
Proof-Theoretical Coherence

Kosta Došen and Zoran Petrić

Revised Version

September 2007

The version posted here differs from the version printed in 2004 by King’s College Pub-
lications (College Publications, London). Besides some relatively slight additions and
corrections, including a small number of additional references, a major correction con-
cerning coherence for dicartesian and sesquicartesian categories, posted already in the
revised versions of May 2006 and March 2007, may be found in §9.6. The present version
differs from the version of March 2007 by having a simpler proof of coherence for lattice
categories in §9.4, and a major correction concerning coherence for lattice categories with
zero-identity arrows in §12.5.

Preface

This is a book in categorial (or categorical) proof theory, a field of general
proof theory at the border between logic and category theory. In this field
the language, more than the methods, of category theory is applied to proof-
theoretical problems. Propositions are construed as objects in a category,
proofs as arrows between these objects, and equations between arrows, i.e.
commuting diagrams of arrows, are found to have proof-theoretical mean-
ing. They provide a reasonable notion of identity of proofs by equating
derivations that are reduced to each other in a cut-elimination or normal-
ization procedure, or they may be involved in finding a unique normal form
for derivations.

To enter into categorial proof theory one crosses what should be the
watershed between proof theory and the rest of logic. We are not interested
any more in provability only—namely, in the existence of proofs—which
corresponds to a consequence relation between premises and conclusions.
We have instead a consequence graph, where there may be more than one
different proof with the same premise and the same conclusion. We describe
these apparently different proofs, code them by terms for arrows, and find
that some descriptions stand for the same proof, i.e. the same arrow, while
others do not. Our consequence graph is a category, often of a kind that
categorists have found important for their own reasons.

On the other hand, in categorial proof theory proof-theoretical, syntac-
tical, methods are applied to problems of category theory. These are mainly
methods of normalizing in the style of Gentzen or of the lambda calculus.
(In this book, confluence techniques like those in the lambda calculus domi-
nate in the first part, while cut elimination dominates in the second, bigger,
part.) This syntactical standpoint is something that many categorists do
not favour. Instead of dealing with language, they prefer to work as if
they dealt with the things themselves. We find that for some problems of
category theory, and in particular for so-called coherence problems, which
make the subject matter of this book, paying attention to language is of
great help.

The term “coherence” covers in category theory what from a logical
point of view would be called problems of completeness, axiomatizability
and decidability. Different authors put stress on different things. For our
own purposes we will fix a particular notion of coherence, which agrees
completely with Mac Lane’s usage of the term in [99], the primordial paper
on coherence.

In the 1960’s, at the same time when coherence started being investi-
gated in category theory, the connection between category theory and logic

i

ii Preface

was established, mainly through Lawvere’s ideas (see [94]). The roots of
categorial proof theory date from the same years—they can be found in a
series of papers by Lambek: [84], [85], [86] and [87]. Lambek introduced
Gentzen’s proof-theoretical methods in category theory, which Mac Lane
and Kelly exploited in [81] to solve a major coherence problem (see also
[101]).

There are not many books in categorial proof theory. The early attempt
to present matters in [127] has shortcomings. Proofs are not systematically
coded by terms for arrows; only the sources and targets of arrows are men-
tioned most of the time, and too much work is left to the reader. Some
claims are excessively difficult to verify, and some are not correct (see [69],
[12], Section 3, and [14], Section 1). Lambek’s and Scott’s book [90] is
only partly about categorial proof theory and coherence, understood as a
decidability problem for equality of arrows in cartesian closed categories.
(Just a short chapter of [128], Chapter 8, touches upon this topic.) The
only remaining book in categorial proof theory we know about, [38], is de-
voted to showing that cut elimination characterizes fundamental notions of
category theory, in particular the notion of adjunction. Some parts of that
book (Sections 4.10 and 5.9) are about coherence.

Papers in categorial logic often touch upon this or that point of catego-
rial proof theory, but are not very often specifically within the field. And
even when they are within this field, some authors prefer to advertise their
work as “semantical”. It should be clear, however, that this is not seman-
tics in the established model-theoretical sense—the sense in which the word
was used in logic in the twentieth century. We find this semantics of proofs
more proof-theoretical than model-theoretical.

We will try to cover with the references in our book not the whole liter-
ature of categorial proof theory, but only papers relevant to the problems
treated. To acknowledge more direct influences, we would like, however, to
mention at the outset a few authors with whom we have been in contact,
and whose ideas are more or less close to ours.

First, Jim Lambek’s pioneering and more recent work has been for us, as
for many others, a source of inspiration. Max Kelly’s papers on coherence
(see [77], [78], [54] and [80]) are less influenced by logic, though logical
matters are implicit in them. Sergei Soloviev’s contributions to categorial
proof theory (see [118], [119] and [120]) and Djordje Čubrić’s (see [28], [29]
and [30]) are close to our general concerns, though they do not deal exactly
with the subject matter of this book; the same applies to some work of
Alex Simpson (in particular, [117]).

We extend Robert Seely’s and Robin Cockett’s categorial presentation
of a fragment of linear logic, based upon what they call linear, alias weak,
distribution (see [22]; other papers will be cited in the body of the book),

Preface iii

which we call dissociativity. This is an associativity principle involving two
operations, which in the context of lattices delivers distribution. While
Cockett and Seely are concerned with dissociativity as it occurs in linear
logic, and envisage also applications in the study of intuitionistic logic, we
have been oriented towards the categorification of classical propositional
logic. The subtitle of our book could be “General proof theory of classical
propositional logic”. We would have put this subtitle were it not that
a great part of the book is about fragments of this proof theory, which
are fragments of the proof theory of other logics too, and are also of an
independent interest for category theory. Besides that, we are not sure our
treatment of negation in the last chapter is as conclusive as what precedes
it. (We also prefer a shorter and handier title.)

Proofs in the conjunctive-disjunctive fragment of logic, which is related
to distributive lattices, may, but need not, be taken to be the same in clas-
sical and intuitionistic logic, and they are better not taken to be the same.
Classical proof theory should be based on plural (multiple-conclusion) se-
quents, while intuitionistic proof theory, though it may be presented with
such sequents, is more often, and more naturally, presented with singular
(single-conclusion) sequents. By extending Cockett’s and Seely’s categorial
treatment of dissociativity, we present in the central part of the book a
categorification, i.e. a generalization in category theory, of the notion of
distributive lattice, which gives a plausible notion of identity of proofs in
classical conjunctive-disjunctive logic. This notion is related to Gentzen’s
cut-elimination procedure in a plural-sequent system. By building further
on that, at the end of the book we provide a plausible categorification of
the notion of Boolean algebra, which gives a nontrivial notion of identity
of proofs for classical propositional logic, also related to Gentzen.

It is usually considered that it is hopeless to try to categorify the notion
of Boolean algebra, because all plausible candidates based on the notion
of bicartesian closed category (i.e. cartesian closed category with finite co-
products) led up to now to equating all proofs with the same premises and
conclusions. In our Boolean categories, which are built on another base, this
is not the case. The place where in our presentation of the matter classical
and intuitionistic proof theory part ways is in understanding distribution.
In intuitionistic proof theory distribution of conjunction over disjunction is
an isomorphism, while distribution of disjunction over conjunction is not.
This is how matters stand in bicartesian closed categories. We take that in
classical proof theory neither of these distributions is an isomorphism, and
restore symmetry, typical for Boolean notions.

We reach our notion of Boolean category very gradually. This grad-
ual approach enables us to shorten calculations at latter stages. More-
over, along the way we prove coherence for various more general notions

iv Preface

of category, entering into the notion of Boolean category or related to it.
Coherence is understood in our book as the existence of a faithful structure-
preserving functor from a freely generated category, built out of syntactical
material, into the category whose arrows are relations between finite ordi-
nals. This is a limited notion of coherence, and our goal is to explore the
limits of this particular notion within the realm of classical propositional
logic. We are aware that other notions of coherence exist, and that even
our notion can be generalized by taking another category instead of the
category whose arrows are relations between finite ordinals. These other
notions and these generalizations are, however, outside the confines of our
book, and we will mention them only occasionally (see, in particular, §12.5
and §14.3)

Mac Lane’s primordial coherence results for monoidal and symmetric
monoidal categories in [99] are perfectly covered by our notion of coher-
ence. When the image of the faithful functor is a discrete subcategory of
the category whose arrows are relations between finite ordinals, coherence
amounts to showing that the syntactical category is a preordering relation,
i.e. that “all diagrams commute”. This is the case sometimes, but not al-
ways, and not in the most interesting cases. Mac Lane’s coherence results
are scrutinized in our book, and new aspects of the matter are made mani-
fest. We also generalize previous results of [72] (Section 1) on strictification,
i.e. on producing equivalent categories where some isomorphisms are turned
into identity arrows. Our strictification is useful, because it facilitates the
recording of lengthy calculations.

For categories with dissociativity, which cover proofs in the multiplica-
tive conjunctive-disjunctive fragment of linear logic, and also proofs in the
conjunctive-disjunctive fragment of classical logic, we provide new coher-
ence results, and we prove coherence for our Boolean categories. These
coherence theorems, which are the main results of the book, yield a simple
decision procedure for the problem whether a diagram of canonical arrows
commutes, i.e. for the problem whether two proofs are identical.

The most original contribution of our book may be that we take into
account union, or addition, of proofs in classical logic. This operation on
proofs with the same premise and same conclusion is related to the mix
principle of linear logic. It plays an important role in our Boolean cate-
gories, and brings them close to linear algebra. Taking union of proofs into
account saves Gentzen’s cut-elimination procedure for classical logic from
falling into triviality, as far as identity of proofs is concerned. This modi-
fied cut elimination is the cornerstone of the proof of our main coherence
theorem for classical propositional logic.

We take into account also the notion of zero proof, a notion related to
union of proofs—a kind of dual of it. With union of proofs hom-sets become

Preface v

semilattices with unit, but we envisage also that they be just commutative
monoids, as in additive and abelian categories. Zero proofs, which are like
a leap from any premise to any conclusion, are mapped into the empty
relation in establishing coherence. Although they enable us to prove any-
thing as far as provability is concerned, they are conservative with respect
to the previously established identity of proofs in logic. We will show that
envisaging zero proofs is useful. It brings logic closer to linear algebra, and
facilitates calculations. We find also that the notion of zero proof may be
present in logic even when we do not allow passing from any premise to any
conclusion, but restrict ourselves to the types of the acceptable deductions
connecting premises and conclusions, i.e. stick to provability in classical
logic. Negation may be tied to such restricted zero proofs.

Zero proofs resemble what Hilbert called ideal mathematical objects,
like imaginary numbers or points at infinity. If our concern is not with
provability, but with proofs—namely, identity of proofs—zero proofs are
useful and harmless. We don’t think we have exhausted the advantages
of taking them into account in general proof theory. We believe, however,
we have fulfilled to a great extent the promises made in the programmatic
survey [40] (summarized up to a point in the first chapter of the book),
which provides further details about the context of our research.

We suppose our principal public should be a public of logicians, such as
we are, but we would like no less to have categorists as readers. So we have
strived to make our exposition self-contained, both on the logical and on
the categorial side. This is why we go into details that logicians would take
for granted, and into other details that categorists would take for granted.
Only for the introductory first chapter, whose purpose is to give motivation,
and for some asides, in particular at the very end, we rely on notions not
defined in the book, but in the standard logical and categorial literature.

We suppose that the results of this book should be interesting not only
for logic and category theory, but also for theoretical computer science. We
do not control very well, however, the quickly growing literature in this
field, and we will refrain from entering into it. We do not pretend to be
experts in that area. Some of the investigations of proofs of classical logic
that appeared since 1990 in connection with modal translations into linear
logic or with the lambda-mu calculus, in which the motivation, the style
and the jargon of computer science dominate, seem to be concerned with
identity of proofs, but it is not clear to us how exactly these concerns are
related to ours. We leave for others to judge.

This is more a research monograph than a textbook, but the text could
serve nevertheless as the base for a graduate course in categorial proof
theory. We provide after the final chapter a list of problems left open. To
assist the reader, we also provide at the end of the book a list of axioms

vi Preface

and definitions, and a list of categories treated in the book (which are
quite numerous), together with charts for these categories indicating the
subcategory relations established by our coherence results.

We would like to thank in particular Alex Simpson and Sergei Soloviev
for encouraging and useful comments on the preprint of this book, which
was distributed since May 2004. We would like to thank also other col-
leagues who read this preprint and gave compliments on it, or helped us in
another manner.

Dov Gabbay was extremely kind to take care of the publishing of the
book. We are very grateful to him and to Jane Spurr for their efforts and
efficiency.

The results of this book were announced previously in a plenary lecture
at the Logic Colloquium in Münster in August 2002, and in a talk at the
International Congress MASSEE in Borovets in September 2003, with the
support of the Alexander von Humboldt Foundation. We are indebted to
Slobodan Vujošević and Milojica Jaćimović for the invitation to address the
Eleventh Congress of the Mathematicians of Serbia and Montenegro, held
in Petrovac in September 2004, with a talk introducing matters treated in
the book. We had the occasion to give such introductory talks also at the
Logic Seminar in Belgrade in the last two years and, thanks to Mariangiola
Dezani-Ciancaglini and the Types project of the European Union, at the
Types conference in Jouy-en-Josas in December 2004.

We would like to thank warmly the Mathematical Institute of the Ser-
bian Academy of Sciences and Arts in Belgrade and the Faculty of Phi-
losophy of the University of Belgrade for providing conditions in which we
could write this book. Our work was generously supported by a project of
the Ministry of Science of Serbia (1630: Representation of Proofs).

Belgrade, December 2004

CONTENTS

Preface i

Chapter 1. Introduction 1
§1.1. Coherence 1
§1.2. Categorification 6
§1.3. The Normalization Conjecture in general proof theory 10
§1.4. The Generality Conjecture 15
§1.5. Maximality 24
§1.6. Union of proofs and zero proofs 26
§1.7. Strictification 29

Chapter 2. Syntactical Categories 33
§2.1. Languages 34
§2.2. Syntactical systems 36
§2.3. Equational systems 39
§2.4. Functors and natural transformations 42
§2.5. Definable connectives 44
§2.6. Logical systems 47
§2.7. Logical categories 51
§2.8. C-functors 53
§2.9. The category Rel and coherence 59

Chapter 3. Strictification 65

§3.1. Strictification in general 65
§3.2. Direct strictification 78
§3.3. Strictification and diversification 84

Chapter 4. Associative Categories 87
§4.1. The logical categories K 88
§4.2. Coherence of semiassociative categories 89
§4.3. Coherence of associative categories 93
§4.4. Associative normal form 96
§4.5. Strictification of associative categories 98
§4.6. Coherence of monoidal categories 101
§4.7. Strictification of monoidal categories 103

vii

viii Contents

Chapter 5. Symmetric Associative Categories 107
§5.1. Coherence of symmetric associative categories 107
§5.2. The faithfulness of GH 110
§5.3. Coherence of symmetric monoidal categories 112

Chapter 6. Biassociative Categories 115
§6.1. Coherence of biassociative and bimonoidal categories 115
§6.2. Form sequences 117
§6.3. Coherence of symmetric biassociative categories 117
§6.4. Coherence of symmetric bimonoidal categories 119
§6.5. The category S′ 121

Chapter 7. Dissociative Categories 127
§7.1. Coherence of dissociative categories 128
§7.2. Net categories 132
§7.3. Coherence of net categories 133
§7.4. Net normal form 142
§7.5. Coherence of semidissociative biassociative categories 143
§7.6. Symmetric net categories 145
§7.7. Cut elimination in GDS 148
§7.8. Invertibility in GDS 156
§7.9. Linearly distributive categories 163

Chapter 8. Mix Categories 167
§8.1. Coherence of mix and mix-dissociative categories 167
§8.2. Coherence of mix-biassociative categories 169
§8.3. Coherence of mix-net categories 173
§8.4. Coherence of mix-symmetric net categories 176
§8.5. Coherence of mix-symmetric biassociative categories 182

Chapter 9. Lattice Categories 185
§9.1. Coherence of semilattice categories 185
§9.2. Coherence of cartesian categories 191
§9.3. Maximality of semilattice and cartesian categories 194
§9.4. Coherence of lattice categories 199
§9.5. Maximality of lattice categories 205
§9.6. Coherence for dicartesian and sesquicartesian categories 207
§9.7. Relative maximality of dicartesian categories 213

Contents ix

Chapter 10. Mix-Lattice Categories 219

§10.1. Mix-lattice categories and an example 219
§10.2. Restricted coherence of mix-lattice categories 223
§10.3. Restricted coherence of mix-dicartesian categories 227

Chapter 11. Distributive Lattice Categories 231

§11.1. Distributive lattice categories and their Gentzenization 232
§11.2. Cut elimination in D 246
§11.3. Coherence of distributive lattice categories 263
§11.4. Legitimate relations 268
§11.5. Coherence of distributive dicartesian categories 270

Chapter 12. Zero-Lattice Categories 275

§12.1. Zero-lattice and zero-dicartesian categories 276
§12.2. Coherence of zero-lattice and zero-dicartesian categories 282
§12.3. Maximality of zero-lattice and zero-dicartesian categories 285
§12.4. Zero-lattice and symmetric net categories 286
§12.5. Zero-identity arrows 287

Chapter 13. Zero-Mix Lattice Categories 295

§13.1. Coherence of zero-mix lattice categories 296
§13.2. Zero-mix lattice and distributive lattice categories 301
§13.3. Coherence of zero-mix dicartesian categories 304
§13.4. The category Semilat∗ 306

Chapter 14. Categories with Negation 309

§14.1. De Morgan coherence 310
§14.2. Boolean coherence 316
§14.3. Boolean categories 322
§14.4. Concluding remarks 328

Problems Left Open 331
List of Equations 332
List of Categories 345
Charts 354
Bibliography 359
Index 371

Chapter 1

Introduction

In this introductory chapter we provide in an informal manner motivation
for the main themes of the book, without giving an exhaustive summary of
its content (such summaries are provided at the beginning of every chapter).
A great deal of the chapter (§§1.3-6) is based on the survey [40].

While in the body of the book, starting from the next chapter, our
exposition, except for some asides, will be self-contained, both from a logical
and from a categorial point of view, here we rely on some acquaintance with
proof theory (which the reader may have acquired in classic texts like [60],
[111] and [82], Chapter 15, or in the more recent textbook [128]), and on
some notions of category theory (which may be found in [100] and [90]).
Many, but not all, of the notions we need for this introduction will be
defined later in the book.

To have read the present chapter is not essential for reading the rest of
the book. A reader impatient for more precision can move to Chapter 2,
where the book really starts, and return to this introduction later on.

§1.1. Coherence

It seems that what categorists call coherence logicians would, roughly speak-
ing, call completeness. This is the question whether we have assumed
for a particular brand of categories all the equations between arrows we
should have assumed. Completeness need not be understood here as com-
pleteness with respect to models. We may have a syntactical notion of

1

2 CHAPTER 1. INTRODUCTION

completeness—something akin to the Post completeness of the classical
propositional calculus—but often some sort of model-theoretical complete-
ness is implicit in coherence questions. Matters are made more complicated
by the fact that categorists do not like to talk about syntax, and do not
perceive the problem as being one of finding a match between syntax and
semantics. They do not talk of formal systems, axioms and models.

Moreover, questions that logicians would consider to be questions of
decidability, which is not the same as completeness, are involved in what
categorists call coherence. A coherence problem often involves the question
of deciding whether two terms designate the same arrow, i.e. whether a
diagram of arrows commutes—we will call this the commuting problem—
and sometimes it may involve the question of deciding whether there is in
a category an arrow of a given type, i.e. with a given source and target—
we will call this the theoremhood problem (cf. [38], Sections 0.2 and 4.6.1).
Coherence is understood mostly as solving the commuting problem in [90]
(see p. 117, which mentions [84] and [85] as the origin of this understanding).
The commuting problem seems to be involved also in the understanding of
coherence of [80] (Section 10).

Completeness and decidability, though distinct, are, of course, not for-
eign to each other. A completeness proof with respect to a manageable
model may provide, more or less immediately, tools to solve decision prob-
lems. For example, the completeness proof for the classical propositional
calculus with respect to the two-element Boolean algebra provides imme-
diately a decision procedure for theoremhood.

The simplest coherence questions are those where it is intended that all
arrows of the same type should be equal, i.e. where the category envisaged
is a preorder. The oldest coherence problem is of that kind. This problem
has to do with monoidal categories, and was solved by Mac Lane in [99]
(where early related work by Stasheff and D.B.A. Epstein is mentioned; see
[122] for historical notes, and also [123], Appendix B, co-authored with S.
Shnider). The monoidal category freely generated by a set of objects is a
preorder. So Mac Lane could claim that showing coherence is showing that
“all diagrams commute”. We provide in Chapter 4 a detailed analysis of
Mac Lane’s coherence result for monoidal categories.

In cases where coherence amounts to showing preorder, i.e. showing that

§1.1. Coherence 3

from a given set of equations, assumed as axioms, we can derive all equa-
tions (provided the equated terms are of the same type), from a logical
point of view we have to do with axiomatizability. We want to show that
a decidable set of axioms (and we wish this set to be as simple as possible,
preferably given by a finite number of axiom schemata) delivers all the in-
tended equations. If preorder is intended, then all equations are intended.
Axiomatizability is in general connected with logical questions of complete-
ness, and a standard logical notion of completeness is completeness of a set
of axioms. Where all diagrams should commute, coherence does not seem
to be a question of model-theoretical completeness, but even in such cases
it may be conceived that the model involved is a discrete category (cf. the
end of §2.9).

Categorists are interested in axiomatizations that permit extensions.
These extensions are in a new language, with new axioms, and such ex-
tensions of the axioms of monoidal categories need not yield preorders any
more. Categorists are also interested, when they look for axiomatizations,
in finding the combinatorial building blocks of the matter. The axioms are
such building blocks, as in knot theory the Reidemeister moves are the com-
binatorial building blocks of knot and link equivalence (see [97], Chapter 1,
or any other textbook in knot theory).

In Mac Lane’s second coherence result of [99], which has to do with
symmetric monoidal categories, it is not intended that all equations be-
tween arrows of the same type should hold. What Mac Lane does can be
described in logical terms in the following manner. On the one hand, he
has an axiomatization, and, on the other hand, he has a model category
where arrows are permutations; then he shows that his axiomatization is
complete with respect to this model. It is no wonder that his coherence
problem reduces to the completeness problem for the usual axiomatization
of symmetric groups.

Algebraists do not speak of axiomatizations, but of presentations by gen-
erators and relations. All the axiomatizations in this book will be purely
equational axiomatizations, as in algebraic varieties. Such were the axiom-
atizations of [99]. Categories are algebras with partial operations, and we
are here interested in the equational theories of these algebras.

In Mac Lane’s coherence results for monoidal and symmetric monoidal

4 CHAPTER 1. INTRODUCTION

categories one has to deal only with natural isomorphisms. Coherence ques-
tions in the area of n-categories are usually restricted likewise to natural
isomorphisms (see [96]). However, in the coherence result for symmetric
monoidal closed categories of [81] there are already natural and dinatural
transformations that are not isomorphisms.

A natural transformation is tied to a relation between the argument-
places of the functor in the source and the argument-places of the functor in
the target. This relation corresponds to a relation between finite ordinals,
and in composing natural transformations we compose these relations (see
§2.4 and §2.9). With dinatural transformations the matter is more compli-
cated, and composition poses particular problems (see [109]). In this book
we deal with natural transformations, and envisage only in some comments
coherence for situations where we do not have natural transformations. Our
general notion of coherence does not, however, presuppose naturality and
dinaturality.

Our notion of coherence result is one that covers Mac Lane’s and Kelly’s
coherence results mentioned up to now, but it is more general. We call
coherence a result that tells us that there is a faithful functor G from a cat-
egory S freely generated in a certain class of categories to a “manageable”
category M. This calls for some explanation.

It is desirable, though perhaps not absolutely necessary, that the func-
tor G be structure-preserving, which means that it preserves structure at
least up to isomorphism (see §1.7 below, and, in particular, §2.8). In all
coherence results we will consider, the functor G will preserve structure
strictly, i.e. “on the nose”. The categories S and M will be in the same
class of categories, and G will be obtained by extending in a unique way a
map from the generators of S into M.

The categoryM is manageable when equations of arrows, i.e. commuting
diagrams of arrows, are easier to consider in it than in S. The best is if the
commuting problem is obviously decidable in M, while it was not obvious
that it is such in S.

With our approach to coherence we are oriented towards solving the
commuting problem, and we are less interested in the theoremhood prob-
lem. In this book, we deal with the latter problem only occasionally, mostly
when we need to solve it in order to deal with the commuting problem (see

§1.1. Coherence 5

§4.2, §7.1, §§7.3-5, §§8.2-3 and §11.4). This should be stressed because
other authors may give a more prominent place to the theoremhood prob-
lem. We find that the spirit of the theoremhood problem is not particularly
categorial: this problem can be solved by considering only categories that
are preorders. And ordinary, or perhaps less ordinary, logical methods for
showing decidability of theoremhood are here more useful than categorial
methods. For the categories in this book, the decidability of the theorem-
hood problem is shown by syntactical or semantical logical tools. Among
the latter we also have sometimes simply truth tables. We have used on
purpose the not very precise term “manageable” for the categoryM to leave
room for modifications of our notion of coherence, which would be oriented
towards solving another problem than the commuting problem. Besides the
theoremhood problem, one may perhaps also envisage something else, but
our official notion of coherence is oriented towards the commuting problem.

In this book, the manageable category M will be the category Rel with
arrows being relations between finite ordinals, whose connection with natu-
ral transformations we have mentioned above. The commuting problem in
Rel is obviously decidable. We do, however, consider briefly categories that
may replace Rel—in particular, the category whose arrows are matrices (see
§12.5).

The freely generated category S will be the monoidal category freely
generated by a set of objects, or the symmetric monoidal category freely
generated by a set of objects, or many others of that kind. The generating
set of objects may be conceived as a discrete category. In our understand-
ing of coherence, replacing this discrete generating category by an arbitrary
category would prevent us to solve coherence—simply because the commut-
ing problem in the arbitrary generating category may be undecidable. Far
from having more general, stronger, results if the generating category is
arbitrary, we may end up by having no result at all.

The categories S in this book are built ultimately out of syntactic mate-
rial, as logical systems are built. Categorists are not inclined to formulate
their coherence results in the way we do—in particular, they do not deal
often with syntactically built categories (but cf. [131], which comes close to
that). If, however, more involved and more abstract formulations of coher-
ence that may be found in the literature (for early references on this matter

6 CHAPTER 1. INTRODUCTION

see [79]) have practical consequences for solving the commuting problem,
our way of formulating coherence has these consequences as well.

That there is a faithful structure-preserving functor G from the syntac-
tical category S to the manageable category M means that for all arrows
f and g of S with the same source and the same target we have

f = g in S iff Gf = Gg in M.

The direction from left to right in this equivalence is contained in the func-
toriality of G, while the direction from right to left is faithfulness proper.

If S is conceived as a syntactical system, while M is a model, the
faithfulness equivalence we have just stated is like a completeness result in
logic. The left-to-right direction, i.e. functoriality, is soundness, while the
right-to-left direction, i.e. faithfulness, is completeness proper.

In this book we will systematically separate coherence results involving
special objects (such as unit objects, terminal objects and initial objects)
from those not involving them. These objects tend to cause difficulties,
and the statements and proofs of the coherence results gain by having these
difficulties kept apart. When coherence is obtained both in the absence and
in the presence of special objects, our results become sharper.

§1.2. Categorification

By categorification one can understand, very generally, presenting a math-
ematical notion in a categorial setting, which usually involves generalizing
the notion and making finer distinctions. In this book, however, we have
something more specific in mind. We say that we have a categorification of
the notion of algebraic structure in which there is a preordering, i.e. reflex-
ive and transitive, relation R when we replace R with arrows in a category,
and obtain thereby a more general categorial notion instead of the initial
algebraic notion. If the initial algebraic structure is a completely free alge-
bra of terms, like the algebra of formulae of a propositional language, the
elements of the algebra just become objects in a free category in the class
of categories resulting from the categorification. Otherwise, some splitting
of the objects is involved in categorification.

§1.2. Categorification 7

Categorification is not a technical notion we will rely on later, and so
we will not try to define it more precisely. What we have in mind should
be clear from the following examples.

By categorifying the algebra of formulae of conjunctive logic with the
constant true proposition, where the preordering relation R is induced by
implication, we may end up with the notion of cartesian category. We
may end up with the same notion by categorifying the notion of semilattice
with unit, where the relation R is the partial ordering of the semilattice.
A semilattice with unit is a cartesian category that is a partial order, i.e.
in which whenever we have arrows from a to b and vice versa, then a and
b are the same object. In the same sense, the notion of monoidal category
is a categorification of the notion of monoid, and the notion of symmet-
ric monoidal category is a categorification of the notion of commutative
monoid, the preordering relation R in these two cases being equality.

There are other conceptions of categorification except that one. One
may categorify an algebra by taking its objects to be arrows of a category.
The notion of category is a categorification in this sense of the notion of
monoid, monoids being categories with a single object. In that direction,
one obtains more involved notions of categorification in the n-categorial
setting (see [2] and [27]).

The motivation for categorification may be internal to category theory,
but it may come from other areas of mathematics, like algebraic topol-
ogy and mathematical physics—in particular, quantum field theory (many
references are given in [2]). Our motivation comes from proof theory, as
we will explain in latter sections of this introduction. We are replacing a
consequence relation, which is a preordering relation, by a category, where
arrows stand for proofs. In comparing our approach to others, note that
the slogan “Replace equality by isomorphisms!”, which is sometimes heard
in connection with categorification, does not describe exactly what we are
doing. Our slogan “Replace preorder by arrows!” implies, however, the
other one, and so the same categorial notions, like, for example, the notion
of monoidal category, may turn up under both slogans.

In this book one may find, in particular, categorifications, in our re-
stricted sense, of the notions of distributive lattice and Boolean algebra. Al-
ternatively, these may be taken as categorifications of conjunctive-disjunctive

8 CHAPTER 1. INTRODUCTION

logic, or of the classical propositional calculus. Previously, a categorification
of the notion of distributive lattice was obtained with so-called distributive
categories, i.e. bicartesian categories with distribution arrows from a∧(b∨c)
to (a∧ b)∨ (a∧ c) that are isomorphisms (see [95], pp. 222-223 and Session
26, and [20]). Bicartesian closed categories, i.e. cartesian closed categories
with finite coproducts (see [90], Section I.8), are distributive categories in
this sense.

In our categorification of the notion of distributive lattice, distribution
arrows of the type above need not be isomorphisms. This rejection of
isomorphism is imposed by our wish to have coherence with respect to the
category Rel of the preceding section, since the relation underlying the
following diagram:

(a ∧ b) ∨ (a ∧ c)

a ∧ (b ∨ c)

(a ∧ b) ∨ (a ∧ c)

@
@

Q
QQ

©©©©
¢

¢

¡
¡

HHHH
´

´́ A
A

namely the relation underlying the diagram on the left-hand side below, is
not the identity relation underlying the diagram on the right-hand side:

(a ∧ b) ∨ (a ∧ c)

(a ∧ b) ∨ (a ∧ c)

PPPPPP

³³³³³³

(a ∧ b) ∨ (a ∧ c)

(a ∧ b) ∨ (a ∧ c)

Our categorification of the notion of distributive lattice is based on
arrows from a ∧ (b ∨ c) to (a ∧ b) ∨ c, which Cockett and Seely studied in
their categorial treatment of a fragment of linear logic (see [22]; further
references are given in §7.1 and §7.9). At first, they called the principle
underlying these arrows weak distribution, and then changed this to linear
distribution in [25]. Since this is a principle that delivers distribution in the
context of lattices, but is in fact an associativity involving two operations,
we have coined the name dissociativity for it, to prevent confusion with
what is usually called distribution. Cockett and Seely were concerned with

§1.2. Categorification 9

establishing some sort of coherence for dissociativity with respect to proof
nets.

Before appearing in proof nets and in categories, dissociativity was pre-
figured in universal algebra and logic (see §7.1 for references). Dissociativ-
ity is related to the modularity law of lattices (see §7.1), and we will see
in §11.3 how in a context that is a categorification of the notion of lattice
this two-sorted associativity delivers distribution arrows of the usual types,
from a ∧ (b ∨ c) to (a ∧ b) ∨ (a ∧ c) and from (a ∨ b) ∧ (a ∨ c) to a ∨ (b ∧ c)
(the arrows of the converse types are there anyway), of which neither need
to be an isomorphism. The arrows from (a∨ b)∧ (a∨ c) to a∨ (b∧ c) need
not be isomorphisms in bicartesian closed categories too.

The categorification of the notion of Boolean algebra is usually deemed
to be a hopeless task (see §14.3), because it is assumed this categorifica-
tion should be based on the notion of bicartesian closed category. In that
notion, as we said above, we have arrows corresponding to distribution of
conjunction over disjunction that are isomorphisms. Natural assumptions
in this context lead to triviality, i.e. to categories that are preorders. Our
categorification of the notion of Boolean algebra is not trivial in this sense.
It incorporates the notion of bicartesian category (i.e. category with finite
products and coproducts), but does not admit cartesian closure. Its essen-
tial ingredient is our categorification of distributive lattices, in which the
arrows corresponding to distribution of conjunction over disjunction are not
isomorphisms.

We think it is a prejudice to assume that there must be an isomorphism
behind distribution of conjunction over disjunction. It would likewise be
a prejudice to assume that behind the idempotency law a ∧ a = a or the
absorption law a ∧ (a ∨ b) = a of lattices we must have isomorphisms. The
categorification of the notion of lattice in bicartesian categories is not under
the spell of the latter two assumptions, but the isomorphism correspond-
ing to distribution of conjunction over disjunction is usually presupposed.
This is presumably because in the category Set of sets with functions—the
central category there is—distribution of cartesian product over disjoint
union is an isomorphism. In the categorification of the notion of distribu-
tive lattice with distributive categories, where a ∧ (b ∨ c) is isomorphic
to (a ∧ b) ∨ (a ∧ c), it is not required that a ∨ (b ∧ c) be isomorphic to

10 CHAPTER 1. INTRODUCTION

(a∨ b)∧ (a∨ c), presumably because the latter isomorphism need not exist
in Set. We assume neither of these isomorphisms in our categorification of
the notion of distributive lattice.

§1.3. The Normalization Conjecture in general proof
theory

Categorification is interesting for us because of its connection with general
proof theory. The question “What is a proof?” was considered by Prawitz
in [112] (Section I) to be the first question of general proof theory. To
keep up with the tradition, we speak of “proof”, though we could as well
replace this term by the more precise term “deduction”, since we have in
mind deductive proofs from assumptions (including the empty collection
of assumptions). Together with the question “What is a proof?”, Prawitz
envisaged the following as one of the first questions to be considered in
general proof theory (see [112], p. 237):

In the same way as one asks when two formulas define the same
set or two sentences express the same proposition, one asks when
two derivations represent the same proof; in other words, one
asks for identity criteria for proofs or for a “synonymity” (or
equivalence) relation between derivations.

An answer to the question of identity criteria for proofs might lead to
an answer to the basic question “What is a proof?”. A proof would be the
equivalence class of a derivation. The related question “What is an algo-
rithm?” could be answered by an analogous factoring through an equiv-
alence relation on representations of algorithms. (Moschovakis stressed in
[107], Section 8, the fundamental interest of identity criteria for algorithms.)
Prawitz did not only formulate the question of identity criteria for proofs
very clearly, but also proposed a precise mathematical answer to it.

Prawitz considered derivations in natural deduction systems and the
equivalence relation between derivations that is the reflexive, transitive and
symmetric closure of the immediate-reducibility relation between deriva-
tions. Of course, only derivations with the same premises and the same
conclusion may be equivalent. Prawitz’s immediate-reducibility relation is

§1.3. The Normalization Conjecture in general proof theory 11

the one involved in reducing a derivation to normal form—a matter he
studied previously in [111]. As it is well known, the idea of this reduc-
tion stems from Gentzen’s thesis [60]. A derivation reduces immediately
to another derivation (see [112], Section II.3.3) when the latter is obtained
from the former either by removing a maximum formula (i.e. a formula
with a connective α that is the conclusion of an introduction of α and the
major premise of an elimination of α), or by performing one of the permuta-
tive reductions tied to the eliminations of disjunction and of the existential
quantifier, which enables us to remove what Prawitz calls maximum seg-
ments. There are some further reductions, which Prawitz called immediate
simplifications; they consist in removing eliminations of disjunction where
no hypothesis is discharged, and there are similar immediate simplifica-
tions involving the existential quantifier, and “redundant” applications of
the classical absurdity rule. Prawitz also envisaged reductions he called
immediate expansions, which lead to the expanded normal form where all
the minimum formulae are atomic (minimum formulae are those that are
conclusions of eliminations and premises of introductions).

Prawitz formulates in [112] (Section II.3.5.6) the following conjecture,
for which he gives credit (in Section II.5.2) to Martin-Löf, and acknowledges
influence by ideas of Tait:

Conjecture. Two derivations represent the same proof if and
only if they are equivalent.

We call this conjecture the Normalization Conjecture.
This conjecture, together with another conjecture, which will be con-

sidered in the next section, was examined in the survey [40]. The present
section and the next three sections give an updated, somewhere shortened
and somewhere expanded, variant of that survey, to which we refer for fur-
ther, especially historical and philosophical, remarks. (Some other bits of
that survey are in §14.3, where a mistaken statement is also corrected at
the end of the section.)

The normalization underlying the Normalization Conjecture need not
be understood always in the precise sense envisaged by Prawitz. For intu-
itionistic logic Prawitz’s understanding of normalization, which is derived
from Gentzen, is perhaps optimal. There are, however, other logics, and,

12 CHAPTER 1. INTRODUCTION

in particular, there is classical logic, to which natural deduction is not so
closely tied, and for which we may still have a notion of normalization,
perhaps related to Prawitz’s, but different. What comes to mind immedi-
ately for classical logic is Gentzen’s plural, i.e. multiple-conclusion, sequent
systems (see below) and cut elimination for them.

Presumably, the notion of normalization we can envisage in the Nor-
malization Conjecture cannot be based on an arbitrary notion of normal
form. It is desirable that this normal form be unique, at least up to some
superficial transformations (like alpha conversion in the lambda calculus).
But uniqueness should not be enough. This normal form and the lan-
guage for which it is formulated must be significant, where it is difficult to
say what “significant” means exactly. The normal form and the language
for which it is formulated should not be just a technical device, but they
must be deeply tied to the logic, and exhibit its essential features. In the
case of Prawitz’s normal form for derivations in intuitionistic natural de-
duction, besides philosophical reasons having to do with the meaning of
logical connectives, there are important ties with independently introduced
mathematical structures.

The Normalization Conjecture was formulated by Prawitz at the time
when the Curry-Howard correspondence between derivations in natural de-
duction and typed lambda terms started being recognized more and more
(though the label “Curry-Howard” was not yet canonized). Prawitz’s equiv-
alence relation between derivations corresponds to beta-eta equality be-
tween typed lambda terms, if immediate expansions are taken into account,
and to beta equality otherwise.

Besides derivations in natural deduction and typed lambda terms, where
according to the Curry-Howard correspondence the latter can be conceived
just as codes for the former, there are other, more remote, formal repre-
sentations of proofs. There are first Gentzen’s sequent systems, which are
related to natural deduction, but are nevertheless different, and there are
also representations of proofs as arrows in categories. The sources and
targets of arrows are taken to be premises and conclusions respectively,
and equality of arrows with the same source and target, i.e. commuting
diagrams of arrows, should now correspond to identity of proofs via a con-
jecture analogous to the Normalization Conjecture.

§1.3. The Normalization Conjecture in general proof theory 13

The fact proved by Lambek (see [87] and [90], Part I; see also [39],
[37] and [43]) that the category of typed lambda calculuses with functional
types and finite product types, based on beta-eta equality, is equivalent to
the category of cartesian closed categories, and that hence equality of typed
lambda terms amounts to equality between arrows in cartesian closed cat-
egories, lends additional support to the Normalization Conjecture. Equal-
ity of arrows in bicartesian closed categories corresponds to equivalence of
derivations in Prawitz’s sense in full intuitionistic propositional logic (see
[109], Section 3, for a detailed demonstration that the equations of bicarte-
sian closed categories deliver cut elimination for intuitionistic propositional
logic). The notion of bicartesian closed category is a categorification in the
sense of the preceding section of the notion of Heyting algebra. The partial
order of Heyting algebras is replaced by arrows in this categorification.

In category theory, the Normalization Conjecture is tied to Lawvere’s
characterization of the connectives of intuitionistic logic by adjoint situa-
tions. Prawitz’s equivalence of derivations, in its beta-eta version, corre-
sponds to equality of arrows in various adjunctions tied to logical connec-
tives (see [94], [38], Section 0.3.3, [41] and [39]). Adjunction is the unifying
concept for the reductions envisaged by Prawitz.

The fact that equality between lambda terms, as well as equality of
arrows in cartesian closed categories, were first conceived for reasons inde-
pendent of proofs is remarkable. This tells us that we are in the presence
of a solid mathematical structure, which may be illuminated from many
sides.

Prawitz formulated the Normalization Conjecture having in mind nat-
ural deduction, and so mainly intuitionistic logic. For classical logic we
envisage something else. Our categorification of the notion of Boolean al-
gebra, as the categorification of the notion of Heyting algebra with bicarte-
sian closed categories, covers a notion of identity of proofs suggested by
normalization via cut elimination in a plural-sequent system (see Chapters
11 and 14). This is in spite of the fact that for us distribution of conjunc-
tion over disjunction does not give rise to isomorphisms, as in bicartesian
closed categories. This disagreement over the isomorphism of distribution
may be explained as follows.

14 CHAPTER 1. INTRODUCTION

Classical and intuitionistic logic do not differ with respect to the conse-
quence relation between formulae in the conjunction-disjunction fragment
of propositional logic. In other words, they do not differ with respect to
provable sequents of the form A ` B where A and B are formulae of the
conjunction-disjunction fragment. But, though these two logics do not
differ with respect to provability, they may differ with respect to proofs.
The standard sequent formulation of classical logic, the formulation that
imposes itself by its symmetry and regularity, is based on plural sequents
Γ ` ∆, where ∆ may be a collection with more than one formula, whereas
the standard sequent formulation of intuitionistic logic is based on singular,
i.e. single-conclusion, sequents Γ ` ∆, where ∆ cannot have more than one
formula, while Γ can. There are presentations of intuitionistic logic with
plural sequents (see [103] and [32], Section 5C4, with detailed historical
remarks on pp. 249-250; cf. also [31], where the idea is already present),
but they are not standard, and they do not correspond to natural deduc-
tion, as those with singular sequents do. Moreover, in these plural-sequent
formulations of intuitionistic logic, a restriction based on singularity is kept
for introduction of implication on the right-hand side, which corresponds
to the deduction theorem. The deduction theorem enables the deductive
metalogic to be mirrored with the help of implication in the object lan-
guage, and when it comes to this mirroring, plural-sequent formulations of
intuitionistic logic avow that their deductive metalogic is based on singular
sequents.

The connection of intuitionistic logic with natural deduction, where
there are possibly several premises, but never more than one conclusion,
goes very deep. There are many reasons to hold that the meaning of intu-
itionistic connectives is explained in the framework of natural deduction,
as suggested by Gentzen (see [60], Section II.5.13). Singular sequents are
asymmetric, i.e. they have a plurality of premises versus a single conclusion.
The asymmetries of intuitionistic logic, and, in particular, the asymmetry
between conjunction and disjunction, can be explained by the asymmetry of
singular sequents that underly this logic. One can suppose that the asym-
metry of bicartesian closed categories, which consists in having a ∧ (b ∨ c)
isomorphic to (a ∧ b) ∨ (a ∧ c) without having a ∨ (b ∧ c) isomorphic to
(a ∨ b) ∧ (a ∨ c), has the same roots.

§1.4. The Generality Conjecture 15

The dissociativity principle of the arrow that goes from a ∧ (b ∨ c) to
(a ∧ b) ∨ c (see §1.2 and §7.1) delivers arrows that go from a ∧ (b ∨ c) to
(a ∧ b) ∨ (a ∧ c) and from (a ∨ b) ∧ (a ∨ c) to a ∨ (b ∧ c) (see §11.3; we have
arrows of the converse types without assuming distribution), but neither
of these arrows need to be isomorphisms. So symmetry, which is typical
for Boolean notions, is restored. (Another possibility to restore symmetry
would be to take that a∧(b∨c) is isomorphic to (a∧b)∨(a∧c) and a∨(b∧c)
is isomorphic to (a ∨ b) ∧ (a ∨ c), which is not the case in Set, but we will
not explore that possibility in this book.)

The dissociativity principle, which is an essential ingredient of our cat-
egorification of the notions of distributive lattice and Boolean algebra, is
built into the plural-sequent formulation of classical logic. It is tied to the
cut rule of plural sequents (see §11.1, and also §7.7).

Prawitz envisaged the Normalization Conjecture for classical logic, but
in a natural deduction formulation, i.e. with singular sequents. This is not
the same as considering this conjecture with plural sequents.

§1.4. The Generality Conjecture

At the same time when Prawitz formulated the Normalization Conjecture,
in a series of papers ([84], [85], [86] and [87]) Lambek was engaged in a
project where arrows in various sorts of categories were construed as repre-
senting proofs. The source of an arrow corresponds to the premise, and the
target to the conclusion. (Proofs where there is a finite number of premises
different from one are represented by proofs with a single premise with
the help of connectives like conjunction and the constant true proposition.)
With this series of papers Lambek inaugurated the field of categorial proof
theory.

The categories Lambek considered in [84] and [85] are first those that
correspond to his substructural syntactic calculus of categorial grammar
(these are monoidal categories where the functors a⊗ . . . and . . .⊗ a have
right adjoints). Next, he considered monads, which besides being funda-
mental for category theory, cover proofs in modal logics of the S4 kind. In
[86] and [87], Lambek dealt with cartesian closed categories, which cover
proofs in the conjunction-implication fragment of intuitionistic logic. He

16 CHAPTER 1. INTRODUCTION

also envisaged bicartesian closed categories, which cover the whole of intu-
itionistic propositional logic.

Lambek’s insight is that equations between arrows in categories, i.e.
commuting diagrams of arrows, guarantee cut elimination, i.e. composition
elimination, in an appropriate language for naming arrows. (In [38] it is
established that for some basic notions of category theory, and in particular
for the notion of adjunction, the equations assumed are necessary and suf-
ficient for composition elimination.) Since cut elimination is closely related
to Prawitz’s normalization of derivations, the equivalence relation envis-
aged by Lambek should be related to Prawitz’s. (An early presentation of
the connection between Prawitz and Lambek is in [105].)

The normalization of cut elimination does not involve only eliminating
cuts, but also equations between cut-free terms for arrows, which may guar-
antee their uniqueness. (This is like adding the eta equations to the beta
equations in the typed lambda calculus and natural deduction.)

Lambek’s work is interesting not only because he worked with an equiva-
lence relation between derivations amounting to Prawitz’s, but also because
he envisaged another kind of equivalence relation. Lambek’s idea is best
conveyed by considering the following example. In [86] (p. 65) he says that
the first projection arrow

∧
k1

p,p: p ∧ p ` p and the second projection arrow
∧
k2

p,p: p∧ p ` p, which correspond to two derivations of conjunction elimina-

tion, have different generality, because they generalize to
∧
k1

p,q: p∧q ` p and
∧
k2

p,q: p∧ q ` q respectively, and the latter two arrows do not have the same

target; on the other hand,
∧
k1

p,q: p∧ q ` p and
∧
k2

q,p: q∧ p ` p do not have the
same source. The idea of generality may be explained roughly as follows.
We consider generalizations of derivations that diversify variables without
changing the rules of inference. Two derivations have the same generality
when every generalization of one of them leads to a generalization of the
other, so that in the two generalizations we have the same premise and
conclusion (see [84], p. 257). In the example above, this is not the case.

Generality induces an equivalence relation between derivations. Two
derivations are equivalent if and only if they have the same generality.
Lambek does not formulate so clearly as Prawitz a conjecture concerning
identity criteria for proofs, but he suggests that two derivations represent

§1.4. The Generality Conjecture 17

the same proof if and only if they are equivalent in the new sense. We will
call this conjecture the Generality Conjecture.

Lambek’s own attempts at making the notion of generality precise (see
[84], p. 316, where the term “scope” is used instead of “generality”, and
[85], pp. 89, 100) need not detain us here. In [86] (p. 65) he finds that these
attempts were faulty.

The simplest way to understand generality is to use graphs whose ver-
tices are occurrences of propositional letters in the premise and the con-
clusion of a derivation. We connect by an edge occurrences of letters that
must remain occurrences of the same letter after generalizing, and do not
connect those that may become occurrences of different letters. So for the
first and second projection above we would have the two graphs

∧ ∧p
∧
k1

p,p

p p
∧
k2

p,p

p

p p
@@ ¡¡

When the propositional letter p is replaced by an arbitrary formula A we
have an edge for each occurrence of propositional letter in A.

The generality of a derivation is such a graph. According to the Gener-
ality Conjecture, the first and second projection derivations from p ∧ p to
p represent different proofs because their generalities differ.

One defines an associative composition of such graphs, and there is also
an obvious identity graph with straight parallel edges, so that graphs make
a category, which we call the graphical category. If on the other hand it
is taken for granted that proofs also make a category, which we will call
the syntactical category, with composition of arrows being composition of
proofs, and identity arrows being identity proofs (an identity proof com-
posed with any other proof, either on the side of the premise or on the side
of the conclusion, is equal to this other proof), then the Generality Con-
jecture may be rephrased as the assertion that there is a faithful functor
from the syntactical category to the graphical category. So the Generality
Conjecture is analogous to a coherence theorem of category theory. The
manageable category is a graphical category.

The coherence result of [81] proves the Generality Conjecture for the

18 CHAPTER 1. INTRODUCTION

multiplicative conjunction-implication fragment of intuitionistic linear logic
(modulo a condition concerning the multiplicative constant true proposi-
tion, i.e. the unit with respect to multiplicative conjunction), and, inspired
by Lambek, it does so via a cut-elimination proof. The syntactical category
in this case is a free symmetric monoidal closed category, and the graphical
category is of a kind studied in [54]. The graphs of this graphical category
are closely related to the tangles of knot theory. In tangles, as in braids, we
distinguish between two kinds of crossings, but here we need just one kind,
in which it is not distinguished which of the two crossed edges is above
the other. (For categories of tangles see [134], [129] and [73], Chapter 12.)
Tangles with this single kind of crossing are like graphs one encounters in
Brauer algebras (see [15] and [132]). Here is an example of such a tangle:

´
´

´
´

´
´

´
´

´

¾ » ¾ »

½ ¼

(p ⊗ (q ⊗ (r → r)))⊗ (s → s)

((p → q) ⊗ p) ⊗ p

Tangles without crossings at all serve in [38] (Section 4.10; see also [42])
to obtain a coherence result for the general notion of adjunction, which
according to Lawvere’s Thesis underlies all the connectives of intuitionistic
logic, as we mentioned in the preceding section. In terms of combinatorial
low-dimensional topology, the mathematical content of the general notion
of adjunction is caught by the Reidemeister moves of planar ambient iso-
topy. An analogous coherence result for self-adjunctions, where a single
endofunctor is adjoint to itself, is proved in [49]. Through this latter result
we reach the theory of Temperley-Lieb algebras, which play a prominent
role in knot theory and low-dimensional topology, due to Jones’ represen-
tation of Artin’s braid groups in these algebras (see [74], [97], [110] and
references therein).

In [49] one finds also coherence results for self-adjunctions where the
graphical category is the category of matrices, i.e. the skeleton of the cate-
gory of finite-dimensional vector spaces over a fixed field with linear trans-

§1.4. The Generality Conjecture 19

formations as arrows. Tangles without crossings may be faithfully repre-
sented in matrices by a representation derived from the orthogonal group
case of Brauer’s representation of Brauer algebras (see also [132], Section 3,
and [70], Section 3). This representation is based on the fact that the
Kronecker product of matrices gives rise to a self-adjoint functor in the cat-
egory of matrices, and this self-adjointness is related to the fact that in this
category, as well as in the category Rel, whose arrows are binary relations
between finite ordinals, finite products and coproducts are isomorphic.

Graphs like graphs of the tangle type were tied to sequent derivations of
classical logic in [18] and [19], but without referring to categories, coherence
or the question of identity criteria for proofs.

In [108] there are several coherence results, which extend [99], for the
multiplicative-conjunction fragments of substructural logics. But less us
concentrate now on coherence results for classical and intuitionistic logic.

The Normalization Conjecture and the Generality Conjecture agree only
for limited fragments of these two logics. They agree for purely conjunctive
logic, with or without the constant true proposition > (see [46] and §§9.1-2
below). Proofs in conjunctive logic are the same for classical and intu-
itionistic logic. Here the Normalization Conjecture is taken in its beta-eta
version. By duality, the two conjectures agree for purely disjunctive logic,
with or without the constant absurd proposition ⊥. If we have both con-
junction and disjunction, but do not yet have distribution, and have neither
> nor ⊥, then the two conjectures still agree for both logics, provided the
graphical category is the category Rel whose arrows are relations between
finite ordinals (see [48] and §9.4). And here it seems we have reached the
limits of agreement as far as intuitionistic logic is concerned. With more
sophisticated notions of graphs, matters may stand differently, and the area
of agreement for the two conjectures may perhaps be wider, but it can be
even narrower, as we will see below.

It may be questioned whether the intuitive idea of generality is caught by
the category Rel in the case of conjunctive-disjunctive logic. The problem is
that if ∧

wp: p ` p∧p is a component of the diagonal natural transformation,

and
∨
k1

q,p: q ` q∨p is a first injection, then in categories with finite products

20 CHAPTER 1. INTRODUCTION

and coproducts we have

(1q∨ ∧
wp) ◦

∨
k1

q,p =
∨
k1

q,p∧p,

where the left-hand side cannot be further generalized, but the right-hand
side can be generalized to

∨
k1

q,p∧r. The intuitive idea of generality seems to
require that in ∧

wp: p ` p∧p we should not have only a relation between the
domain and the codomain, as on the left-hand side below, but an equiv-
alence relation on the union of the domain and the codomain, as on the
right-hand side:

¶³
¢
¢

A
A

¢
¢

A
A

p ∧ p p ∧ p

p p

(see [50], and also [51]). With such equivalence relations, we can still get co-
herence for conjunctive logic, and for disjunctive logic, taken separately, but
for conjunctive-disjunctive logic the left-to-right direction, i.e. the sound-
ness part, of coherence would fail (see §14.3). So for conjunctive-disjunctive
logic the idea of generality with which we have coherence is not quite the
intuitive idea suggested by Lambek, but only something close to it, which
involves the categorial notion of natural transformation (cf. the end of
§14.3).

Even when we stay within the confines of the category Rel, our un-
derstanding of generality does not match exactly the intuitive notion of
generality for conjunctive-disjunctive logic. Intuitively, the relations R of
Rel corresponding to generality should satisfy difunctionality in the sense of
[114]; namely, we should have R ◦R−1 ◦R ⊆ R. But this requirement is not
satisfied for our images in Rel under G of proofs in conjunctive-disjunctive
logic, even in the absence of distribution (see the end of §14.3). Generality
is caught by Rel only for fragments of logic. Altogether, generality serves
only as a loose motivation for taking Rel as our graphical category. Real
grounds for Rel are in the notion of natural transformation, which has to
do with permuting rules in derivations.

The Normalization Conjecture and the Generality Conjecture agree nei-
ther for the conjunction-disjunction fragment of intuitionistic logic with >

§1.4. The Generality Conjecture 21

and ⊥ (see [47] and §9.6), nor for the conjunction-implication fragment of
this logic. We do not have coherence for cartesian closed categories if the
graphs in the graphical category are taken to be of the tangle type Kelly
and Mac Lane had for symmetric monoidal closed categories combined with
the graphs we have in Rel for cartesian categories—both the soundness part
and the completeness part of coherence fail (for soundness see a counterex-
ample in §14.3, with ¬p ∨ p replaced by p → p, and for completeness see
[125]). The soundness part of coherence fails also for distributive bicartesian
categories, and a fortiori for bicartesian closed categories. The problem is
that in these categories distribution of conjunction over disjunction is taken
to be an isomorphism, and Rel does not deliver that, as we have seen in
§1.2.

The problem with the soundness part of coherence for cartesian closed
categories may be illustrated with typed lambda terms in the following
manner. By beta conversion and alpha conversion, we have the following
equation:

λx〈x, x〉λyy = 〈λyy, λzz〉

for y and z of type p, and x of type pp (which corresponds to p → p). The
closed terms on the two sides of this equation are both of type pp×pp. The
type of the term on the left-hand side cannot be further generalized, but
the type of the term 〈λyy, λzz〉, can be generalized to pp×qq. The problem
noted here does not depend essentially on the presence of surjective pairing
〈 , 〉 and of product types; it arises also with purely functional types. This
problem depends essentially on the multiple binding of variables, which we
have in λx〈x, x〉; that is, it depends on the structural rule of contraction.
This throws some doubt on the right-to-left direction of the Normalization
Conjecture, which Prawitz found relatively unproblematic. It might be
considered strange that two derivations represent the same proof if, without
changing inference rules, one can be generalized in a manner in which the
other cannot be generalized.

The area of agreement between the Normalization Conjecture and the
Generality Conjecture may be wider for classical logic, provided normaliza-
tion is understood in the sense of cut elimination for plural sequent systems
and generality is understood in the sense of the category Rel. It extends

22 CHAPTER 1. INTRODUCTION

first to conjunctive-disjunctive logic without distribution (see [48] and §9.4
below). Next, in conjunctive-disjunctive logic with distribution, with or
without > and ⊥, the agreement also holds (see Chapter 11). And it covers
also the whole classical propositional calculus, with a particular way of un-
derstanding normalization involving zero proofs (see §1.6 and §§14.2-3). We
do not pretend this particular way of understanding normalization in the
presence of negation is the only possible one, but in the absence of negation
we feel pretty secure, and the match between the two conjectures is indeed
very good. Gentzen’s cut elimination procedure for plural-sequent systems
needs only to be modified in a natural way by admitting union of proofs, a
rule that in this context amounts to the mix rule of linear logic (see Chap-
ters 8 and 10). Admitting union of proofs saves Gentzen’s cut-elimination
procedure from falling into preorder and triviality. Our cut-elimination pro-
cedure differs also from Gentzen’s in the way how it treats the structural
rule of contraction, but in this respect it is more in the spirit of Gentzen.
(We will point down at appropriate places in §§11.1-2 how our procedure
is related to Gentzen’s.)

Zero proofs (which were mentioned already in the preface) come up with
negation. Their appearance is imposed by our wish to have coherence with
respect to Rel. With other graphical categories they may disappear, but at
the cost of many problems (which we discuss in §14.3). In particular, the
match between the Normalization and the Generality Conjectures would
be impaired (see §14.3). The price we have to pay with our categorification
of the notion of Boolean algebra is that not all connectives will be tied
to adjoint functors, as required by Lawvere. Conjunction and disjunction
are tied to the usual adjunctions with the diagonal functor (the product
bifunctor is right-adjoint to the diagonal functor, and the coproduct bifunc-
tor is left-adjoint to the diagonal functor), but distribution is an additional
matter, not delivered by these adjunctions, and classical negation and impli-
cation do not come with the usual adjunctions. (There are perhaps hidden
adjunctions of some kind here.) Another price we have to pay with zero
proofs is that all theorems, i.e. all propositions proved without hypotheses,
will have zero proofs. So the theorems of classical propositional logic, in
contradistinction to their intuitionistic counterparts, do not serve to encode
the deductive metatheory of classical propositional logic. This metatheory

§1.4. The Generality Conjecture 23

exists, nevertheless, and its categorification is not given by categories that
are preorders.

When we compare the two conjectures we should say something about
their computational aspects. With the Normalization Conjecture we have
to rely in intuitionistic logic on reduction to a unique normal form in
the typed lambda calculus in order to check equivalence of derivations in
the conjunction-implication fragment of intuitionistic propositional logic.
Nothing more practical than that is known, and such syntactical methods
may be tiresome. Outside of the conjunction-implication fragment, in the
presence of disjunction and negation, such methods become uncertain.

Methods for checking equivalence of derivations in accordance with the
Generality Conjecture, i.e. methods suggested by coherence results, often
have a clear advantage. This is like the advantage truth tables have over
syntactical methods of reduction to normal form in order to check tauto-
logicality. However, the semantical methods delivered by coherence results
have this advantage only if the graphical category is simple enough, as our
category Rel is. When we enter into categories suggested by knot the-
ory, this simplicity may be lost. Then, on the contrary, syntax may help
us to decide equality in the graphical category. The Normalization Con-
jecture has made a foray in theoretical computer science, in the area of
typed programming languages. It is not clear whether one could expect the
Generality Conjecture to play a similar role.

The reflexive and transitive closure of the immediate-reducibility rela-
tion involved in normalization may be deemed more important than the
equivalence relation engendered by immediate reducibility, which we have
considered up to now. This matter leads outside our topic, which is identity
of proofs, but it is worth mentioning. We may “categorify” the identity re-
lation between proofs, and consider not only other relations between proofs,
but maps between proofs. The proper framework for doing that seems to
be the framework of weak 2-categories, where we have 2-arrows between
arrows; or we could even go to n-categories, where we have n+1-arrows be-
tween n-arrows (one usually speaks of cells in this context). Composition of
1-arrows is associative only up to a 2-arrow isomorphism, and analogously
for other equations between 1-arrows. Identity of 1-arrows is replaced by
2-arrows satisfying certain coherence conditions. In the context of the Gen-

24 CHAPTER 1. INTRODUCTION

erality Conjecture, we may also find it natural to consider 2-arrows instead
of identity. The orientation would here be given by passing from a graph
with various “detours” to a graph that is more “straight”, which need not
be taken any more as equal to the original graph.

With all this we would enter into a very lively field of category theory,
interacting with other disciplines, mainly topology (see [96] and papers cited
therein). The field looks very promising for general proof theory, both from
Prawitz’s and from Lambek’s point of view, but, as far as we know, it has
not yet yielded to proof theory much more than promises.

§1.5. Maximality

The fragments of logic mentioned in the preceding section where the Nor-
malization Conjecture and the Generality Conjecture agree for intuitionistic
logic all possess a property called maximality. Let us say a few words about
this important property.

For the whole field of general proof theory to make sense, and in partic-
ular for considering the question of identity criteria for proofs, we should
not have that any two derivations with the same premise and conclusion
are equivalent. Otherwise, our field would be trivial.

Now, categories with finite nonempty products, cartesian categories and
categories with finite nonempty products and coproducts have the following
property. Take, for example, cartesian categories, and take any equation in
the language of free cartesian categories that does not hold in free cartesian
categories. If a cartesian category satisfies this equation, then this category
is a preorder. We have an exactly analogous property with the other sorts
of categories we mentioned (see §9.3 and §9.5). This property is a kind of
syntactical completeness, analogous to the Post completeness of the usual
axiomatizations of the classical propositional calculus. Any extension of
the equations postulated leads to collapse.

Translated into logical language, this means that Prawitz’s equivalence
relation for derivations in conjunctive logic, disjunctive logic and conjunctive-
disjunctive logic without distribution and without > and ⊥, which in all
these cases agrees with our equivalence relation defined via generality in
the sense of Rel, is maximal. Any strengthening, any addition, would yield

§1.5. Maximality 25

that any two derivations with the same premise and the same conclusion
are equivalent.

If the right-to-left direction of the Normalization Conjecture holds, with
maximality we can efficiently justify the left-to-right direction, which Pra-
witz found problematic in [112], and about which Kreisel was thinking
in [83]. In the footnote on p. 165 of that paper Kreisel mentions that
Barendregt suggested this justification via maximality. Suppose the right-
to-left direction of the Normalization Conjecture holds, suppose that for
some premise and conclusion there is more than one proof, and suppose
the equivalence relation is maximal. Then if two derivations represent the
same proof, they are equivalent. Because if they were not equivalent, we
would never have more than one proof with a given premise and a given
conclusion. Nothing can be missing from our equivalence relation, because
whatever is missing, by maximality, leads to collapse on the side of the
equivalence relation, and, by the right-to-left direction of the conjecture, it
also leads to collapse on the side of identity of proofs.

Prawitz in [112] found it difficult to justify the left-to-right direction of
the Normalization Conjecture, and Kreisel was looking for mathematical
means that would provide this justification. Maximality is one such means.

Establishing the left-to-right direction of the Normalization Conjecture
via maximality is like proving the completeness of the classical propositional
calculus with respect to any kind of nontrivial model via Post completeness
(which is proved syntactically by reduction to conjunctive normal form).
Actually, the first proof of this completeness with respect to tautologies was
given by Bernays and Hilbert exactly in this manner (see [135], Sections
2.4 and 2.5; see also [66], Section I.13, and §9.3 below).

Maximality for the sort of categories mentioned above is proved with the
help of coherence in [46] and [48] (which is established proof-theoretically,
by normalization, cut elimination and similar methods; see Chapter 9).
Coherence is helpful in proving maximality, but maximality can also be
proved by other means, as this is done for cartesian closed categories via a
typed version of Böhm’s theorem in [121], [117] and [45]. This justifies the
left-to-right direction of the Normalization Conjecture also for the impli-
cational and the conjunction-implication fragments of intuitionistic logic.
The maximality of bicartesian closed categories, which would justify the

26 CHAPTER 1. INTRODUCTION

left-to-right direction of the Normalization Conjecture for the whole of in-
tuitionistic propositional logic is, as far as we know, an open problem. (A
use for maximality similar to that propounded here and in [45] and [46] is
envisaged in [133].)

In [38] (Section 4.11) it is proved that the general notion of adjunction is
also maximal in some sense. The maximality we encountered above, which
involves connectives tied to particular adjunctions, cannot be derived from
the maximality of the general notion of adjunction, but these matters should
not be foreign to each other.

Since we find maximality an interesting property, we pay attention to
it in this book where we could establish it with the help of our coherence
results, and where it is not a trivial property. Besides the maximality results
from Chapter 9, mentioned above, there are analogous results in §12.3, §12.5
and §13.3. We also pay attention to maximality in cases where it cannot
be established (see §10.3 and §11.5). In some cases where it does not hold,
we still have relative maximality results (see §9.7, §11.5 and §12.5).

§1.6. Union of proofs and zero proofs

Gentzen’s plural-sequent system for classical logic has implicitly a rule of
union, or addition, of derivations, which is derived as follows:

contractions

f : A ` B

θR
Cf : A ` B,C

g : A ` B

θL
Cg : C, A ` B

cut(θR
Cf, θL

Cg) : A,A ` B, B

f ∪ g : A ` B

Here θR
Cf and θL

Cg are obtained from f and g respectively by thinning on
the right and thinning on the left, and cut(θR

Cf, θL
Cg) may be conceived as

obtained by applying to f and g a limit case of Gentzen’s multiple-cut rule
mix, where the collection of mix formulae is empty. A related principle was
considered under the name mix in linear logic (see §8.1).

In a cut-elimination procedure like Gentzen’s, f ∪ g is reduced either
to f or to g (see [60], Sections III.3.113.1-2). If we have f ∪ g = f and
f ∪ g = g, then we get immediately f = g, that is collapse and triviality.

§1.6. Union of proofs and zero proofs 27

In [64] (Appendix B.1 by Y. Lafont; see also [67], Section 1) this is taken
as sufficient ground to conclude that cut elimination in the plural-sequent
system for classical logic must lead to preorder and collapse. (In [64], the
inevitability of this collapse is compared to the argument presented after
Proposition 1 of §14.3, which shows that a plausible assumption about clas-
sical negation added to bicartesian closed categories leads to preorder, but
these are different matters.) To evade collapse we may try keeping only one
of the equations f ∪g = f and f ∪g = g, and reject the other; then we must
also reject the commutativity of ∪, but it seems such decisions would be
arbitrary. (For similar reasons, even without assuming the commutativity
of ∪, the assumptions of [127], p. 232, C.12, lead to preorder.) There is,
however, a way to evade collapse here that is not arbitrary. The modifica-
tion of Gentzen’s cut-elimination procedure expounded in Chapter 11 (see
also §12.5) and our coherence results (more precisely, the easy, soundness,
i.e. functoriality, parts of these results) testify to that.

The Generality Conjecture tells us that we should have neither f∪g = f

nor f ∪ g = g. The union of two graphs may well produce a graph differing
from each of the graphs entering into the union. It also tells us that union
of proofs should be associative and commutative. The idempotency law
f∪f = f is imposed by Rel, but it stands apart, and with another graphical
category, we may do without it (see §12.5). Without idempotency, union of
proofs is rather addition of proofs. Our way out of the problematic situation
Gentzen found himself in is to take into account union or addition of proofs.
(Besides [40], section 7, the paper [5], which deals with cut elimination in
affine logic, also makes a similar suggestion.)

If we have union of proofs, it is natural to assume that we also have
for every formula A and every formula B a zero proof 0A,B : A ` B, with
an empty graph, which with union of proofs makes at least a commutative
monoid; with idempotency, it gives the unit of a semilattice. We may
envisage having zero proofs 0A,B : A ` B only for those A and B where
there is also a nonzero proof from A to B, as we do in our categorification of
the notion of Boolean algebra, but the more sweeping assumption involving
every A and every B makes sense too.

We should immediately face the complaint that with such zero proofs we
have entered into inconsistency, since everything is provable. That is true,

28 CHAPTER 1. INTRODUCTION

but not all proofs have been made identical, and we are here not interested
in what is provable, but in what proofs are identical. If it happens—and
with the Generality Conjecture it will happen indeed—that introducing
zero proofs is conservative with respect to identity of proofs that do not
involve zero proofs, then it is legitimate to introduce zero proofs, provided it
is useful for some purpose. This is like extending our mathematical theories
with what Hilbert called ideal objects; like extending the positive integers
with zero, or like extending the reals with imaginary numbers.

The use of union of proofs is that it saves the agreement between the
Normalization and Generality Conjectures in the presence of distribution,
as we said in §1.4. The use of zero proofs is that it does the same in
the presence of negation. The idempotency of union is essential in the
absence of zero proofs, but not in their presence. Without idempotency
our graphical category in the case of conjunctive-disjunctive logic turns up
to be a category whose arrows are matrices, rather than the category Rel.
Composition becomes matrix multiplication, and union is matrix addition.
And in the presence of zero matrices, we obtain a unique normal form like
in linear algebra: every matrix is the sum of matrices with a single 1 entry.

A number of logicians have sought a link between logic and linear alge-
bra, and here is such a link. We have it not for an alternative logic, but for
classical logic. We have it, however, not at the level of provability, but at
the level of identity of proofs.

The unique normal form suggested by linear algebra is not unrelated
to cut elimination. In the graphical category of matrices the result of
cut elimination is obtained by multiplying matrices, and the equations of
this category yield a cut-elimination procedure. They yield it even in the
absence of zero proofs, provided we have 1+1 = 1. Unlike Gentzen’s
cut-elimination procedures for classical logic, the new procedure admits a
commutative addition or union of proofs without collapse. So, in classical
logic, the Generality Conjecture is not foreign to cut elimination, and hence
it is not foreign to the Normalization Conjecture, provided we understand
the equivalence relation involved in this conjecture in a manner different
from Prawitz’s.

This need not exhaust the advantages of having zero proofs. They may
be used also to analyze disjunction elimination. Without pursuing this

§1.7. Strictification 29

topic very far, let us note that passing from A ∨ B to A involves a zero
proof from B to A, and passing from A∨B to B involves a zero proof from
A to B. If next we are able to reach C both from A and from B, we may
add our two proofs from A∨B to C, and so to speak “cancel” the two zero
proofs.

Logicians were, and still are, interested mostly in provability, and not
in proofs. This is so even in proof theory. When we address the question
of identity of proofs we have certainly left the realm of provability, and
entered into the realm of proofs. This should become clear in particular
when we introduce zero proofs.

§1.7. Strictification

Strictification is inverse to categorification. While categorification usually
(but not always) involves splitting objects, strictification involves identify-
ing objects. Factoring a set through an equivalence relation, i.e. replacing
the objects of a set by equivalence classes of objects of this set, is a simple
example of strictification. Logicians are very used to a kind of strictifi-
cation that may be called “lindenbaumization”, by which the algebra of
formulae of conjunctive logic is replaced by a freely generated semilattice,
or the algebra of formulae of intuitionistic propositional logic is replaced by
a freely generated Heyting algebra, or the algebra of formulae of classical
propositional logic is replaced by a freely generated Boolean algebra. The
equivalence relation involved in these strictifications is mutual implication.

In this book we are, however, interested in strictification of categories.
Precise notions of strictification, which we need for our work, will be intro-
duced in Chapter 3. Let us say for the time being that the simpler of these
notions is a kind of partial skeletization of a category. An equivalence rela-
tion, induced by a subcategory that is a groupoid and a preorder, is used to
replace the objects of the category by equivalence classes of objects. In the
other, more general and more involved notion, the partial skeletization is
applied to a category generated out of a given category. (We are aware this
preliminary rough description of the matter cannot be very informative.)
After strictification, objects are replaced by equivalence classes, which may
correspond to sequences, or multisets, or sets, or structures of that kind.

30 CHAPTER 1. INTRODUCTION

The idea is to obtain a strictified category equivalent to the initially
given category in which computations are easier to record, because some
arrows that were not identity arrows, like, typically, associativity isomor-
phisms, are replaced by identity arrows (see Chapters 5-8 and 11). This
equivalence of categories is not meant to be any equivalence, but an equiv-
alence via functors that preserve a particular categorial structure at least
up to isomorphism. For that we will define precisely what it means for a
functor to preserve a structure, such as interests us, up to isomorphism (see
§2.8).

