truth condition

atLeast |[atleast man 5]||man| > 5
atMost [atMost man 5] ||man| <5
exactly |[exactly man 5]||man| =5

Fig. 8.3. Cardinality Quantifiers

Apart from the standard quantifier constants, KIMBA provides a set of
cardinality quantifiers that can be used to constrain the cardinality of sets.
The set of available cardinality quantifiers together with some examples of
their use is given in Figure 8.3.

8.3.2 Formulas

Formulas in KIMBA follow the syntax of MQL. Hence, the only terms allowed
in a Bn-normalised formula are parameter constants or bound variables. Ap-
plications of the form h(z1,...,z,) are written as [h z; ...z,]. Likewise,a
quantified MQL formula Q(T)(U) is written as [Q T U].

A A-abstraction Az, p(z) is written as lam (x#i [px]). The bound variable
of an abstraction must be given an explicit type, such as in this case by x#i.

We have basic types ‘i’ for individuals, ‘o’ for truth values, and the

type ‘n’ for numbers. Numbers are used in general only for cardinality con-
straints. Higher-order types are written in a backward fashion such that the
goal type of a function is always the first type. For instance, a KIMBA type
[o [oi]l [0 1 o]] denotesthe MQL type (0—o0—0)— (t—0)— 0. KIMBA
can up to some extend deal with polymorphic types, for instance in higher-
order definitions of predicate constants whose arguments are polymorphic. A
basic type ‘x’ is reserved for denoting polymorphic types a.

Fig. 8.4 shows some formulas and some of their possible translations into
KIMBA’S specification language. The redundancy in having a set of standard
quantifiers as well as a set of linguistically motivated generalised determiners
gives us some freedom in using whatever logical form we think is more elegant
or appropriate. For instance, formula 5 is a formula in standard first-order
notation whose semantics is equivalent to that of formula 6 which uses a gen-
eralised determiner in a more compact representation. Note that the order of
arguments of n-ary predicates in KIMBA is different from the order of argu-
ments in MQL, for no especially good reason except for compatibility to some
older first-order versions of the program.

8.3 The Syntax 129

[F]MEL Formula [KimMBa]
1 [[EVERY(man)(Az, eat(z) A sl(x))[[every man lam(x#i [and [eat xz] [sl x]])]
2 ||No(l(jon))(Az, I(jon, x)) [no lam(x#i [1 x jonl) lam(x#i [1 jom x])]
3 ||[No(Azx, I(jon, z))(I(jon)) [no [1 jon] lam(x#i [1 x jom])]

4 [|[More(Ax, —man(z))(man) [more lam(x#i [mot [man x]]) man]

5 ||¥Vz, w(z) = I(jon,z) forall(x#i [implies [w x] [1 jon x]])

6 ||EVERY(w)(Az I(jon, z)) [every w [1 jl]

Fig. 8.4. Specification in KiMBA

8.3.3 Problem Specifications

A problem specification in KIMBA is a structure that consists at least of
the following parts.

— a declaration of the signature for the non-logical constants
— a declaration of which logic used for formalising the problem
— alist of formulas

Optionally, we can have a set of higher-order definitions, a remark that de-
scribes the problem in natural language, and an entry that names a default
constraint solving engine (cf. Section 8.5) for the problem.

8.3.4 A Small Example

Figure 8.5 shows a small problem specification. The specification starts with
an entry at the label remark that describes the problem, in this case a for-
malisation of the sentence two girls love jon. The entry with the label logic
specifies that the logic we used is the classical two-valued one. The label
engine specifies the problem solving engine. For our problem, we use the
‘local minimal’ engine that enumerates locally minimal first-order models.
This means that the solving engine is allowed to extend the initial universe of
discourse if necessary, and that only those models are presented which meet
the local minimality condition.

The initial constant frame is given by the problem specification. We have
parameter constants girl, 1ove, and jon, all of which have different types.
We also have a higher-order definition for a new quantifier constant two such
that two(P)(Q) is true iff P has exactly two members and is a subset of Q.

Finally, the set of formulas specifies that Jon is no girl and that two girls
love Jon. The problem specification can loaded into KIMBA, and the only
locally minimal model that is yield by the model generation process has a
representation as the following set of atoms.

(8.1) { [girl c1], [girl c2],
[love C1 jon], [love C2 jon] }

Here, the constants C1 and C2 are newly generated ones of type i that have
been added by the model generator while the first-order domain of constants
was extended.

Some larger example specifications can be found in Appendix A.

130 8 Implementation

p(remark: ’Two girls love jon.’

logic: classical

engine: ’local minimal’

constants: are(girl:[o i] love:[o i i] jon:i)

definitions:

are(two: lam(p#[o il
lam(q#[o i]
[’and’ [exactly p 2] [every p qll)))
formulas: [[’not’ [girl jom]]
[two girl lam(x#i [love x jonl)] 1)

Fig. 8.5. A problem specification for KIMBA

8.3.5 Definitions

Definitions occur as part of a problem specification and are A-terms that
replace the occurrences of defined constants within the specification before
the actual model generation process starts. KIMBA uses the standard (-
normalisation to reduce expressions containing definitions into ones that have
the function free quantified form required by the translation into constraints.
Figure 8.6 shows two definitions, one for the determiner THE and one for the
determiner MY. The second definition makes use of the first one. A defini-
tion may generally refer to other defined symbols as long as the definition
expansion terminates, i.e., there are no cyclic definitions.

the: lam(p#[o il
lam(q#[o il
[’and’ [exactly p 1] [every p qll))

my: lam(p#[o il
lam(q#[o i]
[the lam(x#i [’and’ [p x] [isOf speaker x11) ql))

Fig. 8.6. Defining the determiners THE and MY by A-terms

8.4 The Semantics

Logics are, in general, defined by the semantics of their logical constants.
In KIMBA, the semantics of a logical constant is given operationally by the
definition of a concurrent procedure that manipulates the values of finite-
domain integer variables. A user can program these procedures, and combine
them into structures that define which logical constants are available within
a logic and in which way they behave.

8.4 The Semantics 131

8.4.1 Logic Definition Structures

A logic based on the MQL specification language can be defined in KIMBA
by building a (LDS). LDSs are unique to KIMBA. Unlike other finite model
generators restricted to some fixed (classical) logic, LDSs provide KIMBA with
a mechanism for implementing different logics in a modular way. The logics
in KIMBA can vary in the logical constants that are available, their semantics,
and in the number of truth values that can occur as the denotation of a
formula.

An LDS is a mapping from constant symbols into propagator procedures.
The constant symbols mentioned are the logical constants of the logic, for
which the propagator procedures define an operational semantic. Figure 8.7
shows a partial LDS for classical 2-valued logic. The constants for the various
connectives are mapped directly into predicates that are provided by Oz, for
instance ‘FD.conj’ as the propagator procedure that treats 2-valued conjunc-
tion. LDSs may define the semantics of truth constants such as ‘true’ and
‘false’ and the semantics of arithmetic predicates on integers such as ‘>’.
We also have a slot for defining the equality predicate ‘=’. This allows us to
implement special forms of equality if necessary.

Additionally, LDSs also determines the type of all logical constants and the
number of truth values and a translation from the truth values into a human-
readable form. For instance, we usually want to interpret the highest truth
value as “true” and the lowest one as “false” while other truth values might
have different purposes. As mentioned earlier, the symbol ‘x’ indicates a poly-
morphic type. A typical example is the definition of the quantifier ‘exists’
that has a type (e¢—0) —o, or, in KIMBA’s syntax, a type [0 [o x]].

An LDS does not necessarily have to contain all logical constants that
are used in other logics. A user may give only a basic set of connectives,
quantifiers and determiners (if any) and implement other logical constants by
the definition mechanism presented in the previous section.

8.4.2 Propagator Procedures

Implementing a logic in KIMBA means to implement the propagator proce-
dures for the logical constants. A propagator procedure in Oz is a concurrent
procedure that observes and propagates the changes in the values of a set
of variables. In our case, these variables are finite-domain integer variables
that represent the interpretations of formulas. A propagator procedure oper-
ationally defines a relation between the variables it observes. In KIMBA, each
propagator procedure implements the relation defined by its associated logical
constant, and the mapping of logical constants to their associated propagator
procedures is defined by the logics’ LDS.

8.4.3 Connectives

A propagator procedure for a binary connective will observe three variables,
one for the whole formula and two for the two components of the formula.

132 8 Implementation

ClassiclDS =
lds(truths: are(’false’ ’true’)
constants: are(’true’: (o # 1)
‘false’: (o # 0)
’=?: ([o x x] # proc {$ FA SA Root}
if FA == SA then
Root = 1 else
Root = 0 end
end)
’>?: ([o n n] # proc {$ [FA SA] Root}
if FA > SA then
Root = 1 else
Root = 0 end
end)
’succ’: ([o n n] # proc {$ [FA SA] Root}
if FA == SA+1 then
Root = 1 else
Root = 0 end
end)
'not’: ([o o] # FD.nega)
’and’: ([o o o] # FD.conj)
>implies’: ([o o o] # FD.impl)
‘exists’: ([o [0 x]] #
proc {$ [Insts] Var}
{FD.reified.sum Insts ’>:’ 0 Var}
end)
’atLeast’: ([o n [o x]] #
proc {$ [Insts Card] Var}
{FD.reified.sum Insts ’>=:’
Card Var}
end)
‘some’: ([o [o x] [o x]] #
proc {$ [InstsA InstsB] Var}
{FD.reified.sum
{List.zip InstsA InstsB
fun {$ IA IB} {FD.conj IA IB} end}
?>:? 0 Var}
end)))

Fig. 8.7. A partial LDS for a classical two-valued logic

If any of the values of these variables changes, the values of the other two
variables will be modified accordingly, if possible. Otherwise, propagation fails
and the variable assignment is rejected.

KIMBA’s generic translation of deduction into Oz constraints allows us to
design dedicated, optimised propagator procedures for each logic. Oz itself
already has an efficient set of propagators for the standard connectives in
classical two-valued logic.

8.4 The Semantics 133

Figure 8.8 shows two operationally equivalent propagator procedures for
negation, N1 and N2, in a 3-valued logic. The parameters of the procedures
are two finite-domain integer variables. Variable V1 corresponds to the truth
value of the formula in the scope of the negation, while V2 is used for the
truth value of the whole formula.

proc {N1 Vi V2} proc {N2 V1 V2}
[Vi v2] ::: o#2 (V1 v2) ::: o#2
thread {FD.minus 2 V1 V2}
if V1 = 0 then V2 = 2 end

[1 V1 =1 then V2 = V1
2 then V2 = 0
[V2 =0 then V1 = 2
[1 V2 =1 then V1 = V2
[1 V2 =2 then V1 =0

™
J
=
[
]

end
end

Fig. 8.8. Two variants of a 3-valued negation

Procedure N1 first restricts its two parameters to values between 0 (“false’)
and 2 (“true”), where 1 is used for the truth value “undefined”. Then it
starts a concurrent process which waits for one of these parameters to be
determined and determines the other one accordingly. Propagation works in
both directions, so whenever either the truth value of the formula in the
scope of the negation or the the truth value of the whole formula becomes
determinate, then so becomes the other value.

Procedure N2 implements the same behaviour, simply by constraining the
values of Vi and V; by the equation V3 = 2 — V;. Experiments show that the
“symbolic” propagation used in N1 is far more effective than the “arithmetic”
propagation in N2 as long as the number of truth values in the logic considered
is relatively small.

