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Preface

Tu1s monograph has its genesis in a paper of the same name, written
in 1994 as a contribution to the proceedings of a conference on
the philosophy of mathematics that was held in Munich during the
preceding vear. Because of various delays, these proceedings (The
Philosophy of Mathematics Today, edited by M. Schirn) were not
themselves published until 1998. Peter Momtchiloff from Clarendon
Press offered to publish an expanded version of the paper as a
separate monograph; and I was happy to agree. I have corrected
various errors in the original paper, improved the exposition here
and there, and incorporated some brief comments on the more
recent literature. The major change is the addition of a new part on
the context principle (which was omitted from the original paper for
lack of space).

The earlier discussion of the context principle contained both a
negative part, dealing with the difficulties in providing a proper
formulation of the principle, and a positive part, which attempted
to show how these difficulties might be met. I now appreciate that
the positive part calls for a new approach to the philosophy of
mathematics—what I call ‘procedural postulationalism’—and that
discussion of it is best postponed to another occasion. I have
therefore presented only the criticisms from the negative part. But
it is important to bear in mind that these criticisms are intended as
the prolegomena to a more constructive account.

I am much indebted to the participants of the Munich confer-
ence—and especially to Boolos, Clark, Hale, Heck, and Wright—for
reawakening my interest in the topic of logicism. Preliminary ver-
sions of the paper were given at the third Austrian philosophy con-
ference in Salzburg, at a talk at the City University of New York, at a
philosophy of mathematics workshop at the University of California
at Los Angeles, and at a workshop on abstraction in St Andrews; and I
am grateful for the comments that I received at those meetings. I have
been greatly influenced by the writings of Michael Dummett and
Crispin Wright and have greatly benefited from the comments of
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Tony Martin. Joshua Schechter read through the original published
paper and suggested many helpful improvements, both typographic
and substantive; and Sylvia Jaffrey, for OUP, provided careful copy-
editing of a disorderly text.

I am very gratetul to John Burgess, Roy Cook, Philip Ebert, Stewart
Shapiro and Alan Weir for pointing out some infelicities and errors
in the original hardback edition of the book and I have attempted to
correct these (along with some other minor infelicites) in the present
paperback edition.
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Introduction

THE present monograph has been written more from a sense of
curiosity than commitment. I was fortunate enough to attend the
Munich Conference on the Philosophy of Mathematics in the Sum-
mer of 94 and to overhear a discussion of recent work on Frege’s
approach to the foundations of mathematics. This led me to inves-
tigate certain technical problems connected with the approach; and
these led me, in their turn, to reflect on certain philosophical aspects
of the subject. I was concerned to see to what extent a Fregean theory
of abstraction could be developed and used as a foundation for
mathematics and to place the development of such a theory within
a general framework for dealing with questions of abstraction. To my
surprise, I discovered that there was a very natural way to develop a
Fregean theory of abstraction and that such a theory could be used to
provide a basis for both arithmetic and analysis. Given the context
principle, the logicist might then argue that the theory was capable of
yielding a philosophical foundation for mathematics, one that could
account both for our reference to various mathematical objects
and for our knowledge of various mathematical truths. I myself am
doubtful whether the theory can legitimately be put to this use. But,
all the same, there is surely considerable intrinsic interest in seeing
how the theory of abstraction might be developed and whether it
might be capable of embedding a significant portion of mathematics,
even if the theory itself is in need of further foundation.

The monograph is in four parts. The first is devoted to philoso-
phical matters and serves to explain the motivation for the technical
work and its significance. It is centred on three main questions: What
are the correct principles of abstraction? In what sense do they serve
to define the abstracts with which they deal? To what extent can they
provide a foundation for mathematics? The second part (omitted
from the original paper) discusses the context principle, both as a
general basis for setting up contextual definitions and in its particular
application to numbers. The third part proposes and investigates a set
of necessary and sufficient conditions for an abstraction principle to
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be acceptable. The acceptable principles, according to this criterion,
are precisely determined and it is shown, in particular, that there is a
strongest such principle. The fourth and final part attempts to
develop a general theory of abstraction within the technical limita-
tions set out by the third part; the theory is equipped with a natural
class of models; and it is shown to provide a foundation for both
arithmetic and analysis.
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AN abstraction principle associates objects with the items from a
given domain, the objects associated with two items being the
same when the items are suitably related and the objects being dis-
tinct when the items are not so related. For example: we may abstract
on concepts in accordance with the principle that concepts between
which there exists a one—one correspondence are to be associated
with the same number; or we may abstract on lines in accordance
with the principle that parallel lines are to be associated with the same
direction.

We shall follow Frege (1892) in taking there to be a basic distinc-
tion between objects and concepts. Objects are referred to by means
of singular terms and concepts by means of predicates; and variables
for objects and concepts are respectively taken to occupy either a
nominal or a predicative position. Although concepts may correspond
to objects, no concept can sensibly be said to be an object, since this
would involve a grammatical confusion between a singular term and
a predicate.

A principle of abstraction is said to be conceptual when the items
upon which it abstracts are concepts and it is said to be objectual
when the items upon which it abstracts are objects. Thus of the two
examples above, the first is a principle of conceptual abstraction and
the second a principle of objectual abstraction. The two kinds of
principle are fundamentally different; for the conceptual principles
involve a ‘projection’ of the larger domain of concepts into the
smaller domain of objects, where these objects may themselves fall
under the concepts upon which an abstraction is made. It is this
special reflexive feature of the conceptual principles that makes them
so powerful—and also so dangerous.

The serious study of conceptual abstraction, as it is understood
here, began with Frege. He was the first to provide a clear statement of
its principles and the first to provide a cogent account of how such
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principles might be of use in determining an ontology of abstract
objects and a foundation for mathematics. Two principles of concep-
tual abstraction are prominent in his work. The first is the principle
for abstracting to numbers, which was mentioned above and will be
called ‘Hume’s Law’ or ‘Principle’. The second is the principle of
extensional abstraction, Law V of the Grundgesetze; it associates ex-
tensions with concepts, the extensions being the same when the
objects falling under the concepts are the same.

Frege attempted to derive the whole of arithmetic and analysis
from Law V with the help of other, less problematic, logical prin-
ciples. But the attempt failed if for no other reason than that Law V
leads, by the argument of Russell’s paradox, to a contradiction. One
might have thought, prior to the discovery of the paradoxes, that
extensional abstraction was innocuous. For what is to prevent one
from picking out the extension of each concept? Indeed, the appeal of
extensional abstraction in this regard would seem to extend to all
forms of conceptual abstraction. For just as there would appear to be
nothing to prevent one from picking out the extension of each
concept, so there would appear to be nothing to prevent one from
picking out its counter-extension or its number or any other aspect
of it.

But the appeal of conceptual abstraction in this regard depends
upon overlooking the critical respect in which it differs from objec-
tual abstraction. For what makes it appear so innocuous is the view of
concepts as being given independently of the objects that are ab-
stracted from them. Once it is recognized that the abstracts them-
selves may play a role in the determination of concepts, it is no longer
so clear that one can simultaneously abstract on the concepts and
‘conceptualize’ over the resulting objects.

Russell’s paradox has, until recently, tended to deflect attention
away from the topic of conceptual abstraction. Philosophers and
logicians alike have followed Frege’s own lead in considering other
approaches to the foundation of mathematics and have not been so
interested in the topic of conceptual abstraction as such. The preva-
lent view is that abstracts should just be treated as equivalence classes
(or perhaps we should say equivalence sefs). The theory of abstraction
thereby becomes a part of the much more comprehensive theory of
sets or classes.

But conceptual abstraction, as so conceived, represents a double
departure from the Fregean conception. In the first place, it is not
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conceptual, i.e. it is not abstraction on concepts, since the members
of the classes are objects, not concepts; in the second place, it is not
even Fregean abstraction, since the classes in question will not arise
from a principle of abstraction of the sort envisaged by Frege.

Maybe the Fregean idea of conceptual abstraction should be given
up; and maybe the current conception of abstraction should take its
place. But it is surely premature to dismiss the Fregean approach on
the grounds of a single failure.

In developing the Fregean approach, there are three main ques-
tions that need to be considered. The first is which, if any, of the
principles of conceptual abstraction are true (or otherwise accept-
able); the second is, given that an abstraction principle is true, what
kind of truth is it and how, in particular, does it relate to the objects
with which it deals; and the third is whether abstraction principles
can serve as a foundation for mathematics or, at least, for a significant
part thereof. Frege, in his state of pre-Russellian innocence, could
provide oversimplified answers to all three questions. He could em-
brace all abstraction principles indiscriminately by way of their re-
duction to extensional abstraction; he could treat Law V as definitive
of extension; and, with the help of the Law, he could provide a
foundation for arithmetic and analysis. On all these matters, he was
mistaken. But we, in our state of post-Russellian sophistication, can
still profitably consider the questions that Frege’s work raises even if
we cannot accept his answers.

1. Truth

Of our three questions the most important is certainly the first; for it
is only when one has settled on the truth of a principle of abstraction
that one can sensibly raise the question of its status as a truth or its
role in providing a foundation for mathematics. Any abstraction
principle can be stated in the form:

the abstract of @ = the abstract of Biff ... ... ..,

where the variables ‘o’ and ‘B’ range over the items (be they objects or
concepts) on which the abstraction is to be performed, the phrase ‘the
abstract of” stands in for an abstraction operator, such as ‘the number
of” or ‘the direction of’, and the clause ‘... o...[3...” represents a
criterion of identity, such as equinumerosity or coextensiveness. Two
necessary conditions for the truth of an abstraction principle hold as
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a matter of logic (see sect. 3.4). In the first place, it follows from the
truth of an abstraction principle that its underlying criterion of
identity on concepts should be an equivalence relation (reflexive,
symmetric, and transitive). Thus each abstraction principle will in-
duce a partition of the domain of items into mutually exclusive
equivalence classes.

Secondly, it follows from the truth of an abstraction principle that
the identity criterion should not be inflationary, the number of
equivalence classes must not outstrip the number of objects. There
must, that is to say, be a one—one correspondence between all the
equivalence classes, or their representatives, on the one hand, and
some or all of the objects, on the other hand. It is, of course, exactly
on this score, that Law V proves unacceptable; for where there are n
objects, it demands that there be 2" abstracts.

The question naturally arises as to whether these two necessary
conditions are jointly sufficient for the truth of a principle of con-
ceptual abstraction. In considering this question, it is important to
distinguish between circular and non-circular criteria of identity.
A criterion is circular or not according as to whether it involves
the very notion of abstraction that is in question.' The standard
criteria of identity, such as equinumerosity or coextensionality, are
non-circular; while the identity criterion behind Frege’s proposed
amendation to Law V is not, since coextensionality is restricted to
the objects that are distinct from the given abstracts.

It is clear from the consideration of examples that our proposed
conditions are not sufficient for the truth of abstraction principles
whose identity criterion is circular. The general difficulty is that how
one associates objects with equivalence classes of concepts will help
determine what those equivalence classes are. Thus there may be no
consistent way of simultaneously fixing the equivalence classes and
associating them with objects (see the comments to lemma III. 4.1).

In the non-circular case, however, there is no such impediment to
the truth of an abstraction principle; the concepts can be associated
with objects in such a way as to render the principle true (lemma IIL
4.1). It is therefore tempting to suppose, on grounds of a general

' A non-circular criterion can involve the notion of abstraction associated with some
other criterion of identity as long as there is no circularity in the system of principles as a
whole. The possibility of such non-circular systems of principles is countenanced in the
technical discussion of Parts III and IV but, for purposes of simplicity, I have here assumed
that no non-circular criterion will invoke any other criteria.
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principle of plenitude for abstract objects, that an abstraction
principle, in such a case, is true. Since there can be abstract objects
of the sort in question, it is supposed that there are such objects.

It is important in considering this view to distinguish the question
of whether a given principle is correct from the question of whether
it is genuinely a principle of abstraction. Whether something is a
principle of abstraction has been for us a matter of form; the principle
must state an equivalence between an appropropriate form of ident-
ity statement, on the one side, and an appropriate form of identity
criterion, on the other. But from among the abstraction principles in
this formal sense, only some are abstraction principles in a genuine or
‘material” sense. This point can be made especially vivid if we bear
in mind that to any statement whatever there will correspond an
abstraction principle; for we may take its criterion of identity to be
one which identifies two concepts just in case the statement
holds (cf. Heck (1992)). The statement and the principle will then
be equivalent (at least granted the existence of a universal method of
abstraction, one which identifies all concepts). But a principle ob-
tained in this way will not in general be a genuine principle of ab-
straction; for its truth will not rest entirely, or even principally, on the
existence of abstracts.

I assume it would be very difficult to say what makes a principle
a genuine principle of abstraction. However, our present concern is
not with picking out the genuine principles from among those
that are true but in picking out the true principles from among
those that are of the required form; and, regarded in this way, the
proposed condition of sufficiency is far more plausible.

Unfortunately, it is still subject to difficulties. One, which we
dub ‘additivity’, is familiar from the literature (see e.g. Boolos (1990:
273—4)). For two principles may make incompatible demands on the
size of the universe, even when each alone makes a consistent demand
on its size. We may imagine a principle, for example, that inflates on
finite universes but not on infinite ones and another principle that
inflates on infinite universes but not on finite ones. The two principles,
when taken together, will inflate on any universe; and so our proposed
conditions cannot be taken to guarantee the truth of the principles.

Such a difficulty could be overcome if the domain of objects were
taken to be given in advance of the adoption of any principle of
abstraction. The non-inflationary principles could then be taken to
be those that were non-inflationary on this particular domain rather
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than on some domain or other; and the clash between the different
non-inflationary principles would then be avoided. The natural way
to fix the domain in advance is to let it be the universal domain, i.e. to
be inclusive of all objects whatever. The idea is that somehow, prior to
the adoption of any principle of abstraction, we can determine the
size of the universe and that, once this is done, we can then determine
which of the principles are true.

But even if we allow that a universe, of fixed size, can be given prior
to the adoption of any principles of abstraction, there is another, less
familiar, difficulty that can arise. Let us suppose that there are more
principles than objects or, to be more exact, that they give rise to
more equivalence classes of concepts than there are objects. Then, on
the assumption that the abstractions associated with distinct equiva-
lence classes of concepts are distinct, there will again be more ab-
stracts than objects. Thus although no principle alone inflates on the
given universe, taken together they do inflate. We have what might be
called the problem of hyperinflation.

This problem can arise even with abstraction principles that merely
serve to divide the universe of concepts into two. For given any
concept, we may divide the universe of concepts into those that are
coextensive with the given concept and those that are not. Each such
division then yields 2 abstracts; but, taken together, they yield 2"
abstracts, where 7 is the size of the universe.”

% There is a corresponding problem of hyperinflation for objectual abstraction even
though there is no corresponding problem of inflation. For given any concept F, we may
divide the universe of objects into those that F and those that do not. Thus once we allow
there to be multiple principles of abstraction, the difference in safety between the objectual
and conceptual cases is not so great.

Although the problem has been stated in the metalanguage using standard set-theoretic
machinery, it is readily reproduced in the object-language. Thus, in the case of objectual
abstraction, let [F] be the divisor method of abstraction associated with the concept F
Subject [F] to the principle:

VEVx,y ([Flx = [Fly <> (Fx <= Fy));
lay down the identity postulate:

VE, GVx,y ([Flx = [Gly — Vz ((Fz + Fx) <> (Gz <~ Gy)));
and define € by:

x ey =¢ JF (y = [Flx & Fx).

Then we may show:
VF (IxFx — Jy¥x (x € y « Fx));

and from this, by the reasoning of Russell’s paradox, follows Vx, y(x = y).
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I propose to solve this problem by imposing a further condition on
the non-circular criteria of identity. For some are purely logical in the
sense that they can be formulated without the aid of non-logical
concepts. Thus the familiar criteria of coextensiveness and of equi-
numerosity are logical; but the divisor criteria above (with the sole
exceptions of division by the universal and empty concepts) are not.
Each logical criterion corresponds to an invariant equivalence rela-
tion, one that can take no account of the specific identity of the
different objects (or, more technically, to one that is invariant under
any permutation).

Under a certain assumption, it can be shown that the principles, as
so restricted, will not hyperinflate. Let us say that a transfinite car-
dinal ¢ is unsurpassable if 24 < ¢, where d is the number of cardinals
less than c. Then, by means of the analysis of invariance in sect. 1.7,
it may be demonstrated that the non-inflationary and logical abstrac-
tion principles will fail to hyperinflate just in case the cardinality of
the domain is unsurpassable. Thus the unsurpassable cardinals are a
kind of analogue, in our theory, to the inaccessible cardinals of ZF;
and, just as with the inaccessibles, the question of their existence
cannot be settled within ZF (sect. I11.8).

The proposal can be taken further. For let us say that an abstraction
principle is predominantly logical (or invariant) if its identity criter-
ion involves only a small number of objects in relation to the number
of objects in the universe as a whole.” For example: given a small class
of objects, the agreement of two concepts with respect to the objects
in the class is predominantly logical; and any criterion which uses the
concept of being an individual will be predominantly logical as long
as there is a small number of individuals in relation to the number of
objects as a whole. The result can then be extended to the principles
that are predominantly logical; they too will not hyperinflate as long
as the domain is of unsurpassable cardinality.

A kind of converse result also holds. For if we allow abstractions to
be defined on a large number # of objects, then hyperinflation will

* This notion of being small is not the usual one. A subset C of cardinality ¢ said to be
exponentially small relative to a domain D of cardinality d if d® < d, i.e. if the number of
subsets of the same cardinality as the given subset does not exceed the cardinality of the
domain itself. A predominantly logical criterion is one whose extension is invariant under
any permutation that is an identity on some exponentially small set of cardinality ¢ for
which it is also true that 22 < d.
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result. For corresponding to any set of # objects, there will then be a
unique abstract; and there are more such sets, and hence more such
abstracts, than there are objects in the universe. Thus the restriction
to those identity criteria that are predominantly invariant is, in a
sense, the best possible.

It follows from the preceding considerations that the two neces-
sary conditions, being an equivalence on concepts and being non-
inflationary, can be taken to be jointly sufficient for the truth of any
principle of abstraction that is non-circular and predominantly lo-
gical. Furthermore, it can with some plausibility be supposed that
any principle of abstraction should be predominantly logical; for if
one non-inflationary principle involving a large number of objects is
permitted it is hard to see why all such principles should not also be
permitted. It is also plausible to suppose that abstraction principles
should be like definitions in general in being non-circular. Under
these two suppositions, we can then obtain a necessary and sufficient
condition for the truth of any abstraction principle whatever; for an
abstraction principle will be true (within the whole universe) just in
case its identity criterion is non-circular and yields a non-inflation-
ary and predominantly logical equivalence on concepts.

The two requirements provide a condition of truth. But how useful
are they in providing a test for truth? To what extent can they be
employed in establishing that a given abstraction principle is true? In
the special case in which an abstraction principle is non-circular, i.e.
innocent of reference to the notion of abstraction, the requirements
for its truth will likewise be innocent of such reference. Indeed, it will
be possible to formulate the requirements within the language of
higher-order logic—and, under certain simplifying assumptions,
within second-order logic itself (sect. IIL.4). It might therefore appear
that we could settle which abstraction principles are to hold on the
basis of the corresponding higher-order or second-order conditions
and thereby avoid any appeal to intuitions regarding the abstracts
themselves.

However, the epistemological advantages that such a reduction
appear to provide are largely illusory. For the satisfaction of the
corresponding higher-order conditions is itself to be settled on
the basis of substantive non-logical considerations. Consider
Hume’s Law, for example. The satisfaction of the corresponding
non-inflation condition will require the existence of infinitely many
objects. And how is this to be ascertained without presupposing that
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there are infinitely many numbers, or sets, or abstract objects of some
other sort?

Still, the proposed conditions are not altogether useless as a test.
Let us distinguish between objects of abstraction, which are given by a
principle of abstraction, and abstract objects in a broader sense of the
term. Thus points in abstract Fuclidean space are abstract objects and
yet are not objects of abstraction, since they are not introduced, and
cannot sensibly be taken to be introduced, through a principle of
abstraction of the sort envisaged by Frege. The conditions then enable
us to settle the question of the existence of objects of abstraction of a
given kind either on the basis of the existence of objects of abstraction
of some other kind or kinds or on the basis of the existence of abstract
objects that are not given through abstraction. An example of the first
kind of justification is illustrated by our own axiomatic theory of
abstraction; for within that theory, an infinity of divisor abstractions
(ones that divide the universe of concepts into two) will enable us to
justify number abstraction. A powerful example of the second kind is
provided by standard set theory; for its huge ontology will bring a
host of non-inflationary conditions in its wake.

Our conditions have so far been stated by appeal to an informal
concept of truth. I want now to consider two model-theoretic crite-
ria of acceptability and see how how they compare with the informal
criterion. (The discussion to the end of this section is somewhat
technical and may be omitted by the less technically minded read-
er.)

We can think of each model-theoretic criterion as being obtained
from the informal criterion by adopting an appropriate model-the-
oretic criterion of truth. The first, which we call ‘tenability’, results
from taking the universe of objects to be given as a set. This set will
determine a standard model, one containing a concept for each
subset of objects; and truth can then be taken to be truth relative to
the model.

Under the simplifying assumption that the abstraction principle is
logical or ‘invariant} the truth of the equivalence and non-inflation
conditions for that principle in a given model will depend only upon
its cardinality. We may therefore say that an abstraction principle
is tenable on a cardinal if its identity criterion determines a non-
inflationary equivalence on the concepts in a standard model of that
cardinality (sect. I11.4).
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The second criterion, which we call ‘stability’, is obtained by treat-
ing truth as a limit concept; a statement is taken to be true when it is
true in all models of sufficiently large cardinality. Adopting this
criterion, we may then say that an abstraction principle is stable if,
for some cardinal, the principle is tenable on all greater cardinals (cf.
Heck 1992: n. 4).

How faithful are the model-theoretic criteria to our informal con-
ception of truth? In considering this question we must take account
of the attitude of the abstractionist to standard set theory (as em-
bodied in ZF or ZFC). He can either be compromising or uncom-
promising. The uncompromising abstractionist rejects set theory. He
therefore sees the theory of abstractions as an alternative, rather than
as a supplement, to the standard theory of sets.

There are, of course, various grounds upon which ZF might be
rejected. But there is one directly related to the abstractionist’s pos-
ition. For he may adopt an imperialistic stand and see all abstract
objects as arising from abstraction. For him, to be an abstract object is
simply to be an object of abstraction, one that is introduced by means
of an appropriate principle.

The attractions of the thoroughgoing position are manifest; for it
provides us with a single and simple unified point of view from which
the various philosophical problems concerning abstract objects may
be considered. But the difficulties in the position are enormous. For
many kinds of abstract object, from both within and without math-
ematics, do not appear to fit within the abstractionist mould. They
must therefore be rejected or, at best, accepted in a distorted form.

What is the uncompromising abstractionist to make of the ten-
ability or stability criteria? It appears as if they must be rejected—
presumably as unintelligible, though possibly as false. For the cri-
teria—with their reference to models, cardinals, satisfaction, and the
like—are stated within the language of ZF, and so must be rejected
along with ZF. Perhaps there is some way of stating the criteria, or
something like them, in terms acceptable to the abstractionist. But if
there is a such way, it is not at all clear what it is.

The advocate of ZF, on the other hand, is in a position to recognize
the criterion as a correct account of truth for the uncompromising
abstractionist. For he can acknowledge that, for certain cardinals, the
principles tenable on those cardinals might be exactly those that
would be true were his opponent correct. We have therefore what
might be called an externalist characterization of a given position, one
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which can be regarded as correct, or even as intelligible, only by
someone who does not hold the position. (A similar and more
familiar case is provided by the classical characterizations of the
constructivist conception of logical validity.)

Given that we adopt the externalist perspective, it is natural to ask:
What is the size of our opponent’s universe? In response to this
question, it seems that the best one can do is to see which cardinals
will render true what our opponent takes to be true. Thus if he adopts
the principle of plenitude, as stated above, then we will know that the
cardinal will be unsurpassable and hence uncountable. But this will
not enable us to distinguish between his acceptance of one unsur-
passable as oppose to another.

In the face of this difficulty, one might be tempted to suppose that
our abstractionist should endorse any abstraction principle that sta-
bilizes on some cardinal. For if his thinking is governed by a general
principle of plenitude, then should he not recognize as true anything
that would be true in a sufficiently large universe? But this is to
import too much of the externalist standpoint into his own way of
thinking. For how large can a universe be? For us, the possible size of
the universe can be determined on the basis of set theory. But, for
him, it must be determined in some other way; and if he is thor-
oughgoing, it must be determined on the basis of the methods of
abstraction themselves. There is no way of seeing ‘from above’ which
methods of abstraction can be accepted and which not.

Consider, for example, the restricted forms of the principle of
extensional abstraction. They allow one to form the extension of a
concept that holds of a sufficiently small number of objects—finitely
many, or countably many, or what have you. We would know that
such a principle was non-inflationary if the universe were sufficiently
large. But from the standpoint of a thoroughgoing abstractionist,
this is not something that can simply be assumed. It must itself
be established on the basis of principles that are independently plaus-
ible. In fact, I shall later suggest that there are such principles and that
they enable us to determine the cardinality of the universe of the
uncompromising abstractionist as being that of the first
unsurpassable.

We now turn to the case of the abstractionist who is prepared to
endorse set theory. In considering this case, it is important to bear in
mind that the proper setting for the theory of conceptual abstraction
is second-order logic; for it is this that provides us with the logic of



12 Philosophical Introduction

the concepts upon which the abstraction is made. We shall suppose
that the second-order logic employed contains a general comprehen-
sion axiom, one to the effect that each condition determines a
concept. It then follows, in particular, that there is a universal con-
cept, one holding of every object in the domain. We must now ask:
What is the attitude of our advocate of set theory to second-order
logic? How does he conceive of the domain of objects from which the
concepts are to be drawn? Two basically different attitudes may be
distinguished. He might, on the one hand, be prepared to accept
second-order logic as applying to the whole universe of sets and
urelements. In this case, he will be willing to endorse the second-
order version of ZE, with concepts having a far wider range of appli-
cation than sets.

On the other hand, he might think of the domain of objects from
which the concepts are drawn as itself a set. Indeed, this attitude is
forced upon him if he thinks of sets as the most general method of
collection; for given that there were a universal concept, one holding
of every object in the underlying domain, there would have to be a
universal set, one to which every object in that domain belongs. In
this case, our theorist will merely endorse first-order ZF and will
most naturally think of second-order logic as being interpreted with-
in it. Thus, in the one case, our theorist will think of second-order
logic as lying alongside ZF; while, in the other, he will think of it as
lying within ZF.

Consider the second case first. Since there is no fixed domain for
second-order logic, there is no fixed domain for the theory of ab-
straction and hence no fixed conception of truth. The proper setting
for a theory of abstraction on such a view is not really second-order
logic but the first-order theory of sets. Thus the resulting theory will
be of a quite different sort from the one envisaged by Frege.

All the same, we may ask: Which second-order principles of ab-
straction can be made true on a domain of given cardinality? And
presumably, the answer is: those principles that are tenable on the
given cardinal. For it seems reasonable to suppose that the resulting
abstracts exist; and given that they exist, they can be included within
the domain without danger of inflation.

But it would also be desirable to have an absolute criterion of
acceptability, one that is not relative to a given domain or cardinal.
We would like the acceptable principles to be true in domains of
arbitrarily large size, so that they can be applied regardless of the size
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of the underlying domain; and we would like singly acceptable princ-
iples to be jointly acceptable, so that the application of one such
principle does not exclude the application of another. We are therefore
led to propose the following requirement: all acceptable principles
should be jointly tenable on arbitrarily large domains.

In attempting to meet this requirement, it will not do to define
acceptability as tenability on arbitrarily large cardinals. For one
principle may be tenable on exactly the successor cardinals while
the other may be tenable on exactly the limit cardinals. Both will
therefore be acceptable according to the criterion; and yet they will
not be jointly tenable.

A natural solution to this problem is to use stability as the criterion
of acceptability. For any set of stable principles can be made jointly
true in a domain of sufficiently large cardinality (even allowing that
different principles invariably yield different abstracts). But the solu-
tion is not altogether satisfactory. For a proper class of stable prin-
ciples cannot, in general, be rendered jointly true. Given any cardinal,
for example, we can ‘rig’ an abstraction principle that is untenable up
to that cardinal and tenable thereafter. But then no set-domain can
render all such principles true.

Nor is the proposal optimal (under the more limited requirement
that any set of acceptable principles can be made jointly true). For the
requirement may be satisfied by taking a principle to be acceptable
when the class of cardinals upon which the principle is tenable
contains an unbounded subclass of cardinals that is closed under
limits.* Indeed, it is not clear that there is an optimal solution; and
even if there is, it is far from being unique.’

We turn, finally, to the case of a compromising abstractionist, one
who is prepared to endorse second-order set theory. It might appear
from our previous discussion that such a position is impossible. For

* T owe this suggestion to Tony Martin. But note that even this proposal may not be
optimal; for in a model of set theory whose cardinality is weakly Mahlo, the class of regular
cardinals will be stationary and hence can be added to the given acceptability—inducing
classes without violation of the requirement.

® Assume that the set-theoretic universe is of cardinality c. A ‘solution’ will then
correspond to a family of sets of cardinals < ¢ where, intuitively, these are the sets of
cardinals upon which an acceptable principle may be tenable; and an optimal solution will
be one in which the family is a c-additive non-principal ultrafilter. Thus an optimal
solution will only exist if the cardinal ¢ is measurable; and given that an optimal solution
exists, we may use arbitrary permutations on the domain of cardinals to obtain at least ¢
other optimal solutions.
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set theory requires a domain (if we were to think of it as a set) whose
cardinality is inaccessible, whereas abstraction theory, under a
principle of plenitude, requires a domain whose cardinality is unsur-
passable. But no inaccessible cardinal can be unsurpassable; and it
therefore appears as if no set-domain can be taken to provide a model
both for set theory (i.e. ZFC) and for our theory of abstraction.

But this line of thought is in error, even granted that it is appro-
priate to conceive of the domains as sets. For the proper framework
for a joint theory is ZFI, i.e. ZF (or ZFC) with urelements. The
abstracts can then figure among the urelements; and there is nothing
to prevent the domain of urelements being of greater cardinality than
the domain of pure sets.®

What can be shown to be impossible, though, is the non-circular
representation of abstracts by means of sets, one in which the ab-
stracts are not themselves used in the sets by which they are repre-
sented. For within second-order ZFI with abstracts, there will be a
principle of abstraction corresponding to any condition on cardinals.
Each such condition will yield a ‘generalized cardinal’ that is the
abstract of the concepts whose extension is of a cardinality that
conforms to the condition. It may then be proved, within the theory
itself, that there is no one—one correspondence between these ab-
stracts and the pure sets (Theorem IV. 1.2). But any non-circular
method of representing abstracts by means of sets should yield such a
one—one correspondence; and so no such method is possible. The
means of forming abstracts are therefore seen to extend beyond the
reach of set theory.

We have here the ultimate coup de grdce for the identificatory
standpoint. It has been customary to identify abstracts with equiva-
lence classes. But sometimes, as with the cardinal numbers, this has
not been possible; and the abstracts have then been identified with
representatives from the equivalence classes. But the present result
shows that, even allowing for arbitrary methods of identification, it
will not be possible to find a place for every abstract within the set-
theoretic universe. Abstracts, on grounds of cardinality alone, must
be treated as objects in their own right.

What attitude, then, should the compromising abstractionist
adopt towards the two formal criteria? The situation here is not so
very different from that which prevails in set theory. We can hope that

¢ Such a possibility is considered by Menzel (1986).
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some cardinal will reflect the behaviour of the whole universe, with
the principles tenable on that cardinal exactly coinciding with
those that are true. But if there are such cardinals, we cannot, in the
light of the semantic paradoxes, expect to be able to identify
them independently of the concept of truth (since otherwise we
could provide a definition of truth for set theory within set theory
itself).

We might therefore attempt to approximate to the truth. One
rather crude way is to appeal to the notion of stability. Thus, granted
that any true abstraction principle is true in domains of arbitrarily
large size, stability will provide a sufficient condition for truth. But a
more sophisticated way is to identify cardinals that reflect more and
more of the properties that we perceive the universe to have. It will be
natural on the generative conception of abstractions developed below
to suppose that when the universe of pure sets has cardinality ¢ the
universe of abstracts will have as its cardinality the smallest unsur-
passable cardinal greater than c. In this case, the present problem will
reduce to the analogous problem in set theory of identifying the
cardinals that reflect more and more of the properties of the universe
of pure sets.

2. Definition

It is natural to suppose that we can gain an understanding of number
through Hume’s Law, that it can somehow serve to say what number
is. In the same way, it might be thought that the abstraction principle
for directions can serve in defining direction and that, in general, any
acceptable abstraction principle can serve in defining the sort of
abstract with which it deals.

My aim in this section is to examine some ways in which Hume’s
Law might help in defining number or in which an abstraction
principle might help in defining some particular kind of abstract.
The focus in the present section is on definitions of an orthodox kind.
Later, in the next section and in Part II we shall look at definitions
that are unorthodox in one or another respect.

It will be helpful, before considering Hume’s Law itself, to outline
what I take to be the orthodox conception of definition. A definition,
we shall suppose, is of something linguistic by means of something
linguistic. That which is defined is called the ‘definiendum’ and that
by which it is defined the ‘definiens’.
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We may also talk of defining a non-linguistic item by means of
something linguistic. We may say, for example, that ‘the successor of
I’ is a definition of the number 2 rather than of the numeral ‘2°. But in
such cases we define the object by defining, or by providing the
means for defining, an expression for the object. We shall later have
occasion to consider cases of non-linguistic definition that are not
straightforwardly reducible, in such a way, to the linguistic case.

We may distinguish between explicit and implicit definition. In an
explicit definition, the definiendum will be a term (of a given gram-
matical type) and the definiens will be a term of the same grammat-
ical type. The aim of such a definition is then to set up an appropriate
equivalence between the terms. To take two familiar examples of this
sort: ‘bachelor’ may be defined as ‘unmarried man’; or ‘God’ as ‘the
being no greater than which can be conceived’. In an implicit defini-
tion, on the other hand, the definiens will be a statement or condition
that involves the term to be defined. Thus ‘+’ may be defined by the
condition: n +0 = 0 & n+ m’ = (n + m)". The purpose of such a
definition is not, of course, to set up an equivalence between the term
and the defining condition but somehow to constrain the interpret-
ation of the term by means of the condition.

We shall find it convenient to treat the explicit form of definition as
a special case of the implicit form. Thus the explicit definition of
‘bachelor’ above will be treated as equivalent to the implicit defini-
tion of ‘bachelor’ by means of the condition, ‘All and only bachelors
are unmarried men’; and, similarly, the explicit definition of ‘God’
will be treated as equivalent to its implicit definition by means of the
condition ‘God = the being no greater than which can be conceived’.

An implicit definition may be simultaneously of several terms; and
the terms, whether there be one or many, may be defined by several
conditions. These conditions can perhaps be regarded as one by
forming their (possibly infinite) conjunction; and the terms can
perhaps be regarded as one by refashioning the definition to be of a
term for a sequence and then defining the original terms as the
members of the sequence. Be that as it may, our focus will be on
the cases in which there is but a single term and a single condition;
and we shall only consider the complications of there being several
terms or conditions as they arise.

The purpose of a definition is to assign an interpretation to a
hitherto uninterpreted expression. We may take the interpretation
to consist either in the assignment of a referent or of a sense or both.
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Thus prior to the definition, the definiendum may be taken to be
without a referent or sense. After the definition, if it is successful, the
expression will have been assigned a referent or sense. One may, of
course, talk about defining locutions that are already understood;
and it is presumably in this way that Hume’s Law serves to define
number. But what we are saying, in such cases, is that if the expres-
sion were devoid of meaning, then the interpretation assigned by the
definition would match, or correspond to, the interpretation that it
already has.”

Let us say that a definition has referential import if it is meant to
result in the assignment of a referent to the term t that is to be
defined. The assignment of the referent should, of course, be in
conformity with the defining condition D(t). It is characteristic of
what I have called the orthodox conception of definition that con-
formity amount to no more than the requirement that D(t) should be
true; the reference of t is simply to be determined by the truth of D(t).
When a definition with referential import is successful, i.e. when it
succeeds in appropriately assigning a referent to its term in conform-
ity with its defining condition, we shall say that it is referentially
effective.

A definition may result in the assignment of more than one refer-
ent to its term—not in the sense that there is the simultaneous
assignment of several referents to the term, but in the sense that
there are several assignments, each of a single referent, to the term. A
definition with referential import is said to be deterministic if it is
meant to result in the single assignment of a referent; and it is said to
be indeterministicif it is meant to result in an assignment of a referent
but not necessarily a single assignment. For a deterministic definition
to be referentially effective it must succeeed in assigning a single
referent to its term and for an indeterministic definition to be refer-
entially effective it must succeed in assigning at least one referent to
its term.®

7 We may also take a definition to redefine a previously interpreted expression. In some
cases (an example is the assignment of # + 1 to ‘#’ in certain programming language), a
previously interpreted expression may be used in setting up a new interpretation for that
very expression.

& The definition of a constant, such as ‘Let 2 be the successor of 1, is naturally taken to be
deterministic, while the definition of a variable, such as ‘Let nbe a number’, is naturally taken
to be indeterministic. In certain cases, it may be unclear whether what is being defined is a
variable or a constant. I have made it a requirement on the successful definition of a variable
that it should be assigned at least one value. But this requirement might be dropped.
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There are semantical analogues to these referential notions of
definition. We may say that a definition has semantical import if it
is intended to result in the assignment of a sense to the term to be
defined, where the sense is to be in conformity with the defining
condition. Likewise, we may draw a distinction between the deter-
minate and indeterminate forms of definition. In the semantical case,
however, we will not wish to think of indeterminacy as a form of
ambiguity, i.e. in the assignment of different senses to the term to be
defined. The distinction must therefore be drawn along somewhat
different lines.

Accordingly, we may say that a definition with semantical import is
deterministic if it is meant to assign a sense that purports to be of a
single object and that it is indeterministic if it is meant to assign a
sense that purports to be of a range of objects. Thus the definition of
‘God’ by the condition ‘God = the being no greater than which can be
conceived’ will be deterministic, while the definition of ‘s by the
condition ‘z is a number’ will be indeterministic.

But what should the sense be taken to be in such cases? What is it
for the sense of the term t, whether it be of a deterministic or inde-
terministic sort, to be ‘in conformity’ with the defining condition
D(t)? Our answer to the corresponding question concerning reference
makes natural an answer to the question concerning sense. When
the definition is deterministic, the sense assigned to the term t should
be the sense of the description ‘the x such that D(x)’; and when the
definition is indeterministic, the sense assigned to the term t
should be the sense of a variable whose range is determined by
the predicate D(x).” (I leave open the question of how the idea of the
sense of a variable should be made to fit in with the rest of Frege’s
views on sense.) Given that the sense is assigned in this manner, the
referents assigned by the definition will be just those determined by
the sense.'”

® There are certain cases in which we might want to give a somewhat different account
of the sense. Consider the definition of ‘God’ by the condition ‘God = the being no greater
than which can be conceived’. Then rather than take the sense of ‘God’ to be that of ‘the x
such that x = the being no greater than which can be conceived’, we might take it to be the
sense of the embedded description ‘the being no greater than which can be conceived’. In
this way, the sense determined by the implicit definition could be made to be the same as
the sense determined by the corresponding explicit definition.

' Horwich (1998: 132-3) takes the sense to be determined in strict analogy to the
reference. Thus the sense of t in the definition D(t) will be the sense that it must have in
order for D(t) to be true. But then even an explicit definition—such as (x) (x is a bachelor
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We see that there are four different aims a definition might have: it
might attempt to assign either a referent or a sense to the term to be
defined; and in each case, it might attempt to do so either determi-
nisticly or indeterministicly. On a Fregean view, at least, it is impos-
sible for a definition to assign a referent without also assigning a
sense. Any definition with referential import should therefore be
taken to have semantical import. However, not all definitions need
assign a referent or even be taken to have referential import. The
definition of ‘God’ as ‘the being no greater than which can be con-
ceived’, for example, might merely be intended to fix the sense of
‘God’; and it will not have a referent unless, of course, there is such a
being.

On the other hand, even if a definition fails to assign a referent, it
will always vield a sense; for whatever the defining condition D(t),
there will always be a sense corresponding to the sense of the descrip-
tion ‘the x such that D(x)” or the sense of the variable whose range is
determined by D(x). Indeed, on a Fregean conception of language, it
is hard to see how a definition could serve its purpose without
assigning a sense to the term or terms that are to be defined.

In the light of these general remarks, let us now consider the
possible definitional role of Hume’s Law and other such principles.
Given that Hume’s Law is to be construed as a definition, then what
should it be taken to define?

The most natural answer is that it defines the operator ‘the number
of’. Indeed, if one takes the syntax of the Law at its face value, then
this would appear to be the only possible answer. For the other terms
occurring in the Law are all of a logical character; and it would clearly
be absurd to suppose that the Law somehow served to define them by
means of the other terms.

There is a way, however, in which the Law (or whatever principle is
in question) might be taken to do more. Any definition of a term,
such as the number operator, presupposes a domain of discourse over
which the term is to have application. Now under the standard forms
of definition this domain is taken to be given along with the meaning
or interpretation of the undefined terms. The purpose of the defini-
tion is then to assign an interpretation to the undefined term
from within the given domain. Consider, for example, the recursive

iff x is an unmarried man), where t is the predicate ‘is a bachelor'—will not yield a unique
sense, since any sense that delivers the right extension will render the sentence true.
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definition of addition as given by the equations: m 4 0 = 0; and
m+n = (m+n). It is here understood that the domain of dis-
course is to be the set of natural numbers; and it is not required that
the definition supply an interpretation of the symbol ‘4 over the
rationals or the reals or some other kind of number or object.

Now one might adopt a similar approach in the case of abstraction.
One might take the intended domain to be the universe of all objects
and let the number operator have application to the concepts over
that domain and the objects within it. However, even from this
standpoint, it would be natural to suppose that the principle is
capable of securing the interpretation of the operator for various
other domains. For the success of the principle in determining an
interpretation of the operator should not depend upon the individ-
uals being what they are; and so the principle should also have
application to those universes that would arise under a different
disposition of what individuals there are.

But one might be more ambitious still and take the principle itself
to be of help in determining the different domains of discourse. We
no longer regard the domains of objects from which the values for
the abstraction operation are to be drawn as simply given. Rather, we
think of the principle itself as helping to determine what those do-
mains should be. It is somehow meant to succeed both in telling us
what objects there are and in assigning them to the concepts.

We may be more precise. Before we only required that the principle
determine an operation F for each appropriate choice of the domain
M. Now we might require the principle should determine M on
the basis of the underlying subdomain I of individuals (or non-
abstracts). Thus the principle must not only determine the operator
F as a function of M, it must also determine M as a function of I. It
must, that is to say, also determine a method of ‘generation’, a func-
tion g that will take us from a given domain I of individuals into an
appropriate domain M = g(I) of individuals and abstracts.""

The generation of the domain M from I may be compared to the
generation of sets under the cumulative hierarchy from a given do-
main of urelements. Just as there are different universes of sets for
different domains of urelements, so there may be different universes

"' In the more general case there will be several different abstraction principles. Each
principle will then be associated with a function g The total domain (if it exists) will be
obtained by successively applying the generation functions to the initial subdomain of non-
abstracts until no further applications can be made.
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of numbers for different domains of individuals. For different do-
mains of individuals of finite size, the corresponding universes of
numbers will be the same (in contrast to the case for sets). But it is
plausible to suppose that for larger and larger domains of individuals
(which may include abstracts of other kinds), new numbers of ever
greater size will be added to the universe.

Now there are two rather different ways in which the Law may be
taken to perform this second task. One rests upon treating the
definition as having a creative capacity, as having the power to
introduce new objects into the domain of discourse. This is an
approach that we shall consider in the next section and in Part II.
But here we are interested in definitions of an orthodox sort; and
when treated in this way, the definition is incapable, as it stands, of
determining the domain M on the basis of the subdomain I of
individuals. For it contains no predicate either for M or for I and
hence nothing that could be taken to determine M or to be deter-
mined by L

But this defect is readily remedied. For we may suppose that the
variables for concepts and objects that appear in the statement of the
Law are relativized to a predicate D for the domain. Thus instead of
saying ‘for all concepts’ we say ‘for all concepts defined over D’; and
similarly for the other locutions. We may also introduce a predicate I
for being an individual and add to Hume’s Law the assertion that
every individual is in the domain (i.e. every I is a D). With these
changes, Hume’s Law might not only be taken to determine a number
operation F, on the given domain M of all objects; it might also be
taken to determine a domain M = g(I) on the basis of the subdo-
main I and a number operation Fy; on the basis of M. It can be
treated, in other words, as a definition of F and M in terms of .

So Hume’s Law, and other such abstraction principles, can be
taken to perform these two definitional tasks. But how well? To
what extent are they of help in determining the domain of objects
or the operation of abstraction?

The answer is ‘very badly. The abstraction principle, even when
modified, is unable to determine a unique expansion M of any given
subdomain of individuals I For given that it has determined one
expansion, it will be incapable of excluding any other expansion with
the same number of abstracts (or abstract-surrogates).

The principle is also generally incapable of determining a unique
abstraction operation on a given domain. For suppose that ® is an
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abstraction principle concerning a certain abstraction operator § and
let us replace the operator § in ® by an appropriate variable F to
obtain the general condition ®(F). Then ®(F) is never uniquely
satisfied over a given domain (except in the case in which the domain
contains only one object). For let F be one solution to ®(F). Let VV be
the universal abstract, i.e., the abstract F(\/ ) where \/ is the universal
concept. Let x be any other object in the domain (possibly even an
abstract). Permute V and x. The resulting operation F’ will then be
distinct from F and yet still be a solution to d(F).12

In the light of the general importance of this phenomenon, it will
be helpful to pinpoint more exactly how and where the indetermin-
acy arises. It can arise in two separate ways. One concerns existence. [s
there, for any subdomain of individuals, an expansion of the subdo-
main with abstracts and an interpretation of the abstraction operator
for which the abstraction principle is true? The answer, at least for the
non-circular principles, is clear; there will exist such an expansion
and interpretation as long as the the principle is non-inflationary
over arbitrarily large domains.

Second, there is the question of uniqueness (aside from existence).
Are there different ways of expanding a subdomain of individuals?
And are there different interpretations of the abstraction operator
that can be imposed over a given domain?

Uniqueness, in either case, can fail for two rather different reasons,
one structural and the other ‘material. There can be structurally
different, i.e. non-isomorphic, solutions. But even if all the solutions
are structurally the same, there may still be solutions that differ in
how the structure is realized. The one is a failure of categoricity,
and the other a failure of determinacy within a given isomorphism-
type.

Let us see how each source of failure might manifest itself in the
case of abstraction principles. Consider the structural question first.
In regard to the problem of domain expansion, the question is
whether the number of abstracts is determined by the number of
individuals. To this the answer is no. Hume’s Principle, for example,
is compatible, in the absence of any individuals, with there being a
countable infinity of numbers or with there being an inaccessible
number of numbers.

' The more usual method of proving non-uniqueness uses Frege’s switching argument
(cf. Lemma IIL.37). But the proof breaks down when the identity criterion is circular.
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Let us suppose that the structural problem of domain expansion
has been solved; it is known how many abstracts go with each prede-
termined number of individuals. Then in regard to the problem of
interpreting the operator, the structural question that remains is
whether, given the number of individuals and the number of ab-
stracts, the interpretation is determined up to isomorphism.

The answer is again, no. Suppose, for example, that @ is a principle
that takes each finite concept into its extension and every other
concept into the same abstract (‘Infinity’). Then such a principle is
compatible with the finite extensions being well founded over a given
domain and also compatible with their not being well founded (see
the comment to Theorem II1.6.5). It turns out that the answer is yes
for number abstraction and for the various weaker forms of abstrac-
tion (Theorem II1.6.6); and this is perhaps the reason why this par-
ticular source of indeterminacy has been overlooked.

Consider now the question of identity. In regard to the problem of
domain expansion, this is partly a question of ascertaining which
objects are abstracts of the kind in question and which are individ-
uals. We can then be sure that the expansion is always from individ-
uals to abstracts of the right sort. But the question is also partly a
matter of getting the abstracts right in any given case. For example, in
the case of Hume’s principle, we only want to include a number in the
expanded domain as long as all smaller numbers are included.

A principle of abstraction is powerless to settle the question. For
take any solution g to the problem of domain expansion. Then we
may replace abstracts and individuals at will, always taking care to
replace distinct objects with distinct objects, and we will still have a
solution.

Let us now suppose that the identity problem for domain expan-
sion has been solved; we know which abstracts go with which indi-
viduals. Then in regard to the problem of interpreting the operator,
the identity question that remains is the question of determining
which abstracts go with which concepts. Thus whereas the first iden-
tity question is a matter of getting the range of the abstraction
operation right, the second is a matter of getting the values within
the range right, of correctly assigning them to the concepts.

Again, a principle of abstraction is powerless to settle the question.
For, as we have seen, we may permute the universal abstract with any
other and still retain a satisfactory interpretation of the abstraction
operator.
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The general problem of identity corresponds to what has been
called the ‘Caesar problem’. This is the problem of determining the
truth-values of sentences of the form ‘the number of Fs = t), where t
itself is not of the form ‘the number of— (and similarly for other
forms of abstraction). The exact relationship between the two prob-
lems depends upon what terms are admitted as substituends for t.
Suppose that each object in the domain is taken to have a name
whose designation remains the same regardless of the interpretation
of the abstraction operator. Then the two issues are essentially the
same. For example, if ‘0’ is a rigid designator (in this sense) of the
number 0, then the truth of ‘the number of non-self-identicals = ¢’
will guarantee that the correct object is assigned to the empty con-
cept.

However, in discussions of Caesar’s problem it is usually assumed,
if only implicitly, that any designator for a number will be reducible
to one of the form ‘the number of—" This assumption is, in fact,
quite controversial. It requires a logicist account of arithmetical op-
erations, for an arithmetical expression like ‘3 4+ 5> must be under-
stood in some such way as ‘the number of the disjunction of two
exclusive concepts of which 3 and 5 are the respective numbers’; and
in the case of an expression such as ‘Caesar’s favourite number’, it
becomes even more problematic whether a reduction to the required
form can be given.