We were inspired by previous attempts to define this notion of functor
for monoidal categories, and by the ensuing strictification results of Joyal
and Street in [72] (Section 1) and of Mac Lane in [102] (Sections XI.2-
3). We do not, however, find these definitions and results sufficient for
our purposes, even when only the monoidal structure is strictified. We
need something more general. We envisage strictifying structures other
than just monoidal, and we will have occasion in this book to strictify also
with respect to symmetry (see §6.5, §7.6 and §8.4). Another limitation of
previous strictification results for monoidal categories is that they do not
take into account that the monoidal structure may be just a part of a more
complex ambient structure, and that the functors involved in equivalence
should preserve this ambient, not strictified, structure up to isomorphism.
To have just the monoidal structure preserved is rather useless from our
point of view (see §3.1).

Our results on strictification will be much more general, but they are
not such that they could not be further generalized. In particular, in defin-
ing the categorial structure preserved by our functors up to isomorphism
we have presupposed that this structure is defined only with covariant bi-
nary endofunctors. A natural generalization is to take here into account
also endofunctors of arbitrary arity, covariant in some argument-places and
contravariant in others. We suppose that our results can be extended to
cover such situations too. For the applications we need it was, however,
enough to cover the simpler situation, excluding contravariance, and we
did just that. We were afraid of complicating further a matter already full
of details, to prove results for which we have no immediate application. (As
Mac Lane says in [100], p. 103: “... good general theory does not search

§1.7. Strictification 31

for the maximum generality, but for the right generality.”)
So our notion of logical system in the next chapter involves only con-

junction and disjunction as binary connectives, together with the constants
> and ⊥. Implication is excluded, and negation is left for the end of the
book. To cover these other connectives, we would need to extend our no-
tion of logical structure to permit contravariance. We assume this can be
done in a straightforward manner at the cost of complicating notation. We
refrain, however, from doing so in this book, whose central piece is about
conjunctive-disjunctive logic, and where negation appears only at the end.
Anyway, as far as strictification goes, this limited notion of logical system
is sufficient for our purposes.

Classical implication, defined in the usual way in terms of disjunction
and negation, does not come out as a very important connective in our
proof-theoretical perspective. It is not much of an implication, if the role of
implication is to help in mirroring the deductive metatheory in the object
language. Intuitionistic implication plays that role better.

Our results on strictification are still somewhat more general than what
we strictly need. In strictifying a binary connective like conjunction, purely
conjunctive formulae may be replaced by equivalence classes that corre-
spond to sequences, or multisets, or sets, of the atomic formulae joined by
conjunction. For our purposes, we could have stuck to the first two stric-
tifications, but with our general treatment we cover also the third. With
that, we stay within the limits of covariance.

Strictification, though an interesting topic on its own, is not absolutely
essential for our main topic—coherence. It is for us just a tool, we could
have dispensed with in principle. That would, however, be at the cost of
making already pretty long records even longer. So strictification is for us
a rather useful tool.

It is a tool more useful for recording computations than for discovering
how they should be done. Blurring distinctions may sometimes hinder this
discovery.

It is remarkable that the general notion of strictification may be found
implicit in Gentzen’s sequent systems, as we will try to explain in §11.1, in
the central chapter of the book.

Chapter 2

Syntactical Categories

In this chapter, which is of a preliminary character, we define the notions of
syntactical categories needed for our work. In particular, we introduce the
notion of logical category (which should not be confused with the homony-
mous notion of [104], Section 3.4). Logical categories are obtained from
logical systems in a propositional language by replacing derivations with
equivalence classes of derivations. The equivalence producing these classes
is of general mathematical interest, but it has also proof-theoretical mean-
ing, so that the equivalence classes may be identified with proofs. This
presupposes some notions of logic and category theory, which will be duly
defined.

Many of these notions are quite standard, and we go over them just
to fix terminology. Something less standard may be found in the section
on definable connectives, where some intricacies inherent in this notion are
made manifest. A new matter is also detailed definitions of notions of
functors preserving the structure of a logical category. We are interested
in particular in those of these functors that preserve the structure up to
isomorphism. These definitions prepare the ground for Chapter 3. We treat
these matters in generality greater than we strictly need after that chapter.
It is not essential to master all the details we go into in order to follow the
exposition later on.

After these syntactical matters, we introduce at the end of the chapter
a category that will serve as the main model of our logical categories. This
model, which is in the realm of a semantics of proofs, and not in the realm

33

34 CHAPTER 2. SYNTACTICAL CATEGORIES

of the usual semantics of propositions, is the category whose arrows are
relations between finite ordinals—a category tied to the notion of natural
transformation. This category will serve for our coherence results. Our
syntax is linked to this model by functors that preserve the structure “on
the nose”, i.e. up to an isomorphism that is identity.

§2.1. Languages

A language is a set of words, each word being a finite (possibly empty)
sequence of symbols. A symbol is a mathematical object of any kind. The
length of a word is the number of occurrences of symbols in it, and this
is the most standard measure of the complexity of a word. In particular
cases, however, we may rely on various other measures of complexity, like,
for example, the number of occurrences of some particular kind of symbol.

We introduce first several languages of the kind logicians call propo-
sitional languages. Such languages are generated from a set P of symbols
called letters; logicians would call them propositional letters or propositional
variables. Sometimes we require that P be infinite (see the end of §2.8),
but P can also be finite, and even empty. Since nothing in particular is
assumed about P, the symbols of P can be arbitrary mathematical objects,
and the definitions of notions built on P (such as that of logical system and
logical category; see §§2.6-7 below) do not depend on the particular P that
was chosen.

Let π be a symbol of the kind called in logic n-ary connective, for n ≥ 0.
A 0-ary, i.e. nullary, connective is more commonly known as a propositional
constant; 1-ary are unary connectives and 2-ary connectives are binary con-
nectives. We assume, as usual, that P is disjoint from the set of connectives.
Then a language L such as we need is built up with inductive clauses of the
following kind:

(P) P ⊆ L,

(π) if A1, . . . , An ∈ L, then πA1. . . An ∈ L.

It is assumed here that π is an n-ary connective. If n = 0, then A1. . . An is
the empty sequence, and π ∈ L. We have an analogous convention for all

§2.1. Languages 35

sorts of sequences that will appear in this work: if n = 0, then x1. . . xn or
x1, . . . , xn is the empty sequence, and {x1, . . . , xn} is the empty set ∅.

The elements of L are called formulae; logicians would say propositional
formulae. We use p, q, . . . , sometimes with indices, as variables for letters,
i.e. elements of P, and A, B, . . . , sometimes with indices, as variables for
formulae. The elements of P and nullary connectives are called atomic
formulae. The letter length of a formula is the number of occurrences of
letters in it.

We reserve ζ for nullary connectives and ξ for binary connectives. The
formula ξξpqp, which is in the Polish, prefix, notation, is more commonly
written ((p ξ q) ξ p), and we will favour this common, infix, notation for
binary connectives. Polish notation is handy for dealing with n-ary con-
nectives where n ≥ 3, but in the greatest part of this work we will have just
nullary and binary connectives. A unary connective appears in Chapter 14.
(Notation for unary connectives that would not be Polish, like Hilbert’s
negation Ā, is uncommon in propositional logic; for nullary connectives
there is no alternative.) We assume that we have as auxiliary symbols the
right parenthesis) and the left parenthesis (, which are neither letters nor
connectives, with whose help we formulate the clause

if A,B ∈ L, then (A ξ B) ∈ L.

This clause replaces (π) for binary connectives. As usual, we take the
outermost parentheses of formulae for granted, and omit them.

Consider a binary relation T on a set of elements called nodes such that
when xTy we say x is the predecessor of y, or y is the successor of x. A path
from a node x to a node y is a sequence x1. . . xn, with n ≥ 1, such that x

is x1 and y is xn, while for every i ∈ {1, . . . , n−1} we have xiTxi+1. A root
is a node without predecessors, and a leaf a node without successors. We
say that a node is of n-ary branching, with n ≥ 0, when it has n successors.
So leaves are of nullary branching.

A finite tree is such a relation T where the set of nodes is finite, there is
exactly one root and every node except the root has exactly one predecessor.
It is clear that in every finite tree there is exactly one path from the root
to each node.

36 CHAPTER 2. SYNTACTICAL CATEGORIES

The height of a node in a finite tree is the number of nodes in the path
from the root to this node. A finite tree is planar when all nodes of the same
height n ≥ 1 are linearly ordered by a relation <n such that if x1Tx2 and
y1Ty2 and x1 <n y1, then x2 <n+1 y2. When for two nodes x and y of the
same height we have x <n y with this linear order, we say that x is on the
left-hand side of y. Every formula of a language corresponds to a planar
finite tree whose leaves are labelled with letters and nullary connectives,
and whose remaining nodes are labelled with n-ary connectives for n ≥ 1.

The language Lπ1,...,πm
has exactly π1, . . . , πm as connectives. We are

in particular interested in the languages where ξ ∈ {∧,∨} and ζ ∈ {>,⊥}.
These are the languages L∧, L∨, L∧,>, L∨,⊥, L∧,∨ and L∧,∨,>,⊥.

We use the word subword as usual: every word is a subword of itself,
and if w1w2 is a subword of a word w, then w1 and w2 are subwords of
w. A proper subword of a word w is a subword of w different from w. A
subformula of a formula is a subword that is a formula. The subformulae A

and B are the main conjuncts of A ∧B, and the main disjuncts of A ∨B.
Let w(A) be the word obtained by deleting all parentheses in a formula

A of a language L. We say that the formulae A and B of L are comparable
when w(A) and w(B) are the same word.

A place in A is a subword w′ of w(A). There is an obvious deleting map
δ from subwords of A to places in A. We say that a subword v of A is at a
place w′ when δ(v) = w′. (Note that different subwords of A can be at the
same place.) For A and B comparable, a subword w1 of A and a subword
w2 of B are at the same place when δ(w1) = δ(w2).

We say, as usual, that an occurrence y of a symbol is within the scope of
an occurrence x of an n-ary connective in a formula A when in A we have a
subformula of the form xA1. . . An with y being in Ai for one i ∈ {1, . . . , n}.
We say that y is within the immediate scope of x when y is within the scope
of x and there is no occurrence of a connective z within the scope of x such
that y is within the scope of z.

§2.2. Syntactical systems

A graph is a pair of functions, called the source function and the target
function, from a set of elements called arrows to a set of elements called

§2.2. Syntactical systems 37

objects. We use f , g, . . . , sometimes with indices, as variables for arrows
and a, b, . . . , sometimes with indices, as variables for objects. In many cases
in this work, objects will be formulae of a language such as we introduced
in the preceding section, but we also need the more general notion.

The expression f : a ` b means that the source function assigns a to f

and the target function assigns b to f ; we call a and b the source and target
of f , respectively. In category theory, ` is usually written →, but we keep
→ for other purposes (for functions and implication), and we stress with
the logical turnstile symbol ` the proof-theoretical interpretation of our
work. We call a ` b, which is just a peculiar notation for the ordered pair
(a, b), the type of f : a ` b. A hom-set in a graph is the set of all arrows
of the same type for a given type. A graph where for every f, g : a ` b we
have f = g, i.e. where hom-sets are either empty or singletons, amounts to
a binary relation R on the set of its objects such that (a, b) ∈ R iff there is
an arrow of type a ` b in the graph.

For a given graph G, the dual graph Gop is defined by interchanging the
source and target functions; namely, the source function of Gop is the target
function of G, and the target function of Gop is the source function of G,
while the sets of objects and arrows are the same. An object b in a graph
G is terminal when for every object a in G there is a unique arrow of G of
a type a ` b, and b is initial in G when it is terminal in Gop.

A deductive system (in the sense of [90], Section I.1) is a graph that
must have for every object a an identity arrow 1a : a ` a, and whose arrows
are closed under the partial operation of composition:

f : a ` b g : b ` c

g ◦ f : a ` c

This fractional notation, taken over from the notation for rules in logic,
conveys that if f : a ` b and g : b ` c are in the deductive system, then
g ◦ f : a ` c is in the deductive system. We use an analogous notation in
other cases.

A deductive system is discrete when all of its arrows are identity ar-
rows. A deductive system is a preorder when for every f, g : a ` b in this
deductive system we have f = g. A deductive system that is a preorder
amounts to a preordering, i.e. reflexive and transitive, relation on the set

38 CHAPTER 2. SYNTACTICAL CATEGORIES

of its objects. A preorder is a partial order when the preordering relation is
antisymmetric. Every discrete deductive system is a preorder, but not vice
versa. In principle, one can envisage the empty deductive system, with an
empty set of arrows and an empty set of objects, but we have no interest
in it for our work, and we will exclude it.

The notion of deductive system is a generalization of the notion of cat-
egory. A category is a deductive system in which the following equations,
called categorial equations, hold between arrows:

(cat 1) f ◦1a = 1b ◦ f = f : a ` b,

(cat 2) h ◦ (g ◦ f) = (h ◦ g) ◦ f.

This notion of category covers only small categories, but in this work, where
we have no foundational ambitions, we have no need for categories whose
collections of objects or arrows are bigger than sets. When we speak oc-
casionally of the category Set of sets with functions, we assume that the
collection of objects of this category is the domain of a model of first-order
axiomatic set theory, and hence it is a set. The functions between the ele-
ments of this domain also make a set. We make an analogous assumption
for other categories mentioned in this book that seem not to be small.

A syntactical system is a particular kind of deductive system where
arrows make an inductively defined language, whose members are called
arrow terms. Arrow terms are words defined inductively out of primitive
arrow terms with the help of symbols tied to partial or total finite operations
on arrow terms and the auxiliary symbols of right and left parentheses. A
subterm of a term is a subword that is a term.

Among the primitive arrow terms we must have the identity arrow
terms, which make the identity arrows of the deductive system (so we must
have them for every object), and among the symbols for operations on
arrow terms we must have one tied to composition:

f : a ` b g : b ` c

(g ◦ f) : a ` c

(As we said above, this is read: “If f of type a ` b and g of type b ` c are
arrow terms, then the word (g ◦ f) is an arrow term of type a ` c.”) So,
officially, parentheses in arrow terms involving ◦ are compulsory; but, as

§2.3. Equational systems 39

usual, we will omit outermost parentheses, and other parentheses if this can
be done without engendering ambiguity. Note that here ◦ is just a symbol.
The operation of composition tied to this symbol is the operation assigning
to the pair of words (f, g), of the types a ` b and b ` c respectively, the
word (g ◦ f), of type a ` c.

We say that a graph G1 is a subgraph of a graph G2 when the objects
and arrows of G1 are included respectively in the objects and arrows of G2

and the arrows of G1 have in G1 the same source and target as in G2.
A deductive system D1 is a subsystem of a deductive system D2 when

D1 is a subgraph of D2, the identity arrows of D1 are identity arrows in D2

and for every pair of arrows (f : a ` b, g : b ` c) of D1 their composition in
D1 is equal to their composition in D2. A subcategory is a subsystem of a
category. A subcategory must be a category.

An arrow f in a deductive system is mono when for every g and h the
equation f ◦ g = f ◦h implies g = h, and f is epi when for every g and h

the equation g ◦ f = h ◦ f implies g = h.
An arrow f : a ` b in a deductive system D is an isomorphism when

there is an arrow g : b ` a in D such that g ◦ f = 1a and f ◦ g = 1b. The
arrows f and g are here inverses of each other. Isomorphisms in categories
are mono and epi. A category in which every arrow is an isomorphism is a
groupoid. If there is an isomorphism of type a ` b, then a and b are said to
be isomorphic.

A subsystem D1 of a deductive system D2 is full when for every arrow
f : a ` b of D2 if the objects a and b are in D1, then f is in D1. The partial
skeleton A′ of a category A is a full subcategory of A such that for every
object a of A there is in A′ an object a′ isomorphic to a in A. (So every
category is a partial skeleton of itself.) If in this definition we require that
the object a′ be unique, then A′ is called simply a skeleton. A skeleton is
unique up to isomorphism of categories (see §2.4); so it is usual to speak
about the skeleton of a category.

§2.3. Equational systems

An equation in a syntactical system S is a word f = g where f and g are
arrow terms of S of the same type. An equational system E in S is a set of

40 CHAPTER 2. SYNTACTICAL CATEGORIES

equations in S such that the following conditions are satisfied:

(re) f = f is in E for every arrow term f of S;

(sy) if f = g is in E , then g = f is in E ;

(tr) if f = g and g = h are in E , then f = h is in E ;

(co) if f1 = g1, . . . , fn = gn for n ≥ 1 are in E , then of1. . . fn = og1. . . gn

is in E , where of1. . . fn and og1. . . gn are arrow terms of S produced
by an n-ary operation o on arrow terms.

For the congruence condition (co) to make sense, the operation o must be
such that if fi is of the same type as gi, for i ∈ {1, . . . , n}, then of1. . . fn is
of the same type as og1. . . gn. We envisage only operations of this kind.

As in propositional languages above, when the arity of o is not greater
than 2, we favour the infix notation with parentheses; so we write f1of2

(with outermost parentheses omitted) instead of of1f2.
Consider the smallest equivalence relation ≡ on the arrow terms of S

that satisfies f ≡ g iff f = g is in E . With the help of ≡ we build a deductive
system called S/E . The objects of S/E are the objects of S, and its arrows
are equivalence classes [f] of the arrow terms f of S with respect to ≡.
The identity arrows of S/E are the equivalence classes of the identity arrow
terms of S, and for every n-ary operation o of S, including in particular
composition, we define an operation on equivalence classes by

o[f1] . . . [fn] =df [of1. . . fn].

The condition (co) above guarantees the correctness of this definition.
Most often, we do not write concrete equations, but equations with

variables, like the categorial equations in the preceding section, where f , g

and h are variables for arrows, while a and b are variables for objects. As
usual, we call equations with variables simply equations. We say that such
an equation belongs to an equational system E in S when every instance of
it, with arrow terms of S substituted for variables for arrows and names
of objects of S substituted for variables for objects, is an element of E .
In producing these instances we, of course, pay attention to types. For
example, in instances of the categorial equation (cat 1) we have that a is

§2.3. Equational systems 41

the source of f , while b is its target, and in instances of (cat 2) we have
that f , g and h have types that permit composition.

We say that an equation with variables holds in a graph G when every
substitution instance of it holds in G. (That such an instance holds in G
means, of course, that the names on the two sides of the equation sign
= name the same thing.) It is quite common to understand holding of
equations with variables in this universal manner, and that is how we will
understand it, unless stated otherwise. That is how we understood holding
for the categorial equations in the definition of category. Instead of saying
that an equation holds in G, we may say, synonymously, that it is satisfied
in G, or, simply, that we have it in G.

To name the arrows of S/E , we use the arrow terms of S, so that an
arrow term names the equivalence class to which it belongs. Synonyms of
name are designate, denote and stand for. Then every equation of E will
hold in S/E . We say that the arrow terms f1 and f2 of S are equal in S/E
when f1 = f2 holds in S/E , which is equivalent with the equation f1 = f2

belonging to E .

If the categorial equations belong to E , then S/E is a category, and, since
such categories arise out of syntactical systems, we call them syntactical
categories. We say that the category S/E is in the system S. If only
instances of f = f are in E , then S/E is S itself.

A set of axioms Ax of an equational system E is a proper subset of the
set of equations E such that E may be generated from Ax by closing under
the rules (sy), (tr) and (co). The set of axioms need not be finite, and it
will usually be infinite in this work. Every equation of E is either an axiom
in Ax or derived from previously obtained equations by applying one of the
rules. More formally, a derivation is a finite tree of equations whose leaves
are axioms, and where each node that is not a leaf is obtained from its
successors, i.e. from nodes immediately above, by applying the rules. The
root of the tree is the equation derived.

Instead of saying that an equation holds in S/E because we can derive
it in E , we will sometimes say more simply that we can derive the equation
for S/E . This way of speaking will often prove handier later in the book,
and should not cause confusion.

42 CHAPTER 2. SYNTACTICAL CATEGORIES

§2.4. Functors and natural transformations

A graph-morphism F from a graph G1 to a graph G2 is a pair of maps, both
denoted by F , from the objects of G1 to the objects of G2 and from the
arrows of G1 to the arrows of G2, respectively, such that for every arrow
f : a ` b of G1 the type of the arrow Ff of G2 is Fa ` Fb.

A graph-morphism F from a graph G1 to a graph G2 is faithful when,
for every pair (f, g) of arrows of G1 of the same type, if Ff = Fg in G2,
then f = g in G1.

A functor F from a deductive system D1 to a deductive system D2 is
a graph-morphism from D1 to D2 such that in D2 the following equations
hold:

(fun 1) F1a = 1Fa,

(fun 2) F (g ◦ f) = Fg ◦Ff.

Note that this definition of functor is more general than the usual one,
which envisages only functors between categories. Otherwise, it is the same
definition. We generalize similarly other notions introduced below.

The productD1×D2 of the deductive systemsD1 andD2 is the deductive
system whose objects are pairs (a1, a2) such that a1 is an object of D1 and
a2 an object of D2, and analogously for arrows. The identity arrows of
D1 ×D2 are of the form (1a1 ,1a2), and composition is defined by

(g1, g2) ◦ (f1, f2) =df (g1 ◦ f1, g2 ◦ f2).

A functor B from D1 × D2 to D is called a bifunctor ; for bifunctors,
(fun 1) and (fun 2) amount to the following equations respectively:

(bif 1) B(1a,1b) = 1B(a,b),

(bif 2) B(g1 ◦ f1, g2 ◦ f2) = B(g1, g2) ◦B(f1, f2),

which we call the bifunctorial equations.
Let D0 be the trivial deductive system with a single object ∗ and a

single arrow 1∗ : ∗ ` ∗. (This deductive system is a category.) Let Dn+1

be Dn × D. It is clear that D1 is isomorphic to D. A functor from Dn to
D will be called an n-endofunctor in D. An object of D may be identified

§2.4. Functors and natural transformations 43

with a 0-endofunctor. We call a 1-endofunctor also just endofunctor, and a
2-endofunctor biendofunctor.

The identity functor I of D is the endofunctor in D for which we have
Ia = a and If = f . A functor from D1 to Dop

2 is called a contravariant
functor from D1 to D2.

A natural transformation from a functor F1 from D1 to D2 to a functor
F2 from D1 to D2 is a family τ of arrows of D2 indexed by objects of D1

such that τa is of the type F1a ` F2a, and the following equations hold in
D2 for f : a ` b an arrow of D1:

F2f ◦ τa = τb ◦F1f.

Consider now an m-endofunctor M and an n-endofunctor N in D, and
two functions µ : {1, . . . , m} → {1, . . . , k} and ν : {1, . . . , n} → {1, . . . , k}
where m,n ≥ 0 and k ≥ 0 (if m = 0, then {1, . . . ,m} = ∅; if k = 0, then
we must have m = n = 0). Then Mµ defined by

Mµ(x1, . . . , xk) =df M(xµ(1), . . . , xµ(m))

and Nν defined analogously are k-endofunctors in D. (If m = 0, then
M(f1, . . . , fm) is M(1∗).)

A family α of arrows of D such that for every sequence a1, . . . , ak

of objects of D there is an arrow αa1,...,ak
of the type Mµ(a1, . . . , ak) `

Nν(a1, . . . , ak) is called a transformation of D of arity k. We say that the
arrows f1, . . . , fk of D, such that for i ∈ {1, . . . , k} the arrow fi is of the
type ai ` bi, flow through α in D when the following equation holds in D:

(α nat) Nν(f1, . . . , fk) ◦αa1,...,ak
= αb1,...,bk

◦Mµ(f1, . . . , fk).

By the definition of natural transformation, a transformation α is a natural
transformation from the k-endofunctor Mµ of D to the k-endofunctor Nν

of D when every k-tuple of arrows of D flows through α in D. We say
that αa1,...,ak

is natural in a1, . . . , ak when it is a member of a natural
transformation. The equations (α nat) will be called naturality equations.

A natural transformation τ in a deductive system D is a natural isomor-
phism when each member of the family τ is an isomorphism. Two functors

44 CHAPTER 2. SYNTACTICAL CATEGORIES

are naturally isomorphic when there is a natural isomorphism from one to
the other.

We say that the deductive systems D1 and D2 are equivalent via a
functor F2 from D1 to D2 and a functor F1 from D2 to D1 when the
composite functor F1F2 is naturally isomorphic to the identity endofunctor
ofD1 and the composite functor F2F1 is naturally isomorphic to the identity
endofunctor of D2. It is easy to conclude that the functors via which two
categories are equivalent are faithful functors.

The deductive systems D1 and D2 are isomorphic via a functor F2 from
D1 to D2 and a functor F1 from D2 to D1 when the composite functor
F1F2 is equal to the identity endofunctor of D1 and the composite functor
F2F1 is equal to the identity endofunctor of D2. Two deductive systems
are said to be equivalent when there is a pair of functors via which they are
equivalent, and analogously for isomorphic deductive systems.

Suppose we have two syntactical systems Si, for i ∈ {1, 2}, together
with the equational systems E i in Si. A graph-morphism F from S1 to
S2 induces an obvious graph-morphism from S1/E1 to S2/E2, such that
F [f] = [Ff], provided f = g in E1 implies Ff = Fg in E2. (We do not
write [f] usually, but use the arrow term f to designate [f].) When F from
S1 to S2 is a functor, then F is a functor from S1/E1 to S2/E2.

When we have the graph-morphisms F1 from S2 to S1 and F2 from S1

to S2 such that S1/E1 and S2/E2 are isomorphic deductive systems via
functors induced by F1 and F2, we say that S1 and S2 are synonymous up
to E1 and E2 via F1 and F2. A stronger notion of synonymity of syntactical
systems, which we will usually encounter, is when F1 and F2 are functors
between S1 and S2, and not any graph-morphisms.

§2.5. Definable connectives

Let L stand for one of the languages L∧, L∨, L∧,>, L∨,⊥, L∧,∨ and L∧,∨,>,⊥
of §2.1, generated by an arbitrary set of letters P, and let L2 stand for the
language with the same connectives as L generated by the set of letters
{2}. We use M , N, . . . , sometimes with indices, for elements of L2. Let
|M | = m ≥ 0 be the number of occurrences of 2 in M , and let w1, . . . , wm

be a sequence of m arbitrary words. Later on in this work, these words will

§2.5. Definable connectives 45

denote either the objects or the arrows of a category. Then M(w1, . . . , wm)
is the word obtained by putting wi, where i ∈ {1, . . . , m}, for the i-th
occurrence of 2 in M , counting from the left.

Let Lcon be a set of pairs (M, µ), which we abbreviate by Mµ, where
M ∈ L2 and |M | = m ≥ 0, while µ is a function from {1, . . . , m} to
{1, . . . , k} for some k ≥ 0. The arity of Mµ is k. We define Mµ(w1, . . . , wk)
as M(wµ(1), . . . , wµ(m)) (cf. the definition of Mµ in the preceding section).

When w1, . . . , wk are formulae of L, the elements of Lcon stand for
the definable connectives of L. Let us consider some examples of defin-
able connectives. A primitive connective ξ ∈ {∧,∨} of L is represented
in Lcon by the definable connective (2ξ2)ι{1,2} where ι{1,2} is the iden-
tity function on {1, 2}, while ζ ∈ {>,⊥} is represented by ζι∅ where ι∅ is
the identity function on ∅, which is the empty function (the only possible
function from ∅ to ∅). If ι{1} is the identity function on {1} (the only
possible function from {1} to {1}), then 2

ι{1} is the identity unary con-
nective, for which we have 2

ι{1}(A) = A. If µ is the function from {1, 2}
to {1, 2} such that µ(x) = 3−x, then for the definable connective (2ξ2)µ

we have (2ξ2)µ(A,B) = (2ξ2)(B,A) = B ξ A. If µ is the only possible
function from {1, 2} to {1}, then for the definable connective (2ξ2)µ we
have (2ξ2)µ(A) = (2ξ2)(A,A) = A ξ A. If µ is the constant function with
value 1 from {1} to {1, 2}, then for the definable connective 2

µ we have

2
µ(A,B) = 2(A) = A.

For Mµ, Nν1
1 , . . . , Nνk

k elements of Lcon, we want to define the element
Mµ(Nν1

1 , . . . , Nνk

k) of Lcon resulting from the substitution of Nν1
1 , . . . , Nνk

k

within Mµ. In other words, we want to define generalized composition
of elements of Lcon. This notion is rather simple when µ is an identity
function, but in the general case we have the following, more involved,
definition.

Let Mµ be of arity k such that |M | = m, and let Nνi
i , for i ∈ {1, . . . , k},

be of arity li with |Ni| = ni. To define the element Mµ(Nν1
1 , . . . , Nνk

k) of
Lcon of arity

∑

1≤j≤k

lj

we must first define what it means to substitute the functions ν1, . . . , νk

46 CHAPTER 2. SYNTACTICAL CATEGORIES

within the function µ.
Let

π(i) =
∑

1≤j≤i

nµ(j), λ(i) =
∑

1≤j≤i

lj ,

and let β : {1, . . . , π(m)} → {1, . . . ,m} be defined by

β(x) =df min{i | x ≤ π(i)}.

Next we define the function µ(ν1, . . . , νk) : {1, . . . , π(m)} → {1, . . . , λ(k)}
by

µ(ν1, . . . , νk)(x) =df νµ(β(x))(x−π(β(x)−1)) + λ(µ(β(x))−1).

With the help of µ(ν1, . . . , νk) we define Mµ(Nν1
1 , . . . , Nνk

k) as
Mµ(N1, . . . , Nk)µ(ν1,...,νk), which is equal to M(Nµ(1), . . . , Nµ(m))µ(ν1,...,νk).

The definition of µ(ν1, . . . , νk) is pretty opaque, and we must make a
few comments on it. We will consider as an example a simple case of
µ(ν1, . . . , νk), which covers most of our needs in this book.

Let the function ν1 + ν2 : {1, . . . , n1 + n2} → {1, . . . , l1 + l2} be defined
by

(ν1 + ν2)(x) =df

{
ν1(x) if x ≤ n1

ν2(x−n1) + l1 if x > n1.

Then one can check that when m = k and µ is the identity function on
{1, . . . , m} we have

µ(ν1, . . . , νk) = ν1 + . . . + νk.

The complications of the general definition of µ(ν1, . . . , νk) above come
from the fact that we want to substitute within the function µ the functions
ν1, . . . , νk so that for every ordered pair (x, y) in µ we have a copy of
νy. These complications are not essential for many of the latter parts
of our work. In many cases, we will have for Mµ ∈ Lcon that µ is the
identity function ι{1,...,m} on {1, . . . , m}. We introduce the convention that
M ι{1,...,m} is abbreviated by M . With that in mind, the reader can forget
about the indices µ in Mµ in many places. We have preferred, however, to
state our results later on in greater generality.

§2.6. Logical systems 47

§2.6. Logical systems

We will consider in this work a particular kind of syntactical system called
logical system. A logical system C has as objects the formulae of a language
L, as in the preceding section. We say that such a logical system C is in L.
The primitive arrow terms of C come in families α. The members of α are
indexed by sequences A1, . . . , Ak, with k ≥ 0, of objects of C. With every
family α we associate two elements M and N of L2, such that |M | = m and
|N | = n, and two functions µ : {1, . . . , m} → {1, . . . , k} and ν : {1, . . . , n} →
{1, . . . , k}. The type of αA1,...,Ak

is Mµ(A1, . . . , Ak) ` Nν(A1, . . . , Ak). So
an α is a transformation in C.

In Table 1 we present most of the transformations α we need for our
work. In this table, ∅ denotes the empty function from the empty set. The
types of the members of α are as in Table 2. In the leftmost column of
that table we write down the name of the union of the families α on the
right-hand side. So the b family includes the families, i.e. transformations,
∧
b→,

∧
b←,

∨
b← and

∨
b→. Within the family b we have the subfamily

∧
b, which

includes
∧
b→ and

∧
b←, and the subfamily

∨
b, which includes

∨
b← and

∨
b→.

We have, analogously, the subfamilies
∧
δ -∧σ and

∨
δ -∨σ of the δ-σ family, and

analogously in other cases.

Of course, an α from L∧ may be found also in a wider language L∧,∨.
In practice, one of µ and ν will be the identity function, as in the trans-
formations in Table 1, but we allow for greater generality. For the sake
of uniformity, we decided to take always µ as the identity function in the
transformations with L∧ and L>, and ν as the identity function in the
transformations with L∨ and L⊥, but for ∧

c and ∨
c we could have done

otherwise. The difference in indexing ∧
cA,B and ∨

cB,A sometimes requires
additional care when passing from matters involving ∧ to matters involving
∨, but it helps to enhance the duality underlying ∧ and ∨.

The labels b, c, w and k are borrowed from the combinators B, C, W

and K of combinatory logic, d comes from “dissociativity” (see §1.2) and
m from “mix” (see §8.1). The Greek labels δ, σ and κ involve > and ⊥.

As every syntactical system, a logical system C will have the family 1
from Tables 1 and 2, which delivers its identity arrow terms. If we work
with a language in which we have ξ ∈ {∧,∨}, then for building the arrow

48 CHAPTER 2. SYNTACTICAL CATEGORIES

L α k M N m n µ(x) ν(x)

L∧
∧
b→ 3 2 ∧ (2 ∧2) (2 ∧2) ∧2 3 3 x x

L∧
∧
b← 3 (2 ∧2) ∧2 2 ∧ (2 ∧2) 3 3 x x

L∨
∨
b→ 3 2 ∨ (2 ∨2) (2 ∨2) ∨2 3 3 x x

L∨
∨
b← 3 (2 ∨2) ∨2 2 ∨ (2 ∨2) 3 3 x x

L∧,>
∧
δ→ 1 2 ∧ > 2 1 1 x x

L∧,>
∧
δ← 1 2 2 ∧ > 1 1 x x

L∧,>
∧
σ→ 1 > ∧2 2 1 1 x x

L∧,>
∧
σ← 1 2 > ∧2 1 1 x x

L∨,⊥
∨
δ→ 1 2 ∨ ⊥ 2 1 1 x x

L∨,⊥
∨
δ← 1 2 2 ∨ ⊥ 1 1 x x

L∨,⊥
∨
σ→ 1 ⊥ ∨2 2 1 1 x x

L∨,⊥
∨
σ← 1 2 ⊥ ∨2 1 1 x x

L∧ ∧
c 2 2 ∧2 2 ∧2 2 2 x 3−x

L∨ ∨
c 2 2 ∨2 2 ∨2 2 2 3−x x

L∧ ∧
w 1 2 2 ∧2 1 2 x 1

L∨ ∨
w 1 2 ∨2 2 2 1 1 x

L∧
∧
k1 2 2 ∧2 2 2 1 x 1

L∧
∧
k2 2 2 ∧2 2 2 1 x 2

L∨
∨
k1 2 2 2 ∨2 1 2 1 x

L∨
∨
k2 2 2 2 ∨2 1 2 2 x

L> ∧
κ 1 2 > 1 0 x ν = ∅

L⊥ ∨
κ 1 ⊥ 2 0 1 µ = ∅ x

L∧,∨ dL 3 2 ∧ (2 ∨2) (2 ∧2) ∨2 3 3 x x
L∧,∨ dR 3 (2 ∨2) ∧2 2 ∨ (2 ∧2) 3 3 x x
L∧,∨ m 2 2 ∧2 2 ∨2 2 2 x x
L∧,∨ m−1 2 2 ∨2 2 ∧2 2 2 x x
any 1 1 2 2 1 1 x x

Table 1

§2.6. Logical systems 49

b
∧
b→A,B,C : A∧(B∧C) ` (A∧B)∧C

∨
b→A,B,C : A∨(B∨C) ` (A∨B)∨C

∧
b←A,B,C : (A∧B) ∧C ` A∧(B∧C)

∨
b←A,B,C : (A∨B)∨C ` A∨(B∨C)

δ-σ
∧
δ→A : A ∧ > ` A

∨
δ→A : A ∨ ⊥ ` A

∧
δ←A : A ` A ∧ > ∨

δ←A : A ` A ∨ ⊥
∧
σ→A : > ∧A ` A

∨
σ→A : ⊥ ∨A ` A

∧
σ←A : A ` > ∧A

∨
σ←A : A ` ⊥ ∨A

c
∧
cA,B : A ∧B ` B ∧A

∨
cB,A: A ∨B ` B ∨A

w-k ∧
wA: A ` A ∧A

∨
wA: A ∨A ` A

∧
k1

A,B : A ∧B ` A
∨
k1

A,B : A ` A ∨B
∧
k2

A,B : A ∧B ` B
∨
k2

A,B : B ` A ∨B

κ
∧
κ A : A ` > ∨

κ A : ⊥ ` A

d dL
A,B,C : A ∧ (B ∨ C) ` (A ∧B) ∨ C

dR
C,B,A : (C ∨B) ∧A ` C ∨ (B ∧A)

mA,B : A ∧B ` A ∨B

m−1
A,B : A ∨B ` A ∧B

1A : A ` A

Table 2

50 CHAPTER 2. SYNTACTICAL CATEGORIES

terms of C we have the following clause corresponding to a total operation
on arrow terms:

f : A ` D g : B ` E

f ξ g : A ξ B ` D ξ E

together with the clause corresponding to the partial operation of compo-
sition mentioned in §1.2, with a, b and c replaced by A, B and C. This
concludes our definition of logical system.

If β is one of the families of primitive arrow terms we have introduced,
except the family 1, then we call β-terms the set of arrow terms introduced
inductively as follows: every member of β is a β-term; if f is a β-term, then
for every A in L we have that 1A ξ f and f ξ 1A are β-terms.

In every β-term there is exactly one subterm that belongs to β, which is
called the head of the β-term in question. For example, the head of the ∧

c-
term 1A∧(∧cB,C ∨1D) is ∧

cB,C . An analogous definition where β is 1, yields
arrow terms called complex identities (which are headless). Every complex
identity is equal to an identity arrow term in the presence of bifunctorial
equations.

If we build a language L(B) with the same connectives as L but with
the generating set P replaced by a set B of the same cardinality as P, then
we obtain an isomorphic copy of L. If B is not of the same cardinality
as P, then L(B) and L are not isomorphic, but one can be isomorphically
embedded into the other. So we have a function that assigns to B the
language L(B), and we call L(P) simply L.

Our notion of logical system is such that for a logical system C in L
we have a logical system C(B) in L(B). The logical system C(B) will be
isomorphic to C if P and B are of the same cardinality. The possibility to
build C(B) is ensured by requiring that the transformations α be indexed
by all k-tuples of objects of C or C(B).

So what we have really defined with C in L is not a single logical system,
but a function that assigns to an arbitrary generating set P a logical system
C(P) in L(P), which we have chosen to denote by C and L, respectively,
not mentioning P. Applied to a different generating set B of letters this
function gives the logical system C(B) in L(B).

§2.7. Logical categories 51

§2.7. Logical categories

For an equational system E in a logical system C in L, we assume whatever
we have assumed for equational systems in a syntactical system, namely
the conditions (re), (sy), (tr) and (co), plus an additional condition. For
an arrow term f : A ` B of C, let fp

c : Ap
C ` Bp

C be the arrow term of C
obtained by uniformly replacing every occurrence of a letter p of P in f

and in its type A ` B by the formula C of L. Then we assume closure of
E under substitution; namely,

(su) if f = g is in E , then fp
C = gp

C is in E .

Closure under (su) means that the letters of L behave like variables for
objects.

The equations of E will be introduced by axiomatic equations with vari-
ables in which letters of P do not occur. So we can assume these equations
for an arbitrary set P. This will also guarantee that E is closed under (su).

When the categorial equations belong to the equational systems E in
a logical system C, so that C/E is a category, and, moreover, for every
ξ ∈ {∧,∨} in the language L of C we have in E the bifunctorial equations
(bif 1) and (bif 2) of §2.4 with B instantiated by ξ ; namely, the following
equations:

(ξ 1) 1A ξ 1B = 1A ξ B ,

(ξ 2) (g1 ◦ f1) ξ (g2 ◦ f2) = (g1 ξ g2) ◦ (f1 ξ f2),

so that C/E has the biendofunctor ξ , we call the syntactical category C/E
a logical category. We say that a logical category C/E is in L when C is
in the language L, and we also say that the category C/E is in the logical
system C.

If for the families α of C the naturality equations (α nat) of §2.4 with
a1, . . . ak and b1, . . . bk replaced by A1, . . . , Ak and B1, . . . , Bk, respectively,
belong to E , then in a logical category C/E we will have the natural trans-
formations α from the k-endofunctor Mµ to the k-endofunctor Nν in C/E .
That Mµ and Nν are k-endofunctors in C/E is guaranteed by the bifuncto-
rial equations. When the naturality equations belong to E for every α of C
and C/E is a logical category we say that C/E is a natural logical category.

52 CHAPTER 2. SYNTACTICAL CATEGORIES

We separate naturality from bifunctoriality in our definition of logical
category because there are reasons to envisage logical categories that need
not be natural (cf. §14.3), though in this book bifunctoriality and naturality
will go hand in hand. (We do not envisage rejecting bifunctoriality for
logical categories, as some authors do; see §14.3.)

Here are the naturality equations for the transformations α in the tables
of the preceding section, with f : A ` D, g : B ` E and h : C ` F :

(
∧
b→ nat) ((f ∧ g) ∧ h) ◦

∧
b→A,B,C =

∧
b→D,E,F

◦ (f ∧ (g ∧ h)),

(
∧
b← nat) (f ∧ (g ∧ h)) ◦

∧
b←A,B,C =

∧
b←D,E,F

◦ ((f ∧ g) ∧ h),

(
∨
b→ nat) ((f ∨ g) ∨ h) ◦

∨
b→A,B,C =

∨
b→D,E,F

◦ (f ∨ (g ∨ h)),

(
∨
b← nat) (f ∨ (g ∨ h)) ◦

∨
b←A,B,C =

∨
b←D,E,F

◦ ((f ∨ g) ∨ h),

(
∧
δ→ nat) f ◦

∧
δ→A =

∧
δ→D ◦ (f ∧ 1>), (

∨
δ→ nat) f ◦

∨
δ→A =

∨
δ→D ◦ (f ∨ 1⊥),

(
∧
δ← nat) (f ∧ 1>) ◦

∧
δ←A =

∧
δ←D ◦ f, (

∨
δ← nat) (f ∨ 1⊥) ◦

∨
δ←A =

∨
δ←D ◦ f,

(∧σ→ nat) f ◦ ∧σ→A = ∧
σ→D ◦ (1> ∧ f), (∨σ→ nat) f ◦ ∨σ→A = ∨

σ→D ◦ (1⊥ ∨ f),

(∧σ← nat) (1> ∧ f) ◦ ∧σ←A = ∧
σ←D ◦ f, (∨σ← nat) (1⊥ ∨ f) ◦ ∨σ←A = ∨

σ←D ◦ f,

(∧c nat) (g ∧ f) ◦ ∧
cA,B = ∧

cD,E ◦ (f ∧ g),
(∨c nat) (g ∨ f) ◦ ∨

cB,A = ∨
cE,D ◦ (f ∨ g),

(∧w nat) (f ∧ f) ◦ ∧
wA = ∧

wD ◦ f, (∨w nat) f ◦ ∨
wA = ∨

wD ◦ (f ∨ f),

(
∧
k1 nat) f ◦

∧
k1

A,B =
∧
k1

D,E
◦ (f ∧ g), (

∨
k1 nat) (g ∨ f) ◦

∨
k1

B,A =
∨
k1

E,D
◦ g,

(
∧
k2 nat) g ◦

∧
k2

A,B =
∧
k2

D,E
◦ (f ∧ g), (

∨
k2 nat) (g ∨ f) ◦

∨
k2

B,A =
∨
k2

E,D
◦ f,

(∧κ nat) 1> ◦ ∧κA = ∧
κD ◦ f, (∨κ nat) f ◦ ∨κA = ∨

κD ◦1⊥,

(dL nat) ((f ∧ g) ∨ h) ◦ dL
A,B,C = dL

D,E,F
◦ (f ∧ (g ∨ h)),

(dR nat) (h ∨ (g ∧ f)) ◦ dR
C,B,A = dR

F,E,D
◦ ((h ∨ g) ∧ f),

(m nat) (f ∨ g) ◦mA,B = mD,E ◦ (f ∧ g),
(m−1 nat) (f ∧ g) ◦m−1

A,B = m−1
D,E

◦ (f ∨ g),

(1 nat) f ◦1A = 1D ◦ f.

One side of the equations (∧κ nat) and (∨κ nat) can, of course, be shortened
by using the categorial equations (cat 1), and (1 nat) is contained in (cat 1).

§2.8. C-functors 53

An arrow term of the form fn ◦ . . . ◦ f1, where n ≥ 1, with parenthe-
ses tied to ◦ associated arbitrarily, such that for every i ∈ {1, . . . , n} we
have that fi is composition-free is called factorized. In a factorized arrow
term fn ◦ . . . ◦ f1 the arrow terms fi are called factors. A factorized ar-
row term fn ◦ . . . ◦ f1 is developed when f1 is of the form 1A and for every
i ∈ {2, . . . , n} we have that fi is a β-term for some β.

Then by using the categorial and bifunctorial equations we can eas-
ily prove by induction on the length of f the following lemma for logical
categories C/E .

Development Lemma. For every arrow term f there is a developed arrow
term f ′ such that f = f ′.

Note that for a logical category C/E our way of introducing E by ax-
iomatic equations with variables in which letters of the generating set P do
not occur is such that when P is replaced by another generating set B we
have instructions for building another logical category C/E(B) in the logical
system C(B) in the language L(B). This logical category C/E(B) will be
isomorphic to C/E if P and B are of the same cardinality. The axiomatic
equations with variables assumed for E are applied to the arrow terms of
C(B). We have really defined a function that assigns to an arbitrary gen-
erating set B a logical category C/E(B), the logical category C/E(P) being
denoted simply by C/E (cf. the end of the preceding section).

When the equational system E of a logical category C/E has as axioms
the elements of a set Ax of equations, and we speak of derivations of equa-
tions of E , we need not count (su) among the rules of derivation if Ax is
closed under (su). When later we produce sets of axioms, we always assume
that they are closed under (su), so that the rules of derivation are just (sy),
(tr) and (co). Hence, in general, Ax will be an infinite set of equations,
though these equations are instances of a finite number of equations with
variables.

§2.8. C-functors

Let C be a logical system in L. Deductive systems that have

54 CHAPTER 2. SYNTACTICAL CATEGORIES

an operation ξ on objects and an operation ξ on arrows for every ξ

of L such that for f : a ` d and g : b ` e we have f ξ g : a ξ b ` d ξ e,

an object ζ for every ζ of L, and

a transformation α for every α of C

are called deductive systems of the C kind. A bifunctorial category of the
C kind is a category of the C kind in which the bifunctorial equations hold
for every ξ of C.

Let A1 and A2 be bifunctorial categories of the C kind. The operations
ξ , the objects ζ and the transformations α are indexed by 1 and 2 when
they are in A1 and A2 respectively. The type of αi

a1,...,ak
, where i ∈ {1, 2},

is Mµ
i (a1, . . . , ak) ` Nν

i (a1, . . . , ak).
A C-functor from A1 to A2 is made of

a functor F from A1 to A2,

for every ξ of C a family ψ2ξ2 of arrows of A2 indexed by objects of
A1 whose members are

ψ2ξ2
a,b : Fa ξ2 Fb ` F (a ξ1 b),

for every ζ of C an arrow ψζ : ζ2 ` F ζ1 of A2.

In practice, when we refer to a C-functor, we mention only F , taking the
families ψ for granted. They will be mentioned explicitly when this is
required.

A dual C-functor from A1 to A2 is obtained from the definition of C-
functor by replacing ψ2ξ2

a,b by

ψ̄2ξ2
a,b : F (a ξ1 b) ` Fa ξ2 Fb

and ψζ by ψ̄ζ : F ζ1 ` ζ2.
For every C-functor from A1 to A2 and every Mµ ∈ Lcon (see §2.5),

we define in A2 the family of arrows ψMµ

by induction, with the following
clauses:

§2.8. C-functors 55

(ψMµ

1) ψ2
a = 1Fa,

(ψMµ

2) ψMξN
~a,~b

= ψ2ξ2

M(~a),N(~b)
◦ (ψM

~a ξ2 ψN
~b

),

where ~a and ~b stand for a1, . . . , am and b1, . . . , bn respectively,

(ψMµ

3) ψMµ

a1,...,ak
= ψM

aµ(1),...,aµ(m)
.

We have a dual definition of ψ̄Mµ

for dual C-functors, where the clauses
(ψMµ

1) and (ψMµ

3) have just ψ replaced by ψ̄, while the clause (ψMµ

2)
is replaced by

ψ̄MξN
~a,~b

= (ψ̄M
~a ξ2 ψ̄N

~b
) ◦ ψ̄2ξ2

M(~a),N(~b)
.

We say that the members of ψMµ

are ψ-arrows.
Let Mµ

i be obtained from Mµ by replacing ξ and ζ by ξi and ζi respec-
tively. From the bifunctoriality of ξi in Ai we can deduce that Mµ

i defines
a k-endofunctor in Ai. The word 2ξi2 stands for the 2-endofunctor ξi,
the word 2 for the identity 1-endofunctor of Ai, and the word ζi for the
0-endofunctor ζi of Ai.

From the inductive definition of ψMµ

we can deduce the following equa-
tion of A2 for every C-functor:

(ψMµ

) ψ
Mµ(L

λ1
1 ,...,L

λk
k

)

~a1,..., ~ak
= ψMµ

L
λ1
1 (~a1),...,L

λk
k

(~ak)
◦Mµ

2 (ψL
λ1
1

~a1
, . . . , ψ

L
λk
k

~ak
)

where ~ai stands for a sequence b1, . . . , bl, with l ≥ 0, of objects of A1, and
the Lλi

i from the indices of ψMµ

on the right-hand side are also from A1.
It is easier to derive (ψMµ

) when the functions µ, λ1, . . . , λk are all identity
functions, and this easier equation is then used in the derivation of the
general (ψMµ

) equation.
We say that a C-functor from A1 to A2 preserves an Mµ of C (i.e. an

Mµ of Lcon, for C in L) when ψMµ

a1,...,ak
is natural in a1, . . . , ak (see §2.4);

this means that the following equation holds in A2:

(ψ nat) FMµ
1 (f1, . . . , fk) ◦ψMµ

a1,...,ak
= ψMµ

b1,...,bk
◦Mµ

2 (Ff1, . . . , Ffk).

It can be checked that it is enough to assume the following instance of
(ψ nat) for every ξ in Mµ:

56 CHAPTER 2. SYNTACTICAL CATEGORIES

(ψ2ξ2 nat) F (f1 ξ1 f2) ◦ψ2ξ2
a1,a2

= ψ2ξ2
b1,b2

◦ (Ff1 ξ2 Ff2)

to derive by induction that F preserves Mµ. The following instances of
(ψ nat):

F1ζ1 ◦ψζ = ψζ ◦1ζ2 ,

Ff ◦ψ2
a = ψ2

b
◦Ff

follow from the functoriality of F and categorial equations.
We say that a C-functor from A1 to A2 preserves an α of C when the

following equation holds in A2:

(ψα) Fα1
~a
◦ψMµ

~a = ψNν

~a
◦α2

~Fa

where if ~a is a1, . . . , ak, then ~Fa is Fa1, . . . , Fak. We apply an analogous
convention concerning ~a and ~Fa also later.

We say that a C-functor is partial when it preserves every Mµ and every
α of C.

We say that a C-functor from A1 to A2 is fluent in an α of C when every
k-tuple of ψ arrows flows through α in A2 (see §2.4).

For every C-functor from A1 to A2 that preserves α and is fluent in α

we have the following equation in A2:

(ψαL) Fα1

L
λ1
1 (~a1),...,L

λk
k

(~ak)
◦ψ

Mµ(L
λ1
1 ,...,L

λk
k

)

~a1,..., ~ak
=

ψ
Nν(L

λ1
1 ,...,L

λk
k

)

~a1,..., ~ak
◦α2

L
λ1
1 (~Fa1),...,L

λk
k

(~Fak)

where the Lλi
i in the indices of α1 are from A1, while those in the indices of

α2 are from A2. To derive (ψαL) we just apply (ψMµ

), (ψα) and fluency
in α. The equation (ψα) is the instance of (ψαL) where every Lλi

i is 2,
that is 2

ι{1} .
We are aware that the condition (ψαL), with its multiple indexing, may

look forbidding. Fortunately, in cases we deal with in this book, it will be
equivalent to the simpler fluency in α condition, as we will see in a moment.

A C-functor is called total when it preserves every Mµ of C and (ψαL)
holds for every α of C. Every total C-functor is a partial C-functor. It

§2.8. C-functors 57

can be verified that the composition of two partial C-functors is a partial
C-functor, and the composition of two total C-functors is a total C-functor.
The arrow ψ2ξ2

a,b tied to the functor F3F2 is defined as F3ψ
22ξ2

a,b
◦ψ32ξ2

F2a,F2b,
and the arrow ψζ tied to the functor F3F2 as F3ψ

2ζ
◦ψ3ζ.

We say that a C-functor is groupoidal when it is a C-functor and a dual
C-functor with ψMµ

~a and ψ̄Mµ

~a being inverses of each other. For C-functors
where the ψMµ

arrows are mono, (ψαL) implies fluency in α, so that for
groupoidal partial C-functors, (ψαL) is equivalent to fluency in α. The
composition of two groupoidal C-functors is a groupoidal C-functor.

Let us call maps from the set of letters P into the objects of a deductive
system Di of the C kind valuations into Di. A valuation vi into Di is
extended to two maps, both called vi, from the objects and arrow terms of
C to the objects and arrows, respectively, of Di with the obvious clauses

vi(A ξ B) = vi(A) ξ vi(B),
vi(ζ) = ζ,

vi(αA1,...,Ak
) = αvi(A1),...,vi(Ak),

vi(f ξ g) = vi(f) ξ vi(g),
vi(g ◦ f) = vi(g) ◦ vi(f).

We can prove the following.

Proposition. Let A1 and A2 be bifunctorial categories of the C kind.
If F is a total C-functor from A1 to A2, then for every arrow term f :
M(p1, . . . , pm) ` N(q1, . . . , qn) of C, for every valuation v1 into A1 and for
every valuation v2 into A2 such that v2(p) = Fv1(p), in A2 we have

(ψt) Fv1(f) ◦ψM
v1(p1),...,v1(pm) = ψN

v1(q1),...,v1(qn)
◦ v2(f).

Proof. We proceed by induction on the length of f . If f is

α
L

λ1
1 (~p1),...,L

λk
k

(~pk)
,

then we use (ψαL). If f is f1 ξ f2, then we use (ψ nat), the bifunctorial
equations for ξ and the induction hypothesis. If f is f2 ◦ f1, then we use
(fun 2) for F and the induction hypothesis. a

Only a C-functor that satisfies (ψt) may be said to preserve the C-
structure properly, up to ψ. But not everything in the definition of total

58 CHAPTER 2. SYNTACTICAL CATEGORIES

C-functor is a consequence of (ψt). In particular, (ψ nat) with f1, . . . , fk

foreign to the C-structure is not such a consequence.
A groupoidal total C-functor is called strong. A C-functor F from A1

to A2 is called strict when Fa ξ2 Fb = F (a ξ1 b), ζ2 = F ζ1 and ψ2ξ2
a,b and ψζ

are identity arrows of A2. Every strict C-functor is, of course, strong.
For a strict C-functor F the equations (ψ nat) and (ψt) become

FMµ
1 (f1, . . . , fk) = Mµ

2 (Ff1, . . . , Ffk),

Fv1(f) = v2(f), where v2(p) = Fv1(p),

while (ψαL) is an easy consequence of (ψα). Strict C-functors preserve the
C structure on the nose . (The expression “on the nose” is used in other
analogous situations, when a structure is homomorphically preserved in an
obvious manner.)

According to what we have said above about the composition of total
C-functors and groupoidal C-functors, the composition of two strong C-
functors is a strong C-functor. The composition of two strict C-functors is,
of course, a strict C-functor.

These definitions are on the lines of Mac Lane’s definition of monoidal
functor of [102] (cf. [7]). For example, with α being

∧
b→, the equation (ψα)

and the inductive clauses for ψM yield the following equation:

F
∧
b→a,b,c

◦ψ2∧2
a,b∧1c

◦ (1Fa ∧2 ψ2∧2
b,c) = ψ2∧2

a∧1b,c
◦ (ψ2∧2

a,b ∧2 1Fc) ◦
∧
b→Fa,Fb,Fc,

which is used in [102] (Section XI.2) to define monoidal functors. Fluency
is, however, only implicit for Mac Lane. Besides that, our definition, which
does not presuppose as Mac Lane’s that monoidal functors are between
monoidal categories only, will enable us later to define monoidal categories
via monoidal functors (see §4.6). We have analogous definitions via strict
C-functors for other sorts of categories too.

When every valuation into a bifunctorial category A of the C kind can
be extended to a strict C-functor from a logical category C/E to A we say
that A is a C/E-category relative to P. The logical system C is here a logical
system in the language L generated by the set of letters P.

If something is a C/E-category relative to an infinite set of letters P,
then it must be a C/E(B)-category relative to any other generating set

§2.9. The category Rel and coherence 59

B. (Depending on the number of different variables for formulae in the
axiomatic equations with variables assumed for E , we could do here with
a finite set P of at least a certain cardinality instead of an infinite set P,
but, assuming uniformly that P is infinite, we are on the safe side.) A C/E-
category relative to an infinite set P is then called simply a C/E-category.

If C/E is a natural logical category, then a C/E-category A is a natural
C/E-category when for every α in C the naturality equations hold in A.
The bifunctorial equations for every ξ of C are guaranteed in every C/E-
category, and fluency in every α of C is guaranteed for every C-functor into
a natural C/E-category.

When for f and g arrow terms of C of the same type we say that the
equation f = g holds in a deductive system A of the C kind, we understand
the letters p, q, . . . of L as variables for objects. If A is a C/E-category, then
that f = g holds in A amounts to saying that Ff = Fg holds for every
strict C-functor F from C/E to A. Every equation of E holds in this sense
in a C/E-category A, but additional equations f = g, not in E , may hold
in A too.

§2.9. The category Rel and coherence

The objects of the category Rel are finite ordinals (we have 0 = ∅ and
n+1 = n ∪ {n}), and its arrows are relations between finite ordinals. We
write either (x, y) ∈ R or xRy, as usual. In this category, 1n : n ` n is the
identity relation, i.e. identity function, on n. If n = 0, then 1∅ : ∅ ` ∅ is the
empty relation ∅, with domain ∅ and codomain ∅.

For R1 : n ` m (that is, R1 ⊆ n×m) and R2 : m ` k, the set of ordered
pairs of the composition R2 ◦R1 : n ` k is {(x, y) | ∃z(xR1z and zR2y)}. For
R1 : n ` m and R2 : k ` l, let the set of ordered pairs of R1+R2 : n+k ` m+l

be

R1 ∪ {(x+n, y+m) | (x, y) ∈ R2}.

With addition on objects, this operation on arrows gives a biendofunctor
in Rel.

The category Rel is a category of the C kind for every logical system
C whose families α are from Tables 1 and 2 of §2.6, and, moreover, the

60 CHAPTER 2. SYNTACTICAL CATEGORIES

appropriate bifunctorial and naturality equations will hold in Rel. The
biendofunctor ξ for every ξ ∈ {∧,∨} is +, and the object ζ for every
ζ ∈ {>,⊥} is 0. The natural transformation α for every α included in the
families b, δ-σ, d, m, m−1 or 1 is the family 1 of Rel. In other cases, we
have the following:

(x, y) ∈ ∧
cn,m iff (y, x) ∈ ∨

cn,m iff (x+m = y or x = y+n);
(x, y) ∈ ∧

wn iff (y, x) ∈ ∨
wn iff x ≡ y (mod n);

(x, y) ∈ ∧
k1

n,m iff (y, x) ∈ ∨
k1

n,m iff x = y;

(x, y) ∈ ∧
k2

n,m iff (y, x) ∈ ∨
k2

n,m iff x = y+n;

the relations ∧
κn: n ` ∅ and ∨

κn: ∅ ` n are the empty relations.

It is not difficult to check that all these families α in Rel are natural
transformations. This is clear from the diagrammatical representation of
relations in Rel. Here are a few examples of such diagrammatical represen-
tations, with domains written at the top and codomains at the bottom:

@
@

@
@

@
@

@
@

@
@

@
@

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

J
J

J
J

J
JJ

J
J

J
J

J
JJ

J
J

J
J

J
JJ

q q q q q q q q q q

q q q q q q q q q q

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

∧
c2,3

∨
c2,3

¢
¢
¢
¢
¢
¢

¢
¢
¢
¢
¢
¢

¢
¢
¢
¢
¢
¢

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

B
B

B
B

B
BB

£
£
£
£
£
££

q q q q q q q

q q q q q

0 1 2 3 4 5 0

0 1 2 0 1

∧
w3

∨
w1

B
B

B
B

B
BB

B
B

B
B

B
BB

£
£
£
£
£
££

£
£
£
£
£
££

£
£
£
£
£
££

q q q q qq q

q q q q q q q q

0 1 0 1 2 3 4

0 1 2 3 4 0 1 2

∧
k1

2,3

∨
k1

3,2

§2.9. The category Rel and coherence 61

£
£
£
£
£
££

£
£
£
£
£
££

£
£
£
£
£
££

J
J

J
J

J
JJ

J
J

J
J

J
JJ

J
J

J
J

J
JJ

q q q q q qq q q

q q q q q q q q

0 1 2 0 1 2 3 4 5

0 1 2 3 4 0 1 2

∧
k2

2,3

∨
k2

3,3

q q

q q q

∅ 0 1

0 1 2 ∅

∧
κ3

∨
κ2

For the identity relation, i.e. the identity function, 1n we have, of course,

q q q

· · ·

q q q

0 1 n−1

0 1 n−1

Such diagrams are composed in an obvious manner by putting them one
below another; for example,

@
@

@
@

@
@

¡
¡

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

@
@

J
J

J
J

J
JJ

q q

q
q q
q q q

q q q q q q q q q q

q q
0 1 0 1

0 1 2 3 4 0 1 2 3 4
∧
k1

4,1

∨
w2

∨
c1,1

∨
c1,1 ◦ ∨

w2 ◦
∧
k1

4,1

The equation

(∧w nat) (f ∧ f) ◦ ∧
wn = ∧

wm ◦ f,

62 CHAPTER 2. SYNTACTICAL CATEGORIES

which is an instance of (α nat), and which we take as an example, is justified
in the following manner via diagrams:

£
£
££

B
B

BB
¡

¡
¡

¡
¡

¡

£
£
££

B
B

BB
@

@
@

@
@

@
@

@

¡
¡

¡

¡
¡

¡

@
@

@

@
@

@
£
£
££

B
B

BB

m

n

m

f f

f

m

n

m

∧
wn

∧
wm

We can now define a function G from the objects of C to the objects of
Rel such that for p ∈ P, ζ ∈ {>,⊥} and ξ ∈ {∧,∨} we have

Gp = 1,

Gζ = 0,

G(A ξ B) = GA + GB.

Hence GA is just the letter length of A.
We can also define a function, called G too, from the arrow terms of C

to the arrow terms of Rel such that

GαA1,...,Ak
= αGA1,...,GAk

,

G(f ξ g) = Gf + Gg,

G(g ◦ f) = Gg ◦Gf.

It is easy to check that for f : A ` B we have that Gf is of type GA ` GB.
It is also easy to check that if for f : A ` B we have (x, y) ∈ Gf , then the
(x+1)-th occurrence of letter in A, counting from the left, and the (y+1)-th
occurrence of letter in B are occurrences of the same letter.

For many logical categories C/E considered in this work, the two func-
tions G we have just defined induce a strict C-functor G from C/E to Rel
such that G[f] = Gf (see the penultimate paragraph of §2.4). Whenever
G is such a functor, it is straightforward to show that fact just by checking
that Rel satisfies the equations of E (with A, B, . . . replaced by n,m, . . .),
and we will not dwell on the proof of that.

The greatest part of our work consists in demonstrating the faithfulness
of such functors G. We call these faithfulness results coherence theorems,
and say that C/E is coherent.

§2.9. The category Rel and coherence 63

If the image of C/E under the functor G is a discrete subcategory of Rel,
which is the case when we exclude c, w, k and κ, then C/E is coherent iff
C/E is a preorder. So, in such cases, our coherence theorems will state that
C/E is a preorder (which is the narrow sense in which Mac Lane understood
coherence originally in [99]).

It is clear that if C/E is coherent in the sense just specified, then it is
decidable whether arrow terms of C are equal in C/E . In logical terms,
one would say that the coherence of C/E implies the decidability of the
equational system E . This is because equality of arrows is clearly decidable
in Rel. So, in the terminology of §1.1, coherence here implies a solution to
the commuting problem.

Chapter 3

Strictification

This chapter is devoted to strictification (a topic announced in §1.7). Our
results are about categories that have as a subcategory a groupoid that
is a preorder. For such a category we find an equivalent strictified cate-
gory where the arrows of the groupoid are collapsed into identity arrows.
The functors on which this equivalence of categories is based are functors
that preserve structure up to isomorphism. The interest of strictification
is that it shortens the coding of arrows, and facilitates the recording of
computations.

§3.1. Strictification in general

We will prove a general theorem concerning the possibility of finding for a
C/E-category B a C/E-category BG equivalent to B via strong C-functors
such that some isomorphisms of the C/E structure of B, which make a
subcategory G of C/E , become identity arrows in BG , and may hence be
omitted according to the equation (cat 1) (see Chapter 11). So, instead of
computing in B we can pass to BG , where computations become shorter,
and their recording is simplified. The category BG is here called strict with
respect to the isomorphisms that have become identity arrows, and the
procedure of passing from B to BG is called strictification.

Our theorem will generalize considerably analogous strictification results
of Joyal and Street in [72] (Section 1) and of Mac Lane in [102] (Section
XI.3). First, we strictify with respect to wider classes of isomorphisms

65

66 CHAPTER 3. STRICTIFICATION

G, such as we will encounter in our work, and not only with respect to
monoidal isomorphisms (for monoidal categories see §4.6). Secondly, even
when we strictify only with respect to monoidal isomorphisms—i.e. when G
is a free monoidal category—our C-functors may preserve a wider structure,
and not just the monoidal structure. They are not just monoidal functors.

As suggested by [72] and [102], strictification opens the way to alter-
native proofs of coherence results, in the sense of results about certain
categories being preorders. (Some authors go so far as to call strictification
results coherence results, but we believe this usage is confusing.) We will
obtain such alternative proofs of coherence in some cases, but in general
we favour the direct approach to proofs of coherence, in the style of [99]
and [100] (Section VII.2), which is not more difficult. (The alternative
proofs of coherence via strictification may look shorter when their presen-
tation is sketchy.) The prime reason why we deal with strictification is not
the production of alternative proofs of coherence—this is only an occasional
byproduct. Our prime reason is a handy recording of lengthy computations,
as mentioned above. Strictification enables us to have shorter records after
coherence has been proved.

We formulate our strictification results with respect to a language L such
as we specified at the beginning of §2.5, because it is mainly in this context
that we mean to apply them. It will be clear, however, that analogous
results hold also for contexts with richer languages.

Let L be a language such as in §2.5, and let the following condition be
satisfied:

(IB) B is a category that for every connective ξ and ζ of L has, re-
spectively, a binary and a nullary operation on objects, denoted
by ξ and ζ.

Let L(Bob) be the language with the same connectives as L generated by
the set Bob of the objects of B instead of P. The elements of L(Bob) are
also formulae. To distinguish the ξ and ζ of L(Bob) from those of Bob we
write ξG and ζG for the connectives ξ and ζ of L(Bob). The connectives ξG

and ζG are new connectives, not to be confused with the operations ξ and
ζ involved in the objects of B.

Let ≡G be an equivalence relation on L(Bob) such that if a and b are

§3.1. Strictification in general 67

objects of B we have a ≡G b only if a is the same object as b. We call such
an equivalence relation generatively discrete. Let [A] be the equivalence
class of the formula A of L(Bob) with respect to ≡G .

Out of B we build a category BG in the following manner. The objects
of BG are all the classes [A] for A ∈ L(Bob). We use X, Y , Z, . . . , sometimes
with indices, for the objects of BG .

Consider the map E from L(Bob) to Bob defined inductively by

Ea = a if a ∈ Bob,

EζG = ζ,

E(A ξG B) = EA ξ EB,

where ζ and ξ on the right-hand side are the ζ and ξ of B. With the help
of E we define a map F from the objects of BG to Bob in the following
manner. We choose first a fixed representative formula AF ∈ [A] so that
if A is an object a of B, then AF is a. We have guaranteed above by
generative discreteness that in [a] we have no object of B different from a.
Otherwise, the choice of the representative AF is arbitrary. Then we define
F [A] as EAF .

The arrows of BG are all the triples (f, X, Y) such that f : FX ` FY

is an arrow of B. The arrow (f, X, Y) is of type X ` Y in BG . The arrow
(1FX , X,X) is an identity arrow of BG , and for (f, X, Y) and (g, Y, Z)
arrows of BG we define their composition in BG as (g ◦ f, X, Z). This defines
the category BG .

Out of the map on objects F we define a functor F from BG to B by
setting F (f, X, Y) = f .

We define a functor FG from B to BG by

FGa = [a],
FGf = (f, FGa, FGb), for f : a ` b.

For the definition of FGf to be correct we must have that the type of f is
FFGa ` FFGb and this is guaranteed by FFGc = F [c] = c. It is trivial to
check that F and FG are indeed functors.

Let (I) be the collective name for (IB) and the condition that ≡G is gen-
eratively discrete (i.e. the name for the conjunction of these two conditions).
Then we can prove the following lemma.

68 CHAPTER 3. STRICTIFICATION

Lemma 1. If (I) holds, then the categories B and BG are equivalent via the
functors FG and F .

Proof. We have FFGa = a, as we noted above, and we have also FFGf =
f . On the other hand, FGF [A] = FGEAF = [EAF]. Note that EAF is a
generator in L(Bob), and though [A] = [AF], the object [A] may well differ
from [EAF]. However, we have in BG the natural isomorphism τ whose
members are τX = (1FX , FGFX, X). a

Note that to prove this lemma, we use just f ◦1a = 1b ◦ f and 1a ◦1a = 1a,
which are consequences of (cat 1), so that we could generalize the lemma
to deductive systems B that are not categories.

Let the following conditions, called collectively (II), which strengthen
(I), be satisfied:

(IIC) C is a logical system in L;

(IIB) B is a bifunctorial category of the C kind;

(IIG) ≡G is a generatively discrete equivalence relation on L(Bob).

We define, as before, the category BG and the functors F and FG start-
ing from the equivalence relation ≡G on L(Bob). We ensure that BG is a
bifunctorial category of the C kind with the following definitions:

X1 ξ′ X2 =df FG(FX1 ξ FX2), where ξ is the ξ of B,
= [FX1 ξ FX2],

(f1, X1, Y1) ξ′ (f2, X2, Y2) =df FG(F (f1, X1, Y1) ξ F (f2, X2, Y2))

= FG(f1 ξ f2), where ξ is the ξ of B,

= (f1 ξ f2, X1 ξ′ X2, Y1 ξ′ Y2).

ζ′ =df FGζ = [ζ], where ζ is the ζ of B.

It is easy to check that the bifunctorial equations hold for ξ′ in BG , because
they are inherited from B. Then we define the k-endofunctor (M ′)µ out
of the k-endofunctor Mµ, where Mµ ∈ Lcon, just by replacing ξ and ζ

everywhere by ξ′ and ζ′ respectively, so that we have (M ′)µ(X1, . . . , Xk) =
FGMµ(FX1, . . . , FXk). The following:

α′X1,...,Xk
=df (αFX1,...,FXk

, (M ′)µ(X1, . . . , Xk), (N ′)ν(X1, . . . , Xk))

§3.1. Strictification in general 69

completes the definition of the C structure. It is easy to obtain that
F (M ′)µ(X1, . . . , Xk) = Mµ(FX1, . . . , FXk), and analogously for Nν .

Let B with the C-structure be denoted by 〈B,M, α〉 and let BG with the
C-structure we have just defined be denoted by 〈BG ,M ′, α′〉. Then we can
check the following lemma in a straightforward manner.

Lemma 2. If (II) holds, then the functors FG and F are strict C-functors
from 〈B,M, α〉 to 〈BG ,M ′, α′〉 and vice versa, respectively.

As a corollary of Lemma 2 we obtain that if 〈B,M, α〉 is a C/E-category
for a logical category C/E , then 〈BG ,M ′, α′〉 is a C/E-category too. A little
bit of work is required only to demonstrate the bifunctorial equations for
ξ′, which follow from the definitions of BG and ξ′, as we noted above.

It is easy to see that if (II) holds, and for an α of C we have that α is a
natural transformation in B, then α′ is a natural transformation in BG .

We call a logical system C generatively discrete when for every arrow
term of C of type p ` q we have that p is the same letter as q.

Let the following conditions, called collectively (III), which strengthen
(II), be satisfied:

(IIIC) C is a logical system in L and C′ is a generatively discrete sub-
system of C also in L, so that C and C′ have both as objects the
formulae of L; we abbreviate this condition involving C, C′ and
L by C′ ¹L C;

(IIIG) G is a logical category of the C′ kind that is a groupoid;

(IIIB) B is a G-category and 〈B,M, α〉 is a category of the C kind.

Since G is a logical category, it is equal to C′/E ′ for an equational system
E ′ in C′.