8.4.4 Monadic Quantifiers

Monadic quantifiers Q such as 3, V etc., are used for formulating the properties
of single sets. In KIMBA, quantified formulas F = Q(Pa) are translated into
constraints over the instantiations P(C,) that are possible using a finite do-
main C,, of constant symbols of type c. For classical logics, Oz provides some
built-in propagators for constraint reification that come handy for imple-
menting these quantifiers. Figure 8.9 shows two procedures that implement
existential and uniqueness quantification. The truth conditions implemented
by the propagator procedures can be formalised as follows.

(8.2) [emists(Poso)lz=1if > i [P(Xi)]z =1 for X; € Cq
(8.3) [unique(Paso)]lz =1 iff X0 [P(Xi)]z =1 for X; €Cq

134 8 Implementation

The propagator procedures have two parameters, Var for the truth value
of the whole quantified formula, and a list of truth variables Insts for the
instantiations P(X;) over the current domain. Oz only supports reification for
2-valued classical logic, so all variables considered are 0/1-integer variables.

proc {Exists Var [Insts]}
{FD.reified.sum Insts ’>:’ 0 Var}
end

proc {Unique Var [Insts]}
{FD.reified.sum Insts ’=:’ 1 Var}
end

Fig. 8.9. Implementing quantification as constraint reification

The procedures each create a reified sum constraint over the list of vari-
ables in Insts. If the sum constraint becomes determined, i.e., when it is
known whether it is satisfied or violated, the reification constraint determines
the truth value Var as well. If, on the other hand, Var becomes determined,
then the sum over Ints is constrained accordingly.

Oz does not provide constraint reification into many-valued truth variables
and in the case of many-valued logics, the semantics of the reified constraints
must be programmed in the form of a more complex case analysis. Figure 8.10
shows the implementation of the existential quantification in some 3-valued
logic.

8.4.5 Diadic Quantifiers

Diadic quantifiers (also known as generalised determiners) are the logical con-
stants that formulate relations between two sets. The difference between the
implementation of a monadic quantifier and that of a diadic quantifier is an
additional parameter for the propagator procedure that consists of a list of
truth variables for the instantiations of a second set. Figure 8.11 exemplifies
how diadic quantifiers can be defined in general. The procedure More defines
the operational semantics of the diadic quantifier MORE. The truth values for
two instantiations over the domain are given as lists InstsA and InstsB. The
propagator procedure reifies the constraint that the sum of the truth values
in InstsA must be greater than the sum of the values in InstsB. Hence, the
truth value of a formula MORE(P)(Q) is determined by the two sums of the
instantiations P(X,) and Q(Z,).

The diadic quantifier No is defined as follows: the formula No(P)(Q) is
true iff P(z) A Q(z) is false for all = of the appropriate type. The implemen-
tation uses the constraint that the sum of the truth values of all conjuncts
P(z) AQ(x) must be 0 iff No(P)(Q) is true. Again, we use constraint reifica-
tion as an economical way to express the relationship between the truth value

8.4 The Semantics 135

proc {Exist3 Var [Insts]}

thread
cond Var = 2 then {FD.atLeast 1 Insts 2}
[] Var = 0 then Insts ::: O
[] var = 1
then

{FD.exactly 0 Insts 2}
{FD.atLeast 1 Insts 1}

[] Insts ::: O

then Var = 0

[1 {FD.exactly O Insts 2}
{FD.atLeast 1 Insts 1}

then Var = 1

[1 {FD.atLeast 1 Insts 2}

then Var = 2

end

end
end

Fig. 8.10. Implementing a 3-valued existential quantification

proc {More Var [InstsA InstsB]}
{FD.reified.sum InstsA ’>:’
{FoldL InstsB fun {$ I Z} {FD.plus I Z} end 0}
Var}
end

proc {No Var [InstsA InstsBl}
{FD.reified.sum
{List.zip InstsA InstsB
fun {$ IA IB} {FD.conj IA IB} end}
’=:? 0 Var}
end

proc {Some Var [InstsA InstsBl}
{FD.reified.sum
{List.zip InstsA InstsB
fun {$ IA IB} {FD.conj IA IB} end}
’>:? 0 Var}
end

Fig. 8.11. Some implementations of diadic quantifiers

of a formula and the instantiations of its parts. The diadic quantifier SOME
is defined almost exactly as No. Here, this sum over the conjuncts must be
bigger than 0 if the top-level formula is to be evaluated to true.

136 8 Implementation

KIMBA has a special group of diadic quantifiers that are called cardinality
quantifiers (see Section 3). Instead of defining the relation of two sets, a
cardinality quantifier imposes a constraint on one set and its cardinality. For
classical logics, KIMBA implements the three cardinality quantifiers ATLEAST,
ATMOST and EXACTLY using constraint reification. The implementation is
shown in Figure 8.12.

proc {Exactly Var [Insts Card]}
{FD.reified.sum Insts ’=:’ Card Var}
end

proc {AtLeast Var [Insts Card]}
{FD.reified.sum Insts ’>=:’ Card Var}
end

proc {AtMost Var [Insts Card]}
{FD.reified.sum Insts ’=<:’ Card Var}
end

Fig. 8.12. Propagator procedures for cardinality quantifiers

8.4.6 The Translation

The procedure expand shown in Figure 8.13 implements the translation from
formulas F into constraints. The procedure is defined as a method that is
inherited to all of KIMBA’S proof engines (cf. Section 8.5). The main proce-
dure of KIMBA simply follows the syntactic structure of an input formula.
The input parameters are a formula F given in KIMBA’S syntax, and a root
variable Root that is the finite-domain integer variable that is associated with
the interpretation of F. The procedure then splits over the cases that are pos-
sible: F could be an equality atom, a truth constant, a formula with an unary
connective, a formula with a binary connective, a formula dominated by some
quantifier, or an atom. In the case of complex formulas, the method expand
must initiate a further translation of the components and instantiations. In
any case, the semantics of the logical constants are all look up in the currently
used logic definition structure self.logic.

The translation recursively generates a number of propagators by call-
ing the propagator procedures of the logical constants. Some input problems
create several thousand concurrent processes that implement the relations
between the interpretations of the formulas and their components or instanti-
ations. Propagation is concurrent, so the process of determining variables can
partly take place during the translation. An unsatisfiable set of constraints

8.5 Proof Engines and Controlling Search 137

meth expand(F Root)
case F
of [’=’ A B] %% F is equality
then {self.logic.constants.’=’.2 A B Root}
elseof H|Rs Wh F is application
then
if {HasFeature self.logic.constants H} %) F is complex
then
HType = self.logic.constants.H.1
Propagator = self.logic.constants.H.2

in
case HType of o then %4 H is truth const
Root = Propagator
elseof [o o] A4 H is unary
then C in

{Propagator C Root}

{self expand(Rs.1 C)}
elseof [0 o o] %4 H is binary
then Ca Cb in

{Propagator Ca Cb Root}

{self expand({Nth F 2} Ca)}

{self expand({Nth F 3} Cb)}

else Wh H is quantifier
{Propagator %4 or predicate in LDS
{Map Rs
fun {$ I} {self termToDenotation(I $)} end} Root}
end
else #h F is complex atom
{self storeAtomic(F Root)}
end
else W4 F is symbolic
{self storeAtomic(F Root)}
end
end

Fig. 8.13. KiMBA’S translation from formulas to constraints

can sometimes be detected before any search has been done. After the transla-
tion has been finished and the initial propagation has been completed, KIMBA
starts the actual search for models where undetermined variables are provi-
sionally restricted further, and the next iteration of propagation starts.

8.5 Proof Engines and Controlling Search

KIMBA is a modular system that has been built in an object oriented way. It
consists mainly of a uniform method expand for translating the specification
using the logic definition structures, and a variety of classes of proof engines

138 8 Implementation

that implement different algorithms for searching solutions within the search
space defined by the constraint satisfaction problems.

8.5.1 Proof Engines

The generic proof engine intuitively prepares the enumeration of models for a
given input problem as follows. First, it constructs an initial constraint frame
from the problem specification which is a minimal frame of domains for the
constant symbols that occur in the problem. This implies for instance that
the domain of first-order constants is not empty and contains at least one
constant C1.

Then, the proof engine applies the the translation method expand to all
input formulas and constrains all their root variables to the maximum truth
value defined by the input’s logic. The result is a set of finite-domain integer
variables that correspond to the interpretation of the atoms defined by the
input and the current constant frame.

In the so-called First-Order proof engines, the search space is potentially
infinite. If it is not possible to assign to each formula a unique integer value
such that the result defines a model, then the input is unsatisfiable over the
current constant frame and the first-order proof engine restarts model search
by extending the current domain of first-order individuals with a newly gen-
erated constant and by building up a new constraint tableau.

The following are the proof engines that are available in the current im-
plementation.

Propositional: An engine that leaves out the iterative extension of the first-
order part of the constant frame. This engine’s main application is the
search for models within a given domain of individuals, as is for instance
usual in puzzle applications.

Minimal: A variant of the Propositional engine that rejects models which
are not subset-minimal. The engine first searches for propositional models
in the usual way and eliminates non-minimal models by proving subset-
minimality (see Chapter 4) with the standard Propositional engine.

First-Order: The Propositional engine with a mechanism for iterative
deepening over the universe of discourse. While the engine’s results can
be controlled by branch-and-bound search, its main application is to enu-
merate the finite models of an input over an increasing first-order domain.

Local Minimal: This first-order engine implements local minimality, i.e.,
combines the First-Order engine and the subset-minimality constraint as
implemented by the Minimal engine. The main application of this engine
have been the analyses of definites as presented in Chapter 5.

Predicate Minimal: The minimisation of a certain predicate ab, in KIMBA
usually written as SR, is an essential part of conservative minimality. The
present engine is a sub-engine that only produces ab-minimal solutions
for the current translation.

8.5 Proof Engines and Controlling Search 139

Conservative: This is a first-order engine for conservative minimality as pre-
sented in Section 6.3.9. It is based on a two stage computation that first de-
termines a ab-minimal model using the Predicate Minimal engine. The
models are enumerated as in the engined First-Order, but every model
produced must (a) have a minimal ab-index and (b) be subset-minimal
with respect to all other ab-minimal models in the current constant frame.

As a first example, we show the implementation of the class for Minimal
engines in Figure 8.14. The class inherits from the standard Propositional
class of engines. It only replaces the top-level proof method prove. The prove
method first constraints the first-order domain size to the size of the current
universe of individual constants. By this, it prevents any iterative deepen-
ing that is inherited from the generic engine. Next, the method expandall
expands all formulas and initiates the first stage of propagation. Next, the
atom weight, i.e., the number of atoms evaluated to true, is constrained
to the sum of the truth values of all atoms in the Herbrand base bool.
The FD. distribute procedure then starts distributing and propagating, con-
trolled by an external search engine. The search process stops when either no
model could be found or the set of truth values in bool could be determined
consistently.

class Minimal from Propositional
meth prove
self .population =: {Length Quniverse}
{self expandAll}

choice
%% propagate weights; we ignore ab-index
{FD.sum @bools ’=:’ self.weight}
choice

{FD.distribute generic(order: nbSusps value: min)
{List.toTuple vars @bools}}
end

end

%4 refuting non-minimal solution

{RejectNonMinimal self}

end
end

Fig. 8.14. The Minimal engine

The difference between the Minimal engine and the standard proposi-
tional engine is the final call to the procedure RejectNonMinimal. This pro-
cedure verifies that the currently computed model is a locally minimal one.
RejectNonMinimal proves that there is no other model within the same do-
main size that validates the input specification by using a real subset of the

140 8 Implementation

class Conservative from PredicateMinimal
meth computeLowestBound
proc {SearchAux S}
S = {New PredicateMinimal init}
{CopyEngine S self}
{S prove}
end
%h search for ab-minimal, domain-minimal model
Best = {Search.base.best SearchAux
proc {$ Ea Eb}
Ea.cost >: Eb.cost
Ea.population >=: Eb.population
end}
in
%4 constrain current ab-index to the best possible
if Best == nil then fail
else self.cost =: Best.l.cost end
end

meth prove
choice
self .population =: {Length Quniverse}
{self computeLowestBound} %) ab-minimal model
{self expandAll}
choice %/ the index are the ’costly’ atoms
{FD.sum @bools ’=:’ self.weight}
{FD.sum @costly ’=:’ self.cost}
choice
{FD.distribute generic(order: nbSusps value: min)
{List.toTuple vars @bools}}
end
{RejectNonMinimal self PredicateMinimall}
end
[0 %% first-order iterative deepening
{self addIndividual} {self prove}
end
end
end

Fig. 8.15. The Conservative engine

atoms validated by the current model. This proof problem is a propositional
one, and RejectNonMinimal simply uses the standard Propositional en-
gine for deciding this problem. If the current model is not minimal, then the
procedure signals an error and the current model is rejected.