In any case, as long as this assumption is made, the two problems
will be inequivalent. For the ‘Caesar’ term t must then always desig-
nate an individual; and so a solution to the Caesar problem will
merely guarantee that the abstraction terms refer to abstracts, not
that they refer to the right abstracts. We only have a solution to what
might be called the ‘external, as opposed to the ‘internal, Caesar
problem.

In the face of these various forms of indeterminacy, what kind of
definitional status should we accord to Hume’s Law and the various
other abstraction principles? One possible response to the indeter-
minacy is to say that it is no worse than the indeterminacy that besets
our actual conception of number or of some other kind of abstract.
The definitions provided by the various abstraction principles may
therefore reasonably be taken to be indeterministic in character. Thus
Hume’s Law may be taken to determine a variable domain of objects
on the basis of the individuals, one that will allow different choices of
objects for the numbers; and it may be taken to determine a variable
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number operation for a given domain, one that will allow different
assignments of the objects from the domain to the concepts. It may
then be maintained that our understanding of the numerical locu-
tions, when so defined, exactly accords with our ordinary under-
standing of those locutions.

This is not the view I am myself inclined to take. For there seems to
be a striking difference between our conception of numbers, on the
one hand, and our conception of an axiomatically defined class of
elements, such as a group, on the other. The indeterminacy that
infects our conception of the unit element e, for example, seems to
be of a quite different order than that, if any, which infects our
conception of the number 1. Thus whereas it is acceptable to let e
‘be’ 1 under a suitable interpretation of the group operator, it makes
no sense to suppose that I might be the undetermined group element
e under a suitable interpretation of the numbering operator. Any
view must therefore be judged unsatisfactory if it does not explain the
asymmetry between the two cases.

It is not my aim to debate the merits of the indeterministic con-
ception here.”” T shall merely take for granted that some form of
deterministic conception is correct. In this case, it must be conceded
that the mere requirement of conformity to an abstraction principle
is incapable of yielding our ordinary conception of the kind of ab-
stract in question; and it is therefore incumbent upon the advocate of
the abstractionist approach to provide an account of what else might
be relevant in determining our understanding of the kind.

There are two main forms of response that might be pursued. One
is to supplement the principle with further conditions. The principle
would then be only part of the full definition; it would be the
definitional analogue of an enthythematic argument. Under such
an approach, it may be asked why the principle, rather than the
supplementary material or the full condition, should be taken to
define the operator in question. But, as we shall see, the principle
may provide what is distinctive about the full defining condition and

Y However, let me note that the indeterministic conception of number may be used to
evade the dilemma that Crispin Wright (1988: 450—1; taken from his 1983: 148-52, n. 20)
poses for Field. He asks: how is it possible to explain number using Hume’s Law and yet
deny the existence of numbers? To which the answer is: by treating Hume’s Law as an
explanation of a variable number operator. The existence of numbers may then intelligibly
be denied since the denial simply amounts to the claim that there is no operator that
conforms to the Law. If we regard Hume’s Law as part of a ‘scientific’ theory, then this
response is equivalent to a Ramsey-style treatment of the theoretical terms.
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there may be a uniform method for going from the principle to what
else is in the condition.

The other line of response is to strengthen the requirement of
conformity. Instead of requiring mere conformity to the principle,
we require conformity of a special sort. The principle alone then
serves to define, but in a way that goes beyond its mere satisfaction.

The distinction between the two forms of strengthening can be
illustrated with the case of inductive definition. Consider the induct-
ive definition of even number: 0 is even; and for each natural number
n, n+ 2 is even if nis. Mere conformity to these rules is not sufficient
to determine the required interpretation of ‘even’. All the same, the
rules do provide a basis for a satisfactory definition of the term in
either of the indicated ways. For we can either stick to conformity and
supplement the given rules with the rule that any even number
belongs to all classes that are closed under the given rules; or we
can stick to the given rules and constrain conformity by the require-
ment that the extension for ‘even’ should be minimal.

As this example shows, it may be possible to strengthen a given
definition in either of the two ways. And, in general, either kind of
strengthening can be traded in for the other: for conformity to
additional conditions can be regarded as a special kind of conform-
ity; and conformity to the given conditions in a special kind of
way can be regarded as an additional condition. Usually, however, it
will be more natural to regard a definition in one way rather than
another.

How then might an abstraction principle be supplemented or the
manner of conformity strengthened so as to yield a determinate
conception of the domain of abstracts and of the abstraction oper-
ation?

A solution of sorts to the structural problem may be given in terms
of the generative model of abstraction that is developed in sect. IIL5.
Suppose that we are given a domain of individuals of fixed cardin-
ality. Then we may successively generate the abstracts over that do-
main in a natural manner. In the case of number abstraction, for
example, we may first generate the numbers of the various concepts
of individuals. We may then add these numbers to the given domain
and generate the numbers of the various concepts over the aug-
mented domain. Continuing in this way, we obtain a domain and a
partial interpretation of number abstraction at each finite stage. By
taking the limit of these partially interpreted domains, we may take
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the construction into the transfinite, stopping at the first stage at
which no new numbers are introduced.

What such a construction rules out is the possibility of an ‘un-
grounded’ abstract. Any number, for example, must be the number of
some concept. Moreover, it must be possible so to choose the concept
that it can be specified without reference, either direct or indirect,
to the number in question. Continuing in this way, the identity of
every number must ultimately be grounded in the identity of the
individuals.

The construction will give us a categorical interpretation of the
number operator over the given domain; any two interpretations that
are generated in this way will be isomorphic as long as the cardinal-
ities of their respective domains of individuals are the same. More-
over, the result will generalize. The condition of being in one—one
correspondence that figures as the identity criterion in Hume’s
principle has the property of being absolute: whether two concepts
are related by the condition depends only upon the objects that fall
under the concepts in question, not on those that fall outside the
concepts. The result will also hold for any abstraction principle whose
identity criterion is absolute in this sense.'*

This solution may be characterized under each of the two heads for
completing a definition. On the one hand, we may suppose that
Hume’s principle, to continue with the example, is supplemented
by the principle that there is no proper subdomain that contains all
individuals and contains the number of any concept of objects in
the subdomain. Or we may require that the solution be minimal
in the sense of not containing a smaller solution. Thus the way the
completion goes is not essentially different in this case than in the case
of inductive definition.

The above generative model can be extended to apply simultan-
eously to several abstraction operators. We might imagine, for ex-
ample, that numbers and finite extensions are generated in
tandem. But, more significantly, the means of abstraction can

" Our account here is reminiscent of the generative model of understanding that was
originally proposed by Wright (1983: 142-5) and subsequently elaborated by Wright
(19984a) and Hale (1994) in response to criticisms of Dummett (1991a: 236). Wright’s
account is not intended as a way of generating the domain of all numbers but as a way of
showing how we can understand terms for all the natural numbers. It is further discussed in
sect. I1. 6. Wright (1997) gestures towards the notion of absoluteness at the close of sect. II,
but in regard to the question of acceptability rather than of impredicativity or categoricity.
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themselves be taken to be subject to generation. Let us suppose that
we start off with a given domain. We may then generate the accept-
able means of abstraction over that domain, i.e. the ones that are
non-inflationary and predominantly logical. We may then apply
these means of abstraction to the concepts over the domain to obtain
new abstracts. These abstracts are then added to the domain and the
whole process repeated ad infinitum.

Such a construction yields not only a determinate conception of
what abstracts there are, given the means of abstraction, but also a
determinate conception of what means of abstraction there are. It
therefore solves the problem of determining what the cardinality of
the universe of abstracts should be; for the cardinality is determined
by the point at which the process yields nothing new (sect. IV. 2).

The above solution is very natural and, indeed, it is hard to think of
reasonable alternatives. Thus as long as the appropriate minimality
assumptions are made, Hume’s Law—and other such principles—
will provide us with a complete structural understanding of the
abstracts with which they deal. The problem of identity, however, is
not so tractable. Even if it is agreed that the abstracts are generated
from the individuals in the manner proposed, we still need to say
what the abstracts are. One solution to this problem is implicit in the
general theory of abstraction that is developed in Part IV. The basic
notion of this theory is that of an object being the abstract of a
concept with respect to a relation on concepts. Thus the notion relates
three items: an object, which is the result of the abstraction; a first-
order concept, which is what is abstracted; and a second-order rela-
tion on concepts, which is the means of abstraction. In the case of
numbers, for example, we may say that 0 is the abstract of the empty
concept with respect to the relation of one—one correspondence.

In order to solve the identity problem, we can simply declare that
the number of Cs is the abstract of C with respect to the relation of
equinumerosity, that the extension of C is the abstract of C with
respect to coextensiveness, and similarly for the other cases of ab-
straction. Such an account provides us with an explanation of the
particular kinds of abstract in terms of the general notion of an
abstract; and, to the extent that the identity of the general abstracts
is clear, then so is the identity of the particular kinds of abstract.

This solution can be regarded as a generalization of Frege’s account
of the number of Cs as the extension of the concept of being equi-
numerous with C. For upon treating the abstract of a concept with
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respect to a given equivalence relation, in our account, as the class of
all concepts equivalent to the given concept, we obtain the Fregean
abstract. However, our viewpoint is quite different from Frege’s. For
he took there to be a privileged form of abstract, one to which all
others were reducible, whereas we take the different forms of abstract
to be sui generis.

Indeed, from the standpoint of a general theory of abstracts, the
Fregean view is incoherent. For he identifies each conceptual abstract,
in respect to a given means of abstraction, with the corresponding
extension or class of concepts. But the extensions are themselves
among the abstracts. So, by the same general rule, each extension
should be identified with the class of all the concepts that have that
extension, which is absurd.

We have obtained solutions to the problems of identity and of
structure. However, the two solutions do not sit well together. For
given our solution to the problem of identity, we already have a
complete explicit definition of number as a certain sort of abstract;
and in the presence of an explicit definition of an operator it is hard
to see what further role might be served by an implicit definition. Our
definition of number in terms of abstracts, like Frege’s in terms of
extensions, should be regarded as an alternative to the definition in
terms of Hume’s Law, not as an addition to it.

This is not to deny the analyticity of Hume’s Law, or of whatever
other kind of abstraction principle might be in question. For even
when the principle does not follow directly from the explicit defini-
tion of the abstraction operator, it may still follow from the definition
and the analytic principles governing the notions in terms of which it
has been defined. (Indeed, this is just what Frege hoped for in the case
of Hume’s Law). Thus an abstraction principle may still be indirectly
definitive of its operator even though it forms no part of its explicit
definition.

But is there any reasonable way in which Hume’s Law could be
taken to contribute directly, as part of an explicit definition, to our
understanding of the number operator? One possibility is to appeal
to the essential properties of numbering and of the numbers. Suppose
we call an operation ‘quasi-numerical’ if it conforms to Hume’s Law.
As we have observed, many different operations are quasi-numerical.
By adding further conditions to Hume’s Law, we want to distinguish
the (genuinely) numerical operation, the one that takes each concept
into its number, from the others. Once we have successfully defined
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what it is to be a numerical operation, we can take the number of Cs
to be the result of applying this operation to C.

Now one way the genuinely numerical operation is distinguished
from some of the others is that it is essentially quasi-numerical; it is,
by its nature, quasi-numerical. Consider, for example, an operation
of being a ‘qumber’, defined by the condition:

the qumber of Fs is the number of Fs if that number is not 9 and
otherwise is the number of the planets.

Then although the qumber operation conforms to Hume’s Law it
only does so accidentally.

This condition is not enough, on its own, to distinguish the genu-
inely numerical operator from all the others. To see why, define the
operation of being a schumber by the condition:

the schumber of Fs is 0 if F is singleton, it is 1 if F is empty, and it is
the number of Fs otherwise.

Thus schumber is like number, but with the roles of 0 and 1 reversed.
It may then plausibly be maintained that the operation of schumber-
ing is also essentially quasi-numerical.

However, the genuinely numerical operation has a further distin-
guishing feature. For each value of the operator, i.e. each number, is
essentially the value of the operation for suitable choices of the
concept. Thus the number 0 is essentially the number of the concept
of being non-self-identical, the number 1 is essentially the number of
the concept of being identical to 0, and similarly for the other cases.
This further feature distinguishes numbering from schumbering. For
0 is not essentially the schumber of any singleton concept; it is no part
of the account of what 0 is that it should be related in any way to a
singleton concept.

Moreover, this feature is itself essential to numbering. I therefore
propose to define a genuine numerical operation as one that essen-
tially conforms to Hume’s Law and is essentially definitive of its
values in the way described.

It is of the utmost importance, in evaluating this proposal, to
distinguish between the definition of a linguistic expression and a
‘real’ definition of the non-linguistic item for which it stands. Thus
the expression ‘the number of objects that are not self-identical’ may
be taken either as a definition of the numeral ‘0’ or as a real definition
of the number 0. In the first case, the identity ‘0 = the number of
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objects that are not self-identical’ is taken to be true because of the
meaning of the numeral ‘0’; and in the second case, it is taken to be
true because of the nature or essence of the number 0.

What we are proposing is that each number (not numeral) has a
definition of the form ‘the number of Cs’ (it is essentially of that form
for suitable C). We are also proposing that the number operation (not
operator) has a definition part of whose content includes the defin-
ability of the numbers. The predicate (not property) ‘is a numerical
operator’ is then defined by reference to these non-linguistic forms of
definition."”

[ am not sure that the present definition of number in terms of its
essential properties should be regarded as being at odds with the
previous definition of number as a certain kind of abstract. It might
even be regarded as providing a deeper account of the notion of
abstract. For we may ask: What is it for x to be an abstract of a
concept C with respect to a means of abstraction R? Our essentialist
form of definition then provides an answer: for an abstraction oper-
ation can be singled out in terms of its essentialist relationship to R
and the abstract x can then be taken to be the value of this operation
for the concept C as value.

I turn finally to the question of how a definition of number in terms
of Hume’s Law might be of significance for the philosophy of math-
ematics. There are two major problems in the area that such a defini-
tion might be thought to be of help in solving. The first is semantical:
it is to show how we can make determinate reference to numbers. The
second is epistemological: it is to show how we can have knowledge of
number-theoretic truths.

Consider the semantical problem first. In order for a definition of
number to resolve philosophical doubts over determinacy, it must

'3 Let me make a few further comments on this proposal (a full discussion is out of place).
(1) I do not presuppose an account of essence in modal terms and, indeed, am inclined to
reject such an account for the reasons stated in Fine (1994). (2) For the purposes of the
account, operations are best taken in an intensional sense though concepts may be taken in
either an extensional or intensional sense. (3) There are other views as to what the defin-
ability of the numbers might consist in. One might maintain, for example, that the number 0
is essentially the number of any empty concept, that the number 1 is essentially the number
of any singleton concept, and similarly for the other cases. Another possibility is that for any
singleton concept, except one whose object presupposes the number 1 itself, the number
1 may be defined as the number of that concept. Of the three possibilities it is the third that is
the most plausible. However, it involves a distinction between definitive and essential
properties that is explained in Fine (1995) but which I have here preferred to ignore.
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satisfy three desiderata. First, it must satisfy the formal requirement
of having a unique solution. Second, the terms by which the number
locutions are defined must not themselves suffer from a similar
indeterminacy. Third, the definition must be correct and, in particu-
lar, must not rest upon an arbitrary identification of numbers with
one kind of object as opposed to another.

Frege’s definition of number as an extension of concepts is based
upon an incoherent conception of extension and fails, in any case, to
satisfy the third desideratum. Our alternative definition of number in
terms of the general notion of abstract satisfies the first desideratum
and arguably satisfies the third. For there is nothing arbitrary in the
identification of numbers with a certain sort of abstract. However, the
definition fails to satisfy the second desideratum. For the notion of an
abstract is subject to the same sort of indeterminacy as the notion ofa
number. The problem of determinacy is merely pushed back.

Hume’s Law, on its own, fails to satisfy the first desideratum; for, as
we have seen, many different operators will conform to the Law. It
must therefore be supplemented in some way if it is to be of any use.
We have suggested a supplementation in terms of the essentialist role
of the Law; and it is arguable that the resulting definition satisfies all
three desiderata. It satisfies the second; for even though the notion of
essence may be subject to indeterminancy, it is not clear how it would
result in an indeterminacy in what the numbers may correctly be
taken to be. It satisfies the critical part of the third; for the definition
does not even attempt to identify number with some broader category
of object. Therefore the only room for doubt lies in the essentialist
intuitions upon which the correctness and uniqueness of the defini-
tion rest. One might think, for example, that 0 can with equal legit-
imacy be defined as the number of an empty concept or as the
schumber of a singleton concept. But in the absence of any such
doubt, it is hard to see how determinacy could reasonably be denied.'®

Consider now the epistemological problem: how can arithmetical
truths be known? One natural approach to the problem is to provide
an explicit definition of the number operator in terms of other
notions which, in the special case of logicism, will be logical notions.
Arithmetic can then be derived from Hume’s Law; and Hume’s Law

16 Even though the definition has these many virtues, I doubt that it can be regarded as
ultimately satisfactory, since there should be a non-essentialist underpinning for the
essentialist attributions upon which its correctness depends.
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can be derived from principles governing the notions in terms of
which number is defined. The problem of our knowledge of arith-
metic therefore reduces to the problem of our knowledge of logic and
of those other principles. When the principles are themselves logical,
we have the familiar form of logicism and arithmetic is reduced to
logic.

The possibility of implicitly defining number by means of Hume’s
Law might appear to give us an epistemological edge over the more
usual forms of logicism. For Hume’s Law is then secured by defini-
tion; and so we only need the logic to take us from the Law to
arithmetic. But this is too simple. For whereas an explicit definition
stands in no need of justification, an implicit definition does. An
epistemological cost must therefore still be borne; but it lies now in
the justification of the definition rather than in the justification of the
Law on the basis of the definition.

Since the point is of some importance, it will be worth a more
thorough discussion. To this end, let us ignore the question of
whether the proposed definition is faithful to our ordinary concep-
tion of number and whether, in particular, it is referentially deter-
minate. Qur aim may be only to provide what might be called
reinterpretative foundations; we aim to provide an interpretation of
number that possibly deviates from the usual interpretation but will
serve the same purposes and, in particular, will provide a basis for
our knowledge of what goes for the usual arithmetical principles.
Thus for these purposes, Hume’s Law itself can be adopted, without
supplementation, as an indeterministic definition of the number
operator.

Now in order to derive arithmetic from such a definition, we must
not only be able to endorse Hume’s Law as a definition of number, we
must also be able to make the transition from the endorsement of the
Law as a definition to its endorsement as a truth. The interpretation
assigned to the number operator by means of the definition must be
such as to render the Law true.

Call a definition materially effective when this transition is war-
ranted, i.e. when the making of the definition will result in its defin-
ing condition being true. Not all definitions are materially effective
even when they are successful. For in case the definition has only
semantical import, an interpretation will be assigned regardless of
whether or not the defining condition is thereby rendered true.
Should the definition be deterministic, the sense assigned may be
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that of an empty description; and should the definition be indeter-
ministic, the sense assigned may be that of an empty variable. In
neither case is it plausible to suppose that the resulting interpreted
condition will be true.

There are, of course, various methods for evaluating a statement
that contains an empty description or an empty variable; and some
may result in such statements being true. For example, under the
generality interpretation of the variable (according to which a state-
ment containing a variable is true if it is true for all its values), all such
statements will be vacuously true. But such a possibility is of no help
in the present case. For we require that Hume’s Law should be true
under a conception of truth that more or less agrees with our ordin-
ary conception of what is true; it should not render all arithmetical
statements true ot, in some other radical manner, cut across the usual
distinction between what is true and what is false.

Thus if we initially conceive of Hume’s Law as a definition, then in
order to be justified in using it as a premiss in a demonstration of
arithmetic, we must know that it is materially effective, i.e. that it
results in a truth (in accord with our ordinary conception of what is
true). But how can we know this? There appears to be only one answer.
To know that the definition is materially effective we must know that it
is referentially effective, i.e. that it succeeds in assigning a referent to
the number operator in conformity with the Law (or its supplemen-
tation). But how can we know this further fact? Again, there appears to
be only one answer. To know that the definition is referentially suc-
cessful we must know that there exists an item that plays the role
required of a referent. What this means, in case we take the definition
to be deterministic, is that we must know that there exists a unique
solution to Hume’s Law (or its supplementation); and what it means,
in case we take the definition to be indeterministic, is that we must
know that there exists at least one solution to Hume’s Law.

The use of Hume’s Law as a definition is therefore not without
epistemological cost; and whether it can secure an epistemological
advantage and, in particular, whether it can be used to vindicate a
form of logicism, is far from clear. For the only obvious way of
justifying the existential generalization of Hume’s Law (with respect
to the number operation) is by means of an instance. We see that the
generalization is true by taking the operation in question to be the
number operation or some other, specific, mathematically defined
operation. Thus even though the existential generalization is stated in
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purely logical terms, it is not clear that it has a purely logical justifi-
cation or one that is in some other way less problematic than that of
the Law itself.

3. Reconceptualization

I want to consider a non-classical approach to the question of defin-
ing number by means of Hume’s Law. It might be called definition by
reconceptualization and rests on the idea that new senses may emerge
from the reanalysis of a given sense. The idea derives from sects. 63—4
of the Grundlagen. However, it has not been my aim to be faithful to
Frege’s thought; I have been content, in this matter, to follow the
exposition of others, principally Dummett (1991a) and Wright
(1983). My interest, rather, has been to see whether the ideas them-
selves can be sustained.

There is yet another non-classical approach to using Hume’s Law
as a definition of number. This is the context principle; and it rests on
the idea that certain truths may be used to fix the reference of the
terms that they contain. Thus whereas the first-mentioned approach
rests on the adoption of an unorthodox mechanism for the deter-
mination of sense, the second rests on an unorthodox mechanism for
the determination of reference. The second approach will be taken up
in the second Part.

It is worth noting, however, that it is highly implausible that we
might altogether avoid the epistemic cost involved in adopting
Hume’s Law as a classical implicit definition of number by adopting
one of the less orthodox forms of definition in its place. For whatever
the mechanism by which the sense or reference of the defined terms is
secured, we surely require assurance that the form of words by which
the definition is given can be asserted without danger of contradic-
tion. This problem is especially acute in the light of the fact that a very
similar form of words, that of Law V, does give rise to contradiction.
Surely we require assurance that the two Laws are not alike in this
respect if we are to have confidence in the conclusions obtained from
the one as opposed to the other."”

17 Tt is for this reason that I do not think that we can simply pass from the stipulation of
Hume’s Law as a definition to its assertion as a truth, without the need for further
justification. Hale and Wright (2000b: sect.4) recognize the need for the definition to be
consistent if the transition is to be safe, but fail to acknowledge that the definition-monger
is himself under an obligation to show that the transition is safe.
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But how is such assurance to be obtained? A post facto justifica-
tion, one that already rests upon the acceptance of the definition
in question, is useless; for an inconsistent definition is as capable
of justifying its own consistency as a consistent definition. We
could, of course, appeal to the corresponding existential claim (that
there exists an operation in conformity with the Law). But, as we
have seen, it is quite unclear whether this provides us with any
epistemic advantage; and it would not, in any case, provide us
with any advantage over the adoption of a straight implicit defini-
tion.

If we really are to provide a distinctive foundation for arithmetic
on the basis of one of the novel forms of definition, then some mark
of consistency must be stated and justified without implicit appeal to
the abstract objects in question. We are therefore in much the same
position as a nominalist who is required to defend the consistency of
a given branch of mathematics. Perhaps this can be done. After all,
one might follow the lead of Field (1989) by taking consistency to be
a modal primitive and establishing the claim of consistency by some
form of non-mathematical induction. Also, procedural postulation-
ism (which I have not discussed) is able to provide a deductive basis
for various consistency claims. However, there is nothing in the two
non-orthodox forms of definition that we shall consider that pro-
vides any clue as to how consistency might be established or how it
might serve to warrant the transition from the stipulation of a defini-
tion to the assertion of its truth.

Let us now turn to the question of whether number can be defined
through reconceptualization. The basic idea behind this approach is
that we may understand the left-hand side of Hume’s Law as another
way of saying what is said on the right and in such a way that the
number operator is thereby endowed with sense.

In discussing this approach, it will be important to distinguish
between a universal and a schematic formulation of Hume’s Law. A
universal formulation is given by a closed sentence:

For all concepts F and G, the number of Fs = the number of Gs iff
the Fs and the Gs are equinumerous.

The schematic formulation is given by a scheme:

the number of Fs = the number of Gs iff the Fs and the Gs are
equinumerous,
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where ‘F’ and ‘G’ are now schematic letters for predicates, not vari-
ables for concepts.

What is meant by talk of the ‘left’ and ‘right’ sides of Hume’s Law?
Under the schematic formulation, the left side is presumably a
(closed) identity statement of the form ‘the number of Fs = the
number of Gs’; and similarly for the right. But under the universal
formulation, there is no sentence on the right or left. Presumably,
then, the left-hand side is the open sentence ‘the number of Fs = the
number of Gs’; and similarly for the right.

How should reconceptualization be understood—as relating to the
schematic or to the universal formulation? It might be thought not to
make much difference, since the opportunities for reconceptualizing
what is expressed on the right are much the same whether we have a
closed or an open sentence. But this is not in general correct. Con-
sider Frege’s paradigm of objectual abstraction:

the direction of L = the direction of M iff L and M are parallel.

If the lines here are the lines of abstract Euclidean space, it is not clear
that any reference to any particular one of them is possible. (It is idle
to fix an origin and axes, since that already requires that we be able to
single out a point and some lines.'®) But if that is so, then there are no
relevant closed sentences whose senses can be reconceptualized. It is
therefore the open sentences that should be taken to be the target of
reconceptualization.

Usually, when philosophers have talked of reconceptualization
they have supposed that the sense of the right- and left-hand sides
is a thought, i.e. the sense of a sentence. But if I am right, it would be
better to take the sense to be an incomplete thought, i.e. the sense of
an open sentence or formula.

We may divide the process of conferring a sense on the number
operator into two stages: first, the formula on the left is taken to have
the same sense as the formula on the right; second, this sense is
subject to reanalysis in such a way as to provide a sense for the
number operator. In a way, the method is a combination of the
methods of explicit and implicit definition. For if the structure of
the left-hand side is ignored (apart from the presence of the variables

¥ Tt might be doubted that there is even in principle a way of referring to one of the lines,
or one of the points, as opposed to the others. I note, by the way, that this raises a serious
problem for the usual development of Fregean intensional logic. For it means that we
cannot assume that for each object there is a sense that picks it out.
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‘F’ and ‘G’), we may use the method of explicit definition to endow it
with the same sense as the formula on the right. On the other hand, if
we do not require the synonymy of the left and right sides, we can use
the method of implicit definition to confer a sense on the number
operation. The idea behind reconceptualization is to get the impli-
citly defined sense, not directly from the principle, but indirectly
from the explicitly defined sense.

Does the method work? Various questions should be distingu-
ished here. Can we obtain a unique sense for the number operator
in this way? Can we obtain at least one sense, even if not a unique
sense? And, in each case, what is required by way of justifying the
definition?

It should be noted that if the definition succeeds in conferring a
unique sense on the number operator then the definition is referen-
tially effective and, indeed, referentially determinate. For if the sense
did not correspond to a referent or if the referent were an operation
on concepts that were not always defined, the formula ‘the number of
Fs = the number of Gs* would presumably lack a truth-value for
certain concepts as values for ‘F” and ‘G’ and so its sense could not be
the same as that of ‘the Fs are equinumerous with the Gs. Thus the
unique sense delivers a unique referent; and there seems to be noth-
ing in the sense that would allow for any indeterminacy in the
referent that was so determined.

This point is of some importance, because it means that the
method is more powerful than it is commonly taken to be. Several
authors, I suspect, have thought of definition by reconceptualization
and the context principle as linked in the defence of logicism. Perhaps
the thought is that the one provides a route to sense and the other a
route to reference. But since reconceptualization already yields refer-
ence, it can be allowed to stand on its own.

A related point holds in regard to sects. 646 of the Grundlagen.
Frege there considers three objections to the proposed method of
defining the number operator. The first two he dismisses, but the
third he upholds. It is that the definition is unable to settle the
question of whether Caesar is a number. But his objection appears
to be misguided. For granted that the sense of the number operator
has been fixed, that the recarving of content has been successful, the
operation that is the referent of the operator will have been fixed; and
so it is determined whether or not Caesar is a value of this operation.
Of course, at this point Frege did not have the distinction between
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sense and reference; but the point remains that the ‘concept’ of the
number operation can hardly have been fixed without its values also
having been fixed (cf. Frege’s remark ‘what we lack is the concept of
directior?). It is possible that in posing this objection Frege is here
reverting to the model of implicit definition; for an implicit defini-
tion of number by Hume’s Law will, of course, fail to settle the
question of whether Caesar is a number. Alternatively, it is possible
that objection is meant to show that the proposed recarving will not
work. Since it is evident that the Caesar question is not resolved, there
must be something wrong with the proposed attempt to recarve, even
if it is not clear what it is."”

Does definition by reconceptualization, then, deliver a unique
sense? I am not sure that there is anything in principle to be said
against the possibility of such a definition fixing sense. To take an
example of Dummett’s (1991a: 173), suppose we attempt to define
the predicate ‘commits suicide’ by means of the condition:

Vx (x commits suicide iff x kills x).

Then it might reasonably be thought that the definition works by
reconceptualization: there is a sense expressed on the right, which is
the result of linking the argument-places in the sense of the predicate
‘kills’; and this sense is then reconceptualized as that of a one-place
predicate, with a single argument-place rather than two linked
argument-places.”

There are, however, reasons of detail against supposing that any-
thing analogous could work in the case of Hume’s Law. Consider Law
V, its inconsistency being irrelevant for present purposes. Suppose the
Law is given in the formulation §xCx = §xDx < Vx (Cx < Dx); and
let us adopt the following abbreviations:

' This is how Dummett (1991a: 126) appears to construe him although on pp. 168-9 he
also takes him to be making a claim of synonymy. I might note that if Frege had an implicit
definition in mind, he might also have objected that it fails to serve his epistemological
purposes, for its existential presupposition would stand in need of justification.

%% Cf. Frege’s Begriffsshrift, sect. 9 and the discussion in Dummett (1991a: 73-5 and
1981: 333) and Hale (1997: sect. 3). Dummett’s (1991a: 174-5) account of the way the
definition might work in this case is somewhat different from my own. He supposes that
there is a ‘linguistic device’ that converts the LHS into the RHS and two corresponding
notions of sense, one coarse and the other more refined. The coarse sense is only assigned to
an expression after the linguistic device has been applied; and so the coarse sense of the two
sides is the same. The refined sense of the LHS also includes ‘the functioning of the device’;
and so the refined senses of the two sides will be different. Thus he does not posit a single
sense that is subject to two different analyses.
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(A) for Vx (Fx «+ Gx);

(B) for §xFx = §xGx;

(C) for Vx (x = §xFx «» x = §x(Gx); and
(D) for §x (x = §xFx) = §x (x = §xGx).

Then on the view under consideration, (B) should have the same
sense as (A) and (D) the same sense as (C). Now presumably (C)
should also have the same sense as (B). Indeed, it is hard to see how a
criterion of synonymy could be so tolerant as to allow the synonmy of
(B) to (A) (or of (D) to (C)) and yet not tolerant enough to forbid
the synonymy of (C) to (B). If this is right, it follows that (A) has
the same sense as (D). But then if the sense of the operator given
through reconceptualization is to be unique, the sense of §xFx should
be the same as the sense of §x (x = §xFx), which is presumably not so.
A similar, though more complicated, line of argument can be
constructed for the case of number. Let FT be the concept of falling
under F or of being the least natural number not to fall under F; and
similarly for G. Let (A), (B), (C), and (D) now be as follows:

(A) for ‘the Fs are equinumerous with the Gs’;
(B) for ‘the number of Fs = the number of Gs’;

(C) for ‘the F's are equinumerous with the G*s’;

(D) for ‘the number of F©'s = the number of G's’.

It is then plausible to suppose, especially given the synonymy of (A)
to (B), that (A) is synonymous with (C). But from this it follows that
‘the number of Fs’ and ‘the number of F's” will be synonymous,
which is impossible since, for any finite concept F, the number of F''s
will be the successor of the number of Fs.

In the light of such examples, it is difficult to see what general
principles governing the identity of sense might permit its reconcep-
tualization and yet prevent its proliferation. Thus it seems to me that
the attempts of Wright (1988: 459) and Hale (1994; 1997) to identify
a suitably weak sense of sameness of sense that might admit of
reconceptualization are doomed to failure.*’

But let us ask whether there exists at least one sense of the number
operator for which the two sides of the Law will be synonymous or
otherwise equivalent. In this case, it will certainly help to weaken the

! Indeed, if one examines the details of Hale’s proposal towards the end of the
postscript to chap. 4 of Hale and Wright (20004), one sees that it allows proliferation,
since the equivalences between (A) and (C) in each of the two cases is ‘compact.
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relationship. For suppose we adopt an extensional conception of
sense, under which sense and reference are to be identified. Then
any of the many operations for which Hume’s Law holds will provide
a ‘sense’ for which the two sides are ‘synonyms’. It might even be
possible to maintain the existence of a sense under the more reason-
able construal of synonymy as analytic equivalence. For if logicism is
true, it will provide a sense of the number operator for which Hume’s
Law is analytic; and, for this sense, the two sides of the Law will, in the
required way, be synonyms.

But the difficulty now concerns not the actual existence of the
sense, but the grounds that we have for supposing it to exist. It is
worth reminding ourselves that Law V is inconsistent. Thus it cannot
be on the basis of any simple formal considerations that the existence
of a sense is to be ascertained. But then what grounds can there be for
supposing the required sense to exist? One should not be dogmatic
on such a matter, but it is hard to believe that the existence of a sense
for which the two sides are, in some strict sense, equivalent could be
any less problematic than the existence of an operation for which the
two sides are materially equivalent. Thus it seems that the possibility
of definition by reconceptualization can take us no further, in this
regard, than an implicit definition of a standard sort.

4. Foundations

Frege attempted to provide a logical basis for arithmetic and analysis.
All the notions of arithmetic and analysis were to be defined in logical
terms; and all the theorems of arithmetic and analysis were to be
derived, with the help of the definitions, from logical axioms. The
attempt failed if for no other reason than the inconsistency of the
critical axiom, Law V.

Recently, Crispin Wright (1983) has attempted to revive the Fre-
gean logicist programme. He observes that the Fregean derivation of
arithmetic may be broken down into two steps: first, Hume’s Law
may be derived from Law V; and then, arithmetic may be derived
from Hume’s Law without any help from Law V.** He therefore
suggests that Hume’s Law be used instead of Law V as a logical
basis for arithmetic.

** For details see Heck (1993), who suggests that Frege himself was probably aware of the
possibility of separating the two steps. The possibility of such a derivation was first
explicitly asserted by C. Parsons (1964: 194).
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One difficulty with this approach is that it is unclear, in the absence
of Law V, how to obtain a logical foundation for (higher-order)
analysis. We can no longer treat reals as extensions of number con-
cepts or the like; and nor is it clear what other form of abstract should
be used in place of extensions. One might try experimenting with
restricted forms of extensionality; but they appear either to be incon-
sistent or too weak or ad hoc.

Perhaps the closest we come in the existing literature to a satisfac-
tory formulation is with Boolos (1986-7; 1993). He proposes
(1986—7) that extensional abstraction be permitted on small con-
cepts, i.e. on those that cannot be put into one—one correspondence
with the universal concept; and he extends the proposal to those
concepts whose complements are small even when they themselves
are not (1993). He shows how the natural numbers can be identified
with representative finite extensions, such as those considered by
Zermelo or von Neumann. However, he cannot adopt Frege’s defini-
tion of number as the extension of a second-level concept; and nor
is it clear that he can provide any other definition of number that is
capable of yielding Hume’s Law in its full generality. The system is in
a certain respect too weak; since the reals can only be obtained by
adding some ad hoc axiom to the system, such as that the concept of
being a natural number is small. And the system is in another respect
too strong; since it only allows a standard model of cardinality ¢ when
c is an almost strong regular limit cardinal or a successor cardinal
d* for which 2¢ = d*.?

Of course, the reals might simply be ‘posited’ as the limits of
rationals. Thus we might add to the language a limit-operator on
concepts and a restricted criterion of identity to the effect that, when
the concepts C and D of rationals have rational upper bounds, the
limit of the C’s is to be identical to the limit of the D’s just in case the
rational upper bounds of the one are the same as the rational upper
bounds of the other. However, such a principle seems entirely ad hoc;
and it would be desirable to have a more general basis upon which it
might be established.”*

In Part IV, I propose what I hope is a natural solution to these
problems. I first present a general theory of abstraction, one which is

** The cardinal ¢ is almoststrong if 20 < ¢ whenever d < c. See Shapiro and Weir (1999).
(I mistakenly said ‘strong’ in the original paper.)

% This approach has recently been pursued by Hale (2000), who couples it with a Frege-
style account of reals as ratios of quantities. He attempts in sect. 4 to reduce the element of
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independently plausible and which, in fact, was developed without
regard to foundational considerations. I then show that higher-order
analysis can be developed within the theory under a suitable iden-
tification of reals with abstracts.

The reals are not identified with extensions but with what one
might call generalized numbers. With each concept of numbers, one
may associate a criterion of identity, one by which two concepts F and
G are related when the number of Fs and the number of Gs both fall
under the given concept or both fall outside the given concept. The
abstracts corresponding to these criteria of identity can be shown to
exist within the theory; and it is these abstracts, rather than the
corresponding sets of numbers, that do duty for the reals.

A distinctive feature of the theory is its generality. Instead of
attempting to account for this or that form of abstraction, we attempt
to account for them all. Thus the basic notion of the theory is that of
an object being an abstract of a concept with respect to a given
possible means of abstraction; and the aim of the theory is provide
an axiomatic characterization of all those possible means of abstrac-
tion that actually give rise to abstracts.

There are two basic postulates of the theory: one concerning exist-
ence and the other concerning identity. The existence postulate says,
roughly, that as long as the means of abstraction is non-inflationary
and predominantly logical it will give rise to abstracts; and the iden-
tity postulate, in its strong form, says that two abstracts are the same
if and only if they are associated, through their respective means of
abstraction, with the same equivalence classes of concepts. For the
purposes of foundations, however, the two postulates can be weak-
ened: the existence axiom can be confined to the logical criteria; and
the identity can be restricted to its left-to-right direction.

The question of the identity of abstracts will be discussed in the
next section; and the question of their existence has already been
taken up. But we should note, in connection with our foundational
aims, that the instances of the existence axiom are conditional in

adhocery but, as far as I can see, does not come up with a fully worked out proposal. If Cut
Abstraction (the limit principle) is restricted to a small domain of underlying objects, then
we must assume, or somehow show, that the domain of rationals is small; and if it is
restricted to domains that can be specified by means of a sortal concept (an idea also
canvassed by Wright (1999: sect.3), then we shall need axioms that enable us to establish the
existence of a suitably wide range of sortal concepts (the notion of sortal concept in the
resulting theory would perhaps play a similar role to the notion of set in NBG).
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form. An instance of an abstraction principle, for a given method of
abstraction, is only asserted under the condition that the method is
not inflationary, i.e. does not result in more abstracts than objects.
Thus Hume’s Law cannot be asserted in its categorical form but only
under the condition that the universe is already infinite.

This means that we must reverse the procedure adopted by Frege.
Instead of using Hume’s Law to show that the universe is infinite, we
must use the fact that the universe is infinite to establish Hume’s
Law.

But how can this be done, given the absence of any strong categor-
ical forms of abstraction? The answer lies in the generality of
the theory and in the additional assumption, which we make, of the
existence of at least two objects. For we can then prove the legitimacy
of an infinite number of means of abstraction, each of which pro-
duces at least two abstracts. By the identity postulate, it can then
be shown that all these different abstracts are distinct. Thus it is
from the diversity in the allowable means of abstraction, rather
than from the power of any one of them, that the theory derives its
strength.

If the diversity of means is genuinely to yield a diversity in ab-
stracts, however, it is essential that abstracts that derive from different
means of abstraction should not be indiscriminately identified. One
and the same abstract is not to wear different ‘faces’ in connection
with different means of abstraction. Thus a satisfactory solution to
the Caesar problem is essential to our foundational programme and
is not, as it is for others, something required merely for philosophical
purposes.

There is another approach to the question of foundations that is
suggested by our work and is more in line with modern thinking on
the subject. For we can treat the objects of our theory as classes rather
than as abstracts and dispense with any reference to an underlying
criterion of identity. Thus we no longer regard an ‘abstract’ as being
associated with various items by means of a method of abstraction
but as simply being a collection of those items. On this view, although
every abstract is taken to be a class, not every class is taken to be an
abstract with respect to the coextensionality of concepts. Thus our
previous difficulty over identifying abstracts with classes does not
arise.

There are somewhat different ways in which this alternative ap-
proach might be presented. Perhaps the most orthodox, by current
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standards, is to take the notion of membership as primitive. The
setting for the theory is then second-order logic, and comprehension
for classes of concepts takes the form:

JyVF (F € y <> &(F)), where &(F) is predominantly invariant.

(The condition that ¢ (F) be predominantly invariant is something
that can be expressed within the theory itself). One can formulate a
similar comprehension principle for classes of objects:

Jyvx (x € y <> d(x)), where db(x) is predominantly invariant.

However, in order to obtain a theory of reasonable strength, it is
essential to countenance the application of the principle to classes of
concepts and not just to classes of objects.

One might see these principles as arising from a certain natural
approach to the problem of impredicativity. Consider the universal
class V. One may define it as the class of all objects x for which x = x.
Now there is a sense in which this definition is impredicative, for the
universal class V is already included within the range of the variable x.
But there is also a sense in which it is not. For one can understand
what the condition is without presupposing any knowledge of the
class V. Indeed, our understanding of the condition x = x is not
something that requires the understanding of any particular objects
at all. Once we have defined the class V, we may then define other
classes with its help, such as the unit class of V, or the class of all
objects not identical to V; and so on. In general, it seems reasonable
to suppose that we can define any class by means of a condition as
long as our understanding of it does not involve too many objects.
We can think of our comprehension principle as a way of making
this view precise: the idea of a condition involving an object is
explained in terms of invariance; and the idea of ‘too many’ objects
is explained in terms of an appropriate notion of smallness.

An alternative method of presentation, more in keeping with Fre-
ge’s own, is to take an extension-forming operator § as primitive and
then to adopt the following restricted form of abstraction for exten-
sions:

SFb(F) = §F(F) < VF (b(F) < Y(F)), where &b(F) and (F) are

both predominantly invariant.

Similarly, in the case of objectual extensions, the principle would take
the form:
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§xd(x) = §xid(x) > Vx (b(x) < U(x)), where d(x) and P(x) are

predominantly invariant.

Within such a theory, under either presentation, one can then
provide a foundation for both arithmetic and analysis. Hume’s Law
can be derived in much the same way Frege derived it from Law V,
using the very same definition of the number operator; and analysis
can then be derived along the same lines as for the general theory of
abstracts.

I do not regard these theories as providing support for Frege’s
overall logicist aims. If one adheres to the Context Principle, then one
can perhaps conceive of the various abstraction principles as provid-
ing a definition of the notion of natural number and perhaps also of
the notion of real number. Moreover, if one takes the notions of
second-order logic to be logical, then these definitions will be stated
entirely in logical terms; and this makes it very reasonable to suppose
that the defined notions will then be logical themselves. But the
logical status of the notions will not provide the defining principles
with any special epistemological status; for, even though they are
logical definitions, they will still stand in need of an extra-logical
justification.

Perhaps the best that can be said on their behalf is that they provide
us with some sort of theoretical insight into the nature of the various
kinds of mathematical object. Mathematics is like the natural world
in displaying a wide variety of different kinds of object—natural
numbers, the reals, points, lines, figures, determinants, groups, and
so on. It is therefore natural to seek some kind of uniformity within
this diversity. What our theories show is how many of the different
kinds of mathematical object can be regarded as forms of abstraction
and how their various special theories can be seen to have their basis
in the general theory of abstraction. What we achieve is an ontologic-
ally significant reduction of certain branches of mathematics to the
theory of abstraction, but not an epistemologically significant under-
standing of the theory of abstraction as a branch of logic.

5. The Identity of Abstracts

An abstraction principle yields a necessary and sufficient condition
for abstracts of the same sort to be identical. But what of abstracts of
different sorts? Given an abstract obtained from an item by one
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means of abstraction and an abstract obtained from an item by
another means of abstraction, under what conditions are the two
abstracts the same?

The left-to-right direction of the identity axiom provides a very
plausible necessary condition: for the two abstracts to be the same
they must be associated, through their respective means of abstrac-
tion, with the same equivalence class of items. It seems absurd to
suppose that the extension of the concept of being an odd number,
for example, could be the number 0; and, in general, it is hard to see
what reasonably systematic view could associate the same abstract
with two different equivalence classes of items. Perhaps the only view
of this sort with any degree of plausibility is the one that identifies
higher-order abstracts, i.e. abstracts of abstracts, with lower-order
abstracts. It might be supposed, for example, that the non-negative
integers mod 2 (obtained from the non-negative integers by means of
the equivalence ‘leaving the same remainder on division by 2’) are the
same as the generalized numbers odd and even (which are obtained
directly from the finite concepts by means of a suitable generalization
of equinumerosity). But even this view will not yield the cross-sortal
identity of conceptual abstracts.

Many philosophers have been attracted by the idea that numbers
are classes—that a number might be the class of its predecessors, for
example, or the class of all concepts that are of that number. If this
idea is combined with the view that classes are conceptual abstracts,
we would obtain another counter-example to the necessity of our
condition. For the very same abstract would, qua number, be associ-
ated with a range of concepts equinumerous with one another and
would, qua class, be associated with a range of concepts coextensive
with one another; and with possibly the single exception of the num-
ber 0, the two ranges of concepts would not be the same. On what
basis, then, could an abstract gua number and qua class be judged the
same? The only reasonable view to suggest itself is that any abstract,
associated through a means of abstraction with certain items, is to be
identified with the class of those items. But, as we have seen, such a
view leads to the absurd conclusion that any class C of items is
identical to the class of the concept (s) whose extension is C.*’

> A related objection in Hale (1987-93: 186) is directed against the general thesis that
abstracts are to be identified with equivalence classes. He later (p. 187) seems to endorse the
view proposed here, that ‘abstract objects are differentiated by their association with dis-
tinctive [sic] equivalence classes’ I therefore find it puzzling that later still, in sect. 8.2, he



48 Philosophical Introduction

The other direction of the identity axiom, though, is much more
problematic. Wright (1983: 1167, 122) and Hale (1987: 206) have
discussed the question of sufficiency for cross-sortal identity, but
their focus is different from ours. For they want to leave room for
the view that numbers are classes; they do not want to reject it out of
hand simply on the grounds that numbers and classes are associated
with different ranges of concepts. The focus of their discussion is
accordingly on the question of how two abstracts might be the same
even though they are associated, through their respective means of
abstraction, with different concepts.

As T have indicated, this focus appears to be misplaced; for there
seems to be no coherent view that will let both numbers be classes
and classes be abstracts.”® Our focus, on the other hand, is on the
question of how two abstracts might be distinct even though they are
associated, through their respective means of abstraction, with the
same concepts. What might contribute to their being different?

The obvious answer is the identity criteria themselves. On this
view, then, two abstracts will be distinct if they are associated with
different means of abstraction. But even if one does not believe in the

should envisage the possibility of numbers being classes even though the equivalence classes
associated with a number and with the corresponding class are not the same. It may be that
he wants there to allow for the possibility that classes are not a form of conceptual abstract.

26 T might add that, in my view, neither Wright nor Hale succeed in formulating a
selective criterion, one that will let in certain identifications and not others. Thus Zermelo
numbers are not excluded on Wright’s criterion because one can always specify a Zermelo
number as the Zermelo number corresponding to a given NBG number (cf. Wright 1983:
123); and Frege numbers are not included on Hale’s criterion since one can always specify
the Frege number of Cs as the class of Ds for which there exists a many—one correspondence
from C onto D and a many—one correspondence from D onto C (cf. Hale 1987: 208). It is
important, in this connection, not to confuse the standard terms for certain classes with the
classes themselves. Thus Wright (1983: 122) advises us ‘to pick on classes among which all
questions of identity and distinctness. . . are logically equivalent to questions concerning
1-1 correlation among concepts’ But it is only terms for the classes that can yield the
required logical equivalents. Or again, Hale (1983: 208) talks of ‘membership of a class’
being ‘specifiable in terms of 1-1 correspondence’. But the membership of any class
whatever might be specified by a formula that uses an expression for 1-1 correspondence
and also by a formula that uses no such expression. There is nothing intrinsic to a class, as
opposed to a term, that involves 1-1 correspondence.

There are two other aspects of their discussion that one might prefer to be different. One
is that they propose a criterion for when all Fs are Gs (e.g. numbers are classes), but one
might prefer a criterion for when a particular F is a G. It is perfectly possible, after all, for
the Fs and Gs to overlap. The other is that they state the criterion in cognitive terms, such as
‘explanation’ or ‘understanding’. But one might prefer a purely objective formulation. Their
more recent discussion of the topic (Hale and Wright 2000c: sect. 6) attempts to accom-
modate these points.
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possibility of numbers being classes, this might still appear to be too
strong. Suppose one defines natural number using equinumerosity as
the criterion of identity, but only in application to finite concepts,
and that one defines cardinal number again using equinumerosity as
the criterion of identity, but now in application to all concepts. Does
one want to say that the natural number 0 and the cardinal number 0
are not the same on account of their criteria of identity not being the
same?

Of course, one might insist in the face of a such an example that a
conceptual criterion of identity should have application to all con-
cepts. But suppose that the proposed criterion of identity for natural
number is extended to all concepts by treating it as a universal rela-
tion on any two infinite concepts. We then obtain a single infinite
number oo, just as in pre-Cantorian mathematics. Do we still want to
say that the respective 0s are not the same?

These examples force us to face the possibility that the criteria of
identity might be different in a way that is not relevant to the iden-
tities of the abstracts in question. And this might lead one to shift to
the opposite extreme and take two abstracts to be the same when
their associated equivalence classes are the same, regardless of the
means of abstraction by which they were obtained. But this view is
also subject to difficulties.

For could not two abstracts just happen to be associated with the
same equivalence class? Perhaps there is a certain weight and a certain
density, both unique to a certain thing. Under the proposed criterion,
the weight and the density are the same. But they do not appear to
be. Indeed, we seem to have a proof that they are not. For surely it
is possible for that very weight and density to belong to different
things; and if they do, then they will not be the same. (Cf. Hale 1987:
185-6.)