Let G(B) be defined as G save that the letters of P are replaced by the
objects of B (see §2.7). More precisely, we proceed as follows. First, instead
of L generated by P we have L(Bob) generated by the set Bob of objects
of B, as above, with new ξG and ζG. The set L(Bob) is the set of objects
of G(B). Next, we build the arrow terms of the logical system C′(Bob) by
indexing every α of C′ with k-tuples of formulae of L(Bob) instead of k-
tuples of formulae of L, and then closing under ξG for every ξ of C′ and

70 CHAPTER 3. STRICTIFICATION

composition. Finally, the axiomatic equations with variables assumed for
E ′ in C′ are now interpreted in C′(Bob). The variables for formulae range
over the objects of C′(Bob), and the connectives ξ and ζ in these equations
now apply to ξG and ζG of L(Bob). The logical category C′/E ′(Bob) is G(B)
(see the end of §2.7).

Let ≡G be the binary relation on the objects of G(B) defined by A ≡G B

iff there is an arrow of G(B) of type A ` B. Since G, and hence also G(B), are
groupoids, ≡G is an equivalence relation. Since C′ is generatively discrete,
the relation ≡G is generatively discrete; i.e., no two different objects of B
are in the relation ≡G . Let [A] be, as before, the equivalence class of an
object of G(B) with respect to ≡G .

If (III) is fulfilled, then B, which is a G-category, is a G(B)-category too
(see the end of §2.8), and so the valuation that assigns to every generating
object a of G(B) the object a of B itself can be extended to a strict C′-
functor E from G(B) to B. Intuitively, E erases every superscript G in ξG

and ζG. We already introduced, when we defined the functor F from B to
BG , the function E on objects of the functor E.

For every object A of G(B) we have an isomorphism ϕA : AF ` A of
G(B) where AF is the chosen representative from [A]. The inverse of ϕA

is the arrow ϕ−1
A : A ` AF of G(B). A natural choice for ϕAF

: AF ` AF ,
and in particular for ϕa : a ` a, would be identity arrows, but this choice
is not essential for the time being. It is also not essential to define ϕA by
induction on the complexity of A. (Such an inductive definition of ϕA is
possible if the representative AF is chosen in a particular canonical way;
cf. §4.5.) If, however, G, and hence also G(B), are preorders, then ϕAF

must be 1AF
. For every isomorphism ϕA of G(B) we have the isomorphism

EϕA : EAF ` EA in B.
We can then define the following C structure in BG , different from the

〈BG ,M ′, α′〉 structure. On objects we have

[A] ξ′′ [B] =df [A ξG B] = [AF ξG BF],
ζ′′ =df [ζG].

That the definition of ξ′′ is correct is guaranteed by the fact that if we have
the isomorphisms f : A ` A1 and g : B ` B1 of G(B), then we have also the
isomorphism f ξG g : A ξG B ` A1 ξG B1.

§3.1. Strictification in general 71

We define the following arrows of BG :

ψ2ξ2
[A],[B] =df (EϕAF ξGBF

, [A] ξ′′ [B], [A] ξ′ [B]),

ψζ =df (EϕζG , ζ′′, ζ′),

ψ̄2ξ2
[A],[B] =df (Eϕ−1

AF ξGBF
, [A] ξ′ [B], [A] ξ′′ [B]),

ψ̄ζ =df (Eϕ−1
ζG , ζ′, ζ′′).

It is easy to check that the source of EϕAF ξGBF
is F ([A] ξ′′ [B]), and its

target F ([A] ξ′ [B]). The source of EϕζG is F ζ′′ and its target is F ζ′ (which
is equal to ζ). Note that in the definition of ψ2ξ2 and ψ̄2ξ2 we need the
arrows ϕA and ϕ−1

A only for A being of the form AF ξG BF and ζG. We have
no use for other ϕ and ϕ−1 arrows.

We define the following operation on the arrows of BG :

(f1, X1, Y1) ξ′′ (f2, X2, Y2) =df ψ̄2ξ2
Y1,Y2

◦ ((f1, X1, Y1) ξ′ (f2, X2, Y2)) ◦ψ2ξ2
X1,X2

.

It is clear that, since EϕA is an isomorphism, the bifunctorial equations
hold for ξ′′ in BG .

For every Mµ ∈ Lcon, let (M ′′)µ be obtained by replacing ξ and ζ

with ξ′′ and ζ′′. Starting from ψ2ξ2
X1,X2

and ψζ, with the help of ξ′′, we de-
fine ψMµ

X1,...,Xk
: (M ′′)µ(X1, . . . , Xk) ` (M ′)µ(X1, . . . , Xk) by the inductive

clauses ψ2
X = 1X = (1FX , X,X), which replaces (ψMµ

1), and the clauses
(ψMµ

2), with ξ2 replaced by ξ′′, and (ψMµ

3) of §2.8. We define analo-
gously with the help of ξ′′ the inverse ψ̄Mµ

X1,...,Xk
of ψMµ

X1,...,Xk
. Then we have

the following definition in BG :

α′′X1,...,Xk
=df ψ̄Nν

X1,...,Xk
◦α′X1,...,Xk

◦ψMµ

X1,...,Xk
.

This defines the C structure in BG , and we can conclude that 〈BG ,M ′′, α′′〉
is a bifunctorial category of the C kind.

It is straightforward to show by induction on M ∈ L2 that in BG we
have

(M ′′) (M ′′)µ((f1, X1, Y1), . . . , (fk, Xk, Yk)) =
ψ̄Mµ

Y1,...,Yk
◦ (M ′)µ((f1, X1, Y1), . . . , (fk, Xk, Yk)) ◦ψMµ

X1,...,Xk
.

We introduce the following definitions:

72 CHAPTER 3. STRICTIFICATION

ψ′2
ξ2

X1,X2
=df ψ̄2ξ2

X1,X2
, ψ′ζ =df ψ̄ζ,

ψ̄′2
ξ2

X1,X2
=df ψ2ξ2

X1,X2
, ψ̄′ζ =df ψζ.

Then starting from ψ′2
ξ2

X1,X2
and ψ′ζ, with the help of ξ′, and not ξ′′, we

define

ψ′M
µ

X1,...,Xk
: (M ′)µ(X1, . . . , Xk) ` (M ′′)µ(X1, . . . , Xk)

by the inductive clauses ψ′2X = 1X , which replaces (ψMµ

1), and the clauses
(ψMµ

2) and (ψMµ

3). We define analogously with the help of ξ′ the inverse
ψ̄′M

µ

X1,...,Xk
of ψ′M

µ

X1,...,Xk
. Then we have the following in BG :

ψ′M
µ

X1,...,Xk
= ψ̄Mµ

X1,...,Xk
,

ψ̄′M
µ

X1,...,Xk
= ψMµ

X1,...,Xk
.

To show these equations, we use the equation (ψMµ

) of §2.8, its dual for ψ̄,
and the equation (M ′′) above.

It follows now immediately that in BG we have the following:

α′′X1,...,Xk
= ψ′N

ν

X1,...,Xk
◦α′X1,...,Xk

◦ ψ̄′M
µ

X1,...,Xk
.

Since the ψ′ arrows are defined in terms of ξ′, which is easier to handle
than ξ′′, we will have occasion to apply later this equation, which we call
the alternative definition of α′′. We can prove the following lemma.

Lemma 3. If (III) holds, then the identity functor IBG of BG with ψ2ξ2 and
ψζ is a groupoidal partial C-functor from 〈BG ,M ′, α′〉 to 〈BG ,M ′′, α′′〉, and
IBG with ψ̄2ξ2 and ψ̄ζ is a groupoidal partial C-functor from 〈BG ,M ′′, α′′〉
to 〈BG ,M ′, α′〉.

Proof. The equations (ψ nat) follow from (M ′′), while the equations (ψα)
follow immediately from the definition of α′′, or the alternative definition
of α′′. a

Note that with Lemma 3 we have asserted that ξ′ and ξ′′ are naturally
isomorphic biendofunctors of BG . Showing that ψ2ξ2 and ψ̄2ξ2 involved in

§3.1. Strictification in general 73

this isomorphism are natural transformations does not presuppose that the
ϕ and ϕ−1 arrows in terms of which we define ψ2ξ2 and ψ̄2ξ2 are members
of natural transformations. We just assume that ϕ and ϕ−1 arrows are
isomorphisms of G(B).

Suppose C′ ¹L C, as in (IIIC). For every logical category C/E we can
determine out of C/E and C′ a logical subcategory C′/E ′ of C/E by restricting
the equations of E to the transformations α of C′.

We say that C′/E ′ flows through C/E when for every α of C every k-
tuple of arrows of C′/E ′ flows through α in C/E . If C/E is a natural logical
category, then for every subsystem C′ of C we have that C′/E ′ flows through
C/E .

Suppose C′ ¹L C. For any deductive system B of the C kind there is
a least subsystem of B of the C′ kind, which we call the C′-core of B. We
build the C′-core of B by taking for objects all the objects of B; for arrows
we take the members of the transformations α of B for every α of C′ with
the same sources and targets as in B, and then close under composition
and the operations on arrows ξ of B for every ξ of C′, i.e. of L. Note that
the C′-core of B need not be a syntactical system: it inherits the equations
between arrows of B. As a limit case, we can determine also the C-core of
B, which need not coincide with B.

If B is a bifunctorial category of the C-kind, then its C′-core is a bi-
functorial category of the C′-kind; if B is a C/E-category, then its C′-core
is a C′/E ′-category; and if B is a natural C/E-category, then its C′-core is a
natural C′/E ′-category. The C′-core of C/E is C′/E ′.

Consider now the following conditions, called collectively (IV), which
strengthen (III):

(IVC) C′ ¹L C, as in (IIIC), and C/E is a logical category in L;

(IVG) the C′-core C′/E ′ = G of C/E is a groupoid and G flows through
C/E ;

(IVB) 〈B,M, α〉 is a C/E-category.

Lemma 3 holds if (III) is replaced by (IV) and “groupoidal partial C-
functor” is replaced by “strong C-functor”. Here is this new version of
Lemma 3.

74 CHAPTER 3. STRICTIFICATION

Lemma 3(IV). If (IV) holds, then the identity functor IBG of BG with ψ2ξ2

and ψζ is a strong C-functor from 〈BG , M ′, α′〉 to 〈BG ,M ′′, α′′〉, and IBG
with ψ̄2ξ2 and ψ̄ζ is a strong C-functor from 〈BG , M ′′, α′′〉 to 〈BG , M ′, α′〉.

Proof. We appeal to Lemma 3, and check, moreover, the fluency of the
identity functor, with the arrows ψMµ

or ψ̄Mµ

, in every α, or we check
directly (ψαL) (which is slightly more complicated). a

As a corollary, we obtain the following lemma.

Lemma 4. If (IV) holds, then the functor FG, with ψ2ξ2 and ψζ, and the
functor F , with Fψ̄2ξ2 and Fψ̄ζ, are strong C-functors from 〈B,M, α〉 to
〈BG ,M ′′, α′′〉 and vice versa, respectively.

Proof. As we noted in §2.8, the composition of two strong C-functors is a
strong C-functor. Since strict C-functors are strong, Lemmata 2 and 3(IV)
deliver our lemma. a

If in Lemma 4 the condition (IV) is replaced by (III), then we can only
affirm that the functors in question are groupoidal partial C-functors. If
(IV) holds, then from Lemma 1 we obtain that 〈B,M, α〉 and 〈BG ,M ′′, α′′〉
are equivalent categories via the two strong C-functors of Lemma 4. We
can prove the following lemma.

Lemma 5. If (IV) holds, then 〈BG ,M ′′, α′′〉 is a C/E-category.

Proof. Note first that the bifunctorial equations hold for ξ′′ in BG , as
noted after the definition of ξ′′ on arrows. So 〈BG , M ′′, α′′〉 is a bifunctorial
category of the C kind.

Then take a valuation v that maps the letters of P into the objects of
BG . As mentioned after Lemma 2, the valuation v can be extended to a
strict C-functor v′ from C/E to 〈BG , M ′, α′〉 such that v′(p) = v(p).

Suppose that the equation f = g for f, g : M(p1, . . . , pm) ` N(q1, . . . , qn)
belongs to E . Then we know that v′(f) = v′(g) holds in BG , and hence we
have in BG the following equation too:

ψ̄N
v′(q1),...,v′(qn)

◦ v′(f) ◦ψM
v′(p1),...,v′(pm) = ψ̄N

v′(q1),...,v′(qn)
◦ v′(g) ◦ψM

v′(p1),...,v′(pm).

By Lemma 3(IV) and the Proposition of §2.8, we conclude that for the

§3.1. Strictification in general 75

maps v′′ from the objects and arrow terms of C to the objects and arrows
of 〈BG ,M ′′, α′′〉 defined by v′′(p) = v(p) and the inductive clauses as for vi,
which we gave just before that Proposition, we have v′′(f) = v′′(g). So the
valuation v is extended to a strict C-functor v′′ from C/E to 〈BG ,M ′′, α′′〉,
which proves the lemma. a

It is easy to see that if (III) holds, and for an α of C we have that α′ is
a natural transformation in BG , then α′′ is a natural transformation in BG .
So, together with the comment we made before introducing (III), we can
conclude that if (III) holds, and for an α in L we have that α is a natural
transformation in B, then α′′ is a natural transformation in BG .

A deductive system A of the C kind is called C-strict when for ev-
ery α of C we have that the members of the transformation α in A are
identity arrows. This presupposes that the objects Mµ(a1, . . . , ak) and
Nν(a1, . . . , ak) are equal in a C-strict deductive system, though in C the
formulae Mµ(A1, . . . , Ak) and Nν(A1, . . . , Ak) need not be equal. A bi-
functorial category A of the C-kind is C-strict iff its C-core is discrete. We
can now prove the following lemma.

Lemma 6. If (IV) holds and G is a preorder, then 〈BG , M ′′, α′′〉 is C′-strict.

Proof. Suppose G is a preorder and take an α of C′. Then in G(B) we have
an arrow αA1,...,Ak

: (MG)µ(A1, . . . , Ak) ` (NG)ν(A1, . . . , Ak) where (MG)µ

and (NG)ν are obtained from Mµ, Nν ∈ Lcon by replacing ξ and ζ by
ξG and ζG respectively. Hence [(MG)µ(A1, . . . , Ak)] = [(NG)ν(A1, . . . , Ak)]
and hence (M ′′)µ([A1], . . . , [Ak]) = (N ′′)ν([A1], . . . , [Ak]).

The arrow α′′[A1],...,[Ak] is so of the type Y ` Y for some object Y of
BG . So the arrow Fα′′[A1],...,[Ak] of B is of the type FY ` FY , and since
this arrow belongs to the C′-core of B, with G being a preorder we ob-
tain Fα′′[A1],...,[Ak] = 1FY in B. From that we obtain that α′′[A1],...,[Ak] is
(1FY , Y, Y), which is an identity arrow in BG . a

Lemmata 1, 4, 5 and 6 yield the following theorem.

Strictification Theorem. If (IV) holds and G is a preorder, then
〈B,M, α〉 is equivalent to the C′-strict C/E-category 〈BG , M ′′, α′′〉 via the
strong C-functors FG and F .

76 CHAPTER 3. STRICTIFICATION

As a corollary we obtain the following.

Strictification Corollary. If C′/E is a natural logical category that is
a groupoid and a preorder, then every C′/E-category 〈B,M, α〉 is equivalent
to the C′-strict C′/E-category 〈BG ,M ′′, α′′〉 via the strong C′-functors FG

and F .

In [72] and [102] one finds the instance of this corollary where C′/E is the
free monoidal category generated by P, i.e. our category

∧
L> of §4.6. (From

[72] and [102] one could get the wrong impression that something peculiar to
monoidal categories has been discovered, while a more general result, stated
in our Strictification Theorem and Strictification Corollary, looms behind.)
We have no use, however, for the Strictification Corollary. Instead, we will
rely on the stronger Strictification Theorem to record long computations
concerning B with the help of BG , as mentioned at the beginning of the
section (cf. Chapter 11). The corollary is not sufficient for that, because
it does not take into account the unstrictified C structure foreign to the
strictified C′ structure. This structure is not preserved by a functor that is
just a C′-functor and not also a C-functor.

Suppose C′ ¹L C, as in (IIIC). Then we say that a C/E-category B can
be (C/E , C′)-strictified when there is a C′-strict C/E-category B∗ equivalent
to B via two strong C-functors. We can prove the following lemma.

Lemma 7. If C′ ¹L C holds and every C/E-category can be (C/E , C′)-
strictified, then for the C′-core of C/E we have that every arrow in it is an
isomorphism of C/E, this C′-core flows through C/E and it is a preorder.

Proof. If every C/E-category can be (C/E , C′)-strictified, then the logi-
cal category C/E itself can be so strictified. So there is a C′-strict C/E-
category (C/E)∗ equivalent to C/E via the strong C-functors 〈F, ψ2ξ2, ψζ〉
from (C/E)∗ to C/E and 〈F ∗, ψ∗2ξ2, ψ∗ζ〉 from C/E to (C/E)∗. Let σ be the
natural isomorphism of C/E whose members are σA : FF ∗A ` A, and let
σ−1

A be the inverse of σA. Since (C/E)∗ is a C/E-category, every valuation
from P to the objects of (C/E)∗ can be extended to a strict C-functor. Let
v∗ be the strict C-functor from C/E to (C/E)∗ such that v∗(p) = F ∗p. (Note
that the functors v∗ and F ∗ need not coincide.)

§3.1. Strictification in general 77

Let f : M(~p) ` N(~q) be an arrow of the C′-core of C/E . Then v∗(f) :
v∗M(~p) ` v∗N(~q) is in the C′-core of (C/E)∗, and is hence an identity arrow
of (C/E)∗. By the Proposition of §2.8, we have in (C/E)∗

F ∗f = ψ∗N
~q
◦ v∗(f) ◦ ψ̄∗M

~p = ψ∗N
~q
◦ ψ̄∗M

~p .

(The functor corresponding to v1 in (ψt) of the Proposition of §2.8 is here
the identity functor of C/E .) Hence,

f = σ−1
N(~q)

◦FF ∗f ◦σM(~p) = σ−1
N(~q)

◦F (ψ∗N
~q
◦ ψ̄∗M

~p) ◦σM(~p),

which proves that f is an isomorphism of C/E .
For f1, . . . , fk in the C′-core of C/E , with fi of type Ki(~pi) ` Li(~qi) for

i ∈ {1, . . . , k}, by using the Proposition of §2.8 and (ψ nat), we have in
(C/E)∗

F ∗(Nν(f1, . . . , fk) ◦αK1(~p1),...,Kk(~pk))

= ψ∗Nν(L1,...,Lk)
~q1,..., ~qk

◦ ψ̄∗Nν(K1,...,Kk)
~p1,..., ~pk

◦F ∗αK1(~p1),...,Kk(~pk)

= ψ∗Nν(L1,...,Lk)
~q1,..., ~qk

◦ v∗(αK1(~p1),...,Kk(~pk)) ◦ ψ̄∗
Mµ(K1,...,Kk)
~p1,..., ~pk

= F ∗(αK1(~p1),...,Kk(~pk) ◦M
µ(f1, . . . , fk)).

From that we easily infer, by applying F to both sides and composing with
members of σ and σ−1, that the C′-core of C/E flows through C/E .

Take now f, g : M(~p) ` N(~q) in the C′-core of C/E . Since v∗(f) and
v∗(g) are the same identity arrow of the C′-core of (C/E)∗, we obtain, as
above,

F ∗f = ψ∗N
~q
◦ ψ̄∗M

~p = F ∗g,

from which f = g follows. a

It is easy to infer from our Strictification Theorem and Lemma 7 the
following proposition.

Strictification-Coherence Equivalence. If (IV) holds, then every
C/E-category can be (C/E , C′)-strictified iff the C′-core of C/E is a preorder.

78 CHAPTER 3. STRICTIFICATION

As a corollary of this equivalence we have that if C is generatively dis-
crete and C/E is a natural logical category that is a groupoid, then every
C/E-category can be (C/E , C)-strictified iff C/E is a preorder. Such a state-
ment was suggested by [72] and [102] for the particular case when C/E is
the free monoidal category generated by P.

A result analogous to Strictification-Coherence Equivalence is the fol-
lowing proposition:

If (IV) holds, then C/E can be (C/E , C′)-strictified iff the C′-core
of C/E is a preorder.

We can also infer the following:

If (IV) holds, then every C/E-category can be (C/E , C′)-strictified
iff C/E can be (C/E , C′)-strictified.

If our goal is to use strictification to prove preorder, then appealing to
the possibility of strictifying every C/E-category is irrelevant. The following
statement, which is a corollary of Lemma 7, suffices.

Strictification-Coherence Implication. If C is generatively discrete,
C/E is a natural logical category that is a groupoid and C/E can be (C/E , C)-
strictified, then C/E is a preorder.

We will rely on this implication to give alternative proofs of Associative
Coherence and Monoidal Coherence in §4.5 and §4.7.

§3.2. Direct strictification

The procedure of strictification of the preceding section can be simplified
if the category B we want to strictify is a logical category. Then we can
build a C′-strict category simpler than BG equivalent to B via two strong
C-functors, one of which is even strict. This category replacing BG , though
not logical, will be a syntactical category, like the logical category B.

Suppose the conditions (IVC) and (IVG) of the preceding section are
fulfilled. Let ≡G be the binary relation on L defined by A ≡G B iff there is
an arrow of type A ` B in G. Since G is a groupoid, ≡G is an equivalence

§3.2. Direct strictification 79

relation. Since C′ is generatively discrete, no two different letters of P are
in the relation ≡G .

The objects of the syntactical system CG are all the equivalence classes
|[A]| with respect ≡G for A a formula of L. We denote such classes by
X, Y , Z, . . . , sometimes with indices. On the objects of CG we define the
operations ξ and ζ by

|[A]| ξ |[B]| =df |[A ξ B]|, ζ =df |[ζ]|.

The definition of ξ is correct because G is a logical system in L.
For every arrow term f of C let fG be the arrow term obtained by

replacing every letter p of P in the indices of f by |[p]|. If the arrow term f

of C is of type A ` B, then the arrow term fG of CG is of type |[A]| ` |[B]|.
The arrow terms of CG are the arrow terms fG for every arrow term f of
C. As a subsystem of CG we have the syntactical system C′G obtained from
C′ as CG is obtained from C. Since G is a groupoid, every arrow term of C′G
is of the type |[A]| ` |[A]| for some A in L. The equational system EG in CG
is obtained from the axiomatic equations with variables assumed for E (so
that for every equation f = g in E we have fG = gG in EG) by adding for
every arrow term fG : |[A]| ` |[A]| of C′G the equation fG = 1|[A]|, which we
call a strictifying equation, and then closing under (sy), (tr) and (co) (see
§2.3).

It is clear that the syntactical category CG/EG is a C/E-category. If
C/E is a natural logical category, then CG/EG is a natural C/E-category.
Moreover, CG/EG is C′-strict. We will show that when G is a preorder the
syntactical category CG/EG is equivalent to C/E via two strong C-functors,
one of which, going from C/E to CG/EG , is even strict.

First we define as follows a graph-morphism HG from C to CG :

HGA =df |[A]|,
HGf =df fG .

This graph-morphism induces a functor HG from C/E to CG/EG (see the
penultimate paragraph of §2.4).

To define a functor from CG/EG to C/E we first choose in every |[A]| a
fixed representative AH , so that the representative of |[p]| is p for every p of

80 CHAPTER 3. STRICTIFICATION

P. Because of the generative discreteness of C′, this choice for |[p]| can be
made unambiguously.

Next, we can choose for every A in L an isomorphism ϕA : AH ` A of G,
whose inverse is ϕ−1

A : A ` AH . A natural choice for ϕAH : AH ` AH , and
ϕp : p ` p in particular, is identity arrows, but this choice is not essential
for the time being. If, however, G is a preorder, then ϕAH

must be 1AH
.

Then we define as follows a graph-morphism H from CG to C:

H|[A]| =df AH ,

HαX1,...,Xk
=df ϕ−1

Nν(HX1,...,HXk)
◦αHX1,...,HXk

◦ϕMµ(HX1,...,HXk),

H(f1
G ξ f2

G) =df ϕ−1
HY1ξHY2

◦ (Hf1
G ξ Hf2

G) ◦ϕHX1ξHX2 , for f i
G : Xi ` Yi,

H(gG ◦ fG) =df HgG ◦HfG .

It is clear that for fG : |[A]| ` |[B]| we have that the type of HfG is AH ` BH ,
that is H|[A]| ` H|[B]|. We can prove the following lemma.

Lemma 1. If (IVC) and (IVG) hold and G is a preorder, then for every
arrow term f : A ` B of C, in C/E we have

HHGf = ϕ−1
B

◦ f ◦ϕA.

Proof. We proceed by induction on the length of f . If f is αA1,...,Ak
, then

HHGαA1,...,Ak
= Hα|[A1]|,...,|[Ak]|

= ϕ−1
Nν(A1H ,...,AkH)

◦αA1H ,...,AkH
◦ϕMµ(A1H ,...,AkH)

= ϕ−1
Nν(A1H ,...,AkH)

◦Nν(ϕ−1
A1

, . . . , ϕ−1
Ak

) ◦αA1,...,Ak
◦

◦Mµ(ϕA1 , . . . , ϕAk
) ◦ϕMµ(A1H ,...,AkH),

since ϕ is an isomorphism and G flows through C/E ,

= ϕ−1
Nν(A1,...,Ak)

◦αA1,...,Ak
◦ϕMµ(A1,...,Ak), by the preordering of G.

In the induction step, for f i : Ai ` Bi where i ∈ {1, 2}, we have

HHG(f1 ξ f2) = ϕ−1
H|[B1]|ξH|[B2]| ◦ (HHGf1 ξ HHGf2) ◦ϕH|[A1]|ξH|[A2]|

= ϕ−1
B1

H
ξB2

H

◦ (ϕ−1
B1 ξ ϕ−1

B2) ◦ (f1 ξ f2) ◦ (ϕA1 ξ ϕA2) ◦ϕA1
H

ξA2
H

,

by the induction hypothesis and the bifunctoriality of ξ ,

§3.2. Direct strictification 81

= ϕ−1
B1ξB2 ◦ (f1 ξ f2) ◦ϕA1ξA2 , by the preordering of G;

HHG(g ◦ f) = ϕ−1
C

◦ g ◦ϕB ◦ϕ−1
B

◦ f ◦ϕA, by the induction hypothesis,

= ϕ−1
C

◦ g ◦ f ◦ϕA, since ϕ is an isomorphism. a

We can then prove the following lemma.

Lemma 2. If fG = gG in EG, then HfG = HgG in C/E.

Proof. We proceed by induction on the length of the derivation of fG = gG
in EG . If fG = gG is in EG because f = g is in E , then in C/E we have

ϕ−1
B

◦ f ◦ϕA = ϕ−1
B

◦ g ◦ϕA,

and by Lemma 1 we obtain HfG = HgG . If fG = 1|[A]| is a strictifying
equation of EG , then, by Lemma 1 and the preordering of G, we have HfG =
1AH

. The induction step, where fG = gG is obtained by (sy), (tr) or (co),
is straightforward. a

Lemma 2 guarantees that the graph-morphism H from CG to C induces a
functor from CG/EG to C/E .

Let ψ2ξ2
X,Y be the arrow ϕ−1

HXξHY of G and let ψζ be the arrow ϕ−1
ζ of G.

Then we have the following theorem.

Direct-Strictification Theorem. If (IVC) and (IVG) hold and G
is a preorder, then C/E is equivalent to the C′-strict C/E-category CG/EG
via the strict C-functor HG from C/E to CG/EG and the strong C-functor
〈H,ψ2ξ2, ψζ〉 from CG/EG to C/E.

Proof. We have HGH|[A]| = HGAH = |[AH]| = |[A]|, and we also have

HGHfG = HGHHGf

= HG(ϕ−1
B

◦ f ◦ϕA), by Lemma 1,

= HGϕ−1
B

◦HGf ◦HGϕA,

= fG , by the strictifying equations.

On the other hand, HHGA = AH . We have in C/E , of which G is a subcat-
egory, the isomorphism ϕA : AH ` A. That ϕ is a natural transformation

82 CHAPTER 3. STRICTIFICATION

from HHG to the identity functor follows immediately from Lemma 1. So
C/E and CG/EG are equivalent via HG and H.

It is clear that HG is a strict C-functor. It remains to show only that
〈H,ψ2ξ2, ψζ〉 is a strong C-functor. That (ψ2ξ2 nat) holds is built into the
definition of H(f1

G ξ f2
G).

To prove (ψαL) for 〈H, ψ2ξ2, ψζ〉, note first that HMµ(Z1, . . . , Zk) =
(Mµ(HZ1, . . . , HZk))H . So ψMµ

Z1,...,Zk
= ϕ−1

Mµ(HZ1,...,HZk) by the preorder-
ing of G. Then (ψαL) follows by applying (ψMµ

) and the facts that ϕ

is an isomorphism and that G flows through C/E . Since it is clear that
〈H,ψ2ξ2, ψζ〉 is a groupoidal C-functor, it follows that it is a strong C-
functor. a

As a consequence of this theorem, we have that f = g in C/E iff fG = gG
in CG/EG . So instead of computing in C/E , we can pass to CG/EG , in which
equations between arrow terms are easier to record. By omitting according
to (cat 1) arrow terms equated with identity arrow terms, equations become
shorter. We will avail ourselves of this opportunity provided by the Direct-
Strictification Theorem in Chapters 5-8.

Consider the following subcategory (C/E)at of (C/E)G , where (C/E)G is
defined as in the preceding section by taking that B is C/E . The objects
of (C/E)at are obtained from all the objects [p] and ζ′′ of (C/E)G by closing
under the operations ξ′′. The category (C/E)at is the full subcategory of
(C/E)G with these objects.

The category (C/E)at is isomorphic to CG/EG . It is easy to show that
there is a bijection between the objects of (C/E)at and CG/EG . For the
arrows of these two categories we have the following bijections. To every
arrow (f, [A], [B]) of (C/E)at, with f : AF ` BF an arrow of C/E , we assign
the arrow HGf : |[AF]| ` |[BF]| of CG/EG ; and to every arrow fG : |[A]| ` |[B]| of
CG/EG we assign the arrow (ϕBF

◦HfG ◦ϕ−1
AF

: AF ` BF , X, Y) of (C/E)at,
where X and Y are obtained from |[A]| and |[B]|, respectively, by replacing
ξ and ζ in A and B by ξG and ζG, and the brackets]| and |[by] and [.

It seems rather natural to assume that a construction like our construc-
tion of CG/EG out of C/E will yield a category equivalent to C/E , and indeed
this assumption may have been made tacitly by Mac Lane in [99] (proof
of Theorem 4.2, p. 39) and [102] (Section XI.1, proof of Theorem 1, p.

§3.2. Direct strictification 83

254), where he establishes coherence for symmetric monoidal categories. A
rather obvious interpretation of his text is that he constructs CG/EG out
of the symmetric monoidal category C/E freely generated by P. A more
explicit assumption of a construction similar to our construction of CG/EG
out of C/E is in [116] (proof of Theorem 6.1, p. 98; no details are given, and
no justification that the construction will yield an equivalent category).

Though the assumption that C/E and CG/EG are equivalent is natural,
this assumption is not warranted without assumptions concerning C/E , like
our assumptions (IVC), (IVG) and the condition that G is a preorder. The
main assumption here is that C/E is freely generated, out of a generating
set P. This set can be conceived as a discrete category, and one may
envisage free generation also out of other categories (which does not differ
significantly from what we have been doing). Free generation is, however,
essential.

Without our assumptions, or assumptions of the same kind, a construc-
tion analogous to our construction of CG/EG out of C/E need not yield an
equivalent category, as it is shown by the following counterexample, which
stems from Isbell (see [100], Section VII.1, p. 160).

Consider the logical system C in L∧ whose primitive arrow terms be-
sides identity arrow terms are from the

∧
b and ∧

w-
∧
k families, and consider the

equational system E in C for which we assume all the equations that hold
in the category

∧
A (see §4.3; these are equations that hold in monoidal cat-

egories), the equations (
∧
k1 nat) and (

∧
k2 nat) (see §2.7) and, for i ∈ {1, 2},

the following additional equations (which hold in cartesian categories, and
which we will encounter in §9.1):

(∧w
∧
k)

∧
ki

A,A
◦ ∧
wA = 1A.

We build now a syntactical system S of the C-kind that has a single
object N . The operation ∧ on the objects of S satisfies N ∧N = N . The
primitive arrow terms of S are 1N ,

∧
b→N,N,N ,

∧
b←N,N,N ,

∧
k1

N,N ,
∧
k2

N,N and ∧
wN ,

all of type N ` N . With the help of the equational system E above we
obtain the syntactical category S/E , which is a C/E-category.

We want to show first that S/E is not a preorder. Consider the skeleton
Card of the category Set of sets with functions such that the set of natural
numbers N is in Card. The category Card is equivalent to Set.

84 CHAPTER 3. STRICTIFICATION

Consider then the functor S that maps S/E into Card such that SN is
N , while for ι : N ` N ×N being a chosen isomorphism between N and
N×N we have S

∧
ki

N,N =
∧
ki

N ,N
◦ ι, where

∧
k1

N ,N and
∧
k2

N ,N are respectively
the first and second projection in Set, and S

∧
wN = ι−1 ◦ ∧

wN , where ∧
wN is

the diagonal map of Set for which ∧
wN (n) = (n, n). The image of S/E in

Card under S is not a preorder, and hence S/E is not a preorder.
For C′ being the logical subsystem of C with the

∧
b arrow terms, let

G = C′/E ′ be the C′-core of C/E . Let us build out of the equations of E a
category SG/EG , analogously to what we did to obtain CG/EG out of C/E ,
which boils down to adding the equations

∧
b→N,N,N =

∧
b←N,N,N = 1N to E to

obtain EG . The unique object of SG/EG may be identified with N . We have
in SG/EG

(f ∧ g) ∧ h = f ∧ (g ∧ h), by (
∧
b nat) and (cat 1),

(f ∧ g) ◦
∧
k1

N,N = f ◦
∧
k1

N,N , by (
∧
k1 nat),

f ∧ g = f, by (∧w
∧
k).

We derive analogously f ∧ g = g, starting from h ∧ (f ∧ g) = (h ∧ f) ∧ g

and by using (
∧
k2 nat). So f = g, and SG/EG is a preorder. Hence SG/EG is

not equivalent to S/E . This shows that direct strictification is not always
innocuous.

Note that S/E is not freely generated out of a set P, and does not satisfy
our assumption (IVC), since it is not a logical category. The strictification
of S/E as a C/E-category, in the sense of the Strictification Theorem of
the preceding section, is however allowed. The category (S/E)G is not a
preorder, and it is equivalent to S/E . For (S/E)G we cannot, however, find
its (S/E)at subcategory.

§3.3. Strictification and diversification

For A and B formulae of a language L, let the type A ` B be called
balanced when there is a bijection between the occurrences of letters in A

and the occurrences of letters in B that maps the occurrence of a letter
to an occurrence of the same letter. Let C be a logical system in L such
that for each transformation α of C the type of the arrow term αA1,...,Ak

:
Mµ(A1, . . . , Ak) ` Nν(A1, . . . , Ak) is balanced. This is guaranteed if µ and

§3.3. Strictification and diversification 85

ν are bijections. It is easy to show by induction that the type of every
arrow term of C is balanced.

Let a formula A of L be called diversified when every letter occurs in
A at most once. It is clear that for a balanced type A ` B we have that
A is diversified iff B is diversified. A type A ` B is called diversified when
A and B are diversified, and an arrow term is diversified when its type is
diversified.

Let the conditions (IVC) and (IVG) of §3.1 be satisfied. Let Epr be an
equational system that is an extension of the equational system E such that
C′/Epr ′ is a preorder and for every equation f = g in Epr that is not in E
we have that the type of f and g is not diversified.

Let (C/E)div be the full subcategory of C/E whose objects are the diver-
sified formulae of L, and let (C/Epr)div be the analogous full subcategory
of C/Epr whose objects are all the diversified formulae of L.

Then it is straightforward to show that the categories (C/E)div and
(C/Epr)div are isomorphic. On objects, this isomorphism is just identity,
and the identity map on the arrow terms of C gives rise to a functor from
(C/E)div to (C/Epr)div and to a functor from (C/Epr)div to (C/E)div. To
show the latter, it is enough to appeal to the fact that if f = g in Epr for
f and g diversified, then f = g in E .

Then we can check that (IVC) and (IVG) hold when C/E is replaced
by C/Epr. Now the C′-core G of C/Epr is a preorder. So we can apply
the Direct-Strictification Theorem of the preceding section to obtain the
C′-strict C/Epr-category CG/EGpr equivalent to C/Epr.

So, for diversified arrow terms f and g of C of the same type, we have
f = g in C/E iff f = g in (C/E)div, iff f = g in (C/Epr)div, iff f = g in
C/Epr, iff fG = gG in CG/EGpr. And it is easier to compute in CG/EGpr, as
explained after the Direct-Strictification Theorem. We will take advantage
of that in §§7.6-8 and §8.4.

Chapter 4

Associative Categories

In this chapter we scrutinize Mac Lane’s proof of coherence, in the sense
of preordering, for monoidal categories (see [99] and [100], Section VII.2),
and present a differently organized proof, making finer distinctions. We
separate from this proof a proof of coherence for categories like monoidal
categories that lack the unit object, but, in this respect, we do not differ
from Mac Lane, who did the same in [99]. Throughout the book, it will be
our policy to proceed in this manner, by separating coherence results with
and without special objects such as unit objects. Besides obtaining sharper
results in situations where we have coherence both with and without the
special objects, this policy allows us to obtain coherence without the special
objects in cases where adding the special objects causes difficulties.

We give a new proof of coherence for subcategories of monoidal cate-
gories where associativity arrows are not isomorphisms. Associativity goes
just in one direction, and for coherence we need just naturality and Mac
Lane’s pentagonal coherence condition. The proof of Mac Lane’s monoidal
coherence may be built on this more basic coherence result, but it has
also a shorter proof, such as Mac Lane’s. Associativity that is not an
isomorphism is interesting because of its relationship with dissociativity in-
vestigated from Chapter 7 on. Dissociativity is an associativity principle
involving two operations, which is not an isomorphism.

We also explain in this chapter the effect of strictifying the monoid-
al structure of a category (which may have extra structure besides this
monoidal structure), in accordance with the results of the preceding chap-

87

88 CHAPTER 4. ASSOCIATIVE CATEGORIES

ter. The methods of this chapter are based, as Mac Lane’s, on confluence
techniques, like those that may be found in the lambda calculus.

§4.1. The logical categories K
For C a logical system in L, let Enat

C be the least set of equations we must
have in every equational system in C to make C/Enat

C a natural logical
category (see §2.7). So Enat

C has as axioms (re) (see §2.3), the categorial
equations, the bifunctorial equations for every ξ of L and the naturality
equations for every α of C.

We will consider in this work a number of natural logical categories
K. Every such K will be C(K)/E(K) for a logical system C(K) and an
equational system E(K). To determine C(K) we will have to specify only
the language L of C(K) and the transformations α of C(K). To determine
E(K) it is enough to specify what equations besides those in Enat

C(K) have to be
assumed as axioms. We call these equations specific equations. We always
take for granted closure of the arrow terms of C(K) under the operations
ξ and composition, the presence in E(K) of (re) and of bifunctorial and
naturality equations, and the closure of E(K) under (sy), (tr), (co) and
(su) of §2.3 and §2.7.

We will first deal with a number of categories K in the language L∧.
These will make a hierarchy by having transformations α included in sub-
families involving ∧ of the families specified below. The label K in such
cases is as in the following table, sometimes with additional indices:

K I A S L
α 1 1, b 1, b, c 1, b, c, w-k

When we come to natural logical categories K in L∧,∨, we take the whole
families mentioned. The label I is derived from “identity”, A from “asso-
ciativity”, S from “symmetry”, and L from “lattice”.

If K is one of our logical categories in a language L without > and ⊥,
then K>, K⊥ or K>,⊥ will be obtained from K by adding to L either > or
⊥, or both, and by adding to C(K) transformations α included in δ-σ, as
appropriate. To obtain E(K>), E(K⊥) or E(K>,⊥), we enlarge E(K). Our

§4.2. Coherence of semiassociative categories 89

categories K where C(K) has transformations included in the family d will
be named by prefixing D to I, A, S and L; in those where C(K) has m we
prefix M, which comes from “mix”, and where C(K) has m−1 we prefix Z,
which comes from “zero”. The categories K we will deal with are presented
in the List of Categories at the end of the book.

It is easy to see that if we have proved coherence for the category K
generated by an infinite set of letters P, then we have proved coherence also
for K generated by any set of letters P. (If not more than n ≥ 0 different
letters occur in f = g, then, by substituting, every derivation of f = g can
be transformed into one in which not more than n different letters occur.)
So we assume, when this is needed to prove coherence, that K is generated
by an infinite set of letters P.

Our first logical category K will be called
∧
I. The logical system C(∧I)

is in the language L∧ and its only transformation α is 1. The equational
system E(

∧
I) is just Enat

C for C being C(∧I), with no additional equations. (The
naturality equations follow here from categorial equations.) It is trivial to
show that

∧
I is discrete, and hence a preorder. So

∧
I is coherent (see the end

of Chapter 2).
A logical category closely related to

∧
I is I, where C(I) is in the language

L∧,∨, and where the only transformation α is again 1. The equational

system E(I) is just Enat
C(I), and, as trivially as for

∧
I, we show that I is discrete.

So I is coherent too.

§4.2. Coherence of semiassociative categories

For the label K of the preceding section being
∧
A→, let the logical system

C(∧A→) be in L∧ with the transformations α being 1 and
∧
b→. The specific

equations of E(
∧
A→) are the instances of

(
∧
b 5)

∧
b→A∧B,C,D

◦
∧
b→A,B,C∧D = (

∧
b→A,B,C ∧ 1D) ◦

∧
b→A,B∧C,D

◦ (1A ∧
∧
b→B,C,D).

This is Mac Lane’s pentagonal equation of [99] (Section 3; see also [100],
Section VII.1).

We call natural
∧
A→-categories (in the sense of §2.8) semiassociative

categories. These categories where envisaged explicitly in [93] and implicitly
in [8] and [34]. Semiassociative categories differ from Mac Lane’s monoidal

90 CHAPTER 4. ASSOCIATIVE CATEGORIES

categories by lacking
∧
b← and >. We are now going to prove coherence for

the category
∧
A→. This coherence was proved in different manners, which

we find more complicated, in [93] and [34], and it can be deduced from a
very general theorem of [8] (Theorem 5.2.4), whose proof is only sketched
in that paper, with substantial parts missing.

For every formula A of L and for x and y two different occurrences of
∧ in A we write xRAy when BxC is a subformula of A such that y occurs
in C. If A and B are formulae of L∧ that may differ only with respect to
parentheses, then A and B are comparable (see §2.1), and we may take that
RA and RB are relations between the same sets of occurrences of ∧, and
compare these relations. Formally, we could proceed as follows. Let w(A)
be, as in §2.1, the word obtained from A by deleting all parentheses. Then
RA gives rise to a relation RwA

between occurrences of ∧ in w(A) such that
we have x′RwAy′ iff x′ and y′ are occurrences of ∧ in w(A) corresponding
respectively to the occurrences x and y of ∧ in A and xRAy. Then we do
not compare RA and RB , but RwA

and RwB
. However, to switch all the

time from RA to RwA
and back would be tedious, and we will not mention

RwA
. It is easy to see that for every arrow term f : A ` B of C(∧A→) the

formulae A and B are comparable (namely, w(A) and w(B) are the same
word), and RB ⊆ RA (which means, officially, RwB ⊆ RwA). Moreover, if
∧
b→ occurs in f , then RB is a proper subset of RA; otherwise, RA = RB .

Since RA and RB are conceived as defined on the same sets when A and
B are comparable, we may denote with the same symbol x the occurrences
of ∧ or of a letter in A and B that are at the same place (for the notion of
place see §2.1). We proceed analogously in other similar cases in the future
(cf. §7.1, §7.3, §7.5 and §8.3). We can prove the following.

Extraction Lemma. Let A be a formula of L∧ with a subword A1 ∧ (mq,
where (m stands for a sequence of m ≥ 0 left parentheses. Then there is
an arrow term g : A ` C of C(∧A→) such that in C we have as a subword
A1 ∧ q at the place where A has A1 ∧ (mq. In addition,

(∗) if x is not the occurrence of ∧ in the two subwords above, then
xRAy implies xRCy;

(∗∗) the first index of every
∧
b→ in g is A1.

§4.2. Coherence of semiassociative categories 91

Proof. We proceed by induction on m. If m = 0, then g is 1A : A ` A.
Suppose now m > 0. Then in A we have a subword of the form A1∧(A2∧A3)
where A2 is either q or beginning with (m−1q. Then there is a

∧
b→-term

h : A ` A′, whose head is
∧
b→A1,A2,A3

. In A′ we have (A1 ∧ A2) ∧ A3 at the
place where A has A1 ∧ (A2 ∧ A3), and hence in A′ we have A1 ∧ (m−1q

at the place where A has A1 ∧ (mq. We apply the induction hypothesis to
A′, and obtain an arrow term g′ : A′ ` C of C(∧A→) such that in C we have
A1 ∧ q at the place where A has A1 ∧ (mq, and if x is not our occurrence of
∧, then xRA′y implies xRCy.

Suppose now x is not our occurrence of ∧, and suppose xRAy. Then we
can conclude that xRA′y, and we take that g is g′ ◦h : A ` C. From this
the lemma follows. a

Theoremhood Proposition. There is an arrow term f : A ` B of
C(∧A→) iff A and B are comparable formulae of L∧ and RB ⊆ RA.

Proof. The direction from left to right is easy, as we noted above. For the
other direction, we proceed by induction on the letter length n ≥ 1 of A,
which is equal to the letter length of B, because A and B are comparable.
If n = 1, then RA = RB = ∅, and f is 1p : p ` p.

Let n > 1. So in B there must be a subword of the form (p∧q). Then we
show that RB ⊆ RA implies that A must have at the same place a subword
p ∧ (mq for m ≥ 0. Otherwise, A would have a subword ∧p)n) ∧ (mq with
n ≥ 0 at the place where B has ∧(l(p ∧ q) with l ≥ 0. From that it would
follow that RB 6⊆ RA, since for x being the left ∧ in ∧(l(p ∧ q) and y the
right ∧ we have xRBy, but we do not have xRAy.

Then, by the Extraction Lemma, there is an arrow term g : A ` C of
C(∧A→) such that in C we have as a subword (p ∧ q) at the place where B

has (p∧q), and, by (∗), if x is not the occurrence of ∧ in (p∧q), then xRAy

implies xRCy. We replace (p∧ q) in B and C by r, and obtain respectively
Br and Cr. We have RBr ⊆ RCr , and, by the induction hypothesis, there
is an arrow term f ′ : Cr ` Br of C(∧A→). Let f ′′ : C ` B be obtained
from this arrow term by putting back (p ∧ q) at the place of r. Then f is
f ′′ ◦ g : A ` B. a

It is clear that there is an arrow term of a given type A ` B in a logical

92 CHAPTER 4. ASSOCIATIVE CATEGORIES

system C iff there is an arrow of type A ` B in C/E . So, in the terminology
of §1.1, with the Theoremhood Proposition we obtain a solution to the
theoremhood problem for the category

∧
A→. The questions whether A and

B are comparable and whether RB ⊆ RA are clearly decidable. This is
not a very difficult theoremhood problem, and we deal with it not so much
because of its intrinsic interest, but because we need it for the proof of
Semiassociative Coherence below. Besides that, it is a good introduction to
our analogous treatment of other theoremhood problems in §7.1, §§7.3-5 and
§8.3, some of which are less trivial. As here, analogues of the Theoremhood
Proposition will be applied in establishing coherence results.

Note that the existential quantifier in the Theoremhood Proposition, as
well as the existential quantifier in the Extraction Lemma, is constructive;
namely, when the conditions are satisfied, we can actually construct the
arrow term of the required type. This applies also to latter versions of the
Extraction Lemma and of the Theoremhood Proposition.

Let d(A) be the cardinality of the set of ordered pairs RA. If f : A ` B

of
∧
A→ is not equal to 1A : A ` A, then RB is a proper subset of RA and

d(B) < d(A). We can then prove the following result of [93].

Semiassociative Coherence. The category
∧
A→ is a preorder.

Proof. Let f, g : A ` B be arrow terms of C(∧A→). We proceed by
induction on d(A)−d(B) to show that f = g in

∧
A→. (Until the end of this

proof, we assume that equality between arrow terms is equality in
∧
A→.) If

d(A) = d(B), then we conclude that A and B are the same formula, and
f = g = 1A.

Suppose d(B) < d(A). By the Development Lemma (see §2.7) we have
that f = f2 ◦ f1 and g = g2 ◦ g1 for some

∧
b→-terms f1 : A ` C and g1 : A ` D,

and some arrow terms f2 : C ` B and g2 : D ` B of C(∧A→). We have here
d(C), d(D) < d(A). Let the head of f1 be

∧
b→E,F,G, and let the head of g1 be

∧
b→H,I,J . The following cases may arise.

(1) The formulae E ∧ (F ∧ G) and H ∧ (I ∧ J) have no occurrences of
letters in common within A. Then we use (∧ 2) of §2.7 to obtain two

∧
b→-

terms f ′2 : C ` B′ and g′2 : D ` B′ such that f ′2 ◦ f1 = g′2 ◦ g1. We infer that
RC ∩ RD = RB′ , from which it follows by the Theoremhood Proposition

§4.3. Coherence of associative categories 93

that RB ⊆ RB′ . Hence, again by the Theoremhood Proposition, there is
an arrow term h : B′ ` B of C(∧A→). By applying the induction hypothesis,
we obtain that f2 = h ◦ f ′2 and g2 = h ◦ g′2, from which f = g follows.

(2) Suppose E∧(F∧G) is a subformula of H or I or J in A; or, conversely,
H ∧ (I ∧ J) is a subformula of E or F or G in A. Then we proceed as in
case (1) by using the equation (

∧
b→ nat).

(3) The subformulae E ∧ (F ∧G) and H ∧ (I ∧ J) coincide in A. Then C

is D and f1 = g1. We then apply the induction hypothesis to f2, g2 : C ` B

and obtain f = g.

(4) The subformula F ∧G is H ∧ (I ∧ J) or I ∧ J is E ∧ (F ∧G). Then
we proceed as in case (1) by using the equation (

∧
b 5). a

The technique used in the proof above is related to the Church-Rosser,
or confluence, property of reductions in the lambda calculus (see [4], Chap-
ter 3). Analogous techniques will be exploited in §7.1, §7.3, §7.5 and §8.3,
where one finds proofs of coherence analogous to our proof of Semiassocia-
tive Coherence.

It is not difficult to see that RA = RB implies that A and B are the
same formula of L∧. Because, if RA = RB , then, by the Theoremhood
Proposition, there is an arrow term f : A ` B of C(∧A→), in which

∧
b→ cannot

occur, since RB is not a proper subset of RA. Hence f must stand for an
identity arrow. So there is a bijection between the formulae A of L∧ and
the relations RA, that is RwA . (A relation is not just a set of ordered pairs,
but its domain and codomain must be specified; so w(A) will be mentioned
in specifying RwA

.) From Semiassociative Coherence, we can conclude that
∧
A→ is isomorphic to the category whose objects are the relations RA, and
where an arrow exists between RA and RB when RB ⊆ RA. Note that this
means that the category

∧
A→ is not just a preorder, but a partial order.

§4.3. Coherence of associative categories

To obtain the natural logical category
∧
A, we have that the logical system

C(∧A) is in L∧, with the transformations α included in 1 and
∧
b. The specific

equations of E(
∧
A) are those of E(

∧
A→) plus

94 CHAPTER 4. ASSOCIATIVE CATEGORIES

(
∧
b
∧
b)

∧
b←A,B,C

◦
∧
b→A,B,C = 1A∧(B∧C),

∧
b→A,B,C

◦
∧
b←A,B,C = 1(A∧B)∧C .

Note that it is enough to assume one of the equations (
∧
b→ nat) and

(
∧
b← nat) to derive the other one with the help of (

∧
b
∧
b), and (

∧
b
∧
b) enables us

also to derive an equation analogous to (
∧
b 5) involving

∧
b←. The equations

(
∧
b
∧
b), together with (

∧
b→ nat) and (

∧
b← nat), say that

∧
b→ and

∧
b← are natural

isomorphisms.
We call natural

∧
A-categories associative categories. Associative cate-

gories are not necessarily monoidal in the sense of [100] (Section VII.1),
because they may lack the unit object (see §4.6). The objects of an asso-
ciative category that is a partial order make a semigroup.

A formula A of L∧ is said to be in normal form when RA, defined as in
the preceding section, is empty; i.e., when d(A) = 0. Such an A is of the
form (. . . ((p1 ∧ p2) ∧ p3) ∧ . . . ∧ pn).

We can show that
∧
A is a preorder by relying on the proof of Semias-

sociative Coherence of the preceding section, based on the Theoremhood
Proposition, but we can establish more easily another, weaker, lemma. To
formulate this lemma, we say that the arrow terms of C(∧A) that are also
arrow terms of C(∧A→) are →-directed. (This terminology will be extended
later to arrow terms other than those of C(∧A); see §4.6, §6.1 and §14.1.)
Then the following lemma holds in the category

∧
A→, and hence also in

∧
A.

Directedness Lemma. If f, g : A ` B are →-directed arrow terms and B

is in normal form, then f = g.

The proof of this lemma, which is due to Mac Lane (see [99], Section 3),
is a simplification of our proof of Semiassociative Coherence in the preceding
section. The simplification consists in not having to refer to the full force
of the Theoremhood Proposition, but only to a trivial case of it where RB

is empty.
Then we prove the following result of [99] (Section 3).

Associative Coherence. The category
∧
A is a preorder.

Proof. For f : A ` B an arrow term of C(∧A), there are two →-directed

§4.3. Coherence of associative categories 95

arrow terms g : A ` C and h : B ` C such that C is in normal form
(these arrow terms are not uniquely determined). By the Development
Lemma (see §2.7), the arrow term f is equal to a developed arrow term
fn ◦ . . . ◦ f1. We proceed by induction on n to show that f = h−1 ◦ g, where
h−1 is obtained from the arrow term h by inverting order in composition,
and by replacing

∧
b→ by

∧
b← and vice versa.

If n = 1, then, since f1 is 1A, by the Directedness Lemma we have
g = h, from which f = h−1 ◦ g follows.

For n > 1 and fn : B′ ` B, we have by the induction hypothesis that
fn−1 ◦ . . . ◦ f1 : A ` B′ is equal to (h′)−1 ◦ g for g : A ` C and h′ : B′ ` C.
If fn is a

∧
b→-term, then, for h : B ` C, by the Directedness Lemma we

have h ◦ fn = h′, and f = h−1 ◦ g follows. If fn is a
∧
b←-term, then by the

Directedness Lemma we have h′ ◦ f−1
n = h, and f = h−1 ◦ g follows again.

For f ′ : A ` B we obtain in the same manner f ′ = h−1 ◦ g, and so
f = f ′. a

One might suppose that Semiassociative Coherence can be inferred di-
rectly from Associative Coherence. This would be so if we could find an
independent proof that

∧
A→ is isomorphic to a subcategory of

∧
A, a proof

that would not rely on Semiassociative Coherence. In fact, we use Semi-
associative Coherence to conclude that

∧
A→ is isomorphic to a subcategory

of
∧
A. That

∧
A→ is isomorphic to a subcategory of

∧
A amounts to showing

that for f and g arrow terms of C(∧A→) we have f = g in
∧
A→ iff f = g in

∧
A. That f = g in

∧
A→ implies f = g in

∧
A is clear without appealing to co-

herence, but for the converse implication we use Semiassociative Coherence
(cf. §14.4).

In the proof of Associative Coherence above, we rely essentially on the
normal form of formulae, and use both

∧
b→-terms and

∧
b←-terms. This

is why for the proof of Semiassociative Coherence we could not rely on
the Directedness Lemma, but we needed the Theoremhood Proposition of
the preceding section. The proof of Semiassociative Coherence is not very
difficult, but it is more difficult than the proof of Associative Coherence
based on the Directedness Lemma. The proof of Associative Coherence
can be based on Semiassociative Coherence, but it has also this simpler
proof.

96 CHAPTER 4. ASSOCIATIVE CATEGORIES

§4.4. Associative normal form

Once we have proved Associative Coherence, we can ascertain that every
arrow term is equal to an arrow term in a normal form, which we are going
to define. This normal form is unique, in the sense that arrow terms in
normal form are equal in

∧
A (i.e., they stand for the same arrow of

∧
A) iff

they are the same arrow term.
First we prove the following analogue of the Extraction Lemma of §4.2

(see §2.1 for the notion of scope).

Extraction Lemma. If there is an occurrence z of ∧ in a formula A of
L∧, then there is a formula A1 z A2 of L∧ such that there is an arrow term
g : A ` A1 z A2 of C(∧A). In addition,

(∗) for all occurrences x and y of ∧ in Ai, where i ∈ {1, 2}, we have
that y is in the scope of x in A iff y is in the scope of x in Ai;

(∗∗) every subterm of g of the form
∧
b→D,E,F is of the type D∧(E z F) `

(D ∧E) z F , and every subterm of g of the form
∧
b←F,E,D is of the

type (F z E) ∧D ` F z (E ∧D).

Proof. We proceed by induction on the number n ≥ 0 of occurrences of
connectives in A. If n = 0, then the antecedent of the lemma is false, and
the lemma is trivially true.

If n > 0, then A is A′ u A′′ with u an occurrence of ∧. If u is z, then
g is 1A. So suppose u is not z, and suppose z is in A′. Then, by the
induction hypothesis, we have an arrow term g′ : A′ ` A′1 z A′2 of C(∧A)
satisfying the primed version of (∗). The arrow term g′ ∧1A′′ is of the type
A ` (A′1 z A′2)uA′′, and we have the arrow term

∧
b←A′1,A′2,A′′

◦ (g′∧1A′′) : A `
A′1 z (A′2 uA′′) of C(∧A).

To verify (∗), suppose x and y are two occurrences of ∧ in A′1. It is clear
that y is in the scope of x in A iff it is in the scope of x in A′. So, by (∗)
of the induction hypothesis, we have that y is in the scope of x in A iff it
is in the scope of x in A′1. We settle easily in a similar manner cases where
x and y are both in A′2 or A′′. If x is u, then (∗) follows easily again.

The case where z is in A′′ is settled analogously by using the arrow term

§4.4. Associative normal form 97

∧
b→A′,A′′1 ,A′′2

: A′ u (A′′1 z A′′2) ` (A′ u A′′1) z A′′2 . We easily check (∗∗) by going
over the proof above. a

The analogue for
∧
A of the Theoremhood Proposition of §4.2 would state

simply that there is an arrow term of C(∧A) of type A ` B iff the formulae
A and B are comparable.

We do not need the assertion (∗) of the Extraction Lemma of this section
for the proof of the Associative Normal-Form Proposition below. We stated
this assertion, nevertheless, because it is analogous to the assertion (∗) of
the Extraction Lemma of §4.2.

We need some preliminary notions to introduce our normal form. For
every formula A of L∧ we assign to every subformula of A a natural number
n ≥ 2 in the following manner. We assign to every occurrence of a letter p

in A a prime number iA(p) ≥ 2, each occurrence having a different number
from all other occurrences. (Note that this assignment is not unique.) Next,
for a subformula B∧C of A, we have iA(B∧C) = iA(B) · iA(C). For every
subformula D of A, we define I(D) as follows:

if D is p, then I(D) is p;
if D is B ∧ C, then I(D) is I(B) ∧iA(B∧C) I(C).

So I(D) is like a formula, but with subscripted occurrences of ∧.

Let A be a formula comparable with B, and let x be an occurrence of
∧ in A. The formula B has an occurrence of ∧ at the same place, and we
call that occurrence of ∧ also x. Let A∗ be obtained from A by adding to
every x of A the subscript that x has in I(B). This subscripting gives rise
to a formula C∗ with subscripted occurrences of ∧ for every subformula C

of A. For every arrow term f : A1 ` A2 of C(∧A) such that both A1 and A2

are comparable with B, we have an arrow term f∗ : A∗1 ` A∗2 obtained by
replacing every index C of f by C∗. Then we have the following proposition.

Associative Normal-Form Proposition. If A and B are comparable
formulae, then there is an arrow term f : A ` B of C(∧A) such that every
subterm of f∗ : A∗ ` I(B) of the form

∧
b→D,E,F is of the type D∧l (E ∧k F) `

(D ∧l E) ∧k F where for every ∧n in D ∧l E and F we have that n divides
k; analogously, every subterm of f∗ : A∗ ` I(B) of the form

∧
b←F,E,D is of the

98 CHAPTER 4. ASSOCIATIVE CATEGORIES

type (F ∧k E) ∧l D ` F ∧k (E ∧l D) where for every ∧n in F and E ∧l D

we have that n divides k.

Proof. We proceed by induction on the number m of occurrences of
connectives in B. If m = 0, then f is 1p : p ` p. If m > 1, then B

is of the form B1 z B2 for z an occurrence of ∧, and in I(B) we have zk

with k = l · n for l, n ≥ 2, where l is any other subscript of ∧ in I(B).
Then, by the Extraction Lemma of this section, there is an arrow term
g : A ` A1 z A2 of C(∧A) such that (∗∗) is satisfied. This guarantees that all
the subterms of g from the family

∧
b are as required in the statement of the

proposition. By the induction hypothesis, we have arrow terms f1 : A1 ` B1

and f2 : A2 ` B2 that satisfy the conditions of the proposition, and f : A ` B

is (f1 ∧ f2) ◦ g : A ` B. a

The procedure of the proof of this proposition, which presupposes the
Extraction Lemma of this section, gives rise to a unique arrow term, which
we may consider to be in normal form. We may transform this arrow term
into a developed arrow term by replacing (f1 ∧ f2) ◦ g in the proof above by
(f1 ∧ 1B2) ◦ (1A1 ∧ f2) ◦ g, or by (1B1 ∧ f2) ◦ (f1 ∧ 1A2) ◦ g, when neither of
f1 and f2 is an identity arrow term.

§4.5. Strictification of associative categories

According to our definition of §3.1, an
∧
A-category, and in particular an

associative category, is C(∧A)-strict when for all objects a, b and c we have

a ∧ (b ∧ c) = (a ∧ b) ∧ c,
∧
b→a,b,c =

∧
b←a,b,c = 1a∧(b∧c).

The category Rel of §2.9 with ∧ being + is a C(∧A)-strict associative cate-
gory.

For G being
∧
A, our construction of BG in §3.1 covers a construction

exposed in [102] (pp. 257ff) and [72] (pp. 29-30), which builds out of an
associative category B a C(∧A)-strict associative category BG equivalent to
B via two strong C(∧A)-functors. As a matter of fact, [102] and [72] are
about monoidal categories, i.e. natural

∧
A>-categories (see the next section),

with whose strictification we deal in §4.7. The result one can extract from

§4.5. Strictification of associative categories 99

[102] and [72] is that every
∧
A-category can be (

∧
A, C(∧A))-strictified (

∧
A is

C(∧A)/E(
∧
A)). We have shown something more than that in §3.1. We have

shown, namely, that if B is a C/E-category for a logical category C/E where
C(∧A) ¹L∧ C and the C(∧A)-core G of C/E , which flows through C/E and is a
preorder, is

∧
A, then B can be (C/E , C(∧A))-strictified. One passes from our

construction to that of [102] (pp. 257ff) and [72] (pp. 29-30) by realizing
that for G being

∧
A, and A and B formulae of G(B) we have A ≡G B iff

after deleting every ∧G in A and B we obtain the same finite nonempty
sequence of objects of B. So there is a one-to-one correspondence between
the classes [A] with respect to ≡G and finite nonempty sequences of objects
of B. We are passing from the free groupoid generated by the objects of B
to the free semigroup generated by these objects. The objects of the free
semigroup may be represented by nonempty words.

When G is
∧
A, and [A] corresponds to the sequence a1. . . an of objects

of B in the sense just specified, we can take as the representative AF of [A]
when n ≥ 2 the formula (. . . (a1 ∧G a2) . . . ∧G an) (where parentheses are
associated to the left). Then, instead of choosing the arrows ϕA : AF ` A

and ϕ−1
A : A ` AF of G(B) arbitrarily, as we did in §3.1, we can define

them inductively in the following manner. First, we define by induction
the arrows ϕAF∧GBF

: (A ∧G B)F ` AF ∧G BF and ϕ−1
AF∧GBF

: AF ∧G BF `
(A ∧G B)F (note that (A ∧G B)F = (AF ∧G BF)F):

ϕAF∧Gb = ϕ−1
AF∧Gb

= 1AF∧Gb, for b an object of B,

ϕAF∧G(CF∧Gb) =
∧
b←AF ,CF ,b

◦ (ϕAF∧GCF
∧G 1b),

ϕ−1
AF∧G(CF∧Gb)

= (ϕ−1
AF∧GCF

∧G 1b) ◦
∧
b→AF ,CF ,b .

We have no need for other ϕ and ϕ−1 arrows except these to define ψ2ξ2

and ψ−12ξ2 (see §3.1), but, for the sake of completeness, we can define
inductively as follows ϕA and ϕ−1

A for every object A of G(B):

ϕa = ϕ−1
a = 1a, for a an object of B,

ϕA∧GB = (ϕA ∧G ϕB) ◦ϕAF∧GBF
,

ϕ−1
A∧GB

= ϕ−1
AF∧GBF

◦ (ϕ−1
A ∧G ϕ−1

B).

To check the correctness of these definitions it is enough to verify that
ϕAF = ϕ−1

AF
= 1AF . Note that ϕA and ϕ−1

A are defined with arrow terms

100 CHAPTER 4. ASSOCIATIVE CATEGORIES

that, after deleting identity arrow terms, are in the associative normal form
of the preceding section.

In Lemmata 1-5 of §3.1 we did not appeal to the preordering of G. In
Lemma 6, we had this assumption. We can prove, however, the following
corollary of this lemma without appealing to the preordering of

∧
A, i.e. to

its coherence.

Lemma. For G being
∧
A, the category 〈 ∧AG

,M ′′, α′′〉 is C(∧A)-strict.

Proof. For X and Y objects of
∧
AG , let us write XY for X ∧′′ Y , since

∧′′ in
∧
AG corresponds to concatenation of sequences of formulae of L∧. We

have, of course, X ∧′′ (Y ∧′′ Z) = (X ∧′′ Y) ∧′′ Z = XY Z.
Let ∧

ϕ[A],[B] stand for EϕAF∧GBF
: E(A∧GB)F ` E(AF ∧GBF) (see §3.1

for the functor E). Since E(A ∧G B)F is F ([A][B]) and E(AF ∧G BF) is
F [A]∧F [B], the type of ∧

ϕX,Y is F (XY) ` FX ∧FY . If ∧
ϕ
−1

[A],[B] stands for

Eϕ−1
AF∧GBF

, then ∧
ϕ
−1

X,Y : FX ∧ FY ` F (XY) is the inverse of ∧
ϕX,Y in

∧
A.

To show that for α being
∧
b→ we have α′′X,Y,Z = 1XY Z in

∧
AG we proceed

as follows. We make an induction on the length of the sequence correspond-
ing to Z, and we use the alternative definition of α′′ from §3.1.

If Z is a, then by the definition of ∧
ϕU,V and the fact that it is an

isomorphism, we have

∧
ϕ
−1

XY,a
◦ (∧ϕ

−1

X,Y ∧ 1a) ◦
∧
b→FX,FY,a

◦ (1FX ∧ ∧
ϕY,a) ◦ ∧ϕX,Y a

= (∧ϕ
−1

X,Y ∧ 1a) ◦
∧
b→FX,FY,a

◦ ∧ϕX,Y a

= 1F (XY a).

If Z is Ua, then we have

∧
ϕ
−1

XY,Ua
◦ (∧ϕ

−1

X,Y ∧ 1F (Ua)) ◦
∧
b→FX,FY,F (Ua)

◦ (1FX ∧ ∧
ϕY,Ua) ◦ ∧ϕX,Y Ua

= (∧ϕ
−1

XY,U ∧ 1a) ◦ ((∧ϕ
−1

X,Y ∧ 1FU) ∧ 1a) ◦
∧
b→FX∧FY,FU,a

◦
∧
b→FX,FY,FU∧a

◦

◦ (1FX∧
∧
b←FY,FU,a) ◦

∧
b←FX,FY∧FU,a

◦ ((1FX∧ ∧
ϕY,U) ∧ 1a) ◦ (∧ϕX,Y U ∧ 1a),

by definition, (
∧
b
∧
b) and naturality equations,

= (∧ϕ
−1

XY,U ∧ 1a) ◦ ((∧ϕ
−1

X,Y ∧ 1FU) ∧ 1a) ◦ (
∧
b→FX,FY,FU ∧ 1a) ◦

◦ ((1FX∧ ∧
ϕY,U) ∧ 1a) ◦ (∧ϕX,Y U ∧ 1a), by (

∧
b
∧
b) and (

∧
b 5),

= 1F (XY Ua), by bifunctoriality and the induction hypothesis.

§4.6. Coherence of monoidal categories 101

We proceed analogously when α is
∧
b←. a

So
∧
A can be (

∧
A, C(∧A))-strictified, and by the Strictification-Coherence

Implication of §3.1, we can conclude that
∧
A is a preorder.

§4.6. Coherence of monoidal categories

To obtain the natural logical category
∧
A>, we have that the logical system

C(∧A>) is in L∧,>, with the transformations α included in 1,
∧
b and

∧
δ -∧σ .

The specific equations of E(
∧
A>) are those of E(

∧
A) plus

(
∧
δ
∧
δ)

∧
δ←A ◦

∧
δ→A = 1A∧>,

∧
δ→A ◦

∧
δ←A = 1A,

(∧σ ∧
σ) ∧

σ←A ◦ ∧σ→A = 1>∧A,
∧
σ→A ◦ ∧σ←A = 1A,

(
∧
b
∧
δ
∧
σ)

∧
b→A,>,C = (

∧
δ←A ∧ 1C) ◦ (1A ∧ ∧

σ→C).

From these equations one infers

(
∧
b
∧
δ)

∧
b→A,B,> =

∧
δ←A∧B

◦ (1A ∧
∧
δ→B),

(
∧
b
∧
σ)

∧
b→>,B,C = (∧σ←B ∧ 1C) ◦ ∧σ→B∧C ,

(
∧
δ
∧
σ)

∧
δ→> = ∧

σ→>

(see [75], Theorems 6 and 7, and §9.1 below).
The specific equations of E(

∧
A) are introduced, as all our equations for

logical categories, by axiomatic equations with variables. These equations
with variables are now assumed for E(

∧
A>) (see §2.3 and §2.7). The equa-

tional system E(
∧
A>) will be closed under (su) for formulae C of L∧,>,

and not only of L∧. We assume tacitly from now on that we proceed in
an analogous manner whenever we pass from an equational system formu-
lated originally with respect to a poorer language to an equational system
formulated with respect to a richer language.

The equations (
∧
δ
∧
δ) and (∧σ ∧

σ) above, together with the naturality equa-
tions for arrow terms in the family

∧
δ -∧σ , say that in subfamilies of this

family we find natural isomorphisms.
The natural

∧
A>-categories are commonly called monoidal categories

(see [100], Section VII.1), and sometimes tensor categories (as in [71] and

102 CHAPTER 4. ASSOCIATIVE CATEGORIES

[72]; in [7] they are called categories with multiplication). The objects of a
monoidal category that is a partial order make a monoid.

For every formula A of L∧,> let k(A) be the number of occurrences of
> in A as main conjuncts in subformulae of A (i.e. the visible occurrences
of > in subformulae of A of the form B ∧ > or > ∧ B). So in L∧,> we do
not count > only if A itself is >, but our definition of k(A) is adapted to
other languages L too (cf. the end of §6.1). We say that A is in normal
form when d(A) = 0 and k(A) = 0 (where d(A) is defined in §4.2). So, for
example, (p ∧ q) ∧ r and > are in normal form.

An arrow term of C(∧A>) is called →-directed when neither of
∧
b←,

∧
δ←

and ∧
σ← occurs in it. (This definition extends the definition of →-directed

arrow terms of C(∧A) in §4.3.) Then, by extending the proof of the Directed-
ness Lemma of §4.3, which is a simplification of our proof of Semiassociative
Coherence of §4.2, we can prove the following.

Directedness Lemma. If f, g : A ` B are →-directed arrow terms of
C(∧A>) and B is in normal form, then f = g in

∧
A>.

Proof. We proceed by induction on d(A)+k(A). In the induction step
we have the following new cases for f = f2 ◦ f1 and g = g2 ◦ g1 for some
→-directed arrow terms f2 : C ` B and g2 : D ` B:

(I) f1 : A ` C is a
∧
b→-term and g1 : A ` D is a

∧
δ→-term,

(II) f1 : A ` C is a
∧
b→-term and g1 : A ` D is a ∧

σ→-term,

(III) f1 : A ` C and g1 : A ` D are
∧
δ→-terms,

(IV) f1 : A ` C and g1 : A ` D are ∧
σ→-terms,

(V) f1 : A ` C is a
∧
δ→-term and g1 : A ` D is a ∧

σ→-term,

With (I), the only interesting additional case is when the head of f1 is
∧
b→E,F,> and the head of g1 is

∧
δ→F , where we apply (

∧
b
∧
δ).

With (II), the only interesting additional cases are when the head of f1

is
∧
b→E,>,G and the head of g1 is ∧

σ→G , where we apply (
∧
b
∧
δ
∧
σ), and when the

head of f1 is
∧
b→>,F,G and the head of g1 is ∧

σ→F∧G, where we apply (
∧
b
∧
σ).

In the other, uninteresting cases, of (I) and (II), which are in principle
covered by what we had in the proof of Semiassociative Coherence in §4.2,
we apply bifunctorial and naturality equations.