Figure 8.15 shows the first-order engine Conservative. It includes the
method computeLowestBound that implements the first stage of the compu-

8.5 Proof Engines and Controlling Search 141

tation, namely the identification of the minimum of ab-predicates that are
possible in a models of the current constant frame. The main method prove
then basically does the same as the Minimal engine, except that the search
space is opened up to the addition of new individual constants into the current
constant frame.

8.5.2 Search

The solutions for a constraint problem can be computed by applying one
of Oz’s built-in encapsulated search procedures to the constraint problem
generated by the proof engine. The search procedures available are for instance
depth-first, branch-and-bound, and visual search using the EXPLORER tool.
The EXPLORER visualises the search spaces as trees; we have used such search
trees to visualise the differences in methods for minimal model computation
in Section 6.2.12.

The search for models is influenced by the way in which the distribution
strategy selects variables for distribution. As a general heuristic guide, KIMBA
restricts first those variables whose value affects as many other variables and
constraints as possible. It also minimises the number of positive literals that
are validated in the model at the same time. The process of variable distri-
bution and propagation is repeated until all integer variables have a unique
value.

If we use a depth-first left-to-right search strategy, then each first-order
engine will always find those models first whose domain of individuals is min-
imal. Additionally, search can be bounded by the number of literals that are
validated. This implements a strong heuristic for minimising the assumptions
that are made in a model. By combining this restriction with domain min-
imality, KIMBA can be used for efficiently computing one domain minimal
models of the input whose presentation as a finite set of positive literals is as
short as possible.

KIMBA'’s standard search is based on a branch-and-bound approach where
properties of earlier computed solutions are used as upper bounds for the rest
of the search space. For instance, the search can be bounded such that each
model computed must not use more individuals than a previously computed
model. This bound effectively excludes models that are not domain minimal.
The search can be restricted by a combination of the following values:

— the number of atoms that are validated within a model
— the number of individual constants in the universe of discourse
— the ab-index of the model

Additionally, the bound can be defined as total, i.e., each model must
have a smaller bound than all previous ones, or as partial, where a sequence
of models can have the same bounds. Totally bounded search restricts the
search more quickly and produces the model with the lowest bound faster.
However, the number of models that are produced by the enumeration is also
reduced greatly, and we might miss models with interesting properties.

142 8 Implementation

To be more specific, Figure 8.16 shows OneModel, the generic best-solution
search used in KIMBA. The procedure has three arguments, namely Problem
that is the input problem’s specification, Engine which names the proof en-
gine to be used, and WeightP, the constraint procedure which specifies the
branch-and-bound search. The one-model search simply applies the encapsu-
lated branch-and-bound best-solution search that is built into Oz to a proce-
dure SearchAux. This auxiliary procedure simply creates a proof engine using
both the problem specification and the weight constraint, and the applies the
prove method to this new engine. Weight P may be for instance the procedure
MinimalAtomWeight which makes sure that the best model found by OneModel
is one that has a minimal atom weight—the procedure constrains the weight
of each successor solution Eb to be smaller than that of an earlier solution Ea.
While Search.base.best explores the search space in a depth-first, left-to-
right manner, the bound given by MinimalAtomWeight makes sure that each
model found has a lower atom weight than all earlier ones. The last model
found therefore must be the best according to the given bound.

fun {OneModel Problem Engine WeightP}
proc {SearchAux S}
S = {New Engine create(Problem WeightP)}
{S prove} Y’ that’s it folks!
end
in
{Search.base.best SearchAux WeightP}
end

proc {MinimalAtomWeight Ea Eb}
Ea.weight >: Eb.weight
end

Fig. 8.16. Search for one model, and a branch-and-bound procedure

8.6 System Performance

KIMBA is a research prototype whose main design goal has been simplicity
rather than speed. Nevertheless, it is interesting to compare the system’s per-
formance with that of automated reasoning systems that can perform similar
tasks. KIMBA’s intended application in linguistics has been to determine pre-
ferred interpretations with specific minimal model properties, a task where it
has no real competitors because there are no systems around that implement
the forms of minimality that we found is needed. Nevertheless, KIMBA is also
a general finite model generator that can for instance be used as a refuta-
tion proof procedure for propositional logics as well. In the following, we will
discuss KIMBA’s performance and weak points.

8.6 System Performance 143
8.6.1 Identifying Single Solutions

The table below shows KIMBA’s performance on some selected problems from
the TPTP’s puzzle domain [93]. Times were taken on a Spare Ultra 1.

Problem|{PUZ001-1{PUZ005-1|PUZ017-1|PUZ031-1 (8)
Time 0.3s 4.6s 0.7s 1.6s

The original TPTP specifications are first-order clause sets that have been
reformalised for KIMBA using first- and higher-order specifications in classical
2-valued logic. The TPTP formalisations of the logical puzzles are unsatisfiable
and can be solved by applying first-order refutation procedures. In contrast
to this, the KIMBA formalisation for each puzzle is satisfiable, and each model
produced corresponds to a solution.

Logical puzzles, such as the example PUZ0O17-1 given in full in Ap-
pendix A.1, can often be solved easily by model generators that are based on
constraint solving such as FINDER [30] or KIMBA. The rules given in a puzzle’s
logic specification are translated in very effective constraints on the combi-
natorial possibilities. PUZ017-1 is hard for most theorem provers because its
first-order clause representations leads to a large search space. KIMBA’s ex-
ceptionally good performance can be explained by an elegant higher-order
formalisation. For instance, the specification every job is held by at least one
person in PUZ017-1 has a natural formalisation in KIMBA as follows:

EVERY(AJ(,50) job(J))(AJ(s0) ATLEAST(J)(1))

With this form of quantification, KIMBA keeps entities of different type
separately. In a standard first-order form, all quantified entities must be indi-
viduals. This usually leads to a larger than necessary domain for which model
generation and theorem proving becomes exponentially more complex. A sim-
ilar kind of improvement is possible in conventional deduction systems when
using sorted logics. The problem mentioned above presents no problem for
other constraint-based model generators which can make use of a sorted for-
mulation (i.e., FINDER and SEM). FINDER can solve PUZ017-1 in about 0.05s.

Puzzles are typical examples of single-solution problems for model gen-
erators, i.e., combinatorial problems where one arbitrary model suffices as
a result. A class of single-solution problems where finite model generators
have traditionally been very successful are quasi-group existence problems. A
quasi-group is a set with a binary operation o which satisfies unique solvabil-
ity of equations. That is, for all a,b there exist unique ¢, d such that coa = b
and aod = b. A quasi-group existence problem [4] is finding an n by n mul-
tiplication table over the elements {1,...,n} such that the table satisfies the
properties of a quasi-group and some additional constraints.

For instance, the “QGS5” quasi-group problem is finding an table that satis-
fies the equation ({(boa)ob)ob = a for all elements a and b. Furthermore, the ta-
ble must also be idempotent, that is, that aca = a for all a. The tables, if they

144 8 Implementation

exist, are Latin Squares in that there are no repeated entries in any row or col-
umn. Quasi-group existence problems are characterised by very large search
spaces with very few solutions.

As interesting open questions about quasi-groups can be answered by fi-
nite model generators, many systems support the solution of quasi-groups by
providing efficient data-structures that have been tailored especially for this
task. For instance, FINDER internally represents a quasi-group as a multipli-
cation table of integers whith a built-in Latin-square property. The current
implementation of KIMBA has not been optimised for such applications and
does not employ any low-level optimisations. As result, it is heavily outper-
formed by other systems, and is not able to construct models for any but the
most trivial finite (quasi)group problems.

8.6.2 KiMBA as a Propositional Theorem Prover

Cook’s pigeon-hole problem, MSC007-2 from the TPTP, is a classical bench-
mark proof problem for propositional theorem provers. The task is to prove
that there can be no way of putting n+1 pigeons into 7 pigeon holes such that
each hole contains at most one pigeon. Given a set of n + 1 pigeons which all
are individuals, and a set of » holes which are first-order properties denoting
the set of pigeons they contain, the formalisation is as follows.

(8.4) Vz, 3P_,, hole(P) A P(x)
(8.5) VP, hole(P) = ATMoST(P)(1)

Formula (8.4) states that every individual, i.e., every pigeon, must have a
property P that is a hole, i.e., must be in a hole. Formula (8.5) then formalises
that every hole can have at most one member, i.e., there can be at most
one individual per hole. Of course, with a fixed set of pigeons and holes,
the two formulas actually are only a compact higher-order specification of an
unsatisfiable set of propositional formulas. For KIMBA, the task is to prove that
the two formulas interpreted over a given set n of holes and n + 1 pigeons are
unsatisfiable. As the Propositional engine completely enumerates the finite
models over the initial constant frame, it can be used to perform this task.

The following table shows the performance of KIMBA on problem instan-
tiations with four to eight holes. It also gives the number of atoms whose
interpretations must be determined, and the number of branching nodes in
the search space defined by the problem.

Holes 4 5 6 7 8
Time||< 0.05s{0.18s|1.30s|9.80s|85.00s
Atoms 24| 35| 48| 63 80
Nodes 23| 119{ 719{5039| 40319

8.6 System Performance 145

The size of the search space, as indicated by the branching nodes, grows ex-
ponentially with the size of atoms and results in an exponentially larger proof
time. The naive way in which KIMBA explores the whole search space is not
optimal, which implies that KIMBA in general is not well suited for the task of
proving the non-existence of models. In particular, the finite model generator
SEM is more than two orders of magnitude faster than KIMBA for the pigeon-
hole problems. The reason for this gap in efficiency lies in the fact that KIMBA
has no mechanism for suppressing isomorphic models. The actual order of
pigeons in the holes does not matter, as any permutation of n 4+ 1 pigeons
cannot be put into n holes. Yet, a different permutation results in a different
interpretation, and all of these are investigated and refuted by KIMBA. This
is relevant for many practical applications, as the same complexity problem
frequently occurs whenever a problem specifications allows the permutation
of elements with respect to certain properties.