It may be that there does not exist a similar possibility in the case of
logical abstracts, such as numbers; for all the possibilities for two such
abstracts to be associated with different ranges may, in all essential
respects, already be realized. But, be that as it may, one would still like
to have a general account of identity, one with application to all
forms of abstraction and from which the sufficiency of our original
condition, in the case of logical abstracts, might be proved rather
than simply assumed.

In the light of these difficulties, it is natural to adopt a modal form
of the criterion: two abstracts are to be the same iff they are necessarily
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associated with the same items under their respective means of ab-
straction. The criterion in effect reduces the intra-world question of
cross-sortal identity to the cross-world question of intra-sortal iden-
tity. For we can determine whether abstracts of different sorts are the
same by ‘tracking’ each from one world to another and ‘seeing’
whether the items with which they are associated are always the
same.

This question of cross-world identity is clearly important to the
development of a modal theory of abstracts. But it is also important
to the ontology of abstracts. For suppose we ask: what lengths are
there? If one takes lengths to be the lengths of actual things, then there
is the danger of missing lengths—a length between two others, per-
haps, which we think should exist but which is not the length of
anything. On the other hand, if we take there to be lengths that are
not the length of anything, we appear to give up on the idea of lengths
as a form of abstract.

One natural way out of this dilemma is to take the lengths there
are to be the lengths of possible as well as actual objects: given the
possibility of a length we suppose there already is that length. But
this solution raises the problem (among others) of how the un-
realized lengths are related to the realized lengths. On what basis do
we say that they are the same or distinct, shorter or longer? Clearly
any answer must again rest upon an account of cross-world iden-
tity.

So how do we settle the question of cross-world identity? When do
we say that an abstract of an item a with respect to a given means of
abstraction in one world is the same as an abstract of an item b with
respect to the same means of abstraction in another world? One
natural line of response is to make a cross-world application of the
criterion of identity: the two abstracts are the same if and only if item
a in the one world is related by the criterion of identity to item b in
the other world.

Unfortunately, a criterion of identity has, in itself, no meaningtul
application from one world to another; it cannot, Colossus-like,
bestride the two worlds. In some cases, though, it is completely
clear how the application is to made. We are in no doubt, for
example, about the cross-world identity of numbers. The number
of Cs in one world will be the same as the number of Ds in another
world just in case the Cs and Ds are equinumerous in a world (or
domain) in which the respective extensions of C and D are both
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preserved; and similarly for any other criterion of identity that is
logical and absolute in the sense defined above.

Other cases, though, are more problematic. When do we say that
something in one world is of the same length as something in another
world? Or of the same colour? It seems that any general answer to
such a question should be given in terms of the possession of a
common property: an item in one world is to be taken to be related
by the criterion to an item in another world just in case the one has,
in its world, a property of the required sort that is also had by the
other in the other world.

Even the idea that we have an alternative explanation of cross-
world equinumerosity may be something of an illusion. For we need
to make sense of the idea that there is a one-to-one correspondence
whose domain is the extension of the concept Cin the one world and
whose range is the extension of the concept D in the other world. But
if there is no world that contains the two extensions, then why should
there be a world which contains the required one-to-one correspond-
ence? Indeed, on any plausible actualist view of the matter, no such
world would exist.

Given the need to ground the cross-world identities in properties,
what might those properties plausibly be taken to be? A natural
suggestion is that they are the relational properties that correspond
to the criterion of identity—the properties of being related by the
criterion to a, for any item a. Now it will be true that two items will be
related by the criterion just in case they share such a property. But
these properties are not, in general, the ones we require. Common
possession of such a property is not sufficient, in the cross-world
case, for the abstracts to be the same. Two sticks may, in their re-
spective worlds, be of the same length as a given stick or even of the
very same things; but that does not mean that they themselves have
the same length. Nor is common possession necessary. For one stick
in one world may have the same length as another stick in another
world and yet the associated equivalence classes in the respective
worlds be disjoint.

The relational properties will not even work too well in the case of
numbers. If concepts are allowed to have a variable extension, then
two distinct numbers may be of the same concept in their respective
worlds—they might both, for example, be the number of planets;
while if concepts are required to have a rigid extension, there is
the problem that they may not exist in every world and so there
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is the possibility that a number may not attach to a common concept
in two given worlds.”’”

Another property that might be associated with an abstract is the
property of possessing an abstract of that kind. With a given length,
for example, we have the property of being of that length. Common
possession of such a property would, of course, be necessary and
sufficient for the cross-world identity of the abstracts. But such an
account is circular and hence provides no explanation of what the
abstracts are. Granted that an explanation is possible, we must there-
fore have an understanding of the common properties that is not
directly explicable either in terms of the criterion of identity or in
terms of the abstracts themselves.

In particular cases, we seem to be able to say what these properties
are. In the case of numbers, they will be what one might call the
numerical properties—the property of being a unit concept for ex-
ample (i.e. of being such that there is an object falling under the given
concept to which every object falling under the concept is identical);
and in the case of extensions, they will be what one might call the
enumerative properties—the property, of being a concept of Caesar
and Brutus for example (i.e. of being such that an object falls under
the given concept just in case it is either Caesar or Brutus). The case of
length is more difficult. But one might suppose that significant over-
lap between paradigm equivalence classes in the two worlds could be
used to determine that their items were of the same length. Once a
cross-world comparison between these items had been established,
they could be used as a yardstick to make the other cross-world
comparisons.

As these, and other, examples suggest, there appears to be no
uniform method by which the relevant properties can be derived
from the criterion of identity. Indeed, it might even be argued that
the same intra-world criterion of identity might be associated with
distinct cross-world criteria and hence with different kinds of ab-
stract. Consider, for example, the contrast between the conceptions of
temperature as given by the Celsius scale and by the thermodynam-
ical account. The concept of same temperature is the same under the
two conceptions. But it might be argued that the temperature at

*” I might add that the possibility of the concepts of a given number being different is yet
further evidence against the view that a number is the class of concepts of that number, for
the membership of a class cannot change.
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which water freezes (under normal atmospheric conditions) must
remain the same under the Celsius scale but, because of possible
changes in the behaviour of water, could be different under the
thermodynamical account.

Even when there appears to be only one property type associated
with a given criterion of identity, its adoption is by no means forced
upon us. In the case of numbers, for example, we could take the
property associated with a number to be the property possessed by a
concept when it is empty, or singleton, or what have you, and the
universe of all objects is of the particular size that it is. Equinumer-
osity would then still serve as the criterion of identity within a world;
but in any possible world of a different size from our own, the
numbers would all be different.”®

If this is right, there must be more to our understanding of a form
of abstraction than is contained in the adoption of a specific criterion
of identity; we must have an understanding of the common proper-
ties in virtue of which the identity criterion holds that goes beyond
our understanding of the criterion itself. Although it has become
standard to identify a form of abstraction with its criterion of iden-
tity, it should perhaps be identified with a type of property, common
possession of which provides the basis for the criterion to hold.*

In the simplest case, and perhaps in general, the properties will be
mutually exclusive and exhaustive over the domain of items on which
they are to be defined. Thus with each item x, we may associate a
unique property P, of the type in question. If R is the corresponding
criterion of identity, then the two should conform to the condition:

(*) xRy iff P, = P,

for any items x and y. If we think of the relation R and the properties
P, in extensional terms, then the choice of Py, for any given x, is
uniquely determined by R; and it is perhaps this fact that has made it
so easy to overlook the independent role of the properties Py. How-
ever, if we think of the relation and the properties in intensional
terms and require that (*) hold of necessity for any items x and y, then

* Tennant (1994), in a different way, has stressed the independent importance of
numerical properties in understanding what numbers are; and Peacocke (1991) has stressed
the general importance of properties in providing a modal account of our understanding of
abstracts.

* I now feel less confident of this conclusion and am inclined to think that it may be
possible to meet the objections to the relational account.
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the choice of P, is by no means uniquely determined by R. For each
way of drawing the transworld-lines between the equivalence classes
in different worlds will correspond to different choices of P,.

In developing the theory below, I have only been interested in the
extensional properties of abstracts and therefore have had no reason
to depart from the conventional approach. However, it seems to me
that, within a fuller account, the means of abstraction should perhaps
be specified in terms of property types rather than equivalence rela-
tions. The theory of classes, as developed above on the basis of the
theory of abstracts, might be seen as a step in this direction—though,
of course, the Extensionality axiom must be given up.*

Let me mention, in conclusion, that one might envisage a criterion
of identity that was intermediate in strength between the present
modal criterion and the earlier criterion in terms of the means of
abstraction. Under the modal criterion, the number 0 and the empty
class will be the same; for in each possible world they will be associ-
ated with the same concept (s), namely the empty one (s). However,
one might wish to maintain that the two are distinct and that there-
fore something more is required for the identity of two abstracts than
their necessarily being associated with the same range of items.

I myself would be inclined to question the intuition that lies
behind this view. For to the extent that we wish to conceive of a
class as an abstract on concepts, it is not clear that the null class is to
be distinguished from the number 0. But if the intuition is upheld, it
is hard to see how it might coherently be developed. For the relevant
difference between the number and the class seems to be tied to the
type of abstract in question. What is common to the empty concepts
can either be regarded as a form of number or as a form of extension.
But if the two can be distinguished in this way, then what is to stop us
distinguishing between the natural numbers that are tied to a single
pre-Cantorian infinity and the ones that are tied to the usual range of
infinite numbers? To draw the line, we seem to require an, as yet,
undeveloped theory of basic classificatory types or forms.

*® Under an intensional conception of abstracts as envisaged here, there is a new danger
of inflation; for the possibilities of distinguishing abstracts associated with the same actual
range of items might exceed the number of items in the universe. This difficulty must
therefore also be resolved by a satisfactory intensional account.
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The Context Principle

It was once a common part of mathematical practice to introduce
terms for new entities by means of contextual definition. Thus
negative numbers might have been introduced by means of the
equation, —m 4+ m = 0; and the point at infinity might have been
introduced by the condition that r < oo for any real number r. Such
definitions seem to hold out the hope that one might be justified in
taking there to be certain entities simply upon the basis of a stipula-
tion. Thus we may conclude on the basis of the stipulation of
—m + m = 0 that there is a solution to the equation x + m = 0;
and we may conclude on the basis of the stipulation of r < oc that
there is a ‘number’ greater than every real. If this idea could be
extended to the more basic objects of mathematics, such as the
natural numbers themselves or to the reals, then it might seem as if
a large part of mathematics could be seen to be the product of
stipulation and that, consequently, many of the most pressing prob-
lems concerning the meaning and justification of mathematical
statements could be bypassed.

The ‘context principle’ can be regarded as an attempt to vindicate
such contextual definitions. It was first advocated by Frege in the
Grundlagen and, although he himself gave up on the attempt to
introduce natural numbers by contextual definition, this project has
subsequently been revived by such neo-logicists as Wright (1983). I
wish in this part to see how the principle should be formulated and
whether it can be used to provide a contextual definition of number.
My interest, as with the topic of reconceptualization, is more in the
ideas themselves than in any question of Fregean exegesis.'

We first attempt to provide a preliminary account of what the
context principle is (sect. 1). The discussion is then organized around

! The reader might like to consult C. Parsons (1964), Wright (1983), Hodes (1984), and
Dummett (1981a; 19815; 1991a; and 19915) for general discussion of the context principle.
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various features that it might be thought desirable for contextual
definitions to possess. These are that they should yield truth-
conditions for all of a suitable range of sentences (sect. 2), that they
should conform to a solution to the Caesar problem (sect. 3), that
they should yield a determinate assignment of referents to the terms
that are to be defined (sect. 4), that they should not be viciously
circular in the sense of quantifying over the very entities that are to be
assigned as referents to the terms (sect. 5), and that they should yield
a satisfactory account of number (sect. 6).

Although the upshot of my discussion is largely negative, I am
hopeful, as I have indicated in the Preface, that there may be a more
satisfactory way of achieving the benefits that the context principle
appears, so tantalizingly, to place within our grasp.

1. What is the Context Principle?

Implicit or explicit definitions of a standard sort are made from a
standpoint in which the existence of the objects or items that are to be
assigned to the defined terms is presupposed. The purpose of the
definition is not to introduce new objects into the domain but to
make an appropriate assignment of the objects already in the domain
to the terms that are to be defined. Thus prior to the definition being
made, we should be sure that the required objects from which the
assignment is to be made already exist if, after the definition has been
given, we are to be sure that these objects have been appropriately
assigned to the terms.

What I call creative definitions, on the other hand, are made from a
standpoint in which the existence of the objects that are to be
assigned to the terms is not presupposed. The purpose of the defini-
tion may indeed be to assign objects to the terms. But these objects
are not selected from a previously given domain. Rather the objects
are introduced into the discourse simultaneously with their assign-
ment to the terms.

Thus, if all goes well, the usual order of justification will be
reversed. With implicit definition of an orthodox sort, we know
that the definition is referentially effective by knowing, prior to the
definition being made, that objects of the required sort exist. But with
a creative definition, we may know that objects of the required sort
exist by knowing that the definition has been referentially effective.
The definition itself may provide us with the ground, or at least
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part of the ground, for supposing that objects of the required sort
exist.

But how can creative definition work? How can a mere definition
or stipulation, made from a position of ontological neutrality, be of
any assistance in providing us with reference to or knowledge of
something new? There are different answers to this question that
might be given. One, that we have already considered and found
lacking, is that the definition may proceed through the reconceptua-
lization of a given content. The answer on which I now wish to focus
and which, I believe, is far more worthy of consideration is that such
definitions may proceed via the context principle (CP).

The general idea behind the principle, as I understand it, is that
linguistic practice may be partly constitutive of reference. The fact
that certain terms are used in a certain way may guarantee, in
conjunction with the appropriate non-linguistic facts, that those
terms refer and that they refer to what they do. The practice need
not be taken to create the objects or items, for it may be supposed that
they exist independently of our practice of referring to them; but it
will help create or constitute our reference to those items. The
practice will be constitutive of our reference to the objects, if not of
the objects themselves.

Now there is a way in which such a view might be completely
unexceptional. For we might take it to be part of the use of the terms
that they refer to what they do; or we may include within the use of
the terms the fact that they have an identifying sense of the usual sort.
Thus in neither of these cases need there be anything exceptional in
the way the terms are taken to refer.

If the view is therefore to be of any interest, it must be that there is
some other, less obvious, way in which linguistic practice can conspire
with the world to deliver reference. It must be supposed that the
relevant use of the terms does not explicitly involve the fact that
the terms refer to what they do or that they have an identifying sense
of the usual sort. Let us call the linguistic behaviour of terms that can
be characterized without directly imputing either reference or an
identifying sense to them their ‘apparently referential behaviour’
Then the view is that the apparently referential behaviour of terms
may help secure their reference: terms that behave as if they refer will
refer, given that the appropriate non-linguistic facts are in their favour.

In general, the apparently referential behaviour of the terms will
not by itself secure their reference. For reference in this case, just as in
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the standard case in which there is an identifying sense, is a co-
operative endeavour, requiring a contribution both from language
and from the world. What will be true, though, is that the apparently
linguistic behaviour will provide all that is required on the linguistic
side; as long as the world is co-operative, and all the appropriate non-
linguistic facts obtain, reference will be secured. We might say that
the apparently linguistic behaviour of the terms endows them with
the potential to refer, a potential that will be realized when the
appropriate non-linguistic facts obtain. Thus referential potential is
the counterpart, within the framework of CP, to an identifying sense
within the standard Fregean model of reference.

But what might plausibly be taken to constitute the apparently
referential behaviour of a term? What short of reference itself or of an
identifying sense might plausibly be taken to secure the potential to
refer? Three main aspects of our linguistic practice have been
appealed to in this regard. The first is that the terms should behave
in the same syntactic fashion as referential terms, i.e. of terms that
refer or purport to refer. The second is that they should be subject to
the same logical principles as referential terms. And the third is that
the sentences that contain them should be subject to appropriate
conditions of truth and falsehood, those that we would expect to
obtain if the terms did indeed refer.

It is natural to take each of these condition on use to be implied by
its successor. For how can the logic of the terms be of the right sort
unless their syntax is? And how can the truth (and falsehood) condi-
tions be of the right sort unless their logic is? Thus the third condition
embodies the full requirement: the referential potential of the terms is
to be given through the truth-conditions of the sentences in which
they occur.

Given the Fregean conception of sense, it is natural to take the
truth-conditions of a sentence simply to be its sense. The view would
then take the referential potential of the terms to be given by the
sense of sentences that contain them. But the context principle need
not be tied in this way to a Fregean conception of sense. We could
imagine, for example, that the truth-conditions were stated within a
theory of truth of the sort advocated by Davidson and that no
assumption was made concerning either the existence or assignment
of sense.

Nor need it be maintained that the relevant use of the terms must
be explained exclusively in terms of the truth-conditions of the
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sentences that contain them; appeal might also be allowed to other
ways in which the terms or sentences are used. Consider the case of
a logical constant, such as ‘&’ A sentence of the form ‘P & Q’ will be
true just in case P and Q are true. But in order to avoid the problems
of circularity to which such a formulation gives rise, one might
want to say instead that the relevant use of ‘& consists in our
willingness to infer ‘P & Q from P and Q and to infer each of P
and Q from ‘P & Q.

However, in what follows I shall always suppose that the relevant
use of the terms to which CP is to be applied can always be stated in
the form of truth-conditions. The cases in which one might be
tempted to think otherwise will be of no interest to us; and I suspect
that they involve considerations of a very different sort.

Among the truth-conditional applications of CP, there is a further
distinction to be drawn between those cases where the terms can be
understood by means of a statement of the relevant truth-conditions
and those cases where it cannot. Thus it has sometimes been sup-
posed that one might understand the use of terms for abstract objects
through a specification of the truth-conditions for the sentences that
contain them. No special experience or recognitional capacity is
required; one need merely understand the statement by which the
truth-conditions are given. On the other hand, it is sometimes
supposed that our understanding of proper names for concrete
objects requires an ability to recognize the bearer of the name, in
addition to the acceptance of a criterion of identity for the kind of
object in question. But such an ability cannot simply be extracted
from a statement of truth-conditions; it would normally also require
some kind of contact with the real world.

In the first case, the statement of the truth-conditions may be used
to provide a definition of the term or terms in question. The state-
ment will provide one with a purely linguistic route to an under-
standing of the terms. But in the second case, no such route is
available. The truth-conditions can perhaps be stated; but their
formulation will require the use of terms whose understanding is
already in question. One might attempt to minimize the differences
between the two cases, either by playing up our contact with the
bearers in the abstract case or by playing it down in the concrete case.
However, in what follows, I shall assume that our understanding of
the abstract terms of interest to us—such as those for number or
direction—does not rest upon any form of non-linguistic contact
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with their bearers; and I shall be concerned to see to what extent CP
might then be taken to account for our understanding of these terms.

2. Completeness

Let us try to be more precise as to what is required for the successtul
application of CP. One important requirement—that the specifica-
tion of the truth-conditions should be complete—is taken up in the
present section. A significant aspect of completeness, the Caesar
problem, is then discussed in the following section; and a significant
possible consequence of completeness, referential determinacy, is
discussed in the section after that.

It will be helpful here (as with definitions of a more orthodox sort)
to distinguish between two rather different kinds of situation in
which the context principle might be applied. On the one hand, the
terms to be defined might belong to a previously understood lan-
guage; and our aim, in applying CP, might be to provide a definition
of those terms that is in conformity with our existing understanding
of them. All cases of philosophical interest are of this sort. On the
other hand, the terms to be defined might not already be understood;
and our aim, in applying CP, might be to provide ourselves with an
understanding of those terms. Since a situation of the first kind can
always be understood by reference to a hypothetical situation of the
second kind in which we succeed in recovering our actual under-
standing of the terms, nothing will be lost by confining our attention
to the second case.

Let us suppose, therefore, that we are given a language L whose
terms and sentences are already understood and that we add new
terms to L to form the (as yet only partially interpreted) language L*.
It is our aim in applying CP to L to secure reference, or at least
potential reference, for the new terms of L™; and we do this by adding
a set of ‘bridge principles’ B, which relate the truth (and falsehood) of
sentences in LT to the truth (and falsehood) of sentences in L. We
might call this set of bridge principles a contextual definition or
definition by CP for the new terms.

Thus any purported application of CP will be given by three
components: the given language L; the extended language L™; and
the bridge principles B. But not all choices of these components will
constitute an acceptable application of CP: given the base language L,
not all extensions L™ will be considered admissible; and given an
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extension L, not all choices of bridge principles will be considered
admissible. Which selections of L, LT, and B might legitimately be
made is a large question upon which it is difficult to attain a secure
view.

There are, however, two key conditions that are, at least, necessary
for a successful application of CP. The first—which we discuss here
and label ‘completeness’—is that truth-conditions should be pro-
vided for all sentences of the extended language L™ that contain any
of the new terms. Or perhaps we should be more cautious. For where
a new term t does not have a referential occurrence (as with the
sentence ‘“t” is a term’) or when the resulting ‘sentence’ is not
meaningful, then we do not expect an application of CP to provide
truth-conditions. Thus what we require is that truth (and falsehood)
conditions should be provided for the sentence ¢(t) as long as: (a)
there is a meaningful notion of what it is for an object (or for an
object of an appropriate sort) to satisfy the condition ¢(x); and (b)
the term t may be meaningfully substituted for x in &(x) without
alteration to its logical form.” For we certainly expect the sentence to
have truth-conditions in such a case; and if they are not provided by
CP, there would appear to be no other way in which they might be
given.

It should be noted that we do not expect CP to tell us whether such
sentences are true or false but merely to provide the conditions for
their truth or falsehood. We also do not insist that those conditions
be such as to guarantee that every sentence actually be true or
false. For the aim of an application of CP is to provide the new
terms with referential potential; and when the world is unkind, this
potential may not be realized. If one is of the view that sentences
containing non-referring terms lack a truth-value, for example,
then CP should be taken to deliver a truth-value gap in such cases.
But even here, the principle should provide us with the conditions
under which the sentence lacks a truth-value; it cannot simply remain
silent.

It is not necessary that the application of CP should directly specity
the truth-conditions of every meaningful sentence that contains a
(referential) occurrence of one of the new terms. For some of these

2 This question is also discussed by Hale and Wright [2000b] within the general context
of implicit definition.

® Fine (1989; 1990) contain an extensive discussion of how this latter condition might
not be met.
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conditions may be given indirectly, as consequences of the directly
specified truth-conditions and of general rules of use. The most
notable case of this sort is provided by the logical constants. Thus,
given the conditions of truth and falsehood for the sentence &, the
conditions of truth and falsehood for the sentence not-¢ may be
determined according to the following two rules:

N(i) not-¢ is true iff ¢ is false; and
N(ii) not-& is false iff ¢ is true.

Similarly, the truth- and falsehood-conditions for a disjunction are
given by:

D(i) (&b or ) is true iff ¢ is true or s is true (and perhaps also
that neither is truth-valueless); and
D(ii) (b or ) is false iff & and ¢ are both false.

The provision of rules for the quantifiers is not so straightforward.
Consider, first, the case of first-order quantification. Given that the
first-order quantifiers in L range over a given domain of objects, we
shall take the first-order quantifiers in L to range over the objects
from that domain plus the referents of the new terms. We could leave
the range of the quantifiers alone. But the applications of interest to
us are ones in which we shall wish to quantify over the objects
introduced by CP; and, in any case, if referents for the new terms
are indeed secured, then it should be possible to quantify over a
domain of objects that includes them and so any reasonable applica-
tion of CP should tell us how such quantification is to be understood.
Whether the referents of the new terms should be already allowed to
appear in the given domain (i.e. as values of the first-order variables
of L) is a question we shall consider later, though the natural assump-
tion is that they should not.

In order to simplify the formulation of the rules, let us suppose
that each object from the given domain has a name in L, that the
newly introduced terms are exclusively terms for objects, and that
we have the means of determining whether any given term refers (a
question we take up at the end of the section). We might then
determine truth-conditions for universally quantified sentences in
accordance with the following pair of rules:

Q) Vxd(x) is true iff G(t) is true for each (closed) referring term t;
and
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Qi) Vxd(x) is false iff G(t) is false for some referring term t (and
perhaps also that &(t) is never truth-valueless for a referring
term t).

However, for certain applications, the above rules will not lead to a
well-grounded account of the truth-conditions and, for this reason, it
may be preferable to select a range of privileged terms to represent the
objects of the domain. The first rule then takes the form:

Qi) Vxd(x) is true iff d(t) is true for each privileged referring
term t;

and similarly for the second rule. It should be noted that there does
not appear to be any reasonable way in which the truth-conditions
for quantified sentences might be understood in terms of satisfaction,
since the induction must eventually terminate in the specification of
truth-conditions for sentences.

Second- and higher-order quantification raise further problems.
We might give a substitutional rule for quantification over concepts
of objects, in the manner of Q(i) above:

CQ3) Yed(C) is true iff &(F) is true for each (closed) one-place
predicate-term of L.

But it is well known that, when the predicate-term F itself contains
second-order quantifiers, the resulting truth-definition may fail to be
grounded. If the proponent of CP is prepared to be platonistic about
quantification over concepts and not assume that each concept must
be specifiable by means of a predicate, then he should presumably
also be willing to be platonistic about concepts of terms. Thus each
concept may, in effect, be identified with a corresponding set of
terms; and quantification over concepts can be construed as substi-
tutional quantification with respect to the possibly infinitary predi-
cate-terms of the form Ax(x = t;vx = tyv...), where t;,t,, ... are
referring terms from L™. Given that these predicate-terms are used in
CQ(i) in place of the less explicitly given terms F, the problems over
grounding can be finessed. (This approach is pursued in sect. III.6
and shown to lead to well-defined truth-conditions.)

If, on the other hand, the proponent of CP is not prepared to be
platonistic about higher-order quantification, then he may well adopt
an account of how it is to be construed that can be adapted to the
present case. If, for example, he ‘ramifies’ the conceptual quantifiers
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in L, there should be no difficulty in extending the treatment to the
conceptual quantifiers in L'. Thus in neither case does higher-order
quantification appear to pose an additional problem for the propon-
ent of CP.*

If the truth-conditions of logically complex sentences can all
be indirectly determined in this way, then all that remains, in order
to satisfy the completeness requirement, is to determine the truth-
conditions of the atomic sentences. If the provision of the
truth-conditions for the sentences of Lt does not involve any new
predicates, then the new atomic sentences of L™ will be of the form
Ptyt; ... t,, where P is an old predicate from L and at least one of the
terms tits . . . t, is new.” Now it is conceivable that not all of the old
predicates will have meaningful application to the new terms. If one of
the old predicates is ‘is Roman’, for example, and one of the new terms
is ‘3’ then one may wish to deny that the sentence ‘3 is Roman’ is
meaningful. This was not Frege’s mature view; but if it is adopted,
then not all applications of the old predicates to the new terms need
be eligible for the assignment of truth-conditions.

The case of identity, however, is special. For whatever one’s view on
the other predicates, it is plausible that the identity predicate should
have meaningful application to any terms whatever. Given that the
two terms t and s putatively refer, then surely the sentence ‘s = t’ will
be meaningful and hence subject to conditions under which it
can properly be said to be true or false. Moreover, should both the
terms s and t refer, the identity-sentence s = t itself will be either true
or false. For the terms either refer to the same object, in which case
the sentence is true, or to distinct objects, in which case the
sentence is false. Thus the truth-conditions assigned to the identity-
sentences in these cases should result in a definite assignment of
truth-value.

* Thus T am not sure that T would agree with Hazen (1985: 252-3) that ‘the impredica-
tive notion of concept implicit in his [Wright's] acceptance of second-order logic is if
anything more contentious than that involved in object impredicativity. The case of
second-order quantification may, however, accentuate a problem he already has. For the
formulation of the truth-conditions in a metalanguage requires that we presuppose an
infinite ontology of abstract expression-types; and matters are only made worse when one
quantifies over arbitrary sets of such expressions.

® The antecedent condition is not automatically satisfied. If, for example, infinitary
‘enumerative’ predicates are used to interpret second-order quantification, then these must
be allowed to figure as the predicates in atomic sentences. I assume, though, that newly
introduced predicates of this sort will not give rise to any special problems.
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The only way in which this conclusion might plausibly be resisted
is to suppose that the reference of the terms s or t is indeterminate,
either in the sense that it is not determinate to what they refer or in
the sense that what they refer to is not determinate. There are two
relatively innocuous ways in which this might happen. It is possible,
on the one hand, that the application of CP has only been partially
specified and that under different ways of rendering it complete the
terms might enjoy different referents. And it is possible, on the other
hand, that one or both terms are complex and that the indeterminacy
has an independent source from within the term itself. Thus the
vagueness of the predicate ‘bald” might be taken to render the refer-
ence of ‘the number of bald men’ indeterminate and thereby deprive
the sentence ‘the number of bald men in the room = 3’ of a definite
truth-value.

But let us suppose that there is no external source of indeterminacy
(as with the predicate ‘bald’) and that the specification of the given
application of CP is complete. Can a term introduced through CP
still have indeterminate reference? This would require that there be a
truth-value gap in an identity-sentence involving the new term, since
otherwise there would be no reason to suppose that its reference was
indeterminate; and it would also require that the gap be incapable of
being closed, since otherwise there would be no reason to think that
the application of CP was complete. It is conceivable that the pro-
ponent of CP might be willing to admit cases of this sort, for he may
wish to avoid the paradoxes (that arise for extensions and the like) by
positing the existence of irresolvable gaps in truth-value. But if such
cases are admitted, they are best seen as exhibiting the second form of
indeterminacy. For within the framework of CP, we seem incapable of
forming a coherent conception of the objects between which the
new terms might be indeterminate. For these objects would them-
selves have to be given to us through the application of CP; and,
by hypothesis, there are no further objects of this sort. With this one
possible exception, then, ‘autonomous’ gaps in the truth-value of
identity-sentences should not be allowed. We may countenance a
truth-value gap for the sentence ‘the number of bald men in the
room is 3’ on account of an indeterminacy in what it is to be
bald, but not on account of an indeterminacy in what it is to be the
number 3.

There are two kinds of identity-sentence for which truth-conditions
should be provided:
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(i) those of the form s = t, where both s and t are new terms;
(ii) those of the form s = t, where one of s or t is a new term and
the other is not.

We may call sentences of the first sort unmixed and those of the
second sort mixed. Thus, in the arithmetical case, the unmixed cases
are those of the form ‘the number of Fs = the number of Gs’, where F
and G are predicates from the extended language L*, and the un-
mixed cases are those of the form ‘the number of Fs = £ or ‘t = the
number of Fs’, where t is a term that is not of the form ‘the number of
Gs’ and F is, as before, a predicate of Lts

The truth-conditions for the unmixed cases will often reveal what
is most distinctive about the objects, or terms, in question. This will
be true of terms for Fregean numbers, for example, and indeed of all
terms for Frege-style abstracts: identity will ‘translate’ into the ap-
propriate form of equivalence. But this is not generally true of
contextual definitions. What is most distinctive about the symbol
‘o¢’ for the point at infinity is that ‘r < o0’ is true for any real term r.
Or again, what is most distinctive about a term ‘—n’ for a negative
integer is that the sentence ‘n+ ( — n) = 0’ should be true (here
identity is involved, but not an identity of the form ‘—m = —n’).

The problem presented by the mixed identities ‘s =t is to say
when an object designated in one kind of way is identical to an object
designated in some other kind of way. If it is apparent from the
manner of designation what sort of object is designated, then this is
the problem of determining when an object of one sort is identical to
an object of some other sort. The famous example of Frege’s is ‘the
number of F’s = Caesar’ (Grundlagen, sect. 56). Thus, granted that
‘the number of Fs’ designates a number and that ‘Caesar’ designates a
person, the rule for assigning truth-conditions to mixed identities in
the arithmetical case must somehow have as a consequence that no
person is a number.

In addition to assigning truth-conditions to mixed identity-sen-
tences, an application of CP should also assign truth-conditions to all
other mixed predications Ptit; . . . t,, where P is an atomic predicate
from the given language L and at least one of the terms ty, t;, ..., t, is
new. We need to say in the case of numbers, for example, under what
conditions the number 3 is Roman (granted, of course, that it may

© Unless the given language L itself contains operation-forming terms, in which case a
term might be novel through containing an embedded occurrence of the number-operator.
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meaningfully be said to be Roman). We might call this the ‘Roman’
problem, by analogy with Frege’s Caesar problem.

It might be thought that the Roman problem is simply a special
case of the Caesar problem. For the sentence ‘Vx(Roman(x) <+ x
= Caesar V x = Brutus VV .. .)" will be true in L; and so given that
each of ‘3 = Caesar, ‘3 = Brutus,...is false, it will follow that
‘Roman (3)’ is false. But this is to overlook the fact that, within L,
the quantifier ‘vVx’ may only range over the objects countenanced by L
and not also over the objects introduced in L. Thus we may not be
justified in substituting ‘3’ for ‘X’ in the universal claim above; and if
we are not, then some other way of ascertaining that 3 is not a Roman
must be found. What is perhaps true is that the Roman problem,
though not reducible to the Caesar problem, may be solvable by
essentially similar means; for as long as the Roman-type predicates
are sortally circumscribed, the solution in either case may be taken to
turn on the question of when an object of one sort is identical to an
object of another sort.

Before turning to the question of how the Caesar and Roman
problems might be solved, let us take up a question left open by
our treatment of quantification. For this required that we be able to
distinguish between the terms that refer and those that do not. How
is this to be done?

There is a straightforward answer to this question. For quite apart
from CP, we recognize that the truth (or falsehood) of certain sen-
tences requires that certain of their terms refer. A term can then be
taken to refer if there is some sentence whose truth requires, in this
way, that the term refers and whose truth-conditions, as determined
by the application of CP, are satisfied. Indeed, such a view is forced
upon the proponent of CP. For he must acknowledge that the term
refers in such a case; and within the framework provided by CP, there
would appear to be no other basis upon which he could take a term to
refer.

Which truths can be taken to guarantee reference is a general issue
within the philosophy of language; and the proponent of CP is not
obliged to adopt one position rather than another. On the standard
Fregean view, no sentence can be true or false if it contains a term that
does not refer; and so any truth or falsehood containing a given term
can be used to secure reference. Under other views, any atomic
sentence containing a non-referring term will be false; and so only
certain of the truths can be used to secure reference.
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If it is granted that truth-conditions for identity sentences (or, at
least, self-identity sentences) should be laid down and also that no
identity sentence can be true unless its terms refer, then the criterion
for reference can be given, in a simple uniform manner, in terms of
identity. For the term t can be taken to refer just in case the truth-
conditions for t = t are satisfied; the reference-conditions for a term
are simply the truth-conditions for the corresponding sentence of
self-identity.

Thus, in keeping with the general spirit of CP, the usual order of
explanation is reversed. Instead of saying that the sentence ‘t = t’ is
true in virtue of the fact that the term t refers to a given object x and
that object is identical to itself, we say that the term t refers in virtue
of the fact that the sentence ‘t = t’ is true—where this latter fact is
itself explained without appeal to the reference of ‘t’

3. The Caesar Problem

I wish in this section to propose a schematic solution to the Caesar
problem (and the corresponding Roman problem). We shall see that
although the proposal applies in a relatively straightforward manner
to definitions by abstraction, its application to other forms of con-
textual definition sanctioned by CP is somewhat problematic. The
main other philosophers to have attempted a positive account are
Wright (1983: sect. vii), and, more recently, Hale and Wright (2000¢),
but their approach is rather different from mine, despite some obvi-
ous points of contact.

A solution to the Caesar (and Roman) problem should be formally
adequate in the sense of helping to settle the truth-value of each
meaningtul ‘mixed’ atomic sentence. It should, that is to say, provide
truth-conditions for such sentences which, in conjunction with the
‘facts; will determine whether or not they are true or false. The
solution should also be in conformity with our intuitions, i.e. not
deliver any incorrect results; and it should possess the usual explana-
tory virtues (non-circularity, systematicity, etc).

For ease of exposition, let us confine out attention to the Caesar
problem (concerning identities) since most of what we say about this
problem will straightforwardly generalize to the Roman problem
(which concerns all other atomic predications). Now it might be
thought that the Caesar problem could simply be solved by fiat. For
suppose we lay down the following two requirements: first, context-



The Context Principle 69

ual definitions should be linearly ordered (with a first, a second, etc.);
and second, any contextual definition for a new term must indicate
how it relates to all antecedent terms. Then any acceptable system of
contextual definitions will already embody a solution to the Caesar
problem; since, as the language expands, truth-conditions will be
assigned to every meaningful sentence that has so far been formed.”

It might be objected that this proposal merely shifts the problem to
another place. For the question now is: what constitutes an acceptable
contextual definition? Suppose I introduce Hume’s Law in a language
that already contains the term ‘Caesar’. Then according to the pro-
posal, I must also stipulate, either directly or indirectly, whether or
not Caesar is the number 3. But then what is to stop me from taking
him to be the number 3?

The answer is ‘nothing. But that is not because the resulting
definition would constitute an acceptable account of number. It
would be acceptable—though not as an account of our pre-existing
notion of number, but of a strange variant of that notion, call it
‘cumber’, in which the office normally performed by the number 3 is
now performed by Caesar. Thus it might be maintained that we can
resolve the questions of mixed identities in any manner that we
choose. The resulting definition may or may not be in conformity
with some pre-existing notion but it will not, in either case, give rise
to any special Caesarian concerns.

A different objection is that the solution to the Caesarian problem
should be implicit in a definitional ‘core’—Hume’s Law or what have
you—without the addition of any special stipulations concerning the
truth-conditions for mixed identities. However, under the present
proposal, the same core might belong to different definitions—of
number, say, or cumber; and so it is not clear why the core should be
taken unequivocally to fix the notion to be defined.

The most serious objection to the proposal, I believe, is that the
requirement that the definitions be linearly ordered is unduly re-
strictive (or that it is, once it is coupled with the further requirement
that the definition should take account of all antecedent terms). What
is to stop one from defining number by Hume’s Law, or the like, and
independently defining direction by the corresponding principle of
abstraction for directions? It is not that one comes first or the other

7 This seems to be the idea behind Frege’s application of CP in Grundgesetze (1893-1903:
i. sect. 10).
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second; and so there is no need for either definition to address the
question of whether any number is the same as a direction.

Even if it is insisted that the linearity requirement be met, a similar
problem will arise for definitions from different languages. Suppose
that number is defined by Hume’s Law in one language and that
direction is defined by a corresponding principle of abstraction in
another language. Then neither definition will make reference to the
other; and so, again, there will be no evident basis upon which we can
settle the question of whether the objects defined by the one defini-
tion are the same as the objects defined by the other. Thus a cross-
linguistic form of the Caesar problem will arise, even if the strictures
on the proper form of definition prevent it from arising within a
language.

We therefore cannot in general expect a solution to the Caesar
problem to follow explicitly from the contextual definitions them-
selves. But how then is the problem to be solved? How should the
definitions be supplemented or how should they be read, if the
solution is not already explicit in the definitions?

In addressing this question, it will be helpful to divide the Caesar
problem into two parts: we need to say when a mixed identity is true;
and we need to say when it is false. Now suppose that we have a
complete account of when a mixed identity is true. We may then
declare a mixed identity to be false if it cannot be shown to true
(assuming Bivalence, of course). In other words, if the identity does
not follow from the account, the relevant contextual definitions, and
the underlying facts, then it may be deemed to be false. We might call
this the ‘completeness rule’, since its valid application presupposes
the completeness of the positive account.® Given the completeness
rule, our task simply reduces to the task of saying when a mixed
identity is true.

It might be thought that, once armed with the completeness rule, a
simple solution to the Caesar problem is once again available. For
why not simply abstain from providing any positive account of which
mixed identities hold? In other words, why not accept an account in
which the maximum of mixed identities are taken to be false?” It will

& Such a rule is familiar from other contexts: it corresponds to the ‘extremal’ clause in
inductive definitions and to the ‘closed world’ assumption of non-monotonic logic.

? Not all mixed identities need be false, since the truth of some may follow from the
contextual definitions themselves. Thus it should presumably follow from the contextual
definition for negative integers that —0 = 0.
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then follow that Caesar is not the number 3, simply because it does
not follow from the contextual definition (along with the ‘facts’) that
Caesar is the number 3.

From a formal point of view, this is indeed a simple and elegant
solution. The question is whether we can be content with its results.
For might there not be identities between terms from different
contextual definitions that we feel obliged to accept?

[ believe that there are. Perhaps the least controvertible cases
concern what one might call ‘duplicate’ definitions. Suppose I define
‘number’ by Hume’s Law: the number of Fs = the number of Gs iff F
and G are equinumerous. (Nothing here turns on the choice of
Hume’s Law; any other contextual definition of any other notion
would do in its place.) Suppose now that I independently define
‘qumber’ by Hume’s Law: the qumber of Fs = the qumber of Gs iff
F and G are equinumerous. It does not then follow from the two
forms of Hume’s Law that any number is the same as any qumber—
that the number of non-self-identicals, for example, is identical to the
qumber of non-self-identicals; and so we should conclude, under
the minimalist application of the completion rule, that numbers are
not qumbers. Yet surely they are the same and surely, in particular,
the number of Fs is identical to the qumber of Fs for any concept F.

My opponent might simply dispute our intuitions on this point
and insist that numbers and qumbers, as so defined, will not be the
same. But then in what does the difference between numbers and
qumbers consist? And given that they are not the same, how come the
definition in terms of ‘number’ serves to pick out numbers while
the definition in terms of ‘qumber’ serves to pick out qumbers? How
can the use of one definiendum as opposed to another make a
difference to which objects are defined? It might be supposed that
each definition indeterminately picks out both numbers and qum-
bers; under any admissible precisification of either predicate, the
referents will be either numbers or qumbers (or rumbers etc). But
we have now lost our motivation for distinguishing between numbers
and qumbers and, even if we take there to be both numbers and
qumbers, it is not altogether clear why we should not maintain that
numbers are qumbers, since this will be true under any ‘co-ordinate’
determination of what we might take the referents to be. Just as
the indeterminacy of ‘number’ is no bar to the truth of ‘numbers
are numbers’, so the indeterminacy of ‘number’ and ‘qumber’ need be
no bar to the truth of ‘numbers are qumbers”. (Even if the referents of
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‘number’ and ‘qumber’ are not co-ordinated, we still require
an explanation as to why statements of the form ‘the number of
Fs = the qumber of Fs’ are neither true nor false.)

Our opponent might also object that, in the application of the
completion rule, we have operated with too narrow a notion of what
it is for one thing to follow from another. Certainly, it will not
logically follow from Hume’s Law for ‘number’ and ‘qumber’ that
numbers are qumbers, but it will follow analytically, since it is an
analytic truth that numbers are qumbers.

I think this point may be conceded. But part of what is here in
question is what we should take the analytic truths to be. Given a
definition of number and direction in terms of the relevant abstrac-
tion principles, it may well be true, and hence an analytic truth, that
numbers are not directions. But in attempting to solve the Caesar
problem, we cannot take for granted that it is an analytic truth; for
part of our aim should be to account for how the analytic import of
contextual definitions is capable of extending beyond their logical
import.

There therefore appears to be no alternative but to go beyond the
minimalist approach and provide a more positive account of which
mixed identities should be taken to hold. Let us therefore take
duplicate definitions, ones ascribing the same logical content to
their respective definienda, to give rise to identical referents. We
should go further still. For suppose I provide a contextual definition
of numbers mod 2 in terms of numbers in the usual way (the number
mod 2 of n = the number mod 2 of m iff m and n have the same
remainder upon division by 2); and let us suppose that we provide a
duplicate definition of qumbers mod 2 in terms of qumbers. Then if
numbers are identified with qumbers, numbers mod 2 be should
identified with qumbers mod 2. Duplicates at one level should be
taken to give rise to duplicates at a higher level; and the referents of
duplicates at the higher level should be taken to be the same.

But is this very modest departure from minimalism enough? Or
are there non-duplicate forms of definition that should also be seen
to give rise to identical referents? If our only concern is with context-
ual definition via Fregean abstraction, then the present proposal may
well be adequate. The proposal amounts to saying that Fregean
abstracts are the same only when their underlying equivalence rela-
tions are the same. Thus even if we define cardinal number using
Hume’s Law and natural number using the principle that the number
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of Fs = the natural number of Gs iff F and G are both infinite or F is
equinumerous with G, it will not be possible to identify the finite
natural numbers with cardinal numbers, since the underlying equiva-
lence relation is not the same. Although the view is subject to some
obvious reservations, which we discussed in sect. 1.5, it is not clearly
incorrect; and the reservations, for what they are worth, seem to have
more to do with getting straight on what cross-sortal identities
should be taken to hold rather than with seeing how they might be
accommodated within a theory of contextual definition.

The main reason why this simple proposal has not been accepted is
that it does not allow room for the view that cardinal numbers, and
the like, might turn out to be classes or some other kind of object.
Suppose that ‘number’ is defined by Hume’s Law and ‘extension’ by a
suitably circumscribed version of Law V.'® One might then wish to
claim that each number was identical with the extension of the
corresponding second-order concept, even though this did not follow
from the two laws under the identification of duplicates. Similarly, if
one had a prior notion of set (not necessarily given by contextual
definition), then one might wish to identify the number of a set with
a von Neumann-style cardinal. Perhaps these are not the views to
have, but a solution to the Caesar problem should at least allow them
to be on the cards.

I find this response excessively tolerant. From the general stand-
point of CP, there is something highly suspicious about a term that is
capable of being introduced by means of a contextual definition also
having an explicit definition. For how could the provision of truth-
conditions for sentences containing number-terms, let us say, lead
one to suppose that those number-terms should themselves have an
explicit definition in terms of some other term-forming operator
(unless this is already evident from the truth-conditions themselves)?
It is hard to see how such an understanding of the contextual defini-
tion could be permissible unless we were in general free to adopt
any interpretation of the number-terms that was compatible with
the stated truth-conditions. But then that would be to abandon
the whole idea of CP as a distinctive form of definition and simply
to treat it as a standard form of implicit definition. If this is right,
then a contextual definition of number, as given by Hume’s Law for

19 A consistent version of Law V that enables one to define cardinals 4 la Frege and then
derive Hume’s Law is given in sect. L4,
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example, is simply not compatible with any form of explicit defini-
tion.

Even if ‘external’ interpretations of a contextual definition are
allowed, we still face the problem of excluding incompatible inter-
pretations. If, for example, the number of Fs may be identified with
the class of all concepts equinumerous with F, then why should it not
also be identified with the class of all concepts that are equinumerous
with F or some subconcept of F? In each case, it will follow, as a
matter of logic, that Hume’s Law is satisfied; and there appears to be
no other ground upon which we might reasonably discriminate
between the two identifications. But the number of Fs cannot be
both the one class and the other; and so it cannot be either.''

Whatever its merits might otherwise be, the view that numbers are
classes is incoherent within the context of CP; and the attempt to
accommodate it within a solution to the Caesar problem can only
lead us astray. So can the present proposal, perhaps subject to some
fine-tuning over the identity of abstracts, be allowed to stand? I think
not; and this is because contextual definition via Fregean abstraction
is not the only form that contextual definition may take. It is worth
bearing in mind, given the huge emphasis on Fregean principles of
abstraction, that there is nothing in the general idea of CP that limits
its application to such principles. Indeed, the historically most im-
portant examples of contextual definition concern the various exten-
sions of the number system; and these are not most naturally taken to
be given by abstraction. Thus what is important about negative
numbers is not that —m = —n iff m = n, but that —m + m = 0;
and what is important about rational numbers is not that
m/n = p/q iff m.q = p.n but that m/n.n = m. In the case of the
imaginary number i or the ‘point at infinity’ oo, there is not even an
abstraction principle in the offing: i is essentially governed by the
principle that i = —1 and oo by the principle that, for any real
number r, r < oo.

Once we attempt to deal with this wider class of contextual defini-
tions, I think it will be seen that the present solution to the Caesar
problem is seriously deficient.'” Consider the extension of the system

1 A further reason, internal to the theory of abstracts, for not identifying the number of
Fs with the class of concepts equinumerous with F was given in sect. L.2.

12 Let me mention two other cases in which preoccupation with definition by abstrac-
tion may have led to over-generalization. Hale and Wright (20000: sect. 3) seem to think
that implicit definition cannot proceed by outright categorical stipulation, but the case of
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of natural numbers to positive and negative rationals. We can im-
agine doing this in two different ways. We might first introduce the
negative integers (essentially through the equation —m+ m = 0)
and then introduce the rationals (essentially through the equation
m/n.n = m). On the other hand, we might first introduce the ra-
tional numbers and then the negative numbers. Let us suppose that
we independently stipulate both pairs of definition and, to keep
notation straight, let us use ‘= and */’ for the first pair of definitions
and their boldface counterparts ‘=" and °/’ for the second pair. Now
surely we will wish to say that —1/2 and —(1/2) are the same
number. Indeed, we appear to have the same compelling reasons as
in the case of duplicate definitions for considering them to be the
same. However, on the present proposal, they will not be the same:
for the respective definitions ‘—” and ‘=’ and of /> and */’ are not
duplicates, since they are given over different domains, and so there
will be no basis for taking their referents to be the same.

A similar problem arises over the definition of the points of
infinity, —oc and 4o00. One might introduce —oc first and then
400, or 400 first and then —oo, or both of them simultaneously
(subject to the condition that —oo < r < 400 for any real r). Intui-
tively, the objects defined in each case are the same and yet, according
to the proposal, they are different.

On what basis can we say that the objects defined in these various
cases are the same? It seems to me that two main things are involved.
The first is to identify certain structural relations, it being the point of
a contextual definition to specify the structural relations that hold
between the objects to be defined and the given objects. Thus in the
case of the integers and the rationals, the structural relations are given
by the arithmetical operations of addition and multiplication while,
in the case of —oco and +oo, the sole structural relation is <. The
second is to say what structural relationships are implicit in any given
definition. Thus we may introduce +oc as being greater than all reals
or as being greater than all reals and —oo (if —oc is introduced first).
But we want the two positive points of infinity to be the same and so
it must somehow be implicit in the first definition that —oo > 400,
even though no reference is explicitly made to —oc.

oo (which is stipulated outright to be greater than every real) shows otherwise. They also
seem to think (2000c: sect. 7) that there is no special problem over cross-categorical
classification; but the case of —1/2, which should be classified both as a negative number
and as a rational, creates difficulties for this view.
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A great deal more needs to be said on the matter, but let me merely
point out that the framework provided by CP may be well be un-
suited to the task of specifying the relevant structural relationships.
The main difficulty arises from the fact that CP characteristically
permits one to introduce many objects simultaneously. I might
introduce the two points of infinity, 0o, and oo, for example, subject
to the condition that r < 0oy < 005 for any real r. Suppose that I now
introduce a single point of infinity oo subject to the condition that
r < 00. Then on what basis am I to identify oo with 0oy or 0o, if with
either? The problem does not arise if the objects to be defined are
introduced one at a time, since then the first of oo; or oo, to be
introduced can be identified with oo. But if we subject CP to the
requirement that it only introduce one term (and hence one object)
at a time then we greatly curb its scope and, in particular, all the
standard definitions by abstraction will have to be abandoned. It
therefore appears as if one will need to make a radical break with
the framework in which contextual definitions are usually set if the
Caesar problem is to be solved.