§4.7. Strictification of monoidal categories 103

We apply these equations also in cases (III), (IV) and (V); for the last
case we also need the equation (

∧
δ
∧
σ). The remaining cases are as in §4.2. a

From this Directedness Lemma we infer the following result of [99] and
[100] (Section VII.2), whose proof is analogous to the proof of Associative
Coherence in §4.3.

Monoidal Coherence. The category
∧
A> is a preorder.

§4.7. Strictification of monoidal categories

In a C(∧A>)-strict
∧
A>-category for every object a we have

a ∧ > = > ∧ a = a,
∧
δ→a =

∧
δ←a = ∧

σ→a = ∧
σ←a = 1a,

in addition to what was mentioned at the very beginning of §4.5. The cat-
egory Rel of §2.9 with ∧ being + and > being 0 is a C(∧A>)-strict monoidal
category.

What we have said at the beginning of §4.5 concerning the strictifica-
tion of associative categories and previous results of [102] and [72], applies
mutatis mutandis to the present context. One has to replace “associative”
by “monoidal” and

∧
A by

∧
A>.

For G being
∧
A>, the objects [A] of BG correspond bijectively now to

arbitrary finite sequences of objects of B, including the empty sequence.
The class [>G] corresponds to the empty sequence, and we can take >G as
the representative AF of [>G].

The inductive definition of ϕA of §4.5 can now be extended with the
following clauses:

ϕ>G = ϕ−1
>G = 1>G ,

ϕAF∧G>G =
∧
δ←AF

, ϕ−1
AF∧G>G =

∧
δ→AF

,

ϕ>G∧GAF
= ∧

σ←AF
, ϕ−1

>G∧GAF
= ∧

σ→AF
.

The correctness of these definitions for the case ϕ>G∧G>G and ϕ−1
>G∧G>G is

guaranteed by (
∧
δ
∧
σ).

104 CHAPTER 4. ASSOCIATIVE CATEGORIES

We can prove as before the following analogue of the Lemma of §4.5,
without presupposing the preordering of

∧
A>.

Lemma. For G being
∧
A>, the category 〈 ∧AG

>,M ′′, α′′〉 is C(∧A>)-strict.

Proof. We proceed as for the proof of the Lemma of §4.5, with the
following additions.

Let us write ∅ instead of [>G]. To show that for α being
∧
b→ the equation

α′′X,Y,Z = 1XY Z holds in
∧
AG
>, we have to consider new cases when X, Y or

Z are ∅.
I. If X is ∅, then

∧
ϕ
−1

Y,Z
◦ (∧ϕ

−1

∅,Y ∧ 1FZ) ◦
∧
b→>,FY,FZ

◦ (1> ∧ ∧
ϕY,Z) ◦ ∧ϕ∅,Y Z

= ∧
ϕ
−1

Y,Z
◦ (∧σ→FY ∧ 1FZ) ◦

∧
b→>,FY,FZ

◦ (1> ∧ ∧
ϕY,Z) ◦ ∧σ←F (Y Z)

= 1F (Y Z), by (
∧
b
∧
σ), naturality and isomorphisms.

II. If Y is ∅, then

∧
ϕ
−1

X,Z
◦ (∧ϕ

−1

X,∅ ∧ 1FZ) ◦
∧
b→FX,>,FZ

◦ (1FX ∧ ∧
ϕ∅,Z) ◦ ∧ϕX,Z

= ∧
ϕ
−1

X,Z
◦ (

∧
δ→FX ∧ 1FZ) ◦

∧
b→FX,>,FZ

◦ (1FX ∧ ∧
σ←FZ) ◦ ∧ϕX,Z

= 1F (XZ), by (
∧
b
∧
δ
∧
σ) and isomorphisms.

III. If Z is ∅, then

∧
ϕ
−1

XY,∅ ◦ (
∧
ϕ
−1

X,Y ∧ 1>) ◦
∧
b→FX,FY,> ◦ (1FX ∧ ∧

ϕY,∅) ◦
∧
ϕX,Y

=
∧
δ→F (XY)

◦ (∧ϕ
−1

X,Y ∧ 1>) ◦
∧
b→FX,FY,> ◦ (1FX ∧ ∧

δ←FY) ◦ ∧ϕX,Y

= 1F (XZ), by (
∧
b
∧
δ), naturality and isomorphisms.

To show that for α being
∧
δ→ the equation α′′X = 1X holds in

∧
AG
>, we

have
∧
δ→FX

◦ ∧
ϕX,∅ = 1FX , since

∧
δ→ is an isomorphism, and analogously for

∧
σ→. a

So
∧
A> can be (

∧
A>, C(∧A>))-strictified, and we can conclude that

∧
A> is

a preorder by the Strictification-Coherence Implication of §3.1.
In the presence of the unit object >, when we deal with monoidal cate-

gories, there is a C(∧A>)-strict monoidal category alternative to BG , inspired

§4.7. Strictification of monoidal categories 105

by Cayley’s representation of monoids (see [72], pp. 26-27, and [102], p. 260,
Exercises 1-3). This is a functor category in which ∧ on objects is com-
position of functors. It is not clear how to adapt this functor category to
cases where we have two monoidal structures, while BG covers that and
much more. Moreover, the proof of Proposition 1.3 of [72] (p. 27), which
states the faithfulness of a functor into the functor category, seems to rely
essentially on the presence of the unit object >. On the other hand, the ap-
proach through the category BG is, of course, possible in situations without
unit objects.

The first proof proposed for the (
∧
A>, C(∧A>))-strictification of monoidal

categories in [72], viz. the proof of Corollary 1.4 on p. 27, does not stand,
since the full image of the functor L in the functor category is not closed
under composition of functors. The other proof of Corollary 1.4 in [72],
on p. 30, is closer to what we have been doing in this section and in §4.5.
(In the presentation of [102], pp. 255ff, which is more accessible than that
in [72], there is a lapsus on p. 259; one should have there 12G2 and not
G221.)

Chapter 5

Symmetric Associative
Categories

We present in this chapter a proof of coherence, with and without unit
objects, for symmetric monoidal categories—a proof more thorough than
Mac Lane’s proof (see [99] and [102], Section XI.1), from which it stems.
We provide with it a proof of the completeness of the usual axiomatization
of symmetric groups via the normal form that stems from Burnside. We
also make explicit the strictification of the monoidal structure involved in
the proof, on which Mac Lane presumably also relies (as we noted in §3.2).
Mac Lane seems to presuppose that this strictification is allowed, while we
justify it by the results of Chapter 3.

§5.1. Coherence of symmetric associative categories

To obtain the natural logical category
∧
S, we have that the logical system

C(∧S) is in L∧, with the transformations α included in 1,
∧
b and ∧

c. The
specific equations of E(

∧
S) are those of E(

∧
A) plus

(∧c ∧c) ∧
cB,A ◦ ∧

cA,B = 1A∧B ,

(
∧
b
∧
c) ∧

cA,B∧C =
∧
b→B,C,A

◦ (1B ∧ ∧
cA,C) ◦

∧
b←B,A,C

◦ (∧cA,B ∧ 1C) ◦
∧
b→A,B,C .

The equation (∧c ∧c), together with (∧c nat), says that ∧
c is a natural isomor-

phism, while the equation (
∧
b
∧
c) amounts to Mac Lane’s hexagonal equation

of [99] (Section 4; see also [100], Section VII.7, and [102], Section XI.1).

107

108 CHAPTER 5. SYMMETRIC ASSOCIATIVE CATEGORIES

An alternative way to obtain
∧
S is to extend C(∧A→) with the transfor-

mation ∧
c, and assume the following definition:

∧
b←A,B,C =df

∧
cB∧C,A ◦

∧
b→B,C,A

◦ ∧
cC∧A,B ◦

∧
b→C,A,B

◦ ∧
cA∧B,C ,

together with the equations E(
∧
S) of

∧
S. In that context the equations (

∧
b
∧
b)

become

∧
cB∧C,A ◦

∧
b→B,C,A

◦ ∧
cC∧A,B ◦

∧
b→C,A,B

◦ ∧
cA∧B,C ◦

∧
b→A,B,C = 1A∧(B∧C),

∧
b→A,B,C

◦ ∧
cB∧C,A ◦

∧
b→B,C,A

◦ ∧
cC∧A,B ◦

∧
b→C,A,B

◦ ∧
cA∧B,C = 1(A∧B)∧C ,

while the equation (
∧
b
∧
c) amounts to

∧
b→C,A,B

◦ ∧
cA∧B,C ◦

∧
b→A,B,C = (∧cA,C ∧ 1B) ◦

∧
b→A,C,B

◦ (1A ∧ ∧
cB,C).

We call natural
∧
S-categories symmetric associative categories. Sym-

metric associative categories differ from Mac Lane’s symmetric monoidal
categories, which we will consider in §5.3, by not necessarily having the
unit object >. The objects of a symmetric associative category that is a
partial order make a commutative semigroup.

It is easy to check that the two maps G of §2.9, defined on objects and
on arrows, give rise to a strict C(∧S)-functor from

∧
S to Rel. For that, it is

enough to check that for f = g being one of the equations (∧c nat), (∧c ∧c)
and (

∧
b
∧
c) we have Gf = Gg in Rel (for the remaining equations in the

axiomatization of
∧
S this is trivial). It is clear that Gf corresponds to a

permutation of a finite nonempty domain. Our goal is to prove coherence
for the category

∧
S with respect to Rel; namely, we will prove the following

result of [99] (Section 4).

Symmetric Associative Coherence. The functor G from
∧
S to Rel is

faithful.

Coherence here does not mean, as for
∧
A→,

∧
A and

∧
A>, that

∧
S is a preorder.

We do not have G
∧
cp,p = G1p∧p, and hence, by the functoriality of G, we

do not have ∧
cp,p = 1p∧p in

∧
S.

For G being
∧
A and C/E being

∧
S, we have that the conditions (IVC)

and (IVG) of §3.1 are satisfied, and G is moreover a preorder. To verify

§5.1. Coherence of symmetric associative categories 109

that
∧
A is generatively discrete, we appeal to the fact that for every arrow

term f : A ` B of C(∧A) we have that Gf is a bijection whose ordered
pairs correspond to occurrences of the same letter in A and B. We have
analogous arguments to establish generative discreteness in other cases of
strictification, which we will encounter later, and we will not dwell on this
matter any more.

Then we can apply the Direct-Strictification Theorem of §3.2 to obtain
a category CG/EG , which we will call

∧
Sst. We call CG here C(∧Sst). The

category
∧
Sst is equivalent to

∧
S via the strict C(∧S)-functor HG from

∧
S to

∧
Sst,

and the strong C(∧S)-functor 〈H,ψ2ξ2〉 from
∧
Sst to

∧
S.

Consider the composite functor GH from
∧
Sst to Rel. It is easy to see

that GH|[A]| = GA, since all the formulae in |[A]| have the same letter
length, and we also have

GHα|[A1]|,...,|[Ak]| = GαA1,...,Ak
.

We can conclude that G is equal to the composite functor GHHG . Hence
it is enough to establish that GH is faithful to conclude that G is faithful,
because we know that HG is faithful.

Note that since in
∧
Sst the equation (

∧
b
∧
c) becomes

∧
cX,Y ∧Z = (1Y ∧ ∧

cX,Z) ◦ (∧cX,Y ∧1Z),

and since we also have

∧
cX∧Y,Z = (∧cX,Z ∧1Y) ◦ (1X ∧ ∧

cY,Z),

every arrow term of C(∧Sst) will be equal to a developed arrow term in which
every ∧

c-term is of one of the following forms:

∧
c |[p]|,|[q]|,

∧
c |[p]|,|[q]| ∧1X , 1X ∧ ∧

c |[p]|,|[q]|, (1X ∧ ∧
c |[p]|,|[q]|) ∧ 1Y .

The ∧
c-terms of C(∧Sst) and their heads are defined analogously to what we

had in §2.6.
For the first two arrow terms in this list we use the abbreviation s1, and

for the third and fourth we use si+1, where i = GHX. So our developed
arrow term may be written in the form si1

◦ . . . ◦ sin
◦1X , where n ≥ 0.

110 CHAPTER 5. SYMMETRIC ASSOCIATIVE CATEGORIES

It is easy to check that in
∧
Sst we have the equations

(s1) si ◦ si = 1,

(s2) si+k ◦ si = si ◦ si+k, for k ≥ 2,

(s3) si ◦ si+1 ◦ si = si+1 ◦ si ◦ si+1,

where 1 stands for 1X for some X. The equation (s3) is derived with the
help of (

∧
b
∧
c) and (∧c nat) (see [102], Section XI.1, p. 254).

It is well known that the equations (s1), (s2) and (s3), together with the
equations corresponding to the categorial equations (cat 1) and (cat 2)—
namely, the equations of monoids—axiomatize symmetric groups (i.e., give
a presentation of these groups by generators and relations; see [26], Section
6.2). A reader with this knowledge may now conclude that the functor GH

is faithful. However, to make the matter self-contained, we will justify this
conclusion in the next section.

§5.2. The faithfulness of GH

Let s[i,j] be an abbreviation for si ◦ si−1 ◦ . . . ◦ sj+1 ◦ sj if i > j, while s[i,i]

stands for si. For n ≥ 0, and 1 standing for 1X for some X, we say that

s[i1,j1]
◦ . . . ◦ s[in,jn] ◦1

is in normal form when i1 < i2 < . . . < in (this normal form is implicit in
[17], Note C, pp. 464-465).

Then from (cat 1), (cat 2), (s1), (s2) and (s3) we can prove the following
equations for i ≥ k:

s[i,j] ◦ s[k,l] = s[k,l] ◦ s[i,j], if k+1 < j,

= s[i,l], if k+1 = j,

= s[k−1,l] ◦ s[i,j+1], if k = j, i > j and k > l,

= s[i,j+1], if k = j, i > j and k = l,

= s[k−1,l], if k = j, i = j and k > l,

= 1, if k = j, i = j and k = l,

= s[k−1,l] ◦ s[i,j+1], if k > j ≥ l,

= s[k−1,l−1] ◦ s[i,j], if k > j < l.

§5.2. The faithfulness of GH 111

(Note that (s1) is the sixth equation, (s2) is an instance of the first equation,
and (s3) is an instance of the last equation.) From these equations we easily
infer the following.

Normal-Form Lemma. Every arrow term of C(∧Sst) is equal in
∧
Sst to an

arrow term in normal form.

We can also prove the following.

Uniqueness Lemma. If the arrow terms f, g : X ` Y of C(∧Sst) are in
normal form and GHf = GHg, then f and g are the same arrow term.

Proof. Let f and g be s[i1,j1]
◦ . . . ◦ s[in,jn] ◦1 and s[k1,l1]

◦ . . . ◦ s[km,lm] ◦1
respectively. Note that GHs[i,j] corresponds to the following diagram:

0 j−2 j−1 i−2 i−1 i i+1 GHX−1

0 j−2 j−1 j i−1 i i+1 GHX−1

· · ·

· · ·

· · ·

· · ·
¢
¢
¢
¢

¢
¢
¢
¢

¢
¢
¢
¢

aaaaaaaaaa

So, for n > 0, we have in GHf the ordered pair (jn−1, in), with jn−1 < in,
which we call the last falling slope of GHf . Note that for l > in we have
in GHf the ordered pairs (l, l).

Then we proceed by induction on n. If n = 0, then m = 0; otherwise,
in GHf we would have only the ordered pairs (i, i), and in GHg we would
have (lm−1, km) for lm−1 < km.

If n > 0, then, as we have just shown, m > 0, while in = km and
jn = lm; otherwise, the last falling slopes of GHf and GHg would differ.
Since for e being sjn

◦ sjn+1 ◦ . . . ◦ sin−1 ◦ sin we have

GHf ◦GHe = GHg ◦GHe,

we can conclude that for f ′ and g′ being s[i1,j1]
◦ . . . ◦ s[in−1,jn−1]

◦1 and
s[k1,l1]

◦ . . . ◦ s[km−1,lm−1]
◦1 respectively we have GHf ′ = GHg′, and we

have by the induction hypothesis that f ′ and g′ are the same arrow term.
Hence f and g are the same arrow term. a

112 CHAPTER 5. SYMMETRIC ASSOCIATIVE CATEGORIES

As a matter of fact, it would be enough to prove instead of the Unique-
ness Lemma that if f is in normal form and GHf = GH1, then f is 1.
(Altogether, this proof would not be shorter than the proof of the Unique-
ness Lemma.)

From the Normal-Form Lemma, the functoriality of GH and the Unique-
ness Lemma we infer easily that GH is faithful. An alternative proof of
this faithfulness is obtained without the Uniqueness Lemma. Instead we
establish that the number of different arrow terms f : X ` Y in normal
form is n! for n = GHX = GHY , and that for every permutation π of
an ordinal n > 0 (this permutation is an arrow of Rel) there is an arrow
f : X ` Y of

∧
Sst such that GHX = GHY = n and GHf = π. Then

we use the fact that every onto function from n! to n! is also one-one. A
proof in this alternative style is suggested by [17] (Note C, pp. 464-465).
Our proof in this section is easily converted into a proof of completeness of
the standard axiomatization of symmetric groups with respect to groups of
permutations—a proof alternative to the proof in [17], mentioned above.

§5.3. Coherence of symmetric monoidal categories

To obtain the natural logical category
∧
S>, we have that the logical system

C(∧S>) in L∧,>, with the transformations α included in 1,
∧
b, ∧

c and
∧
δ -∧σ .

The specific equations of E(
∧
S>) are obtained by taking the union of those

of E(
∧
S) and E(

∧
A>).

One can derive for
∧
S> the following equation:

(∧c
∧
δ
∧
σ) ∧

cA,> = ∧
σ←A ◦

∧
δ→A

(see [75], Theorem 8). This equation says that one of
∧
δ and ∧

σ is superfluous:
it can be defined in terms of the other with the help of ∧

c. Note that in the
presence of (∧c

∧
δ
∧
σ), the instance of (

∧
b
∧
c) where A is >, namely

∧
c>,B∧C =

∧
b→B,C,> ◦ (1B ∧ ∧

c>,C) ◦
∧
b←B,>,C

◦ (∧c>,B ∧ 1C) ◦
∧
b→>,B,C ,

is derivable without using (
∧
b
∧
c) (we apply (

∧
b
∧
δ), (

∧
b
∧
δ
∧
σ) and (

∧
b
∧
σ)), and anal-

ogously for the instances of (
∧
b
∧
c) where B or C is >.

§5.3. Coherence of symmetric monoidal categories 113

Natural
∧
S>-categories are usually called symmetric monoidal categories.

The objects of a symmetric monoidal category that is a partial order make
a commutative monoid.

The following result is from [99] (Section 5).

Symmetric Monoidal Coherence. The functor G from
∧
S> to Rel is

faithful.

The proof of this faithfulness is easily obtained by extending our proof of
Symmetric Associative Coherence in the two preceding sections. To obtain
the category

∧
Sst
>, we take

∧
A> to be G. Then in

∧
Sst
> we have ∧

c |[A]|,|[>]|= 1|[A]|.

Although the categories
∧
Sst and

∧
Sst
> are not preorders, the categories

∧
Sdiv and

∧
Sdiv
> are preorders (for the definition of these last two categories

see §3.3). This follows from Symmetric Associative Coherence and Sym-
metric Monoidal Coherence. So extending E(

∧
Sst) and E(

∧
Sst
>) with the equa-

tion ∧
cA,A = 1A∧A, which yields preordering (see §6.5), does not add new

equations to
∧
Sdiv and

∧
Sdiv
> . We will rely on that in §7.6.

Chapter 6

Biassociative Categories

In this chapter we prove coherence, in the sense of preordering, for cat-
egories that have two monoidal structures, with or without unit objects.
We explain what are the effects of strictifying this double monoidal struc-
ture. With the help of that, we establish also coherence for categories with
two symmetric monoidal structures. The proofs of the present chapter are
based on the proofs of the preceding two chapters.

§6.1. Coherence of biassociative and bimonoidal cate-
gories

Let
∨
A be the natural logical category in L∨ isomorphic to

∧
A of §4.3. The

only difference is that ∧ is everywhere replaced by ∨. The primitive arrow
terms of C(∨A) are included in 1 and

∨
b, while the equations of E(

∨
A) are

obtained by replacing ∧ by ∨ in those of E(
∧
A) (see the List of Equations

and the List of Categories at the end of the book).
To obtain the natural logical category A, we have that the logical system

C(A) is in L∧,∨, with the transformations α included in the families 1 and
b. The specific equations of E(A) are obtained by taking the union of those
of E(

∧
A) and E(

∨
A). We call natural A-categories biassociative categories.

An arrow term of C(A) is called →-directed when neither of
∧
b← and

∨
b←

occurs in it.
We define inductively as follows formulae of L∧,∨ in normal form:

every letter is in normal form;

115

116 CHAPTER 6. BIASSOCIATIVE CATEGORIES

if A and B are in normal form and B is not of the form B1∧B2, then
A ∧B is in normal form;

if A and B are in normal form and B is not of the form B1∨B2, then
A ∨B is in normal form.

So all parentheses within conjunctions and disjunctions are associated to
the left as much as possible.

Then we can easily prove the Directedness Lemma of §4.3 for A by
extending the proof in §4.3. From that we infer as before the following.

Biassociative Coherence. The category A is a preorder.

Let
∨
A⊥ be the natural logical category in L∨,⊥ isomorphic to

∧
A> of

§4.6. The only difference is that ∧ and > are everywhere replaced by ∨ and
⊥ respectively. The primitive arrow terms of C(∨A⊥) are included in 1,

∨
b

and
∨
δ -∨σ , while the equations of E(

∨
A⊥) are obtained by replacing ∧ and >

by ∨ and ⊥ respectively in those of E(
∧
A>) (see the List of Equations and

the List of Categories).
To obtain the natural logical category A>,⊥, we have that the logical

system C(A>,⊥) is in L∧,∨,>,⊥, with the transformations α included in the
families 1, b and δ-σ. The specific equations of E(A>,⊥) are obtained by

taking the union of those of E(
∧
A>) and E(

∨
A⊥). We call natural A>,⊥-

categories bimonoidal categories.
An arrow term of C(A>,⊥) is called →-directed when neither of

∧
b←,

∨
b←,

∧
δ←,

∨
δ←, ∧σ← and ∨

σ← occurs in it.
We define inductively as follows formulae of L∧,∨,>,⊥ in normal form:

every letter and the nullary connectives > and ⊥ are in normal form;

if A and B are in normal form, B is not of the form B1 ∧ B2 and
neither A nor B is >, then A ∧B is in normal form;

if A and B are in normal form, B is not of the form B1 ∨ B2 and
neither A nor B is ⊥, then A ∨B is in normal form.

So, as for the normal form of formulae of L∧,∨, all parentheses within
conjunctions and disjunctions are associated to the left as much as possible,
and, moreover, the conjuncts > and disjuncts ⊥ are deleted.

§6.2. Form sequences 117

Then we can prove the Directedness Lemma of §4.3 for A>,⊥ by extend-
ing the proof in §4.3 and §4.6. From that we infer as before the following.

Bimonoidal Coherence. The category A>,⊥ is a preorder.

§6.2. Form sequences

The classes [A] involved in (C/E ,
∧
A)-strictification correspond bijectively to

finite nonempty sequences of objects (see §3.1 and §4.5). With (C/E ,A)-
strictification the classes [A] correspond analogously to a more complicated
notion of sequence where we distinguish concatenation of the ∧ kind from
concatenation of the ∨ kind. To define this notion, let X be an arbitrary
set, and let ξ ∈ {∧,∨}. If ξ is ∧, then ξc is ∨, and if ξ is ∨, then ξc is ∧.

We define inductively as follows the notion of form sequence of X of
colour ξ :

(1) every x ∈ X is a form sequence of X of colour ξ ;

(2) if X1. . . Xn, where n ≥ 2, is a sequence of form sequences of colour
ξc, then the ordered pair (X1. . . Xn, ξ) is a form sequence of X of
colour ξ .

(Finite nonempty form sequence would be a more precise, but less concise,
denomination for the notion of form sequence just introduced. We will
introduce below a more general notion of form sequence that covers also
empty form sequences of both colours.)

It is easy to see that every form sequence of X of colour ξ corresponds
to a planar finite tree (see §2.1) with nodes of n-ary branching where n ≥ 2,
such that every leaf is labelled by an element of X , every node that is not
a leaf is labelled by ∧ or ∨, for every node labelled β ∈ {∧,∨} its successor
is labelled βc, provided this successor is not a leaf, and the root is labelled
ξ , provided this root is not a leaf.

We introduce now an alternative notation for form sequences, which is
obtained by writing (X1 ξ X2 ξ . . . ξ Xn) for (X1. . . Xn, ξ) in clause (2) of
the definition above. We call this notation, which we will need in latter
sections, the natural notation for form sequences. The natural notation

118 CHAPTER 6. BIASSOCIATIVE CATEGORIES

for [A] may be conceived as obtained from any formula in [A] by deleting
parentheses corresponding to ξ in the immediate scope of ξ . For example,
we replace ((p∧q)∧r)∨s by (p∧q∧r)∨s. Note that for form sequences in
natural notation the variables for form sequences X, Y, . . . stand in different
contexts for different syntactic objects. For example, if X is the form
sequence (p ∧ q ∧ r), then in X ∧ s, the variable X stands for p ∧ q ∧ r,
while in X ∨ s it stands for (p∧ q∧ r). As usually done, with other kinds of
formulae and terms, we omit the outermost parentheses in natural notation.

In the context of (C/E ,A)-strictification, we may use as arrow terms for
arrows of the directly strictified category, arrow terms in natural notation,
i.e. arrow terms in which parentheses corresponding to ξ in the immediate
scope of ξ are deleted, as above. For example, we replace (((f1∧f2)∧f3)∨
f4) ◦ f5 by ((f1 ∧ f2 ∧ f3)∨ f4) ◦ f5. Such arrow terms correspond to planar
finite trees if ◦ does not occur in them.

If Bob is the set of objects of a C/E category B, and if G is A, and
is related to C/E as in (IVC) and (IVG) of §3.1, then the objects of BG
correspond to form sequences of Bob of both colours. If X, X1, . . . , X

′
1, . . .

stand for form sequences of Bob of colour ξc (if X ∈ Bob, then X is both
of colour ξc and ξ), then we define the operations ξ′′ ∈ {∧′′,∨′′} on the
objects of BG in the following manner:

X1 ξ′′ X2 =df (X1X2, ξ),
X ξ′′ (X1. . . Xn, ξ) =df (XX1. . . Xn, ξ),
(X1. . . Xn, ξ) ξ′′ X =df (X1. . . XnX, ξ),
(X1. . . Xn, ξ) ξ′′ (X ′

1. . . X
′
m, ξ) =df (X1. . . XnX ′

1. . . X
′
m, ξ),

for n, m ≥ 2. The operation ξ′′ is, intuitively, concatenation of the ξ kind.
For the classes [A] involved in (C/E ,A>,⊥)-strictification, we have to

extend the notion of form sequence to take into account the empty sequences
of colours ∧ and ∨. For the formal definition that follows, let X be an
arbitrary set, and let ξc for ξ ∈ {∧,∨} be as before.

A form sequence of X of colour ξ is defined inductively, as before, with
the clauses (1), (2) and the following additional clause:

(0) if ∅ is the empty sequence of elements of X , then (∅, ξ) is a form
sequence of X of colour ξ .

§6.3. Coherence of symmetric biassociative categories 119

When we need to distinguish the previous notion of form sequence from the
new notion just introduced, we call the former notion nonextended and the
latter one extended. Planar trees corresponding to form sequences in the
extended sense have leaves labelled by elements of X or by (∅, ξ).

For G being A>,⊥, we define the operations ξ′′ and ζ′′ on the objects
of BG conceived as form sequences in the extended sense in the following
manner. For >′′ we take (∅,∧), which corresponds to [>G], and for ⊥′′ we
take (∅,∨), which corresponds to [⊥G]. For ξ′′ we enlarge the definition
above with

Y ξ′′ (∅, ξ) =df Y,

(∅, ξ) ξ′′ Y =df Y,

for Y any form sequence of Bob.

§6.3. Coherence of symmetric biassociative categories

Let
∨
S be the natural logical category in L∨ isomorphic to

∧
S of §5.1. The

difference is that ∧ is everywhere replaced by ∨. The primitive arrow terms
of C(∨S) are included in 1,

∨
b and ∨

c, while the equations of E(
∨
S) are obtained

by replacing ∧ by ∨, and by permuting the indices of c in the equations of
E(

∧
S). So we obtain the equations (∨c ∨c) and (

∨
b
∨
c) (see the List of Equations

and the List of Categories).
To obtain the natural logical category S, we have that the logical system

C(S) is in L∧,∨, with the transformations α included in the families 1, b and
c. The specific equations of E(S) are obtained by taking the union of those
of E(

∧
S) and E(

∨
S). We call natural S-categories symmetric biassociative

categories.
For G being A and C/E being S, we have that (IVC) and (IVG) of §3.1

are satisfied, and G is moreover a preorder. Thus we can apply the Direct-
Strictification Theorem of §3.2 to obtain a category CG/EG , which we will
call Sst. We call CG here C(Sst).

As in §3.2, we have the functor GH from Sst to Rel, and it is enough
to show that this functor is faithful to conclude the following.

Symmetric Biassociative Coherence. The functor G from S to Rel is
faithful.

120 CHAPTER 6. BIASSOCIATIVE CATEGORIES

In the remainder of this section we prove that the functor GH from Sst to
Rel is faithful.

For ξ ∈ {∧,∨}, a
ξ

c-term of C(Sst) is called atomized when, for every
arrow term 1X occurring in it, X is |[p]| for some letter p of P. Atom-
ized

ξ

c-terms may be designated by composition-free arrow terms in natural
notation, as explained in the preceding section, and these arrow terms cor-
respond to planar finite trees analogous to those that correspond to form
sequences. To every atomized

ξ

c-term we assign a planar finite tree with
nodes of n-ary branching, where n ≥ 2, such that exactly one leaf λ is la-
belled with the head

ξ

cX,Y of our
ξ

c-term, and all the other leaves are labelled
with arrow terms of the form 1p. Nodes that are not leaves are labelled
with ∧ or ∨, and for every node labelled β ∈ {∧,∨} its successor is labelled
βc, provided this successor is not a leaf.

Let νλ be either the leaf λ above when the predecessor of λ is labelled
with ξc or λ is the root, or else let νλ be the predecessor of λ labelled with
ξ . The level l(f) of an atomized

ξ

c-term f is the height of νλ (see §2.1 for
this notion of height). The span s(f) of an atomized

ξ

c-term f is the number
of nodes of the same height as νλ on the left-hand side of νλ.

It is easy to see that with the help of the bifunctorial and naturality
equations every arrow term of C(Sst) is equal in Sst to a developed arrow
term fn ◦ . . . ◦ f1 ◦1X where every factor fi is an atomized

ξ

c-term, and if
1 ≤ i < j ≤ n, then l(fi) ≤ l(fj) and s(fi) ≤ s(fj). It is also easy to
see that for every arrow term f : X ` Y of C(Sst) there is an arrow term
f−1 : Y ` X of C(Sst) such that f−1 ◦ f = 1X and f ◦ f−1 = 1Y in Sst.
From that we conclude that to show the faithfulness of GH it is enough to
prove for f : X ` X that if GHf = GH1X , then f = 1X in Sst.

Let f : X ` X be the developed arrow term fn ◦ . . . ◦ fk ◦ . . . ◦ f1 ◦1X of
the kind described above, such that l(fn) = . . . = l(fk), s(fn) = . . . = s(fk),
and either l(fk) > l(fk−1) or s(fk) > s(fk−1). Suppose GHf = GH1X .
If GH(fn ◦ . . . ◦ fk) = GH1X , then by the faithfulness of GH proved in
§5.2 we can conclude that fn ◦ . . . ◦ fk = 1X in Sst, and we must have
GH(fn ◦ . . . ◦ fk) = GH1X , because, otherwise, according to our conditions
on l and s, we could not have GHf = GH1X . We repeat this reasoning
with fk−1 ◦ . . . ◦ f1 ◦1X , until we obtain that f = 1X in Sst. This concludes
the demonstration of the faithfulness of GH, from which we infer Symmetric

§6.4. Coherence of symmetric bimonoidal categories 121

Biassociative Coherence.

§6.4. Coherence of symmetric bimonoidal categories

Let
∨
S⊥ be the natural logical category in L∨,⊥ isomorphic to

∧
S> of §5.3.

The difference is that ∧ and > are everywhere replaced by ∨ and ⊥ re-
spectively. The primitive arrow terms of C(∨S⊥) are included in 1,

∨
b, ∨

c and
∨
δ -∨σ , while the equations of E(

∨
S⊥) are obtained by replacing ∧ and > by ∨

and ⊥ respectively, and by permuting the indices of c in the equations of
E(

∧
S>).
To obtain the natural logical category S>,⊥, we have that the logical

system C(S>,⊥) is in L∧,∨,>,⊥, with the transformations α included in the
families 1, b, c and δ-σ. The specific equations of E(S>,⊥) are obtained by

taking the union of those of E(
∧
S>) and E(

∨
S⊥) plus

(∧c⊥) ∧
cC,C = 1C∧C ,

(∨c>) ∨
cC,C = 1C∨C ,

provided C is a letterless formula of L∧,∨,>,⊥.
From (∧c⊥) and (∨c>) we can derive the following equations. If h : C ` D

and h−1 : D ` C are mutually inverse arrows of S>,⊥, with C and D

letterless formulae of L∧,∨,>,⊥, then in E(S>,⊥) we have

(∧c h) ∧
cC,D = (h ∧ 1C) ◦ (1C ∧ h−1),

(∨c h) ∨
cD,C = (h ∨ 1C) ◦ (1C ∨ h−1).

To derive (∧c h) we have

(h ∧ 1C) ◦ (1C ∧ h−1) = (h ∧ 1C) ◦ ∧
cC,C ◦ (1C ∧ h−1), by (∧c ⊥)

= ∧
cC,D,

by naturality equations, bifunctorial equations, and by h being an isomor-
phism; we proceed analogously for (∨c h). Conversely, we obtain (∧c⊥) and
(∨c>) from (∧c h) and (∨c h) by putting 1C : C ` C for h and h−1.

We call natural S>,⊥-categories symmetric bimonoidal categories.
The category Set of sets with functions is a bimonoidal category with

∧ being cartesian product, ∨ being disjoint union, > being a singleton and
⊥ being the empty set. But, although the instance ∧

c⊥,⊥ = 1⊥∧⊥ of (∧c⊥)

122 CHAPTER 6. BIASSOCIATIVE CATEGORIES

holds in Set, the instance ∨
c>,> = 1>∨> of (∨c >) does not hold. So Set is

not a symmetric bimonoidal category in the sense just specified, though it
is a symmetric biassociative category.

Let the category Sst
>,⊥ be obtained as Sst in the preceding section by

taking that G is A>,⊥ instead of A, and that C/E is S>,⊥. We call CG here
C(Sst

>,⊥).
A constant object of Sst

>,⊥ is |[A]| where A is a letterless formula of
L∧,∨,>,⊥. The remaining objects of Sst

>,⊥ are called variable objects. The
constant objects of Sst

>,⊥ are denumerable.

The arrow term
ξ

cX,Y of C(Sst
>,⊥), for ξ ∈ {∧,∨}, is called basic when

the following two conditions are satisfied: first, the form sequences (in the
extended sense) corresponding to X and Y are of colour ξc, and, secondly,
if the objects X and Y are both constant, then there is no arrow term
of C(Sst

>,⊥) of type X ` Y (hence there is neither an arrow term of type
Y ` X).

A developed arrow term fn ◦ . . . ◦ f1 ◦1Z of C(Sst
>,⊥) such that for every

i ∈ {1, . . . , n} the head of fi is a basic arrow term
ξ

cX,Y is called basically
developed. We can prove the following.

Basic-Development Lemma 1. Every arrow term of C(Sst
>,⊥) is equal in

Sst
>,⊥ to a basically developed arrow term.

Proof. For f : X ` Y an arrow term of C(Sst
>,⊥), we proceed by induction

on the number n ≥ 1 of nodes in the planar finite tree corresponding to
X (which must be equal to the number of nodes in the planar finite tree
corresponding to Y). If n = 1, then X = Y , and f must be equal to 1|[p]| or
1(∅,ξ). For the induction step, we find first a developed arrow term equal

to f , and then, by using the equations (
ξ

b
ξ

c), (
ξ

c
ξ

δ
ξ

σ) and (
ξ

c h), together with
the induction hypothesis, we transform this arrow term into a basically
developed one. a

Analogously to what we had in the preceding section, we find for every
ξ

c-term f its level l(f). (Atomization is not here essential, since it leaves
the level invariant.) Then we have the following.

Basic-Development Lemma 2. Every arrow term of C(Sst
>,⊥) is equal in

§6.4. Coherence of symmetric bimonoidal categories 123

Sst
>,⊥ to a basically developed arrow term hk ◦ . . . ◦h1 ◦1X such that k ≥ 0

and, if k > 1, then for 1 ≤ i < j ≤ k we have l(hi) ≤ l(hj).

To prove this lemma, we use Basic-Development Lemma 1 together with
bifunctorial and naturality equations, which do not spoil basic development.

Basic-Development Lemma 3. Every arrow term f : (X1. . . Xn, ξ) `
(Y1. . . Yn, ξ) of C(Sst

>,⊥), with n ≥ 2, is equal in Sst
>,⊥ to an arrow term of

the form
(. . . (f1 ξ f2) ξ . . . ξ fn) ◦hk ◦ . . . ◦h1 ◦1X

such that fi, for i ∈ {1, . . . , n}, is of type Xπ(i) ` Yi for π a permutation
of {1, . . . , n}, while hk ◦ . . . ◦h1 ◦1X , with k ≥ 0, is basically developed and
l(hj) = 1 for every j ∈ {1, . . . , k}.

To prove this lemma we just apply Basic-Development Lemma 2 and bi-
functorial equations. Now we can prove the following.

Symmetric Bimonoidal Coherence. The functor G from S>,⊥ to Rel
is faithful.

Proof. As before, it is enough to prove that the functor GH from Sst
>,⊥

to Rel is faithful. As in the preceding section, it is enough to show for
f : X ` X that if GHf = GH1X , then f = 1X in Sst

>,⊥.
We proceed by induction on the number n ≥ 1 of nodes in the pla-

nar finite tree corresponding to X. If n = 1, then f is equal to 1|[p]| or
1(∅,ξ). For the induction step, suppose X corresponds to the form sequence
(X1. . . Xn, ξ) with n ≥ 2. Then, by Basic-Development Lemma 3, we
have that f is equal in Sst

>,⊥ to (. . . (f1 ξ f2) ξ . . . ξ fn) ◦h where h, which
is hk ◦ . . . ◦h1 ◦1X , is an instance of an arrow term

h′ : |[(. . . (p1 ξ p2) ξ . . . ξ pn)]| ` |[(. . . (pπ(1) ξ pπ(2)) ξ . . . ξ pπ(n))]|

of C(
ξ

Sst), and the type of fi is Xπ(i) ` Xi, for i ∈ {1, . . . , n}.
For every i ∈ {1, . . . , n} we must have π(i) = i. If Xi is a variable

object of Sst
>,⊥, then this follows from the fact that f is of type X ` X

and GHf = GH1X . If Xi is a constant object of Sst
>,⊥, then this follows

from the fact that h is basically developed. Otherwise, there would be in

124 CHAPTER 6. BIASSOCIATIVE CATEGORIES

h an arrow term
ξ

cXj ,Xπ(j) or
ξ

cXπ(j),Xj for some j ∈ {1, . . . , n}; but this is
impossible since fj is of type Xπ(j) ` Xj . So GHh′ = GH1|[A]| for A being

(. . . (p1 ξ p2) ξ . . . ξ pn). By the faithfulness of GH from
ξ

Sst to Rel, we have
h′ = 1|[A]|, from which it follows that h = 1X in Sst

>,⊥. We have also that fi

is of type Xi ` Xi, and since GHfi = GH1Xi
, by applying the induction

hypothesis we obtain fi = 1Xi
. It follows that f = 1X in Sst

>,⊥. a

In the induction step of this proof we deal with the least level, while in
the induction step of the proof of the faithfulness of GH from Sst to Rel
in the preceding section we dealt with the greatest level. Because of that,
we had to introduce there the notion of span. The preceding proof could,
however, be reworked in the style of the present section—with the least
level.

§6.5. The category S′

To obtain the natural logical category S′, we take the logical system C(S)
in L∧,∨ of §6.3. The specific equations of E(S′) are those of E(S) plus the
equations

(
ξ

c1)
ξ

cA,A= 1AξA

for ξ ∈ {∧,∨}. We call S′ the natural logical category C(S)/E(S′). The
equations (

ξ

c h) of the preceding section hold in S′ with A and B being any
formulae of L∧,∨ such that h : A ` B and h−1 : B ` A are mutually inverse
arrows of S′. Conversely, we obtain (

ξ

c1) from (
ξ

c h) by putting 1A : A ` A

for h and h−1.

To show that S′ is a preorder we proceed analogously to what we had
in the preceding section. Let S′st be obtained as Sst by taking that G is
A and C/E is S′. Here CG is C(Sst). Basic arrow terms

ξ

cX,Y of C(Sst) are
those where X and Y are of colour ξc and there is no arrow term of C(Sst)
of type X ` Y . Basically developed arrow terms are then defined as in
the preceding section, and we take over also the notion of level. We can
then prove analogues of Basic-Development Lemmata 1-3 of the preceding
section.

§6.5. The category S′ 125

To conclude the proof that S′ is a preorder, we prove that every arrow
term f : X ` X of C(Sst) is equal in S′st to 1X . We proceed by induction
on the number n ≥ 1 of nodes in the planar finite tree corresponding to X.
This proof is analogous to the proof of Symmetric Bimonoidal Coherence
in the preceding section. In the induction step, we reason as in the case
where Xi is a constant object.

Note that, since G
ξ

cA,A 6= G1AξA, we have no functor G from S′ to
Rel. The fact that S′ is a preorder cannot be reformulated as a coherence
theorem stating that G is faithful.

The natural logical category
∧
S′, whose logical system is C(∧S) in L∧, has

the specific equations of E(
∧
S) with ∧

cA,A = 1A∧A added. We can show that
∧
S′ is a preorder by simplifying the argument above.

Chapter 7

Dissociative Categories

In this chapter we prove coherence, in the sense of preordering, for cate-
gories with a double monoidal structure without unit objects and with the
linear distribution arrows of [22]. Linear distribution is an associativity
principle involving two binary operations, and we have coined for it the
name dissociativity. This principle will yield arrows based on the usual dis-
tribution principle in Chapter 11, where the two monoidal structures are
made of a product and a coproduct.

We prove beforehand coherence for categories such as those mentioned
above that lack the ordinary associativity arrows. We also prove coherence
in cases where dissociativity is allowed only on one side. Our method in
these proofs is based on confluence techniques, like those that may be found
in the lambda calculus.

Next we prove coherence for the case where the two monoidal structures
with dissociativity are symmetric, and we still lack the unit objects. Here
the method of proof is more involved. It is based on a cut-elimination pro-
cedure in a sequent system strictified in the symmetric monoidal structure.
We justify this strictification by the results of Chapters 3-6.

We are here at the watershed as far as method is concerned. Up to
this chapter, confluence techniques predominated, while, from now on, cut
elimination, or its simpler version, composition elimination, will take over
the stage. (The two approaches are still mixed in the next chapter.) Cut
elimination could have been employed in the first part of this chapter too.
For the categories treated there, both approaches are available, and we

127

128 CHAPTER 7. DISSOCIATIVE CATEGORIES

opted for the first, the second being well illustrated in the second part of
the chapter.

At the end of the chapter, we consider adding the unit objects, and we
present the linearly distributive categories of [22], for which coherence in
our sense does not obtain. Linearly distributive categories without unit
objects, with which we deal in this chapter, do not seem to have been
considered separately before.

§7.1. Coherence of dissociative categories

To obtain the natural logical category DI, we have that the logical system
C(DI) is in L∧,∨, with the transformations α included in 1 and d. The
equations E(DI) are just those of Enat

C(DI) (see §4.1). We call natural DI-
categories dissociative categories.

We have given in §1.2 our reasons for calling dissociativity the principle
underlying the arrow terms in d. This principle may be found in [1] (Section
15.2), [65], [89] (Section 8), [52] (Section 6.9) and [16]. In category theory
it has been introduced by Cockett and Seely (see [21] and [22]; see also [68],
Section 3.2). The dissociativity principle underlying the arrow terms in d

resembles the modularity law for lattices:

if c ≤ a, then a ∧ (b ∨ c) ≤ (a ∧ b) ∨ c

(see [9], Section I.7). The condition a ∧ (b ∨ c) ≤ (a ∧ b) ∨ c, without the
assumption c ≤ a, has the same force as distribution in lattices (cf. §11.3).

For x and y occurrences of ξ ∈ {∧,∨} in a formula A of L∧,∨ we define
the relation Sξ

A such that xSξ
Ay when x is in the scope of y in A. (For the

notion of scope see §2.1.) Note that for f : A ` B being a member of the
family d we have that S∧B is a proper subset of S∧A and S∨A a proper subset
of S∨B . This holds also for f being any arrow term of C(DI) in which a
member of the family d occurs; otherwise Sξ

A = Sξ
B . Here A and B are

comparable formulae of L∧,∨ (namely, formulae that yield the same word
after deleting parentheses; see §2.1), and the relations SA and SB can be
compared, as the relations RA and RB were compared in §4.2. It is clear
that the following holds.

§7.1. Coherence of dissociative categories 129

Remark. Let the formula A of L∧,∨ be of the form A1 ξ A2 for ξ ∈ {∧,∨}.
Then, for x and y being occurrences of ∧ or ∨ in Ai, where i ∈ {1, 2}, we
have that x is in the scope of y in A iff x is in the scope of y in Ai.

We have the following analogue of the Extraction Lemma of §4.4, which
is proved by imitating the proof in §4.4.

Extraction Lemma. If there is an occurrence z of ∨ in a formula A of
L∧,∨ such that there is no u with zS∨Au, then there is a formula A1 z A2

of L∧,∨ such that there is an arrow term g : A ` A1 z A2 of C(DI). In
addition,

(∗) for all occurrences x and y of ∧ or ∨ in Ai, where i ∈ {1, 2}, we
have that y is in the scope of x in A iff y is in the scope of x in
Ai;

(∗∗) every subterm of g of the form dL
D,E,F is of the type D∧(E z F) `

(D ∧E) z F , and every subterm of g of the form dR
F,E,D is of the

type (F z E) ∧D ` F z (E ∧D).

We do not need (∗∗) for the proof of the Theoremhood Proposition be-
low, but we stated this condition because it is analogous to (∗∗) of previous
Extraction Lemmata in §4.2 and §4.4. The following lemma is analogous
to the Theoremhood Proposition of §4.2.

Theoremhood Proposition. There is an arrow term f : A ` B of C(DI)
iff A and B are comparable formulae of L∧,∨, and we have S∧B ⊆ S∧A and
S∨A ⊆ S∨B.

Proof. The direction from left to right is easy. For the other direction,
we proceed by induction on the letter length n ≥ 1 of A. If n = 1, then
Sξ

A = Sξ
B = ∅, and f is 1p : p ` p.

If n > 1 and B is B1 xB2 for x being an occurrence of ∧, then from
S∧B ⊆ S∧A it follows that A is of the form A1 xA2. Then, by the Remark,
we have S∧Bi

⊆ S∧Ai
and S∨Ai

⊆ S∨Bi
for i ∈ {1, 2}, and so, by the induction

hypothesis, we have the arrow terms fi : Ai ` Bi of C(DI). The arrow term
f is f1 ∧ f2.

130 CHAPTER 7. DISSOCIATIVE CATEGORIES

If n > 1 and B is B1 z B2 for z being an occurrence of ∨, then from
S∨A ⊆ S∨B we conclude that there is no u such zS∨Au. So, by the Extraction
Lemma of this section, there is an arrow term g : A ` A1 z A2 of C(DI) such
that (∗) of the Extraction Lemma holds. Since for x and y in Ai we have
xSξ

Ai
y iff xSξ

Ay, by the induction hypothesis and the Remark we have the
arrow terms fi : Ai ` Bi of C(DI), and f is (f1 ∨ f2) ◦ g. a

As explained after the proof of the Theoremhood Proposition of §4.2, with
the Theoremhood Proposition we have just proved we have solved the the-
oremhood problem for the category DI.

For a formula A let d(A) be the cardinality of the set of ordered pairs
S∧A. If f : A ` B of DI is not equal to 1A : A ` A, then d(B) < d(A). We
can prove the following.

Dissociative Coherence. The category DI is a preorder.

Proof. Let f, g : A ` B be arrow terms of C(DI). We proceed by induction
on d(A)−d(B) to show that f = g in DI. (Until the end of this proof, we
assume that equality of arrow terms is equality in DI.) If d(A) = d(B),
then we conclude that f = g = 1A.

Suppose d(B) < d(A). By the Development Lemma of §2.7, we have
that f = f2 ◦ f1 and g = g2 ◦ g1 for some d-terms f1 : A ` C and g1 : A ` D,
and some arrow terms f2 : C ` B and g2 : D ` B of C(DI). We have
d(C), d(D) < d(A). The following cases may arise.

(LL) The head of f1 is dL
E,F,G, and the head of g1 is dL

H,I,J . Under (LL),
we have the following subcases.

(LL1) The subformulae E∧(F ∨G) and H∧(I∨J) have no occurrences of
letters in common within A. Then we use bifunctorial equations to obtain
two d-terms f ′2 : C ` B′ and g′2 : D ` B′ such that f ′2 ◦ f1 = g′2 ◦ g1. Then
we can infer that S∧C ∩ S∧D = S∧B′ and S∨C ∪ S∨D = S∨B′ , from which it
follows from the Theoremhood Proposition of this section that S∧B ⊆ S∧B′
and S∨B′ ⊆ S∨B . Hence, again by the Theoremhood Proposition, there is an
arrow term h : B′ ` B of C(DI). By applying the induction hypothesis, we
obtain that f2 = h ◦ f ′2 and g2 = h ◦ g′2, from which f = g follows.

(LL2) Suppose E ∧ (F ∨ G) is a subformula of H or of I or of J ; or,

§7.1. Coherence of dissociative categories 131

conversely, suppose that H ∧ (I ∨ J) is a subformula of E or of F or of G.
Then we proceed as in (LL1) by using (dL nat).

(LL3) Suppose, finally, that E is H, F is I, and G is J . Then C is D,
and f1 = g1. We then apply the induction hypothesis to f2, g2 : C ` B and
obtain f = g.

(LR) The head of f1 is dL
E,F,G, and the head of g1 is dR

J,I,H . Under (LR),
we have two subcases that are settled analogously to (LL1) and (LL2).
There are no remaining subcases under (LR). It might seem that E could
be J ∨ I, while F ∨ G is H; in other words, E ∧ (F ∨ G) and (J ∨ I) ∧H

would the same subformula of A of the form (J x I) ∧ (F y G) for x and
y occurrences of ∨. Then we would have xS∨Cy and yS∨Dx, and, by the
Theoremhood Proposition of this section, we would have both xS∨By and
yS∨Bx, which is a contradiction.

It remains to consider the following cases.

(RR) The head of f1 is dR
G,F,E , and the head of g1 is dR

J,I,H .

(RL) The head of f1 is dR
G,F,E , and the head of g1 is dL

H,I,J .

The case (RR) is settled analogously to (LL), while the case (RL) is the
same as (LR). a

It is not difficult to see that S∧A = S∧B and S∨A = S∨B implies that A

and B are the same formula of L∧,∨. Because, if S∧A = S∧B and S∨A = S∨B ,
then, by the Theoremhood Proposition of this section, there is an arrow
term f : A ` B of C(DI), in which dL and dR cannot occur, because S∧B
is not a proper subset of S∧A and S∨A is not a proper subset of S∨B . Hence
f must stand for an identity arrow. So there is a bijection between the
objects A of DI and the pairs of relations (S∧A, S∨A). From Dissociative
Coherence, we can conclude that DI is isomorphic to the category whose
objects are such pairs, and where an arrow exists between (S∧A, S∨A) and

(S∧B , S∨B) when S∧B ⊆ S∧A and S∨A ⊆ S∨B . Note that, as the category
∧
A→ of

§4.2, the category DI is not just a preorder, but a partial order.

132 CHAPTER 7. DISSOCIATIVE CATEGORIES

§7.2. Net categories

To obtain the natural logical category DA, we have that the logical system
C(DA) is in L∧,∨ with the transformations α included in 1, b and d. The
specific equations of E(DA) are those of E(A) plus

(dL∧) dL
A∧B,C,D = (

∧
b→A,B,C ∨ 1D) ◦ dL

A,B∧C,D
◦ (1A ∧ dL

B,C,D) ◦
∧
b←A,B,C∨D,

(dL∨) dL
D,C,B∨A =

∨
b←D∧C,B,A

◦ (dL
D,C,B ∨ 1A) ◦ dL

D,C∨B,A
◦ (1D ∧ ∨

b→C,B,A),

(dR∧) dR
D,C,B∧A = (1D ∨ ∧

b←C,B,A) ◦ dR
D,C∧B,A

◦ (dR
D,C,B ∧ 1A) ◦

∧
b→D∨C,B,A,

(dR∨) dR
A∨B,C,D =

∨
b→A,B,C∧D

◦ (1A ∨ dR
B,C,D) ◦ dR

A,B∨C,D
◦ (
∨
b←A,B,C ∧ 1D),

(d
∧
b) dR

A∧B,C,D
◦ (dL

A,B,C ∧ 1D) = dL
A,B,C∧D

◦ (1A ∧ dR
B,C,D) ◦

∧
b←A,B∨C,D,

(d
∨
b) (dR

A,B,C ∨ 1D) ◦ dL
A∨B,C,D =

∨
b→A,B∧C,D

◦ (1A ∨ dL
B,C,D) ◦ dR

A,B,C∨D.

Note that, after replacing ∨ by ∧, the arrow term dL
A,B,C is of the same

type as
∧
b→A,B,C , and, after replacing ∧ by ∨, it is of the same type as

∨
b→A,B,C .

Dually, dR
A,B,C is of the type of

ξ

b←A,B,C after these replacements. After such
replacements, the equations (dL nat) and (dR nat) become the equations
(
∧
b nat) and (

∨
b nat) (see §2.7), while all the specific equations of E(DA)

that are added to those of E(A) are related to the pentagonal equations
(
∧
b 5) and (

∨
b 5) (see §4.2 and the List of Equations at the end of the book).

We may obtain all of these equations by starting from (
∧
b 5) and replacing

one or two occurrences of ∧ by ∨ in each of the types, at the same place.
When only one occurrence is replaced, this forces three or four

∧
b-terms to

become dL-terms or dR-terms, and yields the equations (dL∧), (dR∧) and
(d

∧
b). The remaining three equations are obtained analogously from (

∨
b 5)

by replacing one occurrence of ∨ by ∧. This covers all replacements of ∧ by
∨ in (

∧
b 5), since the replacements in (

∨
b 5) may be conceived as replacements

of two occurrences of ∧ by ∨ in (
∧
b 5). (When all the three occurrences of ∧

are replaced by ∨ in (
∧
b 5), we obtain (

∨
b 5).) There are many symmetries in

these equations.
We call natural DA-categories net categories. Officially, in our nomen-

clature they would be called dissociative biassociative categories. A reason
for switching to the handy denomination “net” is in the connection with
the proof nets of linear logic (see [63] and [33]). The linearly distributive

§7.3. Coherence of net categories 133

categories of [22] (the old denomination of these categories is “weakly dis-
tributive”; cf. [25] for the renaming) are net categories in the sense above,
and all the specific equations of E(DA) may be found in [22] (Section 2.1;
see [21], Section 2.1, for an announcement). However, linearly distribu-
tive categories have also two objects > and ⊥, with which one obtains a
bimonoidal structure (see §7.9).

§7.3. Coherence of net categories

For G being A and C/E being DA, we have that the conditions (IVC)
and (IVG) of §3.1 are satisfied, and G is moreover a preorder. Thus we
can apply the Direct-Strictification Theorem of §3.2 to obtain the category
CG/EG , which we call DAst. We call CG here C(DAst).

Coherence for DA, which amounts to DA being a preorder, can perhaps
be deduced from a very general theorem of [8] (Theorem 5.2.4), whose proof
is only sketched in that paper, with substantial parts missing. It is not clear
whether our proof was envisaged in [8].

In order to prove that DA is a preorder, it is enough to prove that DAst

is a preorder. Our proof of the latter will be to a considerable extent anal-
ogous to the proofs of Semiassociative Coherence in §4.2 and Dissociative
Coherence in §7.1.

We identify the objects of DAst with form sequences of P (in the nonex-
tended sense; see §6.2), which we call form sequences of letters, or, to sim-
plify the exposition, simply form sequences. In this and in the next chapter,
“form sequence” will mean “form sequence of letters”. For these form se-
quences we use the variables X,Y, . . . , sometimes with indices. For every
form sequence X in natural notation, we define a relation RX between the
set of occurrences of ∧ in X and the set of occurrences of ∨ in X. For that
we need some preliminary notions.

For every occurrence x of ∧ in a form sequence X in natural notation, if
y′ is the rightmost occurrence of ∨ in X such that X has a subword y′(X ′)
with x in the form sequence X ′, then l(x) is the leftmost occurrence of
letter in X ′; if there are no such occurrences of ∨ in X, then l(x) is the
leftmost occurrence of letter in X. Dually, if y′′ is the leftmost occurrence
of ∨ in X such that X has a subword (X ′′)y′′ with x in the form sequence

134 CHAPTER 7. DISSOCIATIVE CATEGORIES

X ′′, then r(x) is the rightmost occurrence of letter in X ′′; if there are no
such occurrences of ∨ in X, then r(x) is the rightmost occurrence of letter
in X. For example, we have

p ∨ ((q ∨ r ∨ s) ∧ ((t ∧ u) ∨ v))
y1 l(x1)

l(x2)

y2 y3 x2 x1 r(x1) y4 r(x2)

Then for an occurrence x of ∧ in X and an occurrence y of ∨ in X we
stipulate that xRXy when y is on the right-hand side of l(x) and on the
left-hand side of r(x). If X is the form sequence in the example above, then
we have RX = {(x1, y2), (x1, y3), (x2, y2), (x2, y3), (x2, y4)}.

We can infer the following from the definitions of l(x) and r(x).

Nonoverlapping Lemma. A form sequence in which in natural notation
an occurrence x1 of ∧ is on the left-hand side of an occurrence x2 of ∧
cannot have a subword of the form

l(x1) w1 l(x2) w r(x1) w2 r(x2).

Proof. By the definition of r(x1) and l(x2), we have a subword (X1)∨
with X1 containing x1 and ending in r(x1), and a subword ∨(X2) with X2

containing x2 and beginning with l(x2). Then either (X1)∨ is a proper
subword of X2, or ∨(X2) is a proper subword of X1. This is because x1 is
on the left-hand side of x2, and l(x2) is on the left-hand side of r(x1).

Suppose ∨(X2) is a proper subword of X1. Then r(x2) must be in X1,
because (X1)∨ has x2 as a subword. But r(x2) cannot be in X1, because
it is on the right-hand side of r(x1), which is the last occurrence of letter
in X1. We conclude analogously that (X1)∨ cannot be a proper subword
of X2. a

Note that we cannot prove the Nonoverlapping Lemma without the
assumption that x1 is on the left-hand side of x2. Here is a counterexample:

(p ∨ (q ∧ r)) ∧ ((s ∧ t) ∨ v)
l(x1) l(x2) x2 x1 r(x1) r(x2)

Note also that it is excluded that a form sequence in natural notation
has a subword of the form

§7.3. Coherence of net categories 135

l(x1) w1 r(x1) w2 r(x2)

with l(x2) being r(x1). Otherwise, for p being r(x1) and l(x2), we would
have in our form sequence a word (np)m with n,m ≥ 1. (Here (n is a
sequence of n left parentheses, and)m a sequence of m right parentheses,
as in the Extraction Lemma of §4.2.)

When X and Y are the same form sequence, or a pair of form sequences
that in natural notation differ only with respect to parentheses, we say that
X and Y are comparable form sequences. For comparable form sequences
X and Y , we may take that RX and RY are relations between the same
sets, and compare these relations (we did something analogous in §4.2). It
is easy to see that for every arrow term f : X ` Y of C(DAst), the form
sequences X and Y are comparable, and RY ⊆ RX . Moreover, if dL or dR

occurs in f , then RY is a proper subset of RX ; otherwise, RX = RY . For
example, with dL

p,q,r ∧ 1s : p∧ (q ∨ r)∧ s ` ((p∧ q)∨ r)∧ s, if x1 and x2 are
respectively the left and right ∧, and y is the ∨, in p ∧ q ∨ r ∧ s, then we
have Rp∧(q∨r)∧s = {(x1, y), (x2, y)} and R((p∧q)∨r)∧s = {(x2, y)}.

Two comparable form sequences X and Y in natural notation corre-
spond to the same words w(X) and w(Y) written in letters, ∧ and ∨,
which are obtained from X and Y respectively by deleting all parentheses.
A place in X is a subword w′ of w(X). There is an obvious deleting map
δ from subwords of X to places in X. We say that a subword v of X is at
a place w′ when δ(v) = w′. (Note that different subwords of X can be at
the same place.) A subword x of X and a subword y of Y are at the same
place when δ(x) = δ(y). (These definitions are analogous to those we had
in §2.1.) It is easy to see that the following holds.

Remark. Let X in natural notation be of the form X1 ξ X2 for ξ ∈ {∧,∨}.
Then, for x and y occurrences of ∧ and ∨ respectively in Xi, for i ∈ {1, 2},
we have xRXy iff xRXiy.

The following lemma is analogous to the Extraction Lemmata of §4.2,
§4.4 and §7.1.

Extraction Lemma. If there is an occurrence z of ∨ in the form sequence

136 CHAPTER 7. DISSOCIATIVE CATEGORIES

X, then there is a form sequence X1 z X2 in natural notation such that there
is an arrow term g : X ` X1 z X2 of C(DAst). In addition,

(∗) for every occurrence x of ∧ in Xi and every occurrence y of ∨ in
Xi, where i ∈ {1, 2}, if xRXy, then xRXi

y;

(∗∗) every subterm of g of the form dL
Y,Z,U is of the type Y ∧(Z z U) `

(Y ∧ Z) z U , and every subterm of g of the form dR
U,Y,Z is of the

type (U z Y) ∧ Z ` U z (Y ∧ Z).

Proof. We proceed by induction on the number n ≥ 1 of occurrences of
letters in X. If n = 1, then the antecedent of the lemma is false, and the
lemma is trivially satisfied.

If n > 1, then X is X ′ ξ X ′′ for ξ ∈ {∧,∨}. If ξ is z, then g is 1X .
Suppose ξ is not z, and suppose first ξ is ∧ and z is in X ′. Then, by the
induction hypothesis, we have an arrow term g′ : X ′ ` X ′

1 z X ′
2 of C(DAst)

satisfying the primed version of (∗). The arrow term g′ ∧ 1X′′ is of type
X ` (X ′

1 z X ′
2) ∧X ′′, and we have the arrow term dR

X′
1,X′

2,X′′ ◦ (g′ ∧ 1X′′) :
X ` X ′

1 z (X ′
2 ∧X ′′) of C(DAst).

Suppose x is an occurrence of ∧ and y an occurrence of ∨, and suppose
xRXy.

If x and y are both in X ′
1, then xRX′y by the Remark above, and

hence, by the induction hypothesis, (x, y) ∈ RX′
1
. We settle easily in a

similar manner, with the help of the Remark, cases where x and y are both
in X ′

2 or both in X ′′.
If x is in X ′

2 and y is in X ′′, then r(x) in X ′
1 z (X ′

2∧X ′′) is the rightmost
occurrence of letter of X ′′. Otherwise, r(x) would be a letter p in a subword
p)ly′ of X ′

2 such that y′ is an occurrence of ∨. Then, since xRXy and y′ is
in between x and y, we must have xRXy′, and, by the induction hypothesis
and the Remark, we would have (x, y′) ∈ RX′

1 z (X′
2∧X′′), which contradicts

the fact that p in p)ly′ is r(x).
If x is in X ′′ and y is in X ′

2, then l(x) in X ′
2 ∧ X ′′ is the leftmost

occurrence of letter of X ′
2, and so (x, y) ∈ RX′

2∧X′′ .
The case where z is in X ′′ is settled analogously by using dL

X′,X′′
1 ,X′′

2
.

It remains to consider the case where ξ is ∨ but is not z. Suppose
z is in X ′. Then, by the induction hypothesis, we have an arrow term

§7.3. Coherence of net categories 137

g′ : X ′ ` X ′
1 z X ′

2 of C(DAst) satisfying the primed version of (∗). So we
have the arrow term g′ ∨ 1X′′ : X ′ ξ X ′′ ` X ′

1 z X ′
2 ξ X ′′ of C(DAst).

Then we verify (∗) by the induction hypothesis and the Remark. The
assertion (∗∗) is easily checked by going over the proof above. a

Note that the implication converse to (∗) in the Extraction Lemma
above holds trivially. We do not need (∗∗) for the proof of the Theorem-
hood Proposition below, but we stated this condition because it is analo-
gous to (∗∗) of previous Extraction Lemmata. Here is the analogue of the
Theoremhood Propositions of §4.2 and §7.1.

Theoremhood Proposition. There is an arrow term f : X ` Y of
C(DAst) iff X and Y are comparable form sequences and RY ⊆ RX .

Proof. We have already verified above the easy direction from left to
right. For the other direction, we proceed by induction on the number
n ≥ 1 of occurrences of letters in X. If n = 1, then RY = RX = ∅, and f

is 1p : p ` p.

If n > 1 and Y is Y1 xY2 for x being an occurrence of ∧, then, since for
every occurrence y of ∨ in Y we have xRY y, we have xRXy, which means
that X is of the form X1 x X2. Then, by the Remark, we have RYi ⊆ RXi

for i ∈ {1, 2}, and, by the induction hypothesis, we have the arrow terms
fi : Xi ` Yi of C(DAst). The arrow term f is f1 ∧ f2.

If n > 1 and Y is Y1 z Y2 for z being an occurrence of ∨, then, by the
Extraction Lemma of this section, there is an arrow term g : X ` X1 z X2

of C(DAst) such that the assertion (∗) of the Extraction Lemma holds. If
xRYiy, then, since RY ⊆ RX , by the Remark we have xRXy. By (∗), we
conclude that xRXiy. So, by the induction hypothesis, we have the arrow
terms fi : Xi ` Yi of C(DAst), and f is (f1 ∨ f2) ◦ g. a

As explained after the proof of the Theoremhood Proposition of §4.2, with
the Theoremhood Proposition we have just proved we have solved the the-
oremhood problem for the category DAst. This yields also a solution of
the theoremhood problem for the category DA, but we will examine this
latter problem separately in the next section.

For a form sequence X, let d(X) be the cardinality of the set of ordered

138 CHAPTER 7. DISSOCIATIVE CATEGORIES

pairs RX . If f : X ` Y of DAst is not equal to 1X : X ` X, then RY is a
proper subset of RX and d(Y) < d(X). We prove the following.

Net Coherence. The category DA is a preorder.

Proof. It is enough to show that DAst is a preorder. Let f, g : X ` Y be
arrow terms of C(DAst). We proceed by induction on d(X)−d(Y) to show
that f = g in DAst. (Until the end of this proof, we assume that equality
of arrow terms is equality in DAst.) If d(X) = d(Y), then we conclude
that X is Y , and f = g = 1X .

Suppose d(Y) < d(X). By the Development Lemma of §2.7, we have
that f = f2 ◦ f1 and g = g2 ◦ g1 for some d-terms f1 : X ` Z and g1 : X ` U ,
and some arrow terms f2 : Z ` Y and g2 : U ` Y of C(DAst). We have here
d(Z), d(U) < d(X). The following cases may arise.

(LL) The head of f1 is dL
E,F,G, and the head of g1 is dL

H,I,J . (Here E, F ,
G, H, I and J stand for form sequences.) Due to the presence of (dL∧)
and (dL∨), we can assume that E and H are not of the form (X1. . . Xn,∧)
and G and J are not of the form (X1. . . Xn,∨). Under (LL), we have the
following subcases.

(LL1) The form sequences E∧(F ∨G) and H∧(I∨J) have no occurrences
of letters in common within X. Then we use (∧ 2) and (∨ 2) to obtain two
d-terms f ′2 : Z ` Y ′ and g′2 : U ` Y ′ such that f ′2 ◦ f1 = g′2 ◦ g1. Then we
can infer that RZ ∩RU = RY ′ , from which it follows by the Theoremhood
Proposition of this section that RY ⊆ RY ′ . Hence, again by the Theorem-
hood Proposition, there is an arrow term h : Y ′ ` Y of DAst. By applying
the induction hypothesis, we obtain that f2 = h ◦ f ′2 and g2 = h ◦ g′2, from
which f = g follows.

(LL2) Suppose E ∧ (F ∨G), in natural notation, is a subword of H or of
I or of J ; or, conversely, suppose that H ∧ (I ∨ J) is a subword of E or of
F or of G. Then we proceed as in (LL1) by using (dL nat).

(LL3) Suppose, finally, that E is H and G is J . So F is I. (Due to our
assumptions about E, H, G and J , there are no other remaining subcases
under (LL).) Then Z is U , and f1 = g1. We then apply the induction
hypothesis to f2, g2 : Z ` B, and obtain f = g.

§7.3. Coherence of net categories 139

(LR) The head of f1 is dL
E,F,G, and the head of g1 is dR

J,I,H . Due to the
presence of (dL∧), (dL∨), (dR∧) and (dR∨), we can assume that E and
H are not of the form (X1. . . Xn,∧) and G and J are not of the form
(X1. . . Xn,∨).

Under (LR), we have the following subcases. There are first two sub-
cases that are settled analogously to (LL1) and (LL2). The remaining
subcases are:

(LR 4) E is J ∨ I and F ∨G is H,

and when F ∨G is J ∨ I we have the following two subcases:

(LR 5) F is J (so G is I),
(LR 6) F is J ∨ F ′′ (so I is F ′′ ∨G).

(There is no subcase named (LR 3), which would be analogous to (LL3).)

(LR 4) Then by (d
∨
b) we have

(dR
J,I,F ∨ 1G) ◦ dL

E,F,G = (1J ∨ dL
I,F,G) ◦ dR

J,I,H .

Let f ′2 and g′2 be obtained from g1 by replacing its head dR
J,I,H by dR

J,I,F ∨1G

and 1J ∨ dL
I,F,G respectively. It is clear that f ′2 ◦ f1 = g′2 ◦ g1 : X ` Y ′. Then

we infer that RZ ∩ RU = RY ′ , and we continue reasoning as in (LL1), by
applying the Theoremhood Proposition.

(LR 5) Then by (d
∧
b) we have

dR
E∧F,G,H

◦ (dL
E,F,G ∧ 1H) = dL

E,F,G∧H
◦ (1E ∧ dR

F,G,H).

Let f ′2 and g′2 be obtained from g1 by replacing 1E ∧ dR
F,G,H by dR

E∧F,G,H

and dL
E,F,G∧H respectively. It is clear that f ′2 ◦ f1 = g′2 ◦ g1 : X ` Y ′. Then

we infer that RZ ∩ RU = RY ′ , and we continue reasoning as in (LL1), by
applying the Theoremhood Proposition.

(LR 6) We prove first that there is an occurrence z of ∨ in J ∨ F ′′ ∨ G

such that for every occurrence x of ∧ in E ∧ (J ∨ F ′′ ∨ G) ∧H we do not
have xRY z.

Let u be an occurrence of ∧ in the word E ∧. For every such u the
occurrence of letter r(u) in Y is either in J or in F ′′. Let p be the rightmost
of these occurrences of letters.

140 CHAPTER 7. DISSOCIATIVE CATEGORIES

If p is in J , then we take z to be the ∨ between J and F ′′. By the
definition of r(u), there is no occurrence u of ∧ in E ∧ such that uRY z.
Since RY ⊆ RX , there is no occurrence x of ∧ in J such that xRY z, and,
since RY ⊆ RU , there is no occurrence x of ∧ in the word F ′′∨G)∧H such
that xRY z.

If p is in F ′′, then we take z to be the occurrence of ∨ on the right-hand
side of p nearest to p. This z is either in F ′′, or it is the ∨ between F ′′ and
G. By the definition of r(u), there is no occurrence u of ∧ in E ∧ such that
uRY z. Since RY ⊆ RX , there is no occurrence x of ∧ in J such that xRY z.
If there is an occurrence x of ∧ in F ′′ ∨ G) ∧ H such that xRY z, then in
Y we have that l(x) is on the left-hand side of p, which is r(u) for some
occurrence u of ∧ in E ∧. (As we said after the proof of the Nonoverlapping
Lemma, it is excluded that l(x) coincides with r(u).) Since RY ⊆ RU , we
must have that l(u) is on the left-hand side of l(x), and, since xRY z, we
must have that r(x) is on the right-hand side of r(u). Since x is on the
right-hand side of u, all this contradicts the Nonoverlapping Lemma. Hence
we do not have xRY z.

There are now two possibilities for the z we have found. Suppose first
that J ∨ F ′′ ∨G is of the form KzL. Then we have three subcases:

(LR 6.1) K is J (so L is F ′′ ∨G),
(LR 6.2) L is G (so K is J ∨ F ′′),
(LR 6.3) K is J ∨ F ′′1 and L is F ′′2 ∨G (so F ′′ is F ′′1 ∨ F ′′2).

(LR 6.1) Then by (dL∨) we have

dL
E,J,I ∧ 1H = ((dL

E,J,F ′′ ∨ 1G) ∧ 1H) ◦ (dL
E,F,G ∧ 1H).