The suppression of isomorphic models as proposed by Zhang and Zhang [46]
probably is the most promising single optimisation that is possible in finite
model generation. A model is isomorphic if it is equal to another one modulo a
renaming of the constant symbols. The SEM system uses an effective heuristic
that avoids the generation of isomorphic models without loosing completeness.
However, it is not clear how the approach can be implemented in KIMBA be-
cause it relies on properties of clause sets that cannot be tested within a system
that does not use clause normalisation. The pigeon-hole problems require an
exhaustive search in a very large search space that almost entirely consists of
isomorphic interpretations. Because of isomorphic models, KIMBA also is not
efficient enough for proving the non-existence of certain quasi-groups. Our
translation of deduction into constraint solving does not effectively restrict
large search spaces for refutation proof problems.

8.6.3 Generating Minimal Models

The property of being a subset-minimal model can only be decided by a rea-
soning process that must consider a substantial number of interpretations re-
gardless of what is already known about the current one. Hence, the generation
of subset-minimal models is in general one step up the complexity hierarchy
in comparison to the generation of arbitrary models [24]. Local minimality
and conservative minimality both suffer from this problem. In order to ver-
ify the minimality constraint, we must initiate a proof process that traverses
a potentially very large search space. In the examples for definites given in
Chapter 5, the space of interpretations usually was small and thus the effect
hardly noticeable—in all examples, the preferred models can be determined in
under a second on a conventional Pentium II 266Mhz PC. The interpretation
of reciprocal sentences shows more clearly the relations between the search
space of interpretations, the number of conservative minimal models, and the
cost of determining a single arbitrary model.

146 8 Implementation

Example|| Models |Conservative|First| All
Pirates || 26/51 23(0.12s| 0.45s
Pitchers|| 24/121 24/1.66s|12.48s
Measles (|148/2305 64(5.93s({41.47s

Like || 432/863 1|0.12s| 0.36s

The two numbers in the row “Models” give the number of valid interpreta-
tions that the logical form has and the number of nodes the search space for
the problem has. Thus, for the “Pirates” example from page 83, we have 26
models in a search space with 51 nodes, i.e., branchings. The row “Conserva-
tive” gives the number of conservative models, which is 23 for the “Pirates”
example. As we can see, conservative minimality has eliminated 26 — 23 — 3
models which are not conservative minimal. The time for determining the
first conservative minimal model is 0.12s, while the time for enumerating all
conservative models is 0.45s. In the Boston “Pitchers” example (cf. page 99),
we have 24 valid interpretations and 121 nodes. All models of the logical form
also are conservative minimal. The larger search space results in an increased
time for finding the first conservative minimal model—the proof procedure
must verify for each model whether it is also locally minimal with respect
to all other ab-minimal models. While the search space in comparison to the
“Pirates” example has not even tripled, the time for determining the first
conservative model has increased by an order of magnitude. This is the worst
case which may not occur in all cases where the search space of interpreta-
tions grows larger. In the “Measles” examples (cf. page 100), the search space
as a whole is 19 times larger than in the “Pitchers” example with a similar
logical encoding. Yet, the time complexity both for determining a first con-
servative model and all conservative models is below one order of magnitude.
In some cases, a larger space of interpretations may even play no role at all.
In the “Like” example (cf. page 95) that exemplifies SR reciprocity, we have
432 models in a search space with 863 nodes. However, the logical encoding
has only one conservative model whith is also very easy to determine, as it is
also the first one that the model generator can find in the whole search space.
The ab-minimality of this model effectively eliminates the major part of the
search space. As it takes only 0.12 seconds to find the model and to identify it
as the ab-minimal one, the remaining search space can be traversed in about
0.36 seconds, which is even less than in the very simple “Pirates” example.
Thus, we can conclude that the minimal model constraints on the interpreta-
tions may be able to restrict the search space effectively, even though it has
been shown that (subset-)minimal model generation may in cases lead to an
exponential worst-case complexity. At the same time, the worst case can be
testified for some examples. As KIMBA completely enumerates the conserva-
tive minimal models, the effect of the combinatorial explosion caused by a
larger universe of discourse is plainly visible. The following tables shows the
“Pirates” example with three, four, and five pirates who stare at each other.

8.6 System Performance 147

Example || Models |Conservative|First| All
Pirates (3)|| 26/51 23[0.12s| 0.45s
Pirates (4)|| 281/561 81(0.27s| 4.65s
Pirates (5)|[3494/6993 1024(1.99s|87.00s

As we can see, the number of interpretations, the search space, and the num-
ber of conservative models explodes with the size of the reciprocal set. This is
a direct result of the way in which we interpret reciprocity, as the linguistically
valid interpretations must involve permutations of elements with respect to the
reciprocal relation. For practical applications, the increase in time for deter-
mining a first model may be especially worrisome, as this can be taken as the
instance of a preferred linguistic interpretation. A possible counter-measure
for the effect would be the elimination of isomorphic models as mentioned in
Section 8.6.2, a task that cannot performed by KIMBA in its current form.
On the other hand, the theoretical properties of subset-minimality make it
impossible to avoid this effect in general.

This page intentionally left blank

9

Conclusion

You have always been a cunning linguist, Bond.
(Moneypenny, Tomorrow never dies)

The primary hypothesis of computational logic-based semantics is that logic
can be used to capture the meaning of natural language. A logic consist of
a formal language, i.e., a syntax, and a semantics that maps the expressions
of this language into some domain and finally to truth conditions. To define
a suitable logical representation for natural language is a worthwhile pursuit
on its own right, as such a representation permits us to investigate natural
language on a formal, unambiguous level. Works in theoretical logic-based
semantics, such as Dalrymple et al.’s research on reciprocity, use a logical de-
vice to formally describe some properties of the semantics of natural language.
Without inference, however, there is no computational logic-based semantics.

9.1 Why Inference Is Worth the Effort

If logic can in fact capture meaning, then there is all reason to suspect that
inferences on the logical form can be used to model the process of natural
language understanding. It is conceivable that the way in which humans in-
terpret language is determined to a very large degree by some system of rules,
that is, is systematic. Otherwise, we would not even be able to detect when
the process of communication completely fails.

The research documented in the present work focuses on inference rather
than on representation. The starting point was the observation that certain
models of a semantic representation and a context consisting of situational
and world knowledge can be taken as the meaning of the represented natural-
language sentence. Our early analyses were not based on some of the state-of-
the-art semantic representation languages that have been designed especially
for such phenomena as pronoun resolution or multi-level ambiguities. Instead,
we started out with plain first-order predicate logics because these come with a
plethora of automatic reasoning systems for model generation and deduction.

150 9 Conclusion

Finite model generation is an interesting research tool in computational se-
mantics as it gives us, for the first time, the ability to enumerate a large class of
models of the input. This enumeration often makes explicit some subtle errors
in semantic representations. It also make clear that semantic representation
without contextual knowledge are near to worthless for the purpose of inter-
pretation. There is almost no example where the models of a logical form alone
correspond to interpretations that are acceptable. Logic and inference require
world knowledge reasoning as the third aspect of a computational logic-based
form of natural-language interpretation. Fortunately, common-sense reason-
ing can often be performed as part of the process of computing a model, and
many faulty interpretations can be turned into correct ones by adding the
missing knowledge.

Automated reasoning systems are now at a level of performance that allows
their application in the real world. Even a simple system like KIMBA, which
is based on a lean approach to inference and that is not primarily built with
efficiency in mind, profits greatly from the improvements in constraint-solving
technology in recent years. Our higher-order logical language MQL evolved
from experimentation with what is still tractable within the limits of a trans-
lation of logic into finite-domain integer constraints. The language MQL as
well as the KIMBA system owes much of its appearance to the fact that we
started out with a standard approach of inference based on a classical, well-
understood form of logic. One of the essential results of the efforts presented
here is that the use of efficient inference techniques for classical logics is at
least as much an advantage as the logic’s restricted expressivity may appear
an annoyance to semanticists. The sacrifices that one must bring when using
conventional logics or restricted knowledge representation languages are often
paid for by the ease of access and the ability for experimentation that the
existing well-designed systems provide.

Nevertheless, it is not surprising that our experiments sometimes reveal
that a more expressive logical language is desirable not only for theoretical
reasons. Some problems on the computational level can be solved without
question only by a better representation. As an example, we refer to the
improved predictions that a formalisation of unicity gives for singular defi-
nite descriptions. The present work in any case avoids topics such as dynamic
anaphoric binding or scope ambiguities, as we believe that the questions raised
by these phenomena cannot be answered adequately in the formal framework
of classical logics that we have chosen. Still, it can be argued that one of
the main purposes of a formal representation should be to allow for a simple
and possibly tractable form of inference. While a formal language that, for
instance, can represent structural ambiguities of quantifier scoping within the
logical form may be theoretically attractive, it will be of little use in practice
if the representation itself makes the desired forms of inference impractica-
ble. We therefore conclude that both levels of semantics, representation and
inference, should no longer be discussed separately.

9.2 Contributions 151

9.2 Contributions

The present work argues that model generation is a form of reasoning that
can be used to conceptualise some inference processes in natural-language
understanding. That is, we may use model generation as a formal model of
inference processes whose actual forms remain unaccessible to us.

The international conference Inference in Computational Semantics, first
held in 1999, showed that there is a growing interest in the computational lin-
guistics community to discuss such forms of inference and the computational
tools that approximate them. Inference is one of the keys to natural-language
understanding, and a formal method that models even small aspects of the
interpretation of language therefore may give us new insights in the way in
which language works.

The guinea pigs that we have investigated in detail in our linguistic labora-
tory are singular definite descriptions and reciprocal sentences. Definites were
the starting point for a great deal of research in modern computational seman-
tics. Our approach of interpretation as model generation concentrates on the
inference tasks that originate in the problem of resolving singular definites in
a logically encoded context. Our experiments show that model generation is
able to deal with some of the stumbling stones of other approaches, as model
generation embeds reasoning about linguistic knowledge into reasoning about
the situational context and the world. Unlike as in deductive approaches, we
do not have to give some set of entities that may be candidate referents.
Domain-minimal model generation implements, in a very natural way, the
preference of anaphoric resolution over bridging over accommodation.

Not all questions in connection with definites can be answered by semantics
and model generation alone. Definite descriptions show a surprisingly complex
behaviour, and the actual truth conditions of a definite can not easily be
determined. With the introduction of the identifying property, our theory is
no longer a theory of computational semantics as we cannot give a formal
theory of how identifying properties can be determined.

In contrast to this, the meaning of reciprocal sentences seems to be gov-
erned by one principle of interpretation. This principle, the MMH, can be
modelled by a certain form of minimal model generation. Our analysis is able
to identify the correct interpretations for simple reciprocal sentences within
large sets of model candidates. As far as we know, there are no other ap-
proaches that can deal equally well with reciprocals. The semantic analysis
on the level of interpretations gives us a “continuum of meaning” in contrast
to some idiosyncratic class system of reciprocal semantics. In practice, the
model generation approach is a convenient means to experiment with the lin-
guistic theory. Theoretically, our treatment of reciprocity is appealing as it
requires only one semantic representation for reciprocal expressions and does
not treat them as n-way ambiguous constituents. However, as in the case of
definites, the present work is cannot be seen as a thorough analysis of the
linguistic phenomenon. For instance, a compositional treatment of the in-

152 9 Conclusion

teraction of reciprocal expressions and quantifiers requires a different logical
representation than the one that we have given. In any way, the maximisation
of logical contribution on the level of the models of the logical form currently
has no computational alternative, and we believe that model generation is an
adequate formal model for the process of reciprocal interpretation.