Let me conclude this section by noting an intimate connection
between the Caesar problem and a doctrine concerning our access to
contextually defined objects. According to this doctrine, which we
may call ‘Limited Access’, the means by which a contextually defined
object is introduced into the discourse provide essentially the only
means by which it may be identified. Thus if numbers are introduced
by Hume’s Law, then any particular number must essentially be
identified as the number of a given concept; and, similarly, if direc-
tions are introduced by a corresponding principle of abstraction on
lines, then any direction must essentially be identified as the direction
of a given line.

It is not clear exactly what this doctrine amounts to. One difficulty
is to say what is meant by ‘essentially’. Consider again the case of
numbers; and suppose they are introduced via something like Hume’s
Law (the precise details will not matter). Suppose now that t is a term
for a number (i.e. that it refers to a number). Then it would be going
too far to insist that t must be of the form ‘the number of Fs’ for some
predicate F. For it might be of the form ‘the x such that x is the number
of Fs’ It would also be going too far to insist that t be analytically co-
referential with a term t’ of the form ‘the number of Fs’ (i.e. that the
sentence ‘t = t”” be analytic). For the term t might be of the form ‘the x
such that x is identical to 0 if snow is white and is identical to Caesar
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otherwise’. Since the sentence ‘snow is white’ is true but not analytic,
the term will refer to the number 0 without being analytically co-
referential with any term of the form ‘the number of Fs> However, in
all the above cases the mechanism for determining the reference of the
term in accordance with its sense involves identifying the referent as a
number; in executing the procedure that corresponds to the sense of
the term, we must invoke a ‘subroutine’ in which the referent is
determined as the number associated with some concept. This there-
fore suggests that a term cannot be a term for a number unless the
semantic mechanism for determining its reference requires identify-
ing the referent as a number.

The other difficulty is to say what is meant by ‘means’ Suppose,
starting with the natural numbers, we first introduce the negative
integers and then introduce the rationals. Thus —1/2 is introduced
as the ratio of —1 to 2. But it might also be identified as the negative of
1/2.Ttis therefore clear that, in identifying a given contextually defined
object, we should allow ourselves to use whatever structural relations
might be directly or indirectly involved in formulating the definition.

With these two provisos in place, it is then plausible that some-
thing like the doctrine should hold. And what this means, in effect, is
that the solution to the Caesar problem should be of a suitably
minimalist sort; objects should be identified only in so far as the
structural relations by which they are given can be identified.

Strictly speaking, the doctrine of Limited Access is not about
numbers or directions or the like but about the objects, whatever
they might be, that can be introduced by means of contextual defini-
tion. But it is plausible that a related doctrine should hold for abstract
objects as ordinarily conceived, and not necessarily as the product of
contextual definition. For our access to abstract objects such as
numbers or sets or directions appears to be limited by the structural
relations with which they are naturally associated. A minimalist
solution to the Caesar problem should therefore provide an explan-
ation for this fact: since it will then follow, as long as these objects are
capable of being contextually defined, that no other means of identi-
fying them will be available to us.

4. Referential Determinacy

We turn to the question of how a contextual definition might be
capable of achieving referential determinacy. I shall suggest three
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main ways in which this might be done, the first two relying on
completeness and the third on the idea of canonical reference. Al-
though I think that each of these approaches may be capable of
achieving determinacy, it is at the expense of reducing contextual
definition to a standard form of definition; and so the apparent
epistemic advantages of adopting CP are lost.

Suppose that we attempt to introduce the negative integers by
means of the following contextual definition:

—n+n=0.

Then it is natural to suppose, if one accepts the legitimacy of such a
definition, that it serves to fix the reference of the negative terms
‘—n’—that, once given the definition, there can be no real question as
to what the negative numbers are or how they are to be assigned to
the negative terms. And it might be supposed, in general, that any
legitimate definition by CP will also serve to fix the reference of its
terms.

But how is such determinacy of reference achieved? If we simply
regarded the specification of the relevant truth-conditions as an
implicit definition of a standard sort, then they would be compatible
with the assignment of almost any objects as referents of the terms to
be defined. In the definition of negative numbers above, for example,
the negative numbers —1, — 2, ... could be any objects whatever as
long as they were all distinct from one another and from the positive
integers and as long as the operation of addition was so understood as
to render —n + n always equal to 0. Thus the negative numbers could
be points or lines, or even cabbages and kings. How then is a
contextual definition able to secure referential determinacy?

The requirement of completeness to some extent alleviates the
problem. Suppose we insist that truth-conditions should be pro-
vided, either directly or indirectly, for every meaningful statement
that contains the terms to be defined. Then negative numbers cannot
be cabbages or kings, since the general principles governing their
contextual definition (e.g. the completeness rule of sect. 3) will
somehow rule this out. However, even with the completeness require-
ment being met, some indeterminacy will remain. For one thing, we
may arbitrarily permute the assignment of the negative numbers
—1, —2,...to the negative terms ‘—1’, ‘—2,...and still satisfy the
stipulated truth-conditions, as long as the arithmetical operations are
suitably reinterpreted. In the second place, we may arbitrarily switch
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negative numbers with directions, say, or classes, again subject to
reinterpretation of the various basic operations. Thus within the
whole domain of contextually defined objects, there will essentially
be no constraints on which objects may be assigned to which terms.

How then is this residual issue of determinacy to be resolved?
There are, I believe, several answers that might, with some plausibil-
ity, be given. According to one view, once we have a complete
assignment of truth-conditions, then no intelligible doubts can be
raised concerning the determinacy of the definition. There are two
versions of this view. The first is disquotationalist in character.'® It
states that any meaningful question we may raise in our language
concerning whether a given term ‘t’ refers to s (e.g. ‘3’ to Caesar)
simply reduces to the questions of whether the term ‘t’ is meaningful
and of whether t = s. But this means that once we have resolved all
questions of identity, the only question that remains is whether the
term is meaningful; and it is plausible that, for a disquotationalist,
nothing more than the full provision of truth-conditions would be
necessary to render a term for an abstract object meaningful. Thus
once the completeness requirement is met, any doubts concerning
determinacy will disappear.

The second version of the view rests upon adopting a form of
holism. It may be granted that the possibility of reinterpretation is
normally indicative of referential indeterminacy. But it will be main-
tained that this is only true when the reinterpretation is not of a
general systematic kind. If every truth (or all truth-conditions) are
preserved by the reinterpretation, then no sense can be given to there
being a genuine difference in reference. The objects assigned to the
terms only enjoy a relative identity vis a vis one another and, if a
difference in their relative identity is not manifest in the truths within
which they figure, then no genuine difference can be attributed to
what they are.

This version of the view might be understood by way of an analogy
with location. Normally, a difference in the assignment of position to
things will correspond to a genuine difference in the locational facts.
But it might be maintained that even though local variation in
position is possible, there is no genuine possibility of systematic
variation. Thus even though there is a possibility of my chair being

13 Dummett (1991a: 1556, 192; 19915 39) attributes such a view to the Frege of the
Grundlagen; and it has recently been advocated and developed by Field (2001).
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2 feet to the left of where it is (keeping the relative position of
everything else fixed), it is not possible that everything might be 2
feet to the left of where it is. Or rather, what appears to be a different
possibility is merely a different representation of the very same
locational facts. And similarly, what might appear to be a different
referential assignment is merely a different representation of the same
underlying referential facts, given that the truth-conditions remain
the same.

There is a third, rather different, way of attempting to secure
determinacy. It may be allowed that a contextual definition, no
matter how complete it might be, is capable of being satisfied by
genuinely different assignments of referents to its terms. However, it
will be maintained that a contextual definition does not merely
demand that the referents conform to the stated conditions, but
that they conform in a special way. There must be no more to the
referents, so to speak, than what is required for them to satisty
the given conditions. Thus the integer —3 is the rmere solution of the
equation x + 3 = 0; and it is on this account that it gets picked out by
the equation (considered as a contextual definition) in preference to a
cabbage or a king.

It is hard to say, in more basic terms, what this special relationship
between a term and its referent is meant to be. One might compare it
to the relationship between a term and itself when the term is being
used autonomously. Although some other term might be used to
refer to that term, there is a specially intimate way in which that
term refers to itself. Of course, the object introduced by a contextual
definition is not the same as the defining term; it is a kind of
objectified version, or shadow, of the term. But it might be thought
to stand in a specially intimate relationship to the term which,
though not as transparent as identity, is equally definitive of what
the object is.

The present view posits a special definitional mechanism whereby
referents are to be assigned to terms; and it is the canonical character
of the referents, rather than the completeness of the definition, that
accounts for the possibility of determinacy. For this reason, there is
no need for a contextual definition to provide a complete specifica-
tion of the truth-conditions, even implicitly. The role of a solution to
the Caesar problem is not to complete an otherwise incomplete
definition but to make clear what follows from the special way in
which the defining conditions are to be satisfied.
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Although both views have some plausibility, it has to admitted that
neither is altogether satisfactory. The difficulty, in each case, is to
maintain what is distinctive about contextual definition and to avoid
collapse into a standard form of implicit or explicit definition. Under
the first view, it is hard to see why contextual definition should not be
regarded as a special case of implicit definition. It only differs from
the normal cases of implicit definition by being more systematic; and
what guarantees determinacy is not some special definitional mech-
anism but some general limitations, of either a disquotationalist or
holistic sort, on what is referentially possible. Under the second view,
on the other hand, it is hard to see why contextual definition should
not be regarded as a form of explicit definition. For why should we
not import the notion of canonical conformity into the object-
language and then explicitly define number-of, let us say, as that
operation which canonically conforms to Hume’s Law?

But then what comes of the apparent epistemic advantage of CP? If
a contextual definition is really an implicit definition, then objects of
the required sort must be shown to exist if it is to be legitimate; and if
it is a covert form of explicit definition, then objects of the required
sort must be shown to exist if it is to be of any use. So the idea that we
might have achieved referential determinacy without the usual epi-
stemic cost is still without justification.

5. Predicativity

If we are to set up a contextual definition for certain terms, then we
need to state truth-conditions for the sentences that contain them or,
to state the matter more carefully, we need to indicate what contri-
bution the presence of the terms will make to the truth-conditions of
all those sentences that do indeed possess truth-conditions. But not
any formulation of the conditions will do. We cannot take the truth-
conditions for a sentence about number, when numbers are what is in
question, to be given by the sentence itself. For the specification of the
truth-conditions should be non-circular; it should make no use of
the terms to be defined or in any other way presuppose an under-
standing of them.

This is not to say that these terms cannot be used at an intermediate
stage in the formulation of truth-conditions. In providing the truth-
conditions for a general statement, for example, we may appeal to
instances that involve the very terms in question, as long as the use of
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these terms is eventually eliminated. If we think of the specification of
truth-conditions as providing us with an inductive procedure, in
which one statement of the truth-conditions may give way to an-
other, then there will be two ways in which the specification may fail
to provide us with a non-circular outcome: it may terminate in a
statement, or in statements, of truth-conditions that already presup-
pose an understanding of the terms to be defined; or it may not
terminate in a statement of truth-conditions at all, either because it
goes round in a circle or because it results in an infinite regress.

If the above criterion for non-circularity is to be made precise, we
need to be able to say when a statement provides an appropriate
terminus in an account of truth-conditions. When is a statement not
question-begging, i.e. when does it not presuppose an understanding
of the terms whose definition is in question? In attempting to answer
this question, it will be useful to distinguish between three kinds of
statement:

(1) Statements of Grade I—that do not contain the terms in
question nor quantify over (or otherwise appeal to) the referents of
the terms;

(2) Statements of Grade 2—that do not contain the terms in
question but do quantify over (or otherwise appeal to) the referents
of the terms;

(3) Statements of Grade 3—that contain the terms in question.

In the number case, for example, the statement that all men are
mortal will be of grade 1, the statement that every object is self-
identical will be of grade 2, and the statement that the number of
planets is 9 will be of grade 3. We might put the difference in terms of
the distinction between definiteand indefinite reference. Grade 1 state-
ments involve neither definite nor indefinite reference to the ques-
tionable objects, grade 2 statements involve only indefinite reference,
while grade 3 statements involve definite reference (and possibly
indefinite reference as well).

It will be generally agreed that grade 1 statements are not question-
begging and that grade 3 statements are. This leaves grade 2 state-
ments; and it is here that controversy lies. For although these state-
ments do not invoke the problematic notions (number-of, extension-
of, etc.), they do appear to invoke a problematic ontology (numbers,
extensions, etc.) Does the non-circularity of a contextual definition
require merely that we avoid the problematic notions or also that we
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avoid the problematic objects? We take predicativism to be the view
that grade 2 statements are question-begging, and impredicativism to
be the view that they are not. Thus a predicativist will not allow
himself to quantify over the referents of the terms to be defined in
providing truth-conditions for statements involving those terms,
while the impredicativist will allow such quantification.

The two views lead to very different conceptions of contextual
definition. According to the predicativist, when we define certain
terms by CP we enlarge the domain of quantification; we actually
introduce into the domain of quantification objects that were not
previously there. For the impredicativist on the other hand, the
domain of quantification will remain the same under a contextual
definition; what happens when we define certain terms by CP is that
we single out certain objects that were previously undifferentiated.
Let us distinguish between our indefinite referential ken, which
consists of the objects we can quantify over at a given stage in our
understanding of a language, and our definite referential ken, which
consists of the objects to which we can make definite reference. For
the predicativist, contextual definition enlarges our indefinite refer-
ential ken while, for the impredicativist, it merely enlarges our defi-
nite referential ken (the objects are put into sharper referential focus,
as it were). Contextual definition is genuinely ontologically innova-
tive on the one view, and merely referentially innovative on the other.

Given these distinctions, there are three critical questions we
should ask. First, in any case in which we wish to give a con-
textual definition, can we provide a non-circular account of the
truth-conditions, even of an impredicative sort? A negative answer
to this question would be highly significant since it would show that
the impossibility of a contextual definition could be established
without even engaging the issue of predicativism. But let us suppose
that the answer is positive and that an impredicative definition can be
found. We may then ask: is predicativism a legitimate requirement on
any contextual definition? If it is not, then the previous impredicative
definition can stand. If it is, then we should consider the further
question of whether a predicative account of the truth-conditions
can also be given. I shall consider the first two questions in the present
section and turn to the last question in the next section.

We consider first the question of when it is possible to provide an
impredicative account of the truth-conditions. Let us take the pro-
posed definition of number by means of Hume’s Law as a typical
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example of an impredicative account (we shall later consider how our
discussion of this example might be generalized). We shall assume
that the quantifiers in the formulation of Hume’s Law range over all
objects (and concepts) whatever, since it is hard to see how the
inclusive quantification in terms of which the truth-conditions
might be stated under an impredicative approach could be anything
other than unrestricted quantification. Let us also suppose that we
have a solution to the Caesar problem. This then should presumably
provide us with a general understanding of the number-predicate ‘x
is @ number’ (though not, of course, of the number-operator ‘the
number of—).

Now let A be an arbitrary arithmetical statement, one that may
contain the number-of operator and may involve unrestricted quan-
tification over all objects. Then can we, on the basis of Hume’s Law,
assign to A an impredicative account A’ of its truth-conditions, where
A’ is a statement that, like A, may involve unrestricted quantification
over all objects and that may also contain occurrences of the number-
predicate, but will not contain any occurrences of the number-oper-
ator? In other words, can the number-of operator be eliminated in
favour of the number-predicate?

I suspect that the answer has usually been taken to be ‘no’ For it has
been supposed that even though Hume’s Law allows us to eliminate
the general statement ‘the number of Fs = the number of Gs* in
favour of a non-arithmetical statement of one-to-one correspond-
ence, it does not allow us to eliminate general statements of the form
‘x = the number of Fs’; and this is so even if we are provided with the
additional information that x is a number.'*

The correct answer, however, is ‘yes’ For consider an existential
statement of the form:

(*) for some x, A(x).
This is equivalent to a disjunction of:

(*1) for some non-number x, A(x); and
(*2) for some number x, A(x).

The second of these, in its turn, is equivalent to:

for some I, A (the number of Fs).

14 Wright (1997): sect. 15 1998a: n. 15), for example, claims that Hume’s Law does not
provide the resources to eliminate the occurrence of the operator N in Jy(y = Nx:x # x).
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If we make substitutions in accordance with these equivalences, then
every statement of the form ‘x = the number of Fs’ can be taken,
within a given context, to be false since it will have been assumed
within that context that x is not a number. We are therefore left only
with identities of the form ‘the number of Fs = the number of Gs’,
which can be eliminated on the basis of Hume’s Law.'” Thus we have
shown how effectively to associate with each arithmetical statement A
an impredicative statement A’ (not containing the number-operator)
for which it provably follows from Hume’s Law (and the definitional
principle that x is a number iff it is the number of Fs for some F) that
A is equivalent to A'.

Although the number-operator is eliminable in favour of the
number-predicate, it is not definable in terms of the number-
predicate. In other words, there is no formula A(x, F), not involving
the number-operator, for which:

x is the number of Fs iff A(x, F)

is a consequence of Hume’s Principle.

The above reasoning in favour of a negative answer establishes, at
best, that the number-operator is not definable.'® But, as we have
seen, this is still compatible with its being eliminable.

The use of arithmetical vocabulary ‘on the right’ cannot be avoided
altogether, since there is no purely logical equivalent for the state-
ment that there is at least one object that is not a number. However,
the total elimination of arithmetical vocabulary is possible in certain
special cases. Say that a statement is purely arithmetical if it is
arithmetical and if all the objects that it refers to or quantifies over
are restricted to numbers (and similarly, if all concepts, relations,
etc. are restricted in their application to numbers). In this case, we
may dispense with the first disjunct (E’) above; and so any purely
arithmetical statement ¢G(N) will be provable equivalent (given
Hume’s Law) to a purely logical statement. Thus when it comes to

> Thus the formula 3y (y = Nx: x # x) from the previous footnote will be equivalent
to JF (Nx:Fx = Nxix # x) v Jy( — Ny & y = Nx:x # x) which, in its turn, is equivalent
to T, which is just what one would expect. I have assumed that A contains no non-logical
constants other than the number-operator. If it contains other non-logical constants, then
they can perhaps be handled on the basis of a general solution to the Caesar problem (or the
corresponding Roman problem).

16 1 say ‘at best, since it merely excludes one obvious way of defining the number-
operator. What really establishes indefinability is the ‘switching’ argument of Lemma IIL.
3.8.
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the statements of arithmetic itself, it is possible to give a completely
‘clean’ account of their truth-conditions.

Or again, let us suppose that { is a statement saying how many
objects there are that are not numbers.'” Say that an operation O
taking all concepts into objects is Humean with respect fo s if it
conforms to Hume’s Law and if the complement of its range (the
‘non-numbers’) is of the cardinality specified by . Suppose now
that &(N) is a statement that contains occurrences of the number-
operator N. Then it follows from Hume’s Law and the cardinality
statement s that &b(N) is equivalent to the statement:

(**) &(O) holds for some operator O that is Humean with respect
to .'®

Thus once we know the cardinality of the non-numbers, we are in a
position to specify the truth of every arithmetical statement in purely
logical terms.

Moreover, these results hold for a wide range of abstraction prin-
ciples. The first (in terms of (*)) holds for any abstraction principle
whose criterion of identity is not flatly circular; while the second (in
terms of (**)) holds for any abstraction principle that is absolute
and invariant.'”” We may therefore conclude that, for a wide range
of abstraction operators, it is possible to provide an impredicative
account of the truth-conditions for statements containing the oper-
ator as long as the corresponding abstraction predicate can be used in
formulating the truth-conditions or as long as the cardinality of the
class of non-abstracts is taken to be known.

Let us now turn to the second question of whether the impredica-
tivist approach is legitimate? Can we, in providing a contextual
definition of numbers or directions or the like, quantify over the

17 The statement (D) should specify the cardinality of D in the sense that the formula
VD, E[{(D) & $(E) D (D is equinumerous with E)] should be a logical theorem (or a
logical truth).

¥ The proof is as follows. Supose $(N) holds, then ¢(O) holds for some Humean
operator O with respect to {5, since N is Humean with respect to . Now it may be
shown that any two Humean operators with respect to { are ‘isomorphic, so that if
$(0) holds for some Humean operator O with respect to ¢, then it holds for any other
Humean operator with respect to § and, in particular, for N. Note that the equivalent is
not found, in this case, by substituting the left-hand side of Hume’s Law for the right-hand
side.

% In the sense of sect. ITL.3. T might add that the third-order quantification over
operators can be avoided by using the trick described in sect. IV. 1.
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very objects that are in question?”® Imagine someone who has not yet
been exposed to a contextual definition of number. Can he be taken
to have a prior understanding of quantification over a domain of
objects that includes the numbers themselves and in terms of which
the truth-conditions for statements concerning number might then
be framed?

I am inclined to answer this question on doctrinaire grounds: since
the point of a definition by CP is to introduce a certain ontology of
objects, we should not appeal to that ontology in explaining how the
objects are to be introduced. But I believe that there might also be a
less doctrinaire basis upon which a negative answer can be given. For
the impredicativist owes us an account of the truth-conditions for
those statements whose quantifiers range over the inclusive domain.
It is not merely that this is a reasonable demand in itself, it is required
by his general strategy for providing truth-conditions for the state-
ments containing problematic terms. For this proceeds inductively,
with the truth-conditions for logically complex statements being
explained in terms of the truth-conditions for their simpler compon-
ents. But then, for this strategy to work, the impredicativist must
specify truth-conditions for statements of the form Vxdb(x), where
b(x) contains one or more of the problematic terms; and so he must
also be in a position to specify truth-conditions for such statements,
even when they do not contain a problematic term.

How are the truth-conditions for the statements of the form
Vxd(x) to be specified? Presumably, in terms of their instances.
Again, this is not merely a reasonable demand in itself but would
appear to be required by the inductive strategy, since it is otherwise
unclear how the induction is to proceed. Among the instances of
Vxd(x), given that the quantifiers are inclusive, will be ones that
concern the objects that are the referents of the terms to be defined.
Now there would appear to be two ways in which the relevant
instances might be conceived—either objectually or substitutionally.
In the first case, the truth of Vxdb(x), with respect to the relevant
instances, will require that ¢(x) be true of every one those objects;
and in the second case, its truth will require that &(t) be true for each
of the terms t that is to be defined (or perhaps for a suitable selection
of such terms).

2% Ishould emphasize that my question entirely relates to the piecemeal, as opposed to the

global, approach to contextual definition. Impredicativity is not merely acceptable, but
essential, on the holistic approach since what s required, in effect, is a vast implicit definition.
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Consider each case in turn. The first requires that we give an
account of what it is for an object to satisfy an open statement ¢(x)
and hence will require, in particular, an account of what it is for an
object to satisfy an open statement “x = t, where t is a ‘generic’ term
for one of the new objects. Thus, in the case of number, we must say,
with respect to any concept C, what it is for an object to satisfy the
open statement ‘x = the number of Cs’ (if the quantifiers over the
objects are objectually interpreted, then so presumably are the cor-
responding quantifiers over the concepts). But this will provide us
with what is, in effect, an explicit definition of the number-of
operator; for if W(C,x) is the condition for an object x to satisfy the
open statement x = the number of Cs’, we may define the number of
Cs as the x for which W(C,x). We might attempt to evade this
conclusion by appealing to the notion of satisfaction only for the
numbers. But this requires that we be able to single out the objects
that are numbers; and so, given that we know what it is for a number
to satisfy the open statement ‘x = the number of Cs’ we will know
what it is for an arbitrary object to satisfy the open statement.

The second case requires that we provide an account of what it is
for a closed instance &(t) to be true, where t is one of the new terms,
and so, once the induction unravels, it will require that we provide an
account of the truth-conditions for statements of the form t = t'. But
the account will then fail to provide determinate truth-conditions,
since the truth-conditions for the identity statements will be given in
terms of quantified statements and the truth-conditions for quan-
tified statements in terms of the identity statements. Thus neither
approach will work; we end up with either too much or too little.

One might question this line of reasoning on the grounds that it
may not be necessary to resort to a standard inductive strategy in
specifying the truth-conditions. Indeed, the impredicative accounts
of truth-conditions stated above do not pursue such a strategy but
proceed in terms of a wholesale transformation of the given state-
ment. So what, in particular, is to prevent the impredicativist from
adopting such an account?

The reason, I think, turns on the use that might properly be made
of a solution to the Caesar problem. For the solution will not provide
us an account of what it is for an arbitrary object to be a number; it
will not, in other words, provide us with an explicit definition of
number. Rather it will provide us with truth-conditions for mixed
identities of the formed t = t/, where t and t’ are both closed terms,
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but one is of the form ‘the number of Fs” while the other is not. But
knowing the truth-conditions of such statements will not allow us to
eliminate arbitrary occurrences of the number-predicate; and so the
use of the predicate in the formulation of the truth-conditions
will not be justified after all. Indeed, it appears that the only way a
solution to the Caesar problem might be of any use in formulating
the truth-conditions is as part of a standard inductive strategy. For
how else are we to produce the mixed identities upon which a
solution to the Caesar problem can then be brought to bear?

The second account (in terms of the cardinality specification W)
might appear to avoid any reliance upon a solution to the Caesar
problem. But this is not really so. For we will need such a solution to
ascertain the cardinality of the objects that are not numbers. More-
over, the account will break down once further non-logical constants
are added to the language; and again, we will need to bring in the
solution to the Caesar problem in order to ascertain what further
conditions should be placed upon a Humean operator if the account
is still to work. It therefore appears that, in this case too, there is no
reasonable alternative to the inductive strategy. Thus even if one is
open, in principle, to allowing an impredicativist account of the
truth-conditions, there would appear to be difficulties in integrating
such an account with a solution to the Caesar problem.

As I have said, I am inclined to endorse predicativism on doctrin-
aire grounds, and so impredicative truth-conditions should not be
allowed even if they could be reconciled with a solution to the Caesar
problem. But it has to be admitted that the doctrinaire endorsement
of predicativism leaves the predicativist in an embarrassing predica-
ment. For surely, it might be thought, it is possible to form the
conception of unrestricted quantification prior to any application of
CP; and if this is possible, then why should we not employ such
quantification in stating the truth-conditions of any given contextual
definition?*'

In responding to this predicament, the predicativist might simply
deny that we can form an intelligible conception of unrestricted
quantification. But this is a hard line to take; and it would be better
if the predicativist were not forced to take it.

21 This is a tack taken by Wright (1998a: 391-4). For further discussion of this issue see
Wright (1998b: 353—4), Dummett (1963; 1991a: ch. 24; 1993: 429-45) and the first three
papers in Brandl and Sullivan (1998).
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But is there an alternative? Let us distinguish two different ways in
which an understanding of unrestricted quantification might be
prior to a given contextual definition. It might be prior in the sense
that we can understand the quantification independently of the
contextual definition; or it might be prior in the stronger sense that
it can legitimately be used in formulating the truth-conditions for
that definition. The predicativist might then concede that we can
have a prior understanding of unrestricted quantification in the first
sense without conceding that we can have it in the second sense. He
might allow, in other words, that there was a prior understanding of
unrestricted quantification that was of no help in formulating the
truth-conditions.

But the question might now be pressed: if we can form an under-
standing of unrestricted quantification prior to a given contextual
definition, then why should it not be used in stating the truth-
conditions? What is the relevant difference between the partial under-
standing that we acquire of unrestricted quantification after a
contextual definition is made and the understanding we have before
it is made? Intuitively, there is a difference. For our understanding
prior to the definition is purely schematic, we have no real concep-
tion of what the objects are or how they might differ from other
objects; and it is only once we have made the definition that we are
able to form a full-blooded conception of what the objects are.
However, the predicativist needs to make clear what this distinction
is and why it matters. I believe this can be done but let us, for now,
merely note that this problem is one that the doctrinaire predicativist
must solve if his position is to be rendered coherent.

6. The Possible Predicative Content of Hume’s Law

I turn to the question of finding predicative truth-conditions and I
wish to consider, in particular, whether Hume’s Law might be capable
of providing us with a predicative understanding of number, even
though the principle itself is impredicative in form. I argue that
previous attempts to provide Hume’s Law with predicative content
are subject to severe difficulties and that a fundamentally different
approach to the problem is required if these difficulties are to be
solved.

It is clear, in principle, that a contextual definition that is impre-
dicative in form might be capable of providing us with a predicative
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understanding of the term or terms to be defined. Consider the
contextual definition of a negative integer —n as an integer for which:

) —n+m=piff m=p+n.

Now the defining condition is meant to have application to the case
in which n, m, and p are negative integers and is therefore impredi-
cative in form. However, it is straightforward to extract a predicative
meaning from this definition. For we can restrict (*) to the case in
which n, m, and p are non-negative integers and then give an explicit
specification of how (*) is to be extended to the other cases. So, for
example, when m is also a negative integer, say —k, we can stipulate
that —n + m = —(n + k).

Another, somewhat different, example is with the contextual defi-
nition of ordered pair:

() <x, y>=<u, v>if x=uvandy=v.

Since the variables x, y, u, and v are meant to range over ordered
pairs, the definition is also impredicative in form. However, we might
provide it with a predicative reading in the following way. We sup-
pose that there are names for all individuals, i.e. for all objects in the
domain that are not ordered pairs. We construct terms for ordered
pairs (pairs of such pairs etc.) from these names in the obvious way
and then subject the language with quantification over ordered pairs
to a substitutional semantics, using closed instances of (**) to pro-
vide the truth-conditions for identity statements between ordered
pairs. Since (**) results in a reduction of rank (defined as the max-
imum degree of embedding of the ordered pair operator), the truth-
conditions will eventually bottom out in statements that merely
concern the identity of individuals. In this case, in contrast to the
previous one, there is no obvious way of factoring out the principle
into an explicit definition, on the one hand, and a component that is
obviously predicative, on the other. The predicative content is some-
how read into the principle by means of a substitutional interpret-
ation of the quantifiers.

Our question is whether anything similar is possible in the case of
Hume’s Law (and of other such principles). In considering this
question, it is important to bear in mind that any acceptable predica-
tive reading of Hume’s Law will provide it with additional logical
content, i.e. will render statements true that are not themselves
logical consequences of the Law. And here I have in mind not merely
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Caesar-type statements (such as ‘Caesar is not a number’) but also
statements of pure arithmetic, in which the only non-logical constant
is the number operator and in which the quantifiers are restricted to
numbers. For the predicative content of an arithmetical statement
can only turn upon how many individuals there are. But the truth-
value of the statement ‘the number of natural numbers = the number
of numbers’ does not get settled by Hume’s Law, even when the
cardinality of the class of individuals is taken to be fixed. Since the
statement should receive a truth-value on a predicative reading (given
the underlying predicative facts), such a reading must somehow take
us beyond the logical content of the Law itself.?

Two questions now arise. Which truth-values should be assigned to
the arithmetical statements under a predicative reading (given the
predicative facts)? And how should they be assigned? What, in other
words, is the mechanism by which the predicative reading assigns the
truth-values that it does? There would appear to be only one reason-
able answer to the first question. The truth-values should be assigned
on the basis of the minimalist interpretation of sect. 1.2 in which the
numbers are successively generated from the individuals and from
previously generated numbers. For given that the predicative reading
should assign a truth-value to purely arithmetical statements (on the
basis of the predicative facts), there would appear to be no other
reasonable basis upon which this might be done. Any other choice
would be completely arbitrary.”

How the truth-values are to be assigned is a more difficult matter.
Is it possible that each arithmetical statement might be translated
into one that exactly describes its predicative content (in analogy to
the impredicative translation of the previous section)? In case the
domain of individuals is taken to be infinite, such a translation can
indeed be given. Say that an operation O is quasi-Humean if it is an
operation that takes concepts of individuals into individuals in such a

22 Boolos (1987: 16) and Dummett (1991a: 227) have observed that the truth-value of
the statement ‘the number of objects is identical to the number of natural numbers’ does
not get settled by Hume’s Law. But the present form of incompleteness is more radical in
that it concerns a purely arithmetical statement and still holds even when given all the non-
numerical facts. I might also add that it is not subject to the objection canvassed by Wright
(1998b: 401) and Hale (1994: sect. 6) that we should not expect to assign a number to all
objects since object is not a genuine sort.

#3 We might note that the earlier substitutional reading of the contextual definition for
ordered pairs also yields a minimal model and also yields additional logical content (at least
in a second-order setting), since every ordered pair is required to be well-founded.
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way that (1) Hume’s Law is satisfied (within the domain of individ-
uals) and (2) the individuals in the range of the operation are
equinumerous with those that are not. Thus, with a quasi-Humean
operation, ‘half” of the individuals go proxy for numbers. Given any
statement G(N) whose quantifiers range over both individuals and
numbers and which may contain occurrences of the number-operator
N, let &'(N) be the result of restricting its quantifiers to the indiv-
iduals (i.e. to objects not in the range of N). The truth-conditions of
&(N) are then given by the following predicative statement:

(*)d'(0) holds for some quasi-Humean operation O.

The reason the translation works is that, when there are infinitely
many individuals, the cardinality of the whole domain of individuals
and numbers within a minimal model will be the same as the
cardinality of the individuals and so the relevant number-theoretic
structure on the whole domain may be reduplicated within the
subdomain of individuals.

However, no such translation can be made to work in the critical
case in which the domain of individuals is finite. For suppose there
were a translation taking each &(N) into the predicative statement ¢*.
Now in any given finite domain, we can effectively settle the truth-
value of the statements ¢* (since the quantifiers range over fixed finite
domains of objects and concepts) and so we can effectively settle the
truth-value of the statements &(N). But this is impossible, since the
statements G(N) have the expressive power of second-order arith-
metic.

This means that the predicative truth-conditions cannot be given
by means of an effective translation and some other way of specitying
them may be found. It might be wondered at this point why we
should not simply appeal to the minimalist interpretation. For we
can add an assumption to Hume’s Law that has the effect of requiring
that the interpretation of the number operator be minimal. The
resulting theory is then categorical relative to the cardinality of the
individuals: any two models with the same number of individuals are
isomorphic.** But this then means that each statement of the theory
will have a determinate predicative content as given by the range of
cardinalities that the individuals may assume in any minimal model
in which the statement is true.

** See Corollary I11.6.7 for details.
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The difficulty with this approach is to see how someone could
grasp what these truth-conditions are without already having access
to an infinite domain of abstract objects. To say that a statement is
true, on this approach, is to say that the domain of individuals is of
this size, or that size, and so on. But even if we put aside the problem
of specitying the size of the domain of individuals without making
reference to numbers, there remains the further problem of specify-
ing what the relevant range of sizes should be. For the natural explan-
ation is in terms of there being a minimal model whose domain of
individuals is of that size; and this requires appeal to an infinite
domain of additional objects from which the new elements in the
minimal model might be drawn.

A similar difficulty besets the attempt to construct a predicative
account of number on the model of the account of ordered pair given
above. For how are we simultaneously to construct the number-terms
and the concept-terms? One possibility is to take each concept-term
to be given by a (possibly infinite) enumeration of object-terms and
each number term to be given by means of a concept term. The
construction should then be allowed to proceed throughout the
whole set-theoretic hierarchy, since there is no natural point at
which it might be stopped. But we then face an additional difficulty.
For even if we are given all such terms, the truth-conditions for
identity-statements will not be grounded, since they will involve
quantification over all objects and hence over all number-terms. To
get round this difficulty, we may restrict the quantification to the
object-terms that are directly or indirectly involved in the identity
statement itself. In this way, we can provide a grounded account of
the truth-conditions which leads, in fact, to the minimal model.*’
However, the manner of specifying the truth-conditions is so obvi-
ously infinitistic in character—requiring, as it does, a whole set-
theoretic hierarchy of expressions—that it is hard to see how we
might be capable of grasping what the truth-conditions are meant
to be without already presupposing an infinite ontology of abstract
expressions. (Whether the account of ordered pair suffers from a
similar difficulty is not so clear, since the relevant understanding of
the substitutional quantifier in this case might not be thought to
require grasp of an underlying ontology of expressions.)

%5 See the end of sect. 117 for details.



The Context Principle 95

We somehow need to provide an account of the truth-conditions
that is graspable from the bottom up rather than through a sophisti-
cated form of semantic ascent and, to this end, it will be helpful to
look at the account proposed by Crispin Wright (1983: 132-45;
1998a: 357—68; 1998b: 399—405). For present purposes, I have con-
strued Wright as attempting to show how Hume’s Law might provide
us with a predicative understanding of number. Although I do not
think the account succeeds, as so construed, its failings will enable us
to appreciate what might be required of a more adequate ac-
count. The reader should bear in mind, however, that Wright is
perhaps better understood as attempting to show how Hume’s Law
might provide us with an impredicative understanding of number;
and in this case, only some of the criticisms that I make will still
apply.

Wright imagines a ‘trainee’ whose job, we are assuming, is to attain
a predicative understanding of number. He is to do this in successive
stages (for further details, see Wright 1983: 132—45; 1998a: 358—68).
At each stage n=0, 1,..., he introduces a new number term t,
(which intuitively will signify the number n) and then attempts to
attain a logical grasp of the conditions under which the number of Fs
is identical to t,. He does this by associating a purely logical condition
¢, with the term t, and deducing from Hume’s Law (and what he
already knows) that:

(Dy,) the number of Fs = t,, iff ¢, (F), for any predicate term E

The knowledge of (D,,) is then meant to put him in a position
to understand the term t, (given a solution to the Caesar prob-
lem).

To be more specific, we take tg to be the term ‘the number of x such

that x is not self-identical’ and, where tg, t,...,t,_; are the terms
introduced at stages 0,..., n— 1 prior to n, we take t, to be the
term ‘the number of x such that x=1¢; or... or x=1t, ;" (we
might call the terms to, ti,... the Fregean numerals). The trainee’s
previous knowledge of the conditions (Dy), .. .,(Dp_1) enables him
to deduce:

t#Ftfor0<i<j<n
and his present knowledge of Hume’s Law enables him to deduce:

tiF£t,for0 <i<n
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He is therefore in a position to deduce (Dy,), where ¢, (F) is a logical
formulation of the condition that there are exactly n Fs.*®

I wish to direct two sets of criticisms against this proposal. For the
purposes of the first, we may grant that the proposed mechanism for
understanding the Fregean numerals ty, t;, tz,... will work. The
criticism is then that we will still not have achieved a full understand-
ing of arithmetical discourse. One difficulty of this sort is that it is
not clear that the mechanism that Wright describes will account for
anything more than the possibility, for each n =0, 1, 2, ..., that
the trainee understand the terms ty, t, ..., t,. The infinite sequence
of definitions (Dg), (D1), (D,),... is meant to provide him with an
understanding of the Fregean numerals to, t;, ts, ... (in conjunction
with a solution to the Caesar problem). First he understands ty
with the help of (Dy); then he understands t; with the help of (Dy);
and so on. But how is he meant to grasp this infinitary sequence
of definitions? Certainly, he can grasp any finite subsequence
(Do), (D1),..., (Dy) of them. But how is he meant to grasp them
all? Presumably he must come up with a finite compendious descrip-
tion of the sequence (which is what I have supplied to the reader). But
this requires that he already has the concept of number! It might be
thought that the fact that each of (Dy), (Dy), (D3),...is derivable
from Hume’s Law can help us here. For then our knowledge of
(Do), (D1), (D2),... can be taken to be implicit in our knowledge
of Hume’s Law. But more than knowledge is required (if ‘knowledge’
is the right word, since the terms involved in the deduction are not
yet understood). For from all the many statements deducible from
Hume’s Law, we need to be able to select a sequence of statements
(Do), (D1), (D2), ... that will provide us with an understanding of
the terms to, #1, 6, ...; and it is the selection of this sequence that is
providing us with so much trouble. It is unclear, in the absence of a

%6 We can adopt the standard first-order formulation ¢, (F) or the following second-
order formulation:

Gy (P, (G) & ~Gy & Vx(Fx + GxV x=7)),

which allows for a slight simplification in the proof of (Dn) (in neither case are the
complexities of Wright’s (1998a: 367-8) proof at all necessary). It is worth noting that,
for the purpose of finding a condition ¢,,(F) for which (D,) is deducible, it is not strictly
necessary to show that the terms to, t;,..., t,_; are distinct. In the case of the term t,, for
example, we might take the condition on F to be: (ty = t; & ¢1(F)) V(# # t1 & ¢,(F)),
where ¢, (F) and ¢, (F) are the previously defined conditions. Thus our understanding of
the terms ty, t;,..., need not be tied, in the way Wright suggests, to a proof of the
infinitude of the number series.
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prior understanding of number, how we are to grasp what this
sequence is meant to be.

In any event, let us suppose that the trainee can somehow achieve
an understanding of all of the Fregean numerals. He still will not
possess an understanding of a term for every number. For even
supposing the domain of numbers to be countably infinite, he will
not yet understand a term for the number of that domain. Nor is it
clear how such an understanding is to be attained. He cannot refer to
it by means of an enumerative specification ‘the number of x for
whichx =0orx =1 or...’, as in the case of the natural numbers,
since such a specification would be infinite. Nor can he appeal to the
notion of being a natural number and take the number to be that of
the natural numbers. For an understanding of the definition of
natural number rests upon an understanding of the locution ‘the
number of Fs) for variable F, which he does not yet possess. If he
could somehow step outside the initial definitional process and refer
to the numbers that have so far been defined, this would provide him
with independent access to the notion of natural number. But the
usual way of doing this already presupposes an understanding of
natural number.

It might be disputed whether our trainee need have a term for
every number. But having a term for every number provides him with
a straightforward substitutional interpretation of quantification and,
in the absence of such an interpretation, it is not clear what should
take its place. It needs to be borne in mind that the interpretation of
the quantifiers is not uniquely determined by Hume’s Law, even when
the domain of individuals is taken to be fixed. In addition to the
minimalist interpretation, there are a multitude of non-minimalist
interpretations; and so we need to know what it is in the trainee’s
understanding that determines one interpretation of the quantifiers
over another.”’

> Wright (1998a: 362-3) correctly observes that there is no separate problem over the
understanding of first-order quantification though this is true, given that the numerical
terms Nx:p(x) may be formed from an arbitrary condition ¢(x), for a much more
straightforward reason than the one he provides: for Ixd(x) is equivalent, given Hume’s
Law, to ‘Nx: ¢p(x) # 0’; and so first-order quantification can be eliminated in favour of the
number-operator.

Given that this is so, the problem is then to show how one might understand all terms of
the form Nx:¢(x). To this end, Wright appeals to the notion of rank (ibid. 363—4). But it
can be shown, given his definitions, that every statement is logically equivalent to one of
rank 0 (and also to one of no rank!). For it may be shown that any statement ¢ is logically
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I turn to the second line of criticism, which is that Wright’s trainee
is not even capable of understanding the Fregean numerals. The
difficulty emerges at the very first stage, when the term t, is intro-
duced. For if the definition (Dy) is to be predicative at this stage, the
trainee should not assume that the first-order variables range over
numbers. Thus all that the definition (Dy) tells him is that if F is a
concept of individuals then the number of Fs = t; iff there are no Fs.
But this is of no help in determining whether the number of Fs is t,
when F is not a concept of individuals and, in particular, it is of no
help in determining whether t; (the number of objects identical to t;)
is identical to ty, since the concept of being identical to t; is a concept
of numbers. Even if the trainee were somehow capable of grasping
that the truth of (D) was indifferent to the identity of the objects in
the domain of quantification, he would still face difficulties in apply-
ing (D) to cases in which the domain was larger than that of the
domain of individuals. If the domain of individuals was assumed to
be finite, for example, he would be incapable of understanding what
it was for the number of natural numbers to be t;.

We might put the difficulty in the form of a dilemma: either the
quantifiers in (D) already range over numbers, in which case the

equivalent (given that the numbers of coextensive concepts are the same) to a statement ¢*
in which each number term is of the form Nx:Fx, for F a concept variable. But
¢* & Nx:Px = Nx: Px is of rank 0, when P is an unproblematic predicate (while ¢* itself
is of no rank). Thus the appeal to rank does no work: if the trainee understands all
statements of rank 0, then he effectively understands all statements whatever.

In order to take care of unranked statements, Wright (1998b) later suggests two ways in
which his earlier account might be supplemented. One suggestion is that we might
understand a second-order quantificational statement through understanding an instance
(ibid. 400, case (i)). But, as we have seen, every arithmetical statement is equivalent to one
in which all number-terms are of the form Nx:Fx, for variable F; and so, if this principle
held, we could, by substituting x # x for Fx, understand every arithmetical statement by
understanding the term Nx: x # x (and hence by understanding all of the statements in
which that was the sole number term to occur). Clearly, within the present context, an
understanding of the term Nx:x # x cannot be taken to secure a general understanding of
Nx:Fx for variable E Another suggestion (ibid. 402) is that we might understand the term
Nx:x = x through knowing that ‘the condition for any particular cardinal number to be the
referent of the term is that the particular numerically definite quantifier associated with
that number should generate a truth when applied to ‘x = X’ (and similarly, I assume, for
any predicate Fx in place of ‘x = X} so that this could be the general account of our
understanding of number terms). But this is doubly circular, since we can have no general
understanding of what numerical quantifier should be associated with a given term without
already having a general understanding of what the term refers to and since the quantifier
associated with a given term must be understood impredicatively as already applying to
numbers as well as to individuals.
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definition is impredicative; or they only range over individuals, in
which case the definition is inadequate.

There is a further difficulty with the definitions (Dy), (Dy), ...,
which concerns the left-rather than the right-hand side. Consider
again the case of (Dg). We are attempting to understand the term to
and, to this end, we provide the partial definition:

(Do) the number of Fs = tq iff there are no Fs.

But does not our understanding of t, then depend upon a prior
understanding of the number operator?*® Suppose that the operator
‘the number of” was so understood that, in case there were no Fs, the
number of Fs was taken to be Caesar. (Dg) would then provide us
with an understanding of the numeral t; for which it was identical to
Caesar. But this then means that we must already presuppose the
required understanding of the number operator, if the definitions
(Dg), (Dy),... are to vyield the required understanding of the
number terms.

It might be thought that this was a general difficulty with all forms
of abstraction principle. But this is not so. Consider the principle for
character:

the character of person P = the character of person Q iff P is
of-the-same-character as Q.

Our understanding of the term ‘the character of Judas® need not be
taken to depend upon a prior understanding of the character oper-
ator, since we can think of the above principle as simultaneously
determining the reference of the character terms and the character
operator. Such a simultaneous understanding does not appear to be
possible in the case of the number; and it is only when we attempt to
replace it with a successive understanding of various number terms
that the present difficulty forces itself upon us.

Let me conclude with a general complaint about the present
approach. In all the cases so far considered, we are somehow meant
to be able to read off from certain principles how the notion of
number is to be understood and, even though the principles are
not themselves predicative in form, it is somehow meant to be
apparent how they provide us with a predicative understanding.

28 The term ty is also of the form ‘the number of Fs’ But the present difficulty arises even
if, as is perhaps desirable, the term t; is taken to be a constant.
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This is all intolerably ad hoc and a modicum of logical rigour would
appear to demand, first, that it be manifest from the form of the
definition how it is to be understood and, second, that it should be
possible to provide a definition that is explicitly predicative in form
whenever we think that a predicative understanding can indeed be
attained. Without such rigour, we cannot pretend to have any real
understanding either of how these definitions are meant to work or of
how they should be presented.

We have seen that there are three main problems with CP: achieving a
satisfactory solution to the Caesar problem, one applicable to all
forms of contextual definition; showing how referential determinacy
may be achieved, without collapsing contextual definition into a
standard form of implicit or explicit definition; and providing a
predicative account of number and the like. Although these difficul-
ties may seem severe, perhaps insurmountable, I believe that they
may be overcome by adopting the procedural form of postulationism
mentioned in the Preface. The basic idea behind this alternative
approach is that, instead of stipulating that certain statements are
to be true, one specifies certain procedures for extending the domain
to one in which the statements will in fact be true. These procedures
can be stated without invoking an abstract ontology; they achieve
referential determinacy; and their legitimacy does not depend upon
the prior knowledge that the objects which are to be introduced into
the domain already exist.
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The Analysis of Acceptability

THE present part centres on several questions concerning the accept-
ability of a theory of abstraction. Sections 1-3 are devoted to pre-
liminaries: sect. 1 describes the basic languages and systems of
interest to us; sect. 2 specifies the semantics for the languages; and
sect. 3 establishes some basic proof- and model-theoretic results.
Sections 4—6 deal with various requirements for acceptability: sect.
4 contains some preliminary results on tenability, which will later be
refined in the section on invariance; sect. 5 introduces the notion of a
generated model; and sect. 6 shows how an abstraction theory may be
categorical with respect to its generated models. Sections 7-9 are
devoted to the topic of invariance: sect. 7 provides an intrinsic ana-
lysis of those criteria of identity that are invariant and non-inflation-
ary; sect. 8 builds on these results to determine when the class of all
invariant methods of abstraction will not ‘hyperflate’ over a given
domain; and sect. 9 shows how the results on invariance may be
internalized to a theory of abstraction and limits thereby set on which
abstraction principles can consistently be assumed.

1. Language and Logic

The underlying language of our investigations is the language L* of
second-order logic. This is obtained from the usual language of first-
order logic by adding variables for relations of arbitrary finite degree.
The relational variables apply to the first-order objectual terms in the
same way as the relational constants; and the quantifiers apply to
both the first- and the second-order variables. We suppose that the
language contains a symbol for identity but only allow it to flank
terms of first order.

We shall occasionally appeal to the language L’ of third-order
logic. This is obtained from L? by adding relational variables, and
possibly also some relational constants, of arbitrary third-order
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degree. In particular, it will contain a binary relational variable of
third order whose first term is of second order and whose second
term is of first order.

Both the languages L* and L’ may have non-logical constants
where they have variables; and so, strictly, speaking, there are differ-
ent languages for different choices of constants. But our main interest
is in languages without non-logical constants. These languages and
their associated formulas will be called (purely) logical.

For the most part, our notation will either be standard or intelli-
gible from the context. We reserve: C, D, E, etc. for unary relational
symbols; R, S, T, etc. for the binary ones; and P, Q, P/, Q’, etc. for
those of arbitrary degree. Relational constants and variables of third
order will be distinguished by being displayed in boldface. We follow
Frege in thinking of the first-order terms as standing for objects and
the unary second-order terms as standing for concepts.