Let f ′1 and f ′′1 be obtained from g1 by replacing 1E ∧ dR
J,I,H by dL

E,J,I ∧ 1H

and (dL
E,J,F ′′ ∨ 1G) ∧ 1H respectively. It is clear that f ′1 = f ′′1 ◦ f1 : X ` Z ′.

Suppose xRY y. If x is not in E ∧ (J y F ′′ ∨G) ∧H, then it is easy to infer
that xRZ′y. If x is in E ∧ (J y F ′′ ∨G) ∧H, then it is either in E ∧ (J or
in F ′′ ∨G)∧H. In the first case, y is on the left-hand side of z, and in the
second case, it is on the right-hand side of z. In both cases, we get xRZ′y.
So RY ⊆ RZ′ , and, by the Theoremhood Proposition of this section, we
obtain an arrow term f ′2 : Z ′ ` Y of C(DAst). By the induction hypothesis,

§7.3. Coherence of net categories 141

we have that f2 = f ′2 ◦ f
′′
1 , where d(Z) < d(X). We continue reasoning as

in subcase (LR 5), starting from f ′1 and g1. There we apply (d
∧
b).

The subcase (LR 6.2) is settled analogously to (LR 6.1) by using (dR∨),
and for subcase (LR 6.3) we use both (dL∨) and (dR∨) to reduce it to
(LR 5), where we apply (d

∧
b).

Suppose now that J ∨ F ′′ ∨ G is not of the form K z L. So z is in F ′′,
but F ′′ is not of the form F ′′1 z F ′′2 . Then, by the Extraction Lemma of
this section, there is a form sequence F ′′′ of the form F ′′′1 z F ′′′2 in natural
notation such that there is an arrow term h : F ′′ ` F ′′′ of C(DAst) with (∗)
being satisfied. Let f ′1, g′1, h′, f ′′2 and g′′2 be obtained from g1 by replacing
1E ∧ dR

J,I,H respectively by

dL
E,J∨F ′′′,G ∧ 1H ,

1E ∧ dR
J,F ′′′∨G,H ,

1E ∧ (1J ∨ h ∨ 1G) ∧ 1H ,

((1E ∧ (1J ∨ h)) ∨ 1G) ∧ 1H ,

1E ∧ (1J ∨ ((h ∨ 1G) ∧ 1H)).

Then, by (dL nat) and (dR nat), we have that f ′1 ◦h
′ = f ′′2 ◦ f1 and g′1 ◦h

′ =
g′′2 ◦ g1. For h′ being of the type X ` X ′, we have that RY ⊆ RX′ , which
follows easily from our assumption about z and from (∗) of the Extraction
Lemma. For f ′′2 being of the type Z ` Z ′ and g′′2 of the type U ` U ′, we
infer that RZ′ = RZ ∩RX′ and RU ′ = RU ∩RX′ . So, by the Theoremhood
Proposition of this section, we have the arrow terms f ′2 : Z ′ ` Y and g′2 :
U ′ ` Y of C(DAst). Then we apply the induction hypothesis to f2, f

′
2
◦ f ′′2 :

Z ` Y and g2, g
′
2
◦ g′′2 : U ` Y , and also to f ′2 ◦ f

′
1, g

′
2, g

′
1 : X ′ ` Y , where

d(Z), d(U), d(X ′) < d(X).
It remains to consider the following cases:

(RR) the head of f1 is dR
G,F,E , and the head of g1 is dR

J,I,H ;

(RL) the head of f1 is dR
G,F,E , and the head of g1 is dL

H,I,J .

The case (RR) is settled analogously to (LL), while the case (RL) is the
same as (LR). a

It is not difficult to see that RX = RY implies that the form sequences
X and Y coincide. Because, if RX = RY , then, by the Theoremhood

142 CHAPTER 7. DISSOCIATIVE CATEGORIES

Proposition of this section, there is an arrow term f : X ` Y of C(DAst), in
which dL and dR cannot occur, because RY is not a proper subset of RX .
Hence f must stand for an identity arrow. So there is a bijection between
the objects X of DAst and the relations RX . From Net Coherence, we
can conclude that DAst is isomorphic to the category whose objects are
the relations RX , and where an arrow exists between RX and RY when
RY ⊆ RX .

§7.4. Net normal form

In this section we will examine the theoremhood problem (in the sense of
§1.1) for the category DA, and we will find a solution for it different from
that suggested by the Theoremhood Proposition of the preceding section.
This solution will also yield a unique normal form for arrow terms of C(DA),
i.e. a normal form such that arrow terms of C(DA) in normal form are equal
in DA iff they are the same arrow term.

Consider a formula B of L∧,∨. Let B∧ be obtained from B by replacing
every ∨ by ∧. Let I(B) be obtained from I(B∧) (see §4.4) by putting back
the occurrences of ∨ where they were in B, while keeping the subscripts of
I(B∧).

Let A be a formula comparable with B (which means that A and B are
the same after deleting parentheses). Next, let A∗ be obtained from A by
adding to every occurrence x of ∧ or ∨ in A the subscript x has in I(B).
Then we have the following proposition.

Theoremhood Proposition. There is an arrow term f : A ` B of
C(DA) iff A and B are comparable formulae of L∧,∨ and

(†) in A∗ defined with respect to I(B), for every n,m ≥ 2 there is
no ∧nm in the scope of ∨n.

Proof. From left to right, suppose we have an arrow term f : A ` B of
C(DA) such that (†) fails in A∗. Then for fG : X ` Y in DAst we can find
in X and Y an occurrence x of ∧ corresponding to ∧nm and an occurrence
y of ∨ corresponding to ∨n. Since (†) fails in A∗, we do not have xRXy,
but the subscripts of I(B) tell us that we have xRY y, which contradicts
the easy, left-to-right, direction of the Theoremhood Proposition of §7.3.

§7.5. Coherence of semidissociative biassociative categories 143

For the other direction, we proceed as follows. By the Associative
Normal-Form Proposition of §4.4, there is an arrow term f∧ : A∧ ` B∧

of C(∧A) such that in (f∧)∗ : (A∧)∗ ` I(B∧) for every subterm of the form
∧
b→D,E,F of type D ∧l (E ∧k F) ` (D ∧l E) ∧k F , and every subterm of the

form
∧
b←F,E,D of type (F ∧k E) ∧l D ` F ∧k (E ∧l D), we have that l and

every subscript in D, E and F divides k. We build out of (f∧)∗ an arrow
term f∗ : A∗ ` I(B) by putting back ∨ at some places, as required by
A and B. In transforming (f∧)∗ into f∗, some subterms of (f∧)∗ in the
family

∧
b may remain in that family, and some may be transformed into

arrow terms in the families
∨
b, dL or dR. It is excluded that the type of a

subterm of (f∧)∗ in the family
∧
b becomes D∨l (E ∧k F) ` (D∨l E)∧k F or

(F ∧k E)∨l D ` F ∧k (E ∨l D), which would prevent its being transformed
in an arrow term in the families

∧
b,

∨
b, dL or dR. This is guaranteed by

(†), and by the fact that for every subterm of (f∧)∗ in the family
∧
b of a

type (G∧)∗ ` (H∧)∗ we have that H∗ satisfies (†), as A∗ does. We obtain
f : A ` B by deleting the subscripts of f∗. a

The procedure of the proof of the right-to-left direction of this propo-
sition, which presupposes the results of §4.4, gives rise to a unique arrow
term, which we may consider to be in normal form.

We could imagine a proof of Net Coherence where instead of relying on
the Theoremhood Proposition of the preceding section, we would rely on a
strictified version of the Theoremhood Proposition of this section.

§7.5. Coherence of semidissociative biassociative cate-
gories

To obtain the natural logical category DLA, we have that the logical system
C(DLA) is in L∧,∨, with the transformations α included in 1, b and dL. So,
in contradistinction to C(DA), we do not have dR. The specific equations
of E(DLA) are those of E(A) plus (dL∧) and (dL∨) of §7.2. We call natural
DLA-categories semidissociative biassociative categories.

For G being A and C/E being DLA, we have that the conditions (IVC)
and (IVG) of §3.1 are satisfied, and G is moreover a preorder. Thus we
can apply the Direct-Strictification Theorem of §3.2 to obtain a category

144 CHAPTER 7. DISSOCIATIVE CATEGORIES

CG/EG , which we call DLAst. We call CG here C(DLAst).
Our proof that DLAst is a preorder is to a considerable extent analogous

to the proof that DAst is a preorder, and we assume the notions defined in
§7.3. The new proof is somewhat more complicated as far as the definitions
of the relation RX is concerned.

For every object X of DLAst, i.e. for every form sequence X in the
natural notation of §6.2, we define two relations Rl

X and Rr
X between the

set of occurrences of ∧ in X and the set of occurrences of ∨ in X. We have
xRl

Xy when the occurrence y of ∨ is in between l(x) and the occurrence x

of ∧, and we have xRr
Xy when y is between x and r(x). It is clear that RX

is the disjoint union of Rl
X and Rr

X .
It is easy to verify that, for every arrow term f : X ` Y of C(DLAst),

we have Rr
Y ⊆ Rr

X and Rl
X = Rl

Y . Moreover, if dL occurs in f , then Rr
Y

is a proper subset of Rr
X . It is also easy to verify that the Remark of §7.3

holds when we replace R by Rl and Rr. Then we can prove the following
analogue of the Extraction Lemma of §7.3.

Extraction Lemma. If there is an occurrence z of ∨ in the form sequence
X such that there is no occurrence x of ∧ in X with xRlz, then there is a
form sequence X1 z X2 in natural notation such that there is an arrow term
g : X ` X1 z X2 of C(DLAst). In addition,

(∗) for every occurrence x of ∧ in Xi and every occurrence y of ∨
in Xi, where i ∈ {1, 2}, if xRr

Xy, then xRr
Xi

y; moreover, Rl
X =

Rl
X1 z X2

,

(∗∗) every subterm of g of the form dL
Y,Z,U is of the type Y ∧(Z z U) `

(Y ∧ Z) z U .

The proof is obtained by excluding the case where ξ is ∧ and z is in X ′ in
the proof of the Extraction Lemma of §7.3.

Next we state the analogue of the Theoremhood Proposition of §7.3.

Theoremhood Proposition. There is an arrow term f : X ` Y of
C(DLAst) iff X and Y are comparable form sequences, and we have Rr

Y ⊆
Rr

X and Rl
X = Rl

Y .

§7.6. Symmetric net categories 145

The proof is again a slight modification of the proof of the Theoremhood
Proposition of §7.3.

The proof that the category DLAst is a preorder is then obtained by
proceeding as in the proof of Net Coherence of §7.3. We keep just the cases
analogous to (LL) cases. So we have the following.

Semidissociative Biassociative Coherence. The category DLA is a
preorder.

Analogously to what we had at the end of §4.2, §7.1 and §7.3, with the
help of Semidissociative Biassociative Coherence, we obtain that DLAst is
isomorphic to a category whose objects are pairs of relations (Rr

X , Rl
X), and

where an arrow exists between (Rr
X , Rl

X) and (Rr
Y , Rl

Y) when Rr
Y ⊆ Rr

X

and Rl
X = Rl

Y .

§7.6. Symmetric net categories

To obtain the natural logical category DS, we have that the logical system
C(DS) is in L∧,∨, with the transformations α included in 1, b, c and d.
The specific equations of E(DS) are obtained by taking the union of those
of E(DA) and E(S) plus

(dRc) dR
C,B,A = ∨

cC,B∧A ◦ (∧cA,B ∨ 1C) ◦ dL
A,B,C

◦ (1A ∧ ∨
cB,C) ◦ ∧

cC∨B,A .

We call natural DS-categories symmetric net categories. In §12.4 we
will give a concrete example of a symmetric net category in which ∧ and ∨
are not isomorphic. (See §11.3 for the question whether the category Set
of sets with functions is a symmetric net category.)

In the presence of (dRc), the equations (dR nat), (dR∧) and (dR∨) be-
come derivable from the remaining equations. Note that (dRc) may be
conceived as a definition of dR in terms of dL, ∧

c and ∨
c. So we may as

well assume that in C(DS) we do not have dR, but only dL, and that dR is
defined by (dRc). We make this assumption in §§7.6-8, and we write simply
d for dL, omitting the superscript L. This convention will be in force also
later on whenever we have (dRc) (especially in Chapter 11).

To give some alternative axioms for E(DS) we introduce the following
definitions:

146 CHAPTER 7. DISSOCIATIVE CATEGORIES

∧
eA,B,C,D =df dA,D,B∧C ◦ (1A ∧ ∨

cD,B∧C) ◦ (1A ∧ dB,C,D) ◦
∧
b←A,B,C∨D

is of type (A ∧B) ∧ (C ∨D) ` (A ∧D) ∨ (B ∧ C);

∧
e′A,B,C,D =df

∧
eA,B,D,C ◦ (1A∧B ∧ ∨

cD,C)

is of type (A ∧B) ∧ (C ∨D) ` (A ∧ C) ∨ (B ∧D).

Dually, we have that

∨
eD,C,B,A =df

∨
b←D∧C,B,A

◦ (dD,C,B ∨ 1A) ◦ (∧cC∨B,D ∨ 1A) ◦ dC∨B,D,A

is of type (C ∨B) ∧ (D ∨A) ` (D ∧ C) ∨ (B ∨A);

∨
e′D,C,B,A =df (∧cC,D ∨ 1B∨A) ◦ ∨

eC,D,B,A

is of type (D ∨B) ∧ (C ∨A) ` (D ∧ C) ∨ (B ∨A).

Then we can state the following equations:

(∧e) ∨
cB∧C,A∧D ◦ ∧

eA,B,C,D = ∧
e′B,A,C,D

◦ (∧cA,B ∧ 1C∨D),

(∨e) (1D∧C ∨ ∨
cB,A) ◦ ∨e′D,C,A,B = ∨

eD,C,B,A ◦ ∧
cD∨A,C∨B .

These two equations are mirror images of each other. The equation (∧e) can
replace (d

∧
b), and the equation (∨e) can replace (d

∨
b), in our axiomatization

of E(DS).
For every transformation α in the logical system C(DS) we have that

in αA1,...,Ak
: Mµ(A1, . . . , Ak) ` Nν(A1, . . . , Ak) the functions µ and ν

are bijections, and hence the type Mµ(A1, . . . , Ak) ` Nν(A1, . . . , Ak) is
balanced (see §3.3). Therefore, the type of every arrow term of C(DS) is
balanced.

For C/E being C(DS)/E(DS), that is DS, and C′ being C(S) of §6.3,
we have that the condition (IVC) of §3.1 is satisfied. Next, let G be the
C′-core C′/E ′ of C/E . By Symmetric Biassociative Coherence, and by the
fact that if f = g in E(DS), then Gf = Gg in Rel, we can conclude that
G is the natural logical category S. The category G is a groupoid, and it
flows through DS, so that the condition (IVG) of §3.1 is satisfied.

Let Epr be the equational system obtained by extending E(DS) with the
equation (

ξ

c 1) of §6.5, namely
ξ

cA,A= 1AξA for ξ ∈ {∧,∨}. We know that

§7.6. Symmetric net categories 147

C′/Epr ′, that is C(S)/Epr ′, which is the category S′ of §6.5, is a preorder.
Next, for every equation f = g in Epr that is not in E(DS), we can show
that the type of f and g is not diversified. We prove by induction on the
length of derivation that if f = g is in Epr and the arrow terms f and g

are diversified, then every derivation of f = g is made of equations between
diversified arrow terms. (The only problem is when in such a derivation we
pass from f1 = f2 and g1 = g2 to g1 ◦ f1 = g2 ◦ f2, in which case we appeal
to the fact that the types of arrow terms of C(DS) are always balanced.)

Then, as in §3.3, we have that (IVC) and (IVG) hold when C(DS)/E(DS)
is replaced by C(DS)/Epr. Now the C′-core G of C(DS)/Epr is a preorder.
By the Direct-Strictification Theorem of §3.2, we obtain the C(S)-strict
C(DS)/Epr-category C(DS)G/Epr

G equivalent to C(DS)/Epr. As in §3.3, for
diversified arrow terms f and g of C(DS) of the same type, we have f = g

in DS iff fG = gG in C(DS)G/Epr
G .

Since the type of every arrow term of C(DS) is balanced, for every arrow
term f : A ` B of C(DS) there is a diversified arrow term fdiv : Adiv ` Bdiv

of C(DS) such that f is obtained by substituting uniformly letters for some
letters in fdiv : Adiv ` Bdiv. Namely, f is a letter-for-letter substitution
instance of fdiv. Here we assume that the generating set P is infinite (see
§4.1).

Our purpose is to show the following.

Symmetric Net Coherence. The functor G from DS to Rel is faithful.

According to what we said above, to prove this coherence we can proceed
as follows. Suppose Gf = Gg in Rel for the arrow terms f and g of C(DS)
of the same type. Then we can find fdiv and gdiv of the same type, and we
will prove

(div) fdiv
G = gdiv

G in C(DS)G/Epr
G ,

which implies fdiv = gdiv in DS, from which we can conclude, by applying
(su) (see §2.7), that f = g in DS. So, to prove Symmetric Net Coherence,
we have only to prove (div) under the assumption Gf = Gg.

We proceed with this proof in the next two sections. In §7.7, we prove a
theorem that says that the equations of C(DS)G/Epr

G cover a normalization

148 CHAPTER 7. DISSOCIATIVE CATEGORIES

procedure analogous to Gentzen’s cut-elimination procedure of [60]. In
§7.8, we prove additional results, which together with our cut elimination
will yield (div) under the assumption Gf = Gg. In logic, these results
correspond to inverting rules in derivations, i.e. passing from conclusions
to premises. This invertibility is guaranteed by the possibility to permute
rules, i.e. change their order in derivations, and we show for that permuting
that it is covered by the equations that hold in C(DS)G/Epr

G . This means
that the equations of DS also cover a cut elimination and invertibility, but
this cut elimination and invertibility are more cumbersome to record within
DS than within C(DS)G/Epr

G .

§7.7. Cut elimination in GDS

To formulate the cut-elimination result announced at the end of the preced-
ing section, we need some preliminary notions. The objects of the category
C(DS)G/Epr

G (see the preceding section) correspond bijectively to something
we will call form multisets of letters. We define this notion as follows.

We say that the form sequences of letters X and Y are c-equivalent
when there is an arrow term of C(S)G of type X ` Y . It is clear that
c-equivalence is an equivalence relation congruent with the operations ξ′′

on form sequences of letters for ξ ∈ {∧,∨}. A form multiset of letters
is the equivalence class of a form sequence of letters with respect to c-
equivalence. (We exclude here the empty form sequences (∅, ξ).) As before
in this chapter, we presuppose that form multisets and form sequences are
of letters, i.e. of P, and omit mentioning that all the time. We can use
form sequences, and, in particular, form sequences in natural notation, to
designate form multisets. For example, p∧q∧(p∨r∨p) in natural notation
stands for the same form multiset as q ∧ (r ∨ p ∨ p) ∧ p.

For A a diversified formula of L∧,∨ (see §3.3), the form multiset |[A]| is
such that every letter of P occurs in it at most once. Such a form multiset
is called a form set.

Let GDS be the full subcategory of C(DS)G/Epr
G whose objects are

all the objects that correspond to form sets of letters. We write G in
the name of GDS because of the relationship we are going to establish
between this category and Gentzen’s sequent systems. The category GDS

§7.7. Cut elimination in GDS 149

is a syntactical category in a syntactical system called C(GDS), which is a
subsystem of C(DS)G .

In this section, X, Y , Z, . . ., X1, . . . will be form sequences of letters that
stand for form sets of letters, and the operations ξ′′ on form sequences, for
ξ ∈ {∧,∨}, will be written simply ξ , with ′′ omitted.

We define by induction a set of terms for arrows of GDS, which we call
Gentzen terms. First, we stipulate that for every letter p the term 1p : p ` p,
which denotes the arrow 1|[p]| of GDS, is a Gentzen term. The remaining
Gentzen terms are obtained by closing under the following operations on
Gentzen terms, which we call Gentzen operations. We present these oper-
ations by inductive clauses in fractional notation, which are interpreted as
saying that if the terms above the horizontal line are Gentzen terms, then
the term below the horizontal line is a Gentzen term (cf. §2.2). The schema
on the left-hand side of the =dn sign stands for the Gentzen term, while the
schema on the right-hand side stands for the arrow denoted by this term.
Our Gentzen operations correspond to Gentzen’s rules for cut, introduction
of conjunction on the right and introduction of disjunction on the left:

f : U ` X ∨ Z g : X ∧ Y ` W

cutX(f, g) =dn (g ∨ 1Z) ◦ dY,X,Z ◦ (f ∧ 1Y) : U ∧ Y ` Z ∨W

f : U ` X g : X ∧ Y ` W

cutX(f, g) =dn g ◦ (f ∧ 1Y) : U ∧ Y ` W

f : U ` X ∨ Z g : X ` W

cutX(f, g) =dn (g ∨ 1Z) ◦ f : U ` W ∨ Z

f : U ` X g : X ` W

cutX(f, g) =dn g ◦ f : U ` W

f1 : U1 ` X1 ∨ Z1 f2 : U2 ` X2 ∨ Z2

∧X1,X2(f1, f2) : U1 ∧ U2 ` (X1 ∧X2) ∨ Z1 ∨ Z2

where ∧X1,X2(f1, f2) =dn (dX2,X1,Z1 ∨ 1Z2) ◦ dX1∨Z1,X2,Z2
◦ (f1 ∧ f2),

150 CHAPTER 7. DISSOCIATIVE CATEGORIES

f1 : U1 ` X1 ∨ Z1 f2 : U2 ` X2

∧X1,X2(f1, f2) =dn dX2,X1,Z1
◦ (f1 ∧ f2) : U1 ∧ U2 ` (X1 ∧X2) ∨ Z1

f1 : U1 ` X1 f2 : U2 ` X2

∧X1,X2(f1, f2) =dn f1 ∧ f2 : U1 ∧ U2 ` X1 ∧X2

f1 : X1 ∧ Z1 ` U1 f2 : X2 ∧ Z2 ` U2

∨X1,X2(f1, f2) : (X1 ∨X2) ∧ Z1 ∧ Z2 ` U1 ∨ U2

where ∨X1,X2(f1, f2) =dn (f1 ∨ f2) ◦ dZ2,X2,X1∧Z1
◦ (dZ1,X1,X2 ∧ 1Z2),

f1 : X1 ∧ Z1 ` U1 f2 : X2 ` U2

∨X1,X2(f1, f2) =dn (f1 ∨ f2) ◦ dZ1,X1,X2 : (X1 ∨X2) ∧ Z1 ` U1 ∨ U2

f1 : X1 ` U1 f2 : X2 ` U2

∨X1,X2(f1, f2) =dn f1 ∨ f2 : X1 ∨X2 ` U1 ∨ U2

Note that ∧X1,X2(f1, f2) = ∧X2,X1(f2, f1) holds in GDS. (In case we have

f1 : U1 ` X1 ∨ Z1 and f2 : U2 ` X2 ∨ Z2, we apply (d
∨
b) of §7.2.) We will

consider the terms on the two sides of this equation as the same Gentzen
term. Analogously, ∨X1,X2(f1, f2) = ∨X2,X1(f2, f1) holds in GDS. (In

case we have f1 : X1 ∧ Z1 ` U1 and f2 : X2 ∧ Z2 ` U2, we apply (d
∧
b) of

§7.2.) We will consider also the terms on the two sides of this equation
as the same Gentzen term. We do something analogous for arrow terms
of C(GDS) built with ∧ and ∨. Namely, we may omit some parentheses
without ambiguity, and order is irrelevant. For example, f ∧ g ∧ h stands
for (f ∧ g) ∧ h, or g ∧ (f ∧ h), etc., because all these arrow terms are equal
in GDS.

In all the inductive clauses of Gentzen operations above, the Gentzen
terms defined must denote arrows of GDS. So, for example, for f1 : U1 ` X1

and f2 : U2 ` X2 in ∧X1,X2(f1, f2) : U1 ∧ U2 ` X1 ∧X2, we must have that
U1 ∧ U2 and X1 ∧X2 correspond to form sets of letters, which means that

§7.7. Cut elimination in GDS 151

U1 and U2 cannot have letters in common, and the same for X1 and X2.
So all our Gentzen operations are partial operations.

We can then prove the following lemma.

Gentzenization Lemma. Every arrow of GDS is denoted by a Gentzen
term.

Proof. We show by induction on the number of letters in the form set X

that 1X is denoted by a Gentzen term. For that, we rely on the following
equations of GDS:

1X1ξX2 = 1X1 ξ 1X2 , for ξ ∈ {∧,∨},
(∗∧) f1 ∧ f2 = ∧X1,X2(f1, f2), for f1 : U1 ` X1 and f2 : U2 ` X2,

(∗∨) f1 ∨ f2 = ∨X1,X2(f1, f2), for f1 : X1 ` U1 and f2 : X2 ` U2,

provided f1 and f2 are Gentzen terms (the equations (∗∧) and (∗∨) are
trivial).

If for any form set X we have that 1X stands for a Gentzen term, then
we have in GDS

dY,X,Z = cutX(1X∨Z ,1X∧Y) = ∧Y,X(1Y ,1X∨Z) = ∨Z,X(1Z ,1X∧Y).

It remains only to note that, besides the equations (∗∧) and (∗∨) above,
we have in GDS the equation g ◦ f = cutX(f, g) for the Gentzen terms
f : U ` X and g : X ` W . a

A Gentzen term is cut-free when it has no subterm of the form cutX(f, g).
A Gentzen term of the form cutX(f, g) such that f and g are cut-free is
called a topmost cut.

We define inductively the depth of a subterm of a Gentzen term:

f is a subterm of f of depth 0;

if γ is cutX or ∧X1,X2 or ∨X1,X2 , and γ(f1, f2) is a subterm of f of
depth n, then f1 and f2 are subterms of f of depth n + 1.

For a topmost cut cutX(f, g) such that X is of colour ∧ and is not a
letter, we say that the ∧-rank of cutX(f, g) is n ≥ 0 when f has a subterm
∧X1,X2(f1, f2) of depth n such that X is X1 ∧X2. Because the objects of

152 CHAPTER 7. DISSOCIATIVE CATEGORIES

GDS are form sets, i.e., they are “diversified”, there can be at most one
subterm of f of that form. For a topmost cut cutX(f, g) such that X is of
colour ∨ and is not a letter, we say that the ∨-rank of cutX(f, g) is n ≥ 0
when g has a subterm ∨X1,X2(g1, g2) of depth n such that X is X1 ∨ X2.
For a topmost cut cutp(f, g), note that 1p must be a subterm of both f and
g, which occurs in each of them exactly once, because of “diversification”.
We say that the p-rank of cutp(f, g) is n ≥ 0 when n is the sum of the depth
of 1p in f and of the depth of 1p in g.

The rank of a topmost cut cutX(f, g) is either its ∧-rank, or ∨-rank, or
p-rank, depending on X.

The complexity of a topmost cut cutX(f, g) is (m,n) where m ≥ 1 is
the number of letters in X and n ≥ 0 is the rank of this cut. Complexities
are ordered lexicographically; i.e., we have (m1, n1) < (m2, n2) iff either
m1 < m2, or m1 = m2 and n1 < n2.

We can prove the following theorem for GDS.

Cut-Elimination Theorem. For every Gentzen term t there is a cut-free
Gentzen term t′ such that t = t′ in GDS.

Proof. By induction on the complexity of a topmost cut cutX(f, g), we
prove that cutX(f, g) is equal in GDS to a cut-free Gentzen term. From
this the theorem follows. In the remainder of this proof we assume that
equality between arrow terms is equality in GDS.

For the basis we have that if the complexity of cutX(f, g) is (1, 0), then
cutX(f, g) is of the form cutp(1p,1p), which is equal to 1p.

Suppose now the complexity is (m, 0) for m > 1, and suppose X is of
colour ∧. Then cutX(f, g) is of the form cutX1∧X2(∧X1,X2(f1, f2), g), and
we have the following cases.

(∧1.1) Consider the Gentzen term

f1 : U1 ` X1 ∨ Z1 f2 : U2 ` X2 ∨ Z2

∧X1,X2(f1, f2) : U1 ∧ U2 ` (X1 ∧X2) ∨ Z1 ∨ Z2 g : X1 ∧X2 ∧ Y ` W

cutX1∧X2(∧X1,X2(f1, f2), g) : U1 ∧ U2 ∧ Y ` W ∨ Z1 ∨ Z2

Then consider the Gentzen term

§7.7. Cut elimination in GDS 153

f2 : U2 ` X2 ∨ Z2

f1 : U1 ` X1 ∨ Z1 g : X1 ∧X2 ∧ Y ` W

cutX1(f1, g) : U1 ∧X2 ∧ Y ` W ∨ Z1

cutX2(f2, cutX1(f1, g)) : U1 ∧ U2 ∧ Y ` W ∨ Z1 ∨ Z2

We show that

(∗) cutX1∧X2(∧X1,X2(f1, f2), g) = cutX2(f2, cutX1(f1, g)),

and the Gentzen term on the right-hand side has a topmost cut cutX1(f1, g)
of lower complexity (m′, n′) than the Gentzen term on the left-hand side;
here m′ < m. Hence, by the induction hypothesis, it is equal to a cut-free
Gentzen term h, and cutX2(f2, h) is a topmost cut of lower complexity, to
which we can also apply the induction hypothesis.

To show (∗), we have to show

(g ∨ 1Z1∨Z2) ◦ dY,X1∧X2,Z1∨Z2
◦

◦ (((dX2,X1,Z1 ∨ 1Z2) ◦ dX1∨Z1,X2,Z2
◦ (f1 ∧ f2)) ∧ 1Y) =

(((g ∨ 1Z1) ◦ dY ∧X2,X1,Z1
◦ (f1 ∧ 1Y ∧X2))∨ 1Z2) ◦ dU1∧Y,X2,Z2

◦ (f2 ∧ 1U1∧Y),

and to derive this equation for GDS we use essentially (dL∧) of §7.2.

(∧1.2) If we have g : X1 ∧X2 ` W , while f1 and f2 are as in (∧1.1), then
to show (∗) we have to show

(g ∨ 1Z1∨Z2) ◦ (dX2,X1,Z1 ∨ 1Z2) ◦ dX1∨Z1,X2,Z2
◦ (f1 ∧ f2) =

((g ∨ 1Z1) ◦ dX2,X1,Z1
◦ (f1 ∧ 1X2)) ∨ 1Z2) ◦ dU1,X2,Z2

◦ (f2 ∧ 1U1),

which follows readily with the help of (dL nat).

(∧2.1) If we have f1 : U1 ` X1, while f2 and g are as in (∧1.1), then to
show (∗) we have to show

(g ∨ 1Z2) ◦ dY,X1∧X2,Z2
◦ ((dX1,X2,Z2

◦ (f1 ∧ f2)) ∧ 1Y) =
((g ◦ (f1 ∧ 1Y ∧X2)) ∨ 1Z2) ◦ dU1∧Y,X2,Z2

◦ (f2 ∧ 1U1∧Y),

which follows by using essentially (dL∧).

(∧2.2) If we have f1 : U1 ` X1, g : X1 ∧X2 ` W and f2 as in (∧1.1), then
to show (∗) we have to show

154 CHAPTER 7. DISSOCIATIVE CATEGORIES

(g ∨ 1Z2) ◦ dX1,X2,Z2
◦ (f1 ∧ f2) =

((g ◦ (f1 ∧ 1X2)) ∨ 1Z2) ◦ dU1,X2,Z2
◦ (f2 ∧ 1U1),

which follows readily with the help of (dL nat).

(∧3.1) If we have f1 : U1 ` X1, f2 : U2 ` X2 and g as in (∧1.1), then to
show (∗) we have to show

g ◦ (f1 ∧ f2 ∧ 1Y) = g ◦ (f1 ∧ 1Y ∧X2) ◦ (f2 ∧ 1U1∧Y),

which follows from bifunctorial equations.

(∧3.2) If we have f1 : U1 ` X1, f2 : U2 ` X2 and g : X1 ∧X2 ` W , then to
show (∗) we have to show

g ◦ (f1 ∧ f2) = g ◦ (f1 ∧ 1X2) ◦ (f2 ∧ 1U1),

which follows again from bifunctorial equations.

If the complexity of cutX(f, g) is (m, 0) for m > 1, and X is of colour
∨, then we proceed analogously.

Suppose now the complexity of cutX(f, g) is (m,n) with m,n ≥ 1. Then
we have the following cases.

(∧4) The form set X is of colour ∧ (it may be of the form X1 ∧X2 or p)
and f is ∧V1,V2(f1, f2). So, since n ≥ 1, we have

f1 : U1 ` V1 ∨X ∨ Z1 f2 : U2 ` V2 ∨ Z2

∧V1,V2(f1, f2) : U1 ∧ U2 ` (V1 ∧ V2) ∨X ∨ Z1 ∨ Z2 g : X ∧ Y ` W

cutX(∧V1,V2(f1, f2), g) : U1 ∧ U2 ∧ Y ` (V1 ∧ V2) ∨ Z1 ∨ Z2 ∨W

Then consider the Gentzen term

f1 : U1 ` V1 ∨X ∨ Z1 g : X ∧ Y ` W

cutX(f1, g) : U1 ∧ Y ` V1 ∨ Z1 ∨W f2 : U2 ` V2 ∨ Z2

∧V1,V2(cutX(f1, g), f2) : U1 ∧ U2 ∧ Y ` (V1 ∧ V2) ∨ Z1 ∨ Z2 ∨W

We show that

§7.7. Cut elimination in GDS 155

(∗∗) cutX(∧V1,V2(f1, f2), g) = ∧V1,V2(cutX(f1, g), f2),

and the complexity (m,n−1) of the topmost cut cutX(f1, g) is lower than
(m,n), so that we may apply the induction hypothesis.

To show the equation (∗∗), we have to show

(g ∨ 1(V1∧V2)∨Z1∨Z2) ◦ dY,X,(V1∧V2)∨Z1∨Z2
◦

◦ (((dV2,V1,X∨Z1 ∨ 1Z2) ◦ dV1∨X∨Z1,V2,Z2
◦ (f1 ∧ f2)) ∧ 1Y) =

(dV2,V1,Z1∨W ∨ 1Z2) ◦ dV1∨Z1∨W,V2,Z2
◦

◦ (((g ∨ 1V1∨Z1) ◦ dY,X,V1∨Z1
◦ (f1 ∧ 1Y)) ∧ f2).

To derive this equation for GDS, we use essentially (d
∧
b) and (d

∨
b), besides

(dL nat), (dL∧) and (dL∨) (see §7.2). We have also to consider cases where
we have f1 : U1 ` V1 ∨ X, or f2 : U2 ` V2, or g : X ` W (analogously to
what we had in (∧1.1)-(∧3.2)). In all of them, (∗∗) amounts to equations
simpler than the equation above, which all hold in GDS.

(∧5) The form set X is of colour ∧, and f is ∨V1,V2(f1, f2), so that we
have f1 : V1 ∧ U1 ` X ∨ Z1, f2 : V2 ∧ U2 ` Z2 and g : X ∧ Y ` W . Then we
have to show the equation

(∗∗∗) cutX(∨V1,V2(f1, f2), g) = ∨V1,V2(cutX(f1, g), f2)

with the complexity (m,n − 1) of cutX(f1, g) lower than (m,n). To show
this equation, we have to show

(g ∨ 1Z1∨Z2) ◦ dY,X,Z1∨Z2
◦

◦ (((f1 ∨ f2) ◦ dU2,V2,V1∧U1
◦ (dU1,V1,V2 ∧ 1U2)) ∧ 1V) =

(((g ∨ 1Z1) ◦ dY,X,Z1
◦ (f1 ∧ 1Y)) ∨ f2) ◦ dU2,V2,V1∧U1∧Y ◦ (dU1∧Y,V1,V2 ∧ 1U2),

and to derive that for GDS we use essentially (d
∧
b). We have also to

consider cases where we have f1 : V1 ` X ∨ Z1, or f1 : V1 ∧ U1 ` X, or
f1 : V1 ` X, or f2 : V2 ` Z2, or g : X ` W . In all of them (∗∗∗), amounts to
simpler equations, which all hold in GDS.

It remains to consider cases with complexity (m,n) where m,n ≥ 1, and
X is of colour ∨ (it may be of the form X1 ∨ X2 or p). These additional

156 CHAPTER 7. DISSOCIATIVE CATEGORIES

cases are settled dually to cases (∧4) and (∧5). Note that in cases with
complexity (m,n) where m, n ≥ 1 and X is a letter (hence m = 1) we have
that X is of both colours, and hence in these cases we can proceed either
as in (∧4) and (∧5), or as in cases dual to (∧4) and (∧5) we have just
mentioned. a

§7.8. Invertibility in GDS

In this section, we prove the invertibility results announced at the end of
§7.6. First, we cover some preliminary matters. We will need later the
following equations of GDS:

(∧ ∧ 1) ∧W1∧W2,W3(∧W1,W2(f1, f2), f3) = ∧W1,W2∧W3(f1,∧W2,W3(f2, f3))

for fi of type Hi ` Wi ∨ Ji or Hi ` Wi, where i ∈ {1, 2, 3},

(∧ ∧ 2) ∧R1,R3(∧W1,W2(f1, f2), f3) = ∧W1,W2(∧R1,R3(f1, f3), f2)

for f1 of type H1 ` W1 ∨R1 ∨ J1 or H1 ` W1 ∨R1,

f2 of type H2 ` W2 ∨ J2 or H2 ` W2, and

f3 of type H3 ` R3 ∨ J3 or H3 ` R3,

(∨ ∨ 1) ∨W1∨W2,W3(∨W1,W2(f1, f2), f3) = ∨W1,W2∨W3(f1,∨W2,W3(f2, f3))

for fi of type Wi ∧ Ji ` Hi or Wi ` Hi, where i ∈ {1, 2, 3},

(∨ ∨ 2) ∨R1,R3(∨W1,W2(f1, f2), f3) = ∨W1,W2(∨R1,R3(f1, f3), f2),

for f1 of type W1 ∧R1 ∧ J1 ` H1 or W1 ∧R1 ` H1,

f2 of type W2 ∧ J2 ` H2 or W2 ` H2, and

f3 of type R3 ∧ J3 ` H3 or R3 ` H3,

(∧∨) ∧W2,W3(∨V1,V2(f1, f2), f3) = ∨V1,V2(f1,∧W2,W3(f2, f3)),

for f1 of type V1 ∧H1 ` J1 or V1 ` J1,

f2 of type V2 ∧H2 ` W2 ∨ J2 or V2 ∧H2 ` W2 or

f2 of type V2 ` W2 ∨ J2 or V2 ` W2, and

f3 of type H3 ` W3 ∨ J3 or H3 ` W3.

§7.8. Invertibility in GDS 157

The equations (∧∧ 1) and (∧∧ 2), or alternatively (∨∨ 1) and (∨∨ 2), are
analogous to the two associativity equations for the cut operation one finds
in multicategories (see [85] and [88], Section 3).

To derive these equations for GDS is a rather straightforward, though
pretty lengthy, exercise. We always derive the most complex case, with
all possible parameters present (for (∧ ∧ 1) this means that fi is of type
Hi ` Wi∨Ji), and the remaining cases are obtained by simplifying this most
complex case. For example, to derive the most complex case of (∧ ∧ 1) for
GDS we use essentially (dL∧), (dL nat) and Net Coherence.

Let let (X) be the set of letters occurring in the form set X. It is clear
that we have the following.

Balance Remark. For every arrow f : X ` Y of GDS, we have let (X) =
let (Y).

A pair of form sets (X1 ∧ . . . ∧ Xn, Y1 ∨ . . . ∨ Yn), where n ≥ 2, is
splittable when let (Xi) = let (Yi) for every i ∈ {1, . . . , n}. A sequence
of form sets X1, . . . , Xn, Y1, . . . , Yn is a total split of the pair of form sets
(X1 ∧ . . .∧Xn, Y1 ∨ . . . ∨ Yn) when let (Xi) = let (Yi) and none of the pairs
(Xi, Yi) is splittable. For every splittable pair of form sets there is a total
split.

We say that an arrow f : X ` Y of GDS is splittable when its type
(X,Y) is splittable, and we say that a total split of (X,Y) is a total split
of f .

Splitting Remark. Take an arrow f of GDS of type

X ∧X1 ∧ . . . ∧Xn ` Z ∨ Y1 ∨ . . . ∨ Yn

or X ∧X1 ∧ . . . ∧Xn ` Z ∨R′ ∨ Y1 ∨ . . . ∨ Yn

and an arrow g of GDS of type

V ∧ V1 ∧ . . . ∧ Vm ` U ∨W1 ∨ . . . ∨Wm

or V ∧ V1 ∧ . . . ∧ Vm ` U ∨R′′ ∨W1 ∨ . . . ∨Wm

with n + m ≥ 1 (if n = 0, then the subword ∧X1 ∧ . . . ∧Xn is
just omitted, and analogously in other cases).

158 CHAPTER 7. DISSOCIATIVE CATEGORIES

Let ∧Z,U (f, g) be splittable with the total split

X ∧ V, X1, . . . , Xn, V1, . . . , Vm, Y, Y1, . . . , Yn, W1, . . . ,Wm

where Y is Z ∧U or (Z ∧U)∨R, and R is R′ or R′′ or R′ ∨R′′.
If n ≥ 1, then f is splittable, and if m ≥ 1, then g is splittable.

Here (X, Z) or (X,Z ∨R′) may be splittable, and hence the
forms of the type of f above do not show the total split tied to
this type. If (X, Z ∨ R′) is splittable and S1, . . . , Sk, T1, . . . , Tk

is its total split, then for every j ∈ {1, . . . , k} we have let (Z) ∩
let (Tj) 6= ∅. (Otherwise, the total split of ∧Z,U (f, g) mentioned
above would not be a total split.) We have an analogous remark
for (V,U), (V,U ∨R′′) and g.

An analogous remark holds for ∨Z,U (f, g).
It follows from the Splitting Remarks that, for ξ ∈ {∧,∨}, if ξZ,U (f, g)

is splittable, then f or g is splittable. Since 1p is not splittable, we can
easily conclude the following with the help of the Cut-Elimination Theorem
of the preceding section.

Splitting Corollary. No arrow of GDS is splittable.

This corollary is related to the connectedness condition of proof nets (see
[33]).

Next we prove the following lemma for GDS.

Invertibility Lemma for ∧. (i) If f : U1 ∧U2 ` (X1 ∧X2)∨Z1 ∨Z2 is a
cut-free Gentzen term such that let (Ui) = let (Xi) ∪ let (Zi) for i ∈ {1, 2},
then there are two cut-free Gentzen terms f1 : U1 ` X1 ∨ Z1 and f2 : U2 `
X2 ∨ Z2 such that f = ∧X1,X2(f1, f2).

(ii) If f : U1 ∧ U2 ` (X1 ∧ X2) ∨ Z1 is a cut-free Gentzen term such that
let (U1) = let (X1) ∪ let (Z1) and let (U2) = let (X2), then there are two
cut-free Gentzen terms f1 : U1 ` X1 ∨ Z1 and f2 : U2 ` X2 such that
f = ∧X1,X2(f1, f2).

(iii) If f : U1 ∧U2 ` X1 ∧X2 is a cut-free Gentzen term such that let (Ui) =
let (Xi) for i ∈ {1, 2}, then there are two cut-free Gentzen terms f1 : U1 `
X1 and f2 : U2 ` X2 such that f = ∧X1,X2(f1, f2).

§7.8. Invertibility in GDS 159

Proof. We proceed by induction on the length of the cut-free Gentzen
term f . If f is 1p, the lemma holds trivially, since f cannot be of the
required type.

Suppose next that f is ∧Y a,Y b(fa, f b) for fa : W a ` Ra and f b : W b `
Rb. Then, under the assumptions of (i), we have two cases:

(∧ i I) X1 ∧X2 is Y a ∧ Y b,

(∧ i II) X1 ∧X2 is different from Y a ∧ Y b.

We deal first with (∧ i I).
The cases where let (X1) ∪ let (X2) ⊆ let (W a) or let (X1) ∪ let (X2) ⊆

let (W b) are impossible.
If let (X1) ⊆ let (W a) and let (X2) ⊆ let (W b), then we must have

let (Z1) ⊆ let (W a) and let (Z2) ⊆ let (W b). All the other cases are excluded
by the Splitting Corollary. For example, if let (Z1) ∪ let (Z2) ⊆ let (W a),
then W a must be U1 ∧ Ua

2 , Ra must be X1 ∨ Z1 ∨ Z2, W b must be U b
2 ,

and Rb must be X2, where U2 is Ua
2 ∧ U b

2 . Then, since let (Ua
2) = let (Z2),

the arrows fa and f would be splittable, which contradicts the Splitting
Corollary. In the only possible case mentioned above, we take fa for f1 and
f b for f2.

The case where let (X1) ⊆ W b and let (X2) ⊆ W a is analogous to the
case just settled.

Let ρ(X, Y, Z) abbreviate the conjunction of the following conditions:

let (X) ⊆ let (Y) ∪ let (Z),
let (X) ∩ let (Y) 6= ∅,
let (X) ∩ let (Z) 6= ∅.

If let (X1) ⊆ let (W a) and ρ(X2, W
a,W b), then we have as possible cases

let (Z1) ⊆ let (W a) together with

(1) let (Z2) ⊆ let (W a), or
(2) let (Z2) ⊆ let (W b), or
(3) ρ(Z2,W

a,W b).

The remaining cases are excluded by the Splitting Corollary.
We deal first with (3). Then fa is of the type U1 ∧ Ua

2 ` (X1 ∧Xa
2) ∨

Z1∨Za
2 , while f b is of the type U b

2 ` Xb
2∨Zb

2, where Ua
2 ∧U b

2 is U2, Xa
2 ∧Xb

2

160 CHAPTER 7. DISSOCIATIVE CATEGORIES

is X2 and Za
2 ∨Zb

2 is Z2. By the induction hypothesis, fa = ∧X1,Xa
2
(fa

1 , fa
2)

for fa
1 : U1 ` X1 ∨Z1 and fa

2 : Ua
2 ` Xa

2 ∨Za
2 . Then by the equation (∧∧ 1)

we have

∧X1∧Xa
2 ,Xb

2
(∧X1,Xa

2
(fa

1 , fa
2), f b) = ∧X1,X2(f

a
1 ,∧Xa

2 ,Xb
2
(fa

2 , f b)),

and we take that f1 is fa
1 , while f2 is ∧Xa

2 ,Xb
2
(fa

2 , f b). In cases (1) and
(2) we proceed analogously, using again (∧ ∧ 1) (less complex cases of this
equation, with less parameters).

The three cases where we have let (X1) ⊆ let (W b) and ρ(X2,W
a, W b),

or let (X2) ⊆ let (W a) and ρ(X1,W
a, W b), or let (X2) ⊆ let (W b) and

ρ(X1,W
a,W b), are all settled analogously to the case we have just dealt

with.
The remaining case of (∧ i I) is when ρ(X1,W

a,W b) and ρ(X2,W
a,W b).

Then either let (Zi) ⊆ let (W a), or let (Zi) ⊆ let (W b), or ρ(Zi,W
a, W b),

and we always apply the induction hypothesis and equation (∧ ∧ 1) three
times; namely, we use the equation

∧Xa
1∧Xa

2 ,Xb
1∧Xb

2
(∧Xa

1 ,Xa
2
(fa

1 , fa
2),∧Xb

1 ,Xb
2
(f b

1 , f b
2)) =

∧Xa
1∧Xb

1 ,Xa
2∧Xb

2
(∧Xa

1 ,Xb
1
(fa

1 , f b
1),∧Xa

2 ,Xb
2
(fa

2 , f b
2)).

Under the assumption (∧ i II), we have the cases

(∧ i II.1) Z1 is Z ′1 ∨ (Y a ∧ Y b),
(∧ i II.2) Z1 is Y a ∧ Y b,

and two more cases obtained by replacing the index 1 in Z1 and Z ′1 by 2.
For (∧ i II.1), we have as possible cases let (X1 ∧X2) ∪ let (Z2) ⊆ let (W a)
together with

(1) let (Z1) ⊆ let (W a), or
(2) let (Z ′1) ⊆ let (W b), or
(3) ρ(Z ′1, W

a,W b),

and three more cases with let (X1 ∧ X2) ∪ let (Z2) ⊆ let (W b). All the
remaining cases are excluded by the Splitting Corollary.

We deal first with (3). Then fa is of the type Ua
1 ∧ U2 ` Y a ∨ (X1 ∧

X2) ∨ Za
1 ∨ Z2, while f b is of the type U b

1 ` Y b ∨ Zb
1, where Ua

1 ∧ U b
1 is U1

and Za
1 ∨ Zb

1 is Z ′1. By the induction hypothesis, fa = ∧X1,X2(f
a
1 , fa

2) for

§7.8. Invertibility in GDS 161

fa
1 : Ua

1 ` Y a ∨ X1 ∨ Za
1 and fa

2 : U2 ` X2 ∨ Z2. Then, by the equation
(∧ ∧ 2), we have

∧Y a,Y b(∧X1,X2(f
a
1 , fa

2), f b) = ∧X1,X2(∧Y a,Y b(fa
1 , f b), fa

2)),

and we take that f1 is ∧Y a,Y b(fa
1 , f b), while f2 is f b

2 . In cases (1) and (2),
and cases obtained by interchanging a and b, we proceed analogously.

For (∧ i II.2), we have as possible cases let (X1∧X2)∪let (Z2) ⊆ let (W a)
and let (X1 ∧ X2) ∪ let (Z2) ⊆ let (W b), for which we apply again the in-
duction hypothesis and the equation (∧ ∧ 2). All the remaining cases are
excluded by the Splitting Corollary.

We proceed analogously when we have (∧ i II) and Z2 is either Z ′2 ∨
(Y a ∧ Y b) or Y a ∧ Y b. With that we have settled (∧ i II), and also (i).

Under the assumptions of (ii), we have again two cases:

(∧ ii I) X1 ∧X2 is Y a ∧ Y b,

(∧ ii II) X1 ∧X2 is different from Y a ∧ Y b.

We deal with these cases as above, with simplifications in cases already
considered.

Under the assumptions of (iii), we must have that X1 ∧X2 is Y a ∧ Y b,
and we have cases simplifying again cases already considered. With that
we have finished dealing with the assumption that f = ∧Y a,Y b(fa, f b).

Suppose now f is ∨Y a,Y b(fa, f b) for fa : W a ` Ra and f b : W b ` Rb.
Then under the assumptions of (i) we have the cases:

(∨ i 1) U1 is U ′
1 ∧ (Y a ∨ Y b),

(∨ i 2) U1 is Y a ∨ Y b,

and two more cases with the index 1 of U1 and U ′
1 replaced by 2.

For (∨ i 1), we have as possible cases let (X1 ∧X2)∪ let (Z2) ⊆ let (W a)
together with

(α) let (Z1) ⊆ let (W b), or
(β) ρ(Z1,W

a,W b),

and together with

(1) let (U ′
1) ⊆ let (W a), or

(2) let (U ′
1) ⊆ let (W b), or

(3) ρ(U ′
1,W

a,W b),

162 CHAPTER 7. DISSOCIATIVE CATEGORIES

and six more analogous cases with let (X1∧X2)∪let (Z2) ⊆ let (W b) together
with

let (Z1) ⊆ let (W a), or
ρ(Z1,W

a,W b).

All the remaining cases are excluded by the Splitting Corollary, or because
let (Y a ∨ Y b) ⊆ let (X1 ∧X2) ∪ let (Z1).

We deal first with (β) together with (3). Then fa is of the type Y a ∧
Ua

1 ∧ U2 ` (X1 ∧ X2) ∨ Za
1 ∨ Z2, while f b is of the type Y b ∧ U b

1 ` Zb
1,

where Ua
1 ∧ U b

1 is U1 and Za
1 ∨ Zb

1 is Z1. By the induction hypothesis,
fa = ∧X1,X2(f

a
1 , fa

2) for fa
1 : Y a ∧ Ua

1 ` X1 ∨ Za
1 and fa

2 : U2 ` X2 ∨ Z2.
Then, by the equation (∧∨), we have

∨Y a,Y b(f b,∧X1,X2(f
a
1 , fa

2)) = ∧X1,X2(∨Y b,Y a(f b, fa
1), fa

2),

and we take that f1 is ∨Y b,Y a(f b, fa
1), while f2 is fa

2 . In all the remaining
cases, we proceed analogously, as well as in (∨ i 2). This settles (i).

Under the assumptions of (ii), we have cases analogous to those already
treated with Z2 omitted. So we apply again the equation (∧∨).

The assumptions of (iii) are excluded if f = ∨Y a,Y b(fa, f b). a

We prove analogously the following lemma for GDS.

Invertibility Lemma for ∨. (i) If f : (X1 ∨ X2) ∧ Z1 ∧ Z2 ` U1 ∨ U2

is a cut-free Gentzen term such that let (Ui) = let (Xi) ∪ let (Zi) for i ∈
{1, 2}, then there are two cut-free Gentzen terms f1 : X1 ∧ Z1 ` U1 and
f2 : X2 ∧ Z2 ` U2 such that f = ∨X1,X2(f1, f2).

(ii) If f : (X1 ∨ X2) ∧ Z1 ` U1 ∨ U2 is a cut-free Gentzen term such that
let (U1) = let (X1) ∪ let (Z1) and let (U2) = let (X2), then there are two
cut-free Gentzen terms f1 : X1 ∧ Z1 ` U1 and f2 : X2 ` U2 such that
f = ∨X1,X2(f1, f2).

(iii) If f : X1 ∨X2 ` U1 ∨U2 is a cut-free Gentzen term such that let (Ui) =
let (Xi) for i ∈ {1, 2}, then there are two cut-free Gentzen terms f1 : X1 `
U1 and f2 : X2 ` U2 such that f = ∨X1,X2(f1, f2).

§7.9. Linearly distributive categories 163

Let the quantity of letters in an arrow f : X ` Y of GDS be the
cardinality of let (X) (which is equal to the cardinality of let (Y)). Then we
can prove the following theorem for GDS.

Cut-Free Preordering. For every pair of cut-free Gentzen terms f1, f2 :
X ` Y we have f1 = f2.

Proof. We proceed by induction on the quantity of letters in f1 (which is
equal to the quantity of letters in f2). If n = 1, then f1 = f2 = 1p.

Suppose n > 1. If f1 is ∧Z1,Z2(f
′
1, f

′′
1), then by the Invertibility Lemma

for ∧ we have that f2 = ∧Z1,Z2(f
′
2, f

′′
2) for f ′2 and f ′′2 of the same types as

f ′1 and f ′′1 respectively. By the induction hypothesis, f ′1 = f ′2 and f ′′1 = f ′′2 ,
and hence f1 = f2. We proceed analogously if f1 is ∨Z1,Z2(f

′
1, f

′′
1). a

As a corollary of the Cut-Elimination Theorem and of Cut-Free Pre-
ordering, we obtain that GDS is a preorder, which, under the assumption
Gf = Gg, implies the assertion (div) of §7.6. This proves Symmetric Net
Coherence.

Net Coherence of §7.3 could also have been proved via a Cut-Elimination
Theorem and Cut-Free Preordering. Strictification, however, would be in
the associative structure only, and not in the symmetric associative struc-
ture.

The category DS corresponds to the multiplicative conjunction-disjunc-
tion fragment of linear logic, for which proof nets were developed (see [63]
and [33]). Proof nets, however, serve mainly to solve the theoremhood
problem, while coherence in our sense is maybe implicitly presupposed with
them. The theoremhood problem for DS can also be solved via our results
for GDS in this and in the preceding section, based on cut elimination,
and we do not find this solution in the style of Gentzen more complicated
than the solution provided by proof nets.

§7.9. Linearly distributive categories

To obtain the natural logical category DA>,⊥, we have that the logical
system C(DA>,⊥) is in L∧,∨,>,⊥, with the transformations α included in 1,
b, δ-σ and d. The specific equations of E(DA>,⊥) are obtained by taking

164 CHAPTER 7. DISSOCIATIVE CATEGORIES

the union of those of E(DA) and E(A>,⊥) plus

(∧σ dL) dL
>,B,C = (∧σ←B ∨ 1C) ◦ ∧σ→B∨C ,

(
∨
δ dL) dL

A,B,⊥ =
∨
δ←A∧B

◦ (1A ∧
∨
δ→B),

(
∧
δ dR) dR

C,B,> = (1C ∨
∧
δ←B) ◦

∧
δ→C∨B ,

(∨σ dR) dR
⊥,B,A = ∨

σ←B∧A
◦ (∨σ→B ∧ 1A).

Natural DA>,⊥-categories are called linearly distributive categories in
[25] (the original name from [22] is weakly distributive categories). Ac-
cording to our nomenclature, they could be called dissociative bimonoidal
categories. All of the specific equations above may be found in [22] (Sec-
tion 2.1). (These equations should be compared with the equations (d

∧
k)

and (d
∨
k) of §11.1.)

We have still a functor G from DA>,⊥ to Rel, but according to [11]
(Section 4.2, pp. 275-278), for

εA =df
∨
σ→A ◦ (

∧
δ→⊥ ∨ 1A) ◦ dL

⊥,>,A,

ηA =df dR
>,⊥,A

◦ (
∨
δ←> ∧ 1A) ◦ ∧σ←A ,

the equations

η>∨A ◦ (1> ∨ εA) = 1>∨(⊥∧(>∨A)),

(1⊥ ∧ ηA) ◦ ε⊥∧A = 1⊥∧(>∨(⊥∧A))

do not hold in DA>,⊥, although, when f and g are respectively the left-
hand side and right-hand side of one of these equations, we have Gf = Gg

in Rel. So G is not faithful, and coherence fails. The faithfulness of G in
this case would yield preordering, and DA>,⊥ is not a preorder.

Note that in DA>,⊥ we have

(1> ∨ εA) ◦ η>∨A = 1>∨A,

ε⊥∧A ◦ (1⊥ ∧ ηA) = 1⊥∧A,

which are the triangular equations of an adjunction (for the notion of ad-
junction see [100], Chapter 4; the functor ⊥∧ is left-adjoint to the functor
>∨). What fails is the isomorphism between >∨ (⊥∧ (>∨A)) and >∨A,
and between ⊥∧ (>∨ (⊥∧A)) and ⊥∧A ([119] deals with a related prob-
lem in symmetric monoidal closed categories). We do not know what other

§7.9. Linearly distributive categories 165

equations, if any, besides those that deliver these isomorphisms, should be
added to the axioms of DA>,⊥ in order to obtain coherence.

A sort of coherence for linearly distributive categories (symmetric and
not symmetric, without the isomorphisms above) in the context of proof
nets has been investigated in a number of papers (see [22], [11], [23] and
[115]). Coherence in this sense is not quite foreign to what we mean by
coherence, but it is not the same thing. The investigations of [22] appeal
to a connection with the polycategories of [126].

Chapter 8

Mix Categories

In this chapter, we consider categories having what linear logicians call
mix—namely, a natural transformation between the two bifunctors of the
double monoidal structure. The double monoidal structure has or does not
have associativity, symmetry and dissociativity. We prove coherence for
such categories that lack unit objects. The mix principle is an important
addition to Gentzen’s plural sequent formulation of classical logic, and this
is why we pay particular attention to it.

Our proofs are variations on the cut-elimination theme, and on the tech-
niques of the preceding chapters. There are proofs based on composition-
free languages for our categories, and a proof based on an extension of the
cut-elimination procedure of the preceding chapter.

§8.1. Coherence of mix and mix-dissociative categories

To obtain the natural logical category MI, we have that the logical system
C(MI) is in L∧,∨, with the transformations α being 1 and m. The equations
E(MI) are just those of Enat

C(MI) (see §4.1). We call natural MI-categories
mix categories.

A logical principle called mix amounting to mA,B : A ∧ B ` A ∨ B

was considered in [63] (Section V.4), [33] (Section 3.3), [56], [10] and [23].
Gentzen called Mischung in German—which is usually translated as mix—
a rule that generalizes the cut rule of sequent systems; an instance of Mi-
schung is

167

168 CHAPTER 8. MIX CATEGORIES

Γ1 ` ∆1, Θ Θ, Γ2 ` ∆2

Γ1, Γ2 ` ∆1,∆2

where Θ is a nonempty sequence of occurrences of the same formula (see
[60], Section III.3.1). The mix principle of mA,B is related to the Mischung
rule above where Θ is the empty sequence. (Gentzen did not envisage
this mix principle because he could prove the conclusion from one of the
premises with the help of the structural rules of thinning on the left and
thinning on the right.)

In C(MI) we define as follows the binary total operation 3 on arrow
terms:

f : A ` D g : B ` E

f 3 g =df (f ∨ g) ◦mA,B : A ∧B ` D ∨ E

for which in MI we have the equations

(3) (g1 3 g2) ◦ (f1 ∧ f2) = (g1 ∨ g2) ◦ (f1 3 f2) = (g1 ◦ f1)3 (g2 ◦ f2).

From the equation (m nat) of §2.7, in MI we obtain immediately f 3 g =
mD,E ◦ (f ∧ g), which gives an alternative definition of 3.

A syntactical system C(3MI) synonymous with C(MI) is obtained by
taking as objects the formulae of L∧,∨, as primitive arrow terms identity
arrow terms only, and as operations on arrow terms ◦ , ∧, ∨ and 3. The
equational system E(3MI) is obtained by assuming the categorial and bi-
functorial equations for ∧ and ∨, and the equations (3). The category
3MI is C(3MI)/E(3MI).

With the definition

mA,B =df 1A 31B

in C(MI), we obtain two obvious functors from C(MI) to C(3MI), and vice
versa, which preserve the respective structures on the nose (see §2.8), and
these functors induce functors that give the isomorphism of MI and 3MI.
This means that C(MI) and C(3MI) are synonymous (see the end of §2.4
for the notion of synonymity of syntactical systems). Note that officially

§8.2. Coherence of mix-biassociative categories 169

C(3MI) is not a logical system, because 3 is not of the ξ kind: it is not a
bifunctor in MI.

We can prove the following proposition for 3MI simply by relying on
the equations (3) and bifunctorial equations.

Composition Elimination. For every arrow term h there is a composition-
free arrow term h′ such that h = h′.

This result is a simple kind of cut-elimination result, such as we had in
§7.7.

The composition-free arrow term h′ can be put into a unique normal
form by applying the bifunctorial equations (ξ 1) so that every arrow term
1A in h′ has a letter for A. From that, we obtain immediately that two
different arrow terms in normal form must be of different types. So 3MI
is a preorder, from which we conclude the following.

Mix Coherence. The category MI is a preorder.

To obtain the natural logical category MDI, we have that the logical
system C(MDI) is in L∧,∨, with the transformations α included in 1, d

and m. The equations E(MDI) are just those of Enat
C(MDI). We call natural

MDI-categories mix-dissociative categories.
To prove that MDI is a preorder, we proceed as in §7.1 for DI by mod-

ifying the relations Sξ
A. In xSξ

Ay we have as before that y is an occurrence
of ξ in A, while x can be an occurrence of ∧, ∨ or of a letter. With the
help of this relation we proceed analogously to what we had in §7.1. So we
have the following.

Mix-Dissociative Coherence. The category MDI is a preorder.

§8.2. Coherence of mix-biassociative categories

To obtain the natural logical category MA, we have that the logical system
C(MA) is in L∧,∨, with the transformations α included in 1, b and m. The
specific equations of E(MA) are those of E(A) plus

(bm) (mA,B ∨ 1C) ◦mA∧B,C ◦
∧
b→A,B,C =

∨
b→A,B,C

◦mA,B∨C ◦ (1A ∧mB,C).

170 CHAPTER 8. MIX CATEGORIES

We call natural MA-categories mix-biassociative categories.
With 3 primitive in a syntactical system synonymous with C(MA), the

equation (bm) is replaced by

((f 3 g) 3h) ◦
∧
b→A,B,C =

∨
b→D,E,F

◦ (f 3 (g 3h)).

For G being A and C/E being MA, we have that the conditions (IVC)
and (IVG) of §3.1 are satisfied, and G is moreover a preorder. Thus we
can apply the Direct-Strictification Theorem of §3.2 to obtain a category
CG/EG , which we will call MAst, or 3MAst when 3 is primitive. The
categories MAst and 3MAst are isomorphic, as MI and 3MI are (see
the preceding section). We call CG here C(MAst), and C(3MAst) is the
synonymous syntactical system where 3 is primitive.

We can easily prove the Composition Elimination proposition of the
preceding section for MAst. Here is a sketch of how we proceed. By the
Development Lemma of §2.7, there is for every arrow term of C(MA) a
developed arrow term. For a

∧
b-term f and a

∨
b-term or m-term g we have

in MA that f ◦ g = g′ ◦ f ′ for a
∧
b-term f ′ and a

∨
b-term or m-term g′. So

we may say that
∧
b-terms can be moved to the right. Analogously,

∨
b-terms

can be moved to the left. Eventually, we obtain an arrow term of the form
f1 ◦ f2 ◦ f3 ◦1A, where in f1 there are no

∧
b-terms and m-terms, in f2 there

are no
∧
b-terms and

∨
b-terms and in f3 there are no

∨
b-terms and m-terms.

Then it is enough to apply the Composition Elimination for 3MI of the
preceding section to the arrow term of C(3MAst) corresponding to f2 to
obtain Composition Elimination for 3MAst.

A composition-free arrow term of C(3MAst) is atomized when for every
occurrence of 1|[A]| in it we have that A is a letter. We will write 1p instead
of 1|[p]|.

For an atomized composition-free arrow term f of C(3MAst) let w(f)
be the word obtained from f by deleting parentheses. We already defined
w(X) for a form sequence X in §7.3; it is, analogously, the word obtained
from X by deleting parentheses.

To every pair of parentheses in a form sequence of letters X in natural
notation (see §6.2 and §7.3), we can associate a pair of occurrences of letters
(x, y) in X, where x is the first occurrence of a letter on the right-hand side
of the left parenthesis and y is the first occurrence of a letter on the left-hand

§8.2. Coherence of mix-biassociative categories 171

side of the right parenthesis. For example, in p ∧ (p ∨ (q ∧ r)), to the outer
pair of parentheses written down we associate (x, y) where x is the second p

counting from the left and y is r. We suppose that atomized composition-
free arrow terms of C(3MAst) are written in natural notation (see §6.2),
and we associate analogously pairs (1x,1y) to pairs of parentheses in such
arrow terms. (Such arrow terms correspond to a kind of form sequence of
three colours: ∧, ∨ and 3.)

For every atomized composition-free arrow term f : X ` Y of C(3MAst)
there are obvious bijections between occurrences of the same letters in X,
Y and f , or in w(X), w(Y) and w(f). We say that such occurrences
correspond obviously to each other. For example, in (1p1 31p2) ∧ 1p3 :
p1 ∧ p2 ∧ p3 ` (p1 ∨ p2) ∧ p3 the three occurrences of pi, for i ∈ {1, 2, 3},
correspond obviously to each other.

For the proof of the following proposition we rely on the notion of im-
mediate scope of §2.1.

Proposition 1. Let β ∈ {∧,∨,3}, and let the atomized composition-
free arrow term f : X ` Y of C(3MAst), where f , X and Y are written
in natural notation, have a subterm (f1β . . . βfn), for n ≥ 2, such that
(1x1 ,1x2) is associated to the outermost parentheses of this subterm. Then
there is a pair of parentheses in at least one of X and Y such that (y1, y2)
is associated to this pair of parentheses, and, for i ∈ {1, 2}, the occurrence
of letter yi corresponds obviously to the occurrence of the same letter xi in
1xi .

Proof. If f is (f1β . . . βfn), then the assertion is trivial. (We usually omit,
however, such outermost parentheses.) Suppose then that (f1β . . . βfn) is
a proper subterm of f .

If β is ∧ and is within the immediate scope of ∨, then we have both in
X and in Y the required pair of parentheses. If β is ∧ and is within the
immediate scope of 3, then we have in Y the required pair of parentheses.

If β is 3 and is within the immediate scope of ∧, then we have in Y the
required pair of parentheses. If β is 3 and is within the immediate scope
of ∨, then we have in X the required pair of parentheses.

It remains to consider two cases where β is ∨, which are dual to the two

172 CHAPTER 8. MIX CATEGORIES

cases above where it is ∧. a

Proposition 2. Let f : X ` Y be an atomized composition-free arrow
term of C(3MAst), and let f , X and Y be written in natural notation.
Then for every pair of parentheses in the form sequences X or Y to which
(y1, y2) is associated there is a pair of parentheses in f to which (1x1 ,1x2)
is associated such that, for i ∈ {1, 2}, the occurrence of letter yi corresponds
obviously to the occurrence of the same letter xi in 1xi

.

Proof. If the pair of parentheses selected in X or Y is outermost (which we
usually do not write), then the assertion is trivial. If the pair of parentheses
selected is in X and belongs to ∧ within the immediate scope of ∨, then in
f we must have the required pair of parentheses, which belongs to ∧ or 3

within the immediate scope of ∨. If the pair of parentheses selected is in Y

and belongs to ∧ within the immediate scope of ∨, then in f we must have
the required pair of parentheses, which belongs to ∧ within the immediate
scope of ∨ or 3. The cases where ∨ is within the immediate scope of ∧ are
dual. a

Building on Propositions 1 and 2, we can obtain a criterion for the
existence of an arrow of 3MAst of a given type X ` Y , which solves the
theoremhood problem for 3MAst (see §1.1). Let

(1) w(X) and w(Y) coincide save that in w(Y) we can have an oc-
currence of ∨ at a place where in w(X) we have an occurrence
of ∧.

Let u be obtained from w(X) and w(Y) by

(2.1) writing 3 at the places where w(X) and w(Y) differ,

(2.2) adding the parentheses of both X and Y in an obvious manner
(here, two pairs of parentheses, one in X and the other in Y ,
associated to pairs of occurrences of letters that correspond ob-
viously to each other yield a single pair of parentheses added to
u),

(2.3) replacing every occurrence of a letter p by 1p.

Then there is an arrow of 3MAst of type X ` Y iff (1) is fulfilled and u

§8.3. Coherence of mix-net categories 173

is an arrow term of C(3MAst) in natural notation. If u is such an arrow
term, then it stands for the required arrow of 3MAst of type X ` Y . This
will yield a criterion for the existence of arrows of a given type in MA.

We need the following proposition to prove coherence for MA.

Proposition 3. If f1 : X1 ` Y1 and f2 : X2 ` Y2 are different atomized
composition-free arrow terms of C(3MAst), then X1 is different from X2

or Y1 is different from Y2.

Proof. If w(f1) is different from w(f2), then it is clear that w(X1) is
different from w(X2) or w(Y1) is different from w(Y2). If w(f1) coincides
with w(f2), but f1 and f2 are different arrow terms, then f1 and f2 must
differ with respect to parentheses. In that case, Propositions 1 and 2 yield
the assertion. a

From Composition Elimination and Proposition 3 we infer that 3MAst

is a preorder. So we have the following.

Mix-Biassociative Coherence. The category MA is a preorder.

§8.3. Coherence of mix-net categories

To obtain the natural logical category MDA, we have that the logical
system C(MDA) is in L∧,∨, with the transformations α included in 1, b, d

and m. The specific equations of E(MDA) are those of E(DA) plus

(
∧
b mL) mA∧B,C ◦

∧
b→A,B,C = dL

A,B,C
◦ (1A ∧mB,C),

(
∨
b mL)

∨
b→A,B,C

◦mA,B∨C = (mA,B ∨ 1C) ◦ dL
A,B,C ,

(
∧
b mR) mC,B∧A ◦

∧
b←C,B,A = dR

C,B,A
◦ (mC,B ∧ 1A),

(
∨
b mR)

∨
b←C,B,A

◦mC∨B,A = (1C ∨mB,A) ◦ dR
C,B,A.

We call natural MDA-categories mix-net categories.

The specific equation (bm) of E(MA) is derived as follows for MDA:

174 CHAPTER 8. MIX CATEGORIES

(mA,B ∨ 1C) ◦mA∧B,C ◦
∧
b→A,B,C

= (mA,B ∨ 1C) ◦ dL
A,B,C

◦ (1A ∧mB,C), by (
∧
b mL),

=
∨
b→A,B,C

◦mA,B∨C ◦ (1A ∧mB,C), by (
∨
b mL).

Alternatively, we could have used (
∧
b mR) and (

∨
b mR).

For G being A and C/E being MDA, we have that the conditions (IVC)
and (IVG) of §3.1 are satisfied, and G is moreover a preorder. Thus we can
apply the Direct-Strictification Theorem of §3.2 to obtain a category CG/EG ,
which we will call MDAst. We call CG here C(MDAst).

For every object X of MDAst, i.e. for every form sequence of letters
X in natural notation (see §6.2 and §7.3), we introduce a relation R′X
between the set of occurrences of ∧ in X and the set of occurrences of ∧,
∨ and letters in X. We define xR′Xy as xRXy in §7.3 save that y need not
be an occurrence of ∨, but may be an occurrence of ∧, ∨ or of a letter (cf.
the version of Sξ

A in §8.1). More precisely, y is an occurrence of ∧, ∨ or
of a letter on the right-hand side of l(x) and on the left-hand side of r(x);
here y can also be l(x) or r(x). We define the occurrences of letters l(x)
and r(x) exactly as before (see §7.3).

Let v(X) be the word obtained from a form sequence X by deleting
every parenthesis and replacing every occurrence of ∧ or ∨ in X by a single
arbitrary new symbol γ. When for the form sequences X and Y we have
that v(X) and v(Y) coincide, we say that X and Y are MDA-comparable.

It is clear that R′X gives rise to a relation R′vX
on occurrences of symbols

in v(X) such that we have x′R′vX
y′ when x′ is the occurrence of γ in v(X)

corresponding to an occurrence x of ∧ in X, while y′ is an occurrence of γ

or of a letter p corresponding to an occurrence y of ∧, ∨ or p in X, and we
have x′R′Xy′.