The reasoning that humans perform when interpreting everyday language
is that of reasoning on small and finite sets. Standard first-order predicate
logic has its problems with this kind of reasoning, as many properties in
connection with finiteness are not first-order expressible, at least not with-
out further technical machinery in the encoding. We have found finite model
generation to be appealing because many first-order “inexpressible” truth con-
ditions of natural-language quantifiers can be expressed as computable con-
straints over finite models. If we interpret the semantic representations of
Montague-style higher-order logical semantics only over finite domains, we
obtain an interesting fragment of higher-order logics where standard first-
order model generation techniques can be used. This fragment inherits the
elegant compositional way in which expressions can be composed and de-
fined in the A-calculus. The language MQL can be taken as a first model of
a formal language that combines desirable properties from higher-order and
first-order logics. KIMBA exemplifies that the introduction of concepts like
B-reduction, higher-order definitions, or restricted higher-order quantification
does not make inference inherently more complex in the way that full higher-
order reasoning often does.

9.3 Models as Meaning

Even with all necessary background knowledge present, finite model gener-
ation computes in general many models whose content does not reflect the
meaning of the logical form. Human conversation implies several constraints
for what is an acceptable interpretation and what is not. Model generation
must be extended by methods that implement these conventions. Some handy
tools for this are available as results of non-linguistic applications of model
generation. First and foremost, the notion of a subset-minimal model is central
for eliminating those interpretations which give redundant information that
cannot be justified by any evidence at all. Then, for such phenomena as defi-
nite descriptions, the minimisation of the universe of discourse is convenient
for implementing the preference of anaphor resolution over accommodation.
Finally, we have used the minimisation of a certain index predicate to model
the maximisation of the logical contribution of the scope relation in reciprocal
sentences. The forms of minimisation that we have found useful in natural-
language interpretation and analysis highly interact, and we must make sure
that the intersection of different minimality constraints does not become too
strict to be of any use. As a compromise, we have defined a combination of
three minimality constraints called conservative minimality that implements
a simultaneous minimisation of individuals, logical assumptions, and index

9.3 Models as Meaning 153

value. The minimisation of the universe can be justified on linguistic grounds,
but it is also necessary in order to stay in a computable fragment of model
generation. There is in general no way of deciding whether some arbitrary
first-order model is subset-minimal, but local minimality is decidable because
of the domain closure of local minimal models. Likewise, the minimal index
can be computed for the set of domain minimal finite models, but not for the
set of all models.

The simple techniques that we have used to characterise preferred readings
do obviously not exactly model the complex inference processes of natural-
language understanding. There can be no question that what any form of
minimality will give us is only a heuristic to identify semantic interpretations.
As all heuristics, it may sometimes fail. Minimal model generation frequently
gives us models which are not preferred readings in any way, or even models
whose content has no correspondence to the meaning of the represented utter-
ances at all. However, the term “minimality” is open to any reasoning process
that empirically yields better results, and we hope that further research will
discover new and better methods that characterise which models of the logical
form are linguistically interesting.

This page intentionally left blank

A

Some Example Problems

A.1 The Job Puzzle

We consider the logical puzzle PUZ017-1 from the TPTP problem library for

automated reasoning systems [93]. Its natural-language formalisation looks

like this:
There are four people: Roberta, Thelma, Steve, and Pete. Among them
they hold eight different jobs. Each holds exactly two jobs. The jobs are:
chef, guard, nurse, telephone operator, police officer (either gender),
teacher, actor, and boxer. The job of a nurse is held by a male. The
husband of the chef is the telephone operator. Roberta is not a boxer.
Pete has no education past the ninth grade. Roberta, the chef, and the
police officer went golfing together. Question : Who holds which job?

The problem’s formalisation in KIMBA’s syntax is given in Figure A.1. Fig-
ure A.2 shows the search space of the problem when using the propositional
minimal model engine Minimal (see Section 8.5.2). The sixteen diamonds
represent the minimal models of the problem, while the 53 squares represent
failures caused either by some inconsistency or by non-minimality of interpre-
tations. The minimal models prove that the puzzle does not have only one
solution, but in fact sixteen. On a Pentium-I1/266 workstation, the exhaustive
search for all minimal models of the problem takes about 6 seconds.

A.2 Reciprocals: The Boston Pitchers

Figure A.3 shows a logical encoding for the reciprocal sentence the Boston
pitchers sat alongside each other for a discourse situation with four pitchers:
Tom Bolton (tb), Jeff Reardon (jr), Larry Anderson (1a), and Jeff Gray (jg).

In the encoding, we use some of KIMBA’s built-in predicates for formalising
the position relation, for instance the predicate succ that corresponds to
the successor function on natural numbers. The encoding also includes the
definitions iao, price, and rcp for the semantic of reciprocals. The predicate
$R denotes our index predicate.

156 A Some Example Problems

p(remark: ’Who gets the job.:®
logic: classical
types: are(o:o i:i n:n)
constants: are(
roberta:i thelma:i steve:i pete:i
chef: [o i] guard:[o i] nurse:[o i] operator:[o i]
officer:[o i] teacher:[o i] actor:[o i]
boxer:[o i] male:[o i] educated:[o il
husband: [o 1 i] job:[o [o 111)
definitions: are(female: lam(x#i [’not’ [’male’ x]])
the: lam(p#[o i]
lam(q#[o i]
[’and’ [exactly p 1]
forall(x#i [’implies’ [p x] [q x11)1)))
formulas:

[job chef] [job guard] [job nurse] [job operator]

[job officer] [job teacher] [job actor] [job boxer]

[*not’ [job male]] [’not’ [job educated]]

%% gender

[male steve] [male pete] [female roberta] [female thelma]

%% every job is held by someone

[every lam(j#[o i] [job j1) lam(j#[o i] [atLeast j 1])]

%% everyone has exactly 2 jobs

forall(x#i [exactly lam(j#[o il [’and’ [job j] [j x11) 21)

%% the nurse is male, the chef is female

[the nurse male] [the chef female]

%% the chef has a husband who is the operator

[the chef lam(x#i [unique lam(y#i [‘and’ [husband y x]
[operator y11)1)]

%% husbands are male

[every lam(x#i exists(y#i [husband x y])) male]

Wh wifes are female

[every lam(x#i exists(y#i [husband y x])) female]

%% there is atmost one husband per wife

forall(x#i [atMost lam(y#i [husband y x]) 11)

%% all actors are educated and roberta is not a boxer

[every actor educated] [’not’ [boxer robertall

%% Pete has no education past the ninth grade.

[’not’ [educated pete]]

%% nurses, teachers, and officers are educated

[every nurse educated] [every teacher educated]

[every officer educated]

W% the chef is neither a police officer nor roberta

[no chef officer] [’mot’ [chef robertall])

Fig. A.1. The puzzle PUZ017-1 from the TPTP library [93]

Fig. A.2. The search tree for PUZ017-1 with 16 minimal models.

A.2 Reciprocals: The Boston Pitchers 157

p(logic: 'classical’ engine: ’conservative’
constants: are(
la:i tb:i jr:i jg:i %4 the guys
sital:[o 1 i] %} sitting alongside
bospt: [0 i] %% Boston Pitchers
pos:[o i n [o i i]]
1:n 2:n 3:n 4:n 5:n 6:n 7:n %4 some numbers that we might need
‘$R*:[o i i]) %% our index relation
definitions: are({l4 Intermediate Alternative Ordering
iao: lam(p#[o i]
lam(r#[o i 1i]
[*and’ [atLeast p 2]
[every p
lam(x#i
exists(y#i
[*and’ [’and’ [p y]
[’not* [’= y x]1]
[’or’
[r x y]
[r y x111)3110
%% The price of not being in the reciprocal
price: lam(p#[o il
lam(r#[o i il
[every p
lam(x#i
[*and’ [’not’ [*$R’ x x]]
[every lam(y#i [’and’ [p yl
[*not?* [*=* x y111)
lam(y#i [’equiv’
[*not’ [r x y11
[’$R’ x y11)I1D1M
%% the semantic od reciprocals
rcp: lam(p#[o il
lam(r#[o 1 1] [’and’ [iao p r] [price p r]1l)))
formulas: [
%% siting alongside
forall(x#i forall(y#i [’equiv’
[sital x y]
exists(p#n
[’and’ [pos sital p x]
exists(l#n
[’and’
[*or’ [’succ’ p 1] [’succ’ 1 pll
[pos sital 1 y11)1)1))
forall(p#n [atMost lam(x#i [pos sital p x]) 1]1)
forall(x#i [atMost lam(p#n [pos sital p x]) 1])
forall(p#n [’implies’ exists(y#i [pos sital p yl)
forall(l#n [’implies’ [’<’ 1 p]
exists(x#i [pos sital 1 x])1)])
% 4 boston pitchers
[bospt lal] [bospt tb] [bospt jrl [bospt jgl
%% the Boston pitchers sit alongside each other
[rcp bospt sital] 1)

Fig. A.3. The Boston pitchers sat alongside each other

A model generation process yields 24 different conservative minimal mod-
els, each of which corresponds to one of the 4! = 24 different interpretations
of the Boston pitchers sit alongside each other in a discourse situation where
we have four Boston pitchers. In our example, we individual constants for the
pitchers Larry Anderson (la), Tom Bolton (tb), Jeff Reardon (jr), and Jeff
Gray (jg). A typical model appears as follows.

158

(A1)

A Some Example Problems

{ ab(jg, jr), ab(jg, tb), ab(jr, jg), ab(jr, tb), ab(la, tb),
ab(th, jg), ab(th, jr), ab(th, la), bospt(jg), bospt(jr), bospt(la),
bospt(th), pos(sital, 1, th), pos(sital, 2, jr), pos(sital, 3, la),
pos(sital, 4, jg), sital(th, jr), sital(jr, tb), sital(jg, la),
sital(jr, la), sital(la, jg), sital(la, jr) }

The situation described by the model is illustrated by the following table.

position 1 2 3 i
pitcher [[Tom Bolton|Jeff Reardon|Larry Anderson|Jeff Gray

All conservative minimal models of the input carry an index of 6, and the
conservative minimal models are also identical to the ab-minimal models of
the input.

References

10.

11.

12.

13.

Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer, Dordrecht (1993)
Montague, R.: The proper treatment of quantification in ordinary English. In
Montague, R., ed.: Formal Philosophy. Selected Papers. Yale University Press,
New Haven (1974)

. McAllester, D., Givan, R.: Natural language syntax and first-order inference.