The language ¥ of abstraction is obtained from L? by adding an
operator § of second-order abstraction. This applies to a concept-
term C and results in an object-term §C. Where § (boldface) is a set of
abstraction operators, we may also form the result L¥ of adding all of
the members § of § to L>. We should perhaps have treated § as a
variable-binding device that applies to a variable x and a formula ¢
to form an object-term §xd; what we now express as §C would then
be expressed as §xCx. Whatever the philosophical reasons for prefer-
ring the one notation to the other, nothing of great technical sig-
nificance hangs on the choice; and it will turn out that the variable-
free notation is more convenient for our purposes.

The following abbreviations within the language L* will be useful
(the type of the various terms occurring in the definienda being
evident from the context):

Domain: x € Dm (R) for JyRxy;

Range: x € Rg (R) for JyRyx;

Field: x ¢ FId(P) for 3x,...x,; (Pxx2X3...X, V Pxoxx3...Xq
V Px2X3 ... XpX);

Reflexivity: Refl (R) for VxRxx;

Symmetry: Sym (R) for Vxy (Rxy — Ryx);

Transitivity: Trans (R) for Vxyz (Rxy & Ryz — Rxz);

Equivalence: Eq(R) for Refl (R) & Sym (R) & Trans (R);

Inclusion: P C Q for Vx; ... x, (Px1... Xy — QX1...X);

Coextensiveness: C = D for Vx (Cx < Dx);
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Complementation: D compl C for Vx(Dx « -Cx);

Mapping: P —g Q for Vx; ... x,Vy1 ... yn( ARxiyi — (Px1... Xy
< Qy1 ... ¥n)s

One-to-one: 1-1(R) for Vxyz(((Rxy & Rxz) V (Ryx & Rzx)) —y
= 2z).

Equinumerosity via R: C eqg D for C—g D & 1-1(R) &
Vx((x € Dm(R) « Cx) & (x € Rg(R) < Dx));

Equinumerosity: C eq D for FJR(C eqg D);

Inequality: C < D for 3D'(D' C D & C eq D');

Biequinumerosity; Cbeq D for Ceq D & VC’, D’ [(C' compl C) &
(D’ compl D)] — C' eq D');

Permutation: Perm (R) for 1-1(R) & Vx(x € Dm(R) & x e Rg(R)).

The logic L? of second order is based on the second-order language
L*. (So, strictly speaking, we obtain different logics for different
choices of the non-logical constants.) The logic contains the usual
truth-functional and quantificational principles for first- and second-
order terms. However, I assume that these principles are formulated
so as to be tolerant of an empty domain. The logic L? contains, in
addition, the Comprehension Scheme for relations of arbitrary degree:
where P is a relational variable of degree n which does not occur free in
b, IPYX) .. Xy (PXp. .. Xy < &) is to be an axiom.

[? is the language of the third-order logic L°, which is obtained
from L? by extending the truth-functional and quantificational prin-
ciples in the obvious manner and by adding a comprehension scheme
for third-order relations. For example, in the case of a relation
between a concept and an object, it would contain axioms of the
form IFVCVx(F(C,x) < ¢).

L% is the language for the various theories of abstraction. Let & be a
formula whose only free variables are the concept variables C and D.
Then @ is the formula §C = 8§D < & (C, D); and the abstraction
theory T? is the result of adding ® as an axiom to L? (as defined over
the language that results from adding § to the language of ¢). Simi-
larly, when LY is a language containing several abstraction operators
and ¢ associates a formula g, meeting the specifications above, with
each § in §, the generalized abstraction theory T% is the result of
adding all of the formulas ®g as axioms to the logic L* (based on 9).

The formula & is called an identity criterion since it provides a
criterion for two abstracts to be the same, and the function & is called
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a system of identity criteria. The associated formula @ is called
Abstraction or the Abstraction Principle (for ).

The identity criterion & (the associated principle ®, the theory T,
and the operator § in T®) are said to be logical if & contains no
occurrence of non-logical constants or of §; and they are said to be
grounded if ¢ contains no occurrence of §. Logical criteria are also
called L-criteria. Within a logical language, logical and grounded
criteria will, of course, coincide.

These definitions can be extended to generalized theories T® and
even to theories in which the identity conditions are permitted to be
infinitary. Let us say that § precedes § in the generalized theory T®—
in symbols, § < §—if § occurs in &y¢. Then T® is said to be logical i
all of its identity conditions dy are logical; and it is said to be grounded
if the associated relation < of precedence is well founded, i.e. if there

is no infinite sequence §;,§,, ... of abstraction operators and of
corresponding identity conditions ¢, ¢, ... with the property
that §; |, occursin ¢; fori= 1,2, .. .. Regarding abstraction princi-

ples as forms of definition, the requirement that a system of such
principles be grounded can be seen as part of the general requirement
that definitions be grounded.

For any well-founded relation < on the operators in §, there exists
a compatible well-ordered sequence <§;: £ < a> of the members of
§, i.e. one with the property that §, < § only if v < § for any ordinals
v, < a. Accordingly, let us say that a generalized theory T® is
definable over a well-ordered sequence <§;: £ < a> of its operators
§, orisa <§: & < a>-theory, if the well-ordering of the operators §
is compatible with the relation of precedence for T®. Thus in any
<& € < a>-theory T, by, for § = §, will only contain operators §,
forv < &

The following abbreviations within L* will be useful:

Abstract: Ab (x) for AC(x = §C);

Individual: I (x) for -Ab(x);

Null abstract: NAb (x) for IC(Vx—-Cx & x = §C);
Universal abstract: UADb (x) for 3C(VxCx & x = §C).

We shall also be interested in restricted abstraction theories. Let &
be an identity criterion, as before, and let ¢ = (C) be a formula
whose sole free variable is C. Then the restricted abstraction principle
®,, is the formula Y(C) & P(D) — (§C = §D < &(C, D)) and the
restricted abstraction theory T®," is the result of adding ®,, to the
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logic L? based on the language of ®y. Thus in a restricted principle,
the application of the identity criterion is limited to those concepts
that conform to a certain constraint.

Weuse -2, >, F®and -* to indicate provablity in L2, L%, T4 and
T, respectively.

2. Models

We outline the model theory for the various languages and define
some basic model-theoretic notions.

A model M for the language L? is a quadruple (M, R, e, v), where M
(the domain of objects) is a (possibly empty) set, R is a function that
takes each n, for n > 0, into a set (the domain of n-ary relations), e
(extension) is a function that takes each member of R,, into a subset of
M™ (the set of n-tples from M), and v (valuation) is a function that
takes each object constant into a member of M and each n-ary
relation constant into a member of R,,.

A model M® for I (also called a §-model) is a quintuple (M, R, ¢, §,
v), with (M, R, ¢ v) as before and with § (the abstractor) a function
from the domain R; of concepts into the domain M of objects. The
model M* = (M, R, ¢, $,v) is said, in such a case, to be a §-expansion
of the model M = (M, R, e,v). Similar definitions can be given for
the other languages. But, of course, when the language contains
several abstraction operators §, the model will contain an abstractor
§ for each of the operators. If Mis a §-model then the reduction Mg of
M, for § € §, is the §-model with the one abstractor § in place of the
many abstractors in M.

Given a model M® = (M, R, ¢, §, v), the objects within the range of
§ are called abstracta and the remaining objects of M are called
concreta ot individuals. Similarly, in a model with several abstractors,
the abstracta are the objects lying in their range and the individuals
are the remaining objects. Note that individuals should only be taken
to be individuals in a relative sense; even if they cannot be obtained as
a result of the methods of abstraction represented within the model,
they may still result, intuitively speaking, from some other kind of
abstraction.

We use I for the set of individuals and A for the set of abstracta; and
we may employ an index M, both here and elsewhere, to indicate
dependence upon the underlying model. The model M is said to be
pure when its domain I of individuals is empty.
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The model M = (M, R,e,v) (or its expansion M) is said to be
extensional if extensionally equivalent relations are the same, i.e. if
e(R) = e(S) implies R = S for any Rand S in R,,n > 0. A subset of
M",n > 0, is said to be represented in M if it is the extension of some
relation in Ry; and the model M (or MY) is said to be full if every
subset of M", forn =1, 2, ..., is represented.

The model M (or M®) is said to be set-theoretic if M consists entirely
of urelements (i.e. non-sets) and e is an identity function on |JRy;
and M (or M®) is said to be standard if it is both set-theoretic and full.
Clearly, any set-theoretic model is extensional. We shall assume, for
convenience, that there is a proper class Uof urelements and that all of
the urelements that we need are drawn from U.

Any standard model M of a language L* without non-logical con-
stants is uniquely determined by its domain M and hence is uniquely
determined up to isomorphism by the cardinality ¢ of its domain. We
denote this model (as given up to isomorphism) by M..

Three kinds of abstractor will be of special importance in what
follows. These are the cardinal abstractors ¢, which give the value
$(C) = card(C) for each subset C of the domain M, the bicardinal
abstractors, which give the value §(C) = <card(C), card(M-C) >
for each subset C of M, and the divisor abstractors, those with a range
of cardinality < 2.

Let M be a model for L’ (or for L§). Then with each abstractor § in
M we may associate an equivalence relation =¢ on concepts defined
by: C =4 Diff §(C) = §(D). The associated equivalence classes | C|¢
and partition P¢ may then be defined in the usual way.

We may distinguish three ways in which a model may be separated.
The model M for I3 is said to be strictly separated if the ranges of the
different §;s are disjoint. No two methods of abstraction yield the
same abstract. The model M for L8 is said to be separated (simpliciter)
if, for any abstractors § and §' in M, §(C) = §'(D) holds iff |C|s
= |D|¢’. Two abstracts, of different types, are identified iff their
associated equivalence classes are the same. The model M for LY is
said to be weakly separated if, for any abstractors § and § in M,
$(C) = §'(D) holds only if |C| s = |D|¢. Two abstracts, of different
types, are the same if and only if their associated equivalence classes
are the same.

Satisfaction and truth for the models of our various languages are
defined in the usual way. In particular, §C will denote §(C), where C
is the concept from R; assigned to the variable C. With truth as so
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defined, any model will be a model of the theorems of second-order
logic without Comprehension. From henceforth, we shall take our
models also to be models for Comprehension unless there is an
explicit rider to the contrary.

When M is a model for one of our languages L and ¢ is a formula
of L with free variables xi, ..., Xm, P1, ..., Pn (in that order of
appearance), we take the extension Ey m of ¢ in M to be the
set {<Xp, .3 Xy Pry oo s Py> M EG[X, - xm Pr oo Pl
(The subscript M may be omitted from Egy p, and elsewhere, when
it is obvious from the context).

We are especially interested in the case in which ¢ = &(C, D) is an
identity criterion (with free variables C and D). In this case, By m isa
relation on concepts, i.e. a subset of Ry X Ry, and is called the crifterial
relation in M. Should Eg, » be an equivalence relation, it will induce a
partition Py, p over R, in the obvious way; and when M is a standard
model, Ey p and Py, y will be an equivalence and a partition over the
subsets (M) of M.

Given a set M of urelements, we take a (local) set relation over M to
be a subset of £(M) x £(M). A global set relation is then taken to be a
(proper class) function that takes each set M of urelements into a
local set relation over M. Each logical identity criterion & will deter-
mine a global set relation, also denoted by E®, which takes each set M
of urelements into Eg, », where M is the standard model with
domain M.

3. Preliminary Results

We establish various elementary model- and proof-theoretic results
for our systems. We begin with the proof theory.

Where $(C) is a a formula containing free occurrences of the
concept variable C, let $(D) be the result of replacing any free
occutrence of C in ¢&(C) with a free occurrence of D. Then within
second-order logic, we may show:

Lemma 1 (Extensionality). => C =D — (d(C) < &(D)).
Proof. By a straightforward induction on the complexity of the
formula ¢(C).

This result fails to hold in third-order logic or if we allow identity
on concepts. For in the first case, C=D — (F(C) <« F(D)) is
unprovable for F a third-order concept term; and in the second
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case, C=D — (C= C) « (C = D) is unprovable. The result also
fails to hold in an arbitrary abstraction theory. For let the theory be
the degenerate one T® in which ¢ is the formula §C = §D. Then
C =D — §C = §D is unprovable.

We may establish the fixed-point theorem within the confines of
second-order logic. For $(C,D) a formula (which we treat as defining
a function with argument C and value D), we adopt the following
abbreviations:

Functionality: Func ($) for VCID(d(C,D) & VE(H(C,E) —
E =D));

Monotonicity: Mon () for VC, D, C’,D'(d(C, D) & &(C',D’) &
CCC' —DCD";

Fixed Point over B: FPy, 3(F) for B C F & &(F, F);

Least Fixed Point over B: LFP4 (F) for FP4(F) & VE(FP, 5(E)

The fixed-point theorem now takes the following form:

Theorem 2 (Least Fixed Point). F* Func(db) & Mon(db) — JF
(LEPy5(F)).

Proof. We present an informal proof, but in a way that makes clear
how the proof is to be formalized. We first consider the case in which
B is empty. Define a concept C to be determining it VD(db(C, D)
— D C C). Now say that an object is determined if it falls under
every determining concept; and let F be the concept of being a
determined object. We may then readily show that F is a ‘least fixed
point’.

In the general case, let &b be the formula: ICT[Vx(CTx <
(Bx V Cx)) & &(C*t, D)]. Applying the first case to this formula
then yields the desired result.

We turn now to abstraction theories and show first that the rela-
tion on concepts determined by the identity criterion ¢(C, D) is an
equivalence:

Lemma 3 (Equivalence). In the abstraction theory T®, the
formulas &(C,C), &(C,D) — &(D,C) and [d(C,D) & &(D,E)]
— &(C, E) are all theorems.

Proof. Using the abstraction principle, the above formulas ‘trans-
late’ into theorems of the first-order logic of identity. For example,
&(C, C) translates into §C = §C.
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Note that the above proof makes no appeal to the Comprehension
Scheme in T?.

Using the above lemma, we can show that coextensive concepts
must be identified in any abstraction theory T® in which ¢ is groun-

ded (i.e. §- free):

Lemma 4 (Inclusion). —* C =D — &(C, D) for grounded ¢.

Proof. Given that ¢ is §-free, it follows by the extensionality
lemma that - C =D — (b(C,C) — &(C,D)). By the equivalence
lemma, - &(C, C). Hence - C=D — &(C,D).

The extensionality lemma can now be extended to abstraction
theories:

Lemma 5 (Extended Extensionality). F® C=D — (((C) <
(D)) for grounded ¢ and any s

Proof. As before by induction. But to take care of the presence of §
in the language, we need to show that C = D — §C = §D is a theo-
rem. But C=D — ¢(C,D) is a theorem by the inclusion lemma;
and ¢(C, D) — §C = §D follows from the abstraction principle ¢.

The inclusion and extensionality lemmas can be extended by
means of the obvious transfinite induction to generalized abstraction
theories that are grounded.

Invariance under permutations will play a major role in our
attempt to understand what can be conveyed by a logical criterion
of identity. It captures part of what Frege might have meant by the
generality of logic in sect. 3 of the Grundlagen. We have, in the first
place, the following syntactic formulation:

Lemma 6 (Permutation). Suppose that = U(xy,..., Xm,
Pi,...,P,) is a logical formula whose only free variables are the
distinct wvariables x;,..., Xy, P1,..., Py, Let Y, ..., Y, and
Q1,..., Qu be distinct variables which do not occur in
Y, with each Q; of the same arity as Pj. Then 2 (Perm(R)
& A;Rxiyi & /\j Pi —r Q) — [U(x1,..., Xm, P1, ..., Pr) =
(y1>- <o Ymo Ql)- R Qn)]

Proof. By induction on the complexity of the formula. For the case
that s is a second-order quantification we need to appeal to compre-
hension.

As a special case of the above result, we have:
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Corollary 7 (Invariance). Suppose that ¢ = &(C,D) is a logical
identity criterion. Then > (Perm(R) & C —g C' & D —y D) —
(d(C, D) — &(C', D).

Thus we may prove within second-order logic that logical identity
criteria are invariant under permutations of the universe of objects:
the images of concepts related by a criterion are also related by
the criterion. Note that the lemma may fail when the formula
$(x1,..., Xm, P1,..., P,) contains non-logical constants or the
operator § For from the fact that Perm(R) & C —gr D we cannot
infer Ca — Da for a an object constant (and similarly for relation
constants); and from the fact that Perm(R) & C —¢ D we cannot
infer §C = §D. On the other hand, we should note that a version
of this result will continue to hold when the language is enriched
with further logical constants, be they finitary or infinitary in
character.

We now consider the model-theoretic results. The first tells us that
Abstraction does nothing to determine the identity of abstracts
(beyond their being objects). Let us note, for the purposes of the
proof, that an §-model M is a model for the abstraction principle
¢ (corresponding to the criterion &) just in case for every
C, De Ry, §(C) = §(D) iff <C,D> € E¢’M

Lemma 8 (Switching). Suppose that M is a model for grounded ¢
and that fis a one-to-one function from M into M. Let M’ be the
result of replacing the abstractor § in M with the compositional map
§' = f o § Then M is also a model for &.

Proof. Mis a model for ¢ iff for every C, D € R, §(C) = §(D)iff
<C,D> € Ey p; while M is a model for ¢ iff for every
C, De R, §(C)=§(D) iff <C,D> € Eg, . But given that f
is one-to-one, §(C) = §(D) iff §'(C) = §'(D); and given that ¢ is
§—free, E¢’M = E¢’Mr.

This proof is related to Frege’s argument in sect. 10 of the Grund-
gesetze. (See Schroeder-Heister (1987) and T. Parsons (1987) for a
careful discussion of his argument.) Our proof fails in case ¢ is
ungrounded. For example, let ¢ be the principle §C = 8§D « 3x
(UAb(x) & Cx <« Dx), in which concepts are identified when they
agree on the universal abstract; and let M be a model for ¢ with two
elements. Switching the universal abstract with any other object then
gives a structure M’ which is not a model for ¢.
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Call a model M for L S-extensional if §(C) = §(D) whenever
C, De Ry and ¢(C) = e(D). Thus a §-extensional model is one
which conforms to the extensionality principle: C=D — §C = §D.
With any §-extensional model M = (M, R, e, §, v) whose domain
M consists of urelements, we may associate a set-theoretic model
M= (M, R, ¢, §, v/) by setting R, = {e(R): R € R,}, ¢'(R) =
R for Re R, §'(e(C)) = §(C) for e(C) € R}, v/(R) = e(v(R)) for
R a relational constant, and v/(a) = v(a) for a an object constant. In
effect, extensionally equivalent relations are identified with their
extensions. It is then readily shown:

Lemma 9. Suppose that M is an §-extensional model
(M, R, e, §, v) with associated set-theoretic model M®. Then M
':d)[Pl)---) Pm> Xy vvvs xn] lﬂ: MS':d)[e(Pl))---) e(Pm)> X15

coy Xyl

This lemma will justify us in confining our attention to the set-
theoretic models of an abstraction theory Ty in case ¢ is §-free.

We now provide a model-theoretic account of invariance under
permutation. Say that a global-set relation R is invariant if, for each
non-empty subset M of urelements, one-to-one map ffrom M onto
N, and subsets Cand D of M, Ry(C, D) implies Ry (f(C), f(D)); and
say that a local set relation R over M is invariant if, for any subsets C
and D of M and permutation fon M, R (C, D) implies R(f(C), f(D) ).
Clearly, if the global set relation R is invariant then so are each of the
local set relations Ry,.

Lemma 10 (Outer Invariance). For & a logical criterion, the corre-
sponding global set relation Ey, is invariant.

Proof. Suppose that M and N are non-empty sets of urelements, C
and D are subsets of M, and fis a one-to-one map from Monto N. Let
M and N be standard models (for a purely logical language) with
respective domains M and N. Suppose that Ry(C, D) for R the
global relation E4 associated with ¢. Then M E &[C, D]. Now f
can be extended to an isomorphism from M onto N; and so,

N E o[f(C), f(D)]. But then Ry(f(C), f(D)).

We finally consider those identity criteria whose behaviour is
independent of the underlying domain. Such criteria play an impor-
tant role in the study of generated abstraction models. We provide a
syntactic and semantic criterion for such domain independence and
connect the two. Given the sequence S of relational and objectual
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terms Py, ..., Py, t1,. .., ty, say that the formula & is relativized to S if
each (universally) bound objectual variable x is relativized to the
formula x € FId(P;) V...V xe Fld(P,) Vx=1t V...VX=1t,
and each (universally) bound relational variable P is relativized
to the formula Vx(x € FId(P) — x € FId(P;) V...V x € FId(P,,)V
X=tV...VX=t,). When S is the sequence of all of the
objectual and relational terms that occur—either as free variables
or as non-logical constants—in the very formula ¢, we say that ¢ is
restricted.

On the semantic side, let M = (M, R, e, v) be a second-order
model and N a subset represented in M. We let the restriction
or submodel N=M/N of M induced by N be the model
(N, R, ¢, v), where R, ={P € Ry: e(P) C N"}, and ¢’ is the
restriction of e to | J, R}. For a §-model M= (M, R, ¢, §, v), we
also require that §' in the restriction M®/N should be the restriction
of § in M to R}. The values of the non-logical constants must be
defined in N for the restriction to be well defined. However, we shall
allow §'(C) to be undefined when §(C) does not belong to N but C
belongs to R). In this case the restriction M®/N will be said to be a
partial model, i.e. one whose abstraction operation is not always
defined; and otherwise it will be said to be fotal. For the most part,
our interest is in standard models of L?; and, in this case, every subset
N of the domain M of the model M will determine a restriction of M.

It is readily shown that the restriction N verifies the comprehen-
sion principle IPVx; ... x,(Pxy ... %, < &) given that M does. For
M E3PVx. . x,(Pxp Xy %), where ¢°, for C a new concept
variable, is in the obvious sense the relativization of ¢ to C. Letting C
‘be’ a concept whose extension is N then yields in M a concept ‘P’
which, in N, will correspond to ¢.

Letd = &(Py, ..., Py, xi1,..., X,) be a formula of L? whose free
variables are as displayed. Then ¢ is said to be absolute if for any
model M for the language of ¢ and restriction N of M, M [
G[Pr, ...y Py X150, X ff NEG[P, ..o, Py x1,..., Xy for
any relations Pp,..., Py (of appropriate type) and objects
X1,. .., %, from N. Thus whether the formula holds of certain objects
and relations is unaffected by what in the model lies beyond those
objects and the extensions of the relations.

Suppose that M is a model for a language L* with finitely many
non-logical constants; and suppose that it verifies Comprehension.
Let Py,..., Py, X1,..., %, be relations and objects from M.
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There will then be a smallest restriction N of M to contain

Pi,...5 Py, x1,..., x. If there are no non-logical constants in the
language, the domain of N will be the union of the fields of
e(Py),..., e(Py) with {x,..., x,}; while if there are non-logical

constants in the language, the objects from their values must also
be included. In each case, the domain N will be definable in M by an
appropriate disjunction; and it should be clear that a formula ¢ =
&Py, ..oy P X1,- .., Xy) will be absolute just in case satisfaction in
M is equivalent to satisfaction in the smallest restriction of M for each
choice of relations and objects Py, ..., Py, x1,...5 X

It may be shown by a straightforward induction:

Lemma 11 (Absoluteness). Any restricted second-order formula is
absolute.

Clearly, the resultalso holds for any formula that is provably equiva-
lent to a restricted second-order formula. For example: the formula
C=D is equivalent to the restricted formula vx (CxV Dx —
Cx < Dx) and is therefore absolute. Similarly, for the formula C eq
D. On the other hand, the formula C beq D is not absolute and there-
fore is not provably equivalent to any restricted formula.

Absolute identity criteria define an especially simple form of global
relation. Say that a global relation R is internal if, for any subsets X
and Yof urelements and subsets Cand D of X N'Y, R,(C, D) implies
Ry(C, D). Equivalently, R will be internal if Rq p(C, D) holds iff
Ry(C, D) holds for any Y 2 CU D.

Corresponding to any global set relation R is an ordinary (unin-
dexed) relation R that holds between any two sets Cand D just in case
Rx(C, D) holds for some set X of urelements. In general, a global
relation cannot be recovered from the corresponding unindexed
relation. But in case the global relation is internal, it can be: for
Rx(C, D) holds, for C, D C X, just in case R(C, D) holds.

We say that the global relation R is internally invariant (or I-
invariant for short) if it is both internal and invariant; and we say
that a local relation R over M is internally invariant (I-invariant) if
R(C, D) implies R( f(C), f(D)) for any subsets C and D of M and any
one-to-one function ffrom C U D into M. Clearly, when R is intern-
ally invariant, then so are each of the corresponding local relations
Ry;. It is readily shown from Lemmas 10 and 11 that:

Lemma 12. For ¢ a restricted L-criterion, Ey, is internally invariant.
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4. Tenability

We consider various formal conditions that might be proposed for the
truth or correctness of a principle of abstraction. The philosophical
significance of the conditions has been discussed towards the end of
sect. [.1; and further conditions are considered in some of the later
sections.

Given a §-free model M, we say that the identity criterion ¢ (or the
associated abstraction principle @) is tenable on M if some expansion
of M is a model of ® and, for d a cardinal, we say that ¢ is d-tenable
on Mif some expansion M® of M is a model of ® and contains exactly
d individuals. When the model M is standard and the criterion ¢ is
logical, all that matters about M is its cardinality. We may therefore
say that the L-criterion ¢ is tenable on the cardinal ¢ if it is tenable
on a standard model M with domain of cardinality ¢ and that it is
d-tenable on c if it is tenable on a standard model M whose domain
is of cardinality ¢ and whose subdomain of individuals is of cardin-
ality d.

The above condition is relative to a model or a cardinal. We may
obtain an absolute condition by declaring an L-criterion ¢ to be
stable if, for some cardinal ¢, ¢ is tenable on d for any cardinal
d > c. I have here presupposed that the underlying model is full;
but the account could readily be accommodated to other, more
restrictive, conceptions of what concepts and relations are admitted
into a model. If & is stable, it will be said to stabilize on the smallest
cardinal ¢ for which ¢ is tenable on every d > ¢.

Other absolute notions might also be distinguished. For example,
we might say that an L-criterion ¢ is generally tenable if it is tenable
on each infinite cardinal, or that ¢ is indefinitely tenable if there is no
greatest cardinal upon which it is tenable.

It might be thought that the requirement on cardinality in the
definition of stability is too weak. For given a model whose domain of
objects is of transfinite cardinality ¢, one might want to insist that the
domain of individuals (relative to the given abstractor) should be
capable of being of any reasonable size d < ¢. However, it may be
argued that this further requirement is automatically met. For let us
suppose that the cardinality of the abstracts is ¢/ < c. If ¢/ = ¢, we
may—by means of the switching Lemma 3.8 above—allow d to be of
any cardinality < c. On the other hand, if ¢’ < ¢, it may plausibly be
maintained that d should be equal to c. For there will be at least as
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many abstracts of some sort or another as individuals (in the absolute
sense) and so if there are only ¢’ < ¢ abstracts of the given sort there
must be at least ¢ abstracts of another sort, which will, in the required
relative sense, be individuals. But given d = ¢, we may again by
means of the switching lemma allow d to be the cardinality of the
domain of individuals (in the relative sense).

We now provide a simple characterization of tenability. A deeper
account will later be provided in sect. 7.

Lemma 1 (Anti-inflation). Suppose that M is a standard §-free
model and that ¢ is a §-free identity criterion. There is then an §-
expansion M™ of M that is a model of @ iff:

(i) Es,m is an equivalence relation; and

(ii) card(Pg, m) < card (M).

Proof. We first prove the direction from left to right. Suppose that
the §-expansion M* of M is a model of ®. By the Equivalence
Lemma 3.3, E, is an equivalence relation. For each Cin R, let |C| =
{D: <C,D> € Ey} (so Py, ={|C|: C € R'}). Since M" is a model
for @, §(C) = §(D) iff <C,D> € Ey; and so § induces a one-to-
one map f from Py into M (with f(|C|) = §(C)). But then card
(Py, ) < card (M),

For the other direction, suppose that (i) and (ii) hold. Let
¢ = card(Py); and pick a subset M' of M of cardinality c. There
is then a one-to-one map f from Py onto M'. Define § by
§(C) = f(|C|) for each C € R'. Then adding § as the abstractor to
M yields an §-expansion M that is a model of ®.

The above proof does not rest on any special assumptions con-
cerning the model M, although its formulation does require that ¢ be
§-free. If we were to drop the requirement that M and ¢ be §-free,
conditions (i) and (ii) would provide neither a necessary nor a
sufficient condition for a variant of M (with possibly different §) to
be a model of ¢. They would not be jointly necessary since ¢ might be
the trivial condition §C = §D. Nor would they be sufficent. For
let & be the formula (VC,D(§C = §D) & (¥VxCx < VxDx))V
(=VC, DEC =38D) & C = D). If we let card (M) > 1 and let § in
M have a singleton range, conditions (i) and (ii) will be satisfied; and
yet there is no model for ®.

An analogous result can be proved for the existence of a model for
® with exactly d individuals. In this case, condition (ii) should be
replaced with:
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(i) d + card(Py, m) = card(M).

If m = card (M) is infinite, then this condition is satisfied iff
max {d, card(Py, p)} = m.

Suppose that ¢ is an L-criterion. Then we say that the cardinal c is
non-inflationary (wrt &) if the conditions (i) and (ii)’ are satisfied
when M is the standard model M.. We now have the following
immediate consequences of the lemma:

Corollary 2. For ¢ an L-criterion:

(i) ¢ is tenable on c iff ¢ is non-inflationary;

(ii) & is stable iff for some cardinal ¢, every d > ¢ is non-infla-
tionary.

An analogue to (i) holds for d-tenability. Say that the cardinal c is
d-static if condition (i) of lemma 1 and the condition (ii)" above are
satisfied for the case in which M is the standard model M. Then ¢
will be d-tenable on ¢ iff ¢ is d-static. The matter might be put in
terms of fixed points. For each cardinal ¢, let the partition cardinal
plc) = card(Py,m) (for M = M. and Py p defined) and let
palc) = d+ p(c). Then ¢ will be d-tenable on ¢ just in case ¢ is a
fixed point of the function py.

Given that ¢ is absolute, pg will be a monotonic function—or,
more exactly, e < f and py(f) defined will imply that pg(e) is defined
and pa(e) < pa(f). From this it follows that, if p, has a fixed point,
then its least fixed point can be reached by iteration from below. Thus
if we set ¢® = pg(0), c* = py(c®) and ¢* = sup{c®: & < A}, then
the least fixed point of py, if it exists, will be of the form ¢*, for « the
least ordinal for which ¢* = ¢,

The definitions and results can be carried over to systems contain-
ing several abstraction operators. For example, when it is required
that the model be separated, Lemma 1 takes the form:

Lemma 3 (Anti-inflation). Suppose that & = <dg §€ §> is a
system of §-free identity criteria and that M is a standard §-free
model. There is then a separated §-expansion M™ of M which is a
model of the ®y iff:

(i) each Ey M, for & = g is an equivalence relation;

(ii) card (|J{Pg, m: & = bg}) < card(M).

Let us say that a system ¢ = <dg § € § > of identity criteria is
tenable on ¢ if some separated expansion of the standard model M,
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is a model of all the &g and that the system is stable if, for some
cardinal ¢, it is tenable on every d > ¢. We then have the corollary in
the same form as before, but with non-inflation defined by means of
the new conditions (i) and (ii) and with the system of criteria ¢ in
place of the single criterion ¢.

The tenability conditions can be expressed within second-order
logic itself. This point will be important both for proving certain
technical results and for setting up the general theory of abstraction
in Part IV. In the first place, we may note that it follows from Lemma
3.3 that the abstraction principle ®, corresponding to an identity
criterion &, will deductively imply the formula:

Eqe: VC,D,E[$(C,C) & ($(C,D) — &(D,C)) & (H(C,D) &
&(D,E) — ¢(C, B)].

Thus we may show within second-order logic that it is necessary for
an abstraction principle to hold that its identity criterion determine
an equivalence relation on concepts.

We also wish to prove that it is necessary for an abstraction prin-
ciple to hold that it not be ‘inflationary. Suppose again that the
criterion of identity is ¢. Then the condition that the principle not
be inflationary can be expressed by means of the following third-
order formula (where R is a variable ranging over second-order
relations between concepts and objects):

(*) FR[VCIX(R(C,x) & VC,DVx, y(R(C,x) & R(D,y) — (x =
y < &(C,D))].

It is clear that (*) follows within third-order logic from the abstrac-
tion principle ® (i.e. VC,D(§C = §D « &(C, D))); for we may take
R(Cx) to be given by the condition §C = x. Moreover, if & is itself §-
free, then the formula (*) will also be §-free.

Given an appropriate version of the axiom of choice for objects, (*)
will be equivalent to:

(**) dR[VCIx (R(C, x) & VC, DVx(R(C,x) & R(D,x) —&(C,D))].

Moreover, given an appropriate version of the axiom of choice for
concepts, (*) will, in its turn, be equivalent to the following second-
order formula (where R is now a binary relation on objects):

Noninfly: JRVCIDIy[H(C,D) & ¥x(R(x,y) « Dx)].
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R in effect picks out a representative D from each equivalence class
IC|.

Given the ‘meaning’ of Eqg and Noninfly, in a standard model M,
it follows that:

Lemma 4. The L-criterion ¢ is tenable on c iff (Eqq & Noninfly) is
true in the model M..

This result can be used to determine the least cardinal at which all
stable criteria stabilize. Given an L-criterion ¢ that stabilizes, let ¢4 be
the cardinal at which it stabilizes; and let the stability number (of
pure second-order logic) be the least upper bound of the ¢4. Recall
that the Hanf number (of pure second-order logic) is the least
cardinal such that any sentence with a standard model of that car-
dinality or greater has standard models of arbitrarily large cardinality.
Let us extend the notion of stabilizing and say that an arbitrary
sentence s of L? stabilizes on a cardinal c if ¢ is the smallest cardinal
with the property that { is true on all models of equal or greater
cardinality. Then the Hanf number will be the least upper bound
of the cardinals upon which a sentence of L? stabilizes. We now
have:

Theorem 5. The Hanf number of second-order logic is identical to
the stability number.

Proof. Let us use ¢ for the Hanf number and ¢* for the stability
number. First suppose that ¢ < c*. Since c is less than the stability
number, there is an L-criterion ¢ that stabilizes on some card-
inal d > c. Let s be the sentence (Eq,, & Noninfly). By Lemma 4, §
stabilizes on d, contrary to assumption that ¢ is the Hanf number.

Now suppose ¢* < c¢. Since ¢* is less than the Hanf number, it
follows that there is a sentence {s of L? that stabilizes on some cardinal
d > ¢*. Define the identity criterion ¢ as: (y V (C = D)). Then it is
readily shown that ¢ stabilizes on d > ¢*, contrary to assumption
that ¢* is the stability number.

5. Generation

We deal here with the notion of a generative model, one in which
the abstracts are generated in stepwise fashion from the individuals.
The philosophical significance of the notion is discussed in sect. 1.2
and L.3.
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Let M be a standard §-model (with I, recall, as its subdomain of
individuals). Define g on (M) by:

g(K) = {$(C): CC K.

Thus g(K) consists of the abstracts that can be directly generated
from the concepts that are defined over the objects of K. For each
ordinal & we define the generation function G by:

G() == I;
GOL+1 = IUg(Ga)>
G, = U{Gg: £ < A}

We also set g7 (X) = g(X)UX. Gyi1 can then be alternatively
defined as g™ (G,).

We prove in the usual way that there is a least ordinal o such that
Gor1 = Gy and call « the crifical ordinal for M. We use G—without
danger of confusion, I hope—for this G,. Thus G is the set of objects
that can be generated, either directly or indirectly, from the indivi-
duals of M.

The requirement that the objects be generable then amounts to the
condition that, in the model M, M = G. We call call a model con-
forming to this condition minimal.

The condition that M = G might be compared to the axiom of
constructibility, V = L, or to the principle V = | V,, where the Vs
are the sets in the cumulative hierarchy. But the construction is in a
way broader. For it relates to any kind of abstract, not just to sets; and
the abstracts are generated by means of concepts, which may or may
not be definable. One could, of course, carry out an analogous con-
struction in a non-standard model M.

As an example of a minimal model, consider the standard model M
in which the domain M is taken to consist of the natural numbers
with Ny and § is the cardinal abstractor defined by: §(C) = card(C).
Then M is generative. For: Go = I = ¢;G,11 = {0,1, ...,n}; G, =
{0,1,...}sand Gyo1 ={0,1,...,89} = M and is therefore a fixed
point. On the other hand, the standard model M in which M consists
of all cardinals < some inaccessible cardinal and § is the cardinal
abstractor is not generative. For, again, I will be ¢ and the least fixed
point Gwill be {0, 1, . .., N}, which is a proper subset of M. In such a
model, there will be no non-circular account of any of the cardinals
> Ny, for each of them must be explained by reference to a concept
that holds of some of those very cardinals.
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The definitions can be generalized. Say that a subset K of M is
downward-closed it each element ¢ of K is either an individual or is of
the form §(C) for some subset C of K; say that Kis upward-closed if,
for any C C K, §(C) € K; and say that K is closed simpliciter if it is
both downward- and upward-closed. The construction can then be
relativized with an arbitrary downward-closed subset Kof M in place
of I. Each of the sets Gg, « obtained by means of the construction will
then be downward-closed. Let Gk be the resulting least fixed point.
Then Gy will also be upward-closed and hence closed. We say that the
model M is K-minimal if M = Gg. Note that if a model to be is K-
minimal then K must contain I

Similar definitions can also be given with generalized §-models in
place of the singular §-models. The set g (K) must then contain §(C)
for each subset C of Kand abstractor § for which § € §.

We have the following alternative characterization of the sets Gx
(proved in the usual way):

Lemma 1. Let M be a standard §-model and K a subset of
M. Then Gk is the smallest upward-closed subset of M to con-
tain K.

It follows that a model M is minimal if M is the smallest upward-
closed subset of M to contain I This alternative formulation of
minimality can itself be expressed within the language of the abstrac-
tion theory. For let us use:

Closed (C) for Vx(Ix — Cx) & VD(D C C — C§(D)); and
Min for -3C(Ix—~Cx & Closed(C)).

We then see that:
Lemma 2. A standard model M is minimal iff M = Min.

Even in the absence of Min, we may define the smallest closed
concept and show that it exists. For let ¢ = §(C, D) be the formula
Vx(Dx « 3C(C' C C & x = §C’). Then, in any abstraction theory
T®, we can prove the functionality and monotonicity conditions
Func(y) and Mon(i) required for the application of the fixed-
point theorem (Theorem 3.2); and so, by the fixed-point theorem
itself, we can prove 3IGx(G), where x(G) is the formula
IC(Vx(Cx « Ix) & LFP.,(G)).

We may also express the generative account of closure within the
system by using the following sequence of definitions:
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Well-foundedness: WF(R) for VC(JyCy — Jy(Cy & —Ix(Cx &
xRy));

Generating relation: Gen(R) for [WF(R) & Vy(y € FId(R) &
JC(y = §C) — IC(y = §C & Vx(Cx < xRy)))];

Generable objects: Gen(x) for JR(Gen(R) & x € FId(R)).

A generating relation corresponds to a construction of abstracts, with
each abstract in the field of the relation being generated from a
concept that holds of previously generated objects. It may be shown
that the generable objects constitute the smallest closed domain
(containing all individuals). But this requires the use of an appro-
priate form of the axiom of choice.

Another requirement that is natural from the generative stand-
point is that each identity criterion ¢ be absolute in the sense of sect.
3. If it were not, then we would not properly know which abstract was
being introduced by a definition of the form §C; for which abstract
was denoted would depend not only upon the extension of the con-
cept C but also upon what the underlying domain would ultimately
turn out to be. Suppose, for example, that § were interpreted as the
bicardinality operator, i.e. as an operator that took each concept into
the pair consisting of the cardinality of its extension and the cardin-
ality of its counter-extension. Then it would not be known which
‘bicardinal’ resulted from the application of § to an empty concept
until it had been determined how many objects there would be in the
domain.

The requirement of absoluteness is not as restrictive as it would
appear. For suppose we are dealing with an abstract, like bicardin-
ality, whose identity depends upon the underlying domain. We can
then trade it in for an abstract on two concepts, where one concept
corresponds to the original concept and the other to the domain. The
new abstract of C and D will then correspond to the old abstract of C
in the domain D. But of course this approach, once it is generalized,
requires that we consider abstraction on any finite number of con-
cepts.

In the case of absolute identity criteria, the existence of a minimal
submodel is always guaranteed:

Theorem 3. For ¢ an absolute L-criterion, the minimal submodel N of
the standard model M will be a model of the theory T% as long as M
itself is.

Proof. Let C and D be any two subsets of N. Then:



122 The Analysis of Acceptability

Sn(C) = §n(D) iff §3,(C) = §34(D) (since N is a submodel of M)
iff M | &[C, D] (given that M is a model for T®)
iff N &= &[C, D] (given that ¢ is absolute).

A syntactic form of this result may also be established. For where
b = &(C, D) is an identity criterion, let Absolute(¢) be the formula
VC{VD,E(D,E C C — (¢“(D,E) <> &(D,E))}. Thus Absolute(d)
states that ¢ is absolute (though not absolutely absolute, only abso-
lute relative to the underlying domain!). We may now prove within
T® the formula: Absolute(d) — VC(Closed(C) — ®%). Let Min(C)
be the formula IC(Closed(C) & VD(Closed(D) — C C D)). Then
we may also prove ICMin(C). Hence given a proof of Absolute(d),
we may show 3IC(Min(C) & ®%). The formula that defines C may be
regarded as an ‘inner model’ for the theory T®.

The theorem can be extended to generalized theories T® in which
each oy is an absolute L-criterion. A version of the result can also be
proved for generalized theories T® defined on a well-ordered
sequence <§: & < a> of abstraction operators (i.e. theories in
which &g, for § = §;, only contains the operators §, for v < §). In
this case, we require that M and ¢ conform to the condition that, for
any KC Mandany C,D CK,M [ d¢[C, D] iff M/K b [C, D]
as long as M/K is a model of each ®, forv < &

The condition that ¢ be absolute is required for the theorem to
hold. Suppose, for example, that ¢ is the criterion of biequinumer-
osity and that M is the model for T® in which M = { <c,d>: ¢+
d =Xy} and $(C) = <card(C), card (M — C)> for each C C M.
Then the minimal submodel N will be the restriction of M to
{ <¢,No>: ¢ < Ny}, which is not a model for T?. Indeed, in this
case it can be shown that the theory T® has no standard minimal
model.

6. Categoricity

We prove a basic categoricity result and then outline various ways in
which it might be extended. The relevance of categoricity to the
question of definition has been discussed in sects. 1.2 and 1.3. We
assume throughout this section that the underlying languages con-
tain no non-logical symbols apart from the abstraction operators.
Our basic categoricity result will depend upon two lemmas con-
cerning extensions and chains. We say that two standard §-models M
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and N are internally similar if, for any subsets Cand D of M, subsets
C’" and D’ of N, and one-to-one map f for which f[C] = C’ and
fID] =D/, §u(C) = §u(D) ift §5(C') = §n(D’). Thus whether
two subsets are identified by § in either model depends upon their
possessing the same internal structural relationships.

Lemma 1 (Extension). Let M and N be two internally similar
standard models; and let K and L be two downward-closed subsets
of the respective domains M and N. Suppose that fis an isomorph-
ism from M/K onto N/L. Then f can then be extended to an
isomorphism f* from M/g"(K) onto N/g"(L).

Proof. Tt should be noted that the various restrictions M/K,
N/g"(L), etc., will in general be partial models. We extend f to a
function f on g™ (K) by letting f(§,,(C)) be §§(f[C]) for each
subset C of K for which §,,(C) is not in K. We first need to show that
f1 is well defined, which is to say that §5(f[C]) and § (f[D]) are the
same whenever §,,(C) and §,,(D) are the same (and not in K). But
this follows from the fact that fis one-to-one and the models are
internally similar.

We now show that fT is one-to-one. To this end, we show that
f7(c) and f*(d) are distinct for distinct ¢, d € g7 (K). We distinguish
three cases:

(a) ¢,d € K. Then f*(c) = f(c) and f*(d) = f(d) and f(c) and
f(d) are distinct by fan isomorphism.

(b) ¢, d € g(K). Then cis of the form §,,(C) and d is of the form
§3(D) for some subsets C and D of K. By the definition of f* and
the fact that f is an isomorphism, f(§,,(C)) = 8§y (f[C]) and
FH(8u(D)) = §u(F[D]; and given that ¢ = §,(C) and d = §,(D)
are distinct, it follows from internal similarity that §5(f[C])
and §y(f[D]) are distinct.

(¢) ceK—g(K)and de g(K) —K (and similarly when
de K—g(K)and ce g(K) —K). Then f*(d) is of the form
§n(D’) for some subset D’ of L, where D’ is itself of the form f(D)
for some subset D of K. Suppose, for reductio, that f*(c) = §5(D’).
Then since ' (c) = f(c), it follows from f an isomorphism that
¢ = §4(D); and hence ¢ € g(K) after all.

We next show that f is onto. Suppose ¢’ € g*(L).If ¢’ € L, then ¢’

is in the range of fand hence of f*. So suppose ¢’ € g(L) — L. Then
¢' is of the form §y(C’) for some subset C’ of L. But then

[P @) = ¢
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Finally we show that, for any subset C of g* (K), §;(C) is defined
iff §4(fT[C]) is defined and that, in case they are both defined,
FHEM(C) =85 (FT[C]). Let us suppose that §,(C) is defined and
identical to ¢ (the other direction is similar). Then:

(*) 83, (C) = §,(C") for some subset C’ of K.

For either ¢ € g™ (K) — K, in which case (*) holds by the definition
of g*, or ¢ € K, in which case (*) holds by the fact that K is down-
ward-closed. From (*), f7(§y(C) = fT(§y(C") = §§(fIC'])
= §n(fT[C']); and, by internal similarity, § (f T [C]) = §y (f T[C']).

Note, for the subsequent application of this lemma, that g*(K)
will be downward-closed whenever K is.

Lemma 2 (Chains). For \ a limit ordinal, let <M/Kg: & < A>
and <N/Lg: & < A> be two increasing chains of partial §-models
and <f;: £ < A> an increasing chain of functions (i.e. Kz C Ky,
Lg C Ly, and f; C fy for § < g < \). Suppose that fe is an iso-
morphism from M/K; onto N/L; for each § < \. Then f =]Jf;
is an isomorphism from M/|JK; onto N/ JL.

Proof. A straightforward verification.

Also note, for purposes of subsequent application, that the limit
<M/Kg: £ < > will be downward-closed whenever each of the
models M/K; is downward-closed.

Theorem 3 (Categorical Extension). Suppose that M is a standard
K-minimal §-model for Ka downward-closed subset of M and that N
is an internally similar standard L-minimal §-model for L a down-
ward-closed subset of N. Suppose that fis an isomorphism from M/K
onto N/L. Then there exists a unique extension f* of f to an iso-
morphism from M onto N.

Proof. Let G and H be the respective generation functions for M
and N (relativized to K and L respectively). For each ordinal & we
define an isomorphism f; from M/G onto N/H as follows:

(i) For £ =0, we let f; be f. f; is then by supposition, an iso-
morphism from M/G, onto N/Hj.

(ii) For £ = o+ 1, we let f; be an extension of f, which is an
isomorphism from M/G: onto N/H;. Since (by inductive hy-
pothesis) we may assume that fy is an isomorphism from
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M/G, onto N/H, and, given that G, is downward-closed, such an
isomorphism will exist by the extension lemma.

(iii) For &= A, we let f; be the union of the f; for & < \. By the
chain lemma, f, will again be an isomorphism from M/G,
onto N/H,.

Since both M and N are minimal, we may choose an ordinal « for
which G, = M and H, = N. But then f* = f, is an isomorphism
from M onto N.

To show that the extension f* is unique, suppose that there is
another extension f* of fthat is an isomorphism from M onto N.
Choose the least o for which there exists an element ¢ in G, upon
which f* and f* disagree. Clearly a > 0. But then c is of the
form §),(C) for C a subset of Gg for some B < a. Now f7(§,,(C))
— §u(f[C)) and f*(§u(C0) = Sy(F*[C]). Since B < o, f7[C]
= f*[C]; and so f(c) = f*(c) after all.

As a special case of the theorem, we obtain:

Corollary 1. Suppose that M is a standard minimal §-model with
invariant = ;. There are then no proper automorphisms on M that are
fixed on I.

Proof. Since =g is I-invariant, M is internally similar with itself.
Suppose that fis the identity on Iy. Then, by the theorem, there exists
a unique extension ' of fthat is an automorphism on M.

Thus, once the identity of the individuals is taken to be given, each
abstract will have its own structural ‘position’.
As a further special case of the theorem, we have:

Corollary 5. Suppose that M and N are internally similar standard
minimal §-models.

Then they are isomorphic as long as card (Iy) = card(Ix).

Proof. Since card(Iyy) = card(Iy), there is a one-to-one map ffrom
Iy onto Iy. Clearly, Iy and Iy are both downward-closed and fis an
isomorphism from M /Iy. But then M and N are isomorphic by the
theorem.

We do not have this result without the requirement that both Mand
N be minimal, even when we fix the cardinality of the subdomains of
individuals and of abstracts. For let M be a standard model with
domain {a°,a',...}, §({a"}) = a"™ for n > 0, and §(C) = a° for
C non-singleton; and let N be a standard model with domain
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{aat,.. YUl L0 ) $H{a) = a"forn >0, § (C)
= a’ for Cnon-singleton, and §(b") = b""! forany integer n. Then M
and N are internally similar; and both have zero individuals and
denumerably many abstracts. But they are not isomorphic. Indeed,
M is minimal; whereas N is not, since it contains a ‘backwards’ regress
with respect to §.

There is, however, a circumstance in which cardinality alone is
sufficient to secure isomorphism. Let us say that a §-model M is
numerical if §(C) = §(D) whenever C and D are two subsets of M of
the same cardinality.

Theorem 6. Suppose that M and N are internally similar standard
numerical §-models of the same cardinality. Then they are iso-
morphic as long as card(Iyr) = card(Iy).

Proof. In this case we may define the isomorphism f directly by
letting f /I be a one-to-one map onto Iy and by letting f(§,,(C)) =
§n(C’) for C' a subset of N of the same cardinality as C.