Then it can be checked that for every arrow term f : X ` Y of C(MDAst)
the form sequences X and Y are MDA-comparable and R′vY

⊆ R′vX
. More-

over, if dL, dR or m occurs in f , then R′vY
is a proper subset of R′vX

;
otherwise, R′vX

= R′vY
. For example, with mp,q : p ∧ q ` p ∨ q we have

v(p ∧ q) = v(p ∨ q) = pγq, while R′vp∧q
= {(γ, p), (γ, q)} and R′vp∨q

= ∅.
A place in X is a subword of v(X). We define when subwords of MDA-

§8.3. Coherence of mix-net categories 175

comparable form sequences are at the same place as in §7.3 and §2.1.
We have a Remark analogous to that of §7.3 with R replaced by R′, and

a lemma analogous to the Extraction Lemma of §7.3 with DAst replaced
by MDAst and (∗) that reads:

(∗) for every occurrence x of ∧ in Xi and every occurrence y of ∧,
∨ or of a letter in Xi, where i ∈ {1, 2}, if x′ is an occurrence
of ∧ in X at the same place where X1 z X2 has x, while y′ is an
occurrence of ∧, ∨ or of a letter in X at the same place where
X1 z X2 has y, and x′R′Xy′, then xR′Xi

y.

A more precise formulation of (∗) in the Extraction Lemma of §7.3 would
be analogous to this version of (∗), but there we identified x and y with x′

and y′. Note that here X and X1 z X2 are comparable and not only MDA-
comparable. This means that y and y′ are occurrences of the same symbol.
The proofs of the Extraction Lemma of §7.3 and of its analogue for MDAst

do not involve the transformation m. They are based on considerations
concerning l(x) and r(x), which are the same both for the relation R and
for the relation R′.

With the help of this analogue of the Extraction Lemma, we can prove
the following analogue of the Theoremhood Proposition of §7.3.

Theoremhood Proposition. There is an arrow term f : X ` Y of
C(MDAst) iff X and Y are MDA-comparable form sequences and R′vY

⊆
R′vX

.

Proof. We enlarge the proof of the Theoremhood Proposition of §7.3. If
n > 1 and Y is Y1 z Y2 for z an occurrence of ∨, then there is no guarantee
that X has an occurrence of ∨ at the same place. If it has it, then we
proceed as before, applying the analogue of the Extraction Lemma. If, on
the other hand, X has an occurrence u of ∧ at that place, then we first take
an arrow term h : X ` X ′ of C(MDAst) made of m, 1 and the operations
∧ and ∨ on arrow terms such that X ′ differs from X just by having an
occurrence of ∨ instead of u. It is clear that if we exclude from R′vX

all
those pairs (u′, y′), where u′ corresponds to u in v(X), then we obtain R′vX′

.
We continue again as in the proof of the Theoremhood Proposition of §7.3,
and f is (f1 ∨ f2) ◦ g ◦h. a

176 CHAPTER 8. MIX CATEGORIES

For a form sequence X, let d(X) be now the cardinality of R′X . We can
prove the following.

Mix-Net Coherence. The category MDA is a preorder.

Proof. We proceed as in the proof of Net Coherence in §7.3 with the
following additional cases.

(Lm) The head of f1 is dL
E,F,G and the head of g1 is mH,I . Due to the

presence of (
∨
b mL), we may assume that I is not of the form (X1. . . Xn,∨),

and so I cannot be F ∨ G. It remains to consider subcases analogous
to (LL1) and (LL2), which are settled with the help of bifunctorial and
naturality equations.

(Rm) The head of f1 is dR
G,F,E and the head of g1 is mI,H . Here we

invoke (
∨
b mR), and deal as in (Lm).

(mm) The head of f1 is mE,F and the head of g1 is mH,I . Due to the

presence of (
∧
b mL) and (

∧
b mR), we may assume that E, F , H and I are

not of the form (X1. . . Xn,∧). So, with the previous assumption based
on (

∨
b mL) and (

∨
b mR), they must be occurrences of letters. We have the

following subcase.

(mm1) The occurrence of letter F coincides with H. Then by (bm),
(m nat), (

∨
b mL) and (

∨
b mR) we have

(1E ∨mF,I) ◦ dR
E,F,I

◦ (mE,F ∧ 1I) = (mE,F ∧ 1I) ◦ dL
E,F,I

◦ (1E ∨mF,I).

We continue reasoning by applying the Theoremhood Proposition of this
section. The remaining subcases are settled with the help of bifunctorial
and naturality equations. a

§8.4. Coherence of mix-symmetric net categories

To obtain the natural logical category MDS, we have that the logical sys-
tem C(MDS) is in L∧,∨, with the transformations α included in 1, b, c,
d and m. The specific equations of E(MDS) are obtained by taking the
union of those of E(MDA) and E(DS) plus

(cm) mB,A ◦ ∧
cA,B = ∨

cB,A ◦mA,B .

§8.4. Coherence of mix-symmetric net categories 177

We call natural MDS-categories mix-symmetric net categories.
With 3 as in §8.1, the equation (cm) amounts to the equation

(g 3 f) ◦ ∧
cA,B = ∨

cE,D ◦ (f 3 g).

In the arrow terms of C(MDS) we write d instead of dL, as we did for
C(DS), and we take dR as defined by the equation (dRc) of §7.6. Among
the specific equations (

∧
b mL), (

∨
b mL), (

∧
b mR) and (

∨
b mR) of E(MDA) (see

§8.3), it is enough to keep (
∧
b mL) and (

∨
b mL); the equations (

∧
b mR) and

(
∨
b mR) are derivable.

We build the syntactical category GMDS in the syntactical system
C(GMDS) out of MDS as we built GDS out of DS in §§7.6-7. The only
difference is that we replace everywhere DS by MDS. As before, it is
enough to prove that GMDS is a preorder in order to infer the following.

Mix-Symmetric Net Coherence. The functor G from MDS to Rel is
faithful.

We define the Gentzen terms for arrows of GMDS as for GDS, in §7.7,
with the following additional Gentzen operation:

f : U ` Z g : Y ` W

mix (f, g) =dn (f ∨ g) ◦mU,Y : U ∧ Y ` Z ∨W

An alternative notation for mix (f, g) is f 3 g, which we used in §§8.1-2,
but mix (f, g) is handier in the present context. Note that due to (cm) we
have mix (f, g) = mix (g, f) in GMDS. So we will consider the terms on
the two sides of this equation as the same Gentzen term.

Then by enlarging the proof of the Gentzenization Lemma of §7.7 we
can prove that every arrow of GMDS is denoted by a Gentzen term. The
only addition is that mX,Y = mix (1X ,1Y).

In the definition of depth of §7.7, we now have that γ can be also mix .
The notions of cut-free Gentzen term, topmost cut, rank and complexity
of a topmost cut are exactly as in §7.7. We can then prove as follows the
Cut-Elimination Theorem where GDS is replaced by GMDS.

Proof of the Cut-Elimination Theorem for GMDS. We proceed as
in the proof of §7.7 until we suppose that the complexity of the topmost cut

178 CHAPTER 8. MIX CATEGORIES

cutX(f, g) is (m,n) with m,n ≥ 1. Then we have the following additional
case.

(∧6) The form set X is of colour ∧ (it may be of the form X1 ∧X2 or p)
and f is mix (f1, f2). So we have

f1 : U1 ` X ∨ V1 f2 : U2 ` V2

mix (f1, f2) : U1 ∧ U2 ` X ∨ V1 ∨ V2 g : X ∧ Y ` W

cutX(mix (f1, f2), g) : U1 ∧ U2 ∧ Y ` W ∨ V1 ∨ V2

Then consider the Gentzen term

f1 : U1 ` X ∨ V1 g : X ∧ Y ` W

cutX(f1, g) : U1 ∧ Y ` W ∨ V1 f2 : U2 ` V2

mix (cutX(f1, g), f2) : U1 ∧ U2 ∧ Y ` W ∨ V1 ∨ V2

We show that

(∗∗∗) cutX(mix (f1, f2), g) = mix (cutX(f1, g), f2),

and the complexity (m,n−1) of the topmost cut cutX(f1, g) is lower than
(m,n), so that we may apply the induction hypothesis.

To show the equation (∗∗∗), we have to show

(g ∨ 1V1∨V2) ◦ dY,X,V1∨V2
◦ ((mX∨V1,V2

◦ (f1 ∧ f2)) ∧ 1Y) =
mW∨V1,V2

◦ (((g ∨ 1V1) ◦ dY,X,V1
◦ (f1 ∧ 1Y)) ∧ f2).

To derive this equation for GMDS, we use essentially (
∧
b mL) of the preced-

ing section and (cm) (for GMDS, the latter equation reads mX,Y = mY,X).

We have to consider also subcases where we have f1 : U1 ` X or g : X `
W . In all of them, (∗∗∗) amounts to equations simpler than the equation
above, which all hold in GMDS.

If in cutX(f, g) with complexity (m,n) where m,n ≥ 1 the form set X

is of colour ∨ and g is mix (g1, g2), then we have an additional case treated
dually to (∧6). In that case, the equation (

∨
b mL) of the preceding section,

together with (cm), plays an essential role. a

To prove the analogue of the Invertibility Lemmata of §7.8 for GMDS
we need the following equations of GMDS:

§8.4. Coherence of mix-symmetric net categories 179

(∧mix) ∧X,Y (mix (f, h), g) = mix (∧X,Y (f, g), h)

for f of type U ` X ∨ V or U ` X, and

(∨mix) ∨X,Y (mix (f, h), g) = mix (∨X,Y (f, g), h)

for f of type X ∧ V ` U or X ` U . To derive these equations for GMDS
we use essentially (

∧
b mL) and (

∨
b mL) of the preceding section.

Note that (∧mix) and (∨mix) hold just with the types indicated for f .
For other types, analogous equations need not hold; take, for example,

∧p∨q,r(mix (1p,1q),1r) : p ∧ q ∧ r ` (p ∨ q) ∧ r.

We will need also the following equation:

(mixmix) mix (mix (f, g), h) = mix (f,mix (g, h)),

which we derive for GMDS with the help of the equation (bm) of §8.2 (see
the preceding section).

We define inductively the following abbreviation:

Mix (f) =df f,
Mix (f1, . . . , fk−1, fk) =df mix (Mix (f1, . . . , fk−1), fk), for k ≥ 2.

Due to the equation (mixmix), for k ≥ 2 we could have also

Mix (f1, . . . , fk−1, fk) =df mix (f1,Mix (f2, . . . , fk)).

With the help of (∧mix), (∨mix) and (mixmix) we can derive for GMDS
the following equations:

(∧Mix) ∧X,Y (Mix (f, f1, . . . , fn),Mix (g, g1, . . . , gm)) =
Mix (∧X,Y (f, g), f1, . . . , fn, g1, . . . , gm)

where n,m ≥ 0 (if n = 0, then f1, . . . , fn is just omitted, and analogously if
m = 0), while f is of type U ` X ∨V or U ` X, and g is of type W ` Y ∨S

or W ` Y . We have also the equation (∨Mix) where ∧ is replaced by ∨,
while f is of type X ∧ V ` U or X ` U , and g is of type Y ∧ S ` W or
Y ` W .

180 CHAPTER 8. MIX CATEGORIES

The Splitting Remark of §7.8 holds for GMDS as it holds for GDS.
Note that the splittability of f need not entail the splittability of ∧Z,U (f, g).
A counterexample is provided with mix (1p,1q) : p∧q ` p∨q, which is split-
table, and ∧p∨q,r(mix (1p,1q),1r), mentioned above, which is not splittable.

A cut-free Gentzen term f for arrows of GMDS such that every subterm
ξX,Y (f1, f2) of f for ξ ∈ {∧,∨} is not splittable is called split-normalized.
Let the quantity of letters for an arrow f : X ` Y of GMDS be the
cardinality of let (X), as for GDS in §7.8. We can prove the following.

Split-Normalization Lemma. For every Gentzen term h for arrows of
GMDS there is a split-normalized Gentzen term h′ such that h = h′ in
GMDS.

Proof. We proceed by induction on the quantity of letters in h. In the
basis of the induction, when this quantity is 1 and h = 1p : p ` p, the
lemma holds trivially.

Suppose that h is equal in GMDS to a cut-free Gentzen term ∧Z,U (f, g)
with f and g of the same types as in the Splitting Remark of §7.8, and with
the total split mentioned there. Then we apply the induction hypothesis to
f and g to obtain f ′ and g′ split-normalized. If ∧Z,U (f ′, g′) is not splittable,
we are done. If ∧Z,U (f ′, g′) is splittable, then we proceed as follows.

If n ≥ 1, then the cut-free Gentzen term f ′ is splittable and can be
written in the form Mix (u, u1, . . . , un) with u of type X ` Z or X ` Z ∨R′

and ui : Xi ` Yi, for i ∈ {1, . . . , n} and all of u, u1, . . . , un split-normalized.
To put f ′ in this form, we may need to use (mixmix), and we also use the fact
that the subterms of a split-normalized Gentzen term are split-normalized.
Here ui is not splittable and is not of the form mix (u′, u′′), but u may
be splittable. If u is splittable, and is hence of the form mix (u′, u′′) with
u′ : X ′ ` Y ′ and u′′ : X ′′ ` Y ′′, then we must have let (Z)∩ let (Y ′) 6= ∅ and
let (Z) ∩ let (Y ′′) 6= ∅. This follows from the Splitting Remark. If n = 0,
then f ′ is not splittable, and can be written as Mix (f).

We put g′ analogously in the form Mix (v, v1, . . . , vm), and we apply
(∧Mix) to obtain that ∧Z,U (f, g) is equal to

Mix (∧Z,U (u, v), u1, . . . , un, v1, . . . , vm),

which is split-normalized, because ∧Z,U (u, v) is not splittable. If ∧Z,U (u, v)

§8.4. Coherence of mix-symmetric net categories 181

were splittable, then by the Splitting Remark, either u, which is split-
normalized, would be of the form mix (u′, u′′) with u′ : X ′ ` Y ′, u′′ : X ′′ `
Y ′′ and let (Z)∩ let (Y ′) = ∅ or let (Z)∩ let (Y ′′) = ∅, or v would be of such
a form, which is impossible, as we said above.

We proceed analogously if h is equal in GMDS to a cut-free Gentzen
term ∨Z,U (f, g). If h is equal in GMDS to a cut-free Gentzen term
mix (f, g), then we just apply the induction hypothesis to f and g. a

The Invertibility Lemma for ∧ is formulated for GMDS as in §7.8,
save that we assume for f not only that it is cut-free, but that it is split-
normalized too. The proof of this lemma proceeds, as before, by induction
on the length of f . In the induction step, when f is ∧Y a,Y b(fa, f b) or
∨Y a,Y b(fa, f b), we work as in the proof in §7.8, save that when we elimi-
nated some cases by appealing to the Split Corollary, now these cases are
eliminated by appealing to the fact that f is split-normalized, and hence
not splittable. It remains to consider the case where f is mix (fa, f b). It
is, however, easy to conclude that we may apply the induction hypothesis
either to fa or to f b in order to obtain a cut-free Gentzen term ∧X1,X2(g, h)
equal to this term in GMDS. Then we apply (∧mix).

We proceed analogously to prove the Invertibility Lemma for ∨ for
GMDS. We also have for GMDS the following new lemma of the same
kind.

Invertibility Lemma for mix . If f : U1 ∧ U2 ` Z1 ∨ Z2 is a split-
normalized Gentzen term such that let (Ui) = let (Zi) for i ∈ {1, 2}, then
there are two split-normalized Gentzen terms f1 : U1 ` Z1 and f2 : U2 ` Z2

such that f = mix (f1, f2).

Proof. We proceed by induction on the length of f . The basis of this
induction, when f is 1p, is trivial, as before.

For the induction step, because f is split-normalized, f must be of the
form mix (fa, f b) for fa : W a ` Ra and f b : W b ` Rb. Then we have the
following cases:

(1) W a is U1 and W b is U2,

(2) W a is U1 ∧ Ua
2 and W b is U b

2 , for U2 being Ua
2 ∧ U b

2 ,

182 CHAPTER 8. MIX CATEGORIES

(3) W a is Ua
1 ∧ Ua

2 and W b is U b
1 ∧ U b

2 , for Ui being Ua
i ∧ U b

i , where
i ∈ {1, 2},

and cases analogous to these. In case (1), we take fa for f1 and f b for
f2. In case (2), we apply the induction hypothesis to fa to obtain a split-
normalized Gentzen term mix (fa′, fa′′) equal to fa in GMDS for fa′ : U1 `
Z1 and fa′′ : Ua

2 ` Za
2 . Then we take f1 and f2 to be fa′ and mix (fa′′, f b),

respectively, and we apply (mixmix). In case (3), we proceed analogously,
by applying (mixmix) three times (cf. the proof of the Invertibility Lemma
for ∧ in §7.8). a

We can now prove Cut-Free Preordering of §7.8 for GMDS. The
proof is analogous to the proof of §7.8, with an additional case when f1

is mix (f ′1, f
′′
1), which is settled with the help of the Invertibility Lemma for

mix . As a corollary of the Cut-Elimination Theorem for GMDS and of
Cut-Free Preordering for GMDS, we obtain that the category GMDS is
a preorder, which implies Mix-Symmetric Net Coherence.

§8.5. Coherence of mix-symmetric biassociative cate-
gories

To obtain the natural logical category MS, we have that the logical system
C(MS) is in L∧,∨, with the transformations α included in 1, b, c and m. The
specific equations of E(MS) are obtained by taking the union of those of
E(MA) and E(S) plus the equation (cm). So MS is analogous to MDS, but
with d missing. We call natural MS-categories mix-symmetric biassociative
categories.

We can prove the following.

Mix-Symmetric Biassociative Coherence. The functor G from MS
to Rel is faithful.

We prove this assertion as for MDS via a Cut-Elimination Theorem and
Invertibility Lemmata. We keep in the proofs of the preceding section just
the easy cases.

We do not consider here something that would be called mix-bimonoidal
categories, symmetric or not symmetric, dissociative or not dissociative.

§8.5. Coherence of mix-symmetric biassociative categories 183

(Some kinds of mix-dissociative bimonoidal categories are considered in
[23], Sections 6-7.) We have left open in §7.9 the problem of what axioms
should be added to those of linearly distributive categories in order to ob-
tain coherence with respect to Rel. Mix brings in its own problems in the
presence of > and ⊥. These problems remain in the next two chapters, and
will disappear in Chapter 11 and later.

Chapter 9

Lattice Categories

This chapter is about coherence for categories with a double cartesian struc-
ture, i.e. with finite products and finite coproducts. We take this as a cate-
gorification of the notion of lattice. As before, we distinguish cases with and
without special objects, which are here the empty product and the empty
coproduct, i.e. the terminal and initial objects. The results presented are
taken over from [46], [48] and the revised version of [47].

We pay particular attention in this chapter to questions of maximal-
ity, i.e. to the impossibility of extending our axioms without collapse into
preorder, and hence triviality. This maximality is a kind of syntactical
completeness. (The sections on maximality, §9.3, §9.5 and §9.7, improve
upon results reported in [46], [48] and [47].)

The techniques of this chapter are partly based on a composition elimi-
nation for conjunctive logic, related to normalization in natural deduction,
and on a simple composition elimination for conjunctive-disjunctive logic,
implicit in Gentzen’s cut elimination.

§9.1. Coherence of semilattice categories

To obtain the natural logical category
∧
L, we have that the logical system

C(∧L) is in L∧, with the transformations α included in 1,
∧
b, ∧c and ∧

w-
∧
k. The

specific equations of E(
∧
L) are those of E(

∧
S) plus

185

186 CHAPTER 9. LATTICE CATEGORIES

(
∧
b
∧
w)

∧
b→A,A,A

◦ (1A ∧ ∧
wA) ◦ ∧

wA = (∧wA ∧ 1A) ◦ ∧
wA,

(∧c ∧
w) ∧

cA,A ◦ ∧
wA = ∧

wA,

for ∧
cm

A,B,C,D =df

∧
b→A,C,B∧D

◦ (1A ∧ (
∧
b←C,B,D

◦ (∧cB,C ∧1D) ◦
∧
b→B,C,D)) ◦

∧
b←A,B,C∧D

of type (A ∧B) ∧ (C ∧D) ` (A ∧ C) ∧ (B ∧D),

(
∧
b
∧
c
∧
w) ∧

wA∧B = ∧
cm

A,A,B,B
◦ (∧wA ∧ ∧

wB),

(
∧
b
∧
k) (

∧
k1

A,B ∧ 1C) ◦
∧
b→A,B,C = 1A ∧

∧
k2

B,C ,

(∧c
∧
k)

∧
k2

A,B =
∧
k1

B,A
◦ ∧

cA,B ,

(∧w
∧
k)

∧
ki

A,A
◦ ∧
wA = 1A, for i ∈ {1, 2}.

We call natural
∧
L-categories semilattice categories. Usually, they are

called categories with finite nonempty products. The objects of a semilat-
tice category that is a partial order make a semilattice.

The equation (
∧
b
∧
c
∧
w) is the octagonal equation of [43] (Section 2) and [44]

(Section 1) (cf. [53], Proposition 3.29, p. 235, and, for ∧
cm, cf. [55], Section

III.3, p. 517).
The equation (

∧
b
∧
k) is related to the equation (

∧
b
∧
δ
∧
σ) of §4.6. By using

essentially this equation, we derive for
∧
L the equations

(
∧
b
∧
k1)

∧
k1

A∧B,C = (1A ∧
∧
k1

B,C) ◦
∧
b←A,B,C ,

(
∧
b
∧
k2)

∧
k2

C,B∧A = (
∧
k2

C,B ∧ 1A) ◦
∧
b→C,B,A,

which are related respectively to the equations (
∧
b
∧
δ) and (

∧
b
∧
σ) of §4.6. To

derive (
∧
b
∧
k1), we derive first

∧
k1

A∧B,C ∧1(A∧B)∧C = ((1A ∧
∧
k1

B,C) ◦
∧
b←A,B,C) ∧ 1(A∧B)∧C

with the help of (
∧
b 5) of §4.2 and other equations; since for f : E ` D we

have
∧
k1

D,E
◦ (f ∧ 1E) ◦ ∧

wE = f , we have (
∧
b
∧
k1). We proceed analogously for

(
∧
b
∧
k2). Conversely, from (

∧
b
∧
k1) and (

∧
b
∧
k2) we can derive (

∧
b
∧
k) with the help

of (
∧
b
∧
c) from §5.1 and (∧c

∧
k).

The equation (∧c
∧
k), which is related to the equation (∧c

∧
δ
∧
σ) of §5.3, says

that
∧
k1 and

∧
k2 are interdefinable. In the presence of (∧c ∧

w) and (∧c
∧
k), we can

§9.1. Coherence of semilattice categories 187

derive
∧
k2

A,A
◦ ∧wA = 1A from

∧
k1

A,A
◦ ∧wA = 1A, and vice versa, so that instead

of (∧w
∧
k) we could have assumed just one of these two equations.

We can also derive for
∧
L the equation

(∧w
∧
k
∧
k) (

∧
k1

A,B ∧ ∧
k2

A,B) ◦ ∧
wA∧B = 1A∧B .

For that we use (
∧
b
∧
c
∧
w), (

∧
b
∧
k), (

∧
b
∧
k1), (

∧
b
∧
k2), (∧c

∧
k) and (∧w

∧
k).

For fi : C ` Ai, where i ∈ {1, 2}, we have in C(∧L) the definition

(〈 , 〉) 〈f1, f2〉 =df (f1 ∧ f2) ◦
∧
wC .

Then for f : A ` D and g : B ` E the following equations hold in
∧
L:

(∧) f ∧ g = 〈f ◦
∧
k1

A,B , g ◦
∧
k2

A,B〉,
(
∧
b→)

∧
b→A,B,C = 〈1A ∧

∧
k1

B,C ,
∧
k2

B,C
◦
∧
k2

A,B∧C〉,
(
∧
b←)

∧
b←C,B,A = 〈∧k1

C,B
◦
∧
k1

C∧B,A,
∧
k2

C,B ∧1A〉,
(∧c) ∧

cA,B = 〈∧k2
A,B ,

∧
k1

A,B〉,
(∧w) ∧

wA = 〈1A,1A〉.
This shows that with the operation 〈 , 〉 on arrow terms primitive, together
with

∧
ki, where i ∈ {1, 2}, we could take the arrow terms on the left-hand

sides of these equations as defined. With these alternative primitives, all
the equations of E(

∧
L) can be derived from the categorial equations and the

following equations of E(
∧
L):

(∧β)
∧
ki

A1,A2
◦ 〈f1, f2〉 = fi,

(∧η) 〈∧k1
A1,A2

◦h,
∧
k2

A1,A2
◦h〉 = h,

for h : C ` A1 ∧ A2 (for these equations see [90], Section I.3). In other
words, we would obtain a syntactical system synonymous with C(∧L) (see
the end of §2.4 for this notion of synonymity).

Another alternative is to have
∧
ki and ∧

w primitive, together with the
operation ∧ on arrow terms. Then we can assume, besides categorial, bi-
functorial and naturality equations, the equations (∧w

∧
k) and (∧w

∧
k
∧
k) in order

to obtain a logical system synonymous with C(∧L).
Synonymity with these alternative syntactical systems can be demon-

strated directly, but this is a lengthy exercise. The coherence result for

188 CHAPTER 9. LATTICE CATEGORIES

semilattice categories we are going to prove will easily yield this synonymity
in an indirect way.

We introduce next still another syntactical system synonymous with
C(∧L), which will be formulated in the style of Gentzen, and will enable us to
prove a composition-elimination result, i.e. a simple kind of cut-elimination
result, such as we had in §8.1. Let C(G∧

L) be the syntactical system with
formulae of L∧ as objects, with the primitive arrow terms being only iden-
tity arrow terms, and with the following operations on arrow terms, besides
the operation ◦ :

f1 : C ` A1 f2 : C ` A2

〈f1, f2〉 : C ` A1 ∧A2

g1 : A1 ` C
∧
K1

A2
g1 : A1 ∧A2 ` C

g2 : A2 ` C
∧
K2

A1
g2 : A1 ∧A2 ` C

To obtain the equations of E(G
∧
L), we assume the categorial equations and

the following equations, for i ∈ {1, 2}:

(
∧
K1) g ◦

∧
Ki

A f =
∧
Ki

A (g ◦ f),

(
∧
K2)

∧
Ki

A g ◦ 〈f1, f2〉 = g ◦ fi,

(
∧
K3) 〈g1, g2〉 ◦ f = 〈g1 ◦ f, g2 ◦ f〉,

(
∧
K4) 1A∧B = 〈 ∧K1

B 1A,
∧
K2

A 1B〉,

with appropriate types assigned to f , g, fi and gi. The equation (
∧
K2) is

related to (∧β), while (
∧
K3) and (

∧
K4) are related to (∧η). The syntactical

category G
∧
L is C(G∧

L)/E(G
∧
L).

It is a straightforward, though somewhat lengthy, exercise to check that
with the definitions corresponding to the equations (∧), (

∧
b→), (

∧
b←), (∧c),

(∧w), and the additional definitions

∧
k1

A1,A2
=df

∧
K1

A2
1A1 ,

∧
k2

A1,A2
=df

∧
K2

A1
1A2 ,

on the one hand, and the definitions (〈 , 〉) and

∧
K1

A2
g1 =df g1 ◦

∧
k1

A1,A2
,

∧
K2

A1
g2 =df g2 ◦

∧
k2

A1,A2
,

§9.1. Coherence of semilattice categories 189

on the other hand, we can prove that
∧
L and G

∧
L are isomorphic categories,

and that hence C(∧L) and C(G∧
L) are synonymous syntactical systems.

We can prove as follows Composition Elimination (see §8.1) for G
∧
L.

Proof of Composition Elimination for G
∧
L. Take a subterm g ◦ f of

an arrow term of C(G∧
L) such that both f and g are composition-free. We

call such a subterm a topmost cut. We show that g ◦ f is equal either to a
composition-free arrow term or to an arrow term all of whose compositions
occur in topmost cuts of strictly smaller length than the length of g ◦ f .
The possibility of eliminating composition in topmost cuts, and hence every
composition, follows by induction on the length of topmost cuts.

The cases where f or g are 1A are taken care of by (cat 1); the cases
where f is

∧
Ki

A f ′ are taken care of by (
∧
K1); and the case where g is 〈g1, g2〉

is taken care of by (
∧
K3). The following cases remain.

If f is 〈f1, f2〉, then g is either of a form covered by cases above, or g is
∧
Ki

A g′, and we apply (
∧
K2). a

Note that we do not use the equations (cat 2) and (
∧
K4) in this proof.

An arrow term of C(G∧
L) is said to be in normal form when it is

composition-free and there are no subterms of it of the forms 1A∧B and
∧
Ki

A 〈f, g〉. In G
∧
L we have the equations (

∧
K4) and, for i ∈ {1, 2},

(
∧
K5)

∧
Ki

A 〈f, g〉 = 〈 ∧Ki
A f,

∧
Ki

A g〉,

which is obtained with the help of (cat 1), (
∧
K1) and (

∧
K3). With Composi-

tion Elimination and these equations, it can be shown that for every arrow
term of C(G∧

L) there is an arrow term f ′ of C(G∧
L) in normal form such

that f = f ′ in G
∧
L. Namely, the following holds for G

∧
L.

Normal-Form Lemma. Every arrow term is equal to an arrow term in
normal form.

(The proof of this lemma is incorporated in the proof of the Normal-Form
Lemma for G

∧
L> in the next section.)

The functor G from
∧
L to Rel yields with the isomorphism from G

∧
L to

∧
L a functor, which we also call G, from G

∧
L to Rel. We can then prove the

following for arrow terms of C(G∧
L).

190 CHAPTER 9. LATTICE CATEGORIES

Uniqueness Lemma. For every arrow term f there is a unique arrow term
f ′ in normal form such that Gf = Gf ′.

Proof. Let f be of type A ` B. It follows from the Normal-Form Lemma
and the functoriality of G that there is at least one arrow term f ′ in normal
form such that Gf = Gf ′. To show that f ′ is unique we proceed by
induction on the number n(B) of occurrences of ∧ in B.

If n(B) = 0, then we make an auxiliary induction on n(A). If n(A) = 0,
then f ′ can be only of the form 1p. If n > 0, then A must be of the form

A1 ∧ A2, and f ′ can be only of the form
∧
K1

A2
g or

∧
K2

A1
h. Since there are

no g and h such that G
∧
K1

A2
g = G

∧
K2

A1
h, the arrow term f ′ is uniquely

determined.
Suppose now n(B) > 0. Then B must be of the form B1 ∧ B2, and f ′

can be only of the form 〈f1, f2〉 for f1 : A ` B1 and f2 : A ` B2 arrow terms
in normal form. We have that

G
∧
K1

B2
f = G

∧
K1

B2
〈f1, f2〉 = Gf1,

and so, by the induction hypothesis, f1 is unique. Analogously, G
∧
K2

B1
f =

Gf2, and f2 is unique. So 〈f1, f2〉 is unique. a

(This Uniqueness Lemma is analogous, but not completely analogous, to
the homonymous lemma of §5.2: in the former lemma we do not presuppose
the Normal-Form Lemma, while in the formulation of the present one we
do. Since, however, we have the Normal-Form Lemma in both cases, the
difference is more in the style of exposition than in mathematical content.)

We can then prove the following (for references concerning this result,
see the references mentioned in the next section before Cartesian Coher-
ence).

Semilattice Coherence. The functor G from
∧
L to Rel is faithful.

Proof. We prove that the functor G from G
∧
L to Rel is faithful. This

yields Semilattice Coherence.
Suppose that for f1, f2 : A ` B arrow terms of C(G∧

L) we have Gf1 =
Gf2. By the Normal-Form Lemma, for i ∈ {1, 2}, there is an arrow term
f ′i in normal form such that fi = f ′i . Then from Gf ′1 = Gf1 = Gf2 = Gf ′2

§9.2. Coherence of cartesian categories 191

and the Uniqueness Lemma we conclude that f ′1 and f ′2 are the same arrow
term, and hence f1 = f2 in G

∧
L. a

§9.2. Coherence of cartesian categories

To obtain the natural logical category
∧
L>, we have that the logical system

C(∧L>) is in L∧,>, with the transformations α included in 1,
∧
b, ∧

c, ∧
w-

∧
k and

∧
δ -∧σ . The specific equations of E(

∧
L>) are obtained by taking the union of

those of E(
∧
L) and E(

∧
S>) plus

(
∧
k
∧
δ)

∧
k1

A,> =
∧
δ→A .

There are some redundancies in this axiomatization. The equation
(
∧
b
∧
δ
∧
σ) is derivable with the help of (

∧
b
∧
k). In E(

∧
L>) we can derive the

following:

(∧w
∧
δ) ∧

w> =
∧
δ←> .

Natural
∧
L>-categories are called cartesian categories. These are cate-

gories with all finite products, including the empty product. The objects
of a cartesian category that is a partial order make a semilattice with unit.

In C(∧L>) we have the definition

∧
κA =df

∧
k2

A,> ◦
∧
δ←A ,

and for
∧
L> we have the equations (∧κ nat) and

(∧κ1) ∧
κ> = 1>.

The equations (∧κ nat) and (∧κ1) amount to

(∧κ) ∧
κA = f, for f : A ` >,

which says that > is a terminal object in
∧
L> (see §2.2 for the notion of

terminal object).
A logical system synonymous with C(∧L>) is obtained by taking as prim-

itive ∧
κ instead of

∧
δ -∧σ . This is based on the following equations of

∧
L>:

192 CHAPTER 9. LATTICE CATEGORIES

∧
δ←A = 〈1A,

∧
κA〉,

∧
σ←A = 〈∧κA,1A〉.

Another alternative logical system synonymous with C(∧L>) is obtained
by taking as primitives

∧
δ -∧σ and ∧

κ instead of
∧
k1 and

∧
k2. This is based on

the following equations of
∧
L>:

∧
k1

A,B =
∧
δ→A ◦ (1A ∧ ∧

κB),
∧
k2

A,B = ∧
σ→B ◦ (∧κA ∧ 1B).

If the operation 〈 , 〉 is primitive together with
∧
k1 and

∧
k2, then we can

take ∧
κ as primitive, and assume besides the categorial equations, (∧β) and

(∧η) just (∧κ).
Let C(G∧

L>) be the syntactical system defined as C(G∧
L) save that L∧ is

replaced by L∧,>, and besides identity arrow terms we have the arrow terms
∧
κA: A ` > as primitive arrow terms. The equations of E(G

∧
L>) are those of

E(G
∧
L) plus (∧κ). The syntactical category G

∧
L> is C(G∧

L>)/E(G
∧
L>). It is

easy to ascertain that
∧
L> and G

∧
L> are isomorphic, and that hence C(∧L>)

and C(G∧
L>) are synonymous syntactical systems.

We can prove Composition Elimination for G
∧
L> by enlarging the proof

of the preceding section. The additional cases are where g is ∧
κA, which is

taken care of by (∧κ), and where f is ∧
κA. In the latter case, g is either 1>,

or ∧
κ>, or 〈g1, g2〉, which are cases already covered.
An arrow term of C(G∧

L>) is said to be in normal form when it is
composition-free and has no subterms of the forms 1A∧B ,

∧
Ki

A 〈f, g〉, 1>
and

∧
Ki

A
∧
κB . Then we can prove the Normal-Form Lemma of the preceding

section for G
∧
L>.

Proof of the Normal-Form Lemma for G
∧
L>. In G

∧
L> we have the

equations (
∧
K4) and (

∧
K5) of the preceding section, and also

1> = ∧
κ>,

∧
K1

B
∧
κA = ∧

κA∧B ,
∧
K2

A
∧
κB = ∧

κA∧B ,

§9.2. Coherence of cartesian categories 193

which are all instances of (∧κ) (the first of these equations is (∧κ1)).

For f a composition-free arrow term of C(G∧
L>), let n1 be the number

of occurrences of ∧ and > in the indices of subterms of f that are identity
arrow terms. Next, let n2 be the number of subterms of f of the form
〈f1, f2〉 or ∧

κC such that there is a subterm
∧
Ki

D f ′ of f with 〈f1, f2〉 or ∧
κC

a subterm of f ′. Let the grade of f be (n1, n2), and let these grades be
lexicographically ordered (see §7.7, before the Cut-Elimination Theorem).
Then every replacement of subterms of f justified by one of the equations
above reduces the grade of f , and so by induction we obtain that there is
an arrow term f ′ of C(G∧

L>) in normal form such that f = f ′ in G
∧
L>. It

remains only to appeal to Composition Elimination for G
∧
L> to obtain the

Normal-Form Lemma. a

As in the preceding section, we obtain the functor G from G
∧
L> to Rel,

with which we can prove the Uniqueness Lemma of the preceding section
for G

∧
L>.

Proof of the Uniqueness Lemma for G
∧
L>. We proceed by induction

n(B) with an auxiliary induction on n(A) in the basis, as in the proof of
the preceding section. If n(B) = n(A) = 0, then f ′ can be either of the
form 1p, or ∧

κp, or ∧
κ>, which exclude each other because of their types.

If n(B) = 0 and n(A) > 0, then f ′ can be either of the form
∧
K1

A2
g, or

∧
K2

A1
h or ∧

κA, which exclude each other because of their types or for reasons
mentioned in the proof of the preceding section. For that we use the fact,
easily shown by induction on the length of A, that ∧

κA is the only arrow
term in normal form of type A ` >, and the fact that Gf is a function
from GB to GA. For the rest of the proof we proceed as in the preceding
section. a

We can then infer as in the preceding section the following result, which
stems from [77] (see p. 129, where the result is announced), [106] (Theorem
2.2), [128] (Theorem 8.2.3, p. 207), [108] (Section 7) and [46].

Cartesian Coherence. The functor G from
∧
L> to Rel is faithful.

It is noteworthy that the functor G maps every arrow of
∧
L> to a function

194 CHAPTER 9. LATTICE CATEGORIES

from the target to the source. (We used that fact in the proof of the
Uniqueness Lemma of this section.) The same holds, of course, for

∧
L.

§9.3. Maximality of semilattice and cartesian categories

A natural logical category C/E is called maximal when every natural C/E-
category that satisfies an equation between arrow terms of C that is not in
E is a preorder. In other words, if E ′ is a proper extension of E , then every
natural C/E ′-category is a preorder. Maximality is an interesting property
when C/E itself is not a preorder, and we will show in this section that

∧
L

and
∧
L> are maximal in this sense—in the interesting way. (We take over

these results from [46].)
The maximality property above is analogous to the property of usual

formulations of the classical propositional calculus called Post complete-
ness. That this calculus is Post complete means that if we add to it any
new axiom-schema in the language of the calculus, then we can prove every
formula. An analogue of Böhm’s Theorem in the typed lambda calculus
implies, similarly, that the typed lambda calculus cannot be extended with-
out falling into triviality, i.e. without every equation (between terms of the
same type) becoming derivable (see [117], [45] and references therein; see
[4], Section 10.4, for Böhm’s Theorem in the untyped lambda calculus).

Let us now consider several examples of common algebraic structures
with analogous maximality properties. First, we have that semilattices are
maximal in the following sense.

Let a and b be terms made exclusively of variables and of a binary
operation ·, which we interpret as meet or join. That the equation a = b

holds in a semilattice S means that every instance of a = b obtained by
substituting names of elements of S for variables holds in S (cf. §2.3).
Suppose a = b does not hold in a free semilattice SF (so it is not the case
that a = b holds in every semilattice). Hence there must be an instance
of a = b obtained by substituting names of elements of SF for variables
such that this instance does not hold in SF . It is easy to conclude that
in a = b there must be at least two variables, and that SF must have at
least two free generators. Then every semilattice in which a = b holds is
trivial—namely, it has a single element.

§9.3. Maximality of semilattice and cartesian categories 195

Here is a short proof of that. If a = b does not hold in SF , then there
must be a variable x in one of a and b that is not in the other. Then from
a = b, by substituting y for every variable in a and b different from x, and
by applying the semilattice equations, we infer either x = y or x · y = y. If
we have x = y, we are done, and, if we have x · y = y, then we have also
y · x = x, and hence x = y.

Semilattices with unit, distributive lattices, distributive lattices with
top and bottom, and Boolean algebras are maximal in the same sense. The
equations a = b in question are equations between terms made exclusively
of variables and the operations of the kind of algebra we envisage: semi-
lattices with unit, distributive lattices, etc. That such an equation holds
in a particular structure means, as above, that every substitution instance
of it holds. However, the number of variables in a = b and the number of
generators of the free structure mentioned need not always be at least two.

If we deal with semilattices with unit 1, then a = b must have at least
one variable, and the free semilattice with unit must have at least one free
generator. We substitute 1 for every variable in a and b different from x in
order to obtain x = 1, and hence triviality. So semilattices with unit are
maximal in the same sense.

The same sort of maximality can be proven for distributive lattices,
whose operations are ∧ and ∨, which we call conjunction and disjunction,
respectively. Then every term made of ∧, ∨ and variables is equal to a
term in disjunctive normal form (i.e. a multiple disjunction of multiple con-
junctions of variables; see §10.2 for a precise definition), and to a term in
conjunctive normal form (i.e. a multiple conjunction of multiple disjunc-
tions of variables; see §10.2). These normal forms are not unique. If a = b,
in which we must have at least two variables, does not hold in a free dis-
tributive lattice DF with at least two free generators, then either a ≤ b

or b ≤ a does not hold in DF . Suppose a ≤ b does not hold in DF . Let
a′ be a disjunctive normal form of a, and let b′ be a conjunctive normal
form of b. So a′ ≤ b′ does not hold in DF . From that we infer that for a
disjunct a′′ of a′ and for a conjunct b′′ of b′ we do not have a′′ ≤ b′′ in DF .
This means that there is no variable in common in a′′ and b′′; otherwise,
the conjunction of variables a′′ would be lesser than or equal in DF to the
disjunction of variables b′′. If in a distributive lattice a = b holds, then

196 CHAPTER 9. LATTICE CATEGORIES

a′′ ≤ b′′ holds too, and hence, by substitution, we obtain x ≤ y. So x = y.
For distributive lattices with top > and bottom ⊥, we proceed analo-

gously via disjunctive and conjunctive normal form. Here a = b may be
even without variables, and the free structure may have even an empty set
of free generators. The additional cases to consider are when in a′′ ≤ b′′ we
have that a′′ is > and b′′ is ⊥. In any case, we obtain > ≤ ⊥, and hence
our structure is trivial.

The same sort of maximality can be proven for Boolean algebras, i.e.
complemented distributive lattices. Boolean algebras must have top and
bottom. In a disjunctive normal form now the disjuncts are conjunctions
of variables x or terms x̄, where ¯ is complementation, or the disjunctive
normal form is just > or ⊥; analogously for conjunctive normal forms. Then
we proceed as for distributive lattices with an equation a = b that may be
even without variables, until we reach that a′′ ≤ b′′, which does not hold
in a free Boolean algebra BF , whose set of free generators may be even
empty, holds in our Boolean algebra. If x is a conjunct of a′′, then in b′′ we
cannot have a disjunct x; but we may have a disjunct x̄. The same holds
for the conjuncts x̄ of a′′. It is excluded that both x and x̄ are conjuncts
of a′′, or disjuncts of b′′; otherwise, a′′ ≤ b′′ would hold in BF . Then for
every conjunct x in a′′ and every disjunct ȳ in b′′ we substitute > for x

and y, and for every other variable we substitute ⊥. In any case, we obtain
> ≤ ⊥, and hence our Boolean algebra is trivial. This is essentially the
proof of Post completeness for the classical propositional calculus, due to
Bernays and Hilbert (see [135], Section 2.4, and [66], Section I.13), from
which we can infer the ordinary completeness of this calculus with respect
to valuations in the two-element Boolean algebra—namely, with respect to
truth tables—and also completeness with respect to any nontrivial model.

As examples of common algebraic structures that are not maximal in
the sense above, we have semigroups, commutative semigroups, lattices,
and many others. What is maximal for semilattices and is not maximal
for lattices is the equational theory of the structures in question. The
equational theory of semilattices cannot be extended without falling into
triviality, while the equational theory of lattices can be extended with the
distributive law, for example.

The maximality of
∧
L as defined at the beginning of the section differs

§9.3. Maximality of semilattice and cartesian categories 197

from the maximality of semilattices, distributive lattices, etc., we have just
considered, because in

∧
L we have types, so that f = g is excluded if f and g

are of different types. Hence, the analogue of the trivial semilattice, which
was a one-element structure, is for categories, like

∧
L, a preorder.

The maximality of
∧
L is, of course, a quite separate result from the

maximality of semilattices we have shown above. None of these results
can be inferred from the other. After some strictification, any semilattice
category yields a semilattice category that is a partial order, and whose
objects will make a semilattice. The maximality of semilattices has to do
with these objects, while the maximality of

∧
L has to do with the arrows

between these objects. We will now proceed with the proof of the latter
maximality.

Maximality of
∧
L. The category

∧
L is maximal.

Proof. Suppose A and B are formulae of L∧ in which only p occurs as a
letter. Suppose f1, f2 : A ` B are arrow terms of C(∧L) such that Gf1 6= Gf2.
As we noted after Cartesian Coherence, at the end of the preceding section,
Gf1 and Gf2 may be conceived as functions from GB to GA. So there must
be an n ∈ GB such that Gf1(n) 6= Gf2(n). This means that we must have
GA ≥ 2 (i.e., there must be at least two occurrence of p in A), and we have,
of course, GB ≥ 1.

Then there is an arrow term hw : p ∧ p ` A of C(∧L) made of possi-
bly multiple occurrences of arrow terms in 1,

∧
b, ∧

c and ∧
w, together with

the operations ∧ and ◦ on arrow terms, such that Ghw(Gf1(n)) = 0 and
Ghw(Gf2(n)) = 1. There is also an arrow term hk : B ` p of C(∧L) that is
either 1p or a possibly iterated composition of arrow terms in

∧
k1 and

∧
k2

such that Ghk(0) = n. Then, for i ∈ {1, 2}, we have that hk ◦ fi ◦h
w is

of type p ∧ p ` p and G(hk ◦ fi ◦h
w) = G

∧
ki

p,p. Therefore, by Composition

Elimination for G
∧
L (see §9.1) and by the functoriality of G, we obtain that

hk ◦ fi ◦h
w =

∧
ki

p,p in
∧
L. (This follows from Semilattice Coherence too.) So

in E(
∧
L) extended with f1 = f2 we can derive the equation

(
∧
k
∧
k)

∧
k1

p,p =
∧
k2

p,p .

If this equation holds in a semilattice category A, then A is a preorder.

198 CHAPTER 9. LATTICE CATEGORIES

This is shown as follows. For f, g : a ` b in A we have

∧
k1

b,b
◦ 〈f, g〉 =

∧
k2

b,b
◦ 〈f, g〉,

and so f = g in A by the equation (∧β) of §9.1.
If for some arrow terms g1 and g2 of C(∧L) of the same type we have

that g1 = g2 is not in E(
∧
L), then by Semilattice Coherence (see §9.1) we

have Gg1 6= Gg2. If we take the substitution instances g′1 of g1 and g′2 of g2

obtained by replacing every letter by a single letter p, then we obtain again
Gg′1 6= Gg′2. If g1 = g2 holds in a semilattice category A, then g′1 = g′2 holds
too, and A is a preorder, as we have shown above. a

We have also the following.

Maximality of
∧
L>. The category

∧
L> is maximal.

To prove that we proceed as for
∧
L. The only modification is that in con-

structing hw we envisage also arrow terms in
∧
δ← and ∧

σ←.
Note that the maximality of

∧
L implies that in any semilattice category

A that is not a preorder we can falsify any equation between arrow terms of
C(∧L) that does not hold in

∧
L. This does not mean, however, that there must

be a faithful functor from
∧
L to A, which would falsify all such equations

“simultaneously”. The existence of such a functor is possible for particular
semilattice categories A, but it is another result, which does not follow from
and does not imply maximality. In the case of

∧
L and

∧
L>, the category Set of

sets with functions, with ∧ being cartesian product and > being a singleton,
is an A such that there is a faithful functor from

∧
L and

∧
L> to A (see [30]

and [117]).
Maximality holds also trivially for all logical categories K that are pre-

orders, because we cannot extend E(K) properly in such cases. The logical
categories that are not preorders that we have considered up to now are
symmetric, i.e. they have ∧

c in C(K). Before
∧
L and

∧
L>, however, the sym-

metric logical categories K from previous chapters that are coherent are not
maximal, in spite of coherence, for the following reason.

All the types of arrow terms of C(K) are balanced (in the sense of §3.3).
Let the balance weight of an equation f = g where f, g : A ` B are arrow
terms of C(K) be the letter length of A or B. Then it can be shown that

§9.4. Coherence of lattice categories 199

if E ′ is the extension of E(K) with an equation f = g that is not in E(K),
with a single letter occurring in A (and hence also in B), and the balance
weight of f = g is n, then all the equations E ′ that are not in E(K) must
have a balance weight greater than or equal to n.

The notions of maximality envisaged in this section were extreme (or
should we say “maximal”), in the sense that we envisaged collapsing only
into preorder. (For semilattices, distributive lattices, etc., this is also pre-
order for a one-object category.) We may, however, envisage relativizing
our notion of maximality by replacing preorder with a weaker property,
such that structures possessing it are trivial, but not so trivial (cf. [38],
Section 4.11). We will encounter maximality in such a relative sense in
§9.7.

As an example of relative maximality in a common algebraic structure
we can take symmetric groups. The axioms for the symmetric group Sn,
where n ≥ 2, with the generators si, for i ∈ {1, . . . , n−1}, were given in §5.1.
If to Sn for n ≥ 5 we add an equation a = 1 where a is built exclusively of
the generators si of Sn with composition, and a = 1 does not hold in Sn,
then we can derive si = sj . This does not mean that the resulting structure
will be a one-element structure, i.e. the trivial one-element group. It will
be such if a is an odd permutation, and if a is an even permutation, then
we will obtain a two-element structure, which is S2. This can be inferred
from facts about the normal subgroups of Sn. Simple groups are maximal
in the nonrelative sense, envisaged above for semilattices.

§9.4. Coherence of lattice categories

Let
∨
L be the natural logical category in L∨ isomorphic to the category

∧
Lop

(which is
∧
L with source and target functions interchanged; see §2.2). We

just replace ∧ by ∨, so that the primitive arrow terms of C(∨L) are included
in 1,

∨
b, ∨

c and ∨
w-

∨
k, while the equations of E(

∨
L) are duals of those of E(

∧
L)

(see the List of Equations and the List of Categories at the end of the
book). Natural

∨
L-categories would usually be called categories with finite

nonempty coproducts.
Let C(G∨

L) be the syntactical system with formulae of L∨ as objects,
with the primitive arrow terms being only identity arrow terms, and with

200 CHAPTER 9. LATTICE CATEGORIES

the following operations on arrow terms, dual to those of C(G∨
L), besides

the operation ◦ (cf. §9.1):

g1 : A1 ` C g2 : A2 ` C

[g1, g2] : A1 ∨A2 ` C

f1 : C ` A1

∨
K1

A2
f1 : C ` A1 ∨A2

f2 : C ` A2

∨
K2

A1
f2 : C ` A1 ∨A2

To obtain the equations of E(G
∨
L), we assume the categorial equations and

the following equations for i ∈ {1, 2}, obtained by dualizing the equations
(
∧
K1)-(

∧
K4) of §9.1:

(
∨
K1)

∨
Ki

A g ◦ f =
∨
Ki

A (g ◦ f),

(
∨
K2) [g1, g2] ◦

∨
Ki

A f = gi ◦ f,

(
∨
K3) g ◦ [f1, f2] = [g ◦ f1, g ◦ f2],

(
∨
K4) 1A∨B = [

∨
K1

B 1A,
∨
K2

A 1B],

with appropriate types assigned to f , g, fi and gi. The syntactical category
G
∨
L is C(G∨

L)/E(G
∨
L). It is clear that G

∨
L is isomorphic to

∨
L, and also to

∧
Lop and G

∧
Lop. For later use, we note that in C(∨L) we have the definitions

[g1, g2] =df
∨
wC ◦ (g1 ∨ g2),

∨
K1

A2
f1 =df

∨
k1

A1,A2
◦ f1,

∨
K2

A1
f2 =df

∨
k2

A1,A2
◦ f2.

(We introduce G(
∨
L) with so much detail for the sake of notation.)

To obtain the natural logical category L, we have that the logical system
C(L) is in L∧,∨, with the transformations α included in 1, b, c and w-k.
The specific equations of E(L) are obtained by taking the union of those of
E(

∧
L) and E(

∨
L).

We call natural L-categories lattice categories. Usually, they would be
called categories with finite nonempty products and finite nonempty co-
products. The objects of a lattice category that is a partial order make a
lattice.

§9.4. Coherence of lattice categories 201

The syntactical system C(GL) has as objects the formulae of L∧,∨,
as primitive arrow terms the identity arrow terms, and as operations on
arrow terms those of C(G∧

L) and C(G∨
L). For the equations of E(GL) we

assume the equations of E(G
∧
L) and E(G

∨
L). The syntactical category GL

is C(GL)/E(GL), and it is isomorphic to L. This isomorphism is based on
the isomorphism of

∧
L with G

∧
L, and the isomorphism of

∨
L with G

∨
L.

We can then prove Composition Elimination for GL by enlarging the
proof in §9.1.

Proof of Composition Elimination for GL. We have first the cases
where f or g are 1A, where f is

∧
Ki

A f ′ and where g is 〈g1, g2〉. For these
cases we proceed as before. We have next cases dual to the last two, where
g is

∨
Ki

A g′, which is taken care of by (
∨
K1), and where f is [f1, f2], which

is taken care of by (
∨
K3). In the remaining cases, if f is 〈f1, f2〉, then g is

either of a form already covered by cases above, or g is
∧
Ki

A g′, and we apply

(
∧
K2). Finally, if f is

∨
Ki

A f ′, then g is either of a form already covered by

cases above, or g is [g1, g2], and we apply (
∨
K2). a

Note that we do not use the equations (
∧
K4) and (

∨
K4) in this proof (which

is taken over from [48], Section 3). We can then prove the following.

Invertibility Lemma for ∧. Let f : A1 ∧ A2 ` B be an arrow term of
C(GL). If for every (x, y) ∈ Gf we have that x ∈ GA1, then f is equal in
GL to an arrow term of the form

∧
K1

A2
f ′, and if for every (x, y) ∈ Gf we

have that x−GA1 ∈ GA2, then f is equal in GL to an arrow term of the
form

∧
K2

A1
f ′.

Proof. By Composition Elimination for GL, we can assume that f is
composition-free, and then we proceed by induction on the length of the
target B (or on the length of f). If B is a letter, then f must be equal in
L to an arrow term of the form

∧
Ki

A3−i
f ′. The condition on Gf dictates

whether i here is 1 or 2.

If B is B1 ∧ B2 and f is not of the form
∧
Ki

A3−i
f ′, then f must be

of the form 〈f1, f2〉 (the condition on Gf precludes that f be an identity
arrow term). We apply the induction hypothesis to f1 : A1 ∧A2 ` B1 and
f2 : A1 ∧A2 ` B2, and use the equation (

∧
K5).

202 CHAPTER 9. LATTICE CATEGORIES

If B is B1 ∨ B2 and f is not of the form
∧
Ki

A3−i
f ′, then f must be

of the form
∨
Kj

B3−j
g, for j ∈ {1, 2}. We apply the induction hypothesis to

g : A1 ∧A2 ` Bi, and use the equation
∨
Kj

B3−j

∧
Ki

A3−i
g′ =

∧
Ki

A3−i

∨
Kj

B3−j
g′,

which follows from (cat 1), (
∧
K1), (

∨
K1) and (cat 2). a

We have a dual Invertibility Lemma for ∨. We can then prove the
following result of [48] (Section 4).

Lattice Coherence. The functor G from L to Rel is faithful.

Proof. Suppose f, g : A ` B are arrow terms of C(L) and Gf = Gg. We
proceed by induction on the sum of the lengths of A and B to show that
f = g in L. If A and B are both letters, then we conclude by Composition
Elimination for GL that an arrow term of C(L) of the type A ` B exists iff
A and B are the same letter p, and we must have f = g = 1p in L. Note
that we do not need here the assumption Gf = Gg.

If B is B1∧B2, then for i ∈ {1, 2} we have that
∧
ki

B1,B2
◦ f and

∧
ki

B1,B2
◦ g

are of type A ` Bi. We also have

G(
∧
ki

B1,B2
◦ f) = G

∧
ki

B1,B2
◦Gf = G

∧
ki

B1,B2
◦Gg = G(

∧
ki

B1,B2
◦ g),

whence, by the induction hypothesis, we have
∧
ki

B1,B2
◦ f =

∧
ki

B1,B2
◦ g in L.

Then we infer

〈∧k1
B1,B2

◦ f,
∧
k2

B1,B2
◦ f〉 = 〈∧k1

B1,B2
◦ g,

∧
k2

B1,B2
◦ g〉,

from which f = g follows with the help of the equation (∧η) of §9.1. We
proceed analogously if A is A1 ∨A2.

Suppose now that A is A1 ∧A2 or a letter, and B is B1 ∨B2 or a letter,
but A and B are not both letters. Then by Composition Elimination for
GL we have that f is equal in L to an arrow term of C(L) that is either
of the form f ′ ◦

∧
ki

A1,A2
or of the form

∨
ki

B1,B2
◦ f ′. Suppose f = f ′ ◦

∧
k1

A1,A2
.

Then for every (x, y) ∈ Gf we have x ∈ GA1.
By the Invertibility Lemma for ∧, which we have proved above, it follows

that g is equal in L to an arrow term of the form g′ ◦
∧
k1

A1,A2
. From Gf = Gg

§9.4. Coherence of lattice categories 203

we can infer easily that Gf ′ = Gg′, and so by the induction hypothesis
f ′ = g′, and hence f = g.

We reason analogously when f = f ′ ◦
∧
k2

A1,A2
. If f =

∨
ki

B1,B2
◦ f ′, then

again we reason analogously, applying the Invertibility Lemma for ∨. a

This proof of Lattice Coherence is simpler than a proof given in [48].
In the course of that previous proof one has also coherence results for two
auxiliary categories related to L. We need these categories for §9.6, but we
do not need these coherence results. For the sake of completeness, however,
we record them here too.

Let
∧
L∨ be the natural logical category in L∧,∨ obtained as

∧
L. The only

difference is that the arrow terms of C(∧L∨) are closed under the operation
∨ on arrow terms, besides being closed under the operations ∧ and ◦ ,
and for E(

∧
L∨) we have in addition to the equations assumed for E(

∧
L) the

bifunctorial equations for ∨. Let G
∧
L∨ be the syntactical category whose

objects are formulae of L∧,∨, which is obtained as G
∧
L save that in addition

to the operations on arrow terms of C(G∧
L) we have also the operation ∨

on arrow terms, and for E(G
∧
L∨) we assume the bifunctorial equations for

∨ in addition to what we had for E(G
∧
L). The categories

∧
L∨ and G

∧
L∨ are

isomorphic, and, hence, C(∧L∨) and C(G∧
L∨) are synonymous syntactical

systems.

The categories
∨
L∧ and G

∨
L∧ are isomorphic to

∧
Lop
∨ and G

∧
Lop
∨ , and to

each other. In them, the ∧ and ∨ of
∧
L∨ and G

∧
L∨ are interchanged, and

they are obtained by extending
∨
L and G

∨
L with the bifunctor ∧.

One can easily prove Composition Elimination for G
∧
L∨ (and hence

also for G
∨
L∧) by abbreviating the proof of Composition Elimination for L

above. For G
∧
L∨ we do not have the cases where f is [f1, f2] or

∨
Ki

A f ′, but
f can be f1 ∨ f2. Then, if g is not of a form already covered by the proof
in §9.1, it must be g1 ∨ g2, and we apply the bifunctorial equation (∨ 2).

A composition-free arrow term of C(G∧
L∨) may be reduced to a unique

normal form, which can then be used to demonstrate coherence for
∧
L∨, i.e.

the fact that the functor G from
∧
L∨ to Rel is faithful (see [48], Section 4).

With the help of Lattice Coherence we can easily verify that the follow-
ing equation holds in L:

204 CHAPTER 9. LATTICE CATEGORIES

(in-out) 〈[f, g], [h, j]〉 = [〈f, h〉, 〈g, j〉].

If in C(L) we define ck
A,B,C,D : (A ∧ B) ∨ (C ∧D) ` (A ∨ C) ∧ (B ∨D)

as follows:

ck
A,B,C,D =df 〈

∧
k1

A,B ∨ ∧
k1

C,D,
∧
k2

A,B ∨ ∧
k2

C,D〉,

then we can easily check that in L we have

ck
A,B,C,D = [

∨
k1

A,C ∧ ∨
k1

B,D,
∨
k2

A,C ∧ ∨
k2

B,D],

which gives an alternative definition of ck
A,B,C,D. One passes from one of

these two definitions to the other with the help of the equations (∧) of §9.1
and (∨) of the List of Equations, together with the equation (in-out):

ck
A,B,C,D = 〈[∨k1

A,C
◦
∧
k1

A,B ,
∨
k2

A,C
◦
∧
k1

C,D], [
∨
k1

B,D
◦
∧
k2

A,B ,
∨
k2

B,D
◦
∧
k2

C,D]〉
= [〈∨k1

A,C
◦
∧
k1

A,B ,
∨
k1

B,D
◦
∧
k2

A,B〉, 〈
∨
k2

A,C
◦
∧
k1

C,D,
∨
k2

B,D
◦
∧
k2

C,D〉].

We can also show by Lattice Coherence that in L we have

∧
wA∨B = ck

A,A,B,B
◦ (∧wA ∨ ∧

wB),
∨
wA∧B = (∨wA ∧ ∨

wB) ◦ ck
A,B,A,B ,

∧
cm

A,B,C,D = 〈∧k1
A,B ∧ ∧

k1
C,D,

∧
k2

A,B ∧ ∧
k2

C,D〉,
∨
cm

D,C,B,A = [
∨
k1

D,C ∨ ∨
k1

B,A,
∨
k2

D,C ∨ ∨
k2

B,A]

(see §9.1 for ∧
cm, and the List of Equations for ∨

cm). The last two equa-
tions should be compared with the definition of ck

A,B,C,D and its alternative
definition. The arrows ck

A,B,C,D will be prominent in Chapter 11 (see also
§13.2).

Arrows of the type of ck
A,B,C,D play in [3] an important role in the

understanding of 2-fold loop spaces. In that paper, one finds a coherence
result in our sense for bimonoidal categories where > = ⊥ to which ck

is added with appropriate specific equations. As a matter of fact, this
coherence result, for which a long proof is presented, covers a hierarchy of ck

principles involving the binary connectives ξ i and ξ j where 1 ≤ i < j ≤ n,

§9.5. Maximality of lattice categories 205

which are needed for n-fold loop spaces. The role of arrows of the type
of ck

A,B,C,D in understanding braiding is considered in [72] (Section 5). In
that context, arrows of the type of ck

A,B,C,D may become arrows of the type

of
ξ

cm
A,B,C,D (cf. [3], Remarks 1.5-6).

§9.5. Maximality of lattice categories

In this section we prove that L is maximal in the sense of §9.3. (This result
is taken over from [48], Section 5.)

Suppose A and B are formulae of L∧,∨ in which only p occurs as a letter.
If for some arrow terms f1, f2 : A ` B of C(L) we have Gf1 6= Gf2, then for
some x ∈ GA and some y ∈ GB we have (x, y) ∈ Gf1 and (x, y) 6∈ Gf2, or
vice versa. Suppose (x, y) ∈ Gf1 and (x, y) 6∈ Gf2.

For every subformula C of A and every formula D let AC
D be the formula

obtained from A by replacing the particular occurrence of the formula C in
A by D. It can be shown that for every subformula A1 ∨ A2 of A we have
a
∨
kj-term h : AA1∨A2

Aj
` A of C(L), whose head is

∨
kj

A1,A2
, such that there

is an x′ ∈ GAA1∨A2
Aj

for which (x′, x) ∈ Gh. Hence, for such an h, we have
(x′, y) ∈ G(f1 ◦h) and (x′, y) 6∈ G(f2 ◦h).

We compose fi repeatedly with such
∨
kj-terms until we obtain the arrow

terms f ′i : p ∧ . . . ∧ p ` B of C(L) such that parentheses are somehow
associated in p∧ . . .∧p and for some z ∈ G(p∧ . . .∧p) we have (z, y) ∈ Gf ′1
and (z, y) 6∈ Gf ′2. The formula p ∧ . . . ∧ p may also be only p. We may
further compose f ′i with

∧
b-terms and ∧

c-terms in order to obtain the arrow
terms f ′′i of type p∧A′ ` B or p ` B such that A′ is of the form p∧ . . .∧ p

with parentheses somehow associated, and (0, y) ∈ Gf ′′1 but (0, y) 6∈ Gf ′′2 .
By working dually on B with

∧
kj-terms, and by composing perhaps fur-

ther with
∨
b-terms and ∨

c-terms, we obtain the arrow terms f ′′′i of C(L) of
type p∧A′ ` p∨B′, for A′ of the form p∧. . .∧p and B′ of the form p∨. . .∨p,
or of type p ∧ A′ ` p, or of type p ` p ∨ B′, such that (0, 0) ∈ Gf ′′′1 and
(0, 0) 6∈ Gf ′′′2 . (We cannot obtain that f ′′′1 and f ′′′2 are of type p ` p, since,
otherwise, by Composition Elimination for GL, f ′′′2 would not exist.)

There is an arrow term h∧ : p ` p ∧ . . . ∧ p of C(L) defined in terms of
∧
w-terms such that for every x ∈ G(p ∧ . . . ∧ p) we have (0, x) ∈ Gh∧. We
define analogously with the help of ∨

w-terms an arrow term h∨ : p∨. . .∨p ` p

206 CHAPTER 9. LATTICE CATEGORIES

of C(L) such that for every x ∈ G(p ∨ . . . ∨ p) we have (x, 0) ∈ Gh∨. The
arrow terms h∧ and h∨ may be 1p : p ` p.

If f ′′′i is of type p ∧A′ ` p ∨B′, let f†i : p ∧ p ` p ∨ p be defined by

f†i =df (1p ∨ h∨) ◦ f ′′′i
◦ (1p ∨ h∧).

By Composition Elimination for GL, we have that Gf†i must be a singleton.
If (1, 0) or (1, 1) belongs to Gf†2 , then for f∗i : p∧p ` p defined as ∨

wp ◦ f†i we
have (0, 0) ∈ Gf∗1 and (0, 0) 6∈ Gf∗2 . If (0, 1) or (1, 1) belongs to Gf†2 , then
for f∗i : p ` p ∨ p defined as f†i ◦ ∧

wp we have (0, 0) ∈ Gf∗1 and (0, 0) 6∈ Gf∗2 .
If f ′′′i is of type p∧A′ ` p, then for f∗i : p∧p ` p defined as f ′′′i

◦ (1p∨h∧)
we have (0, 0) ∈ Gf∗1 and (0, 0) 6∈ Gf∗2 .

If f ′′′i is of type p ` p∨B′, then for f∗i : p ` p∨p defined as (1p∨h∨) ◦ f ′′′i

we have (0, 0) ∈ Gf∗1 and (0, 0) 6∈ Gf∗2 . In all that we have by Composition
Elimination for GL that Gf∗i must be a singleton.

In cases where f∗i is of type p ∧ p ` p, by Composition Elimination for
GL, by the conditions on Gf∗1 and Gf∗2 , and by the functoriality of G, we
obtain in L the equation f∗i =

∧
ki

p,p. (This follows from Lattice Coherence

too.) So in E(L) extended with f1 = f2 we can derive
∧
k1

p,p =
∧
k2

p,p; namely,

the equation (
∧
k
∧
k), mentioned in the proof of Maximality of

∧
L in §9.3.

In cases where f∗i is of type p ` p ∨ p, we conclude analogously that we

have in L the equation f∗i =
∨
ki

p,p, and so in E(L) extended with f1 = f2 we
can derive

(
∨
k
∨
k)

∨
k1

p,p =
∨
k2

p,p .

If either of (
∧
k
∧
k) and (

∨
k
∨
k) holds in a lattice category A, then A is a

preorder. We use for that the equation (∧β) of §9.1, or its dual with ∨ (see
the proof of Maximality of

∧
L in §9.3).

It remains to remark that if for some arrow terms g1 and g2 of C(L)
of the same type we have that g1 = g2 is not in E(L), then by Lattice
Coherence we have Gg1 6= Gg2. If we take the substitution instances g′1
of g1 and g′2 of g2 obtained by replacing every letter by a single letter p,
then we obtain again Gg′1 6= Gg′2. If g1 = g2 holds in a lattice category
A, then g′1 = g′2 holds too, and A is a preorder, as we have shown above.
This concludes the proof of maximality for L. (In the original presentation

§9.6. Coherence for dicartesian and sesquicartesian categories 207

of this proof in [48], Section 5, there are some slight inaccuracies in the
definition of f∗i .)

§9.6. Coherence for dicartesian and sesquicartesian cat-
egories

Let
∨
L⊥ be the natural logical category in L∨,⊥ isomorphic to the category

∧
Lop
> . We just replace ∧ and > by ∨ and ⊥ respectively, so that the primitive

arrow terms of C(∨L⊥) are included in 1,
∨
b, ∨

c, ∨
w-

∨
k and

∨
δ -∨σ , while the

equations of E(
∨
L⊥) are duals of those of E(

∧
L>) (see the List of Equations

and the List of Categories; cf. the beginning of §9.4). We have in C(∨L⊥)
the definition

∨
κA =df

∨
δ→A ◦

∨
k2

A,⊥,

and in
∨
L⊥ the equations (∨κ nat) and

(∨κ1) ∨
κ⊥ = 1⊥.

The equations (∨κ nat) and (∨κ1) amount to

(∨κ) ∨
κA = f, for f : ⊥ ` A,

which says that ⊥ is an initial object in
∨
L⊥ (see §2.2 for the notion of initial

object).
Natural

∨
L⊥-categories would usually be called categories with finite co-

products, including the empty coproduct. Another possible name would be
cocartesian categories.

To obtain the natural logical category L>,⊥, we have that the logical
system C(L>,⊥) is in L∧,∨,>,⊥, with the transformations α included in 1, b,
c, w-k and δ-σ. The specific equations of E(L>,⊥) are obtained by taking

the union of those of E(L), E(
∧
L>) and E(

∨
L⊥) plus the equations (∧c ⊥) and

(∨c >) of §6.4.
We could replace the last two equations in this definition by their in-

stances

(
∧⊥) ∧

c⊥,⊥ = 1⊥∧⊥,

(
∨>) ∨

c>,> = 1>∨>.

208 CHAPTER 9. LATTICE CATEGORIES

Another possibility is to have instead the following two equations:

(
∧
k⊥)

∧
k1
⊥,⊥ =

∧
k2
⊥,⊥,

(
∨
k>)

∨
k1
>,> =

∨
k2
>,> .

It is easy to see that from the last two equations we obtain that the
pairs

∧
k1
⊥,⊥ =

∧
k2
⊥,⊥: ⊥ ∧⊥ ` ⊥ and ∨

κ⊥∧⊥ = ∧
w⊥: ⊥ ` ⊥ ∧ ⊥,

∨
k1
>,> =

∨
k2
>,>: > ` > ∨ > and ∧

κ>∨> = ∨
w>: > ∨> ` >

are inverses of each other. This shows that every letterless formula of
L∧,∨,>,⊥ is isomorphic in L>,⊥ either to > or to ⊥. This is why above we

could replace (∧c ⊥) and (∨c >) by their instances (
∧⊥) and (

∨>).
We call natural L>,⊥-categories dicartesian categories. The objects of

a dicartesian category that is a partial order make a lattice with top and
bottom. By omitting the equations (∧c ⊥) and (∨c >) in the definition of
L>,⊥ we would obtain the natural logical category L′>,⊥, and natural L′>,⊥-
categories are usually called bicartesian categories (cf. [90], Section I.8).
Dicartesian categories were considered under the name coherent bicartesian
categories in the printed version of [47]. We previously believed wrongly
that we have proved coherence for dicartesian, alias coherent bicartesian
categories. Lemma 5.1 of the printed version of [47] is however not correct.
We prove here only a restricted coherence result for dicartesian categories,
which is sufficient for our needs later on. A study of equality of arrows in
bicartesian categories may be found in [24].

Suppose that in the definition of L>,⊥ we omit one of > and ⊥ from
L∧,∨,>,⊥, so that we have L∧,∨,⊥ or L∧,∨,>. This means that in C(L>,⊥)
and E(L>,⊥) we omit all the arrow terms and equations involving the omit-
ted nullary connective. When we omit >, we obtain the natural logical
category L⊥, and when we omit ⊥, we obtain the natural logical category
L>. It is clear that L⊥ is isomorphic to Lop

> . In the printed version of [47]
natural L⊥-categories were called coherent sesquicartesian categories. We
call them here just sesquicartesian categories.

The category Set, whose objects are sets and whose arrows are functions,
with cartesian product × as ∧, disjoint union + as ∨, a singleton set {∗} as

§9.6. Coherence for dicartesian and sesquicartesian categories 209

> and the empty set ∅ as ⊥, is a bicartesian category, but not a dicartesian
category. It is, however, a sesquicartesian category in the L⊥ sense, but
not in the L> sense. This is because in Set we have that ∅ × ∅ is equal to
∅, but {∗}+ {∗} is not isomorphic to {∗}.

We have an unrestricted coherence result for sesquicartesian categories,
whose proof is taken over from the revised version of [47]. (This proof differs
from the proof in the printed version of [47], which relied also on Lemma
5.1, and is not correct.)

Sesquicartesian Coherence. The functor G from L⊥ to Rel is faithful.

The proof of this result is obtained by enlarging the proof of Lattice Coher-
ence in §9.4, and we will give here just a summary of it. (A detailed proof
may be found in the revised version of [47].)