Artificial Intelligence 56 (1992)

Slaney, J., Fujita, M., Stickel, M.: Automated reasoning and exhaustive search:
Quasigroup existence problems. Computers and Mathematics with Applications
29 (1995) 115-132

McCune, W.: Automatic proofs and counterexamples for some ortholattice
examples. Information Processing Letters 65 (1998) 285-291

Friedrich, G., Nejdl, W.: MOMO—model-based diagnosis for everybody. In:
Proceedings 6th IEEE Conference on Al Applications, Santa Barbara, CA, USA
(1990) 206213

Baumgartner, P., Frohlich, P., Furbach, U., Nejdl, W.: Tableaux for diagnosis
applications. In Galmiche, D., ed.: Proc. TABLEAUX 97. Number 1071 in
LNCS, Pont-a-Mousson, France, Springer (1997) 76-90

Kautz, H., Selman, B.: Planning as satisfiability. In: Proc. ECAI 92, Vienna,
Austria (1992) 359-363

Hilton, A.J.W.: The reconstruction of latin squares with applications to school
timetabling and to experimental design. Mathematical Programming Study 13
(1980) 6877

Bry, F., Eisinger, N., Schiitz, H., Torge, S.: SIC: Satisfiability checking for
integrity constraints. In Fraternali, P., Geske, U., Ruiz, C., Seipel, D., eds.: Proc.
6th International Workshop on Deductive Databases and Logic Programming,
DDLP ’98. GMD Report 22, Manchester, UK (1998)

Jackson, D., Damon, C.: Elements of style: Analyzing a software design fea-
ture with a counterexample detector. In: International Symposium on Software
Testing and Analysis. (1996)

Cunningham, J.: Comprehension by model-building as a basis for an expert
system. In: Proc., 5th Technical Conference of the British Society Specialist
Group on Expert Systems, University of Warwick (1985)

Fujita, M., Hasegawa, R., Shirai, Y., Kumeno, F.: Program synthesis by a model
generation theorem prover. Technical report, Institute for New Generation Com-
puter Technology, Tokyo (1991)

160

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

References

Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer
(1990)

Smullyan, R.M.: First-Order Logic. Springer (1968)

Beckert, B., Hihnle, R., Schmitt, P.H.: The even more liberalized é-rule in
free variable semantic tableaux. In Gottlob, G., Leitsch, A., Mundici, D., eds.:
Proceedings of the third Kurt Gédel Colloquium KGC’93, Brno, Czech Republic.
Volume 713 of LNCS., Springer (1993) 108-119

Giese, M., Ahrendt, W.: Hilbert’s epsilon-terms in automated theorem proving.
In Murray, N., ed.: Proc. TABLEAUX’99. Number 1617 in LNCS, Saratoga
Springs, NY, USA, Springer (1999) 171-185

McCarthy, J.: Circumscription — a form of non-monotonic reasoning. Artificial
Intelligence 13 (1980) 27-39

Nejdl, W., Frohlich, P.: Minimal model semantics for diagnosis — techniques
and first benchmarks. In: Proc., 7th International Workshop on Principles of
Diagnosis, Val Morin (1996)

Ginsberg, M.L.: A circumscriptive theorem prover. Artificial Intelligence 39
(1989) 209-230

Niemeld, I.: Implementing circumscription using a tableau method. In Wahlster,
W., ed.: Proc., European Conference on Artificial Intelligence, ECAI 96, Bu-
dapest, Hungary (1996) 80-84

Bry, F., Yahya, A.: Minimal model generation with positive unit hyper-
resolution tableaux. In Miglioli, P., Moscato, U., Mundici, D., Ornaghi, M.,
eds.: Proc. TABLEAUX’96. Number 1071 in LNCS, Terrasini, Palermo, Italy,
Springer (1996) 143-159

Schiitz, H.: Generating minimal herbrand models step by step. In Murray, N.,
ed.: Proc. TABLEAUX’99. Number 1617 in LNCS, Saratoga Springs, NY, USA,
Springer (1999) 171-185

Niemeld, I.: A tableau calculus for minimal model reasoning. In Miglioli, P.,
Moscato, U., Mundici, D., Ornaghi, M., eds.: Proc. TABLEAUX’96. Number
1071 in LNCS, Terrasini, Palermo, Italy, Springer (1996) 278-294

Hintikka, J.: Model minimization — an alternative to circumscription. Journal
of Automated Reasoning 4 (1988) 1-13

Lorenz, S.: A tableau prover for domain minimization. Journal of Automated
Reasoning 13 (1994) 375-390

Bry, F., Torge, S.: A deduction method complete for refutation and finite sat-
isfiability. In: Proc. 6th European Workshop on Logics in Al (JELIA). LNAI
(1998)

de Nivelle, H.: A resolution decision procedure for the guarded fragment. In
Kirchner, C., Kirchner, H., eds.: Proc. CADE-15. Number 1421 in LNAI (1998)
Manthey, R., Bry, F.: SATCHMO: A theorem prover implemented in Prolog.
In: Proc. CADE’88. (1988) 415434

Slaney, J.: FINDER (Finite Domain Enumerator): Notes and guide. Technical
Report TR-ARP-1/92, Australian National University Automated Reasoning
Project, Canberra (1992)

Ernst, M.D., Millstein, T.D., Weld, D.S.: Automatic SAT-compilation of plan-
ning problems. In: Proc., of the 15th International Joint Conference on Artificial
Intelligence, IJCAI 97, Nagoya, Aichi, Japan (1997) 1169-1176

Castell, T., Fargier, H.: Between SAT and CSP: Propositional satisfaction prob-
lems and clausal CSPs. In Prade, H., ed.: Proc. 13th European Conference on
Artificial Intelligence, Brighton, John Wiley & Sons (1998) 214-218

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

References 161

Gallo, G., Urbani, G.: Algorithms for testing the satisfiability of propositional
formulae. Journal of Logic Programmming 7 (1989) 45-62

Harche, F., Hooker, J.N., Thompson, G.L.: A computational study of satisfia-
bility algorithms for propositional logic. ORSA Journal on Computing 6 (1994)
423-435

Jeroslow, R.G., Wang, J.: Solving propositional satisfiability problems. Annals
of Mathematics and Artificial Intelligence 1 (1990) 167—-187

Patel-Schneider, P.F.: A decidable first-order logic for knowledge representation.
Journal of Automated Reasoning 6 (1990) 361-388

McCune, W.: A Davis-Putnam program and its application to finite first-
order model search: Quasigroup existence problems. Technical Memorandum
ANL/MCS-TM-194, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, Argonne, IL, USA (1994)

Beckert, B., Hihnle, R.: Analytic tableaux. In Bibel, W., Schmitt, P., eds.:
Automated Deduction: A Basis for Applications. Volume I. Kluwer (1998) 11—
41

Beckert, B., Posegga, J.: IeanT4P: Lean tableau-based deduction. Journal of
Automated Reasoning 15 (1995) 339-358

Klingenbeck, S.: Counter Examples in Semantic Tableaux. Number 156 in
DISKI. infix (1996) PhD Thesis.

Briiggemann, T., Bry, F., Eisinger, N., Geisler, T., Panne, S., Schiitz, H., Torge,
S., Yahya, A.: Satchmo: Minimal model generation and compilation (system
description). In Imbert, J.L., ed.: Proc., Cinquiemes Journées Francophones
de Programmation en Logique et Programmation par Contraintes. Prototypes,
JFPLC 96., Clermont-Ferrand (1996) 9-14

Davis, M., Logeman, G., Loveland, D.: A machine program for theorem-proving.
Communications of the Association for Computing Theory 5§ (1962) 394-397
Davis, M., Putnam, H.: A computing procedure for quantification theory. Jour-
nal of the ACM 7 (1960) 201-215

Hasegawa, R.: Model generation theorem provers and their applications. In
Sterling, L., ed.: Proceedings of the 12th International Conference on Logic
Programming, Cambridge, MA, USA, MIT Press (1995) 7-8

Zhang, H., Stickel, M.E.: Implementing the Davis-Putnam algorithm by tries.
Technical report, Computer Science Department, The University of lowa, Iowa
City, Iowa, USA (1994)

Zhang, J., Zhang, H.: SEM: A system for enumerating models. In: Proc.,
International Joint Conference on Artificial Intelligence, IJCAI 95. (1995)
Zhang, J.: The generation and applications of finite models. Dissertation, In-
stitute of Software, Academia Sinica, Bejiing (1994)

Hasegawa, R., Fujita, H., Koshimura, M.: MGTP: A model generation theorem
prover — its advanced features and applications. In Baumgartner, P., Hihnle,
R., Posegga, J., eds.: Proc., 4th International Workshop on Theorem Proving
with Analytic Tableaux and Related Methods, TABLEAUX 95. Number 918 in
LNCS, Springer (1995) 1-15

Baumgartner, P.: Hyper tableaux — the next generation. In de Swart, H., ed.:
Proc., Automated Reasoning with Analytic Tableaux and Related Methods,
TABLEAUX 98. Volume 1397 of LNAI., Springer (1998)

Baumgartner, P., Furbach, U., Niemeld, L: Hyper tableaux. In: Logics in Al:
European Workshop, JELIA 96. Number 1126 in LNAI (1996)

162

5L

52.

53.

54.

55.

56.

57.
58.

59.

60.

6l.

62.

63.

64.

65.

66.

67.

68.

69.

70.

References

Loveland, D.W., Reed, D.W., Wilson, D.S.: SATCHMORE: SATCHMO with
RElevancy. Journal of Automated Reasoning 14 (1995) 325-351
Abdennadher, S., Schiitz, H.: Model generation with existentially quantified
variables and constraints. In Hanus, M., Heering, J., Meinke, K., eds.: Proc.,
Algebraic and Logic Programming. 6th International Joint Conference, ALP *97
— HOA ’97. Number 1298 in LNCS, Springer (1997) 256-272

Peltier, N.: Nouvelles Techniques pour la Construction de Modeles finis ou
infinis en Déduction Automatique. PhD thesis, Institut National Polytech-
nique de Grenoble (1997) ftp://ftp.imag.fr/pub/Mediatheque.IMAG/theses/97-
Peltier.Nicolas/.

Fermiiller, C., Leitsch, A., Tammet, T., Zamov, N.: Resolution Methods for the
Decision Problem. LNAI 679. Springer (1993)

Horacek, H., Konrad, K.: Presenting herband models with linguistically moti-
vated techniques. In: Proc., CIMCA 99. LNCS, forthcoming, Vienna, Austria,
fehlt noch! (1999)

Church, A.: A formulation of the simple theory of types. Journal of Symbolic
Logic 5 (1940) 56-68

Russell, B.: On denoting. Mind 14 (1905) 479-493

Gardent, C., Kohlhase, M., Konrad, K.: Higher-order colored unification: A
linguistic application. Technique es science informatiques 18 (1999)

Boyer, R., Lusk, E., McCune, W., Overbeek, R., Stickel, M., Wos, L.: Set
theory for first-order logic: Clauses for Godel’s axioms. Journal of Automated
Reasoning 2 (1986) 287-327

Barendregt, H.P.: The Lambda Calculus. North Holland (1984)

Farmer, W.M.: A partial-function version of Church’s simple theory of types.
Journal of Symbolic Logic 55 (1990) 1269-1291

Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof. Academic Press (1986)

Henkin, L.: Completeness in the theory of types. Journal of Symbolic Logic 15
(1950) 81-91

Benzmiiller, C., Kohlhase, M.: Extensional higher order resolution. In Kirch-
ner, C., Kirchner, H., eds.: Proc., 15th International Conference on Automated
Deduction (CADE), Lindau, Germany. Number 1421 in Springer LNAI (1998)
56-72

Andrews, P.B.: General models descriptions and choice in type theory. Journal
of Symbolic Logic 37 (1972) 385-394

Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic and
stochastic search. In: Proc., 13th National Conference on Artificial Intelligence,
AAALI 96, Portland, OR, USA (1996)

Baumgartner, P., Kithn, M.: Abductive coreference by model construction. In:
ICoS-1 Inference in Computational Semantics, Institute for Logic, Language and
Computation, University of Amsterdam (1999)

Salkin, H., Mathur, K.: Foundations of Integer Programming. North-Holland
(1989)

Programming Systems Lab Saarbriicken: (1998) Oz Webpage:
http://www.ps.uni-sb.de/oz/.

Lewis, D.: Scorekeeping in a language game. In Bauerle, R., Egli, U., van
Stechow, A., eds.: Semantics from different points of view. Springer, Berlin
(1979) 172-185

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

8L

82.
83.

84.

85.

86.
87.
88.

89.

90.

91.

92.

93.