The proof of Theorem 6 actually requires only that the models be
binumerical in the sense of identifying concepts with the same bicar-
dinality and that they be exactly similar in the sense that, for any one-
to-one map f from M onto N, §,(C) =8§y(D)iff
Sy (ICD = $y(fTDD).

Corollary 5 has an immediate consequence for theories:

Corollary 7 (Categoricity). Suppose that ¢ is an absolute L-
criterion. Then any two standard models for T®+ Min with the
same number of individuals are isomorphic.

Proof. Given that ¢ is absolute, it follows that any two standard
models M and N of T® will be internally similar. It therefore follows
from the corollary that any two such models will be isomorphic as
long as the cardinalities of Iy and Iy are the same.

Thus the combination of absoluteness and minimality is able to
secure categoricity relative to the cardinality of the individuals. The
cardinality of the minimal model with d individuals will be the least
fixed point ¢ of the function py defined in sect. 4. For ¢ will have a
model with exactly ¢ objects and d individuals, and so will have a
generated submodel, which has at most ¢ objects and exactly d
individuals, and hence which has exactly ¢ objects given that ¢ is
the least fixed point.
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In the case of numerical identity criteria (those which determine
numerical §-models), any formula that fixes the cardinality of
the abstracts will do in place of Min. Suppose, for example, that we
define Natural Number in the abstraction theory with Hume’s
Law. Then any axiom to the effect that there is a one-to-one corre-
spondence between the universe and the natural numbers will be
sufficient to secure (relative) categoricity, as will any axiom to the
effect that there is a one-to-one correspondence between the un-
iverse and all sets of natural numbers. Boolos (1987: 16) and Dum-
mett (1991a: 227) have both commented on the failure of Hume’s Law
to settle questions of cardinality. But this, we see, is the only respect in
which it fails to achieve completeness or, indeed, categoricity.

The generation of the minimal model, in these cases, precedes in an
especially simply way. Given v < £ < «, where a is the critical ordi-
nal, card(G,) < card(Gy). For clearly the result will hold if it holds for
£ =v+ 1. So suppose, for reductio, that card(G,) = card(G,. ).
Then v + 1 must be the critical ordinal. For take an abstract §(C)
in G,13, with C C G,;1. Choose a subset C’ of G, of the same
bicardinality as C. Then §(C’) = §(C); and hence no new abstracts
are introduced at stage v 4 1.

Let us now consider some extensions of the basic result to general-
ized theories of abstraction. Different results are obtained according as
to whether or not we insist on the identity criteria being logical or on
the models being strictly separated. In each case, the abstractors are
taken to be denoted by an abstraction operator; and it is only in sect.
IV.2 that we consider the problem of categoricity for a theory in which
weare allowed to quantify over the methods of abstraction themselves.

The first extension is to generalized models in which the abstrac-
tors are taken to be logical but separated. Let M and N be two
generalized §-models. We say that they are internally similar if the
§-models Mg and Ny are internally similar for each § € §.

Theorem 8. Suppose that M is a strictly separated and standard K-
minimal §-model, with Ka downward-closed subset of M, and that N
is a strictly separated and standard L-minimal §-model, with L a
downward-closed subset of N. Suppose that M and N are internally
similar and that fis an isomorphism from M/Konto N/L. Then there
exists a unique extension f* of f to an isomorphism from M onto N.
In particular, two internally similar models M and N will be iso-
morphic as long as card(Iy) = card(Iy).
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Proof. Form an ordered set <§;: { < ap> of the operators § € §.
For each ordinal &, define an isomorphism f; from Mz = M/K; onto
N = N/L; as follows:

(i) =0.Let Ky = K, Ly = L,and f; = f. Then by supposition, f
is an isomorphism from M; onto N¢.

(ii) & of the form oy + ' for { < o (where ' is the successor of
{). Let v be the immediate predecessor o3 + £ of & and temporarily
set § = §. Recall that Mg and Ny are the respective reducts of M and
Nwrt§. By Theorem 3 and IH, there is an extension (f,)" of f, which
is an isomorphism from a closed submodel Mg/K* of Mg onto a
closed submodel N§/L* of Ng. We then set K; = K*,L; = L*, and
=)

(iii) & of the form «gf + N\ for A a limit ordinal < «g. We let
K:, L and f, be the respective unions of the K, L,, and f, for all
v < §&

Using this construction, the results may then be proved in much
the same way as before. Note that the models M and Nare required to
be strictly separated in order to guarantee that no new § -abstracts,
for § # § will be introduced at step (ii).

We turn next to the case in which the operators are allowed to be
defined in terms of one another. Let <§.: { < o> be a well-ordered
sequence of the operators § € § (which we regard as respecting their
order of definition). Given such a sequence, an ordinal { < «, and a
§-model M, we let M be the reduct of M to the operators §,, with
{' < ¢, and we say that the subset Kof M is closed if it is closed wrt
each operator §;, for {' < L. We say that the §-models M and N are
internally similar (relative to <§: { < a>) if, for each { < a, for
any isomorphism f from M.;/K onto N.;/L, with K and L both
closed¢, and for any subsets C, D C K and C’, D’ C L for which
fICI=C" and f[D]=D', §u(C)=§u(D) iff § y(C)
= §, ~n(D"). Thus the map fis now required to be a full isomorphism
on the preceding abstractors.

Theorem 9. Suppose that M is a strictly separated and standard K-
minimal §-model, with Ka downward-closed subset of M, and that N
is a strictly separated and standard L-mimimal §-model, with L a
downward-closed subset of N. Suppose that M and N are internally
similar relative to the well-ordered sequence <§;: { < a> of the
operators § € § and that fis an isomorphism from M/K onto N/L.
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There then exists a unique extension f of fto an isomorphism from
M onto N. In particular, the two models M and N will be isomorphic
as long as card(Iy) = card(Iy).
Proof. By transfinite induction on o. For o = 0, the result is trivial.
So suppose o is a successor ordinal 3 + 1. We then prove the
extension lemma in the form:

(*) Let M and N be two strictly separated standard models that are
internally similar relative to the sequence <§: { < a>; and let
Kand L be subsets of the respective domains M and N, closed
wrt each §, for § < 3, and downward-closed wrt §5. Suppose
that fis an isomorphism from M/K onto N/L. Then f can be
extended to an isomorphism f from M/g*(K) onto N/g*(L)
(with g* defined in terms of §g ).

The proof follows that of Lemma 1. Note that in the former proof an
appeal to internal similarity is made at two places: the first is at (b)
under the verification of one-to-oneness; and the second is at the end
under the verification of the condition of isomorphism. The first
gives rise to no difficulty; but the second does, since the application of
the internal similarity condition in its relativized form now requires
that we have a suitable underlying isomorphism. To overcome this
difficulty, we appeal to the inductive hypothesis. For the f7, as
defined under (*), can be extended to an isomorphism from
M_p/K" onto N_g/L", where KT and LT respectively contain
g (K) and g" (L) and are closed .

Having established the extension lemma, we show, along the lines
of the proof of Theorem 3, that there is an extension ' of f (in the
statemment of the present theorem) that is an isomorphism from
Mgy /K" onto Ng/L", where K™ and L* respectively contain K
and L and, by strict separation, contain no new §§—abstracts, for
{ < B. The inductive hypothesis may now be applied, with K* and
L™ in place of K and L. This may, in its turn, be followed by an
extension to take care of the operator §g—and so on, until a fixed
point is obtained.

Finally suppose that « is a limit ordinal . For each & < X, let f; be
the unique extension of fwhich is an isomorphism from M_¢/K
onto N¢/Lg with K¢ and L¢ closed.; supersets of Kand L. Then it is
clear that the f’s, for £ < \, form an increasing chain; and so f© =
\J fz will be an isomorphism from M = M/|JK; onto N = N/ J L.
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We can apply this result to particular generalized theories by
extending the notion of an absolute axiom. Instead of requiring
that the ‘meaning’ of the identity criterion ¢&(C,D) remain the
same under the relativization to any concept that subsumes C and
D, we now require that the meaning remain the same under the
relativization to any concept that subsumes C and D and is closed
under the preceding abstraction operations.

We turn finally to the question of categoricity for separated,
though not strictly separated, §-models. In this case, the analogue
of Theorem 8 does not hold. For consider a § with two members §,
and §,. Let M be a standard §-model with M = {c} and §; ,(C) =
8, M(C) = ¢ for all subsets C of M; and let N be a standard model
with N = {c, d, e},§; y(C) = c for all subsets C of N, §, y(C) =d
for empty and singleton subsets C of N, and §, 5(C) = e for dou-
bleton subsets C of N. Then M and N are separated minimal models
without individuals, satisty the internal similarity condition, and yet
are not isomorphic.

The discrepancy in the generation of M and N emerges at the first
stage. For whereas §; » and §, » yield the same abstract c in applica-
tion to the empty concept, §; y and §, y yield the different abstracts
cand d. There is no violation of separation in the case of N since the
abstracts ¢ and d can be distinguished in terms of concepts defined
with the help of those very abstracts.

It is reasonable to think that the model N should not be allowed
under a proper conception of the generative method; for at the first
stage, we have no basis in terms of the objects already generated, for
distinguishing between the abstracts ¢ and d. Accordingly, let us
redefine the notions of generation and minimality.

Let K be a subset of the domain M of a standard §-model M. For
$,§ € §, we say that the abstract §'(C) is indistinguishable from
the abstract §(C) in K if CC K and {D C K: §'(D) = §'(O)}
={D C K: §(D) = §(C)}. (Note that the indistinguishability of
the two abstracts depends upon their respective representation as
§- and §'-abstracts). We now say that the subset K of M is quasi-
upward-closed if it contains I and if for any subset C of K and
abstractor §, with § € §, there is an abstractor §', with §' € §, such
that §(C) is indistinguishable from §'(C) in Kand §'(C) € K. Thus
we no longer require that §(C) itself be in K but only that some
indistinguishable abstract be in K. We do not insist on the stronger
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condition of upward-closure since there is no basis from within K for
distinguishing between indistinguishable abstracts.

The generation of a minimal upward-closed subset of a domain M
is no longer straightforward since, at a given stage in the generation
of the subset, we may have a choice as to which of two currently
indistinguishable abstracts should be introduced. Accordingly, the
previous generation function g should be replaced by a system of
alternative generation functions. Accordingly, let us say that gis a
generation function for the standard §-model M if, for every subset K
of M, KT = KJg(K) is a set with the properties:

(i) for each C C K and § € §, thereisa §' € § such that §(C) is
indistinguishable from §'(C) in Kand §'(C) € g(K);

(i) any object ¢ € g(K) is of the form §'(C) for C C K and is
indistinguishable in K from any other abstract §(C) in K U g(K).
Thus the g(K) may be obtained by first forming the indistinguish-
ability classes of the §(C), for § € § and C C K, and then picking a
representative from those classes which do not already have a repre-
sentative in K.

The generation of the upward-closed subset may now be relati-
vized to a generation function g in the usual manner. Thus for any
ordinal &

G() == I;
GOL+1 = IUg(Ga)>
G\ = U{Gg: £ < A}

By considerations of cardinality, there will be a least ordinal « for
which Gy11 = Gu. We again call o the critical ordinal for M and again
use Gfor G,. It is evident that G is quasi-upward-closed and that it is
separated in the sense that any two abstracts §(C) and §'(C) in G are
distinguishable in G.

Let us say that the §-model M is strictly minimal if it is minimal
and if M properly contains no quasi-upward-closed subset. As is
evident from the example N above, there is no guarantee that even
an internally invariant §-model will contain a strictly minimal sub-
model. However, should such a submodel exist, it may be generated
by means of any one of the generation functions g In particular, a
strictly minimal model may itself be generated by means of such a
function and hence the objects of such a model may be generated in
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such a manner that the abstracts introduced at any given stage are
always distinguishable.

Using the condition of strict minimality in place of minimality, we
may extend our previous categoricity results to separated §-models.
The proofs are much the same as before, but instead of considering
an arbitrary generation of the objects of the model we consider a
generation that is in accord with one of the generation functions g.

It is natural to think of each generated abstract as being represen-
ted by a term. Given such a representation, one may then provide a
truth-definition for the sentences of an abstraction theory in quasi-
nominalistic terms, without reference to an underlying domain of
objects. Such a truth-definition is very much in accord with the kind
of truth-conditions that the proponent of the context principle might
be thought to have in mind. However, he will be unable to offer the
truth-definition that is stated here since it requires mathematical
resources that go well beyond those at his disposal.

We suppose given a set of individual constants {ay, a,...} of
arbitrary cardinality, which we regard as denoting the individuals—
one constant for each individual. We define the object and the relation
terms by the following rules:

(i) each individual constant is an object term;
(ii) each set of n-tples of object terms is a relation term (in
particular, a set of object terms is said to be a concept term);
(iii) If C is a concept term, then §C is an object term.
Note that the object and the concept terms will each form a proper
class.

We think of the concept term {t;, t5,...} as denoting the concept
whose extension consists of the denotations of tj, t5, . . . (and similarly
for the relation terms). We have represented a concept term by a set,
but we could equally well have represented it by something
more linguistic in character, such as the ‘expression’ Ax(x =t
Vx =t V...). The infinitary character of the concept terms reflects
the fact that we think of the concepts as being given platonistically.

We think of the object term §C as denoting the abstract on the
concept denoted by C. There will, of course, be no assurance that
different object terms §C denote different abstracts and hence no
assurance that the different concept terms denote different concepts.
To each object term t, we associate a rank rk(t) according to the rules:
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(i) tk(a) = 0 for a an individual constant;

(ii) tk(§C) = supirk(s) + 1: s € C}.
Similarly, the rank of a set T of object terms is taken to be sup{rk(t)
+ 1:te T}

The new object and relation terms may be used to expand the
language L¥ of abstraction theory. To this end, we define the notions
of objectual term, relational term, and formula:

(i) any objectual variable or object term is an objectual
term;
(ii) if C is a conceptual term, then §C is an objectual term;
(iii) any n-ary relational variable or relation term is a relational
term;
(iv) s = tis a formula when s and t are objectual terms;
(v) Pt; ...ty is a formula if P is an n-ary relational term and
t1, ..., ty are objectual terms;
(vi) ~d and (b V ) are formulas if & and ) are formulas;
(vii) Vx¢ is a formula when x is an objectual variable and ¢ is a
formula; and
(viii) VP& is a formula when P is a relational variable and & is a
formula.

A set of object terms T is said to be a (term) domain if se€ T
whenever §C € T and s € C. Thus a domain must contain the object
terms that figure in the concept terms from which the object terms in
the domain are formed. Given any set C of object terms, there will be
a smallest domain T, to contain C. With each closed sentence ¢ of the
expanded language, we may associate the set L(¢p) of object terms
that occur in ¢ and the corresponding domain Ty = T,

We define truth for the (closed) sentences of the expanded lan-
guage. In fact, for the purposes of the induction, we need to define
truth relative to a term domain T. It is assumed that this notion of
relative truth has application only to a sentence ¢ and a domain T
when Ty, C T.

We suppose that we have been supplied with a specific identity
criterion &(C,D) for the operator §. The various definitions and
results are then relative to that specific choice of &(C, D). The relative
truth-definition is as follows:

(i) a=Db is true in T iff a = b, where a and b are individual
constants;
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(ii) a = §C for a an individual constant is never true in any
domain T;

(iii) §C = §D is true in T iff (C, D) is true in T p;

(iv) Pty ...t, is true in T iff for some s;,...,84 t; = S1,...,
tn = sy are true in T and <sj,...,s,> € P, for P an n-ary relation
term;

(v) = is true in T iff & is not true in T;

(vi) (b V ) is true in T iff & is true in T or ¢ is true in T;

(vii) Vxdb(x) is true in T iff d(t) is true for every object term t in T;

(viii) VP "G(P") is true in T iff (Q) is true for every relation term
QCT™

The clauses are analogous to the clauses of a standard substitu-
tional semantics, with the sole exception of clause (iii). Here, instead
of adopting:

(iii)’ §C = §D is true in T iff &(C, D) is true in T,

we restrict the domain on the right-hand side. In effect, we are
assuming that §C = §D is true in the domain T iff it is true in the
subdomain T¢ p. We shall say that an identity s = t is true (simpli-
citer) if it is true in the domain T, 4.

Without this modification to (iii)’, the truth-definition would not
be well founded. But with the modification, it is. For let the complex-
ity of a pair <T, ¢ >, for ¢ a formula and Ta domain containing T4,
be the pair <o, n>, where « is the rank of T and n is the number of
occurrences of logical symbols in &. Let us adopt a lexicographic
ordering on measures of complexity; and let us suppose that clause
(iv) is rewritten so that applications of clauses (i)—(iii) are already
built into the evaluation of the right-hand side. Then it may be shown
that the application of each clause to a formula results in a drop in
complexity or a direct assignment of truth-value.

Let Eq— be the formula Vx (x =x) & Vxy (x=y—y=x) &
Vxyz (x=y & y=2z — x=1z) (contrast with the formula Eqq,
which states that the criterion ¢ = &(C,D) is an equivalence).
Given the clauses for = in the truth-definition, there is no guarantee
that Eq_ will be true in any given term domain T, since that will
depend upon the choice of the criterion &(C, D). But let us assume
that it is, and define =1 by: s &7 tiff s and t are terms in Tand s =t
is true. Then =1 will be an equivalence relation. So with each term
t € T, we may associate an equivalence class |[t| = {u: u ~7 t}. Let
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Mr={|t]:teT}; for each QCT" let |Q={<ltuls--.>
[ta| >: <t1,..., tn> € Q}; and, where T = T, let M. designate
the standard second-order model with domain Mry. We use the sub-
scripted notation |t|. and |Q]_, where necessary, to indicate that the
equivalence classes are with respect to the relation .

Lemma 10. Suppose that Eq_ is true in a term domain T. Let

¥ = U(X1,. .., Xm, P1,...,Py) be aformula of L? with free variables
as displayed; and let ty, . . ., t;, be object terms of Tand Q;, .. ., Q, be
relation terms of the same arity, respectively, as Py,...,P,. Then
Pty tmy Qe Qu) ds true in T iff ¢ [Jty, .0y [ty
|Qul, .-, |Qn|] is true in Mr.

Proof. By a straightforward induction on the truth-definition,
treating the truth-values of the identity sentences as given.

It should be noted, from the proof of this result, that nothing turns
upon the rules of evaluation for the identity sentences.

Lemma 11. Suppose that Eq_ is true in the domain T. Let S be a
subdomain of T; let N be the restriction of Mt to {|s|;: s € S}; and,
foreachs € S, let f(|s|) = |s|; N S. Then fis an isomorphism from N
onto M.

Proof. A straightforward verification.

When can we expect Eq_ to be true in a term domain? Call an L-
criterion & = &(C, D) ‘regular’ if it is restricted and if Eqq, is valid
(i.e. true in any second-order model).

Lemma 12. Suppose that the L-criterion ¢ is regular. Then Eq_ is
true in any term domain T.

Proof. We consider the T-truth of Vxyz(x =y &y =z —x=12)
(the other cases being similar). The proofis by induction on the rank o
of T. Ifa = 0, then T is empty and the result is immediate. So suppose
a > 0. Let s, t, and u be terms from T. Then we need to show that
s=t&t=u— s =uistrueinT. Sosupposethats = tand t = uare
true (in T). If one of s or t or u is an individual constant, then all of
them are by clause (ii) in the truth-definition. But thens = tandt = u
by clause (i); so s = u; and so s = u is true in T by clause (ii) again.

We may therefore suppose that all of s, t, and u are abstract
terms. So put s = §C, t = §D and u = §E. Since s = t is true (in T),
&(C,D) is true in Tcgup. But rk(Tcupue) < rk(T) (since
rk(F) = rk(§F) < rk(T) for any term §F of T); and so by IH, Eq_
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is true in Tgup. By Lemma 10, &[|C|,|D]|] is true in Mcup; so,
by Lemma 11, &[|C|;, |D|y], with U= CUDUE, is true in the
restriction of My to {|t|;: t € CUD}; and so, by Lemma 3.12 and
the fact that ¢ is restricted, &[|C|y,|D|] is true in My. Similarly,
&[|D|yp [Ely] is true in My. But then from the validity of
Eq, d[|C|yp, [Ely] is true in My. By the use of Lemma 11 and
Lemma 3.12 again, &[|Cl|q g, |E|c ] s true in Mcug; by Lemma 10,
&(G,E) is true in the term domain Tgyp; and hence, by the truth-
definition, §C = §E is true in T.

How might a §-model be formed from a term domain? We cannot
in general expect that § will be defined in My for every concept |C|
with C C T. The object term §T itself, for example, will not belong to
T. Accordingly, let us say that the domain T is representative if for each
object term s there is an object term t in T such that s = tis true. Thus
a representative domain represents the totality of objects that can be
denoted by terms.

Given a representative domain T and a regular L-criterion ¢, let
M- be a standard §-model, with domain Mt as before and with §
defined, given any C C T, by:

§(|C|) = |t|, for t € T and §C = t true.

Each subset C C Mr will be of the form |C| for C C T; and hence §
will, putatively, be defined on every concept of Mr. If the domain is
representative, there will be a t conforming to the definiens for each
C C T; and hence § will have a value for each argument |C|. Given
that ¢ is regular, Eq_ will be true in T by Lemma 12, and so the value
|t| will not depend upon the choice of t. Nor will the value depend
upon the choice of C. For suppose |C| = |D|. Then ¢[|C|, |D|] is true
in the second order model Mt and hence, by ¢ restricted, is also true
in the restriction M¢ p. Given that Eq_ is true in T, it follows from
Lemmas 10 and 11 that $(C,D) is true in T p and hence that
§C = §D is true.
We can now extend Lemma 10 to the language L™:

Lemma 13. Suppose that ¢ is a regular L-criterion and that T is

representative term domain. Let {y = {s(xy, ..., Xy, P1,...,Py) bea
formula of L} with free variables as displayed; and let ty, ..., ty be
object terms of Tand Qy, . .., Qp be relation terms of the same arity,

respectively, as Py, ..., Py. Then ¢s(ty, .. ., tyy, Qp, ..., Qp) istruein T
iﬂ:lllHtl‘, cey |tm\> |Q1|, ces |Qn|] is true in Mr.
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Proof. Building upon the inductive proof of Lemma 10, it suffices
to show that the formula (C,D) = (§C =§D) is true (in T) iff
Y[§|C|, §|D|] is true in My, ie. iff §(|C|) = §(|D|). But the latter
holds iff for some t and u in T, §C=t,§D = u are true and
|t| = |ul, i.e. iff for some t in T,§C = t = §D. But given that T is
representative, this holds iff §C = §D is true.

We finally obtain our central result, that the truth- definition,
relativized to a representative domain of terms, will yield the same
truth-values as the corresponding minimal model.

Theorem 14. Suppose that ¢ is a regular L-criterion and that T is
representative term domain. Then:

(i) the corresponding §-model Mt is a minimal model of ®; and
(ii) a sentence & of L3 is true in T iff it is true in Mr.

Proof. (i) may be straightforwardly established by using an induc-
tion on the rank of t € T in order to show that |t| must be a member of
the generated subdomain G of Mr. (ii) follows from Lemma 13.

The existence of a representative domain with d individual con-
stants will imply the existence of a standard model for @ (indeed, ofa
minimal model) with d individuals. The converse also holds. For if
there exists a standard model with d individuals, it will have a mini-
mal submodel with d individuals. Suppose now that « is the critical
ordinal for the generating function G;. Then it is readily shown that
the set of terms of rank < « (or of rank < « for « a limit ordinal) will
be a representative domain.

We might compare the above proof of soundness to the attempted
demonstration of the soundness of Law V in sect. 31 of Frege’s Grund-
gesetze. The proof there is infected by two sources of impredicativity:
one to the predicates and the other to the abstraction operator (see
Dummett 1991a: chap. 17). The first is removed here by adopting a
Platonic conception of relations and concepts; the second is removed
by assuming the existence of a representative domain of object terms.
Whether such a domain exists depends, of course, on the identity
criterion in question. In the case of coextensionality, there will be no
such domain; while in the case of equinumerosity, there will.

Although my interest has principally been in a Platonic conception
of concepts, it is worth pointing out it is also possible to obtain
models of the abstraction theories in which all objects and all con-
cepts are denoted by closed terms from the language itself (assuming
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that we allow the use of A to form complex predicates). Thus from the
results of Boolos (1968), we can obtain a term model for Hume’s Law
in which the concepts are taken, in effect, to be the predicatively
defined sets of numbers. Also, as Tony Martin has pointed out, by
assuming the axiom of projective determinacy, we can obtain term
models that are elementary submodels of the standard model (con-
ceived now in a first-order way); and it seems likely that these meth-
ods could be extended to various other forms of abstraction. We
would thereby obtain something closer to the kind of model that
Frege seemed to have in mind, though without the straightforward
inductive determination of the truth-conditions.

7. Invariance

We shall attempt to characterize the non-inflationary invariant
equivalence relations on a given power set. The analysis will then be
extended to other forms of invariance.

Given an equivalence relation & on the power set £(M) of a set M,
let P, be the partition of £(M) induced by = and call the equivalence
relation = non-inflationary if card(Py) < card(M). Each L-criterion
¢ induces an invariant relation = on the powerset £(M) of a set
M of urelements; and ¢ will be tenable on the corresponding
standard model M just in case = is an equivalence relation and
the induced partition P is non-inflationary. Thus determining the
non-inflationary equivalences on p(M) will help us determine which
L-criteria are tenable.

In the ensuing discussion, we take M to be a set of urelements;
and, unless otherwise indicated, we shall assume that M is infinite.
Recall that a bicardinal is an ordered pair <¢,d > of cardinals; and
given a subset C of M, we set bicard(C) =< card(C), card(M - C) >.
Suppose that m is the cardinality of M. If card(C) < m,
then bicard(C) =< card(C), m>. Thus bicardinality, in this case,
is a function of cardinality: card(C) = card(D) implies bicard(C)
= bicard(D). On the other hand, if card(C) = m, then bicard(C)
can take any of the values <m,d > ford < m.

Let C and D be any two subsets of M. Then the cardinality distr-
ibution cdstr(CD) of C and D is the ordered quadruple
<card(C — D), card(CND), card(D — C), card(M — (CU D)) >.
Thus the cardinality distribution of two sets identifies the cardinal-
ities of the smallest demarcated areas in their Venn diagram.
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We first consider the question: when does identification of one
pair of subsets of M under an invariant equivalence relation imply
identification of another pair? Say that the pair < C, D> of subsets of
M yields the pair < E, F> if, for any invariant equivalence ~ over
£(M), C = D implies E ~ F.

Cardinality distribution provides a sufficient condition for one
pair of sets to yield another:

Lemma 1. < C, D> yields <E, F> if cdstr(C,D) = cdstr(EF).

Proof. Suppose that cdstr(C,D) = cdstr(E,F), i.e. card(CN D)
=card(ENF), card(C—D) = card(E—F), card(D—C) = card
(F-E), and card(M—(CUD)) = card(M—(EUF)). Let f; be a
one-to-one map from C N D onto ENF, f; a one-to-one map from
C—Donto E—F, f; a one-to-one map from D—C onto F—E, and f; a
one-to-one map from M—(CU D) onto M—(EUF)). Thenf = U
HLUBUS is a permutation on M with f[C] = E and f[D] = F.
Suppose now that C ~ D. Given that = is invariant, f[C] ~ f[D],
ie. ExF.

Use of this lemma will often be implicit. Once it has been shown
that C = D for sets C and D of given cardinality distribution, it will
be taken for granted that E ~ F holds for any sets E and F of the same
cardinality distribution.

By a combination is meant a pair < C, D> of subsets of M of the
same bicardinality. A combination < C, D> of subsets of M (of
bicardinality <a,b>) is said to be representative if it yields all com-
binations of subsets of M of the same bicardinality, i.e. for any
invariant equivalence relation ~ on ®(M),C ~ D implies E ~ F
whenever bicard(E) = bicard(F) =<a,b>.

We wish to determine which combinations of sets are representa-
tive. The relation of being almost the same will be especially significant
in this regard. Given two sets C and D, define their symmetric differ-
ence C ~ Dtobe (C-D) U (D- C). We say that two subsets C and D
of M are almost the same—in symbols, C =’ D—if either (i) they are
finite and C = D or (ii) they are infinite, card(C) = card(D) and
card(C ~ D) < card(C); and we say that the subsets Cand D are very
different if they are not almost the same.

Lemma 2. =' is an equivalence relation on the subsets of M.

Proof. The relation =’ is clearly reflexive and symmetric. To
establish transitivity, suppose that C =’ D and D =’ E. We wish to
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show C =’ E. If one of C, D, or Eis finite, then they are all finite and
the result is obvious. So suppose that they are all infinite. Then
card(C) = card(D) = card(E). So it remains to show that
card(C-E) < ¢ and that card(E-C) < ¢, where ¢ = card(C).
By symmetry, it suffices to establish the first of the two
inequalities. Now C-E C ((C-D)U(D-E)). So card(C-E) <
card((C-D)U (D-E)) < ¢+ ¢ = ¢ (given that ¢ is infinite).

A subset C of M is said to be small (relative to M) if
card(C) < card(M) and otherwise is said to be large (relative to M).
(Later, another notion of smallness and largeness will be introduced.)
When we are dealing with small subsets C and D of a set M of
infinite cardinality m, the cardinality of M - (C U D) will always be
m and hence may be ignored in assessing cardinality distribution.

We divide the results on representative combination into three
parts:

Lemma 3 (part 1). A combination < C, D> of small infinite sets is
representative when they are very different.

Proof. Suppose card(C) = card(D) = ¢ < m. We distinguish two
subcases:

(1) Cand D are disjoint. Take any two sets E and F of cardinality ¢
(so that card(M —E) = card(M - F) = m). Given that C~ D for
invariant ~, we wish to show that E =~ F. Clearly, we can pick a
subset B of M of cardinality ¢ disjoint from both Eand F. (At this and
similar points in the proofs the reader might like to draw a Venn
diagram). Since cdstr(C, D) = cdstr(E, B), it follows from Lemma
1 that E & B. Similarly, it follows from the fact that cdstr(C, D) =
cdstr(F, B) that F =~ B. But then E ~ F.

(2) Cand D overlap. Since Cand D are very different, either C— D
or D — Cis of cardinality c. Without loss of generality, suppose that
C — D is. Let us also suppose that card(CN D) =d and that
card(D- C) = e. Pick a subset A of C — D for which card(A) =d
and card(C-(DUA)) = e; and pick a subset B of M-(CU D)
of cardinality e (note that at least one of d or e is ¢). Let
D™ =AUB. Then card (D7) =d+e=c, card(C-D") = ¢, and
card(D" - C) = e. Thus cdstr(C, D) = cdstr(C, D). So C =~ DV
and, given C~ D, D" = D. Now D" and D are disjoint. By (1)
above, the combination < D", D> is representative; and therefore
so is the combination < C, D>.
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Say that a subset C of the infinite set M is almost universal (relative
to M) if card(M - C) < card(C) = card(M). Thus an almost univer-
sal set is one which is almost the same as the universal set M.

Lemma 3 (part 2). A combination < C, D> of almost universal
subsets of M is representative when their complements M — C and
M — D are infinite and very different.

Proof. We reduce this case to the other. Given any equivalence
relation ~ on £(M), we define the dual relation =~ by:

C~'"Diff M-C~M-D.

[t is readily established that &~ is an equivalence relation and that it is
invariant if = is.

Now suppose that C ~ D for <C, D> a combination of almost
universal sets. Then M - C &' M - D. Given that Cand D are almost
universal, M — C and M — D are small; and given that C and D are
of the same bicardinality, so are M — C and M — D. Since M — C and
M — D are very different, it follows by the first part of the lemma that
C' =" D' for any sets C' and D’ of the same bicardinality as M — C.
But then M - C’ ~ M - D’ for any such sets C’ and D’;and so E ~ F
for any sets Eand F of the same bicardinality as C.

Say that the set C bifurcates D if C is a subset of D and
card(C) = card(D- C) and that the subset C of M is a bifurcator if
it bifurcates M. A bifurcator divides the universe M into parts of
equal size; and it will, for an infinite universe, be of the same size as
the universe. From among the large subsets of M, the bifurcators are
those that are not almost universal.

Lemma 3 (part 3). A combination < C, D> of bifurcators Cand D
is representative when C is very different both from D and from
M- D.

Proof. We distinguish three subcases:

(1) Cand D are disjoint.

Proof. Clearly, M - (C U D) must be large, for otherwise C would
be almost the same as M — D. We first show that E ~ F must hold for
any bifurcators E and F whenever M - (E U F) is large. For choose a
bifurcator B of M — (EUF). Then cdstr(E, B) = cdstr(C, D)
= cdstr(F, B). So E = B and F = B; and consequently, E ~ F. Now
consider the case in which M — (E U F) is small. Then both E— Fand
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F — E must be large. Choose a bifurcator B of E — E Then all of
B~ E, F~ F-E and B~ F-E hold by what was shown earlier;
and so E~ F.

(2) CN D is small.

Proof. In this case, C— D and D — C must both be large. But also
M - (C U D) must be large, for otherwise Cwould be almost the same
as M — D. Suppose card(C N D) = c. Choose a subset A of C— D of
cardinality ¢ and a bifurcator B of M- (CU D). Let D" = AUB.
Then it is readily verified that cdstr(C, D) = cdstr(C, D*). So
C ~ D"; and hence D" ~ D. But D and D" are disjoint. By case 1,
the combination < D, D" > is representative; and therefore so is the
combination < C, D>.

(3) CN Dis large.

Proof. Split CN D into two disjoint parts B, and B,, each of
cardinality m. Since C and D are very different, one of C — D
or D — Cis large. Suppose, without loss of generality, that it is C— D.
Let Dl = (D—C) UBl and Dz = (D—C) UBZ

Then cdstr (C, D) = cdstr(C, D) and cdstr(C, D,) = cdstr(C, D).
GivenC = D, C =~ Djand C = D,;and hence D; =~ D,.Sowehavea
reduction to case (2) in which the intersection (ID; N D>) is small.

It should be noted that, for bifurcators C and D, C='D
iff M - C =" M - D; for the symmetric differences of the sets C and
D and of their complements are the same and the cardinalities of the
sets and their complements are also the same.

Summing up:

Theorem 4 (Representative Combinations). A combination
< C, D> of infinite subsets of M is representative if (i) C and D are
small but very different, or (ii) Cand D are almost universal but with
infinite very different complements, or (iii) C and D are bifurcatory
with one very different from the other and from its complement.

Another way to present our results (and others like them) is in
terms of what one might call a calculus of cardinality distributions.
Suppose that I is a set of possible cardinality distributions and that =
is a particular such distribution (for a given set M). We might say that
I" entails T if any invariant equivalence on £(M) that identifies sets C
and D for which cdstr (C, D) € I' will identify sets Cand D for which
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cdstr (C, D) = 7; and we might then attempt to determine a sound
and complete ‘calculus’ for the relation of entailment as so defined.
However, this is not the approach we shall pursue.

We now attempt to take account of the non-inflationary character
of an equivalence =. To this end, we need further information on the
relation =’ of approximate identity. For each subset C of M,
let |Cl_, ={DCM:C="D}, let Q={|C|l_: CC M}, and let
Q. ={|C|l=;: C C M and C is of cardinality c}. Recall that [M]° is
the set of all subsets of M of cardinality c. We may then show that the
identification of approximately identical sets does not reduce their
cardinality.

Lemma 5. card(Q.) = m® for m transfinite and ¢ < m.

Proof. For m transfinite and ¢ < m, m¢ is the cardinality of [M];
and since card(Q.) < card([M]), card(Q.) < mS.

The other direction is proved by ‘magnifying’ the differences
between distinct sets. To this end, take ¢ disjoint copies M; of M.
Clearly, Mt = |J{M: { < ¢} is of cardinality m. For each { < ¢, let
f; be a one-to-one map from M onto M. For each subset C of M
of cardinality ¢, let f(C) = J{f[C]: { < c}. Thus fis a map from
[M]€ into [MT]¢. Moreover, if C# D, then not f(C) =’ f(D)
For if C — D, let us say, contains an element a, then f(C) — f(D)
contains ¢ copies of a and hence is of cardinality c. So if C # D, then

If(O)=, # |f(D)|_ (wrt M"); and hence card(Q.) > card([M]°)
— mC

Let us call an equivalence = on (M) strictly acceptable if it is
invariant and non-inflationary. Our characterization of the strictly
acceptable equivalences will be in terms of a minimal such relation. A
cardinal ¢ < m is said to be exponentially small (relative tom) if m®¢ <
m and exponentially large (relative to m) if m°>m. The subset C of
M is said to be exponentially small if card{D C M: card(D) <
card(C)} > card(M); and otherwise it is said to be exponentially
large. If M is finite, then C is an exponentially small subset of M
ift Cis empty and M is non-empty. If M is infinite, then C is an
exponentially small subset of M iff card(C) is exponentially small
relative to card(M). We note that, by Cantor’s Theorem, m > 1 is
itself exponentially large (relative to m) and that if the generalized
continuum hypothesis holds then every transfinite cardinal less than
m is exponentially small (relative to m). It is important to observe
that a cardinal ¢ may be exponentially small relative to a cardinal m
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and yet exponentially large relative to a larger cardinal n. For exam-
ple, given GCH, N}foz N1, whereas Nif,(): Neot1-
We define the basal relation =, on £(M) by:

C =~ D iff either (i) card(C) and card(D) are exponentially small
and C = D, or (ii) card(M — C) and card(M — D) are exponentially
small and C = D, or (iii) card(C), card(D), card(M — C) and
card(M — D) are exponentially large and bicard(C) = bicard(D).

Thus = is a kind of hybrid relation—behaving like identity on sets
that are sufficiently small or have sufficiently small complements and
behaving like bi-equinumerosity on the remaining sets. By the basal
relation for the cardinal m, we mean the basal relation on £(M) for M
a set of urelements of cardinality m. The basal relation for a cardinal
is clearly unique up to isomorphism.

Say that the relation R is as refined as the relation S, or that S
subsumes R, if S holds between any two objects between which R
holds. We then have:

Theorem 6 (Characterization). Suppose that M is infinite. Then the
basal relation =, is the most refined strictly acceptable equivalence
relation on £(M).

Proof. Let us first show that = is a strictly acceptable equivalence.
It is readily verified to be an equivalence and, from its characteriza-
tion, is clearly invariant.

To show that & is non-inflationary, let us count the equivalence
classes | C| in the partition P, induced by ~z. Consider first the C for
which card(C) = cis exponentially small. There are m® subsets C of M
of cardinality c and hence m® corresponding equivalence classes |C| in
P;.Butgiven that cis exponentially small, m® < m. Consider nowthe C
for which card(M — C) is exponentially small. Then by similar reason-
ing, there are again m® corresponding equivalence classes |C| in P,.
Finally, consider the C for which both Cand M — C are exponentially
large. Let n be the cardinality of the set of cardinals < m. Thenn < m
and there are at most 2. n = n such equivalence classes |C| (one for
each suitable bicardinality <¢, d>,¢, d <m).

We see that in each case there are at most m equivalences classes.
But there are at most n cases; and hence card(P;) < m.

Let us now show that a2 is the most refined of the strictly acceptable
equivalences. Consider an arbitrary non-inflationary and invariant
equivalence ~. Suppose that C ~; D. We then wish to show C ~ D.
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Let ¢ = card(C) and d = card(M - C)(givenC = D, card(C) =
card(D) and card(M - C) = card(M - D)). If either ¢ or d is expo-
nentially small, it follows from the definition of a3 that C = D; and
so it is evident that C ~ D. So we may suppose that ¢ and d are both
exponentially large, i.e. m® > m and m? > m. It then follows from
the definition of & that bicard(C) = bicard(D).

Suppose, for reductio, that not C = D. By Theorem 4 on repre-
sentative combinations (TRC for short),  cannot hold between any
representative pair of subsets of M of the same bicardinality as C and
D. There are three cases, each of which will require ~ to be infla-
tionary.

Case 1. ¢ < m. Then card(M - C) = card(M-D) = m; Cand D
are infinite, since M is infinite and both C and D are exponentially
large; and so, by part 1 of TRC, E & F implies E =’ F for any subsets
of E and F of M of cardinality c. But then:

card(P~) > card(Q.)
= m° (by Lemma 5)
> m, given that ¢ is exponentially large.

Case 2. ¢ =m and d < m. In a similar way to case 1, it follows by
part 2 of TRC that E &~ F implies (M - E) =’ (M - F) for any subsets
M — Eand M — F of cardinality d. But then:

card(P~) > card({|(M - E)|_,: card(M - E) = d}
= card(Qq)
= m¢ (by Lemma 5)
> m, given that d is exponentially large.

Case 3 ¢ =d = m. By part 3 of TRC, E = F implies that either
E='TF or E=' (M -F) for bifurcators Eand F. Define =’’ on bifur-
cators by: E='' Fiff E=' For E=' (M-F). It is readily shown
that =’ is an equivalence relation. Define a map f from P_: (as
restricted to bifurcators) into P, by: f(|C|_,) = |C|_,. Then it
should be clear that f maps exactly two equivalence classes from
P—: into each of the equivalence classes from P-:./; and so
card(P.) > card(P-/) = card(Qmn) = m™ > m.

We now consider the case in which the equivalence relation is
required to be internally invariant. We say that an equivalence on
(M) is strictly I-acceptable if it is I-invariant and non-inflationary.
Define the super-basal relation ~; on £(M) by:
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C =~ D iff either (i) card(C) and card(D) are exponentially small
and C= D or (ii) card(C) and card(D) are exponentially
large and card(C) = card(D).

We then have:

Corollary 7. Suppose that M is infinite. Then the relation =~ is the
most refined strictly I-acceptable equivalence on £(M).

Proof. Given the theorem, it suffices to show that =~ is the smallest
[-invariant equivalence to contain =z. It is readily verified that =
is an I-invariant equivalence. Now consider any I-invariant equiva-
lence & containing =%; and suppose that C = D. There are two
cases: (i) card(C) and card(D) are exponentially small and C = D.
But then it is evident that C ~ D. (ii) card(C) and card(D) are
exponentially large and card(C) = card(D). Suppose that
card(C N D) = e. Clearly, we can find subsets C’ and D’ of M such
that card(C’) = card(D’) = card(C), card(C’' N D') = e, and card
(M -C") = card(M - D') = m. There is therefore a one-to-one map
ffrom CU D onto C’' U D’ with f[C] = C"and f[D] = D’. So by the
internal invariance of =, C' ~; D'. But card(C’) ( = card(D"))
and card(M - C’) ( = card(M - D’)) are both exponentially large;
and so C’' =~ D'. Given that ~ contains ~,, C' ~ D'; and so by
the internal invariance of =, C ~ D.

According to the theorem, the most refined form of invariant
abstraction, compatible with full second-order logic, is one that
yields the extensions of concepts whose extensions or counter-exten-
sions are exponentially small and yields the bicardinalities of the
concepts otherwise. According to the corollary, if it is further
required that the identity criterion be absolute, then the most refined
form of abstraction is one that yields extensions of concepts whose
extensions are exponentially small and yields the cardinalities of the
concepts otherwise. Thus bi-equinumerosity and equinumerosity
represent the ‘outer limits’ of invariant abstraction; any acceptable
method of invariant abstraction must eventually degenerate into one
of the equinumerosity relations or something coarser.

There are various strengthenings of our basic results, some of
which will later prove useful. We concentrate on the case in which
invariance is assumed to be internal, although related results can be
established for the cases in which it is not. Suppose that M is a set
of urelements of (finite or infinite) cardinality m. For ¢ < m and
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d < ¢t (the successor of ¢), define the relation =4 on the members of
[M]° by: C =4 Dif card(C ~ D) < d. Ford = ¢, =4 is coincident
with the earlier relation =’ of being almost the same on infinite sets
of cardinality ¢; and for d = (2.c*), =4 identifies all the sets of
cardinality ¢. In the same way as for Lemma 2, it may be shown
that the relation =4 is an equivalence for transfinite d.

It will be helpful to classify the consequences of C =~ D holding in
relationship to the cardinality of C ~ D. To this end, define the
internal cardinality distribution Icdstr (C, D) of two subsets C and
D of M by <card(C-D), card(CN D), card(D- C) > (the cardin-
ality of M - (C U D) is ignored). We can then obtain the analogue of
Lemma 1 (using I-invariant equivalences in place of invariant equiv-
alences).

When the cardinality C ~ D is infinite, we have:

Lemma 8. Let & be an I-invariant equivalence over the infinite set
M; and suppose that C =~ D holds with card(C ~ D) = d infinite
and card(C) = card(D) = ¢. Then E =4, F implies E ~ F for any
sets E and F of cardinality c.

Proof. Let us first consider the case in which d =c¢ (and C is
consequently very different from D). We may then use part 1 of
Lemma 3 to show that E & F for any subsets Eand F of M cardinality
c. For extend the domain M to a domain M of cardinality m relative
to which the particular sets Cand D are small. Define ~* by: E =~ F
iff Icdstr(E, F) = Icdstr(A, B) for some subsets A and B of M for
which A~ B. It is then readily shown that ~™ is an I[-invariant
equivalence on M. Pick now any subsets Eand F of M of cardinality
¢. Then Icdstr(E, F) = Icdstr(A, B) for some subsets A and B of M for
which A ~ B; and hence E~T F.

We may therefore assume that d < ¢. We may also assume that
card(M - (C U D)) = card(M). For Cand D may be simultaneously
mapped one-to-one onto subsets C’ and D' for which card(M - (C' U
D")) = card(M); since ledstr(C, D) = Iedstr (C', D), C' =~ D’; and
so it suffices to establish the result for subsets of this sort.

Let card(C- D) = d; and card(D- C) = d,. The result will then
follow from the following two facts:

(DIf d=d; >d,, then E=sF whenever Icdstr(E,F)=
<dy, ¢, dy > or Iedstr(E, F) =<ds, ¢, dy >;

(2) If d; = d, = d, then E ~ F whenever Icdstr(E, F) =<d,c,e>
forany e < d.
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For suppose that E=g4; F and Icdstr(E, F) =<f,g, h>. Then
f,h < d < ¢ and so g = c. Assume, without loss of generality, that
f < g and suppose, in the first instance, that the subsets Cand D are
of a type for which d; =d; = d. By (2), the result holds for any
subsets Eand F of internal cardinality distribution <d, ¢, h>; and so,
since there are subsets of this sort, it follows by (1) that the result
holds for any subsets of internal cardinality distribution <h, ¢, h>. If
f = h, we are done; and if f < h, we may reapply (2). On the other
hand, if the subsets C and D are of a type for whichd = d; > d, then
we may apply (1) to obtain a case for which d; = d, = d and thereby
effect a reduction to the first instance.

(1) and (2) may be proved as follows.

Proof of (1). Pick a subset B of M - (C U D) of cardinality d. Let
C' = (CN D)U B. Then by considerations of cardinality distribu-
tion (CCD, for short), C' ~ D. Hence C ~ C’. But Icdstr(C, C")
=<d, ¢,d >. The proof for the other case is similar.

Proof of (2). Pick a subset B of M- (C U D) of cardinality e < d
and divide C-D into two subsets C; and G, of cardinality d. Let
C'=(CND)UBUC,. By CCD, C'= D. Hence C~ C'. But
Iedstr(C, C') =<d,c,e>.

When the cardinality of C ~ D is finite, we have:

Lemma 9. Let & be an I-invariant equivalence on #(M) (for M
either finite or infinite). Suppose that C = D holds for card(C ~ D)
finite but non-zero and card(C) = ¢. Then E =, F implies E ~ F
for any subsets E and F of M of cardinality c.

Proof. Suppose that =~ is an I-invariant equivalence on
£(M); and, for the purposes of the proof, let us define Ey/x by
(E-{x}) U{yl. If C is empty, the result is trivial; and so we
may assume that C is non-empty. In case M is finite, we may
assume that M-C is non-empty, since otherwise the result is
again trivial, and in case M is infinite, we may assume that
card(M - (CU D)) = card(M) for the same reasons as before. In
each of these cases, it then suffices to show that C’ ~ C for any subset
C' of the same cardinality as C.

We distinguish three cases:

(i) D is a proper subset of C. Suppose that x € C-D. Let
y be a member of M — G and set D'= Cy/x. By CCD
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D’ = D. But then C = D’; and so we have a reduction to case (iii)
below.

(i) C is a proper subset of D. Suppose that x € C and that
y € D-C.Let D' = Cy/x. By CCD, D’ = D. But then C ~ D’; and
we again have a reduction to case (iii) below.

(iii) C and D properly overlap. Suppose z € D—C. Let n = card
(C ~ C'), where C’ is a subset of M of the same cardinality as C. We
prove C =~ C’ by induction on n (since M may be finite, we need to
take some special care in the reasoning). For n = 0, the result is
trivial. So suppose the result holds for n < k; and let us establish it
for n =k + L. Pick an element x in C — C’ and an element y in
C'-C. Let C* = Cy/x. It then suffices to show C*~ C: for
card(C* ~ C') = (k-1) and C* and C properly overlap; so given
C* =~ C, it follows by IH that C* ~ C’; and hence C = C’.

To show C = C*, we distinguish three subcases:

(a) y € M- D.Let D’ = Dy\z. Then by CCD, C ~ D’ and we have
a reduction to case (b) or (c) below.

(b) y e D-Cand x € M- D. Suppose u € CN D.Let D' = Dx/u.
By CCD, C = D’ and we have a reduction to case (c) below.

(¢) y € D-Cand x € CN D. But then C* = Cy/x ~ D by CCD;
and so C =~ C*.

As a special case of the lemma, note the following:

Corollary 10. Let =~ be an I-invariant equivalence on #(M).
Suppose that C ~ D holds for distinct finite sets C and D. Then
E =~ F holds for any subsets E and F of the same cardinality as C.

We consider finally the identification of sets of different card-
inality. Say that an equivalence = over M is numeric on the cardinal
c if C = D for any subsets C and D of cardinality ¢; and say that
it is is numeric simpliciter if it is numeric on every cardinal <

card(M).

Lemma 11. Suppose that ~ is an I-invariant equivalence over an
infinite set M. If C =~ D for sets C and D of distinct cardinality, then
~ is numeric on the cardinality of C.

Proof. For C and D finite, the result follows from Corollary 10. So
suppose that card(C) < card(D) with D infinite. We may then find
C’ and D’ such that Iedstr(C’, D') = Iedstr(C, D) and yet M - (C' U
D’) is of the same cardinality as M. We may therefore find a C* such
that Iedste(C*, D') = Iedstr(C’, D) and C’ is disjoint from C*. So by
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Theorem 4, <C,C*> is a representative combination, and the
required result follows.