The syntactical category GL>,⊥ is obtained as GL save that we have in
addition the primitive arrow terms ∧κA: A ` > and ∨

κA: ⊥ ` A, the equations
(∧κ) and (∨κ), and also the equations

(
∧
K⊥)

∧
K1
⊥1⊥ =

∧
K2
⊥1⊥,

(
∨
K>)

∨
K1
>1> =

∨
K2
>1>.

We can prove Composition Elimination for GL>,⊥ by enlarging the proofs

in §§9.1-2. Note that we do not need the equations (
∧
K⊥) and (

∨
K>) for

this proof, so that we have also Composition Elimination for GL′>,⊥ based
on L′>,⊥.

Let the category
∧
L∨,>,⊥ be defined like the category

∧
L∨ of §9.4 save

that it involves also ∧
κ and the equations (∧κ) and (

∧
k⊥), and let the category

∨
L∧,>,⊥ be defined like the category

∨
L∧ of §9.4 save that it involves also ∨

κ

and the equations (∨κ) and (
∨
k>). Composition Elimination is provable for

syntactical categories isomorphic to
∧
L∨,>,⊥ and

∨
L∧,>,⊥.

An arrow term of C(L>,⊥) is in standard form when it is of the form

g ◦ f for f an arrow term C(∧L∨,>,⊥) and g an arrow term of C(∨L∧,>,⊥). We
can then prove the following.

Standard-Form Lemma. Every arrow term of C(L>,⊥) is equal in L>,⊥
to an arrow term in standard form.

210 CHAPTER 9. LATTICE CATEGORIES

Proof. By categorial and bifunctorial equations, we may assume that we
deal with a factorized arrow term f none of whose factors is a complex
identity (see §§2.6-7 for these notions). We may assume moreover that b

and c do not occur in f . For that we use the equations (
∧
b→), (

∧
b←) and (∧c)

of §9.1, and the dual equations with ∨. We may also assume that every
factor of f is either an arrow term of C(∧L∨,>,⊥), and then we call it a

∧-factor, or an arrow term of C(∨L∧,>,⊥), when we call it a ∨-factor.
Suppose f : B ` C is a ∧-factor and g : A ` B is a ∨-factor. We show

by induction on the length of f ◦ g that in L>,⊥

(∗) f ◦ g = g′ ◦ f ′ or f ◦ g = f ′ or f ◦ g = g′

for f ′ a ∧-factor and g′ a ∨-factor.
We will consider various cases for f . In all such cases, if g is ∨

wB , then
we use (∨w nat). If f is ∧

wB , then we use (∧w nat). If f is
∧
ki

D,E and g is

g1 ∧ g2, then we use (
∧
ki nat). If f is f1 ∧ f2 and g is g1 ∧ g2, then we use

bifunctorial and categorial equations and the induction hypothesis.
If f is f1 ∨ f2, then we have the following cases. If g is

∨
ki

B1,B2
, then

we use (
∨
ki nat). If g is g1 ∨ g2, then we use bifunctorial and categorial

equations and the induction hypothesis.
Finally, cases where f is ∧

κB or g is ∨
κB are taken care of by the equations

(∧κ) and (∨κ). This proves (∗), and it is clear that (∗) is sufficient to prove
the lemma. a

We can also prove Composition Elimination and an analogue of the
Standard-Form Lemma for L⊥. Next we have the following lemmata for
L>,⊥ and L⊥.

Lemma 1. If for f, g : A ` B either A or B is isomorphic to > or ⊥, then
f = g.

Proof. If A is isomorphic to ⊥ or B is isomorphic to >, then the matter
is trivial. Suppose i : B ` ⊥ is an isomorphism. Then from

∧
k1
⊥,⊥ ◦ 〈i ◦ f, i ◦ g〉 =

∧
k2
⊥,⊥ ◦ 〈i ◦ f, i ◦ g〉

we obtain i ◦ f = i ◦ g, which yields f = g. We proceed analogously if A is
isomorphic to >. a

§9.6. Coherence for dicartesian and sesquicartesian categories 211

Lemma 2. If for f, g : A ` B we have Gf = Gg = ∅, then f = g.

Proof. This proof depends on the Standard-Form Lemma above. We
write down f in the standard form f2 ◦ f1 for f1 : A ` C and g in the
standard form g2 ◦ g1 for g1 : A ` D. Since

∨
ki and ∨

κ do not occur in f1,
for every z ∈ GC we have an x ∈ GA such that (x, z) ∈ Gf1, and since
∧
ki and ∧

κ do not occur in f2, for every z ∈ GC we have a y ∈ GB such
that (z, y) ∈ Gf2. So if C were not letterless, Gf would not be empty. We
conclude analogously that D, as well as C, is a letterless formula.

If both C and D are isomorphic to > or ⊥, then we have an isomorphism
i : C ` D, and f = f2 ◦ i

−1 ◦ i ◦ f1. By Lemma 1, we have i ◦ f1 = g1 and
f2 ◦ i

−1 = g2, from which f = g follows. If i : C ` ⊥ and j : > ` D are
isomorphisms, then by Lemma 1 we have

f2 ◦ f1 = g2 ◦ j ◦
∧
κ⊥ ◦ i ◦ f1 = g2 ◦ g1,

and so f = g. (Note that ∧
κ⊥ = ∨

κ>.) a

To prove now Sesquicartesian Coherence we have Lemma 2 for the case
when Gf = Gg = ∅, and when Gf = Gg 6= ∅, we proceed as in the proof
of Lattice Coherence in §9.4, appealing if need there is to Lemma 2, until
we reach the case when A is A1 ∧ A2 or a letter, and B is B1 ∨ B2 or a
letter, but A and B are not both letters. In that case, by Composition
Elimination, the arrow term f is equal in L⊥ either to an arrow term of
the form f ′ ◦

∧
ki

A1,A2
, or to an arrow term of the form

∨
ki

B1,B2
◦ f ′. Suppose

f = f ′ ◦
∧
k1

A1,A2
. Then for every (x, y) ∈ Gf we have x ∈ GA1. (We reason

analogously when f = f ′ ◦
∧
k2

A1,A2
.)

By Composition Elimination too, g is equal in L⊥ either to an arrow
term of the form g′ ◦

∧
ki

A1,A2
, or to an arrow term of the form

∨
ki

B1,B2
◦ g′. In

the first case we must have g = g′ ◦
∧
k1

A1,A2
, because Gg = G(f ′ ◦

∧
k1

A1,A2
) 6= ∅,

and then we apply the induction hypothesis to derive f ′ = g′ from Gf ′ = Gg′.
Hence f = g in L⊥.

Suppose g =
∨
k1

B1,B2
◦ g′. (We reason analogously when g =

∨
k2

B1,B2
◦ g′.)

Let f ′′ : A1 ` B1 ∨B′′
2 be the substitution instance of f ′ : A1 ` B1 ∨B2 ob-

tained by replacing every occurrence of propositional letter in B2 by ⊥.
There is an isomorphism i : B′′

2 ` ⊥, and f ′′ exists because in Gf , which is

212 CHAPTER 9. LATTICE CATEGORIES

equal to G(
∨
k1

B1,B2
◦ g′), there is no pair (x, y) with y ≥ GB1. So we have

an arrow f ′′′ : A1 ` B1, which we define as
∨
δ→B1

◦ (1B1 ∨ i) ◦ f ′′. It is easy

to verify that G(
∨
k1

B1,B2
◦ f ′′′) = Gf ′, and that G(f ′′′ ◦

∧
k1

A1,A2
) = Gg′. By

the induction hypothesis, we obtain
∨
k1

B1,B2
◦ f ′′′ = f ′ and f ′′′ ◦

∧
k1

A1,A2
= g′,

from which we derive f = g. We reason analogously when f =
∨
ki

B1,B2
◦ f ′.

From Sesquicartesian Coherence we infer coherence for L>, which is
isomorphic to Lop

⊥ .
For dicartesian categories we prove here only a simple restricted coher-

ence result sufficient for our needs later on in the book. A more general,
but still restricted, coherence result with respect to Rel, falling short of full
coherence, may be found in the revised version of [47] (Section 7, Restricted
Dicartesian Coherence II).

We define inductively formulae of L∧,∨,>,⊥ in disjunctive normal form
(dnf): every formula of L∧,>,⊥ is in dnf, and if A and B are both in dnf,
then A ∨B is in dnf. We define dually formulae of L∧,∨,>,⊥ in conjunctive
normal form (cnf): every formula of L∨,>,⊥ is in cnf, and if A and B are
both in cnf, then A ∧B is in cnf.

Restricted Dicartesian Coherence. Let f, g : A ` B be arrow terms
of C(L>,⊥) such that A is in dnf and B in cnf. If Gf = Gg, then f = g in
L>,⊥.

Proof. If Gf = Gg = ∅, then we apply Lemma 2. If Gf = Gg 6= ∅, then
we proceed as in the proof of Lattice Coherence in §9.4, by induction on the
sum of the lengths of A and B, appealing if need there is to Lemma 2, until
we reach the case when A is A1∧A2 or a letter, and B is B1∨B2 or a letter,
but A and B are not both letters. In that case there is no occurrence of ∨
in A and no occurrence of ∧ in B. We then rely on the composition-free
form of f and g in GL>,⊥ and on the equation

∧
Ki

C

∨
Kj

D h =
∨
Kj

D

∧
Ki

C h. a

Note that if K is one of the categories
∧
A,

∧
A>,

∧
S and

∧
S>, then K is

isomorphic to Kop, while if K is one of the categories
∧
L and

∧
L>, then

K is not isomorphic to Kop. The categories
∧
A,

∧
A>,

∧
S and

∧
S> besides

being isomorphic respectively to
∨
Aop,

∨
Aop
⊥ ,

∨
Sop and

∨
Sop
⊥ , are isomorphic

respectively to
∨
A,

∨
A⊥,

∨
S and

∨
S⊥ too, while

∧
L and

∧
L> are isomorphic

§9.7. Relative maximality of dicartesian categories 213

respectively only to
∨
Lop and

∨
Lop
⊥ , and not to

∨
L and

∨
L⊥. So the symmetry

between ∧ and ∨ is deeper in A, A>,⊥, S and S>,⊥ than in L and L>,⊥.

§9.7. Relative maximality of dicartesian categories

The category L>,⊥ is not maximal in the sense in which
∧
L,

∧
L> and L are

maximal (see §9.3 and §9.5). This is shown with the following counterex-
ample.

Let Set∗ be the category whose objects are sets with a distinguished
element ∗, and whose arrows are ∗-preserving functions f between these
sets; namely, f(∗) = ∗. This category is isomorphic to the category of sets
with partial functions. The following definitions serve to show that Set∗ is
a category of the C(L>,⊥) kind:

I = {∗}, a′ = {(x, ∗) | x ∈ a− I}, b′′ = {(∗, y) | y ∈ b− I},
a⊗ b = ((a− I)× (b− I)) ∪ I,
a 2× b = (a⊗ b) ∪ a′ ∪ b′′,
a 2+ b = a′ ∪ b′′ ∪ I.

Note that a 2× b is isomorphic in Set to the cartesian product a × b; the
element ∗ of a 2× b corresponds to the element (∗, ∗) of a× b.

The functions
∧
ki

a1,a2
: a1 2× a2 → ai, for i ∈ {1, 2}, are defined by

∧
ki

a1,a2
(x1, x2) = xi,

∧
ki

a1,a2
(∗) = ∗;

for fi : c → ai, the function 〈f1, f2〉 : c → a1 2× a2 is defined by

〈f1, f2〉(z) =
{

(f1(z), f2(z)) if f1(z) 6= ∗ or f2(z) 6= ∗
∗ if f1(z) = f2(z) = ∗;

and the function ∧
κa: a → I is defined by ∧

κa (x) = ∗. Having in mind
the isomorphism between a 2× b and a × b mentioned above, the functions
∧
ki

a1,a2
: a1 2× a2 → ai correspond to the projection functions, while 〈 , 〉

corresponds to the usual pairing operation on functions.
The functions

∨
ki

a1,a2
: ai → a1 2+ a2 are defined by

∨
k1

a1,a2
(x) = (x, ∗), ∨

k2
a1,a2

(x) = (∗, x), for x 6= ∗,
∨
ki

a1,a2
(∗) = ∗;

214 CHAPTER 9. LATTICE CATEGORIES

for gi : ai → c, the function [g1, g2] : a1 2+ a2 → c is defined by

[g1, g2](x1, x2) = gi(xi), for xi 6= ∗,
[g1, g2](∗) = ∗;

finally, the function ∨
κa: I → a is defined by ∨

κa (∗) = ∗.
If we take that ∧ is 2× and ∨ is 2+, then it can be checked in a straight-

forward manner that Set∗ and Set∗ without I are lattice categories, and if
in Set∗ we take further that both > and ⊥ are I, then Set∗ is a dicartesian
category.

Consider now the category Set∅∗, which is obtained by adding to Set∗
the empty set ∅ as a new object, and the empty functions ∅a : ∅ → a as new
arrows. The identity arrow 1∅ is ∅∅. For Set∅∗, we enlarge the definitions
above by

∅ 2× a = a 2× ∅ = ∅,
∅ 2+ a = a 2+ ∅ = a,
∧
ki

a1,a2
= ∅ai , for a1 = ∅ or a2 = ∅,

〈∅a1 , ∅a2〉 = ∅a12×a2 ,
∧
κ∅ = ∅I,

∨
ki

a1,a2
= ∅a12+a2 , for ai = ∅,

[f1, ∅c] = f1, [∅c, f2] = f2,

and define now the function ∨
κa: ∅ → a by ∨

κa = ∅a. Then it can be checked
that Set∅∗ where ∧ is 2× and ∨ is 2+ as before, while > is I and ⊥ is ∅, is
a dicartesian category too.

In L>,⊥ the equation
∧
k1

p,⊥= ∨
κp ◦

∧
k2

p,⊥ does not hold, because G
∧
k1

p,⊥ 6= ∅
and G(∨κp ◦

∧
k2

p,⊥) = ∅, but in Set∅∗ this equation holds, because both sides
are equal to ∅∅. Since Set∅∗ is not a preorder, we can conclude that L>,⊥ is
not maximal.

Although this maximality fails, the category L>,⊥ may be shown maxi-
mal in a relative sense (cf. the end of §9.3). This relative maximality result,
which we are going to demonstrate now, says that every dicartesian cate-
gory that satisfies an equation f = g between arrow terms of C(L>,⊥) such
that Gf 6= Gg (which implies that f = g is not in E(L>,⊥)) satisfies also
some particular equations. These equations do not give preorder in general,

§9.7. Relative maximality of dicartesian categories 215

but a kind of “contextual” preorder. Moreover, when E(L>,⊥) is extended
with some of these equations we obtain a maximal natural logical category.

If for some arrow terms f1, f2 : A ` B of C(L>,⊥) we have Gf1 6= Gf2,
then for some x ∈ GA and some y ∈ GB we have (x, y) ∈ Gf1 and (x, y) 6∈
Gf2, or vice versa. Suppose (x, y) ∈ Gf1 and (x, y) 6∈ Gf2. Suppose the
(x+1)-th occurrence of letter in A, counting from the left, is an occurrence
of p. So the (y+1)-th occurrence of letter in B must be an occurrence of p.

Let A′ be the formula obtained from the formula A by replacing the
(x+1)-th occurrence of letter in A by p ∧ ⊥, and every other occurrence
of letter or > by ⊥. Dually, let B′ be the formula obtained from B by
replacing the (y+1)-th occurrence of letter in B by p ∨>, and every other
occurrence of letter or ⊥ by >. Then it can be shown that there is an
arrow term hA : A′ ` A of C(L>,⊥) such that GhA = {(0, x)}, and an
arrow term hB : B ` B′ of C(L>,⊥) such that GhB = {(y, 0)}. We build

hA with
∧
k1

p,⊥: p ∧ ⊥ ` p and instances of ∨
κC : ⊥ ` C, with the help of

the operations ∧ and ∨ on arrow terms. Analogously, hB is built with
∨
k1

p,>: p ` p ∨ > and instances of ∧
κC : C ` >. It can also be shown that

there are arrow terms jA : p ∧ ⊥ ` A′ and jB : B′ ` p ∨ > of C(L>,⊥) such
that GjA = GjB = {(0, 0)}. These arrow terms stand for isomorphisms of
L>,⊥.

Then it is clear that for f ′i being

jB ◦hB ◦ fi ◦h
A ◦ jA : p ∧ ⊥ ` p ∨ >,

with i ∈ {1, 2}, we have Gf ′1 = {(0, 0)}, while Gf ′2 = ∅. Hence, by Compo-
sition Elimination for GL>,⊥ and by the functoriality of G, we obtain in
L>,⊥ the equations

f ′1 =
∨
k1

p,> ◦
∧
k1

p,⊥,

f ′2 = ∨
κp∨> ◦

∧
k2

p,⊥ =
∨
k2

p,> ◦ ∧κp∧⊥ .

(This follows from Restricted Dicartesian Coherence too.) If we write 0⊥,>
for ∧

κ⊥, which is equal to ∨
κ> in L>,⊥, then in L>,⊥ we have

f ′2 =
∨
k2

p,> ◦0⊥,> ◦
∧
k2

p,⊥ .

So in E(L>,⊥) extended with f1 = f2 we can derive

216 CHAPTER 9. LATTICE CATEGORIES

(
∧
k
∨
k)

∨
k1

p,> ◦
∧
k1

p,⊥ =
∨
k2

p,> ◦0⊥,> ◦
∧
k2

p,⊥ .

The equation

(
∧
k
∨
κ)

∧
k1

p,⊥ = ∨
κp ◦

∧
k2

p,⊥,

which holds in Set∅∗, and which we have used above for showing the non-
maximality of L>,⊥, clearly yields (

∧
k
∨
k), which hence holds in Set∅∗, and

which hence we could have also used for showing this nonmaximality.
If we refine the procedure above by building A′ and B′ out of A and B

more carefully, then in some cases we could derive (
∧
k
∨
κ) or its dual

(
∨
k
∧
κ)

∨
k1

p,> =
∨
k2

p,> ◦ ∧κp

instead of (
∧
k
∨
k). We do not replace the x+1-th p by p ∧ ⊥ in building A′,

and we can proceed more selectively with other occurrences of letters and
> in A in order to obtain an A′ isomorphic to p if possible. We can proceed
analogously when we build B′ out of B to obtain a B′ isomorphic to p if
possible.

Note that we have the following:

∨
κp∧⊥ ◦

∧
k2

p,⊥ = 〈∨κp,1⊥〉 ◦
∧
k2

p,⊥
= 〈∧k1

p,⊥,
∧
k2

p,⊥〉, with (
∧
k
∨
κ),

= 1p∧⊥.

In the other direction, it is clear that the equation derived yields (
∧
k
∨
κ). So

with (
∧
k
∨
κ) we have that C∧⊥ and ⊥ are isomorphic, and, analogously, with

(
∨
k
∧
κ) we have that C ∨ > and > are isomorphic. It can be shown that the

natural logical category defined as L>,⊥ save that we assume in addition

both (
∧
k
∨
κ) and (

∨
k
∧
κ) is maximal. (This is achieved by eliminating letterless

subformulae from C and D in g1, g2 : C ` D such that Gg1 6= Gg2, and
falling upon the argument used for the maximality of L in §9.5.)

If f : a ` b is any arrow of a dicartesian category A and (
∧
k
∨
k) holds in

A, then we have in A

§9.7. Relative maximality of dicartesian categories 217

∨
k1

b,> ◦ f ◦
∧
k1

a,⊥ =
∨
k1

b,> ◦
∧
k1

b,⊥ ◦ (f ∧ 1⊥)

=
∨
k2

b,> ◦0⊥,> ◦
∧
k2

a,⊥,

and hence for f, g : a ` b we have in A

(
∧
k
∨
k fg)

∨
k1

b,> ◦ f ◦
∧
k1

a,⊥ =
∨
k1

b,> ◦ g ◦
∧
k1

a,⊥ .

So, although L>,⊥ is not maximal, it is maximal in the relative sense
that every dicartesian category that satisfies an equation f = g between
arrow terms of C(L>,⊥) such that Gf 6= Gg satisfies also (

∧
k
∨
k) and (

∧
k
∨
k fg).

Some of these dicartesian categories may satisfy more than just (
∧
k
∨
k) and

(
∧
k
∨
k fg). They may satisfy (

∧
k
∨
κ) or (

∨
k
∧
κ), which yields

f ◦
∧
k1

a,⊥ = g ◦
∧
k1

a,⊥ or
∨
k1

b,> ◦ f =
∨
k1

b,> ◦ g,

and some may be preorders.

Chapter 10

Mix-Lattice Categories

In this chapter we consider categories with finite products and coproducts
in which there is an operation of union on arrows with the same source
and target, so that hom-sets are semilattices with this operation. This is
what the mix principle of Chapter 8 amounts to in the present context. An
example of such a category is the category of semilattices with semilattice
homomorphisms.

We prove restricted coherence results for these categories, the restriction
being on the sources and targets of arrows, which must be in disjunctive or
conjunctive normal form. These coherence results are just an auxiliary for
the proofs of coherence in the next chapter. The technique of proof here is
again based on composition elimination.

§10.1. Mix-lattice categories and an example

To obtain the natural logical category ML, we have that the logical system
C(ML) is in L∧,∨, with the transformations α included in 1, b, c, w-k and
m. The specific equations of E(ML) are obtained by taking the union of
those of E(MS) and E(L) plus

(wm) ∨
wA ◦mA,A ◦ ∧

wA = 1A.

We call natural ML-categories mix-lattice categories.
Let C(GML) be the syntactical system with the formulae of L∧,∨ as

objects, with the primitive arrow terms being only identity arrow terms,

219

220 CHAPTER 10. MIX-LATTICE CATEGORIES

and with the operations on arrow terms being those of C(GL) plus the
following one:

f : A ` B g : A ` B

f ∪ g : A ` B

To obtain the equations of E(GML), we assume the equations of E(GL)
and the following equations:

(∪ ◦) (f ∪ g) ◦h = (f ◦h) ∪ (g ◦h), h ◦ (f ∪ g) = (h ◦ f) ∪ (h ◦ g),

(∪ assoc) f ∪ (g ∪ h) = (f ∪ g) ∪ h,
(∪ com) f ∪ g = g ∪ f,
(∪ idemp) f ∪ f = f.

The last equation, (∪ idemp), can be replaced by 1A ∪ 1A = 1A. The
syntactical category GML is C(GML)/E(GML).

It is straightforward to show (by relying on Lattice Coherence of §9.4)
that with the following definition in C(ML):

f ∪ g =df
∨
wB ◦ (f 3 g) ◦ ∧

wA

(f 3 g is (f∨g) ◦mA,A, as in §8.1), and the following definition in C(GML):

mA,B =df

∨
K1

B

∧
K1

B 1A ∪
∨
K2

A

∧
K2

A 1B ,

together with the definitions involved in showing the synonymity of C(L)
and C(GL), we have that ML and GML are isomorphic categories, and
that, hence, C(ML) and C(GML) are synonymous syntactical systems (see
the end of §2.4 for this notion of synonymity).

It can be checked that for the functor G from ML to Rel we have

G(f ∪ g) = Gf ∪Gg,

where ∪ on the left-hand side is defined in C(ML) as above, and ∪ on the
right-hand side is union of relations with the same domain and codomain
(remember that GmA,B is an identity relation, i.e. identity function; see
§2.9).

§10.1. Mix-lattice categories and an example 221

According to the equations (∪ assoc), (∪ com) and (∪ idemp), the hom-
sets in any mix-lattice category are semilattices with the operation ∪. In
ML the following equations hold:

(∪ ξ) (f1 ∪ f2) ξ (g1 ∪ g2) = (f1 ξ g1) ∪ (f2 ξ g2),

for ξ ∈ {∧,∨}. The derivation of these equations is based on the following
equations of ML:

ck
A,C,B,D

◦mA∧C,B∧D ◦ ∧
cm

A,B,C,D = mA,B ∧mC,D,
∨
cm

A,B,C,D
◦mA∨C,B∨D ◦ ck

A,B,C,D = mA,B ∨mC,D,

for whose checking we can use Semilattice Coherence of §9.1 (see §9.1 and
the List of Equations for the definitions of ∧

cm and ∨
cm, and §9.4 for the

definition of ck).
As an example of a mix-lattice category, we have the category Setsl

∗ ,
whose objects are semilattices with unit 〈a, ·, ∗〉 such that x ·y = ∗ iff x = ∗
and y = ∗, and whose arrows are homomorphisms f with trivial kernels;
that is, f(x) = ∗ iff x = ∗. The unit ∗ may be conceived either as top or as
bottom. This category is a subcategory of the category Set∗ of §9.7.

We define 〈a1, ·, ∗〉 ∧ 〈a2, ·, ∗〉 as the semilattice with unit 〈a1 ⊗ a2, ·, ∗〉,
where ⊗ is as in §9.7, and we have

(x1, x2) · (y1, y2) = (x1 · y1, x2 · y2),
(x1, x2) · ∗ = ∗ · (x1, x2) = (x1, x2),
∗ · ∗ = ∗.

We define 〈a1, ·, ∗〉 ∨ 〈a2, ·, ∗〉 as the semilattice with unit 〈a1 2× a2, ·, ∗〉,
where 2× , which corresponds to cartesian product, is defined as in §9.7,
and we have for · and ∗ the same clauses as above.

The functions
∧
ki

a1,a2
: a1 ⊗ a2 → ai, for i ∈ {1, 2}, are defined by

∧
ki

a1,a2
(x1, x2) = xi,

∧
ki

a1,a2
(∗) = ∗;

for fi : c → ai, the function 〈f1, f2〉 : c → a1 ⊗ a2 is defined by

〈f1, f2〉(z) =
{

(f1(z), f2(z)) if z 6= ∗
∗ if z = ∗.

222 CHAPTER 10. MIX-LATTICE CATEGORIES

The functions
∨
ki

a1,a2
: ai → a1 2× a2 are defined by

∨
k1

a1,a2
(x) = (x, ∗), ∨

k2
a1,a2

(x) = (∗, x), for x 6= ∗,
∨
ki

a1,a2
(∗) = ∗;

for gi : ai → c, the function [g1, g2] : a1 2× a2 → c is defined by

[g1, g2](x1, x2) = g1(x1) · g2(x2),
[g1, g2](∗) = ∗.

(The clauses in the definitions of
∧
ki

a1,a2
and

∨
ki

a1,a2
are taken over from §9.7,

and we could have also taken over from there the clause for 〈f1, f2〉, but the
operations in the domains and codomains are changed, and the functions
defined are not the same; the clause for [g1, g2] is new.)

We define the function ma,b : a⊗ b → a 2× b by

ma,b(x1, x2) = (x1, x2), ma,b(∗) = ∗,

or for the functions f, g : a → b we define the function f ∪ g : a → b by

(f ∪ g)(x) = f(x) · g(x).

It can be checked in a straightforward manner that with these defini-
tions, and with ∧ being ⊗ and ∨ being 2× , the category Setsl

∗ is a mix-lattice
category (it is easier to rely on ∪ than on m in this context). A category
isomorphic to Setsl

∗ is the category Semilat, whose objects are semilattices
and whose arrows are semilattice homomorphisms. We just reject ∗ from
the domains of the objects of Setsl

∗ , and the pairs (∗, ∗) from the sets of
ordered pairs of the arrows of Setsl

∗ . The mix-lattice structure of Semilat is
then inherited from Setsl

∗ . The domain of 〈a1, ·, ∗〉 ∧ 〈a2, ·, ∗〉 is now a1× a2

instead of a1⊗a2, while the domain of 〈a1, ·, ∗〉∨〈a2, ·, ∗〉 is (a1×a2)+a1+a2

instead of a1 2× a2, which corresponded to a1×a2 (here + is disjoint union).
It is, however, more practical to introduce the mix-lattice structure in Setsl

∗ ,
with ∗ serving as an auxiliary, than directly in Semilat.

If we replace semilattices above by commutative semigroups, i.e., if we
reject the idempotency law, then we will verify all the specific equations of
ML except (wm) (which amounts to (∪ idemp)).

§10.2. Restricted coherence of mix-lattice categories 223

§10.2. Restricted coherence of mix-lattice categories

To prove a restricted coherence result for ML, we prove first Composition
Elimination for GML by extending the proof for GL in §9.4. We use
essentially here the equations (∪ ◦).

Next, analogously to what we had in §9.6, we define inductively formulae
of L∧,∨ in disjunctive normal form (dnf): every formula of L∧ is in dnf,
and if A and B are both in dnf, then A ∨ B is in dnf. We define dually
formulae of L∧,∨ in conjunctive normal form (cnf): every formula of L∨ is
in cnf, and if A and B are both in cnf, then A ∧B is in cnf.

We define inductively composition-free arrow terms of C(GML) of type
A ` B, for A in dnf and B in cnf, that are in normal form. We do that
gradually, relying on two preliminary inductive definitions.

Arrow terms of the form P1. . . PnQ1. . . Qm1p, where n,m ≥ 0, and Pi

for i ∈ {1, . . . , n} is of the form
∨
K1

C or
∨
K2

C , while Qj for j ∈ {1, . . . , m} is

of the form
∧
K1

C or
∧
K2

C , are in atomic bracket-free normal form.

Every arrow term in atomic bracket-free normal form is in bracket-free
normal form. If f : D ` E and g : D ` E are in bracket-free normal form,
then f ∪ g : D ` E is in bracket-free normal form.

Every arrow term in bracket-free normal form is in angle normal form.
If f : D ` E and g : D ` F are in angle normal form, then 〈f, g〉 : D ` E∧F

is in angle normal form.

Every arrow term in angle normal form is in normal form. If f : E ` D

and g : F ` D are in normal form, then [f, g] : E ∨F ` D is in normal form.

We have also the following definitions. Let f be an arrow term of
C(GML) in normal form, and let f ′ be a subterm of f such that f ′ is
in atomic bracket-free normal form, and there is no subterm f ′′ of f in
atomic bracket-free normal form with f ′ a proper subterm of f ′′. Then we
say that f ′ is an atomic component of f .

An arrow term f of C(GML) in normal form is said to be in settled
normal form when there are no subterms of f in bracket-free normal form
in which an atomic component occurs more than once.

Let us illustrate all these definitions with an example. The following
arrow terms of C(GML):

224 CHAPTER 10. MIX-LATTICE CATEGORIES

α1 =df

∧
K1

q 1p : p ∧ q ` p,

α2 =df

∨
K1

s

∧
K2

p 1q : p ∧ q ` q ∨ s,

α3 =df

∨
K1

p∨t

∧
K1

q 1p : p ∧ q ` p ∨ (p ∨ t),

α4 =df

∨
K2

p

∨
K1

t

∧
K1

q 1p : p ∧ q ` p ∨ (p ∨ t),

β1 =df

∧
K1

s

∧
K1

p 1p : (p ∧ r) ∧ s ` p,

β2 =df

∨
K2

q

∧
K2

p∧r 1s : (p ∧ r) ∧ s ` q ∨ s,

β3 =df

∨
K1

p∨t

∧
K1

s

∧
K1

r 1p : (p ∧ r) ∧ s ` p ∨ (p ∨ t),

β4 =df

∨
K2

p

∨
K1

t

∧
K1

s

∧
K1

r 1p : (p ∧ r) ∧ s ` p ∨ (p ∨ t)

are all in atomic bracket-free normal form. The arrow terms α2∪α2, β3∪β4,
(α2 ∪ α2) ∪ (β3 ∪ β4), etc., are in bracket-free normal form. Next,

〈α1, 〈α2 ∪ α2, α3〉〉 : p ∧ q ` p ∧ ((q ∨ s) ∧ (p ∨ (p ∨ t))),
〈β1, 〈β2, β3 ∪ β4〉〉 : (p ∧ r) ∧ s ` p ∧ ((q ∨ s) ∧ (p ∨ (p ∨ t)))

are in angle normal form, and

γ =df [[〈α1, 〈α2, α3〉〉, 〈β1, 〈β2, β3 ∪ β4〉〉], 〈α1, 〈α2, α4〉〉] :
((p ∧ q) ∨ ((p ∧ r) ∧ s)) ∨ (p ∧ q) ` p ∧ ((q ∨ s) ∧ (p ∨ (p ∨ t)))

is in settled normal form. This normal from would not be settled if, for
example, α2 in γ were replaced by α2∪α2. The set of occurrences of atomic
components of γ is made of the two occurrences of α1, the two occurrences
of α2, and of the occurrences of α3, α4, β1, β2, β3 and β4.

We can then prove the following.

Normal-Form Lemma. Every arrow term f : A ` B of C(GML) for A

in dnf and B in cnf is equal in GML to an arrow term in settled normal
form.

Proof. We make an induction on the number of occurrences of ∨ in A

and ∧ in B. If there are no such occurrences of ∧ and ∨, then we eliminate
compositions, and by applying the following equations of GML:

ξ

Ki
A (f ∪ g) =

ξ

Ki
A f∪

ξ

Ki
A g,

∧
Ki

A

∨
Kj

B f =
∨
Kj

B

∧
Ki

A f,

§10.2. Restricted coherence of mix-lattice categories 225

we obtain an arrow term in bracket-free normal form equal to the original
arrow term.

If there are no occurrences of ∨ in A, and B is B1 ∧ B2, then f =
〈 ∧K1

B2
1B1

◦ f,
∧
K2

B1
1B2

◦ f〉 in GML, and, by the induction hypothesis, we

have that
∧
K1

B2
1B1

◦ f and
∧
K2

B1
1B2

◦ f must be equal respectively to f ′ and
f ′′ in normal form, which must be in angle normal form, because ∨ does
not occur in A. Hence f = 〈f ′, f ′′〉, and 〈f ′, f ′′〉 is in normal form.

If A is A1 ∨ A2, then f = [f ◦
∨
K1

A2
1A1 , f ◦

∨
K2

A1
1A2] in GML, and,

by the induction hypothesis, f ◦
∨
K1

A2
1A1 and f ◦

∨
K2

A1
1A2 must be equal

respectively to f ′ and f ′′ in normal form. Hence f = [f ′, f ′′], and [f ′, f ′′]
is in normal form.

We easily pass from the normal form to the settled normal form by
applying (∪ assoc), (∪ com) and (∪ idemp). a

For an arrow term f of C(GML) in settled normal form, there is a one-
to-one correspondence between the set of occurrences of atomic components
of f and the set of ordered pairs of Gf . For example, if f is the arrow term
γ we had above, then we have the following correspondence:

left α1 left α2 α3 β1 β2 β3 β4 right α1 right α2 α4

(0, 0) (1, 1) (0, 3) (2, 0) (4, 2) (2, 3) (2, 4) (5, 0) (6, 1) (5, 4)

which can be drawn as follows:

p ∧ ((q ∨ s) ∧ (p ∨ (p ∨ t)))
0 1 2 3 4 5

((p ∧ q) ∨ ((p ∧ r) ∧ s)) ∨ (p ∧ q)

0 1 2 3 4 5 6

©©©©©©©©

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

©©©©©©©©

PPPPPPPPPPPP

@
@

@
@

HHHHHHHH

¡
¡

¡
¡lα1 α3

lα2
β1 β3

β4 β2
rα1

α4

rα2

This one-to-one correspondence has a finer structure, which we are going
to explain now. For A in dnf let a minimal disjunct of A be a subformula
D of A that belongs to L∧ such that there is no subformula of A in L∧ of
which D would be a proper subformula. We define analogously the minimal
conjuncts of a formula B in cnf, by replacing ∧ by ∨.

226 CHAPTER 10. MIX-LATTICE CATEGORIES

Let A be the source ((p ∧ q) ∨ ((p ∧ r) ∧ s)) ∨ (p ∧ q), and let B be the
target p∧ ((q∨ s)∧ (p∨ (p∨ t))), of the arrow term γ we had as an example
above. Then the minimal disjuncts of A are A1, which is the left occurrence
of p∧ q, next A2, which is (p∧ r)∧ s, and A3, which is the right occurrence
of p ∧ q. The minimal conjuncts of B are B1, which is the leftmost p, next
B2, which is q ∨ s, and B3, which is p ∨ (p ∨ t).

For an arrow term f : A ` B of C(GML) in normal form (not necessarily
settled), consider subterms in bracket-free normal form that are not proper
subterms of subterms of f in bracket-free normal form. We call such sub-
terms the molecular components of f . There is a one-to-one correspondence
between the set of occurrences of molecular components of f and the set
of ordered pairs (Ai, Bj) for Ai a minimal disjunct of A and Bj a minimal
conjunct of B. We call this correspondence the molecular correspondence.
For example, the molecular component β3 ∪ β4 of γ corresponds by the
molecular correspondence to the ordered pair (A2, B3).

If f : A ` B is an arrow term of C(GML) in settled normal form, then
for every molecular component f ′ of f , the set of ordered pairs of Gf ′ is in
one-to-one correspondence with the set of atomic components in f ′. We call
this correspondence the atomic correspondence. For example, if f ′ is the
molecular component β3 ∪ β4 of γ, then Gf ′ = {(0, 0), (0, 1)}, where (0, 0)
corresponds by the atomic correspondence to β3 and (0, 1) corresponds to
β4.

We can then prove the following.

Restricted Mix-Lattice Coherence. Let f, g : A ` B be arrow terms
of C(ML) such that A is in dnf and B in cnf. If Gf = Gg, then f = g in
ML.

Proof. By the Normal-Form Lemma, we have that f = f ′ and g = g′ in
GML for f ′ and g′ in settled normal form. Since Gf = Gf ′ and Gg = Gg′,
because G is a functor, we have that Gf = Gg implies Gf ′ = Gg′. If Gf ′ =
Gg′, then for the molecular components f ′′ of f ′ and g′′ of g′ such that f ′′

and g′′ correspond by the molecular correspondence to the same ordered
pair (Ai, Bj), for Ai a minimal disjunct of A and Bj a minimal conjunct of
B, we must have Gf ′′ = Gg′′. Hence, by the atomic correspondence, there

§10.3. Restricted coherence of mix-dicartesian categories 227

is a one-to-one correspondence between the atomic components f ′′′ in f ′′

and the atomic components g′′′ in g′′ such that f ′′′ and g′′′ correspond to
the same ordered pair of Gf ′′, that is Gg′′. Since Gf ′′′ = Gg′′′, we may
conclude, by Lattice Coherence, that f ′′′ = g′′′ in GL, and hence also in
GML. (As a matter of fact, f ′′′ and g′′′ must be the same arrow term of
C(GL).) Then, by using the equations (∪ assoc) and (∪ com), we must be
able to show that f ′′ = g′′ in GML. Since this holds for every pair f ′′ and
g′′ of corresponding molecular components, we obtain f ′ = g′, and so f = g

in ML. a

We will not try to establish here an unrestricted coherence result for
ML, or perhaps a category with E(ML) extended. The result we have
above is sufficient for applications in the next chapter, which are our main
concern.

§10.3. Restricted coherence of mix-dicartesian cate-
gories

To obtain the natural logical category ML>,⊥, we have that the logical
system C(ML>,⊥) is in L∧,∨,>,⊥, with the transformations α included in
1, b, c, w-k, m and δ-σ. The specific equations of E(ML>,⊥) are obtained
by taking the union of those of E(ML) and E(L>,⊥) plus

(m>) mA,> =
∨
k1

A,> ◦
∧
k1

A,>,

(m⊥) mA,⊥ =
∨
k1

A,⊥ ◦
∧
k1

A,⊥ .

It is easy to see that in E(ML>,⊥) we have the equations

mA,C =
∨
k1

A,C
◦
∧
k1

A,C ,

mC,A =
∨
k2

C,A
◦
∧
k2

C,A

for any letterless formula C of L∧,∨,>,⊥. It is clear that, by relying on the

equation (cm) of §8.4, we could replace (m>) above by m>,A =
∨
k2
>,A

◦
∧
k2
>,A,

while (m⊥) could be replaced by m⊥,A =
∨
k2
⊥,A

◦
∧
k2
⊥,A.

We call natural ML>,⊥-categories mix-dicartesian categories.
The syntactical category GML>,⊥ synonymous with ML>,⊥ is ob-

tained as GL>,⊥ save that we have in addition the operation ∪ on arrow

228 CHAPTER 10. MIX-LATTICE CATEGORIES

terms of the same type, and the equations (∪ ◦), (∪ assoc), (∪ com) and
(∪ idemp) of E(GML) (see §9.6 and §10.1), plus the equations

(∪0>) 1A∨> ∪
∨
K2

A
∧
κA∨> = 1A∨>,

(∪0⊥) 1A∧⊥ ∪
∧
K2

A
∨
κA∧⊥ = 1A∧⊥.

That (∪0>) holds in ML>,⊥ is shown as follows:

1A∨> ∪ (
∨
k2

A,> ◦ ∧κA∨>)

= ∨
wA∨> ◦ (1A∨>∨

∨
k2

A,>) ◦mA∨>,> ◦ (1A∨>∧ ∧
κA∨>) ◦ ∧

wA∨>, by (m nat),

= 1A∨>, with (m>).

We proceed analogously for (∪0⊥) by using (m⊥).
To show that (m>) holds in GML>,⊥, we have

mA,>=
∨
K1
>
∧
K1
>1A ∪

∨
K2

A

∧
K2

A 1>

= (1A∨> ∪
∨
K2

A
∧
κA∨>) ◦

∨
K1
>
∧
K1
>1A, with (∪ ◦),

=
∨
K1
>
∧
K1
>1A, by (∪0>) and (cat 1).

We proceed analogously for (m⊥) by using (∪0⊥).
The category Setsl

∗ has a terminal object >, which is the two-element
semilattice {∗, x}; this is the free semilattice with unit with a single free
generator x. The initial object ⊥ of Setsl

∗ is the trivial semilattice with unit
{∗}; this is the free semilattice with unit with an empty set of generators.
The function ∧

κa: a → > is defined by

∧
κa (y) =

{
x if y 6= ∗
∗ if y = ∗,

while for ∨
κa: ⊥ → a we have ∨

κa (∗) = ∗. The category Setsl
∗ , with the struc-

ture defined in §10.1 and here, is a sesquicartesian category in the L⊥ sense,
but not a dicartesian category, because in Setsl

∗ the object >∨> is not iso-
morphic to >. Note that in Setsl

∗ the equation (m⊥) holds, but (m>) does
not hold. In the category Semilat, which is isomorphic to Setsl

∗ , the terminal
object > is the trivial semilattice with a single element, while the initial
object ⊥ is the empty semilattice, i.e. the empty set.

To prove restricted coherence for ML>,⊥, we need first some preliminary
notions.

§10.3. Restricted coherence of mix-dicartesian categories 229

A null term is an arrow term g : A ` B of C(L>,⊥) such that Gg is the
empty relation. Let C be a formula of L∧,>,⊥ and D a formula of L∨,>,⊥.
Then g : C ` D is a null term only if for some C ′ of L∧ and some D′ of L∨
we have that either C is isomorphic to C ′ ∧⊥ or D is isomorphic to D′ ∨>
in L>,⊥. This follows easily from Composition Elimination for GL>,⊥ (see
§9.6).

To show that for any such null term g : C ` D, where i : C ′ ∧ ⊥ ` C is
an isomorphism of L>,⊥, and for any arrow term f : C ` D of C(L>,⊥), we
have in ML>,⊥ the equation

(∪0g) f ∪ g = f,

we rely on the following instance of (∪0⊥):

1C′∧⊥ ∪ (∨κC′∧⊥ ◦
∧
k2

C′,⊥) = 1C′∧⊥.

From this equation we obtain

f ◦ i ◦ (1C′∧⊥ ∪ (∨κC′∧⊥ ◦
∧
k2

C′,⊥)) ◦ i−1 = f ◦ i ◦ i−1,

and (∪0g) follows with the help of (∪ ◦) and Lemma 2 of §9.6 (we have
G(f ◦ i ◦

∨
κC′∧⊥ ◦

∧
k2

C′,⊥ ◦ i−1) = Gg). We proceed analogously to derive
(∪0g) for a null term g : C ` D where D is isomorphic to D′ ∨ > in L>,⊥,
and any arrow term f : C ` D of C(L>,⊥).

Relying on the definition of dnf and cnf of §9.6, we have the following.

Restricted Mix-Dicartesian Coherence. Let f, g : A ` B be arrow
terms of C(ML>,⊥) such that A is in dnf and B in cnf. If Gf = Gg, then
f = g in ML>,⊥.

To prove this result, we proceed as follows. First, by extending the proof
of Composition Elimination for GL>,⊥ (see §9.6), we obtain Composition
Elimination for GML>,⊥.

We define inductively composition-free arrow terms of C(GML>,⊥) of
type A ` B, for A in dnf and B in cnf, that are in normal form. The only
difference with respect to the definition we had in the preceding section
is that arrow terms in atomic bracket-free normal form can now have ∧

κp,

230 CHAPTER 10. MIX-LATTICE CATEGORIES

∨
κp,

∧
κ>, ∨

κ⊥ or 0⊥,> instead of 1p; here 0⊥,> stands for either ∧
κ⊥ or ∨

κ>,
which are equal in L>,⊥. Arrow terms in atomic bracket-free normal form
in which we do not have 1p, but ∧

κp,
∨
κp,

∧
κ>, ∨

κ⊥ or 0⊥,> are called zero
atomic bracket-free terms, and those with 1p nonzero atomic bracket-free
terms. We use the same terminology of “zero” and “nonzero” for atomic
components. Zero atomic bracket-free terms are null terms in the sense
specified above, and all such arrow terms of the same type are equal in
L>,⊥ by Lemma 2 of §9.6.

An arrow term f of C(GML>,⊥) in normal form is in settled normal
form when, as before, there are no subterms of f in bracket-free normal form
in which an atomic component occurs more than once, and, moreover, we
do not have subterms of f of the form g ∪ h where one of g and h is a
zero atomic component. There is a one-to-one correspondence between the
set of occurrences of nonzero atomic components of an arrow term f of
C(GML>,⊥) in settled normal form and the set of ordered pairs of Gf .

Then, by proceeding as in the preceding section, we can prove the
Normal-Form Lemma where GML is replaced by GML>,⊥. We use here
also the equations 1> = ∧

κ> and 1⊥ = ∨
κ⊥. To pass from the normal form

to the settled normal form we apply the equations (∪ assoc), (∪ com),
(∪ idemp) and (∪0g). We can then prove Restricted Mix-Dicartesian Co-
herence as Restricted Mix-Lattice Coherence in the preceding section. In
that proof we use Restricted Dicartesian Coherence where previously we
used Lattice Coherence. As for ML, we will not try to establish here
an unrestricted coherence result for ML>,⊥, or perhaps a category with
E(ML>,⊥) extended.

We will not discuss here the maximality of ML and ML>,⊥, but we
conjecture that ML is not maximal in the sense in which L was (see §9.5
and §9.3). For example, one could presumably add to E(ML) the equation
mp,p = mp,p ◦

∧
cp,p, where Gmp,p 6= G(mp,p ◦

∧
cp,p), without falling into

preorder. There are other such equations, but we will not go here into the
problem of their classification.

Chapter 11

Distributive Lattice Categories

This is the central chapter of the book. We define in it the notion that we
take as the categorification of the notion of distributive lattice. Distribu-
tion is here based on the dissociativity of Chapter 7, which delivers arrows
corresponding to the common distributions of conjunction over disjunction
and of disjunction over conjunction, but neither of these distributions hap-
pens to be an isomorphism (in bicartesian closed categories, the former
distribution is an isomorphism, but the latter is not). For our categorifica-
tion of distributive lattices, we prove coherence with respect to the category
whose arrows are relations between finite ordinals, as before. We have this
coherence both in the presence and in the absence of terminal and initial
objects.

The essential ingredient of our proof is a cut-elimination theorem for a
category corresponding to a plural sequent system for classical conjunctive-
disjunctive logic. This category is obtained by strictifying the double carte-
sian structure so that arrows of the monoidal structure, i.e. associativity
isomorphisms and isomorphisms tied to the terminal and initial objects,
become identity arrows. This is very much in the spirit of Gentzen, who
based his sequents on sequences of formulae, and Gentzen’s intuition is here
vindicated by the strictification results of Chapter 3. Our cut-elimination
procedure differs, however, from Gentzen’s in that it takes into account
union of proofs. Gentzen’s own procedure would lead to collapse, i.e. pre-
order. We also differ from Gentzen in how we deal with the structural rule
of contraction. We eliminate cut directly, and do not introduce Gentzen’s

231

232 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

generalized cut rule, which may be understood as involving several cuts, or
as blending contraction with cut. (Our approach here differs from previ-
ously published procedures of eliminating cut directly.)

We believe that one of the achievements of this chapter is notational.
From the very beginning of categorial proof theory, equations imposed by
cut elimination have been a guiding inspiration, but recording these equa-
tions precisely proved to be a rather difficult task.

§11.1. Distributive lattice categories and their Gentzen-
ization

The categories we are going to investigate in this chapter, which we call
distributive lattice categories, may be conceived as obtained by the cate-
gorification of the notion of distributive lattice. Freely generated categories
of this kind may be conceived as codifying equality of derivations in the
conjunction-disjunction fragment of logic (with or without the empty con-
junction > and the empty disjunction ⊥). This fragment of logic coincides
in classical and intuitionistic logic, as far as provable sequents of the form
A ` B are concerned (cf. §1.3). Categories we have considered previously
codify analogously equality of derivations in more restricted fragments of
logic, which were sometimes fragments of nonclassical and nonintuitionistic
logics. In particular, the free symmetric net category of §7.6 corresponds
to a fragment of linear logic (in the jargon of that field, we have there the
multiplicative conjunction-disjunction fragment of linear logic).

It is remarkable that equations between arrows in the free distribu-
tive lattice category cover a procedure of cut elimination in a plural, i.e.
multiple-conclusion, sequent system. A sequent Γ ` ∆ is a singular, or
single-conclusion, sequent when ∆ has a single member or is empty; with-
out this restriction, it is a plural, or multiple-conclusion, sequent. The fact
that we are within the realm of plural sequents for conjunctive-disjunctive
logic allows us to assume that we are dealing with classical, rather than
intuitionistic, logic (see the last part of §1.3).

Gentzen’s cut-elimination theorem of [60] could be phrased as saying
that for every term t coding a derivation of Γ ` ∆ there is a term t′ coding
a cut-free derivation of Γ ` ∆. As in the Cut-Elimination Theorem of

§11.1. Distributive lattice categories and their Gentzenization 233

§7.7, we prove something more in this chapter. We show also that t = t′

in a particular category D. Gentzen did not care about equality between
these terms—he did not even introduce terms to code his derivations. His
intuition was, however, good in most cases, and we may copy his procedure
to a great extent. But we cannot copy it completely, because if we did so,
then our category D would be a preorder.

We want equality of arrows in D to correspond to equality of arrows
in the freely generated distributive lattice category, and D should not be
a preorder. Therefore our cut-elimination procedure will not be exactly
Gentzen’s procedure of [60] restricted to conjunctive-disjunctive logic, but
a modification of it, and we will point out later where precisely we differ
from Gentzen. The main difference is that we take into account the mix
principle, which in this context yields the operation of union of derivations,
corresponding to the operation ∪ on arrow terms of §10.1. The problematic
situation in [60], mentioned at the beginning of §1.6, was noted in [64] (Ap-
pendix B1, by Y. Lafont), where it was supposed that there is no alternative
to Gentzen’s way of dealing with it, and that preorder and triviality are in-
escapable in the proof theory of classical logic (see also [67], Section 1). We
show that this is not the case, and obtain a coherence result for distributive
lattice categories with respect to the category Rel.

Distributive lattice categories are not the only candidate for codifying
equality of derivations in conjunctive-disjunctive logic. An alternative cod-
ification is in a fragment of bicartesian closed categories. The equations of
these categories also cover a cut-elimination procedure in a single-conclusion
sequent system (see [109]). With this alternative codification, we do not
have, however, a coherence result with respect to Rel (see §1.2, [48], Sec-
tion 1, and [109], Section 1; cf. [76], pp. 95-97). The distribution arrow of
type A ∧ (B ∨ C) ` (A ∧ B) ∨ (A ∧ C) is an isomorphism in bicartesian
closed categories. In our distributive lattice categories we have an arrow of
this type, and of the inverse type, but we need not have an isomorphism of
this type. We pass now to the definition of distributive lattice category.

To obtain the natural logical category DL, we have that the logical
system C(DL) is in L∧,∨, with the transformations α included in 1, b, c,
w-k, m and d. The specific equations of E(DL) are obtained by taking the
union of those of E(DS) and E(ML) plus

234 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

(d
∧
k)

∧
k2

A,B∨C = (
∧
k2

A,B ∨ 1C) ◦ dA,B,C ,

(d
∨
k)

∨
k1

C∧B,A = dC,B,A ◦ (1C ∧
∨
k1

B,A),

(dm) mA,C = (
∧
k1

A,B ∨ 1C) ◦ dA,B,C ◦ (1A ∧
∨
k2

B,C),

(m ∧
e) ck

A,C,B,D
◦ ∧e′A,B,C,D = mA,B ∧ 1C∨D,

(m ∨
e) ∨

e′D,C,B,A
◦ ck

D,C,B,A = 1D∧C ∨mB,A

(see §7.6 for
ξ

e′, and §9.4 for ck). In the arrow terms of C(DL) we write d

instead of dL, as we did for C(DS) and C(MDS), and we take dR as defined
by the equation (dRc) of §7.6.

We call natural DL-categories distributive lattice categories. The ob-
jects of a distributive lattice category that is a partial order make a dis-
tributive lattice. In DL, the dissociativity arrows dA,B,C enable us to define
arrows of the type of the common distribution principles of ∧ over ∨ and of
∨ over ∧ (see §11.3). These distribution arrows are, however, not isomor-
phisms. Note that our distributive lattice categories are not distributive
categories in the sense of [95] (pp. 222-223 and Session 26) or [20], where
distribution of ∧ over ∨ must be an isomorphism.

The cartesian linearly distributive categories of [22] are symmetric net
categories and are lattice categories, but they are not necessarily distribu-
tive lattice categories. The specific equation (wm) is not envisaged in that
paper, nor in [23]. The equations (d

∧
k) and (d

∨
k) hold in cartesian linearly

distributive categories as a consequence of the presence of the equations
(∧σ dL) and (

∨
δ dL) of §7.9 in these categories (see §11.5). The equations

(dm), (bm), (cm), (m ∧
e) and (m ∨

e) hold in these categories (as can be gath-
ered from the derivations for DL′ below and from §11.5), though they are
not explicitly mentioned in [22] and [23]. We know the equation (wm) need
not hold in these categories (see §12.5).

We do not know how to derive (m ∧
e) and (m ∨

e) from the remaining
axioms of E(DL). We can however derive from the remaining axioms the
following immediate consequences of (m ∧

e) and (m ∨
e):

ck
A,C,B,D

◦ ∧e′A,B,C,D
◦ (1A∧B ∧mC,D) = mA,B ∧mC,D,

(mD,C ∨ 1B∨A) ◦ ∨e′D,C,B,A
◦ ck

D,C,B,A = mD,C ∨mB,A

§11.1. Distributive lattice categories and their Gentzenization 235

(see the derivation of (m ∧
cm) in this section, and §13.2). Equations that

for the presentation of DL could replace (m ∧
e) and (m ∨

e) are

(
∧
k1

A,C ∨ ∧
k1

B,D)◦ ∧e′A,B,C,D = mA,B ◦
∧
k1

A∧B,C∨D,
∨
e′D,C,B,A

◦ (
∨
k2

D,B ∧ ∨
k2

C,A) =
∨
k2

D∧C,B∨A
◦mB,A,

and equations that could replace (m ∧
e), (m ∨

e) and (wm) are the following
two equations:

(wm
∧
e) (∨wA ∧ 1C∨D) ◦ ck

A,C,A,D
◦ ∧e′A,A,C,D

◦ (∧wA ∧ 1C∨D) = 1A∧(C∨D),

(wm
∨
e) (1D∧C ∨ ∨

wA) ◦ ∨e′D,C,A,A
◦ ck

D,C,A,A
◦ (1D∧C ∨ ∧

wA) = 1(D∧C)∨A.

It is clear that these two equations follow from (m ∧
e), (m ∨

e) and (wm).
To show the converse, for f being (

∧
k1

A,C ∨ ∧
k1

B,D) ◦ ∧e′A,B,C,D and g being
(∨wA∧B ∧ 1C∨D) ◦ ck

A∧B,C,A∧B,D, we have

f ◦ g = f ◦ ∨
w(A∧B)∧(C∨D) ◦ ((1A∧B∧

∨
k1

C,D) ∨ (1A∧B∧
∨
k2

C,D)),

by Lattice Coherence of §9.4,

= mA,B ◦ ∨
wA∧B ◦ (

∧
k1

A∧B,C ∨ ∧
k1

A∧B,D), with (dm) and (dL∧),

= mA,B ◦
∧
k1

A∧B,C∨D
◦ g, by Lattice Coherence,

and then we apply (wm
∧
e) to obtain (m ∧

e). We proceed analogously for
(m ∨

e). From either (wm
∧
e) or (wm

∨
e) we derive (wm) by applying (m ∧

e) or
(m ∨

e) (see §11.5 and §13.2 for further comments on (m ∧
e) and (m ∨

e)).
There are redundancies in our presentation of DL. A synonymous log-

ical system C(DL′) is obtained by omitting m from C(DL). We introduce
m in C(DL′) by (dm) understood as a definition. The specific equations of
E(DL′) are obtained by taking the union of those of E(DS) and E(L) plus
(wm), (d

∧
k), (d

∨
k), (m ∧

e) and (m ∨
e), where m is defined. The category DL′

is C(DL′)/E(DL′). To prove this synonymity, i.e. the isomorphism of DL
with DL′ (see the end of §2.4 for the notion of synonymity of syntactical
systems), we have the following.

First, we derive for DL′ the equation

(
∧
k1

A,D ∨ 1C) ◦ dA,D,C ◦ (1A ∧
∨
k2

D,C) = (
∧
k1

A,B ∨ 1C) ◦ dA,B,C ◦ (1A ∧
∨
k2

B,C),

which yields the equation (dm) for DL′, because the left-hand side may be
replaced by mA,C . We have, by using naturality equations,

236 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

(
∧
k1

A,D ∨ 1C) ◦ dA,D,C ◦ (1A ∧
∨
k2

D,C)

= (
∧
k1

A,D ∨ 1C) ◦ dA,D,C ◦ (1A ∧ (
∧
k1

D,B ∨ 1C)) ◦ (1A ∧
∨
k2

D∧B,C)

= (
∧
k1

A,D∧B ∨ 1C) ◦ dA,D∧B,C ◦ (1A ∧
∨
k2

D∧B,C)

= (
∧
k1

A,B ∨ 1C) ◦ ((1A ∧
∧
k2

D∧B) ∨ 1C) ◦ dA,D∧B,C ◦ (1A ∧
∨
k2

D∧B,C)

= (
∧
k1

A,B ∨ 1C) ◦ dA,B,C ◦ (1A ∧
∨
k2

B,C).

Next, we derive the equation (
∧
b mL) (see §8.3) for DL′:

dA,B,C ◦ (1A ∧mB,C)

= dA,B,C ◦ (1A ∧ (
∧
k1

B,D ∨ 1C)) ◦ (1A ∧ dB,D,C) ◦

◦ (1A ∧ (1B ∧
∨
k2

D,C)), by (dm),

= ((1A ∧
∧
k1

B,D) ∨ 1C) ◦ (
∧
b←A,B,D ∨ 1C) ◦ dA∧B,D,C ◦

∧
b→A,B,D∨C

◦

◦ (1A ∧ (1B ∧
∨
k2

D,C)), by naturality and (dL∧) of §7.2,

= (
∧
k1

A∧B,D ∨ 1C) ◦ dA∧B,D,C ◦ (1A∧B ∧
∨
k2

D,C) ◦
∧
b→A,B,C ,

by (
∧
b
∧
k1) of §9.1 and naturality,

= mA∧B,C ◦
∧
b→A,B,C , by (dm),

and we proceed analogously for (
∨
b mL). Hence we have also (

∧
b mR) and

(
∨
b mR) (see §8.3). We can then derive the equation (bm) (see §8.2) for DL′

as we derived it for MDA (see §8.3).
We derive as follows the equation (cm) (see §8.4) for DL′. We have the

equation

(∨wA ∨ 1C) ◦ ((1A ∨
∧
k1

A,C) ∨ 1C) ◦ (dR
A,A,C ∨ 1C) ◦ dA∨A,C,C ◦ (

∨
k1

A,A ∧
∨
k2

C,C) =

(1A ∨ ∨
wC) ◦ (1A ∨ (

∧
k2

A,C ∨ 1C)) ◦ (1A ∨ dA,C,C) ◦ dR
A,A,C∨C

◦ (
∨
k1

A,A ∧
∨
k2

C,C),

by (d
∨
b) (see §7.2) and Lattice Coherence of §9.4. We obtain that the two

sides of this equation are equal respectively to the two sides of the following
equation:

(
∧
k1

A,C ∨ 1C) ◦ dA,C,C ◦ (1A ∧
∨
k2

C,C) = (1A ∨
∧
k2

A,C) ◦ dR
A,A,C

◦ (
∨
k1

A,A ∧1C),

by using (d
∧
k), Lattice Coherence, naturality and bifunctorial equations,

and from that equation we derive (cm).

§11.1. Distributive lattice categories and their Gentzenization 237

It is easy to derive (m nat) for defined m in E(DL′), so that we have
in E(DL′) all the equations of E(MDS). We have also in E(DL′) all the
equations of E(ML). Since all the equations of E(DL′) are clearly in E(DL),
we obtain that DL and DL′ are isomorphic.

Note that for DL we can derive

mA,C = (1A ∨
∧
k2

B,C) ◦ dR
A,B,C

◦ (
∨
k1

A,B ∧ 1C),

which is related to (cm). We can also derive for DL the following equations:

(m ∧
cm) mA∧C,B∧D ◦ ∧

cm
A,B,C,D = ∧

e′A,B,C,D
◦ (1A∧B ∧mC,D),

(m ∨
cm) ∨

cm
D,C,B,A

◦mD∨B,C∨A = (mD,C ∨ 1B∨A) ◦ ∨e′D,C,B,A,

which we will use in §11.2 (see also §13.2). Here is a derivation of (m ∧
cm):

mA∧C,B∧D ◦ ∧
cm

A,B,C,D

= mA∧C,B∧D ◦
∧
b→A,C,B∧D

◦ (1A ∧
∧
b←C,B,D) ◦ (1A ∧ (∧cB,C ∧ 1D)) ◦

◦ (1A ∧
∧
b→B,C,D) ◦

∧
b←A,B,C∧D

= dA,C,B∧D ◦ (1A ∧mC,B∧D) ◦ (1A ∧ ∧
cB∧D,C) ◦ (1A ∧

∧
b→B,D,C) ◦

◦
∧
b←A,B,D∧C

◦ (1A∧B ∧ ∧
cC,D), by (

∧
b mL) and

Symmetric Biassociative Coherence of §6.3,

= dA,C,B∧D ◦ (1A ∧ ∨
cC,B∧D) ◦ (1A ∧ dB,D,C) ◦ (1A ∧ (1B ∧mD,C)) ◦

◦
∧
b←A,B,D∧C

◦ (1A∧B ∧ ∧
cC,D), by (cm) and (

∧
b mL),

= ∧
e′A,B,C,D

◦ (1A∧B ∧mC,D), by (
∧
b← nat) and (cm),

and we proceed analogously for (m ∨
cm).

Let C and C′ be respectively the logical systems C(DL) and C(A), while
E is E(DL). Next, let B be C/E , that is DL. Then it is easy to see that
the conditions (IVC) and (IVB) of §3.1 are satisfied. Since the C′-core of
C/E is the category A, by Biassociative Coherence of §6.1, we have that
the condition (IVG) of §3.1 is also satisfied. So (IV) holds, and since A is a
preorder by Biassociative Coherence, we can apply the Strictification The-
orem of §3.1 to obtain that the category DLA, that is DLG , is equivalent
to DL via two strong C(DL)-functors. Remember that according to §6.2
the objects of DLA may be identified with form sequences of L∧,∨ in the
nonextended sense. (For understanding the category DLA, see also §4.5.)

238 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

Let D be the category obtained as the disjoint union of DLA and of the
trivial category with a single object ∅ (intuitively this is the empty form
sequence of both colour) and a single arrow 1∅ : ∅ ` ∅. The adding of ∅ to
DLA is made for practical reasons, to simplify the exposition of our cut-
elimination proof by subsuming several cases under a single schema. We
could also do without ∅ at the cost of considering more cases in the proof.

The operations ξ′′ ∈ {∧′′,∨′′} on the objects of DLA, i.e. on the form
sequences of L∧,∨, are extended in the following manner to operations that
apply also to ∅. For X an object of DLA or ∅, we have

X ξ′′ ∅ = ∅ ξ′′ X = X.

So all the objects of D are closed under the operations ξ′′. The operations
ξ′′ ∈ {∧′′,∨′′} on arrows are extended to operations that apply also to 1∅
by stipulating that

f ξ′′ 1∅ = 1∅ ξ′′ f = f

(the variable f here ranges also over 1∅). So all the arrows of D are closed
under the operations ξ′′.

The category D will not have the structure of a DL-category. We lack

in D the arrows
ξ

k1
∅,X and

ξ

k2
X,∅ for X different from ∅. However,

ξ

w∅ may be

identified with 1∅, and the arrows
ξ

b→X,Y,Z ,
ξ

b←X,Y,Z and
ξ

cX,Y where one of the
subscripts stands for ∅ may also be identified with identity arrows. (So D
would have the structure of something that could be called a relevant net
category; see [43] and [108]; cf. §14.4).

A basic sequence of colour ξ ∈ {∧,∨} of D is either a form sequence
of L∧,∨ of the form (A1. . . An, ξ), for n ≥ 2 and Ai, where i ∈ {1, . . . , n},
a formula of L∧,∨, or it is a formula of L∧,∨, or it is ∅. So the object
∅, as well as the formulae of L∧,∨, is both of colour ∧ and of colour ∨.
A basic sequence is a basic sequence of either colour. The members of a
basic sequence (A1. . . An, ξ) are the occurrences of formulae A1, . . . , An;
the only member of the basic sequence A is A; and the basic sequence ∅
has no members.

We use Γ and Φ, with or without indices, as variables for basic sequences
of colour ∧, and we use ∆ and Ψ, with or without with indices, for basic

§11.1. Distributive lattice categories and their Gentzenization 239

sequences of colour ∨. For basic sequences in general, we use Θ and Ξ,
with or without indices. We write 1Θ for (1FΘ, Θ, Θ) when Θ is not ∅;
otherwise, 1Θ is 1∅.

A sequent arrow of D is an arrow whose type is Γ ` ∆, for Γ and ∆
basic sequences different from ∅. According to the convention above, Γ is
of colour ∧ and ∆ is of colour ∨. The type of a sequent arrow is a sequent
(this agrees with Gentzen’s notion of sequent).

Let Θ1
ξ Θ2 . . . ξ Θn be an abbreviation for (. . . (Θ1 ξ′′ Θ2) . . . ξ′′ Θn), and

f1
ξf2 . . . ξfn an abbreviation for (. . . (f1 ξ′′ f2) . . . ξ′′ fn), where n ≥ 2.

Next, let Θ ξf and f ξΘ be abbreviations for 1Θ ξ′′ f and f ξ′′ 1Θ, respec-
tively. Sometimes we will also write, ambiguously, 1 ξf and f ξ1 for 1Θ

ξf

and f ξ1Θ, where Θ can be recovered from the context.
We use the following abbreviations:

ξ

cΘ,Ξ =df

{
ξ

c ′′Θ,Ξ if Θ 6= ∅ and Ξ 6= ∅
1Θ ξΞ if Θ = ∅ or Ξ = ∅,

ξ

wΘ =df

{
ξ

w′′Θ if Θ 6= ∅
1Θ if Θ = ∅,

∧
yΓ1,Γ2,Γ,Θ =df (Γ1

∧ ∧
cΓ2,Θ

∧Θ∧Γ) ◦ (Γ1
∧Γ2

∧ ∧
wΘ

∧Γ):

Γ1
∧Γ2

∧Θ∧Γ ` Γ1
∧Θ∧Γ2

∧Θ∧Γ,

∨
yΘ,∆,∆2,∆1

=df (∆∨ ∨
wΘ

∨∆2
∨∆1) ◦ (∆∨Θ∨ ∨

cΘ,∆2
∨∆1) :

∆∨Θ∨∆2
∨Θ∨∆1 ` ∆∨Θ∨∆2

∨∆1.

For n ≥ 3, consider the abbreviations defined inductively as follows:

∧
yΓ1,Γ2,Γ3,...,Γn,Γ,Θ =df

∧
yΓ1,Γ2,Γ3∧Θ∧...∧Γn

∧Θ∧Γ,Θ
◦
∧
yΓ1∧Γ2,Γ3,...,Γn,Γ,Θ:

Γ1
∧Γ2

∧Γ3
∧ . . . ∧Γn

∧Θ∧Γ ` Γ1
∧Θ∧Γ2

∧Θ∧Γ3
∧Θ∧ . . . ∧Γn

∧Θ∧Γ,

∨
yΘ,∆,∆n,...,∆3,∆2,∆1

=df
∨
yΘ,∆,∆n,...,∆3,∆2∨∆1

◦
∨
yΘ,∆∨Θ∨∆n

∨...∨Θ∨∆3,∆2,∆1
:

∆∨Θ∨∆n
∨ . . . ∨Θ∨∆3

∨Θ∨∆2
∨Θ∨∆1 ` ∆∨Θ∨∆n

∨ . . . ∨∆3
∨∆2

∨∆1.

We also have the following abbreviations:

dΘ,A,Ξ =df

{
d′′Θ,A,Ξ if Θ 6= ∅ and Ξ 6= ∅
1Θ∧(A∨Ξ) if Θ = ∅ or Ξ = ∅,

240 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

∧
e′Γ2,Γ1,B,A =df dΓ2,B,Γ1∧A ◦ (Γ2

∧ ∨
cB,Γ1∧A) ◦ (Γ2

∧dΓ1,A,B) ◦ (Γ2
∧Γ1

∧ ∨
cA,B) :

Γ2
∧Γ1

∧(B ∨A) ` (Γ2
∧B)∨(Γ1

∧A),

∨
e′A,B,∆1,∆2

=df (∧cB,A
∨∆1

∨∆2) ◦ (dB,A,∆1
∨∆2) ◦ (

∧
cA∨∆1,B

∨∆2) ◦dA∨∆1,B,∆2:

(A ∨∆1)∧(B ∨∆2) ` (A ∧B)∨∆1
∨∆2

(note that ∧
e′∅,∅,B,A = 1B∨A and ∨

e′A,B,∅,∅ = 1A∧B),

mΘ,Ξ =df (
∧
k1′′

Θ,B
∨Ξ) ◦dΘ,B,Ξ ◦ (Θ∧

∨
k2′′

B,Ξ)

(note that for mΘ,Ξ we must have Θ 6= ∅ and Ξ 6= ∅),

ck
Θ1,Θ2,Θ3,Θ4

=df
∨
w(Θ1∨Θ3)∧(Θ2∨Θ4)

◦ ((
∨
k1′′

Θ1,Θ3
∧
∨
k1′′

Θ2,Θ4
)∨(

∨
k2′′

Θ1,Θ3
∧
∨
k2′′

Θ2,Θ4
))

(note that none of Θ1, Θ2, Θ3 and Θ4 can be ∅ in the subscripts of ck).

Finally, let 1i
A ξB stand for (1AξB , A ξB, A ξ B), while 1e

A ξB stands for

(1AξB , A ξ B,A ξB). We do not introduce the notation
ξ

k1
Θ,Ξ, because we

could not interpret it when Θ is ∅ and Ξ is not ∅, and analogously with
ξ

k2
Ξ,Θ.

We will now define by induction a set of terms for sequent arrows of D,
which we call Gentzen terms. First, we stipulate that for every letter p the
term 1′′p : p ` p, which denotes the arrow (1p, p, p) of D, is a Gentzen term.
The remaining Gentzen terms are obtained by closing under the following
operations on Gentzen terms, which we call Gentzen operations. As in
§7.7, we present these operations by inductive clauses in fractional notation,
which are interpreted as saying that if the terms above the horizontal line
are Gentzen terms, then the term below the horizontal line is a Gentzen
term (cf. §2.2). The schema on the left-hand side of the =dn sign stands for
the Gentzen term, while the schema on the right-hand side stands for the
arrow denoted by this term. First, we have the operations that correspond
to Gentzen’s structural rules:

f : Γ1
∧Γ2

∧Γ3
∧Γ4 ` ∆

cL
Γ1,Γ2,Γ3,Γ4

f =dn f ◦ (Γ1
∧ ∧

cΓ3,Γ2
∧Γ4) : Γ1

∧Γ3
∧Γ2

∧Γ4 ` ∆

provided Γ2 and Γ3 are not ∅ (one of the indices Γ1 and Γ4 is superfluous
as an index of cL; it is recoverable from the source of f),

§11.1. Distributive lattice categories and their Gentzenization 241

f : Γ ` ∆4
∨∆3

∨∆2
∨∆1

cR
∆4,∆3,∆2,∆1

f =dn (∆4
∨ ∨

c∆2,∆3
∨∆1) ◦ f : Γ ` ∆4

∨∆2
∨∆3

∨∆1

provided ∆2 and ∆3 are not ∅ (one of ∆1 and ∆4 is superfluous as an index
of cR),

f : Γ ` ∆

kL
Af =dn f ◦

∧
k1′′

Γ,A : Γ ∧A ` ∆

f : Γ ` ∆

kR
Af =dn

∨
k2′′

A,∆
◦ f : Γ ` A ∨∆

f : Γ1
∧A∧ . . . ∧Γn

∧A∧Γ ` ∆

wL
Γ1,...,Γn,Γf =dn f ◦

∧
yΓ1,...,Γn,Γ,A: Γ1

∧ . . . ∧Γn
∧A∧Γ ` ∆

, n ≥ 2,

f : Γ ` ∆∨A ∨∆n
∨ . . . ∨A ∨∆1

wR
∆,∆n,...,∆1

f =dn
∨
yA,∆,∆n,...,∆1

◦ f : Γ ` ∆∨A ∨ ∆n
∨ . . . ∨∆1

, n ≥ 2,

f : Γ3 ` ∆2
∨A ∨∆1 g : Γ1

∧A ∧ Γ2 ` ∆3

cut Γ2,∆2(f, g) : Γ1
∧Γ2

∧Γ3 ` ∆3
∨∆2

∨∆1

where cut Γ2,∆2(f, g) denotes

(g ∨∆2
∨∆1) ◦ ((Γ1

∧ ∧
cΓ2,A)∨∆2

∨∆1) ◦dΓ1∧Γ2,A,∆2∨∆1
◦

◦ (Γ1
∧Γ2

∧(∨cA,∆2
∨∆1)) ◦ (Γ1

∧Γ2
∧f),

and A is called the cut formula of cut Γ2,∆2(f, g),

f : Γ1 ` ∆1 g : Γ2 ` ∆2

mix (f, g) =dn (g ∨∆1) ◦mΓ2,∆1
◦ (Γ2

∧f) : Γ2
∧Γ1 ` ∆2

∨∆1

Note that by (m nat) in D we have

mix (f, g) = m∆2,∆1
◦ (g ∧f) = (g ∨f) ◦mΓ2,Γ1 .