References 163

Strawson, P.F.: On referring. Mind 59 (1950) 320-344

Collins, A., Brown, J., Larkin, K.: Inference in text understanding. In Spiro,
R., Bruce, B., Brewer, W., eds.: Theoretical Issues in Language Comprehension.
Lawrence Erlbaum Associates, New Jersey (1978)

Webber, B.: So what can we talk about now? In Brady, M., Berwick, R., eds.:
Computational Models of Discourse. MIT Press, Cambridge MA (1982) 331-371
Kamp, H.: A theory of truth and semantic representation. In Groenendijk,
J., Janssen, T., Stokhof, M., eds.: Formal Methods in the Study of Language.
Mathematisch Centrum Tracts, Amsterdam (1981) 277 — 322

Karttunen, L.: Discourse referents. In McCawley, J., ed.: Syntax and Semantics
7. Academic Press, New York (1976) 363-385

Carpenter, B.: Type-Logical Semantics. The MIT Press, Cambridge, Mas-
sachusetts (1993)

Groenendijk, J., Stokhof, M., Veltman, F.: Coreference and modality. In: Hand-
book of Contemporary semantic theory. Blackwell, Oxford (1995)

Heim, I.: The semantics of definites and indefinite noun phrases in English. PhD
thesis, University of Massachussetts, Amherst (1982)

Asher, N., Wada, H.: A computational account of syntactic, semantic and dis-
course principles for anaphora resolution. Journal of Semantics 6 (1988) 309-344
Haddock, N.: Incremental Semantics and Interactive Syntactic Processing. PhD
thesis, University of Edinburgh (1989) advisor: M. Steedman.

Cooper, R.: The interpretation of pronouns. In Heny, F., Schnelle, H., eds.:
Syntax and semantics 10. Academic Press, New York (1979) 61-92

Kadmon, N.: Uniqueness. Linguistics and Philosophy 13 (1990) 273-324
Westerstahl, D.: Determiners and context sets. In van Benthem, J., Meulen,
A.T., eds.: Generalised quantifiers in natural language. Foris, Dordrecht (1991)
Zeevat, H.: Presupposition and accomodation in update semantics. Journal of
Semantics 9 (1992) 379412

Dalrymple, M., Kanazawa, M., Kim, Y., Mchombo, S., Peters, S.: Reciprocal
expressions and the concept of reciprocity. In Barbosa, P., Fox, D., Hagstrom, P.,
McGinnis, M., eds.: Is the Best Good Enough?: Proc. Workshop on Optimality
in Syntax, The MIT Press (1996)

Langendoen, D.T.: The logic of reciprocity. Linguistic Inquiry 9 (1978) 177-197
Philip, W.: Children who know each other. ms., OTS, Utrech University (1996)
Winter, Y.: What does the strongest meaning hypothesis mean? In: Proc., Sixth
Semantics and Linguistic Theory Conference. (1996)

Blackburn, P., Bos, J., Kohlhase, M., de Nivelle, H.: Theorem proving for nat-
ural language understanding. In: Proc., Workshop Problem Solving Methods in
Automated Deduction at CADE 98. (1998)

Pierce, C.S.: Abduction and induction. In Buchler, J., ed.: Philosophical Writ-
ings of Pierce. Dover Books (1955) 150-156

Hobbs, J., Stickel, M., Appelt, D., Martin, P.: Interpretation as abduction.
Atrtificial Intelligence 63 (1993) 69-142

Benzmiiller, C., Kohlhase, M.: LEO, a higher order theorem prover. In Kirch-
ner, C., Kirchner, H., eds.: Proc., 15th Conference on Automated Deduction,
CADE 98. Number 1421 in LNAI, Lindau, Germany, Springer (1998) 139-144
Suttner, C., Sutcliffe, G.: The TPTP problem library (TPTP v2.2.0). Tech-
nical Report 97-04, Department of Computer Science, James Cook University,
Townsville, Australia (1998)

This page intentionally left blank

Index

0/1-integer variable, 48
Pn-reduction, 32
A-abstraction, 32
A-terms, 32

ab-index, 92

abduction, 105, 106
abductive explanation, 106
accommodation, 61
allowable hypothesis, 106
anaphor, 61

answer, 113

antecedent group, 80
atom, 10, 34

atom weight, 139

background theory, 106

base types, 31

binary logical connectives, 33
Bliksem, 14

bound variable, 32

cardinality quantifiers, 136
closed A-term, 32
combinatorial, 10
complement, 10
compositionality, 26
comprehension axioms, 40
Conservative Minimality:, 97
constant frame, 40
constant frame Cg, 40
constraint reification, 133
constraint solver, 47
context, 106

database, 113

deductive databases, 9
definite descriptions, 60
definites, 60
denotation, 33
Denotatpflicht, 40
diadic quantifier constants, 33
diagnosis, 9, 13
discourse model, 62
distribution, 126
domain minimal, 55
domain-minimal, 13

equality sign, 33
expert systems, 9

Falcon, 23

Finder, 14

FinFiMo, 14

finite constant frame, 40
finite mathematics, 9
finite model, 11

finite model generators, 14
formula, 34

frame, 33

function application, 32
function domain, 33
function-free quantified, 39

generalised determiners, 26
generalised frames, 35
generalised interpretation, 35
generalised quantifiers, 26
ground tableaux, 16

guarded fragment, 14

Herbrand equality, 45

166 Index

Herbrand models, 11
higher-order definitions, 34

identifying property, 67

Inclusive Alternative Ordering, 83

inference costs, 113

initial constant frame C3, 40

Intermediate Alternative Reciprocity,
84

Intermediate Reciprocity, 84

interpretation of the simply typed
A-calculus, 33

interpretations, 10

isomorphic models, 145

languages with exponents, 23
LDPP, 23

lean deduction, 127

Lisp, 25

literal, 10, 34

literal sets, 20

locally minimal model, 55
logic, 33

Logic Definition Structure, 131
Logic Programming, 113
logical constants, 33
logically equivalent, 36

Mace, 23

Maximise Meaning Hypothesis, 89
MGTP, 23

MM-Satchmo, 12

model, 10

model of a set of formulas &, 35
monadic quantifier constants, 33
MoreThan, 29

MosrT, 45

observation, 106

ONE, 44

One-Way Weak Reciprocity, 83

overgeneration problem of abduction,
105

p-minimal, 13

parameter constants, 34

parameters, 34

planning, 9

Pos(M), 12

positive model, 12

predicate-specific minimal models, 14

problem specification, 129

program synthesis, 9

proof engines, 137

propagation, 126

propagator procedures, 131
propositional decision procedures, 20
PUHR, 17

quasi-group, 143
query, 113

range-restricted rules, 18

SAT, 15

Satchmo, 14, 17

Sato, 23

saturated, 16

scheduling, 9

scope relation, 80

Sem, 23

set exclusion operator, 81

signed formulas, 48

simply typed A-calculus, 25

single-solution problems, 143

specification, 10

standard frames, 35

Strong Reciprocity, 82

Strongest Meaning Hypothesis (SMH),
80

Strongest Meaning Hypothesis for
Reciprocals, 88

subset condition, 65

subset-minimal, 12

theory, 10

truth conditions, 2

type ¢ of individuals, 31
type o of truth values, 31
type constructor, 31
types, 31

unary logical connectives, 33
unicity condition, 65
unification, 17

unique-name assumption, 41
universe of discourse, 10

variable assignment, 33

Weighted Abduction, 113
weighted abduction, 107, 113
weights, 113

Lecture Notes in Artificial Intelligence (LNAI)

Vol. 2953: K. Konrad, Model Generation for Natural Lan-
guage Interpretation and Analysis. XIII, 166 pages. 2004.

Vol. 2930: F. Winkler Ed.), Automated Deduction in Ge-
ometry. VII, 231 pages. 2004.

Vol. 2923: V. Lifschitz, I. Niemeld (Eds.), Logic Program-
ming and Nonmonotonic Reasoning. IX, 365 pages. 2004.

Vol. 2913: T.M. Pinkston, V.K. Prasanna (Eds.), High Per-
formance Computing - HiPC 2003. Proceedings, 2003.
XX, 512 pages. 2003.

Vol. 2903: T.D. Gedeon, L.C.C. Fung (Eds.), AT 2003: Ad-
vances in Artificial Intelligence. Proceedings, 2003. XVI,
1075 pages. 2003.

Vol. 2902: FM. Pires, S.P. Abreu (Eds.), Progress in Ar-
tificial Intelligence. Proceedings, 2003. XV, 504 pages.
2003.

Vol. 2892: F. Dau, The Logic System of Concept Graphs
with Negation. XI, 213 pages. 2003.

Vol. 2891: J. Lee, M. Barley (Eds.), Intelligent Agents and
Multi-Agent Systems. Proceedings, 2003. X, 215 pages.
2003.

Vol. 2882: D. Veit, Matchmaking in Electronic Markets.
XV, 180 pages. 2003.

Vol. 2871: N. Zhong, Z.W. Ras, S. Tsumoto, E. Suzuki
(Eds.), Foundations of Intelligent Systems. Proceedings,
2003. XV, 697 pages. 2003.

Vol. 2854: J. Hoffmann, Utilizing Problem Structure in
Planing. XIII, 251 pages. 2003.

Vol. 2843: G. Grieser, Y. Tanaka, A. Yamamoto (Eds.),
Discovery Science. Proceedings, 2003. XII, 504 pages.
2003.

Vol. 2842: R. Gavaldd, K.P. Jantke, E. Takimoto (Eds.),
Algorithmic Learning Theory. Proceedings, 2003. XI, 313
pages. 2003.

Vol. 2838: N. Lavrat, D. Gamberger, L. Todorovski,
H. Blockeel (Eds.), Knowledge Discovery in Databases:
PKDD 2003. Proceedings, 2003. X VI, 508 pages. 2003.

Vol. 2837: N. Lavra&, D. Gamberger, L. Todorovski, H.
Blockeel (Eds.), Machine Learning: ECML 2003. Pro-
ceedings, 2003. XVI, 504 pages. 2003.

Vol. 2835: T. Horvith, A. Yamamoto (Eds.), Inductive
Logic Programming. Proceedings, 2003. X, 401 pages.
2003.

Vol. 2821: A. Giinter, R. Kruse, B. Neumann (Eds.), KI
2003: Advances in Artificial Intelligence. Proceedings,
2003. XII, 662 pages. 2003.

Vol. 2807: V. Matousek, P. Mautner (Eds.), Text, Speech
and Dialogue. Proceedings, 2003. XIII, 426 pages. 2003.

Vol. 2801: W. Banzhaf, J Ziegler, T. Christaller, P. Dittrich,
J.T. Kim (Eds.), Advances in Artificial Life. Proceedings,
2003. X VI, 905 pages. 2003.

Vol. 2797: O.R. Zaiane, S.J. Simoff, C. Djeraba (Eds.),
Mining Multimedia and Complex Data. XII, 281 pages.
2003.

Vol. 2792: T. Rist, R. Aylett, D. Ballin, J. Rickel (Eds.),
Intelligent Virtual Agents. Proceedings, 2003. XV, 364
pages. 2003.

Vol. 2782: M. Klusch, A. Omicini, S. Ossowski, H. Laa-
manen (Eds.), Cooperative Information Agents VII. Pro-
ceedings, 2003. XI, 345 pages. 2003.

Vol. 2780: M. Dojat, E. Keravnou, P. Barahona (Eds.), Ar-
tificial Intelligence in Medicine. Proceedings, 2003. XIII,
388 pages. 2003.

Vol. 2777: B. Schélkopf, M.K. Warmuth (Eds.), Learning
Theory and Kernel Machines. Proceedings, 2003. XIV,
746 pages. 2003.