Now suppose that card(D) < card(C) with C infinite. By the
same reasoning as before, we may suppose that M- (CU D) is of
the same cardinality as M. Choose a subset C’ of M - (C U D) which
is of the same cardinality as C and for which M- (CU DU C’) is of
the same cardinality as M. Then we may find a D’ such that
Ledstr(C, D) = Ledstr(C’, D). By the previous case, D~ D’; by
the invariance of ~ , C’ & D’; and so C ~ C’. So again by Theorem
4, < C, C'> is a representative combination; and the required result
follows.

Summing up Lemmas 8, 9, and 11, we obtain:

Theorem 12. Let ~ be an I-invariant equivalence over the set M;
and suppose that C ~ D holds with card(C ~ D) non-zero and
card(C) = ¢. Then E =4 F implies E = F for any sets E and F of
cardinality ¢, where d = max {N;, card(C ~ D)t}

The theorem provides a good picture of the structure of I-invariant
equivalences. For subsets of a given finite cardinality, either no
two sets of that cardinality are identified or all are; for sets of a
given infinite cardinality c, the sets are identified according to the
relationship =4 for some cardinal d (d will be the successor of
sup{e: C =~ D, card(C) = card(D) = ¢, and card(C ~ D) = e});
and if two sets of distinct cardinality are identified, then all sets of
those cardinalities are identified.

The lemmas have some further consequences of interest. From
Lemmas 8, 10, and 11, we readily obtain:

Corollary 13. Suppose that =~ is an I-invariant equivalence over
infinite M. If C = D for very different sets Cand D, then ~ is numeric
on card(C).

If we insist that the equivalence should be non-inflationary, then
we also obtain:

Theorem 14. Suppose that = is a non-inflationary I-invariant
equivalence on £(M), with M finite. Then = is numeric.

Proof. Suppose that C = D fails to hold for C and D of the same
cardinality k. Then Cand D must be distinct and non-empty; and so
0 < k < m = card(M). But then by Corollary 10, no two subsets of
M of cardinality k can be related by ~. Now the number of such
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subsets is at least m; and so, given that = is non-inflationary, M ~ C
for some such set C. But then, by CCD, M =~ C for every such set C;
and the different Cs are related by ~ after all.

Thus we see that the possibilities for non-inflationary identifica-
tion are much more limited in the finite than in the infinite case. Any
strictly I-acceptable equivalence must contain the relation of equinu-
merosity. But this relation is itself inflationary, of course, on finite
domains, since for a domain M of n elements the relation yields
n+ 1 equivalence classes. Indeed, it is easy to see that there can
be no smallest non-inflationary equivalence on #(M) should
m = card(M) > 1, since we are free to distinguish between the
k-membered and the (k 4 1)-membered subsets for any k =0,
1,...,(m— 1), but we are not free to distinguish between them for
all k.

With each numeric equivalence ~ on #(M), we may associate an
equivalence ~p,m on all cardinals according to the rule:

¢ ~pum d iff either (i) for some subsets C and D of M,
C = D, card(C) = cand card(D) = d or (ii) ¢, d > card(M).

Thus C = D iff Cand D are subsets of M and card(C) = card(D).
The equivalence classes induced by ~2puy, may be regarded as a form
of generalized number.

There is a rather different way in which we may extend our basic
results; for we need not require that the underlying relation be an
equivalence. Call the relation <= on an arbitrary set X a biequivalence
ifx— y &x' < y & x' < y'implies x < y'. Given a biequivalence
< onaset X, wesay x, y <> (xand yare connected on the left) if x < z
and y < z for some z; and, similarly, we say <= x, ¥ (x and y are
connected on the right) if z <+ x and z < y for some z. We also denote
these two relations by <+ and <. It is readily shown that the
relation <1 is an equivalence relation on the domain of < and
that <—p is an equivalence relation on the range of <. Let us use
|x|; and |y|y for the corresponding equivalence classes, and P and Pr
for the corresponding partitions. For X € P| and Y € Py, say that
X < Y if x < y for some x € X and some y € Y. Then it is readily
shown that < is a one-to-one relation between P and Py and that
x <> y iff |x|; <> |y|g for any x in the domain Dy, of <> and any y in
the range Dr of «. Conversely, given a one-to-one relation «
between partitions P, and Pr of #(Dy) and £(Dg) respectively, we



152 The Analysis of Acceptability

may determine the relation < between Dy and Dy to which it
corresponds by means of the definition: x < y if |x|; < |y|z.

Our interest is in the case in which < is a relation on the powerset
£(M). For this case, we have the following analogue of Theorem 12:

Theorem 15. Let <+ be an I-invariant biequivalence on p(M);
and suppose that C < D holds with card(C ~ D) non-zero and
card(C) = ¢. Then E =4 F implies E = F for any sets E and F of
cardinality ¢, where d = max {Ny, card(C ~ D'}

Proof. By a straightforward modification of the proof of Theorem
12. Details are omitted.

It is also possible to extend the above results to relations that are
relatively invariant, i.e. to relations that ignore the identity of allbut a
fixed set of individuals. Say that a function ffrom Xinto Yis fixed on
a subset X’ of Xif for all x € X/, f(x) = x. For Ra relation on £(M)
and K a subset of M, we then say that R is K-invariant if R(C, D)
implies R(f(C), f(D) ) for any permutation f of M that is fixed on K
and we say that R is internally K-invariant if R(C, D) implies R(f(C),
f(D) ) for any one-to-one map from ffrom C U D into M that is fixed
on KN (CUD).

For M an infinite set and K a subset of M, define the equivalence
~, x on ¥(M) by:

Cmox Dif CNK=DNKand C-K =~y D-K.

And similarly for ~ k. Let us say that an equivalence ~ on (M)
is (internally) K-acceptable if it (internally) K-invariant and non-
inflationary. We may then show:

Corollary 16. For M an infinite set and K an exponentially small
subset of M, =% g (resp. =, k) is the most refined (internally) K-
acceptable equivalence on #(M).

Proof. We prove the result for the relation ~ g, the proof for the
relation ~ g, being exactly similar.

Given that = is an equivalence relation, it is readily shown that
~, x 18 an equivalence relation; and it is evident that /3¢, g is intern-
ally K-invariant. Let us use the unadorned |C| for the equivalence
classes wrt ~, ¢. For Lasubset of M, let M; = {C C M: CNK = L}.
Then, for each C,D e M;, C=gx D ifft C-K =¢ D-K. So, by
Theorem 6, the number of equivalence classes |C| for C € M is at
most m = card(M). But there are at most 2X subsets of K, where
k = card(K). So the total number of equivalence classes | C| is at most
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m2X < mm* < m, given that k is exponentially small; and hence
~, x is non-inflationary.

To show that % g is the most refined K-acceptable equivalence, let
~ be an arbitrary K-acceptable equivalence on M. For each subset L
of K, define ~; on #(M - K) by:

Cr DIff CUL= DUL.

Then = is a strictly acceptable equivalence on £(M -K). So by
Theorem 6, it contains =, as defined on £(M —K) and hence is
readily shown to contain the restriction of &, as defined on £(M)
to (M - K). Now suppose C ~, g D for C,D C M. Then C-K =,
D-K and CNK=DNK. Hence C-K =cnx D-K; and so
C=(C-K)U(CNK)~(D-K)U(DNK)=D.

It should be noted that the various minimal relations that we
have appealed to can all be expressed within second-order logic. In
order to express the absolute relations /3y and =, we use the defini-
tions:

Exponential ~ Smallness:  Expsmall(C) for JRVD(D <C
— JdyVx(xRy < Dx)) (the ‘y in the range of R here serves to enu-
merate those sets of lesser cardinality than C);

Exponential Largeness: Explarge(C) for - Expsmall(C);

Suitability: Stb(C) for (Expsmall(C) Vv 3D (D compl C &
Expsmall(D) );

Unsuitability: Unstb(C) for -Stb(C).

The basal relation = is then expressed by the formula ¢,(C, D):
(Stb(C) & Stb(D) & C=D) V (Unstb(C) & Unstb(D) & C beq D).

Thus if M is an infinite set and =2 is the basal relation on £(M) then,
for any subsets C and D of M, C = D iff &,[C, D] is true in the
standard model M based on M. Similarly, the super-basal relation =
is expressed by the formula ¢,(C,D):

(Expsmall(C) & Expsmall(D) & C = D) Vv (Explarge(C) &
Explarge(D) & C eq D).

The relativized relations ~ x and ~; ¢ are then expressed by rela-
tivizing the formulas ¢, and ¢, to a predicate K in the obvious way.

Using the above results, we can provide a deeper analysis of the
various forms of acceptability. We limit our attention to the case of
invariant (as opposed to K-invariant) criteria.
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Theorem 17. Suppose that M is an infinite standard model.
Then:

(i) An (absolute) L-criterion ¢ is tenable on M iff Eg a is an
equivalence which subsumes the basal (resp. the super-basal) equiva-
lence on £(M);

(ii) An L-criterion ¢ is stable if, for each sufficiently large M,
E4, M is an equivalence that subsumes the basal equivalence on £(M);

(i) An absolute L-criterion ¢ is stable iff the corresponding
global relation Ey is an equivalence that subsumes equinumerosity
for all sets of sufficiently large cardinality;

(iii) An L-criterion ¢ is generally tenable iff Eg, » is an equivalence
that subsumes the relation =~ of bi-equinumerosity on £(M) for
each infinite model M;

(iii)" An absolute L-criterion ¢ is generally tenable iff the corre-
sponding global relation Eg,_ a is an equivalence that subsumes equi-
numerosity on £(M) for each infinite set M of urelements.

Proof. (i) Since ¢ is an L-criterion, Eg, u is invariant by Lemma
3.10. Now ¢ is tenable over M iff E4 » is an equivalence and non-
inflationary, by Corollary 4.2. But given that Eg as is invariant, it
follows from Theorem 6 above that it is a non-inflationary equiva-
lence iff it contains the basal relation on £(M).

The other results are proved similarly.

From (i) it follows that if the criterion & = &(C, D) is tenable on
M then the formula ¢, (C,D) — &(C, D) will be true in the standard
model M and, should ¢ be absolute, the formula &,(C,D) —
&(C, D) will also be true in M. But note that the criterion ¢,(C, D)
is not itself absolute.

There is a most refined (global) relation that is generally tenable. It
is defined, for sets Cand D of urelements, by:

C =, Diff (i) Cand D are both finite and C = D, or (ii) Cand D
are both infinite and card(C) = card(D).

This relation can be expressed by an absolute (indeed, by a restricted)
formula. For let Fin(C) be a restricted expression of finitude. Then
a2, can be expressed by the formula ¢, = &,(C, D):

(Fin(C) & Fin(D) & C = D) V (—Fin(C) & -Fin(D) & Ceq D).

Thus if we are to remain neutral about the size of the universe (apart
from its being infinite), then &, represents the best we can do using
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absolute means of expression. If we also insist on a ‘uniform mean-
ing from one domain to another, then it would appear to be equi-
numerosity, simpliciter; that represents the best we can do; and this
fact may go some way towards explaining the privileged role of
Hume’s Law in discussions of abstraction.

Our results can be extended to restricted theories of extensional
abstraction, i.e. theories of the form T®" where ¢ is the criterion
C=D.

Corollary 18. Suppose that T = T® ¥ is a restricted theory of exten-
sional abstraction, with s logical, and that M is an infinite standard §-
free model. Then some expansion of M is a model of T iff Ey, p is an
equivalence on Ey » and E, » contains only exponentially small
subsets of M.

Proof. Associated with the restricted principle @, = [{(C) & (D)
— (§C = §D «» C = D)] is the unrestricted principle ®": [§C = §D
< ((P(C) & P(D) & C=D) V (—h(C) & ~(D))). Thus in the
associated unrestricted principle, all concepts that fail to conform
to the given restriction are identified. It is then easy to show that
some expansion of M is a model for @y, iff ¢’ is tenable on M. By
Theorem 17(i) above, &' is tenable on M iff Ey, m is an equivalence
that subsumes the basal equivalence ~ on £(M). But Ey p is an
equivalence iff Ey, ) is an equivalence on Ey, p; and Eyy s subsumes
~ iff Ey, p contains only exponentially small subsets of M.

Thus the limits of extensional abstraction are set by concepts with
exponentially small extensions. When the domain M is countably
infinite, the exponentially small sets are, of course, the same as those
that are small in the usual sense of having a cardinality less than that of
the universe. But for larger domains M, the two notions may
diverge—some small sets in the usual sense may not be exponentially
small.

Similar results can be established for abstraction theories T® with
several abstraction operators. For example, in analogy to Theorem 17
(1), we have:

Corollary 19. If M is an infinite standard model and T® is a gen-
eralized abstraction theory, containing only logical abstraction prin-
ciples, then some §-expansion of M is a model for T® iff Ey, p is an
equivalence containing the basal equivalence on (M) for each of the
identity criteria & = &y
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Proof. We may show that some §-expansion of M is a model of the
generalized theory T® iff for each § € §, some §-expansion of M is a
model of the individual theory T® with & = &g The left-to-right
direction is trivial; and for the right-to-left direction, we may
simply ‘piece together’ all the component §-expansions to obtain
the §-expansion. The result then follows from Theorem 17(i).

It should be noted that there is no guarantee that the §-expansion
of M obtained under this corollary will be separated; for, in piecing
together the component §-expansions, different abstracts may be
identified. In the next section, we consider the possibilities for
obtaining separated models.

8. Hyperinflation

We build on the previous analysis of invariance to determine the
conditions under which there will be no hyperinflation among the
non-inflationary invariant principles. The analysis is then extended
to other forms of invariance.

By a cell is meant a non-empty collection of sets. A cell X is said
to be over a set M if each member of X is a subset of M. A cell X is
said to be strictly admissible in Mif it is over M and if it is a member of
P for some strictly acceptable equivalence = on #(M). Let Cys (or
simply C if M is understood) be the set of strictly admissible cells in
M; and let Eyy = {=: = is a strictly acceptable equivalence on
2(M)}. Our aim is to determine when card(C,;) and card(Ey;) are
< card(M).

For = an equivalence on #(M), let cdstr(~) = {cdstr(C, D):
C ~ D}.

Lemma 1. =~ and ~' are the same invariant equivalences on #( M) if
cdstr(~) = cdstr(~").

Proof. Assume that the condition holds; and suppose that C =~ D.
Then cdstr(C, D) € cdstr(~) and hence cdstr(C, D) € cdstr(~’). So
for some C’' and D', C' =’ D' and cdstr(C’, D’) = cdstr(C, D). But
then for some permutation p on M, p[C’] = C and p[D’] = D; and
so, by ~' invariant, C ~' D.

For each cardinal ¢, let cp(c) = card({d: d a cardinal < ¢}) ‘cp’
here stands for cardinality of predecessors and is meant to be remi-
niscent of ‘cf” for cofinality. The notion will play an important role in



The Analysis of Acceptability 157

our consideration of hyperinflation; and it is therefore of interest that
the related finitary notion plays an important role in Frege’s proof of
the infinity of the natural numbers.

Lemma 2. For m = card(M) transfinite:
(i) card(Ey) = 2P0,

(i) card(Cy) = max (m, 2°P0™),

Proof. We first show that card(Ey,) < 2¢p(m), By Lemma 1, cdstr is
a one-to-one map from the invariant equivalences on £(M) into sets
of quadruples of cardinals < m. But the number of such quadruples
is at most 2P and hence card(E,,) < 2P0,

We next show that card(Ey), card(Cy) > 2P™ . Given a set I' of
cardinals < m, define =r on #(M) by: C=r D iff card(C) and
card(D) both belong to I' or both fail to belong to I. Clearly, for
each I', =r is an invariant equivalence; and, clearly, it is non-infla-
tionary. The relation =r divides £(M) into two cells, one containing
all subsets of M of cardinality in I and the other containing all other
subsets of M. Thus for each I') Xy = {C C M: card(C) € I'} is a
strictly admissible cell. But card({I': T" a set of cardinals
< m} = 2 and for distinct I, the Xp are distinct. So card(Ey),
card(Cy) > 2°°™ This establishes (i) (and part of (ii) ).

We now show that card(Cy) > m. Define = on £(M) by: C ~; D
iff either C and D are singleton and the same or C and D are not
singleton. Clearly, ~; is invariant and non-inflationary; and so each
{{x}} for x € M is a strictly admissible cell. But there are m such cells.

We finally show that card(Cpy) < max(m, 2P(m) _Since each equi-
valence in Ejs induces a partition with at most m cells, card(Cyy) <
card(Ep).m = 2™ m — max(2°°™_ m). This establishes (ii).

We say that a cardinal ¢ is unsurpassable if 2% < c. The unsur-
passable cardinals are the counterpart in our general theory of
abstraction to the inaccessible cardinals of ZF. Ny is not unsurpassable
since cp(Rg) = Ny. On the other hand, given CH, 2P®D = 280 = X,
and hence N; will be unsurpassable.

From Lemma 2, we immediately obtain:

Theorem 3. For m = card(M) transfinite, the following three con-
ditions are equivalent:
(i) m is unsurpassable;
(ii) card(Epy) < m;
(iii) card(Cy) < m.
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Similar results can be proved using the notion of internal invariance
instead of invariance simpliciter. Recall that the internal car-
dinality distribution Icdstr(C, D) of two subsets C and D of M is
<card(D-C), card(CN D), card(C—- D) >. We use IEy; and ICy;
for the corresponding sets of the strictly I-acceptable equivalences
and of the strictly I-admissible cells that belong to their partitions.
Then clearly the previous upper bounds on card(Eys) and card(Cy)
still apply; and the lower bounds also apply given that the equivalences
that were used in the constructions were all I-invariant.

Call a §-model M replete (I-replete) if, for each invariant (resp. I-
invariant) non-inflationary equivalence =~ on ©(M) thereis a§ € §
such that =g is ~. From the theorem we immediately obtain:

Corollary 4. Let M be an infinite domain of urelements and let
m = card(M). Then the following conditions are equivalent:

(i) m is unsurpassable;
(ii) there is a replete and weakly separated model M with domain
M;
(iii) there is a replete and strictly separated model M with domain
M.

In the light of this result it is of interest to ascertain which
cardinals are unsurpassable. Note that cp(c) =c iff c=N; or
¢=N,. From this it follows that no cardinal ¢ for which ‘c = X; or
¢ = N/ is unsurpassable. But what of the other cardinals? There are
two extreme possibilities. One is that they are all unsurpassable; the
other is that none are. The first possibility is consistent with ZFC
since it follows from GCHj; and the second is consistent with ZFC by
a result of Foreman and Woodin (1991) according to which it is
consistent to assume that 2° is weakly inaccessible for each trans-
finite cardinal c as long as ZFC + the existence of a suitable super-
compact cardinal is consistent.

Relativized versions of these results, with elements from a given
subset K of M kept fixed, can also be proved. We say that a subset of
(M) is a K-cell if it is a member of P, for some K-invariant
equivalence ~ on M and that a K-cell is K-admissible if it is a member
of P for some K-acceptable equivalence ~ over M. The cardinality
distribution cdstrx (C, D) of C and D relative to K is taken to be the
sextuple (K;, K3, ¢, d, e, f), where K = CNK,K; = DNK, and
(¢, d, & f) = cdstr(CN (M-K), DN (M -K)) (relative to (M — K)
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as domain). The cdstrg (X) for X a K-cell is defined in the same way
as before. We then have, in analogy to Lemma 1, that K-invariant
equivalences with the same K-cardinality distributions will be the
same.

Let Car;x be the set of K-admissible cells over M and let Ey;x be
the set of non-inflationary K-invariant equivalences on £(M). Then
in analogy to Lemma 2 and Theorem 3, we have:

Theorem 5. For m = card(M) transfinite and K a subset of M of
cardinality k < m:

(i) card(Ep;x) = max(2%(, 22);

(i) card(Cppx) = max(m, 2P0™), 22,

Proof. Much as for Lemma 2. To show that card(Ew;x),
card(Cpx) > 22 we let =y, for each subset X of £(K), be the
relation deﬁned on £(K) by: Ce Xifft D e X.

Corollary 6. Suppose that m = card(M) is transfinite and K is a
subset of M of cardinality k < m. Then the following three condi-
tions are equivalent:

(i) max (270, 2%) < m;

(ii) card(Ey;x) < my;

(lll) card(CM;K) S m.

Proof. Straightforwardly from the theorem.

Where k is a cardinal < ¢, call a §-model M k-replete (internally k-
replete) if, for each K-invariant (resp. internally K-invariant) non-
inflationary equivalence =~ on (M), where K is a subset of M of
cardinality <k, there is a § € § for which =g is ~. In analogy to
Corollary 4, we have:

Corollary 7. For k a cardinal < m = card(M), there is a (internally)
k- replete and (weakly, strlctly) separated model M with domain M iff
29Pm) < m and m', 2% < m for each 1<k.

Note that, given GCH, the condition that m! < m will be auto-
matlcally satisfied when m is a successor cardinal and the condition
that 2% < m will be equivalent to the condition that (I")" < m.

We say that an equivalence = on (M) is relatively (I-) invariant i
it is (internally) K-invariant for some exponentially small subset K of
M; and we say that it is broadly (I-)acceptable (or (I-)acceptable,
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simpliciter) if it is non-inflationary and predominantly (I-)invariant.
There is, of course, no most refined broadly acceptable equivalence =;
since, for whichever exponentially small K ~ was K-acceptable, there
would be a more refined K" -acceptable equivalence for any proper
superset K™ of K. A cell is said to be broadly (I-)admissible (or
(I-)admissible, simpliciter) if it is induced by an (I-)acceptable equiva-
lence. Thus when k = exbd(m), each admissible cell will be represen-
ted by an abstract in the k-replete model M.

The I-admissible cells have the following interesting property:

Theorem 8. A cell on the infinite domain M is [-admissible iff it
is relatively I-invariant, i.e. stays the same under all internally K-
invariant permutations on M for some exponentially small subset K
of M.

Proof. Suppose first that the cell Xis internally K-admissible for Kan
exponentially small subset of M. Thus for some internally K-accepta-
ble equivalence ~ over M, Xis a member of the partition induced by ~.
For any subset Pof K, let Xp = {C C (M-K): CUP € X} and let =p
be the relation on M — K defined by: C =p Dit CU P~ DU P. For
any subsets Pand Q of K, define <= p ¢ on subsets Cand D of M— Kby:
CpoDift CUP~DUQ. It is readily verified that «<p ¢ is a
biequivalence and that the relation «<=1;p, ¢ of connection on the left
is coincident with ~p and that the relation <=g;p, ¢ of connection on
the right is coincident with ~,.

We establish the following facts (for Pand Q subsets of K):

(1) If C =p D, for Cvery different from D, then ~p is numeric on
card(C).

Proof. Tt is clear that the equivalence ~p is an I-invariant equiva-
lence over M — K. The result therefore follows from Corollary 7.13.

(2) If C <=p, o D, for Cvery different from D, then ~p is numeric
on card(C).

Proof. From Theorem 7.15.

(3) If Xp contains an exponentially large set C then it contains a
set D very different from C.

Proof. =p is a strictly I-acceptable equivalence over M — K. So by
Corollary 7.7, it is numeric on card(C). But then we may readily find
a D that is equinumerous with C and yet very different from C.
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(4) If X~ = U{Xp: P C K} contains an exponentially large set or
two sets that are very different, then each Xp is numeric, i.e. is closed
under equinumerosity.

Proof. If X~ contains an exponentially large set Cthen it follows from
(3) that it contains two sets that are very different; and so we need only
consider the one case in which X contains two sets C and D that are
very different. Take now any set Ein Xp for P C K. Then Eis either very
different from C or from D. Without loss of generality, assume the
former. If D € Xp, then the desired result follows from (1). If D € Xq,
for Q distinct from B then the desired result follows from (2).

We are now in a position to establish the direction from left to
right. By (4), we need only consider the following two cases:

(i) Each Xpisnumeric.Let X? = {C € X: CN K = P}. Then each
XPisinternally K-invariant;andso X = U{X": P C K}is K-invariant.

(if) X  contains only exponentially small sets and any two are
almost the same. We may show that the members of any of the two
non-empty sets Xp are the same. For suppose C € Xp and D € Xg,
with C#D. Then C <»p o D. Let d = card(C ~ D). Then by Theo-
rem 7.15, C=p E for any E for which E=4, C; and so, since
D=4. C,D € Xp.

We now distinguish two subcases. (a) X~ is the singleton {C}. But
then Xwill be K U Cinvariant, with K U C exponentially small. (b) X~
is not singleton. Given that X~ is a cell induced by any of the the ~p for
which Xp is non-empty, it follows from Theorem 7.12 that X~ will be
an equivalence class | C| wrt to one of the relations =4. But then, again,
Xwill be K U C invariant, with K U C exponentially small.

For the other direction, which is much more straightforward,
suppose that X is an internally K-invariant cell for some exponen-
tially small subset K of M. Define ~ on #(M) by: C = D iff Cand D
both belong or both fail to belong to X. Then it is clear that = is non-
inflationary and internally K-invariant.

An analogous result does not hold for strict admissibility. For when
C is exponentially small, {C} will in general be strictly I-admissible
and yet not I-invariant.

9. Internalized Proofs

For the purposes of the present section, we take ourselves to be
working within a particular abstraction theory T¢, with & §-free.
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We will suppose that the theory contains a well-ordering principle,
WO, which states that there is a well-ordering of the whole universe,
and an axiom of infinity, Inf, which states that there exists an order-
ing without any last element.

We show how the main negative results of sect. 7 can be formalized
within the resulting theory. This means that the results will have a
claim on any abstraction theorist who accepts the underlying second-
order logic and that they do not rest upon her adopting a ‘full’
Platonic stand on concepts.

Theorem 1. In any logical abstraction theory T® + WO + Inf,
Unstb(C) & Unstb(D) & (C beq D) — §C = §D is a theorem.

Proof. Let me briefly sketch how the proof of Theorem 7.6 may be
formalized within T® + WO + Inf. We need to establish appropriate
internal analogues of Lemmas 7.3 and 7.5. For simplicity, let us
concentrate on the case of bifurcators. We then need to show:

(1) If two bifurcatory concepts C and D are identified by &, with C
very different from both D and its complement, then all bifurcators
are identified; and

(2) If no two bifurcatory concepts C and D, with C very different
from both D and its complement, are ever identified, then there is
definable one-to-one correspondence taking the bifurcatory concepts
into objects.

The condition that the bifurcatory concepts C and D are very
different can be expressed as C — D or D — C being equinumerous
with C. We cannot say in the second-order language L* that there
exists a one-to-one correspondence between concepts and objects;
but we will be able to produce, on the basis of a proof, a formula
x(C, x) (containing parameters) with the properties of a one-to-one
correspondence.

To formalize the proofs of (1) and (2), we may use Lemma 3.7 to
obtain the ‘internalized’ counterpart to the claim that the relation
defined by ¢ is invariant. We then need to imitate the reasoning
about cardinals and the various constructions on sets, some of which
takes place outside the underlying domain M. This will require the
Schroeder-Bernstein Theorem in the form: if there is a one-to-one
correspondence from C into D and a one-to-one correspondence of
D into C, then there is a one-to-one correspondence of C onto D. The
theorem in this form can be proved along the lines of the proof in
Drake (1974: 49). For as we have seen, the fixed-point theorem can be



The Analysis of Acceptability 163

proved within L? (Theorem 3.2); and it is then an easy matter to
define the relevant “functions’ on concepts and to establish the rele-
vant properties. (Cf. Shapiro 1991: 102-3).

For some of the proofs, we will need Well-Ordering. Given this
assumption, the ordinals can be identified with the objects under
the posited well-ordering and the cardinals can be identified with the
surrogates for the initial orderings. It can be then be shown that
the objects falling under any concept can be put into one-to-one
correspondence with an initial segment of the ‘ordinals’ and hence
assigned a ‘cardinal’

To divide the objects falling under an infinite concept into two
equal-sized parts, we take advantage of the one-to-one correspon-
dence onto an initial segment of the ‘ordinals’ A definition by trans-
finite induction can then be used to divide the ordinals into two
equal-sized parts; and this then induces a corresponding division of
the objects.

The original proof of (2) requires that we take m copies of the
universe M. Clearly, this cannot be done in L?. But what we can do
instead is to set up a one-to-one correspondence from ‘pairs’ of
objects from the domain into the whole domain. Given Well-Order-
ing, there is no difficulty in defining such a correspondence. A ‘copy’
of M is then obtained by taking the objects that correspond to all the
pairs (xg,y) for a fixed xo.

Recall that ¢,(C,D) is the object-language version of the basal
equivalence /. An equivalent form of the result is:

Corollary 2. In any theory T® + WO + Inf, with logical &, the
formula ¢y(C, D) — &(C,D) is a theorem.

Let Bf (C) be the formula in L* which says that there is a one-to-one
correspondence between the objects that fall under C and those that
fail to fall under C. Since Bf (C) — Unstb(C) and Bf(C) & Bf(D) — C
beq D are theorems of L?, as a special case of the theorem we obtain:

Corollary 3. In any logical abstraction theory T® + WO + Inf, the
formula Bf(C) & Bf(D) — §B = §D is a theorem.

These results have consequences for restricted theories of exten-
sional abstraction. A natural response to the paradoxes is to restrict
the concepts that are capable of having an extension. Recall that,
when ¢ = {(C) is a formula containing C as its sole free variable,
T¥ = is the result of adding to L? the axiom:
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Exty - $(C) & $(D) — (§C =8§D < C=D).

We may now prove within the theory of restricted abstraction that
no unsuitable concepts can be subject to extensional abstraction:

Corollary 4. In any theory T% = + WO + Inf, with logical §s, s(C)
— Stb(C) (and hence (C) — —Bf(C)) is a theorem.

Proof. Let & = $(C, D) be the formula: (Y(C) & (D) & C = D)
V(—(C) & —(D)). By Corollary 2, we can prove the formula Unstbt
(C) & Unstbt(D) & C beq D — &(C, D) within T® +WO + Inf. But
the § of L® can be ‘defined’ within L* = by ‘identifying’ §C, for the C
that do not conform to s, with an arbitrary object from the domain
(which can always be ‘detached’ from the rest of the universe by means
of WO and Inf). Theorems of T® then translate into theorems of T% =;
and hence Unstb(C) & Unstb(D) & Cbeq D — &(C, D) can be proved
within T% = + WO + Inf. We can then prove {s(C) — Stb(C) within
T% = by transcribing the following informal proof:

Suppose there were an unsuitable C that conformed to 5. Choose a
D that is biequinumerous with but not coextensive with C. Now D is
unsuitable; and by the invariance of {, it also conforms to 5. But then
from Unstb(C) & Unstb(D) & C beq D — &(C, D), it follows that C
and D are coextensive. A contradiction.

The only property of {s required for the above proof is that it be
invariant. Hence if we add a third-order monadic predicate constant
S to the language LY, $(C) — Stb(C) can be proved in the theory with
the axioms: WO, Inf, S$(C) & S(D) — (§C =8§D «— C = D), and
(8(C) & C beq D) — S(D) as axioms. Thus whatever logical restric-
tion be imposed on the concepts subject to extensional abstraction, it
can be proved within the resulting theory that they must all be sui-
table; either their extensions or their counter-extensions must be
exponentially small.

The above results can be used to establish the inconsistency of a
large number of logical abstraction principles; for all that need be
shown is that the principles in question fail to identify unsuitable
concepts that are biequinumerous. They can therefore be regarded as
providing a highly general form of the paradoxical reasoning, though
subject to the limitation that the criterion of identity be logical and
that Well-Ordering and Infinity be assumed. It would be desirable to
produce versions of these results that did not depend upon these
assumptions.



IV

The General Theory of Abstraction

WE develop a general theory of abstraction, one that is intended to
account for the existence and behaviour of abstracts in general, and
not of any kind of abstract in particular. The material is in three
sections: first we outline the systems; then we look at their models;
and finally we show how they serve to provide a foundation for both
arithmetic and analysis.

1. The Systems

Since we want to talk about all equivalence relations on concepts, the
most natural framework for our theory is third-order rather than
second-order logic. Most of our previous definitions for second-
order logic will extend in the obvious way to third-order logic; but
to avoid confusion, we will use boldface to distinguish the third-
order terms from the others. Later it will be shown how a version of
the theory can be given within the framework of second-order logic.

The sole extra-logical primitive of our theory is the three-place
predicate Abstr, which applies to terms for an object, a concept, and a
relation, in that order. The predications formed from Abstr may be
written in the form t Abstrg C; and the intended reading is that tis an
abstract of C with respect to R. Note that in contrast to a functional
notation, such as §g(C), the predications formed from Abstr can be
used without any commitment to the existence of abstracts.

The following definitions will be useful (some have already been
given but are here restated in an appropriately modified form):

Unrelativized Abstraction: x Abstr C for IR(x Abstrg C);
R-Abstractable concepts: Abstrg(C) for Ix(x Abstrg C);
R-Abstracts: Abstrg(x) for AC(x Abstrg C);

Abstract: Ab(x) for FRIC(x Abstrg C);

Applicability: App(R) for VC(Abstrg (C));
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Invariance: Invar(R) for VP, C,D,C’,D’ [Perm(P) & R(C, D) &
vx, x' (Pxx’ — (Cx « CxX) & (Dx «< D’x’)) — R(C/,D)];

Internal Invariance: I-invar(R) for VP,C,D,C/,D'[1-1(P) & Vx
((x e Dm(P) <~ CxVDx) &R(C,D) & Vg, x'(Pxx’ — (Cx <«
C'x") & (Dx « D'’x)) — R(C,D)];

K-invariance: Invg(R) for VP,C,D,C’,D’ [Perm(P) & Vx
(Kx — Pxx) & R(C,D) & Vg, x'(Pxx’ — (Cx < C’x) & (Dx
— D'x")) — R(C/,D")].

Internal  K-invariance: I-invarg(R) for VP,C,D,C’,D’
[1-1(P) & Vx({(x ¢ Dm(P) + CxVDxVKx) & Vx (Kx — Pxx)
& R(C,D) & Vi, x'(Pxx’ — (Cx « CX) & (Dx <« D’x))
— R(C,D")];

Power: D powers C for JRVC'(C' C C — Jy(Dy & Vx (Rxy <
)

Modesty: Modest(C) for IDIE(D powers C & E powers D).

Predominant invariance: Prdinv(R) for JK(Expsmall(K) &
Modest(K) & Invg(R));

Predominant internal invariance: I-Prdinv(R) for IK (Expsmall(K)
& Most(K) & I-invg (R));

Non-inflationary: Noninfl(R) for FP[VCIxP(C,x) & VC,D,x
(P(C,x) & P(D,x) — R(C,D)].

Related notions may be defined in an analogous way; and their
formal definitions will not always be given.

A concept is abstractable when it yields an abstract; a third-order
relation is invariant when its extension remains the same under any
permutation; and a third-order relation (which we conceive as a
method for identitying concepts) is non-inflationary when the non-
identified concepts can be mapped one-to-one into objects.

Let me first give a formulation of the basic theory. I shall then
consider various ways in which it may be modified. There are three
axioms in all. The first gives necessary and sufficient conditions for
two abstracts to be the same:

Identity:  (xAbstrg C & y Abstrg D) — [x=y <~ (R(C,D)
& VE(R(C,E) « S(C,E)))].

Thus this axiom says that two abstracts, possibly associated with
different methods of abstraction R and S and different concepts C
and D, will be the same just in case each method identifies the two
concepts and each method identifies the same concepts with one of
the given concepts (given the second conjunct there is no need to
state S (C,D) since it follows from the first conjunct).
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The second axiom gives a sufficient condition for abstractions to
exist:

Existence: EqQ(R) & Inv(R) & Noninfl(R) — App(R).

Thus according to this axiom, any invariant and non-inflationary
equivalence is an applicable form of abstraction; it will yield abstracts
for each first-order concept.

None of the conditions in the antecedent can sensibly be dropped.
This is obvious for the first. If we drop the third, the requirement that
R be non-inflationary, then a contradiction can be proved in the
manner of Russell’s paradox by letting R be the relation of coexten-
siveness. If we drop the second conjunct, the requirement that R be
invariant, then a contradiction can be proved by a hyperversion of the
Russellian reasoning. For with each concept C we may associate a
non-inflationary equivalence = according to the condition that
D=¢ Eiff D=C < E= C. (This equivalence divides the uni-
verse of concepts into those that are coextensive with Cand those that
are not.) With respect to each such equivalence =, there will exist an
abstract ex(C) of C. We may define a concept C; by the condition that
Cx iff x is an object of the form ex(C) which does not fall under C.
Considering the question of whether or not ex(C;) falls under G then
allows us to derive a contradiction.

The third axiom states that either no concepts are abstractable
(with respect to a given method of abstraction) or all are:

Application: Abstrsg(C) —  Abstrsg(D).

The various axioms can be weakened or strengthened in various
respects. The identity axiom implies a necessary and sufficient con-
dition for an abstract x of one kind R to be the same as an abstract y of
another kind S; and this is that each method of abstraction associate
the same concepts with the two objects. It is important for the
deductive development of the theory that the condition be accepted
as necessary; if the associated concepts are distinct then the abstracts
themselves must be distinct. The requirement of sufficiency, however,
can be dropped; and the question of what might plausibly take its
place has been considered in sect. L.5.

The existence axiom only provides for the existence of invariant
methods of abstraction. It would be desirable to extend it to various
non-invariant methods even though, on pain of contradiction, we
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cannot admit them all. Qur earlier results on K-invariance suggest a
natural way in which this might be done:

Broad Existence: Eq(R) & Prdinv(R) & Noninfl(R) — App(R).

Under a generative conception of abstraction, we would want to
replace the existence axiom by the weaker principle:

Internal Existence: EqQ(R) & I-inv(R) & Noninfl(R) — App(R).
Similarly, the axiom of broad existence might be replaced with:

Broad Internal Existence: EqQ(R) & I-Prdinv(R) & Noninfl(R) —
App(R).

We might also insist that all methods of abstraction are to be
predominantly invariant. Assuming internality, the required axiom
would then take the form:

Exclusivity: App(R) — I-Prdinv(R).

Using this axiom, the arrow in the preceding existence axiom can
then be reversed.

A principle of minimality might also be adopted. In the light of
the discussion at the end of sect. II1.5, this could be stated in the
form:

Minimality:  —3D{3x-Dx & Vx (I(x) — Dx) & VC C D,x,R
[x AbstrgC — Jy[Dy & VC C D (y AbstrC « x AbstryC)]}.

In the present context, we may however, state the axiom in a
stronger form. Let us note, in this regard, that the definitions of
being exponentially small and the like can be relatived to a subdo-
main, as given by a concept D. We use ExpsmallP(C) and the like for
these relativized notions. We define the relativized notions of
K-acceptability, acceptability, and strict acceptability by:

K—AccP(R) for [Eq(R) & Non-inflationary®(R) & (K C D) &
VBl,Bz, Cl,Cz,P(I*I(P) & Vx (KX — PXX) & R(Bl,Bz) & B1 —Pp
C &B,—p G — R(C, G

AccP(R) for IK(Expsmall”(K) & Modest® (K) & K — AccP(R));

S—AccP(R) for FIK(Vx—Kx & K—AccP(R)).

Then the alternative formulation is:
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Strong Minimality: ~3D{3x-Dx & Vx(I(x) — Dx) & IxJy (x#y)
& VC C D,x,R(AccP’(R) & x AbstrgC — Jy[Dy & VCCD
(y AbstrC «— x AbstryC)].

Thus closure is here required only with respect to the means of
abstraction that are acceptable within the given subdomain. In case
only logical definitions of the abstracts are allowed, the axiom should
take the same form but with AccP(R) replaced by S—AccP(R).

The Application axiom is rather strong and might be weakened by
allowing restricted methods of abstraction, i.e. ones that are only
defined on the concepts in the field of their relation. The principle
should then take the form:

Weak Application: (Abstrg (C) & C € FId(R)) — ¥YD(D €Fld(R) —
Abstrg (D).

The existence axiom must also then be modified so as to allow for the
existence of restricted methods of abstraction. However, there is no
great disadvantage in working with the tighter principle. For any
restricted or partially defined method of abstraction can be identified
with an unrestricted method that identifies all the unabstractable
concepts with one of the abstractable concepts.

The original application axiom or its variants are not really essen-
tial for the intended deductive development of the system, although
they do make it simpler.

We turn to the second-order formulation of the theory. This uses
schemes in place of universal principles. The primitive non-logical
predications of the theory now take the form t Abstrc, p) ¢ E, where t
is an object term, C and D are distinct concept variables, ¢ is a
formula, and E is a concept term. In the resulting formula, the
variables C and D are taken to be bound.

The intuitive meaning of the formula t Abstr|c 4 E is given by t
Abstrg E, where R is the relation (AC, D)d. However, in the formula t
Abstrc pjp E, we treat the complex [C,D]db as a part of the whole
notation and not as a meaningful constituent in its own right. Thus
the only second-order relations we can talk about are those that can
be specified by a formula (with or without parameters).

The axioms are the same as before but with R now taken to be
a complex of the form [C,D]d. Thus whereas the axioms, under
the previous formulation, could be taken to be single sentences
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universally quantified by a third-order variable R, they must now be
taken to be schemes.

The retrenchment from the third- to the second-order formulation
involves some complications. First, the application R[E,F] of R to the
concept terms E and F must now be understood as the simultaneous
substitution of E and F for C and D in ¢. Second, the original
definition of Noninfl(R) cannot be used since it is third order.
Instead of existentially quantifying over the third-order correlation
P between concepts and objects, we may suppose that P is specified
by a formula (possibly with parameters). Third, the Minimality
Axiom, which involves an inelimable reference to third-order rela-
tions, must be dropped. It is not clear which second-order axioms, if
any, should be put in its place.

Let us denote the basic third-order theory, consisting of the axioms
Identity, Broad Internal Existence, and Application, by GA; and let us
denote the result of adding Exclusivity and Strong Minimality to GA
by GA'. We use GA? for the second-order counterpart of GA; and we
use SGA and SGA? for the systems that result from replacing the
broad existence axiom in GA and GA?, respectively, by its normal
invariant form. For many purposes, the differences between the
systems will not matter; and, in particular, the derivation of arith-
metic and analysis given in sect. 3 can be carried out equally well in
GA™ and in SGA®.

It follows from theorem III. 8.7 that GA will have a standard model
of cardinality ¢ just in case ¢ is an unsurpassable cardinal. Since N is
surpassable, it will not have a standard model of cardinality X,. But
given CH, it will have a standard model of cardinality X;; and so from
the consistency of CH will follow the consistency of GA. In the next
section, we shall construct some natural models for GA on any
domain of an unsurpassable cardinality and thereby show that the
various additional axioms can also be satisfied.

We state the following elementary results:

Lemma 1. The following are theorems of GA (and GA?):
(i) x AbstrgC & y AbstrgkD — (x=y « R(C,D));
(ii) 3C(Abstrsg(C)) — Eq(R);
(iii) x AbstrrC — (R(C,D) < x AbstrgD);
(iv) Abstrp(x) & Abstrg(y) — [x=y <« VE(x AbstigE <
y AbstrsE);
Proof. The proofs are stated informally but are readily formalized.
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(i) Let R and S in Identity be the same. The second conjunct on
the right is then trivially satisfied.

(i) Given 3C (Abstrg (C)), it follows by Application that App(R).
Now to prove Sym(R), suppose R(C, D). By App(R), x Abstrg C and
y Abstrg D for some x and y. By (i) and the fact that R(C,D), x =y.
But then by another application of (i), R(D, C). Trans(R) and Refl(R)
are proved similarly. (Note that the assumption of App(R) is essential
to the proof; for there is no need for inapplicable relations to be
equivalence relations.)

(iii) For the left to right direction, assume x Abstrg C and R(C, D).
It then follows by Application that y Abstrg D for some y. Butx =y
by (i); and hence x Abstrg D.

For the right to left direction, use (i).

(iv) We may write the antecedent in the form x Abstrg C & y Abstrg
D. Assume its truth in this form. Then by (iii), the final consequent of
(iv) is equivalent to VE(R(C,E) <« S(D,E)). Hence given Identity,
it suffices to show the equivalence of VE(R(C,E) < S(D,E)) to
R(C,D) & VE(R(C,E) <« S(C,E))). Assume the first formula.
Now S(D, D) by (ii); and so R(C, D). Also R(C, C), by (ii) again;
and so S(D,C). But then by transitivity, S(C,E) < S(D, E); and so
VE(R(C,E) < S(C,E)). Now assume the second formula. We obtain
S(C, D) by instantiation and $(D, C), from this, by Symmetry. But
then S(D, E) <~ S(C, E) and hence VE(R(C,E) « S(D,E)).

The principle under (i) provides a criterion for intra-sortal iden-
tity while the principle under (iv) provides a criterion for cross-sortal
identity, stated directly in terms of abstraction and not the under-
lying relation. These two principles are combined together in our
original Identity Axiom.

Suppose that we were to use §gC to designate the abstract of C with
respect to the equivalence relation R. Then the abstraction principle
for R-abstracts could be stated in the categorical form:

§rC =§&KD < R(C,D).

From this principle, within a standard logical system, the existence of
the R-abstract §gC of each concept C would then follow. The
principle under (i) is a kind of conditional version of the categorical
principle in its categorical form. It states that if there are R-abstracts
of C and D, then they will behave in accord with that principle. The
existential implications of the categorical principle have led many
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authors to doubt its analyticity. But the principle in its conditional
form is free of any such implications and hence has a much better
claim to be considered analytic.

It is of interest to consider the theory that results from combining
the general theory of abstraction with ZF. This is the theory that
might be adopted by someone who believed both in sets (as given
by the cumulative hieararchy) and in abstracts. Let us assume a
standard formulation of third-order ZFI (with Choice). There will
be a special predicate I for the individuals, but it will not be as-
sumed that the individuals constitute a set. On this is then imposed
the third-order theory GA (or a variant thereof). Let us call the result
ZFA.

Given the existence of an inaccessible cardinal ¢ and of a greater
unsurpassable cardinal ¢;, it may be shown that the theory ZFA has a
‘standard’ model. For we may let the domain I of individuals be of
cardinality ¢;; and over this domain we may construct a cumulative
hierarchy U, of sets, for & < ¢y, by requiring the sets generated at
each stage to be of cardinality less than ¢;. Over the resulting domain
U of individuals and sets, we may then construct a standard model of
GA.

In this model, the size of I'is greater than that of U. It can actually
be proved within ZFA that this must hold, i.e. that the abstracts must
outnumber the pure sets. This result is of some philosophical sig-
nificance since it shows that it is impossible for our proponent of sets
and abstracts to identify the abstracts, in any reasonable manner, with
the sets.

Let us use Pset(x) to mean that x is a pure set (one whose transitive
closure contains no urelements). We then have:

Theorem 2. Within the theory ZFA, the formula:
- (FR)Y(1-1(R) & Vx(Ab(x) — x € Dm(R)) & Vy(y € Rg(R) —
PSet(y)))

is a theorem.

Proof. We sketch an informal version of the proof. Given a non-
empty concept C of (ZF) cardinals we may form the sequence s¢ of its
members in increasing order of magnitude. (s¢ in general will, of
course, not be a set but a concept or class. It could, for example, be
represented by a one-to-one relation from ordinals to cardinals.) We
may then order such concepts by the rule:
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C < D iff either (i) C and D are coextensive, or (ii) s¢ is of smaller
length than sp, or (iii) they are of the same length and, at the first
point at which they differ, the value of s¢ is smaller than the value
of SD-

It is readily shown that < is a transitive and connected relation and
that the corresponding strict relation < is well-founded. (Note that to
express that < is well-founded we need to go to the third order.)

With each non-empty concept of cardinals C we may associate the
equivalence relation =¢ on concepts, where:

D= E iff D and E both constitute sets of a cardinal
that falls under C or both fail to constitute sets of a cardinal that
falls under C.

With respect to each such equivalence relation =¢, we may associate
the abstract x¢ of a concept D whose extension is of a cardinal that
falls under C. (The abstract is the same whichever concept D we
choose). When C < D, the concepts C and D will be distinct and
hence so will the associated abstracts x¢ and xp.

Suppose, for reductio, that there is a one-to-one map from ab-
stracts to pure sets. Then, in particular, there is a one-to-one map
from the abstracts x¢ to the pure sets (call these sets the surrogates).
The well-founded ordering < on the concepts C therefore induces a
well-founded ordering <5 on the surrogates.

Now this ordering <5 can be used to construct a one-to-one map
from surrogates to ordinals. For we may reorder the surrogates
according to the rule:

x <y iff either rank (x) < rank(y) or rank(x) = rank(y) and x
<sV.

Each surrogate y will then be preceded by a set of surrogates
according to this ordering; and so the resulting ordering will induce
a one-to-one map from surrogates to ordinals.

We may therefore obtain a corresponding one-to-one map from
surrogates to cardinals. But since surrogates are associated with
concepts of cardinals, we have a one-to-one map from concepts of
cardinals to cardinals; and the reasoning of Russell’s paradox may be
applied to obtain a contradiction.

There is another, rather different, way in which the theory GA
might be related to set theory; for, as mentioned in sect. 1.4, the
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abstracts themselves might be regarded as classes (or extensions) of
concepts. Thus given an abstract x, we may take C € x to hold just in
case JR(x AbstrgC). Given the Identity Axiom, we may then estab-
lish:

Extensionality: Vx,y(VC(C e x < Cey) — x=7y);

and by formalizing the proof of the easy direction of Theorem III. 8.8
we may also establish:

Comprehension: I-Prdinv(E) — JIxVC(C e x < E(Q)),

where predominant invariance for a second-level concept E is defined
in the obvious way.

Similarly, within the strict theory SGA, we may show:
Strict Comprehension: I-inv(E) — 3xVC(C € x < E(C));

and within the corresponding schematic formulations of GA and
SGA, we may show:

Schematic Comprehension: I-Prdinv($s(C)) — IxVC(C € x «—
U(O));

Strict Schematic Comprehension: I-inv({(C)) — IxVC(C ex
< P(O)).

On the other hand, the predicate € could itself be taken as a
primitive and Extensionality, and along with one of the forms of
Comprehension, be adopted as axioms. Let us use STE?* (theory of
extensions) for the weak second-order theory consisting of Exten-
sionality and Strict Schematic Comprehension; and let us use TE for
the strong third-order theory consisting of Extensionality and Com-
prehension in its broad third-order formulation.

It is natural to extend the resulting theories to allow for classes of
objects as well of concepts. Comprehension would then take the form:

[-Prdinv({s(z)) — IxVz(z € x «— P(2)).

However, such an extension would not significantly increase the
power of the theory, since objects could always be identified with
their singleton concepts and the corresponding form of comprehen-
sion on sets of concepts be used in place of a given instance of
comprehension on sets of objects.

Within the strong theory TE, one might define what it is for a
relation R on concepts to be broadly I-acceptable. By formalizing the
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proof of the hard direction of Theorem III. 8.8 (using the appropriate
form of the axiom of choice), one could then prove within the theory
itself:

(VR)(R is broadly I-acceptable — (VO)(Iy)VD(D ey <
R(C,D));

and similarly for the schematic versions of the theory.

By adding an appropropriate form of the axiom of choice, it
should also be possible to establish the ‘equivalence’ (or, more
exactly, the mutual interpretability) between different versions of
the theory of classes and corresponding versions of the theory of
abstraction. But this is not a matter that we shall investigate.

2. Semantics

We give what might plausibly be regarded as the standard models for
our general theory of abstraction. We concentrate on the case in
which individuals are allowed in the definition of the methods of
abstraction, although we shall also consider the case in which indi-
viduals are not allowed. In either case, the models are constructed
according to the generative standpoint described in sect. 1.2. Thus
starting off with a given class I of individuals, each construction yields
a cumulative sequence of domains (denoted respectively by Uy o and
V1,«); and the intended model (either U; or V;) is given by a fixed
point of the construction.

We collect together some results on cardinals, which will later be of
use. On unsurpassables, we have:

Lemma 1. (i) If u is unsurpassable, then so is 2P,

(if) If u is the smallest unsurpassable cardinal greater than a
surpassable cardinal c, then 2P™ = u.

Proof. For the purposes of the proof, let us use u* for 2°?™,

(i) Given that uis unsurpassable, u* < u; so cp(u*) < cp(u); and
$0 2P < (W) — ypx,

(ii) Ifu* < ¢, then 2°P© < 2P — w* < ¢; and so ¢ is unsurpass-
able, contrary to supposition. So u* > ¢. But then u* = u, since
otherwise u*, by (i), will be a smaller unsurpassable than u that is
greater than c.

We call an unsurpassable u steady if u* = u. Let us note that, under
the assumption of GCH, the steady unsurpassables are exactly the
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successors of the regular limit cardinals. Thus the first is N; and the
next (if it exists) is the successor of the least inaccessible.
On steady unsurpassables, we have:

Lemma 2. (i) No successor u' of a steady cardinal u is steady;
(if) no limit cardinal u is steady;
(iii) for any steady unsurpassable u,
cp(u) < exbd(u) < u.
Proof. (i) cp(u) = cp(u™); and hence 2°P®@") = 2°W — y < yt.
(ii) Suppose u is steady limit cardinal. Then:
uf ™ < P since for limit cardinals cf (n) < cp(u),
= (2PWYPW ince u is steady,
= pep(u)ep(u), by cardinal arithmetic,
— ocplu)
=u
But u™ > u by cardinal arithmetic. A contradiction.
(iii) cp(u) is exponentially small (relative to u) — for
P = (2PW)PW — 2w — y: and so cp(u) < exbd(u). By
(ii), u is a successor cardinal; and so if exbd(u) = u, u itself must be
exponentially small. But this contradicts Cantor’s theorem.

Given a cardinal ¢, we let u; (or u/c) be the smallest unsurpassable
greater than or equal to ¢ (assuming that such a cardinal exists). Thus
ug is the smallest unsurpassable cardinal and hence, by Lemma 1 (ii),
is steady.

If u, exists, it may be constructed ‘from below’ in a natural manner.
For each ordinal &, define the cardinals u. ¢ by:

(i) Ug o =G
(ii) ue oi1 = max(uc,a,zq’(“w)); and

(111) Ue, N = lim§< AUg -

It is clear that u. ; < u. for each & Moreover, u. < u. p for any
o < B. On the assumption that u, exists, there will therefore be an
o < uc for which ue o = U a1 = Uc. Aslong as ¢ is not an unsteady
unsurpassable cardinal, we will always have 2t > U, o and
hence clause (ii) can be written in the simpler form:

(11)/ U, a+1 = 2P a),

We conclude with a result on exponential smallness. Say that a
cardinal p is exponential if it is of the form 29 for some q. If k is
exponentially small relative to m, i.e. if mX < m, then k may not



The General Theory of Abstraction 177

be exponentially small relative to a greater cardinal p. However, this
result will hold in case p is exponential:

Lemma 3. If m* < m, then p* < p for p an exponential cardinal
> m.

Proof. The result is evident in case m is finite or m = p. So let us
assume that m is infinite and that p =29 > m. Now q > k. For
assume otherwise, i.e. k > q. Then m > mk > 2k > 24 = p> con-
trary to assumption. But then pX = )k =20k = 29 = p.

We now embark on the construction of the domain of the intended
model. This proceeds by adding an abstract to a given domain if it
can be produced by applying an acceptable means of abstraction to a
concept that is defined over the given domain. In our account
of acceptability, we need to modify the condition of being non-
inflationary slightly in order to anticipate the possibility that the
domain will contain two objects even if it does not already. Accord-
ingly, let us say that an equivalence ~ on £(M) is non-inflating if
card(P~) < max{2,card(M)}. Thus it is only in case card(M) < 2
that there can be non-inflating equivalences that are not also non-
inflationary. We now say that the equivalence relation ~ on #(M) is
K- acceptable if ~ is non-inflating and internally K-invariant for Ka
modest and exponentially small subset of M, that it is (broadly)
acceptable if it is K-acceptable for some K, and that it is strictly
acceptable if it is ¢-acceptable. The strictly acceptable equivalences
correspond to those acceptable means of abstraction that can be given
a purely logical definition. (For card(M) < 1, the definitions differ
slightly from those previously given; and since we are only interested
in internal invariance, we have dropped the I-suffix.)

We shall identify abstracts with cells. However, it will be important
to indicate the domain from which the cell originated. Accordingly,
we take an indexed cell to be an ordered pair < X, M > for X a non-
empty subset of #(M). An indexed cell <X, M > can be legitimately
introduced on the basis of the domain M in the following ways: it is
K-admissable if X is induced by some K-acceptable equivalence ~ on
2(M); it is broadly admissible (or admissible, simpliciter) if it is K-
admissible for some subset Kof M; and it is (strictly) admissible if it is
¢- admissible. It should be noted that, by Theorem III. 8.8, the
admissible cells <X, M > may be characterized, without reference
to an underlying equivalence, as those for which X is predominantly
[-invariant.
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There is, however, a difficulty in representing an abstract x by
means of an indexed cell <X, M >. For under an expansion M of
the domain, the abstract x might be associated with further concepts
from ©(M™). We therefore need a method for determining which
concepts will be associated with the cell on the basis of the concepts
that are already associated with it.

One obvious solution to this problem is to represent an abstract,
not by a single cell, but by a sequence of cells, one for each of the
expansions of the original domain. However, the details of this
approach are extremely messy; and we prefer instead to fix upon a
canonical way in which a cell can grow from one domain to another.
The cell is taken to contain the ‘seed’ from which its subsequent
growth is determined. We describe one natural way in which this can
be done—though there are other possibilities, all giving rise to the
same end-result, that might also be considered.

Suppose that M is a superset of M. Then given an equivalence ~
on (M), we call ~' an expansion of ~ from M to M if it is an
equivalence on £(M ™) that coincides with & on £(M); and given an
indexed cell < X, M >, we say that the indexed cell <X, M" > is an
expansion of <X, M> if XT D X and both X™ and X agree on
subsets of M. The cell <X, M™ > is said to be a K-legitimate expan-
sion of <X, M > if X is induced by some K-acceptable equivalence ~
on #(M) and X is induced by some K-acceptable expansion ~' of &
on P(M™). The expansion < X, M > is broadly legitimate (or legitim-
ate, simpliciter) if it is K-legitimate for some K; and it is strictly
legitimate if it is d-legitimate.

The legitimate expansions of a cell correspond to the different
possible ways the abstract represented by the cell could behave in
an extended domain. Given a set C (corresponding to a given con-
cept), we must now somehow determine whether C should be asso-
ciated with the cell <X, M >—or, as we shall put it, whether the
cell admits the set—on the basis of the legitimate expansions
<X*,M™> of the cell. We make two decisions in this regard: we
look only at the expansions of the form <X",MU C>; and
we require that the set C should belong to every such expansion.
Thus we say that <X, M > K-admits the set Cif (a) there is a K-
legitimate expansion of <X, M > of the form <X",M U C> and
(b) Ce X' for any K-legitimate expansion of the form
< X", M U C>; and similarly for the definitions of broad and strict
admittance.
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We are able to give an intrinsic characterization of admittance. But
first we need some results on the expansions of equivalences.

Lemma 4. Suppose that = is a K-acceptable equivalence on £(M)
for Kan exponentially small subset of M; and let N be a superset of M.
There is then a K-legitimate expansion ~' of ~ to N as long as M is
finite or N is of the same cardinality as M or N is of exponential
cardinality.

Proof. We distinguish between the finite and infinite case:

(i) M finite. Then K is empty and ~ is strictly invariant. So it
follows from Theorem III. 7.14 that & is a numeric equivalence (with
associated equivalence &, on the cardinals). Let us define ~’ on
subsets of N by:

C =’ Diff card(C) =~y card(D).

Then it is readily verified that &’ is non-inflationary, internally
invariant, and an expansion of ~.

(ii) M infinite. Set m = card(M), and define ~’ on subsets Cand D
of N by:

C =' D iff either Icdstrg(C, D) € Iedstrg( =~ )

or ledstrg (C, C), Iedstrg (D, D) & Tedstrg( = ).

Note that the condition Icdstrg (C, C) € Iedstri( /) is satisfied just
in case card(C) < m.

It is readily verified that &' is internally K-invariant. We show that
~'is an equivalence. It is clearly reflexive and symmetric. In order to
establish transitivity, suppose that C ~' Dand D =’ E. Ifany of C, D,
or E have cardinality > m, then they all do; and so it is clear that
C =’ E. So suppose that they all have cardinality < m. By thinning
out members of M from C, D, and E, we may find sets C’, D/,
and E’ for which M — (C'UD'UE’) is of cardinality m and
yetledstrg (C', D) = Iedstrg(C, D), Iedstrg (D', E') = Iedstrg (D, E)
and Icdstrg (C', E') = Iedstrg(C, E). By the K-invariance of =, C' &
D’and D' ~' E'.Let B= (C' U D' U E’) — M. Choose a subset B* of

-~ (C'"UD'UE'UK) of the same cardinality as B; and let
C*=(C' - B)UB*,D* = (D' — B)U B*, and E* = (E' - B) U B*.
It is readily verified that Iedstrg(C’, D) = Iedstrg (C*, D*), Iedstrg
(D', E") = ledstrg(D*, E*), and lcdstrg(C’, E') = Iedstrg (C*, E*).
But then C* =~ D*,D* =~ E*. Hence C* =~ E* by the transitivity
of ~; so C' ’E’ by the definition of ~’; and so C ~’ E by the
K-invariance of =/,
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To show that =’ is non-inflationary it suffices, by Corollary IIL
7.16, to show that it contains the equivalence ~1, ¢ as defined on N.
So suppose C ~ g D, where C and D are exponentially large in N
and of the same cardinality p. There are two cases. (i) p > m. Then
C =’ D by the definition of =’. (ii) p < m. By Lemma 3 above, p is
exponentially large relative to card (M); and so ~ will relate any
two subsets of M of cardinality p. But then we may readily find
subsets C’ and D' of M of cardinality p for which Iedstrg (C/, D)
= ledstrg(C, D); and so C' =' D',

It should be noted that the expansion &' is defined differently for
the finite and for the infinite case. Neither definition will work for
the other case. Suppose, for example, that we apply the definition
for the infinite case to the finite case. Take a domain M with three
elements x, y z, and an acceptable equivalence ~ that relates any two
membered subsets of M. Then ~’ will not even be an equivalence on
any proper superset N of M. For take an element w in N but not in
M. We will then have {x, y} =’ {y, z} and {y, z} =’ {z, w}, but not
{x, y} =" {z, w}.

Let us use &, and ~, respectively, for the expansion ~' as defined
in the finite and in the infinite case, but not restricted to any
particular domain. Thus for any sets C and D:

C =, Diff card(C) =~y card(D); and
C =g D iff either Icdstrg(C, D) € ledstrg( = ) or Iedstrg(C, C),
Iedstrg(D, D) & Iedstrg( = ).

We now characterize admittance, dealing first with the finite and
then with the infinite case:

Lemma 5. For M finite, ~ an acceptable equivalence on #(M), X a
cell induced by =, and B € X, the following conditions are equiva-
lent:

(i) <X, M > admits C;

(i) C~, B;

(iii) card(C) = card(D) for some D € X.

Proof. (i) implies (ii). Suppose <X, M > admits C. Then some
acceptable equivalence on £(M) induces the cell X. By the proof of
Lemma 4, the restriction of ~. to N =M U C is an acceptable
equivalence on #(N). But then, by the definition of admittance,
C~, B
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(ii) implies (iii). Suppose C =~ B. Then for some subsets D and E
of M, D~ E with card(C) = card(D) and card(B) = card(E). By
Theorem III. 7.14, the equivalence ~ is numeric; and so E =~ B. Given
Da~Eand D~ B,D~ B;and so D € X.

(iii) implies (i). Suppose card(C) = card(D) for some D in X. Then
card(C) is finite and hence so is N = M U C. By Lemma 4, there is an
acceptable expansion of = to #(N). Take now any acceptable expan-
sion ~’ of &~ to £(N). By Theorem IIL.7.14, ~' is numeric; and so
D~ C.

Lemma 6. For M infinite, ~ a K-acceptable equivalence on
P(M), X a cell induced by =, and B € X, the following conditions
are equivalent:

(i) <X, M > K-admits C;

(ii) C =g B (i.e. Icdstrg (G, B) € Iedstrg( = ));

(iii) Iedstrg(C, B) € Iedstrg(X).

Proof. (i) — (ii). Suppose <X, M > K-admits C. Then some K-
acceptable equivalence ~’ on #(N), for N=MUC, induces
an expansion <Y, N> of <X, M > that contains C. Now card(C)
< card(M). For suppose card(C) = n > card(M), and define a new
equivalence on #(N) by:

~" E iff either card(D) = card(E) = n or card(D), card(E) # n
and D ~' E.

Then it is readily verified that ~" is K-acceptable and that it induces
an expansion <Y, N > of < X, M > that does not contain C.

Now since card(N) = card(M), it follows by the proof of Lemma 4
and the definition of K-admittance that the restriction & * of ~g to
#(N) is K-acceptable. But then C =~ *B; and hence C ~g B.

(i) — (iii). Suppose C =g B, i.e. ledstrg(C, B) = 7 = ledstrg
(E, F) for some E and F for which E = F. If B is exponentially large
(in M) then, by Corollary II1.7.16, we may ‘thin’ Band thereby obtain
a B for which B ~ B, lcdstrg(C, B’) = tand M — (B’ UK) is large
(in the non-exponential sense). Clearly it then suffices to prove the
result by setting B = B'. If B is small, then M — (BUK) is already
large. So in either case, we may assume that M — (BU K) is large.

Given that Icdstrg (C, B) = 7, we can now find a subset C’ of M for
which Icdstrg(C’, B) = Icdstrg(C,B) = 1. So C’ & B; and hence
[cdstrg (C, B) € Iedstrg(X).

(iii) — (ii). Trivial.
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(ii) — (i). Suppose that Icdstrg(C, B) € ledstrg( =), le.
Icdstrg(C, B) = Icdstrg(E, F) for E ~ F. Given that <X, M > is
K-admissable, there is a K-acceptable equivalence ~ on #(M)
that induces X. Given that Icdstrg(C, B) € Icdstrg( = ), card(C) <
card(M). So card(N) = card(M) (for N=M U C). But then, by
Lemma 4, the restriction of &g to Nis a K-legitimate expansion of ~.
Take now any K-legitimate expansion ~' of = on §(N). Since E ~ F,
E =’ F; and since Icdstrg(C, B) = Icdstrg(E, F), C =’ B. But then
CelBl. 2 X.

What < X, M > broadly or strictly admits can depend upon M. For
suppose that X = {{x}}, M, is any finite set containing the doubleton
{x, y}, and M; is any infinite set containing {x, y}. Then <X, M; >
admits any singleton subset of M; while <X, M; > admits only the
set {x} itself. However, note that condition (ii) (or condition (iii) ) in
both Lemmas 5 and 6 makes no reference to M. This means that it is
only the status of M as finite or infinite that can make a difference to
what <X, M > admits. We call <X, M > finitary if M if finite and
infinitary otherwise.

Given the two lemmas, we may prove:

Lemma 7. Suppose that the cell <X, M > is admissible. Then:

(1) If it admits C, it L-admits C for any L for which <X, M > is L-
admissible;
(ii) It admits a subset C of M iff C € X.

Proof. (i) There are two cases:

(a) M finite. The result is then trivial since only ¢ is exponen-
tially small.

(b) M infinite. Suppose that < X, M > admits C, i.e. K-admits C
for K exponentially small. So <X, M > is K-admissible and, by
Lemma 6 (iii), T = Icdstrg(C, B) € Icdstrg(X) for some Bin X. We
may suppose that M — B is large. For assume otherwise. Then B is
large; and so, by Corollary II1.7.16, X must contain any set B’ that is
equinumerous with B and agrees with B on K. But then, given that K
is small, we may, by appropriate ‘thinning’ of B, find a B’ in X for
which M — B’ is large and Icdstrg(C, B) = ledstrg (C, B).

Let D= C - M. Note that in order for 7 € lcdstrg(X) we
must have card(D) < card(M). We distinguish two subcases. (1)
card(C — (BUD)) > card(D). We then let C'=C-D. (2)
card(C — (BU D)) < card(D). We then pick a subset of D’ of



The General Theory of Abstraction 183

M - (BUKUL)ofthesamesizeas Dandlet C' = (C - D)UD’. It
is then readily ascertained, in either case, that Icdstrgyur(C’, B)
= Iedstrg;(C, B). Since Icdstrg(C’, B) = 7€ X, C’ € X; and since
Ledstr (C', B) = Iedstr(C, B), X L-admits C by Lemma 6.

(ii) Again there are two cases:

(a) M finite. Given that <X, M > admits a subset C of M,
card(C) = card(B) for some B € X by Lemma 5. So since any accept-
able equivalence on ©£(M) must be numeric, C € X. Now suppose
that C € X. Then trivially Cis of the same cardinality as some set in
X; and so again by Lemma 5, < X, M > admits C.

(b) M infinite. Assume that <X, M > is admissible. Then, for
some Kexponentially small in M and some K-acceptable equivalence
~on (M), X € P.. Suppose now that < X, M > admits the subset C
of M. Then, for some sets D, E, Fin X, lcdstrg(C, D) = ledstrg (E, F).
So D = E &~ F; and, by = internally K-invariant, C =~ D. But then
C € X. Next suppose that C € X. Then Icdstrg (C, C) € Ledstrg(X);
and hence X admits Cin M.

Two indexed cells < X, M > and <Y, N > are said to be indistin-
guishable if they admit the same subsets of M U N and to be abso-
lutely indistinguishable if they admit all the same sets. Similar notions
can be defined with strict in place of broad admittance. We establish
two sufficient conditions for absolute indistinguishability.

Lemma 8. Suppose that the cells <X,M> and <Y,N> are
admissible, M C N, and either M is finite or N is of the same
cardinality as M or N is of exponential cardinality. Then the two
cells are indistinguishable iff they are absolutely indistinguishable.

Proof. The direction from right to left is trivial. Suppose now that
<X, M > and <Y, N > are indistinguishable. The case in which M is
finite is straightforward. So let us suppose that M is infinite. Given
that <X, M > is admissible, X is induced by some K-acceptable
equivalence =~ on (M), for K an exponentially small subset of M.
Take any subset C of N. Then:

C € Y iff Yadmits C, by Lemma 7(ii)
iff X admits C, by supposition
iff C =g Bfor some B e X.

By the proof of Lemma 4 and the conditions on N, it follows that the
restriction &' of =g to ©(N) is an acceptable equivalence that
induces Y. Take now any C whatever. Then, by Lemma 6, <Y, N>
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admits Ciff C =g B;and, by anotherapplication of Lemma6, C ~g B
iff < X, M > admits C.

Lemma 9. Suppose that <X, M > and <Y, N> are infinitary K-
legitimate cells. Then they are absolutely indistinguishable if X and Y
have a member in common and Icdstrg(X) = Iedstrg(Y).

Proof. Let B be the common member of X and Y. Suppose that
<X, M> admits C. Then by Lemma 7(i), it K-admits C. So by
Lemma 6, Iedstrg(C, B) € Iedstrg(X). So Iedstrg(C, B) € Idstrg(Y);
and hence, by Lemma 6 again, <Y, L> K-admits C.

The construction of the domain U can now be described. Let I be a
set of urelements (which we regard as the individuals, i.e. the non-
abstracts). We make no assumption regarding I beyond the fact that
card(]) is not an unsteady unsurpassable. The construction then
proceeds relative to a fixed choice of I. For each ordinal & we define
U[,g by:

(i) Uno=1
(ii) Unat1 = Una U{ <X, Ur, o> : <X, Up, o > is an admissible
cell distinguishable from every cell in Uy o};

(iit) Urn = U 2 Un e
For the purposes of the strict construction, the Us should be changed
to Vs and clause (ii) should be replaced with:

(i) Vije41 = Vi,a U {1 <X, Via>: <X, Vo> s a strictly
admissible cell and is strictly distinguishable from every cell in
VI,OL}.

We say that the cell <X, M> is introduced at the ordinal o if
<X, M> belongs to Uy, but to no Uy g for B < « (and similarly
for the strict construction).

We need to know that the construction will stabilize, i.e. that
Ur,a = Up a1 for some ordinal «. To this end, we compute the
cardinalities of the domains U.

Lemma 10. (i) card(Uz, o) < card(Up, ) for o < f;
(ii) card(Ur,o41) > 2¢p(eard(Un,o)) for Ur, « infinite;
(iii) if Uy, o is finite, then card(Uy, o41) is finite and > card(Uz, );

(iv) if U« is infinite, then card(Ur or1) < max (card( Uy o),
pepleard(Ur, )Y,
(v) card(Ur, ) = limgey card(Uy, ).
Proof.(i) Evident from the definition.
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(ii) Setu = card(Ur,«); and let I be a non-empty set of cardinals
< ¢cp(u). Define =r on Uy, by: C =r Diff card(C) and card(D) both
belong to I' or neither do. Then the equivalence =r is clearly intern-
ally invariant; and since the associated partition contains at most two
equivalence classes, it is non-inflating on U . So if Xr is the
equivalence class of the form |C| for card(C) € I, <Xr, U, > is
admissible. For distinct I', the X’s are distinct; and so, given that u is
transfinite, there are 2™ such cells.

(iii) Let n = card(Uj 1) and m = card(U;, o). Then n < 2P,
for p = 2™, and hence is finite given that m is finite. We see that
n > m from the construction of =r above. For this shows
thatn > 2™ — 1) > m.

(iv) Fix on a particular exponentially small subset K of Uy o of
cardinality k < u = card(Uy, ). Then, by Theorem IIL7.5, the
number of internally K-invariant cells over Uj o is at most
max (u, 2°® 2Ky = max (u, 2°PW), given that k is exponentially
small. But there are at most sup{u*:k exponentially small} < u
such K; s; and hence card(Uy, o41) < max(u, 2wy

(v) Evident from the definition.

Let us note that the proofs of the lower bounds (namely (ii) and
(iii)) appeal only to the strictly invariant equivalences =r. Thus the
results will also hold for the strict construction V; 4 in place of Uy 4.
If ¢ = card(I) is infinite, it follows from (i), (ii), (iv), and (v), that
card(Ur, o) = U . If ¢ is finite, it will not be generally true that
card(Ur, o) = u¢,«. However, the truth of the identity will be restored
once we pass to infinite o.

Assuming the existence of the unsurpassable cardinal u., we can
show that the constructions will stabilize.

Lemma 11. The constructions Uj o and Vi, stabilize on the
ordinal u; + u, (given that ¢ = card(]) is not an unsteady unsurpass-
able).

Proof. We deal with the case of Uy, , the other case being similar. It
follows from Lemma 10 above that card(Uj, ) = u.. We need to
show that no new cells are introduced at the ordinal stage u. + u.
To simplify notation, set u = u, and Wy = Uy, 4, and note that
card(W,) = u = card(Wp).

We first establish:

(1) Any exponentially small subset Kof W, is included in W, for
some o < u.
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Proof. Suppose the condition is not true for some K. Then
for each o < u, there is a B, with & < B < u, and a member of K
that is introduced at B (in the sequence <W:f <u>). So
card(K) > cf(u). But by Lemma 2(ii), u is a successor cardinal.
So cf(u) = wu; and therefore K is not small after all.

From (1) we establish (2) below, from which the desired result
follows:

(2) Any admissible cell <X, W, > is indistinguishable from a cell
in W, for a < .

Proof. It suffices to show that < X, W,, > is indistinguishable (and
hence, by Lemma 8, is absolutely indistinguishable) from an admis-
sible cell of the form <Y,W,> for « <u For then either
<Y, Wy > is a member of W, or it is indistinguishable (and
hence absolute indistinguishable) from a member of W; and so, in
either case, < X, W, > is absolutely indistinguishable from a cell
in W,,.

Suppose that <X, W, > is K-admissible for K an exponentially
small subset of Wy,. By (1), K C W, for some oo < u. We distinguish
two cases:

(a) X contains no exponentially small set. For subsets C and D
of W,, define C eqy D by: CNK=DNK and card(C-K)
= card(D-K). Note that, for exponentially large subsets C and D
of Wy, C =y ¢ Diff C eqg D. So by Corollary IIL7.16, the cell X
is closed under the relation eqg. Let Y = X N #P(W,). Then it is
readily verified that <Y, W,> is admissible, that Icdstrg(Y)
= Iedstrg(X), and that X and Y have a member in common. But
then, from Lemma 8 above, it follows that the indexed cells are
indistinguishable.

(b) X contains an exponentially small set C. By (1), C C Wj for
some [3 for which o < B < u. But now we may find an admissible cell
<Y, W > thatis indistinguishable from < X, W, >. Forlet fbe a one-
to-one function from W, onto W that is fixed over C U K; and let
Y = f[X]. Then it is readily verified that <Y, W > is K-admissible,
that Tcdstrg(Y) = Iedstrg(X), and that C € X, Y. So by Lemma 8
again, <X, W, > and <Y, Wj > are indistinguishable.

We are now in a position to define the intended model Uy. Its
domain U; is given by Uy, o for « a stabilizing ordinal. The interpret-
ation Abstr of the predicate Abstr, for xe U, C C U, and
R C ®(Up) x ®(Up), is given by:
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x Abstrp C iff R is an acceptable equivalence on £(U;) and
{D: x admits D} = {D: R relates C to D}.

To obtain the strict model, we define V; in analogy to U; and
define Abstr by:

x Abstrg C iff R is a strictly acceptable equivalence on #(V;) and
{D: x strictly admits D} = {D: R relates C to D}.

It should be noted that there is a sense in which the construction
of U; serves to generate not only the abstracts from stage to stage
but also the means of abstraction. Of course, an equivalence over
the whole domain U; cannot be constructed at a stage at which we
have not yet constructed the whole domain. However, we may
at each stage take ourselves to be constructing a representative of
such an equivalence. For an equivalence = over M can be taken
to represent the restriction of ~. to ®(U;) when M is finite
and to represent the restriction of =g to £(U;) when M is
infinite and ~ is K-acceptable. Each abstract can then be taken to
be generated from a previously given concept by means of a repre-
sentative of a means of abstraction that may also be taken to be
previously given.

We may at last show that the model Uj verifies the axioms of GA
(the proof that V; is a model for SGA is similar).

Theorem 12. Suppose that card(l) is not an unsteady unsurpass-
able. Then U; is a model of GA™ in which each cell is an abstract and
each abstract a cell.

Proof. Tt is clear that each abstract is a cell. To show the converse, let
<X, Up,g> beacell in U;. We deal solely with the case in which Uy g
is infinite, the other case, in which it is finite, being similar. Suppose
that <X, Uy, g > € U = U;. Then <X, Uy, g > is admissible. So, for
some exponentially small subset K of U; g, there is a K- acceptable
equivalence =~ on £(U;, p) that induces X. By Lemmas 1, 2(i), and 10,
U'is of exponential cardinality; and so, by Lemma 3, K'is an exponen-
tially small subset of Uand the restriction ~' of & to #£(U) is also an
acceptable equivalence. Choose a B in X. By Lemma 6, <X, U; g >
admits a subset C of Uiff C ~’ B; and so <X, Uy, > stands in the
relation Abstr.: to B.

Let us now verify the axioms in turn:
Identity. Tt suffices to establish:
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(*) any two distinct cells <X, Up, o> and <Y, Uy g> of Uy,
a < [, are distinguishable.

Proof. Suppose that o = 3. Then there is a member C of one of
the cells, say X, that is not a member of the other. By Lemma 7(ii),
<X, Uy, « > admits C while <Y, Uy, o > does not; and hence the two
indexed cells are distinguishable. On the other hand, if o < B, then it
follows from the construction that <Y, U g> is distinguishable
from <X, Up, o>

Broad Internal Existence. Let =~ be an acceptable equivalence on
#2(Ur). We need to show that, for every set C C U; (which repre-
sents a concept), there is a cell <X, Uy, o> in Ur (which represents
an abstract) for which {D C Up <X, Uy, o> admits D} = |C|..
Choose an « for which Up o = U;. By Lemma 7(ii), {D C Up:
<|Cl|., Ur> admits D} = |C|.. By the construction, <|C|,, Ur>
is indistinguishable from a cell <X, Us> in Uy so {D C Up
<|Cl» Ur> admitsD} = {D C Uyp: <X, Uy, g > admits D}; and so
{D C Ur: <X, Upp > admits D} = |C|..

Exclusivity and Application. Straightforward.

Strong Minimality. Suppose that there existed a proper subset D
of U; of the sort ruled out by Strong Minimality. Let us first
show that D has the same cardinality as U;. To this end, let I" be a
non-empty set of cardinals < cp (D). Define &~ = =r as in the proof
of Lemma 10(ii), though relative now to the domain D; and let ~/
be the restriction of ~, to ¥(U;). Then clearly, ~' is strictly ac-
ceptable (and, given that card(D) > 2, non-inflationary and not
just non-inflating). Let C, be any subset of D whose cardinality
is in I'. Then some object x in U is an abstract of C, with
respect to ='; and so there is an abstract xr in D for
which {C C D: xr is an abstract of C} = {C C D: card(C) € I'}.
But the xr are different for different I'. This shows that card(D) >
2¢p(cardD)) _ 1 if D is finite and that card(D) > 2P©@dD) if D jg
infinite; and from this it follows that card(D) = card(Uy).

Suppose now that D # U;. Let 3 be the least ordinal for which
D C Uy, fails; and let xbe an indexed cell in Uy, g but notin D. So
is of the form a+1 and x is of the form <X, U > for
X C ®(Uy, o). There is therefore an abstract x” in D that admits the
same subsets of D C Uy, as x. But then x is indistinguishable from
x; and hence x = x’, contrary to supposition.
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Corollary 13. Let ¢ be any cardinal that is not an unsteady unsur-
passable. Then there is a standard model M of GTA containing exactly
¢ individuals.

Proof. Choose Ito be a set of urelements having cardinality c.

We state without proof:

Theorem 14. (Categoricity). Suppose that M and N are two stand-
ard models of GA" and that card(Iy;) = card(ly) is not an unsteady
unsurpassable. Then M and N are isomorphic.

3. Derivations

We briefly indicate how to derive the central portions of arithmetic
and analysis within the theory of abstracts and within the corres-
ponding theory of extensions, thereby providing those branches of
mathematics with a neo-Fregean foundation.

In order to carry out the derivation within the theory of abstracts,
we need the premiss that there are at least two objects (ie.
3x,y(x # y)). For Frege, this premiss follows from the fact that
sentences are the names of truth-values; and it can perhaps therefore
be deemed a logical truth. But under a more orthodox approach, the
premiss must be be treated as additional (and presumably non-
logical) axiom. Under the approach that uses extensions instead of
abstracts, this additional axiom is not required.

The only other axioms we need within the theory of abstracts are
Internal Existence (in its second-order version) and Identity in its
left-to-right direction (forbidding the identification of abstracts that
are associated with different equivalence classes of concepts). The
only axioms we need within the theory of extensions are Extension-
ality and Comprehension in its strict schematic formulation. We shall
merely provide an informal sketch of the proofs but with enough
detail, T hope, to make clear how they might be formalized. We
concentrate on the more problematic case of the derivations within
the theory of abstracts.

Recall that a divisor divides the universe of concepts into at
most two parts (thus Div (R) is defined by JC,DVE(R[C,E]

V R(D,E)). Thus given that there are at least two objects, Internal
Existence straightforwardly yields the conclusion that each internally
[-invariant divisor is applicable, i.e. Eq(R) & Div(R) & I-inv(R) —
App(R).
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With each concept C, we may associate the strictly I-invariant
divisor N¢, where N¢(E, F) < (Eeq C <« Feq C) for any con-
cepts E and F. Thus N¢ divides the concepts into those that are
equinumerous with C and those that are not. It should be clear that
N¢ is a divisor: for if every concept is equinumerous with C then
every concept bears the relation N¢ to C; while if some concept D is
not equinumerous with C then every concept bears the relation N¢
either to C or to D. Also, it is evident from the properties of equinu-
merosity that N¢ is strictly I-invariant.

So it follows from Internal Existence that each of the divisors N is
legitimate; and so, for each concept C, there is a unique abstract nc of
C with respect to the equivalence Nc. We could take n¢ to be the
cardinality of C. But it is also possible to derive Hume’s Law and
thereby see each cardinal as an abstraction from the same underlying
equivalence relation.

To this end, we set up the correlation of each concept C with the
abstract nc. This correlation then establishes that equinumerosity is
non-inflationary. For suppose that C and D are not equinumerous.
Then n¢ and np must be distinct; for their being the same would
require that C be related by Np to D. (Note that essential use is made
here of the identity axiom.) Since equinumerosity is internally invari-
ant, it follows that it is applicable; and hence Hume’s Law is estab-
lished.

We may also establish the legitimacy of a counterpart to sets
of numbers. For let C be any non-empty concept of num-
bers. Then with C we may associate the divisor S¢, where
Sc(E,F) < (Cnp <> Cng). This divisor divides the universe of
concepts into those whose number falls under C and those whose
number falls outside of C. The divisor is readily shown to be
internally invariant; and so for each concept C of numbers there
exists the abstraction s¢ of D wrt Sc, where D is some concept whose
number np falls under C. The abstracts s¢ may then be used to
represent the non-empty sets of numbers. (It is not clear, however,
how we might represent sets of numbers and, indeed, given the
consistency of CH, there is no assurance that our models will have
a cardinality greater than 2%°.)

It should be noted that the above proof makes no appeal to a
principle of extensional abstraction, of either an unrestricted or a
restricted sort. Indeed, the proof depends crucially upon the fact that
the concepts in question are concepts of numbers. For it is their being
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numbers that entitles us to conclude that the corresponding equiva-
lence relations are invariant.

We therefore see that a foundation can be provided for arithmetic
and analysis without making any appeal to extensional abstracts. It is
indeed possible to prove a form of extensional abstraction. For let us
define C =* D by: C and D are both exponentially small and coexten-
sive or neither is exponentially small. Then it may be shown that =* is
strictly I-acceptable and hence it may be shown that each exponen-
tially small concept has an extension. However, this result is of no
help in deriving analysis. For in order to apply it to concepts of
numbers we need to know that they are exponentially small; and
this seems to require something like the earlier construction.

Within the theory of extensions, the derivations are much more
straightforward. Hume’s Law can be established directly, in much the
same way as for Frege. For it is readily verified that, for each concept,
the condition of being equinumerous with that concept is I-invariant
and so, by Extensionality and Comprehension, it follows that there
exists a unique extension whose members are the concepts that
conform to the condition. We take that extension to be the number
of the concept; and, with that understanding of number, it is a simple
matter to derive Hume’s Law.

In regard to the reals, we may, for each non-empty concept of
numbers C, consider the condition of being a concept whose number
falls under C. This condition is readily shown to be I-invariant and
hence, for each such concept C, there will be an extension whose
members are the concepts whose number falls under C. These exten-
sions can then be used, as before, to represent the reals.

4. Further Work

Let me briefly mention three further topics that need to be considered.

(1) Conservative Extensions. Let us say that the §-theory T3 (in the
language L%) is a conservative extension of the underlying second-
order logic L* (with or without Well-Ordering) if the relativization
&' of an §-free formula & to the predicate I (for being an individual)
is a theorem of T only if & is a theorem of L2. Note that we do not
require that every §-free theorem of T¥ be a theorem of L? since
adopting an abstraction principle may result in our being able to
prove that there are more objects than there were without the
principle. It is plausible to suppose that conservativity, in this sense,
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is a necessary condition for what, in sect. I. 1, I called a ‘genuine’
principle of abstraction; for we do not want such a principle to have
any substantive implications for the logic of individuals. For this
reason, and also for its intrinsic interest, it would be desirable to
prove conservativity results for particular theories, such as the theory
of numbers or restricted extensions, and also for general classes of
theories. However, it is not clear to me how the proofs should go.'

(2) Further Forms of Abstraction. The theory of abstraction that we
have developed is not comprehensive. For it does not deal with
abstraction that is over objects, or over several concepts or relations
at a time, or over the various combinations of these items. It would be
desirable to extend the whole theory to these other cases. Perhaps the
criterion of being non-inflationary and (predominantly) invariant
could still be adopted as a means of avoiding the problem of hyper-
inflation. But, in other respects, the theory will be quite different. We
cannot expect to have the relational analogue of Hume’s Law, for
example. For, as Hodes (1984: 138) and Hazen (1985: 253—40) have
pointed out, the abstraction principle for relation numbers will lead
to the Burali-Forti paradox. Thus the possibilities for abstraction will
be much more circumscribed than they are for concepts.

(3) Alternative Forms of Second-Order Logic. For many of our
results, we have assumed that the underlying logic contains full
second-order Comprehension for concepts and relations. It would
be of interest to see how the theory of abstraction might be developed
under various weakenings of this assumption. Some of our results also
depend upon assuming that the underlying logic contains some
version of the axiom of choice. But there are well-motivated
theories of extension that are incompatible with such an as-
sumption. For example, there is the Cantorian theory in which
§C=8D «— Vx(Cx <« Dx) is taken to hold under the condition
that C and D can be well-ordered. By using the reasoning of the
paradoxes, it can be shown, within such a theory, that the universe
cannot be well-ordered. Again, it would be of interest to see to what
extent a theory of abstracts could be developed along these lines and
whether, in particular, some of the difficulties over hyperinflation
could thereby be avoided.

' There has recently been a negative result: Weir and Shapiro (1999) have shown that
Boolos’s new Vis not conservative. The requirement of conservativity has also been discussed
by Wright (1997: 221-5; 1999: sect. 5). He claims that the theory based upon Hume’s Law is
conservative but it is an open question, as far as I know, whether or not this is so.
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analysis (real) ix—x, 2-3, 42-3, 46,
190-1

analyticity 41, 72, 77, 76-7, 171-2 see
also abstraction principles
— analyticity of.

arithmetic ix, 2-3, 32-3, 36, 41, 46,
86, 92, 189-91

axioms of abstraction, see abstracts
— general theory of

Boolos G. 5, 42,92n. 22, 127, 138,
192n
Brandl]J. 89n.

Caesar Problem 24, 38-9, 44, 56, 60,
66-7, 68-77, 88-9, 92, 95-6, 100
cardinal number
as a class, see abstracts — as
equivalence classes
inaccessible 7, 14
generalized 14, 43, 47
Mahlo 13n. 4
regular 13n. 4, 42
small 7, 42, 45
unsurpassable 7, 11, 14, 15, 157
categoricity 22, 27, 93, 101,
122-32, 189
Cantorian set theory 192
completeness rule 70
comprehension principle 12, 45, 103,
112, 174, 192
conservativeness 191, 192n.
consistency 35-6, 164
context principle ix, 35, 38,
46, 55-100, 132, see also Caesar
problem
criterion
absolute 27, 86, 112-3, 116, 1212
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criterion (cont.)
ofidentity 3-4,5,7,9,22n., 27,42,
43, 48-53, 86
invariant 7-8, 86, see also
abstraction principles — logical
tenable, see tenability

definition 15-35, see also categoricity,
reference — determinate
via abstraction 20-3, see also
abstraction principles
circular, see impredicative
contextual, see context principle
creative 567
deterministic 16, 33, 38
duplicate 71
essentialist 29-31, 32
explicit, see implicit
implicit 16, 33, 35-6, 41, 56, 78, 81,
87 n., 100
impredicative 27n.
inductive 26, 70
materially effective 33—4
noncircular, see impredicative
predicative, see impredicative
by reconceptualization 35-41, 57
recursive 19-20
referentially effective 17, 34, 38, 56
referential import 17, 19
semantic import 18, 19, 33
simultaneous 16
Drake E R. 162
Dummett M. 27n., 35, 39, 55n.,
79n, 89n., 92n. 22, 127, 137

equivalence relation (defined) 4
essence, see definition — essentialist
explicit definition, see definition —
explicit
existence, see abstracts — existence of
extension, see principles of abstraction
— extensional, law V
extensionality
principle of 54, 107, 109, 174, 189,
191
see also abstraction principles
— extensional

Main Index

Tield H. 25n., 36, 79n.
Foreman M. 158
Frege
on abstraction 1—4
Begriffsshrift 39 n. 20
consistency proof 137-8
Grundgesetze 2, 69n., 137
Grundlagen 35, 38, 55, 66, 791,
109, 110
definition of number 28-9, 32, 66
derivation of arithmetic 157, 189,
191
generality of logic 109
numerals 95-8
object/concept distinction 1, 102
on reference 67, 79
on sense 18, 19
switching argument 22 n., 110
see also Caesar problem, law V,
logicism, reference, sense

generation
of abstracts, 20—1, 26
of means of abstraction 27-8
of models 101, 111, 118-22,
175-89
of numbers 92
of understanding 27n.
grade (of statements) 82

Hale R. 27n., 351, 39n. 20, 40, 42n.,
471., 48, 49, 61 n. 2, 68, 74 n. 12,
92n. 22

Hazen A. 64n. 4, 192

Heck R. 5,10, 41n

Hodes H. 55n., 192

holism (referential) 79-80, 87 n

Horwich P. 18n. 10

Hume’s principle, see abstraction
principle — Hume

Humean operator 86, 89

hyper-inflation, see abstraction
principles-hyper-inflationary

identity, see abstracts — identity of,
criterion — of identity, mixed/
unmixed identities
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implicit definition, see definition
— implicit

impredicativity 45, 56, 62, 64 n. 4,
81-90, 83, 90-100, 137, see also
definition — impredicative.

inflation, see abstraction principles
— inflationary

law V, see abstraction principles
—law Vv
limited access 76—7
logic second-order 8-9, 11-12, 101-2
versus ZE 10-13
logicism 32-3, 38, 41, 46

Martin T. 13n. 4

Menzel C. 14n.

mixed/unmixed identities 66, 68,
88-9

NBG 42n. 24, 48 n.

nominalism 36, 132

number, see abstraction principle
Hume’s, analysis, cardinal
number, Frege, definition of
number, definition essentialist.

paradox, see Russell’s paradox

Parsons C. 41, 55n.

Parsons T. 110

Peacocke C. 53n. 28

predicativity, see impredicative

predominantly logical, see abstraction
principles — predominantly
logical

procedural postulation v, 36, 56, 100

postulation, see procedural
postulation

quantification unrestricted 84, 89-90
quasi-Humean 92-3
quasi-numerical 29
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Ramsey 25n.
real number, see analysis
reference 1, 1617, 31, 35, 67, 72,
767
canonical 78, 80
definite/indefinite 82—3
determinate 31-32, 38, 56, 60, 65,
71, 77-81, 100
indeterminate, see reference-
determinate
see also context principle,
definition, holism
Roman Problem 67, 68, see also
Caesar Problem
Russell’s paradox 2-3, 6 n. 2, 164, 167,
173

Schroeder-Bernstein Theorem 162
Schroeder-Heister P. 110
Shapiro S. 45n. 23, 163, 192n
sense 16-19, 33, 35-6, 37, 40, 57-8,
77

see also definition, reference
stipulation 35, 56
Sullivan P. 89n.

tenability 9-10, 12-14, 101, 114-8
Tennant N. 53n. 28

unrestricted quantification, see
quantification — unrestricted

Weir A. 42n.23,192n

Woodin W. H. 158

Wright C. 25n., 27 n., 35, 35 1., 40,
41, 42 n., 48, 55, 61 n. 2, 64 n. 4,
68, 74n. 12, 84n., 89 n., 92n. 22,
95,96n.,97n.,192n

Zermelo 48
Zermelo—Fraenkel set theory (ZF,
ZFC) 7,10, 12, 14, 172
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I? 101

L’ 101

purely logical 102
C D, E 102

R,S, T 102

B Q,P,Q 102

I8 102

§ 102

L% 102

Dm(R) 102

Rg(R) 102

Fld(P) 102

Refl(R) 102
Sym(R) 102
Trans(R) 102
Eq(R) 102

C 102

= 102

compl 103

g 103

1—1(R) 103

eqr 103

eq 103

< 103

beq 103

Perm 103

L* 103
Comprehension 103
L* 103

$ 103

T® 103

8 103

T 103

identity criterion 103
system of identity criteria 103
abstraction principle 104

logical 104
grounded 104
L-criterion 104

< (precedes) 104
definable over 104
Ab 104

1 104

Nab 104

Uab 104
restricted 104

b, 104

TV 104

2 (F Y E®) 105
model 105
§-expansion 105
reduction 105
abstracta 105
concreta 105
pure 105
extensional 106
represented 106
full 106
set-theoretic 106
standard 106

M, 106

cardinal abstractor 106

bicardinal abstractor 106

divisor abstractor 106
=s 106

¢ 106

Py 106

strictly separated 106
separated 106
weakly separated 106
Ey oy 107

criterial relation 107
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Py 107
local set relation 107
global set relation 107
E® 107
extensionality lemma 107
Func 108
Mon 108
FPy 5 108
LEP,, 5 108
least fixed point theorem 108
equivalence lemma 108
inclusion lemma 109
extended extensionality lemma 109
permutation lemma 109
invariance corollary 110
switching lemma 110
§-extensional 111
extensionality principle 111
invariant set-relation 111
outer invariance lemma 111
relativized formula 112
restricted formula 112
M/N 112
partial (restricted) model 112
total model 112
absolute formula 112
absoluteness lemma 113
internal global relation 113
internally (I-) invariant set
relation 113
tenable criterion 114
d-tenable 114
tenable on ¢ 114
d-tenable on ¢ 114
stable criterion 114
stabilize (for an identity
criterion) 114
generally tenable 114
indefinitely tenable 114
anti-inflation lemma 115
non-inflationary cardinal 116
static 116
partition cardinal 116
(extended) anti-inflation lemma 116
tenable system of identity criteria 116
stable system of identity criteria 117
Eqp 118
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Noninfl, 117

stability number 118

Hanf number 118

stabilize (for an arbitrary
sentence) 118

critical ordinal 119

minimal model 119

axiom of constructibility 119

downward-closed 120

upward-closed 120

closed 120

Gy 120

K-minimal 120

Closed(C) 120

Min 120

Absolute(d) 122

Min(C) 122

internally similar 123

extension lemma 123

chain lemma 124

categorical extension lemma 124

categoricity corollary 126

internally similar 127, 128

indistinguishable from 130

quasi-upward closed 130

critical ordinal 131

strictly minimal model 131

individual constants 132

object term 132

relation term 132

concept term 132

rk (rank) 132

objectual term 133

relational term 133

formula (of term language) 133

(term) domain 133

Te, Ty 133

L(d) 133

true (for term language) 133-4

complexity 134

Eq_ 134

~op 134

It 134

regular identity criterion 135

representative domain 136

non-inflationary 138

bicardinal 138
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cdstr (cardinality distribution) 138

yields 139

combination 139

representative combination 139

~ (symmetric difference) 139

=’ (almost sameness) 139

very different 139

small/large subset 140

almost universal subset 141

bifurcates 141

bifurcator 141

theorem on representative
combinations (TRC) 142

entails (for cardinality
distributions) 142

Q Q. 143

[M]° 143

strictly acceptable 143

exponentially small (cardinal or
subset) 143

exponentially large (cardinal or
subset) 143

~% (basal relation) 144

as refined (subsumes) 144

characterization theorem 144

strictly I-acceptable 145

~2; (super-basal relation) 145

¢’ (successor) 147

=q 147

Icdstr (internal cardinality
distribution) 147

numeric 149

CCD (considerations of cardinality
distribution) 148

~pam 151

> (biequivalence) 151

<1, (left connection) 151

g (right connection) 151

ol 151

Pr, P, 151

K-invariance 152

internal K-invariance 152

’%O,KE %I,K 152

(internal) K-acceptablility 152

Expsmall, Explarge 153

Stb, Unstb 153

~) 154

cell 156

strictly admissible (cell) 156

Cy (cells) 156

Ey; (equivalences) 156

cp (cardinality of precedessors) 156

cf (cofinality) 156

cdstr(~), cdstr(X) 156

unsurpassable (cardinal) 157

IEy;, ICy; 158

(I)-replete (model) 158

K-cell 158

K-admissible 158

cdstrg (relative cardinality
distribution) 158

Cuyrs Evx 159

(internally) k-replete (model) 159

exbd (exponential bound) 159

predominantly (I)-invariant 159

(broadly) (I)-invariant 159

(broadly) (I)-admissible 159

Abstr (abstraction predicate) 165

Ab (predicate for abstracts) 165

App (applicability predicate) 165

(I)-Inv (invariance predicates) 166

(I)-Invg (K-invariance predicate)
166

(I)-Prdinv (predominant invariance
predicate) 166

Noninfl (non-inflation predicate)
166

GA, GA™, GA?, SGA, SGA? 170

STE?, TE 174

steady (cardinal) 175

exponential (cardinal) 176

non-inflating (equivalence) 177

K-acceptable (equivalence) 177

(broadly-, strictly-) acceptable
equivalence 177

indexed cell 177

K-admissible (cell) 177

(broadly, strictly) admissible
(cell) 177

expansion (of an equivalence) 178

K-legitimate (expansion) 178

(broadly, strictly) legitimate
expansion 178

K-admits (a cell) 178
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(broadly, strictly) admits 178 Une Vi,z 184
finitary-infinitary (indexed cell) 182 introduced (cell) 184
(absolutely) indistinguishable Uy, Vi 186

(indexed cells) 183 conservative extension 191