Vol. 2752: G.A. Kaminka, P.U. Lima, R. Rojas (Eds.),
RoboCup 2002: Robot Soccer World Cup VI. XVI, 498
pages. 2003.

Vol. 2741: F. Baader (Eds.), Automated Deduction —
CADE-19. Proceedings, 2003. XTI, 503 pages. 2003.

Vol. 2705: S. Renals, G. Grefenstette (Eds.), Text- and
Speech-Triggered Information Access. VII, 197 pages.
2003.

Vol. 2703: O.R. Zaiane, J. Srivastava, M. Spiliopoulou, B.
Masand (Eds.), WEBKDD 2002 - MiningWeb Data for
Discovering Usage Patterns and Profiles. IX, 181 pages.
2003.

Vol. 2700: M.T. Pazienza (Eds.), Extraction in the Web
Era. XIII, 163 pages. 2003.

Vol. 2699: M.G. Hinchey, J.L. Rash, W.F. Truszkowski,
C.A. Rouff, D.F. Gordon-Spears (Eds.), Formal Ap-
proaches to Agent-Based Systems. IX, 297 pages. 2002.

Vol. 2691: V. Matik, J.P. Miiller, M. Pechoucek (Eds.),
Multi-Agent Systems and Applications III. Proceedings,
2003. XIV, 660 pages. 2003.

Vol. 2684: M.V. Butz, O. Sigaud, P. Gérard (Eds.), Antic-
ipatory Behavior in Adaptive Learning Systems. X, 303
pages. 2003.

Vol. 2671: Y. Xiang, B. Chaib-draa (Eds.), Advances in
Artificial Intelligence. Proceedings, 2003. XIV, 642 pages.
2003.

Vol. 2663: E. Menasalvas, J. Segovia, P.S. Szczepaniak
(Eds.), Advances in Web Intelligence. Proceedings, 2003.
XII, 350 pages. 2003.

Vol. 2661: PL. Lanzi, W. Stolzmann, S.W. Wilson (Eds.),
Learning Classifier Systems. VII, 231 pages. 2003.

Vol. 2654: U. Schmid, Inductive Synthesis of Functional
Programs. XXII, 398 pages. 2003.

Vol. 2650: M.-P. Huget (Eds.), Communications in Mul-
tiagent Systems. VIII, 323 pages. 2003.

Vol. 2645: M.A. Wimmer (Eds.), Knowledge Management
in Electronic Government. Proceedings, 2003. XI, 320
pages. 2003.

Vol. 2639: G. Wang, Q. Liu, Y. Yao, A. Skowron (Eds.),
Rough Sets, Fuzzy Sets, Data Mining, and Granular Com-
puting. Proceedings, 2003. X VII, 741 pages. 2003.

Vol. 2637: K.-Y. Whang, J. Jeon, K. Shim, J. Srivastava,
Advances in Knowledge Discovery and Data Mining. Pro-
ceedings, 2003. XVIII, 610 pages. 2003.

Vol. 2636: E. Alonso, D. Kudenko, D. Kazakov (Eds.),
Adaptive Agents and Multi-Agent Systems. XIV, 323
pages. 2003.

Vol. 2627: B. O’Sullivan (Eds.), Recent Advances in Con-
straints. X, 201 pages. 2003.

Vol. 2600: S. Mendelson, A.J. Smola (Eds.), Advanced
Lectures on Machine Learning. IX, 259 pages. 2003.

Vol. 2592: R. Kowalczyk, J.P. Miiller, H. Tianfield, R. Un-
land (Eds.), Agent Technologies, Infrastructures, Tools,
and Applications for E-Services. XVII, 371 pages. 2003.

Vol. 2586: M. Klusch, S. Bergamaschi, P. Edwards, P. Petta
(Eds.), Intelligent Information Agents. VI, 275 pages.
2003.

Vol. 2583: S. Matwin, C. Sammut (Eds.), Inductive Logic
Programming. X, 351 pages. 2003.

Vol. 2581:J.S. Sichman, F. Bousquet, P. Davidsson (Eds.),
Multi-Agent-Based Simulation. X, 195 pages. 2003.

Vol. 2577: P. Petta, R. Tolksdorf, F. Zambonelli (Eds.), En-
gineering Societies in the Agents World III. X, 285 pages.
2003.

Vol. 2569: D. Karagiannis, U. Reimer (Eds.), Practical
Aspects of Knowledge Management. Proceedings, 2002.
X111, 648 pages. 2002.

Vol. 2560: S. Goronzy, Robust Adaptation to Non-Native
Accents in Automatic Speech Recognition. XI, 144 pages.
2002.

Vol. 2557: B. McKay, J. Slaney (Eds.), Al 2002: Ad-
vances in Artificial Intelligence. Proceedings, 2002. XV,
730 pages. 2002.

Vol. 2554: M. Beetz, Plan-Based Control of Robotic
Agents. XI, 191 pages. 2002.

Vol. 2543: O. Bartenstein, U. Geske, M. Hannebauer, O.
Yoshie (Eds.), Web Knowledge Management and Decision
Support. X, 307 pages. 2003.

Vol. 2541: T. Barkowsky, Mental Representation and Pro-
cessing of Geographic Knowledge. X, 174 pages. 2002.

Vol. 2533: N. Cesa-Bianchi, M. Numao, R. Reischuk
(Eds.), Algorithmic Learning Theory. Proceedings, 2002.
XI, 415 pages. 2002.

Vol. 2531: J. Padget, O. Shehory, D. Parkes, N.M. Sadeh,
W.E. Walsh (Eds.), Agent-Mediated Electronic Commerce
IV. Designing Mechanisms and Systems. XVII, 341 pages.
2002.

Vol. 2527: F.J. Garijo, J.-C. Riquelme, M. Toro (Eds.),
Advances in Artificial Intelligence - IBERAMIA 2002.
Proceedings, 2002. X VIII, 955 pages. 2002.

Vol. 2522: T. Andreasen, A. Motro, H. Christiansen, H.L.
Larsen (Eds.), Flexible Query Answering Systems. Pro-
ceedings, 2002. X, 383 pages. 2002.

Vol. 2514: M. Baaz, A. Voronkov (Eds.), Logic for Pro-
gramming, Artificial Intelligence, and Reasoning. Pro-
ceedings, 2002. XIII, 465 pages. 2002.

Vol. 2507: G. Bittencourt, G.L. Ramalho (Eds.), Advances
in Artificial Intelligence. Proceedings, 2002. XIII, 417
pages. 2002.

Vol. 2504: M.T. Escrig, F. Toledo, E. Golobardes (Eds.),
Topics in Artificial Intelligence. Proceedings, 2002. XI,
427 pages. 2002.

Vol. 2499: S.D. Richardson (Eds.), Machine Translation:
From Research to Real Users. Proceedings, 2002. XXI,
254 pages. 2002.

Vol. 2484: P. Adriaans, H. Fernau, M. van Zaanen (Eds.),
Grammatical Inference: Algorithms and Applications.
Proceedings, 2002. IX, 315 pages. 2002.

Vol. 2479: M. Jarke, J. Koehler, G. Lakemeyer (Eds.),
KI2002: Advances in Artificial Intelligence. Proceedings,
2002. X111, 327 pages. 2002.

Vol. 2475: J.J. Alpigini, J.F. Peters, A. Skowron, N. Zhong
(Eds.), Rough Sets and Current Trends in Computing. Pro-
ceedings, 2002. XV, 640 pages. 2002.

Vol. 2473: A. Gémez-Pérez, V.R. Benjamins (Eds.),
Knowledge Engineering and Knowledge Management.
Ontologies and the Semantic Web. Proceedings, 2002. XI,
402 pages. 2002.

Vol. 2466: M. Beetz, J. Hertzberg, M. Ghallab, M.E. Pol-
lack (Eds.), Advances in Plan-Based Control of Robotic
Agents. VIII, 291 pages. 2002.

Vol. 2464: M. O’Neill, R.F.E. Sutcliffe, C. Ryan, M. Eaton,
N.J.L. Griffith (Eds.), Artificial Intelligence and Cognitive
Science. Proceedings, 2002. XI, 247 pages. 2002.

Vol. 2448: P. Sojka, I. Kopecek, K. Pala (Eds.), Text,
Speech and Dialogue. Proceedings, 2002. XII, 481 pages.
2002.

Vol. 2447: D.J. Hand, N.M. Adams, R.J. Bolton (Eds.),
Pattern Detection and Discovery. Proceedings, 2002. XII,
227 pages. 2002.

Vol. 2446: M. Klusch, S. Ossowski, O. Shehory (Eds.),
Cooperative Information Agents VI. Proceedings, 2002.
XI, 321 pages. 2002.

Vol. 2445: C. Anagnostopoulou, M. Ferrand, A. Smaill
(Eds.), Music and Artificial Intelligence. Proceedings,
2002. VIII, 207 pages. 2002.

Vol. 2443: D. Scott (Eds.), Artificial Intelligence: Method-
ology, Systems, and Applications. Proceedings, 2002. X,
279 pages. 2002.

Vol. 2432: R. Bergmann, Experience Management. XXI,
393 pages. 2002.

Vol. 2431: T. Elomaa, H. Mannila, H. Toivonen (Eds.),
Principles of Data Mining and Knowledge Discovery. Pro-
ceedings, 2002. XIV, 514 pages. 2002.

Vol. 2430: T. Elomaa, H. Mannila, H. Toivonen (Eds.),
Machine Learning: ECML 2002. Proceedings, 2002. XTII,
532 pages. 2002.

Vol. 2427: M. Hannebauer, Autonomous Dynamic Recon-
figuration in Multi-Agent Systems. XXI, 284 pages. 2002.

Vol. 2424: S. Flesca, S. Greco, N. Leone, G. Ianni (Eds.),
Logics in Artificial Intelligence. Proceedings, 2002. XIII,
572 pages. 2002.

	Table of Contents
	1 Motivation
	1.1 The Subject of This Volume
	1.2 Interpretation, Analysis, Computation
	1.2.1 Interpretation
	1.2.2 Analysis
	1.2.3 Computation

	1.3 Acknowledgments

	Part I Logics
	2 Model Generation
	2.1 Introduction
	2.2 Preliminaries
	2.3 Topics
	2.4 Methods
	2.5 Related Work

	3 Higher-Order Model Generation
	3.1 The λ-Calculus in Linguistics
	3.2 Higher-Order Logic
	3.3 A Fragment of Higher-Order Logic
	3.4 Constructing Models

	4 Minimal Model Generation
	4.1 Preliminaries
	4.2 Decidability of Local Minimality

	Part II Linguistics
	5 The Analysis of Definites
	5.1 Introduction
	5.2 Some Representations
	5.3 What We Have Learned so Far

	6 Reciprocity
	6.1 Introduction
	6.2 Exploring the Meaning of Each Other
	6.3 Inference to Best Reciprocal Meaning
	6.4 Experiments
	6.5 Loose Ends
	6.6 How We Can Understand Each Other

	7 Abduction
	7.1 What Is Abduction?
	7.2 Models for Anaphora Resolution
	7.3 Weighted Abduction

	8 Implementation
	8.1 Introduction
	8.2 System Architecture
	8.3 The Syntax
	8.4 The Semantics
	8.5 Proof Engines and Controlling Search
	8.6 System Performance

	9 Conclusion
	9.1 Why Inference Is Worth the Effort
	9.2 Contributions
	9.3 Models as Meaning

	A Some Example Problems
	A.1 The Job Puzzle
	A.2 Reciprocals: The Boston Pitchers

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W