242 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

If we write dΓ2,∅,∆1 instead of mΓ2,∆1 , then mix (f, g) can be conceived as
cut ∅,∅(f, g) where the cut formula A is replaced by ∅.

Had we favoured dR, rather than dL, for f : Γ1 ` ∆3
∨A ∨∆2 and g :

Γ2
∧A ∧ Γ3 ` ∆1 we could take that cut Γ1,∆1(f, g) : Γ1

∧Γ2
∧Γ3 ` ∆3

∨∆2
∨∆1

denotes

(∆3
∨∆2

∨g) ◦ (∆3
∨∆2

∨(∧cA,Γ2
∧Γ3)) ◦dR

∆3∨∆2,A,Γ2∧Γ3
◦

◦ ((∆3
∨ ∨

c∆2,A)∧Γ2
∧Γ3) ◦ (f ∧Γ2

∧Γ3)

where dR stands for dR′′ if ∆3
∨∆2 and Γ2

∧Γ3 are not ∅, and otherwise for
1. This would prevent the Γ’s and ∆’s of f and g to switch from right to
left, as in our official definition of the Gentzen operation cut . But since
we favour dL, we have to tolerate this switch, which does not cause serious
trouble, anyway. We have made the same switch in our Gentzen operation
mix , to make it parallel to our cut .

Here are the remaining Gentzen operations, which correspond to rules
for ∧ and ∨:

f : Γ ∧A ∧B ` ∆

∧Lf =dn f ◦ (Γ ∧1e
A∧B) : Γ ∧(A ∧B) ` ∆

f : Γ1 ` A ∨∆1 g : Γ2 ` B ∨∆2

∧R(f, g) =dn (1i
A∧B

∨∆1
∨∆2) ◦

∨
e′A,B,∆1,∆2

◦ (f ∧g) : Γ1
∧Γ2 ` (A ∧B)∨∆1

∨∆2

g : Γ2
∧B ` ∆2 f : Γ1

∧A ` ∆1

∨L(g, f) =dn (g ∨f) ◦ ∧e′Γ2,Γ1,B,A
◦ (Γ2

∧Γ1
∧1e

B∨A) : Γ2
∧Γ1

∧(B ∨A) ` ∆2
∨∆1

f : Γ ` B ∨A ∨∆

∨Rf =dn (1i
B∨A

∨∆) ◦ f : Γ ` (B ∨A)∨∆

This concludes the list of Gentzen operations.

For n ≥ 2, we introduce the following abbreviations by induction:

wL∅
Γ1,...,Γn,Γf =df f , for f : Γ1

∧ . . . ∧Γn
∧Γ ` ∆,

§11.1. Distributive lattice categories and their Gentzenization 243

wLA∧Φ
Γ1,...,Γn,Γf =df wL

Γ1,...,Γn,ΦΓwLΦ
Γ1∧A,...,Γn

∧A,Γf ,

for f : Γ1
∧A∧Φ∧ . . . ∧Γn

∧A∧Φ∧Γ ` ∆,

wR∅
∆,∆n,...,∆1

f =df f , for f : Γ ` ∆∨∆n
∨ . . . ∨∆1,

wRΨ∨A
∆,∆n,...,∆1

f =df wR
∆Ψ,∆n,...,∆1

wRΨ
∆,A∨∆n,...,A∨∆1

f ,

for f : Γ ` ∆∨Ψ∨A ∨∆n
∨ . . . ∨Ψ∨A ∨∆1.

By Semilattice Coherence of §9.1 (in fact, we use here the relevant coherence
result of [108], Section 5), we have in D the equations

(w y) wLΦ
Γ1,...,Γn,Γf = f ◦

∧
yΓ1,...,Γn,Γ,Φ, wRΨ

∆,∆n,...,∆1
f = ∨

yΨ,∆,∆n,...,∆1
◦ f.

To lighten the burden of notation, in proofs we will sometimes omit
subscripts in Gentzen terms or other terms for arrows of D. A reader
checking the proofs should be able to restore these subscripts. We will also
sometimes take for granted the subscripts of Gentzen operations, and omit
them. We do this in cases where no confusion is likely, and the subscripts
serve no particular purpose. We use γ, γ1, γ2, . . . as variables for Gentzen
operations (with subscripts omitted or not).

Note that Gentzen terms codify derivations in a plural sequent system
for conjunctive-disjunctive classical propositional logic. (We have men-
tioned at the beginning of the section that we believe that we are within
classical, rather than intuitionistic, logic; cf. also §1.3.) We have in this
sequent system rules for connectives of the multiplicative kind, to use the
terminology of linear logic. In this terminology, Gentzen’s rules for conjunc-
tion and disjunction of [60] would be called additive. This is not, however,
an essential difference. We could have worked with additive rules as well.
We took multiplicative rules for practical reasons, which have to do with
our way of dealing with the structural rule of contraction. This difference
does not bar comparing our cut-elimination procedure with Gentzen’s, and
it will turn out that, though the two procedures have much in common,
they are not the same.

The main difference is that we take into account the mix principle, which
yields union of derivations (see §8.1 and §10.1). Gentzen did not take this
principle into account, because, for his more limited purposes, he did not

244 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

need to do so. This mix principle should not be confused with Gentzen’s
generalized cut, Mischung, also called mix in English (see §8.1), which is
derivable in our system with the help of contractions, that is wL and wR.

We also differ from Gentzen in the way how we deal with contraction,
embodied in the operations wL and wR. We eliminate cut directly, and do
not introduce as Gentzen his generalized cut Mischung, which he used to
deal with problems caused by contraction (see [14], Sections 1 and 2). Elim-
inating cut directly is handier for notational reasons, because Gentzen’s
Mischung is more difficult to code in our categorial setting. (Our proce-
dure of direct cut elimination differs from similar procedures in [12], [14],
[130] and [13]; except for [14], where categories are mentioned occasion-
ally, these papers are not concerned with categorial proof theory and the
difficulties of notation for arrow terms.)

Another difference with Gentzen is that we distinguish “conjunctive
commas”, our ∧ (which abbreviates ∧′′), from “disjunctive commas”, our ∨

(which abbreviates ∨′′), whereas Gentzen has just one kind of comma. In
other words, we have two-coloured form sequences, whereas Gentzen has
just ordinary sequences. Indeed, if we stay at the level of sequent arrows of
D, then the fact that a sequence is on the left-hand side or on the right-hand
side of ` dictates whether it is of colour ∧ or ∨, and then we could do as
Gentzen. But we do not pay attention only to sequents, as Gentzen does.
For example, in building a sequent arrow denoted by cut Γ2,∆2(f, g) we refer
to arrows of D like ∧

cΓ2,A, or dΓ1∧Γ2,A,∆2∨∆1 , etc., which are not sequent
arrows. With d, we even have that conjunctive commas are nested within
disjunctive commas and vice versa. Gentzen did not have these problems
because he was not considering explicitly arrows and equality between them,
but only types of arrows and, moreover, just sequent types. Gentzen stays
somewhere near the lowest level of D, while we take somewhat more of D
into account when we compute equality of sequent arrows.

In principle, we could have worked with directly strictified DL in the
sense of §3.2, but then we would be less close to Gentzen. In that case, we
would not have operations corresponding to ∧L and ∨R, but at the price of
complications in the computation of rank. We do this computation below
very much in the style of Gentzen. (Cut elimination in something corre-
sponding to our directly strictified DL, but without taking into account

§11.1. Distributive lattice categories and their Gentzenization 245

equality of derivations, may be found in [16].)
Instead of directly strictifying, we have produced D according to the

recipe of §3.1, §4.5 and §6.2. We find it is interesting to locate Gentzen’s
sequents within this strictified biassociative structure constructed in the
style of Joyal, Street and Mac Lane (the last author was close to Gentzen
in his youth). This tells us that Gentzen had a sound premonition that
nothing is lost by strictifying with respect to associativity.

Every arrow of D denoted by a Gentzen term is a sequent arrow. We
show in the following lemma that these are all the sequent arrows of D.

Gentzenization Lemma. Every sequent arrow of D is denoted by a
Gentzen term.

Proof. We prove first that every sequent arrow (f, A,B) of D is denoted
by a Gentzen term. After that we will pass to the sequent arrows (f, Γ, ∆)
for Γ and ∆ with more than one member.

We show by induction on the lenght of A that (1A, A, A) is denoted by
a Gentzen term. If A is p, then (1p, p, p) is denoted by 1′′p . If A is A1 ∧A2,
and (1Ai , Ai, Ai) is denoted by the Gentzen term 1′′Ai

, for i ∈ {1, 2}, then
(1A, A, A) is denoted by ∧L∧R(1′′A1

,1′′A2
). If A is A1 ∨A2, then (1A, A,A)

is denoted by ∨R∨L(1′′A1
,1′′A2

). We write, in general, 1′′A for the Gentzen
term denoting (1A, A,A).

We have that (
∧
b→A,B,C , A ∧ (B ∧ C), (A ∧B) ∧ C) is denoted by

∧L∧L∧R(∧R(1′′A,1′′B),1′′C),

according to Associative Coherence of §4.3.
The inverse arrow (

∧
b←A,B,C , (A ∧B) ∧ C,A ∧ (B ∧ C)) is denoted by

∧LcL
∅,C,A∧B,∅∧LcL

∅,A∧B,C,∅∧R(1′′A,∧R(1′′B ,1′′C)),

according to Symmetric Associative Coherence of §5.1.
We have that (∧cA,B , A∧B,B∧A) is denoted by ∧LcL

∅,B,A,∅∧R(1′′B ,1′′A),

and (∧wA, A,A∧A) is denoted by wL∧R(1′′A,1′′A). Next, (
∧
k1

A,B , A∧B, A) is

denoted by ∧LkL
B1′′A, while (

∧
k2

A,B , A∧B,B) is denoted by ∧LcL
∅,B,A,∅k

L
A1′′B .

We proceed analogously for
∨
b→,

∨
b←, ∨

c, ∨
w and

∨
ki by using ∨L and ∨R.

246 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

We have that (dA,B,C , A ∧ (B ∨ C), (A ∧B) ∨ C) is denoted by

∨R∧L∨L(∧R(1′′A,1′′B),1′′C) or ∧L∨R∧R(1′′A,∨L(1′′B ,1′′C)).

If the Gentzen terms f ′′ and g′′ denote the sequent arrows (f, A,B) and
(g, C, D) respectively, then ∧L∧R(f ′′, g′′) denotes (f ∧ g,A ∧ C, B ∧ D),
while ∨R∨L(f ′′, g′′) denotes (f ∨ g, A∨C,B ∨D). If the Gentzen terms f ′′

and g′′ denote the sequent arrows (f, A, B) and (g,B, C) respectively, then
cut ∅,∅(f ′′, g′′) denotes (g ◦ f,A, C).

Take now a sequent arrow (f,A1
∧ . . . ∧An, Bm

∨ . . . ∨B1) of D where
n,m ≥ 2. We have proved above that, for F defined as in §4.5, the sequent
arrow (f, F (A1

∧ . . . ∧An), F (Bm
∨ . . . ∨B1)) is denoted by a Gentzen term

f ′′. Then for g and h being respectively ∧R(. . .∧R(1′′A1
,1′′A2

) . . . ,1′′An
) and

∨L(1′′Bm
, . . .∨L(1′′B2

,1′′B1
) . . .), the Gentzen term cut ∅,∅(cut ∅,∅(g, f ′′), h) de-

notes the sequent arrow (f, A1
∧ . . . ∧An, Bm

∨ . . . ∨B1). a

§11.2. Cut elimination in D
In this section we will prove a cut-elimination theorem for the Gentzen
terms of D. Before stating and proving this result, we introduce some
technical notions and prove some auxiliary results.

A cut is a Gentzen term of the form cut Γ,∆(f, g). A cut-free Gentzen
term is a Gentzen term none of whose subterms is a cut. A cut cut Γ,∆(f, g)
is called topmost when f and g are cut-free.

We say that a Gentzen term is k-atomized when for every subterm of
it of the form kL

A or kR
A we have that A is an atomic formula, which here

means that it is a letter. Then we have the following lemma.

Atomic-k Lemma. For every Gentzen term g there is a k-atomized Gen-
tzen term g′ such that g = g′ in D. Moreover, if g is cut-free, then g′ is
cut-free.

Proof. By Semilattice Coherence of §9.1, in D we have

kL
A∧Bf = ∧LkL

BkL
Af.

We show next that for f : Γ ` ∆ we have in D

§11.2. Cut elimination in D 247

kL
A∨Bf = wR∆

∅,∅,∅ wLΓ
∅,∅,A∨B∨L(kL

Af, kL
Bf).

The right-hand side (RHS) of this equation is equal to

∨
w∆ ◦ ((f ◦

∧
k1′′

Γ,A)∨(f ◦
∧
k1′′

Γ,B)) ◦ ∧e′Γ,Γ,A,B
◦ (Γ ∧Γ ∧1e

A∨B) ◦ (∧wΓ
∧(A ∨B)),

by the equations (w y) of the preceding section. Next we have

RHS = f ◦ ∨
wΓ ◦

∧
k1′′

Γ,A∨B ◦ ck
Γ,A,Γ,B

◦
∧
e′Γ,Γ,A,B

◦ (∧wΓ
∧(A ∨B)) ◦ (Γ ∧1e

A∨B),
by Lattice Coherence of §9.4,

= f ◦
∧
k1′′

Γ,A∨B ◦ (∨wΓ
∧(A ∨B)) ◦ (mΓ,Γ

∧(A ∨B)) ◦ (∧wΓ
∧(A ∨B)) ◦

◦ (Γ ∧1e
A∨B), by (

∧
k1 nat) and (m ∧

e),

= f ◦
∧
k1′′

Γ,A∨B , by (mw) and (
∧
k1 nat).

For kR
A∨B and kR

A∧B we proceed analogously. a

We call leaf formulae of a Gentzen term h the following occurrences of
formulae in the type of h:

when h is 1′′p , the two occurrences of p in the type p ` p of h,

when h is kL
Af , or ∧Lf , or ∨L(f, g), the rightmost member of the

source of h,

when h is kR
Af , or ∧R(f, g), or ∨Rf , the leftmost member of the target

of h.

For example, the rightmost occurrence of A in the source Γ ∧A of kL
Af :

Γ ∧A ` ∆ is a leaf formula of kL
Af .

The occurrence of A in the type of wL
Γ1,...,Γn,Γf (i.e. in the source of

wL
Γ1,...,Γn,Γf), recognized according to the index Γ, is called the lower con-

traction formula of wL
Γ1,...,Γn,Γf . For every lower contraction formula A of

wLf there are two or more occurrences of A in the type of f (i.e. in the
source of f), recognized according to the indices Γ1, . . . , Γn, Γ, which we call
the upper contraction formulae of wL

Γ1,...,Γn,Γf . We determine analogously

248 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

the lower and upper contraction formulae of wR
∆,∆n,...,∆1

f (the difference is
that they are now in the targets of wR

∆,∆n,...,∆1
f and f).

For every unary Gentzen operation γ1 and every Gentzen term γ1f ,
according to the indices of γ1 we can recognize in the type of γ1f what
basic sequences are the basic sequences Γ, Γ1, . . . , Γn, ∆, ∆1, . . . , ∆n men-
tioned in the inductive clause for γ1. We call these basic sequences the
lower parametric basic sequences of γ1f . Our inductive clauses for unary
Gentzen operations are such that for every lower parametric basic sequence
Θ of γ1f there is a unique basic sequence Θ in the type of f , recognized
according to the indices of γ1 and the inductive clause for γ1, which we call
an upper parametric basic sequence of γ1f . We determine analogously the
lower and upper parametric basic sequences of γ2(f, g) for a binary Gentzen
operation γ2. Note that our inductive clauses for binary Gentzen opera-
tions are such that every lower parametric basic sequence Θ of γ2(f, g) leads
unambiguously to a unique upper parametric basic sequence Θ of γ2(f, g)
in the type of f or in the type of g. (In terms of linear logic, these clauses
correspond to rules for connectives of the multiplicative kind.)

For any Gentzen term h : Γ ` ∆, and x a member of Γ or ∆, we have
that x is either a leaf formula of h, or a lower contraction formula of h,
or a member of a lower parametric basic sequence of h. We define the
notion of cluster of x in the following manner (this notion, called Bund in
German, stems from Gentzen; see [61], Section 3.41, [103], Section 2.621,
[36], Section 5, and [44], Section 2).

The cluster of x in h is a finite tree whose nodes are occurrences of the
same formula in the types of subterms of h. We assign to every node a label,
which is a subterm h′ of h such that the node occurs in the type of h′. The
root of the cluster of x in h is x, and the label of the root is h. If a node y is
a leaf formula of its label, then y is a leaf; i.e., it has no successors. If a node
y is the lower contraction formula of its label wL

Γ1,...,Γn,Γf or wR
∆,∆n,...,∆1

f ,
then y has as successors the upper contraction formulae of wL

Γ1,...,Γn,Γf or
wR

∆,∆n,...,∆1
f . These successors, of which there are at least two, all have f

as labels. If a node y is a member of a lower parametric basic sequence Θ
of its label h′, then y has a single successor, which is the occurrence of the
same formula as y, at the same place, as a member of the upper parametric
basic sequence Θ of h′. If h′ is here γ1f , then the label of the successor is

§11.2. Cut elimination in D 249

f , and if h′ is γ2(f, g), then the label of the successor is f or g, depending
on whether the upper parametric basic sequence Θ occurs in the type of f

or in the type of g. With that, we have defined the cluster of x in h.
For a cut cut Γ2,∆2(f, g), the two occurrences of the cut formula A in the

target of f and in the source of g, recognized according to the indices Γ2 and
∆2, are called respectively the left cut formula and the right cut formula of
cut Γ2,∆2(f, g). (Note that the left cut formula is on the right-hand side of
`, while the right cut formula is on the left-hand side of `.)

For any Gentzen term h : Γ ` ∆, and x a member of Γ or ∆, let ρh(x)
be the number of nodes in the cluster of x in h. The left rank of a cut
cut Γ2,∆2(f, g) is ρf (x) where x is the left cut formula of cut Γ2,∆2(f, g), and
the right rank of cut Γ2,∆2(f, g) is ρg(y) where y is the right cut formula
of cut Γ2,∆2(f, g). The rank of a cut is the sum of its left and right ranks.
The least rank of a cut is 2, and in that case the left rank and the right
rank are both 1. This definition of rank is analogous to Gentzen’s, except
that Gentzen counts the number of nodes in the longest path, while we
count the total number of nodes—either measure is good. (A very formal
definition of rank may be found in [14], Section 3.) As a matter of fact, we
are interested only in ranks of topmost cuts, but our definition applies to
any cut.

We announced in the preceding section (after the equations (w y)) that
we will sometimes omit the subscripts of Gentzen operations. In the defi-
nition below, and sometimes later on, we take for granted the subscripts of
wL

Γ1,...,Γn,Γ, and write just wL. We do the same with wR, and other Gentzen
operations, when their subscripts are cumbersome, but not important.

We say that a Gentzen term of the form wLf is a wL term. Subterms
that are wL terms are called wL subterms. We have an analogous terminol-
ogy with wR. The rank of a wL term wLf is ρwLf (x) for x being the lower
contraction formula of wLf , and analogously for wR terms. We are inter-
ested below only in ranks of cut-free wL terms, but our definition applies
to any wL term.

Let x be the left cut formula and y the right cut formula of the cut
cut Γ,∆(f, g). Then we say that a wL subterm h of g is tied to cut Γ,∆(f, g)
when h is the label of a node of n-ary branching for n ≥ 2 in the cluster of y

in g, and we say analogously that a wR subterm h of f is tied to cut Γ,∆(f, g)

250 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

when h is the label of a node of n-ary branching for n ≥ 2 in the cluster of
x in f .

We say that a wL term is blocked when it is of one of the following forms:

(w γ 1) wL
Γ′′1 ,Γ′′2

∧Γ′1,Γ′2
mix (f, g) : Γ′′1

∧Γ′′2
∧Γ′1

∧C∧Γ′2 ` ∆′′∨∆′

for f : Γ′1
∧C∧Γ′2 ` ∆′ and g : Γ′′1

∧C∧Γ′′2 ` ∆′′,

(w γ 2) wL
Γ′1,Γ′2

∧Γ′′1 ,Γ′′2
∧R(f, g) : Γ′1

∧Γ′2
∧Γ′′1

∧C∧Γ′′2 ` (A ∧B)∨∆′∨∆′′

for f : Γ′1
∧C∧Γ′2 ` A ∨∆′ and g : Γ′′1

∧C∧Γ′′2 ` B ∨∆′′,

(w γ 3) wL
Γ′1,Γ′2

∧Γ′′1 ,Γ′′2
∧(A∨B)∨L(f, g) : Γ′1

∧Γ′2
∧Γ′′1

∧C∧Γ′′2
∧(A ∨B) ` ∆′∨∆′′

for f : Γ′1
∧C∧Γ′2

∧A ` ∆′ and g : Γ′′1
∧C∧Γ′′2

∧B ` ∆′′,

(w ∧ 1) wL
Γ1,Γ2,∅∧Lf : Γ1

∧Γ2
∧(A ∧B) ` ∆

for f : Γ1
∧(A ∧B)∧Γ2

∧A∧B ` ∆,

(w ∨ 1) wL
Γ′1,Γ′2

∧Γ′′,∅∨L(f, g) : Γ′1
∧Γ′2

∧Γ′′∧(A ∨B) ` ∆′∨∆′′

for f : Γ′1
∧(A ∨B)∧Γ′2

∧A ` ∆′ and g : Γ′′∧B ` ∆′′,

(w ∨ 2) wL
Γ′∧Γ′′1 ,Γ′′2 ,∅∨L(f, g) : Γ′∧Γ′′1

∧Γ′′2
∧(A ∨B) ` ∆′∨∆′′

for f : Γ′∧A ` ∆ and g : Γ′′1
∧(A ∨B)∧Γ′′2

∧B ` ∆′′,

(w ∨ 3) wL
Γ′1,Γ′2

∧Γ′′1 ,Γ′′2 ,∅∨L(f, g) : Γ′1
∧Γ′2

∧Γ′′1
∧Γ′′2

∧(A ∨B) ` ∆′∨∆′′

for f : Γ′1
∧(A ∨B)∧Γ′2

∧A ` ∆′ and g : Γ′′1
∧(A ∨B)∧Γ′′2

∧B ` ∆′′.

A wL subterm wLh of f2 tied to a topmost cut cut Γ,∆(f1, f2) is reducible
when it is not blocked and every wL subterm wLt of f2 tied to cut Γ,∆(f1, f2)
such that wLh is a subterm of t is blocked. We can prove the following
lemma.

Reducibility Lemma. For every reducible wLh there is a cut-free Gentzen
term h′ such that wLh = h′ in D and after replacing wLh in cut Γ,∆(f1, f2)
by h′ all the reducible wL subterms of h′ are of rank lesser than the rank of
wLh.

Proof. We proceed by cases depending on the form of h.

§11.2. Cut elimination in D 251

(W1) First we have cases where wLh is wL
Γ′1,...,Γ′n,Γ′h while h is γf :

Γ′1
∧A∧ . . . ∧Γ′n

∧A∧Γ′ ` ∆′ for f : Γ1
∧A∧ . . . ∧Γn

∧A∧Γ ` ∆ and γ is either
one of cL, cR, kR, wR and ∨R, or kL, wL and ∧L with the occurrences of
A displayed in Γ′1

∧A∧ . . . ∧Γ′n
∧A∧Γ′ ` ∆′ members of the lower parametric

basic sequences of γf . Then, by Semilattice Coherence of §9.1, we have
either wLγf = γwLf or wLcLf = wLf .

(W2) For f : Γ1
∧A∧ . . . ∧Γn

∧A∧Γ ` ∆, by Semilattice Coherence, we have
that

wL
Γ1,...,Γn,Γ,∅k

L
Af = cL

Γ1∧...∧Γn,Γ,A,∅w
L
Γ1,...,Γn,Γf.

(W3) Suppose we have f : Γ1
∧A∧ . . . ∧Γn

∧A∧Γ ` ∆ and

wL
Γ1,...,Γn,Γf : Γ′1

∧A∧ . . . ∧Γ′m
∧A∧Γ′ ` ∆,

where Γ′1
∧A∧ . . . ∧Γ′m

∧A∧Γ′ and Γ1
∧ . . . ∧Γn

∧A∧Γ are designations of the
same basic sequence, and one of the occurrences of A displayed in the first
designation is the occurrence of A displayed in the second. Then we have
that

wL
Γ′1,...,Γ′m,Γ′w

L
Γ1,...,Γn,Γf = wLf

with appropriate subscripts for wL in wLf . If the rank of wL
Γ1,...,Γn,Γf is

k+1, and the rank of wL
Γ′1,...,Γ′m,Γ′w

L
Γ1,...,Γn,Γf is k+1+l+m, then the rank

of wLf on the right-hand side is k+l+1. (Here we have m ≥ 2.)

(W4) For f : Γ1
∧(A ∧B)∧ . . . ∧Γn

∧(A ∧B)∧Γ ∧A∧B ` ∆ we have that

wL
Γ1,...,Γn,Γ,∅∧Lf = wL

Γ1∧...∧Γn,Γ,∅∧LwL
Γ1,...,Γn,Γ∧A∧Bf

by Semilattice Coherence. Here, the right-hand side is blocked according
to (w ∧ 1). The wL term wL

Γ1,...,Γn,Γ∧A∧Bf need not be blocked and may
be reducible, but it is of lower rank than the left-hand side (the difference
is n+1).

(W5) For f : Φ ` Ψ and g : Γ1
∧A∧ . . . ∧Γn

∧A∧Γ ` ∆ we have that

wL
Γ1,...,Γn,Γ∧Φmix (f, g) = mix (f, wL

Γ1,...,Γn,Γg)

252 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

by Semilattice Coherence and (m nat). We proceed analogously when
mix (g, f) replaces mix (f, g).

For f : Φ1
∧A∧ . . . ∧Φm

∧A∧Φ ` Ψ and g as above we have that

wL
Γ1,...,Γn,Γ∧Φ1,Φ2,...,Φm,Φmix (f, g) =

wL
Γ1∧...∧Γn,Γ∧Φ1∧...∧Φm,Φmix (wL

Φ1,...,Φm,Φf, wL
Γ1,...,Γn,Γg)

by Semilattice Coherence and (m nat). Here, the right-hand side is blocked
according to (w γ 1). The wL terms wL

Φ1,...,Φm,Φf and wL
Γ1,...,Γn,Γg need not

be blocked and may be reducible, but they are both of lower rank than the
left-hand side.

We proceed as in case (W5) when wLh is wL∧R(f, g) (one of these cases
involves a blocked wL term according to (w γ 2)). We have cases analogous
to (W5) also when wLh is wL∨L(f, g) (here we apply Semilattice Coherence
and (dL nat), and one of these cases involves a blocked wL term according
to (w γ 3)). We have three additional cases when wLh is wL∨L(f, g), which
all yield blocked wL terms according to (w ∨ 1), (w ∨ 2) and (w ∨ 3). One
of these cases is the following.

(W6) For the Gentzen terms f : Γ′1
∧(A ∨B)∧ . . . ∧Γ′n

∧(A ∨B)∧Γ′∧A ` ∆′

and g : Γ′′1
∧(A ∨B)∧ . . . ∧Γ′′m

∧(A ∨B)∧Γ′′∧B ` ∆′′ we have that

wL
Γ′1,...,Γ′n,Γ′∧Γ′′1 ,Γ′′2 ,...,Γ′′m,Γ′′,∅∨L(f, g) =

wL
Γ′1
∧...∧Γ′n,Γ′∧Γ′′1

∧...∧Γ′′m,Γ′′,∅∨L(wL
Γ′1,...,Γ′n,Γ′∧Af, wL

Γ′′1 ,...,Γ′′m,Γ′′∧Bg)

by Semilattice Coherence and (dL nat). Here, the right-hand side is blocked
according to (w ∨ 3). The wL terms wL

Γ′1,...,Γ′n,Γ′∧Af and wL
Γ′′1 ,...,Γ′′m,Γ′′∧Bg

need not be blocked and may be reducible, but they are both of lower rank
than the left-hand side.

To conclude the proof of the lemma we have only to check that the
condition on ranks is satisfied in all cases, even in those where we have not
noted the fact. a

We have an analogous definition of blocked wR terms and of reducible wR

subterms. With that, we prove for wR terms a lemma exactly analogous to
the Reducibility Lemma. As a corollary of these two Reducibility Lemmata,
we have the following lemma.

§11.2. Cut elimination in D 253

Blocked-w Lemma. Every topmost cut Γ,∆(f, g) is equal in D to a top-
most cut Γ,∆(f ′, g′) in which all wL and wR subterms tied to cut Γ,∆(f ′, g′)
are blocked.

The proof of this corollary is based on a multiset-ordering induction, which
stems from Gentzen (see [61] and [35]).

The degree of a cut is the number of occurrences of connectives (in this
case, the number of occurrences of ∧ and ∨) in the cut formula.

The complexity of a topmost cut is a pair (d, r) where d is the degree of
this cut and r is its rank. These complexities are ordered lexicographically
(i.e., we have (d1, r1) < (d2, r2) iff either d1 < d2, or d1 = d2 and r1 < r2;
cf. §7.7).

According to the Atomic-k Lemma and the Blocked-w Lemma, every
topmost cut cut Γ,∆(f, g) is equal to a topmost cut cut Γ,∆(f ′, g′) with the
same cut formula such that f ′ and g′ are k-atomized and every wL or wR

subterm of f ′ and g′ tied to cut Γ,∆(f ′, g′) is blocked. We call topmost cuts
such as cut Γ,∆(f ′, g′) clean cuts.

We can then prove the following theorem.

Cut-Elimination Theorem. For every Gentzen term t there is a cut-free
Gentzen term t′ such that t = t′ in D.

Proof. We show by induction on the complexity of clean cuts that they
are equal in D to cut-free Gentzen terms. This will suffice to prove the
theorem.

For the basis of this induction, take a clean cut of complexity (0, 2). This
means that this clean cut is of one of the forms displayed on the left-hand
side of the following equations of D:

cut ∅,∅(1′′p ,1′′p) = 1′′p ,

cut ∅,∅(1′′p , kL
p g) = kL

p g,

cut ∅,∅(kR
p f,1′′p) = kR

p f,

cut ∅,∅(kR
p f, kL

p g) = mix (f, g).

For the first three equations we use (cut 1), while the fourth holds by defi-
nition. With that, we have proved the basis of the induction.

254 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

Note that with the first three equations we proceed as Gentzen, but not
with the fourth. Instead of reducing the left-hand side of this equation to
the right-hand side, Gentzen would reduce it to a cut-free term obtained
either from f with a number of kL, cL and kR operations, or from g with a
number of kR, cR and kL operations (cf. [60], Section III.3.113.1-2). Such
reductions are, however, not supported by equations of D.

We pass now to the induction step. Suppose first that the complexity
of our clean cut is (d, 2) for d > 0. When the cut formula is of the form
A ∧B, our clean cut must be of the form

cut ∅,∅(∧R(f, g),∧Lh),

for f : Γ1 ` A ∨∆1, g : Γ2 ` B ∨∆2 and h : Γ ∧A ∧B ` ∆. Then we have in D
the equation

cut ∅,∅(∧R(f, g),∧Lh) = cR
∆,∆2,∆1,∅c

L
Γ,Γ2,Γ1,∅cut Γ2,∅(f, cut ∅,∅(g, h)).

To show that this equation holds in D, we have that, with subscripts
omitted, the left-hand side is equal to

(h∨1) ◦ ((1∧1e)∨1) ◦d ◦ (1∧(1i∨1)) ◦ (1∧ ∨e′) ◦ (1∧f ∧g) =

(h∨1) ◦d ◦ (1∧ ∨e′) ◦ (1∧f ∧g),

by (dL nat) and the fact that 1i and 1e are isomorphisms, while, again with
subscripts omitted, for the right-hand side we have

(1∨∨c) ◦ (h∨1) ◦ (d ∨1) ◦ ((1Γ
∧1∧g)∨1) ◦ ((1Γ

∧ ∧
c)∨1) ◦d ◦ (1∧f) ◦ (1∧ ∧

c) =

(h∨1) ◦ (1∨∨c) ◦ (d ∨1) ◦ ((1Γ
∧ ∧

c)∨1) ◦d ◦ (1∧ ∧
c) ◦ (1∧f ∧g),

by the bifunctorial equation (∨2) of §2.7, (∧c nat) and (dL nat). It suffices
to note now that

d ◦ (1∧ ∨e′) = (1∧ ∨
c) ◦ (d ∨1) ◦ ((1∧ ∧

c)∨1) ◦d ◦ (1∧ ∧
c)

holds by Symmetric Net Coherence of §7.6. When Γ is ∅, we have essentially
a case of the equation (∨e) of §7.6.

We replaced a clean cut cut ∅,∅(∧R(f, g),∧Lh) of complexity (d, 2) by

§11.2. Cut elimination in D 255

cR
∆,∆2,∆1,∅c

L
Γ,Γ2,Γ1,∅cut Γ2,∅(f, cut ∅,∅(g, h)).

According to the Atomic-k Lemma and the Blocked-w Lemma, the topmost
cut cut ∅,∅(g, h) is equal to a clean cut cut ∅,∅(g′, h′) of complexity (d′, r) with
d′ < d, because the cut formula is now B instead of A∧B. By the induction
hypothesis, cut ∅,∅(g′, h′) = s for a cut-free Gentzen term s. The topmost
cut cut Γ2,∅(f, s) is equal to a clean cut cut Γ2,∅(f ′, s′) of complexity (d′′, r)
with d′′ < d, because the cut formula is now A instead of A∧B. So we can
apply again the induction hypothesis.

We proceed analogously when the cut formula is of the form A ∨ B.
With that, we are over with the cases where the complexity of our clean
cut is (d, 2) for d > 0. We dealt with them in the spirit of Gentzen.

Suppose now that the complexity of our clean cut is (d, r) for r > 2,
and suppose the right rank of this clean cut is greater than 1. We proceed
analogously if the left rank is greater than 1, and we need not consider this
case separately.

Suppose first that in our clean cut cut Γ2,∆2(f, γg) the cut formula occurs
in a lower parametric basic sequence of γg. Depending on various cases for
the unary Gentzen operation γ, we want to show that one of the following
two equations holds in D:

(†) cut Γ2,∆2(f, γg) = γcut Γ′2,∆2(f, g),

(††) cut Γ2,∆2(f, γg) = cLγcut Γ′2,∆2(f, g)

for a clean cut cut Γ′2,∆2(f, g) of complexity (d, r′) with r′ = r−1. The
subscripts omitted in γ need not be the same on the two sides of (†) or
(††), and often they are not such. We have the following cases.

(1) If γ is cL, then (†) holds by Symmetric Net Coherence.

(2) If γ is cR, or kR, or wR, or ∨R, then (†) holds by the bifunctorial
equation (∨2).

(3) If γ is kL, then (††) holds. To show that, we distinguish two cases. In
both cases, we have g : Γ1

∧A∧Γ′2 ` ∆3 and kL
Bg : Γ1

∧A∧Γ′2
∧B ` ∆3 where

Γ′2
∧B is Γ2. In the first case, the basic sequence Γ1

∧Γ′2 is not ∅, and in the
second case it is ∅.

256 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

In the first case, for the left-hand side of (††) we have

(g∨1) ◦ (
∧
k1′′

Γ1∧A∧Γ′2,B
∨1) ◦ ((1∧ ∧

cΓ′2
∧B,A)∨1) ◦d ◦ (1∧(∨c ∨1)) ◦ (1∧f),

while for the right-hand side of (††) we have

(g∨1) ◦ ((1∧ ∧
c)∨1) ◦d ◦ (1∧(∨c ∨1)) ◦ (1∧f) ◦

∧
k1′′

Γ1∧Γ′2
∧Γ3,B

◦ (1∧ ∧
cB,Γ3)

= (g∨1) ◦ ((1∧ ∧
c)∨1) ◦d ◦ (1∧(∨c ∨1)) ◦

∧
k1′′

Γ1∧Γ′2
∧(∆2∨A∨∆1),B

◦

◦ (1∧ ∧
cB,∆2∨A∨∆1) ◦ (1

∧f)

= (g∨1) ◦ ((1∧ ∧
c)∨1) ◦d ◦ (1∧(∨c ∨1)) ◦ (

∧
k1′′

Γ1∧Γ′2,B
∧1∆2∨A∨∆1) ◦ (1

∧f),
by Semilattice Coherence (this step cannot be made

if Γ1
∧Γ′2 is ∅, since

∧
k1′′

Γ1∧Γ′2,B would not be defined),

= (g∨1) ◦ ((1∧ ∧
cΓ′2,A)∨1) ◦ ((

∧
k1′′

Γ1∧Γ′2,B
∧1)∨1) ◦d ◦ (1∧(∨c ∨1)) ◦ (1∧f),

which is equal to the left-hand side by Semilattice Coherence.
In the second case, when Γ1

∧Γ′2 is ∅, for the left-hand side of (††) we
have

(g∨1) ◦ (
∧
k1

A,B
∨1) ◦ (∧cB,A

∨1) ◦d ◦ (1∧(∨c ∨1)) ◦ (1∧f),

while for the right-hand side we have

(g∨1) ◦ (∨c ∨1) ◦ f ◦
∧
k1′′

Γ3,B
◦
∧
cB,Γ3

= (g∨1) ◦
∧
k2′′

B,A∨∆2∨∆1
◦ (1∧(∨c ∨1)) ◦ (1∧f)

= (g∨1) ◦ (
∧
k2′′

B,A
∨1∆2∨∆1) ◦dB,A,∆2∨∆1

◦ (1∧(∨c ∨1)) ◦ (1∧f), by (d
∧
k),

which is equal to the left-hand side by (∧c
∧
k) (see §9.1).

(4) If γ is wL or ∧L, then (†) holds by various bifunctorial and naturality
equations.

Suppose next that in our clean cut cut Γ2,∆2(f, γ(g, h)), the cut formula
A occurs in a lower parametric basic sequence of γ(g, h) (here, γ is a binary
Gentzen operation).

(5) If γ is mix , then for f : Γ3 ` ∆2
∨A ∨∆1, g : Γ′′2 ` ∆′′

3 and h : Γ1
∧A∧Γ′2 `

∆′
3 we have in D the equation

§11.2. Cut elimination in D 257

cut Γ′2
∧Γ′′2 ,∆2(f,mix (g, h)) =

cR
∆′3,∆2∨∆1,∆′′3 ,∅c

L
Γ1∧Γ′2,Γ3,Γ′′2 ,∅mix (g, cut Γ′2,∆2(f, h)),

where the complexity of the clean cut cut Γ′2,∆2(f, h) is (d, r′) with r′ = r−1.
By bifunctorial and naturality equations, the left-hand side of this equa-

tion is equal to (h∨1) ◦LHS ∗ ◦ (1∧g ∧f) where

LHS ∗ = (mΓ1∧A∧Γ′2,∆′′3
∨1) ◦ ((1∧ ∧

c)∨1) ◦d ◦ (1∧(∨c ∨1)),

while the right-hand side is equal to (h∨1) ◦RHS ∗ ◦ (1∧g ∧f) where

RHS ∗ = (1∨ ∨
c) ◦ ((1∧ ∧

c)∨1) ◦ (d ∨1) ◦ ((1∧(∨c ∨1))∨1) ◦

◦mΓ1∧Γ′2
∧(∆2∨A∨∆1),∆′′3

◦ (1∧ ∧
c).

We have LHS ∗ = RHS ∗ by Mix-Symmetric Net Coherence of §8.4. We
proceed analogously if g and h have types interchanged.

(6) If γ is ∧R, then we have in D one of the following two equations:

cut (f,∧R(g, h)) = cRcL∧R(cut (f, g), h),

cut (f,∧R(g, h)) = ∧R(g, cut (f, h)),

where the complexity of the clean cuts cut (f, g) and cut (f, h) is (d, r′)
with r′ = r−1, and appropriate subscripts are assigned to cut. Both of
these equations are justified by Symmetric Net Coherence. We proceed
analogously if γ is ∨L.

With that, we are over with the cases of a clean cut cut Γ2,∆2(f, γg) or
cut Γ2,∆2(f, γ(g, h)) of complexity (d, r) with r > 2 where the cut formula
occurs in a lower parametric basic sequence of γg or γ(g, h). All these cases
are dealt with in the spirit of Gentzen, except for the case with mix , which
Gentzen did not envisage.

Now we proceed with the cases of complexity (d, r) with r > 2 where
the cut formula does not occur in this manner in a lower parametric basic
sequence. Then our clean cut must be of the form cut (f, wLg) with blocked
wLg tied to our clean cut, and we have to go through the cases (w γ 1),
(w γ 2), . . . , (w ∨ 3) for blocked wL terms.

(w γ 1) For f : Γ′1
∧C∧Γ′2 ` ∆′, g : Γ′′1

∧C∧Γ′′2 ` ∆′′ and h : Γ ` ∆1
∨C ∨∆2,

where Γ′ is Γ′1
∧Γ′2, while Γ′′ is Γ′′1

∧Γ′′2 , and ∆ is ∆1
∨∆2, we have in D the

equation

258 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

cut Γ′′2 ,∆1(h,wL
Γ′1,Γ′2

∧Γ′′1 ,Γ′′2
mix (g, f)) =

cR
∆′,∆,∆′′,∅w

R∆
∆′,∆′′,∅w

LΓ
Γ′,Γ′′,∅mix (cut Γ′′2 ,∆1(h, g), cut Γ′2,∆1(h, f)),

where the complexity of the clean cut cut Γ′2,∆1(h, f) is (d, r′) with r′ < r,
and analogously for the clean cut cut Γ′′2 ,∆1(h, g).

If f ′ : Γ′∧C ` ∆′ is f ◦ (1∧ ∧
cΓ′2,C), while g′ : Γ′′∧C ` ∆′′ is g ◦ (1∧ ∧

cΓ′′2 ,C),
and h′ is (∨cC,∆1

∨1) ◦h, then, by Semilattice Coherence and bifunctorial and
naturality equations, the left-hand side of our equation is equal to

(m∆′,∆′′
∨1) ◦ ((f ′ ∧g′)∨1) ◦LHS ∗ ◦ (1∧h′)

where LHS ∗ is ((1Γ′
∧ ∧

cΓ′′,C
∧1C)∨1∆) ◦ ((1∧ ∧

wC)∨1) ◦d, while the right-
hand side is equal to

(1∨ ∨
w∆) ◦ (1∆′

∨ ∨
c∆′′,∆

∨1∆) ◦m∆′∨∆,∆′′∨∆ ◦ ((f ′ ∨1)∧(g′ ∨1)) ◦ (d ∧d) ◦
◦ (1∧ ∧

c ∧1) ◦ (1∧ ∧
wC∨∆) ◦ (1∧h′).

By the equation (m ∨
cm) of the preceding section, we have

(1∆′
∨ ∨

c∆′′,∆
∨1∆) ◦m∆′∨∆,∆′′∨∆ = (m∆′,∆′′

∨1∆∨∆) ◦ ∨e′∆′,∆′′,∆,∆.

So the right-hand side is equal to

(m∆′,∆′′
∨1) ◦ ((f ′ ∧g′)∨1) ◦RHS ∗ ◦ (1∧h′)

where

RHS ∗ = (1∨ ∨
w∆) ◦ ∨e′Γ′∧C,Γ′′∧C,∆,∆

◦ (d ∧d) ◦ (1∧ ∧
c ∧1) ◦ (1∧ ∧

wC∨∆)

= (1∨ ∨
w∆) ◦ ∨e′ ◦ (d ∧d) ◦ (1∧ ∧

c ∧1) ◦ (1∧ck) ◦ (1∧(1∨ ∧
w∆)) ◦

◦ (1∧(∧wC
∨1)), by Lattice Coherence, provided ∆ is not ∅,

= (1∨ ∨
w∆) ◦ ((1∧ ∧

c ∧1)∨1) ◦d ◦ (1∧ ∨e′) ◦ (1∧ck) ◦ (1∧(1∨ ∧
w∆)) ◦

◦ (1∧(∧wC
∨1)), by Symmetric Net Coherence,

= (1∨ ∨
w∆) ◦ ((1∧ ∧

c ∧1)∨1) ◦d ◦ (1∧(1∨m∆,∆)) ◦ (1∧(1∨ ∧
w∆)) ◦

◦ (1∧(∧wC
∨1)), by (m ∨

e),

= ((1∧ ∧
c ∧1)∨1) ◦d ◦ (1∧(∧wC

∨1)), by bifunctorial and naturality
equations, and (wm),

= LHS ∗, by (dL nat).

§11.2. Cut elimination in D 259

If ∆ is ∅, then LHS ∗ = RHS ∗ by Semilattice Coherence.

(w γ 2) For f : Γ′1
∧C∧Γ′2 ` A ∨∆′, g : Γ′′1

∧C∧Γ′′2 ` B ∨∆′′ and h : Γ `
∆1

∨C ∨∆2, with Γ′, Γ′′ and ∆ as in (w γ 1), we have in D the equation

cut Γ′′2 ,∆1(h,wL
Γ′1,Γ′2

∧Γ′′1 ,Γ′′2
∧R(f, g)) =

cR
A∧B ∨∆′,∆,∆′′,∅w

R∆
A∧B ∨∆′,∆′′,∅w

LΓ
Γ′,Γ′′,∅∧R(cut Γ′2,∆1(h, f), cut Γ′′2 ,∆1(h, g)),

where the complexity of the clean cut cut Γ′2,∆1(h, f) is (d, r′) with r′ < r,
and analogously for the clean cut cut Γ′′2 ,∆1(h, g).

For f ′ : Γ′∧C ` A ∨∆′, g′ : Γ′′∧C ` B ∨∆′′ and h′ : Γ ` C ∨∆ defined as in
(w γ 1), we have by Semilattice Coherence and bifunctorial and naturality
equations that the left-hand side of our equation is equal to

(1i
A∧B

∨1) ◦ (∨e′A,B,∆′,∆′′
∨1) ◦ ((f ′ ∧g′)∨1) ◦LHS ∗ ◦ (1∧h′)

where LHS ∗ is ((1∧ ∧
c ∧1)∨1) ◦ ((1∧ ∧

wC)∨1) ◦d, while the right-hand side is
equal to

(1∨ ∨
w∆) ◦ (1∨ ∨

c ∨1) ◦ (1i∨1) ◦ ∨e′A,B,∆′∨∆,∆′′∨∆
◦ ((f ′ ∨1)∧(g′ ∨1)) ◦ (d ∧d) ◦

◦ (1∧h′∧1∧h′) ◦ (1∧ ∧
c ∧1) ◦ (1∧ ∧

wΓ).

We have by Symmetric Net Coherence that

∨
e′A,B,∆′∨∆,∆′′∨∆ = (1(A∧B)∨∆′

∨ ∨
c∆,∆′′

∨1∆) ◦ (∨e′A,B,∆′,∆′′
∨1∆∨∆) ◦

◦
∨
e′A∨∆′,B∨∆′′,∆,∆.

Then, by bifunctorial and naturality equations, and (∨c ∨c) (see the List of
Equations), the right-hand side is equal to

(1i
A∧B

∨1) ◦ (∨e′A,B,∆′,∆′′
∨1) ◦ ((f ′ ∧g′)∨1) ◦RHS ∗ ◦ (1∧h′)

where

RHS ∗ = (1∨ ∨
w∆) ◦ ∨e′Γ′∧C,Γ′′∧C,∆,∆

◦ (d ∧d) ◦ (1∧ ∧
c ∧1) ◦ (1∧ ∧

wC∨∆)

= LHS ∗, as in (w γ 1).

(w γ 3) For f : Γ′1
∧C∧Γ′2

∧A ` ∆′, g : Γ′′1
∧C∧Γ′′2

∧B ` ∆′′ and h : Γ `
∆1

∨C ∨∆2, with Γ′, Γ′′ and ∆ as in (w γ 1), we have in D the equation

260 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

cut Γ′′2
∧A∨B,∆1(h,wL

Γ′1,Γ′2
∧Γ′′1 ,Γ′′2

∧A∨B∨L(f, g)) =

cL
Γ′∧Γ′′,Γ,A∨B,∅c

R
∆′,∆,∆′′,∅w

R∆
∆′,∆′′,∅w

LΓ
Γ′,Γ′′,A∨B

∨L(cL
Γ′,A,Γ,∅cut Γ′2

∧A,∆1(h, f), cL
Γ′′,B,Γ,∅cut Γ′′2

∧B,∆1(h, g)),

where the complexity of the clean cut cut Γ′2
∧A,∆1(h, f) is (d, r′) with r < r′,

and analogously for the clean cut cut Γ′′2
∧B,∆1(h, g).

For h′ : Γ ` C ∨∆ defined as in (w γ 1), we have by Semilattice Coherence
and bifunctorial and naturality equations that the left-hand side of our
equation is equal to

(f ∨g∨1) ◦LHS ∗ ◦ (1∧h′) ◦ (1∧1e
A∨B

∧1)

where LHS ∗ is (∧e′∨1) ◦ ((1∧ ∧
c ∧1)∨1) ◦ ((1∧ ∧

c)∨1) ◦d ◦ (1∧(∧wC
∨1)), while

the right-hand side is equal to

(f ∨g∨1) ◦RHS ∗ ◦ (1∧h′) ◦ (1∧1e
A∨B

∧1)

where

RHS ∗ = (1∨ ∨
w∆) ◦ (1∨ ∨

c ∨1) ◦ ((1∧ ∧
c)∨1∨(1∧ ∧

c)∨1) ◦ (d ∨d) ◦

◦ ((1∧ ∧
c)∨(1∧ ∧

c)) ◦ ∧e′ ◦ (1∧ ∧
c) ◦ (1∧ ∧

c ∧1) ◦ (1∧ ∧
wC∨∆)

= (1∨ ∨
w∆) ◦ (∧e′∨1) ◦ ((1∧ ∧

c ∧1)∨1) ◦ ((1∧ ∧
c)∨1) ◦d ◦ (1∧ ∨e′) ◦

◦ (1∧ ∧
wC∨∆), by Symmetric Net Coherence,

= (1∨ ∨
w∆) ◦ (∧e′∨1) ◦ ((1∧ ∧

c ∧1)∨1) ◦ ((1∧ ∧
c)∨1) ◦d ◦ (1∧ ∨e′) ◦

◦ (1∧ck) ◦ (1∧(1∨ ∧
w∆)) ◦ (1∧(∧wC

∨1)),
by Lattice Coherence, provided ∆ is not ∅,

= LHS ∗, by (m ∨
e), (wm) and bifunctorial and naturality equations

(cf. the case (w γ 1)).

If ∆ is ∅, then we obtain that LHS ∗ = RHS ∗ by Semilattice Coherence, in
a simplified version of the derivation above.

(w ∧ 1) For f : Γ′1
∧A ∧ B∧Γ′2

∧A∧B ` ∆′ and h : Γ ` ∆1
∨A ∧ B∨∆2, with

Γ′ and ∆ as in (w γ 1), we have in D the equation

cut ∅,∆1(h,wL
Γ′1,Γ′2,∅∧Lf) =

wR∆
∆′,∅,∅w

LΓ
Γ′,∅,∅cut ∅,∆1(h,∧LcL

Γ′,A∧B,Γ,∅cut Γ2∧A∧B,∆1(h, f)),

§11.2. Cut elimination in D 261

where the complexity of the clean cut cut Γ2∧A∧B,∆1(h, f) is (d, r′) with
r′ < r.

Then, by the induction hypothesis, cut Γ2∧A∧B,∆1(h, f) = f ′, for a cut-
free Gentzen term f ′, which by the Atomic-k Lemma we may assume to be
k-atomized. (As a matter of fact, our procedure of cut elimination is such
that it produces out of a clean cut a k-atomized cut-free Gentzen term.)
The topmost cut cut ∅,∆1(h,∧LcL

Γ′,A∧B,Γ,∅f
′), whose right rank is 1, is clean,

and its complexity is (d, r′) with r′ < r.
To justify the equation displayed above, we proceed as follows. For

h′ : Γ ` A ∧ B ∨∆ defined as in (w γ 1), we have by Semilattice Coherence
and bifunctorial and naturality equations that the left-hand side of our
equation is equal to

(f ∨1) ◦ ((1∧1e
A∧B)∨1) ◦LHS ∗ ◦ (1∧h′),

where LHS ∗ is ((1∧ ∧
c ∧1)∨1) ◦d ◦ (1∧(∧wA∧B

∨1)), while the right-hand side
is equal to

(f ∨1) ◦ ((1∧1e
A∧B)∨1) ◦RHS ∗ ◦ (1∧h′)

where

RHS ∗ = (1∨ ∨
w∆) ◦ ((1∧ ∧

c)∨1) ◦ (d ∨1) ◦ ((1∧ ∧
c)∨1) ◦d ◦ (1∧ ∧

wA∧B ∨∆)

= (1∨ ∨
w∆) ◦ ((1∧ ∧

c ∧1)∨1) ◦d ◦ (1∧ ∨e′) ◦ (1∧ ∧
wA∧B ∨∆),

by Symmetric Net Coherence,

= (1∨ ∨
w∆) ◦ ((1∧ ∧

c ∧1)∨1) ◦d ◦ (1∧ ∨e′) ◦ (1∧ck) ◦ (1∧(1∨ ∧
w∆)) ◦

◦ (1∧(∧wA∧B
∨1)), by Lattice Coherence, provided ∆ is not ∅,

= LHS ∗, by (m ∨
e), (wm) and bifunctorial and naturality equations

(cf. the case (w γ 1)).

If ∆ is ∅, then we obtain that LHS ∗ = RHS ∗ by Semilattice Coherence, in
a simplified version of the derivation above.

(w ∨ 1) For f : Γ′1
∧A ∨ B∧Γ2

∧A ` ∆′, g : Γ′′∧B ` ∆′′ and h : Γ `
∆1

∨A ∨B ∨∆2, with Γ′ and ∆ as in (w γ 1), we have in D the equation

cut ∅,∆1(h,wL
Γ′1,Γ′2

∧Γ′′,∅∨L(f, g)) =

cR
∆′,∆,∆′′,∅w

R∆
∆′,∆′′,∅w

LΓ
Γ′,Γ′′,∅cut ∅,∆1(h,∨L(cL

Γ′,A,Γ,∅cut Γ′2
∧A,∆1(h, f), g)),

262 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

where the complexity of the clean cut cut Γ′2
∧A,∆1(h, f) is (d, r′) with r′ < r.

Then, by the induction hypothesis, cut Γ′2
∧A,∆1(h, f) = f ′ for a cut-free

Gentzen term f ′, which by the Atomic-k Lemma we may assume to be
k-atomized. The topmost cut cut ∅,∆1(h,∨L(cL

Γ′,A,Γ,∅f
′, g)), whose rank is

1, is clean, and its complexity is (d, r′) with r′ < r.
To justify the equation displayed above, we proceed as follows. For

h′ : Γ ` A ∨ B ∨∆ defined as in (w γ 1), we have by Semilattice Coherence
and bifunctorial and naturality equations that the left-hand side of our
equation is equal to (f ∨g∨1) ◦LHS ∗ ◦ (1∧h′) where LHS ∗ is

(∧e′∨1)((1∧ ∧
c ∧1)∨1) ◦d ◦ (1∧((1∧1e

A∨B)∨1)) ◦ (1∧(∧wA∨B
∨1)),

while the right-hand side is equal to (f ∨g∨1) ◦RHS ∗ ◦ (1∧h′) where

RHS ∗ = (1∨ ∨
w∆) ◦ (1∨ ∨

c ∨1) ◦ ((1∧ ∧
c)∨1) ◦ (d ∨1) ◦ ((1∧ ∧

c)∨1) ◦ (∧e′∨1) ◦d ◦

◦ (1∧ ∧
c ∧1) ◦ (1∧(1e

A∨B
∨1)) ◦ (1∧ ∧

wA∨B ∨∆)

= (1∨ ∨
w∆) ◦ (∧e′∨1) ◦ ((1∧ ∧

c ∧1)∨1) ◦d ◦ (1∧ ∨e′) ◦ (1∧(1e
A∨B

∨1)) ◦
◦ (1∧ ∧

wA∨B ∨∆), by Symmetric Net Coherence,

= (1∨ ∨
w∆) ◦ (∧e′∨1) ◦ ((1∧ ∧

c ∧1)∨1) ◦d ◦ (1∧ ∨e′) ◦ (1∧(1e
A∨B

∨1)) ◦
◦ (1∧ck) ◦ (1∧(1∨ ∧

w∆)) ◦ (1∧(∧wA∨B
∨1)),

by Lattice Coherence, provided ∆ is not ∅,
= LHS ∗, by (m ∨

e), (wm) and bifunctorial and naturality equations
(cf. the case (w γ 1)).

If ∆ is ∅, then we obtain that LHS ∗ = RHS ∗ by Semilattice Coherence, in
a simplified version of the derivation above.

We proceed analogously in the case (w ∨ 2).

(w ∨ 3) For f : Γ′1
∧A ∨ B ∧Γ′2

∧A ` ∆′, g : Γ′′1
∧A ∨ B ∧Γ′′2

∧B ` ∆′′ and
h : Γ ` ∆1

∨A ∨ B ∨∆2, with Γ′, Γ′′ and ∆ as in (w γ 1), we have in D the
equation

cut ∅,∆1(h,wL
Γ′1,Γ′2

∧Γ′′1 ,Γ′′2 ,∅∨L(f, g)) = cR
∆′,∆,∆′′,∅w

R∆
∆′,∆′′,∅,∅w

LΓ
Γ′,Γ′′,∅,∅

cut ∅,∆1(h,∨L(cL
Γ′,A,Γ,∅cut Γ′2

∧A,∆1(h, f), cL
Γ′′,B,Γ,∅cut Γ′′2

∧B,∆1(h, g)),

where the complexity of the clean cut cut Γ′2
∧A,∆1(h, f) is (d, r′) with r′ < r,

and analogously for the clean cut cut Γ′′2
∧B,∆1(h, g).

§11.3. Coherence of distributive lattice categories 263

Then, by the induction hypothesis, these two cuts are equal to the cut-
free Gentzen terms f ′ and g′, respectively, which by the Atomic-k Lemma
we may assume to be k-atomized. The topmost cut

cut ∅,∆1(h,∨L(cL
Γ′,A,Γ,∅f

′, cL
Γ′′,B,Γ,∅g

′)),

whose right rank is 1, is clean, and its complexity is (d, r′) with r′ < r.
To justify the equation displayed above we proceed as follows. For

h′ : Γ ` A ∨ B ∨∆ defined as in (w γ 1), we have by Semilattice Coherence
and bifunctorial and naturality equations that the left-hand side of our
equation is equal to (f ∨g∨1) ◦LHS ∗ ◦ (1∧h′) where LHS ∗ is

(∧e′∨1) ◦ ((1∧ ∧
c ∧1)∨1) ◦ ((1∧ ∧

c ∧1)∨1) ◦d ◦ (1∧((1∧1e
A∨B)∨1)) ◦

◦ (1∧((1∧ ∧
wA∨B)∨1)) ◦ (1∧(∧wA∨B

∨1)),

while the right-hand side is equal to (f ∨g∨1) ◦RHS ∗ ◦ (1∧h′) where

RHS ∗ = (1∨ ∨
w∆) ◦ (1∨ ∨

w∆) ◦ (1∨ ∨
c ∨1) ◦ ((1∧ ∧

c)∨1∨(1∧ ∧
c)∨1) ◦ (d ∨d ∨1) ◦

◦ ((1∧ ∧
c)∨(1∧ ∧

c)∨1) ◦ (∧e′∨1) ◦d ◦ (1∧ ∧
c ∧1) ◦ (1∧(1e

A∨B
∨1)) ◦

◦ (1∧ ∧
wA∨B ∨∆) ◦ (1∧ ∧

wA∨B ∨∆)

= (1∨ ∨
w∆) ◦ (1∨ ∨

w∆) ◦ (∧e′∨1) ◦ ((1∧ ∧
c ∧1)∨1) ◦ ((1∧ ∧

c ∧1)∨1) ◦d ◦

◦ (1∧ ∨e′) ◦ (1∧ ∨e′) ◦ (1∧(1e
A∨B

∨1)) ◦ (1∧ ∧
wA∨B ∨∆) ◦ (1∧ ∧

wA∨B ∨∆),
by Symmetric Net Coherence,

= LHS ∗, by Lattice Coherence, (m ∨
e), (wm) and bifunctorial and

naturality equations, provided ∆ is not ∅ (cf. the case (w γ 1)).

If ∆ is ∅, then we obtain that LHS ∗ = RHS ∗ by Semilattice Coherence, in
a simplified version of the derivation above.

Note that the cases (w γ 2), (w γ 3), (w∧ 1), (w∨ 1), (w∨ 2) and (w∨ 3)
are dealt with in the spirit of Gentzen. The case (w γ 1), which involves
mix, was not envisaged by him. This concludes the proof. a

§11.3. Coherence of distributive lattice categories

The essential ingredient in our proof of coherence for the category DL is
the Cut-Elimination Theorem of the preceding section. Another ingredient
is Restricted Mix-Lattice Coherence of §10.2. Before proving coherence for

264 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

DL, we consider some matters that serve to connect DL with the category
ML, but are also of an independent interest.

With the abbreviations

∧
sA,C,D =df

∧
e′A,A,C,D

◦ (∧wA ∧ 1C∨D) : A ∧ (C ∨D) ` (A ∧ C) ∨ (A ∧D),
∨
sD,C,A =df (1D∧C ∨ ∨

wA) ◦ ∨e′D,C,A,A : (D ∨A) ∧ (C ∨A) ` (D ∧ C) ∨A,

∧
tA,C,D =df (∨wA ∧ 1C∨D) ◦ ck

A,C,A,D : (A ∧ C) ∨ (A ∧D) ` A ∧ (C ∨D),
∨
tD,C,A =df ck

D,C,A,A
◦ (1D∧C ∨ ∧

wA) : (D ∧ C) ∨A ` (D ∨A) ∧ (C ∨A),

we obtain the following equations in DL as an immediate consequence of
(m ∧

e), (m ∨
e) and (wm):

∧
tA,C,D

◦ ∧
sA,C,D = 1A∧(C∨D),

∨
sD,C,A

◦
∨
tD,C,A = 1(D∧C)∨A.

This means that ∧
sA,C,D is a right inverse (i.e. section) of

∧
tA,C,D, while

∨
sD,C,A is a left inverse (i.e. retraction) of

∨
tD,C,A (see [100], Section I.5). It

is easy to see that
∧
tA,C,D and ∧

sA,C,D are not inverse to each other in DL,

since G(∧sA,C,D
◦
∧
tA,C,D) is different from G(1(A∧C)∨(A∧D)); analogously,

∨
tD,C,A and ∨

sD,C,A are not inverse to each other. The types of the arrow
terms in the families ∧

s and ∨
s give what is usually called distribution of ∧

over ∨ and distribution of ∨ over ∧. However, these arrow terms do not
stand for isomorphisms in DL.

For every formula A of L∧,∨, let Adnf be any formula of L∧,∨ in dis-
junctive normal form (dnf ; see §10.2) such that there is an arrow term
∧
tA: Adnf ` A of C(L) and an arrow term ∧

sA: A ` Adnf of C(DL) for which
in DL we have

∧
tA ◦ ∧

sA = 1A. (We do not require the uniqueness of
∧
tA and

∧
sA, as we did not require the uniqueness of Adnf.) That for every formula
A of L∧,∨ there is a formula Adnf is shown by an easy induction on the
number of occurrences of ∨ in the scope of an occurrence of ∧.

Dually, for every formula A of L∧,∨, let Acnf be any formula in con-
junctive normal form (cnf ; see §10.2) such that there is an arrow term
∨
tA: A ` Acnf of C(L) and an arrow term ∨

sA: Acnf ` A of C(DL) for which

§11.3. Coherence of distributive lattice categories 265

in DL we have ∨
sA ◦

∨
tA = 1A. That for every formula A of L∧,∨ there is a

formula Acnf is shown by an easy induction, as above.

For ξ ∈ {∧,∨}, the arrow terms
ξ

t
A are built out of arrow terms of the

form
ξ

tB,C,D and arrow terms of C(S) with the help of the operations ∧, ∨
and ◦ on arrow terms, while the arrow terms

ξ

sA are built out of arrow terms
of the form

ξ

sB,C,D and arrow terms of C(S) with the help of the operations
∧, ∨, and ◦ on arrow terms. For example, if A is p∧ ((q ∨ (r∧ s))∨ q), and
Adnf is ((p∧ q)∨ ((p∧ r)∧ s))∨ (p∧ q) (this is the source of the arrow term
γ we had as an example in §10.2), then we can take that

∧
tA is

∧
tp,q∨(r∧s),q

◦ (
∧
tp,q,r∧s ∨1p∧q) ◦ ((1p∧q ∨

∧
b←p,r,s) ∨ 1p∧q),

while ∧
sA is

((1p∧q ∨
∧
b→p,r,s) ∨ 1p∧q) ◦ (

∧
sp,q,r∧s ∨ 1p∧q) ◦

∧
sp,q∨(r∧s),q .

It is easy to verify, by referring to definitions, that a cut-free Gentzen
term of D of the type A ` B for A in L∧ and B in L∨ denotes an arrow
(f, A,B) of D such that f is an arrow term of C(ML). As a consequence
of that and of the Cut-Elimination Theorem of the preceding section, we
obtain the following.

Proposition. For A in L∧ and B in L∨, every arrow term of C(DL) of
type A ` B is equal in DL to an arrow term of C(ML).

Then we can prove the following lemma, which appeals to the notion of
settled normal form of §10.2.

Normal-Form Lemma. Every arrow term f : Adnf ` Bcnf of C(DL) is
equal in DL to an arrow term of C(GML) in settled normal form.

Proof. As in the proof of the Normal-Form Lemma of §10.2, we make
an induction on the number of occurrences of ∨ in A and ∧ in B. If there
are no such occurrences of ∧ and ∨, then we apply the Proposition above
and the Normal-Form Lemma of §10.2. For the remainder of the proof we
proceed as in the proof of that lemma in §10.2. a

Then we can prove the following.

266 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

Distributive Lattice Coherence. The functor G from DL to Rel is
faithful.

Proof. Suppose f, g : A ` B are arrow terms of C(DL). If Gf = Gg, then
G(

∨
tB ◦ f ◦

∧
tA) = G(

∨
tB ◦ g ◦

∧
tA). By the Normal-Form Lemma above, we

have in DL that
∨
tB ◦ f ◦

∧
tA = f ′ and

∨
tB ◦ g ◦

∧
tA = g′ for f ′ and g′ arrow

terms of C(ML). By Restricted Mix-Lattice Coherence of §10.2, we have
that f ′ = g′ in ML, and hence also in DL. So in DL we have

∨
sB ◦

∨
tB ◦ f ◦

∧
tA ◦ ∧

sA = ∨
sB ◦

∨
tB ◦ g ◦

∧
tA ◦ ∧

sA,

and hence f = g. a

A logical system synonymous with C(DL) may be obtained by taking
∧
e or ∧

e′ as primitive transformations instead of d, since in DL we have the
equation

dA,B,C = (1A∧B ∨
∧
k2

A,C) ◦ ∧e′A,A,B,C
◦ (∧wA ∧ 1B∨C),

which can easily be checked by Distributive Lattice Coherence. Analo-
gously, we could take ∨

e or ∨
e′ as primitive, since in DL we have

dC,B,A = (1C∧B ∨ ∨
wA) ◦ ∨e′C,B,A,A

◦ (
∨
k1

C,A ∧ 1B∨A).

Alternative primitive transformations are ∧
s and ∨

s , whose members occur
in the two equations above. With such alternative primitives, however, we
have not managed to find an axiomatization simpler than what we have for
E(DL) and E(DL′).

A primitive of the same type as ∧
s was considered in [91] and [92] as an

addition to S>,⊥ extended with the isomorphism of A ∧ ⊥ with ⊥. In the
presence of this isomorphism, we cannot expect coherence with respect to
Rel with a functor such as our functors G. The coherence result of [91] is
a restricted coherence result in the sense of preorder, while the coherence
result of [92] is a result about a faithful functor into Rel, which differs from
our functor G with respect to ∧. The equations of those papers without >
and ⊥ hold, however, in DL.

If to E(DL) we add the equation ∧
sA,C,D

◦
∧
tA,C,D = 1(A∧C)∨(A∧D) or

the equation
∨
tD,C,A

◦ ∨
sD,C,A = 1(D∨A)∧(C∨A), then we can derive that all

§11.3. Coherence of distributive lattice categories 267

arrow terms of the same type are equal. Here is a proof of that fact for the
first equation. (We proceed analogously with the second equation.)

We have that

α = ∧
sA,B,B

◦
∧
tA,B,B = 1(A∧B)∨(A∧B),

β = (∧cB,A ∨ ∧
cB,A) ◦ ∧

sB,A,A
◦
∧
tB,A,A

◦ (∧cA,B ∨ ∧
cA,B) = 1(A∧B)∨(A∧B).

So α ∪ β = 1(A∧B)∨(A∧B), by (∪ idemp). By Distributive Lattice Coher-
ence, we infer that

[
∨
k1

A∧B,A∧B ∪ ∨
k2

A∧B,A∧B ,
∨
k1

A∧B,A∧B ∪ ∨
k2

A∧B,A∧B] = 1(A∧B)∨(A∧B);

therefore, with (∨β) (see the List of Equations), we have

∨
k1

A∧B,A∧B =
∨
k1

A∧B,A∧B ∪ ∨
k2

A∧B,A∧B =
∨
k2

A∧B,A∧B .

For f, g : A ` B, we have

[f ∧ 1A, g ∧ 1A] ◦
∨
k1

A∧A,A∧A = [f ∧ 1A, g ∧ 1A] ◦
∨
k2

A∧A,A∧A

f ∧ 1A = g ∧ 1A, by (∨β),

f ◦
∧
k1

A,A = g ◦
∧
k1

A,A, by (
∧
k1 nat),

from which we infer f = g with (∧w
∧
k) (see §9.1). So

ξ

s and
ξ

t cannot be
inverses of each other in the context of DL without preorder, i.e. triviality.
(For a result of the same kind, see [22], Proposition 3.1.)

The category Set of sets with functions is a lattice category with ∧ being
cartesian product × and ∨ being disjoint union + (cf. §9.6). Products and
coproducts are unique up to isomorphism (see [100], Sections IV.1-2), and
so there is no alternative lattice-category structure in Set. Since Set is,
of course, not a preorder, we can conclude, according to what we said
above, that it is not a distributive lattice category with ∧

sa,b,c: a× (b + c) `
(a×b)+(a×c) and

∧
ta,b,c: (a×b)+(a×c) ` a×(b+c) being identity arrows.

With da,b,c defined as (1a×b ∨
∧
k2

a,c) ◦
∧
sa,b,c, the equation (d

∨
b) of §7.2 does

not hold in Set, as noted in [22] (Section 3; the remaining specific equations
of E(DA) hold in Set). At the same place, an argument is presented that

268 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

Set with ∧ and ∨ being × and + cannot satisfy (d
∨
b) for any definition of

dL and dR. Here is another argument to the same effect.
The category Set is not a distributive lattice category. If it were that,

then we would have in it for every set a a function ma,a : a × a → a + a

that satisfies the following instance of the equation (cm) of §8.4:

ma,a ◦
∧
ca,a = ∨

ca,a ◦ma,a.

If a = {x}, then, since a× a = {(x, x)} is a terminal object, we obtain

ma,a = ∨
ca,a ◦ma,a.

There are only two functions from a × a to a + a = {(x, ∗), (∗, x)}, and
none of them satisfies the last equation, because ∨

ca,a (x, ∗) = (∗, x) and
∨
ca,a (∗, x) = (x, ∗). This argument shows also that Set is not a mix-lattice
category.

§11.4. Legitimate relations

At the end of §9.2, we made a brief comment on the image under the
functor G of the categories

∧
L> and

∧
L. Once we have proved Distributive

Lattice Coherence, it is of some interest to consider the image under G of
the category DL. We will devote the present section to this matter.

For A and B formulae of L∧,∨, we will say that a relation R ⊆ GA×GB

is legitimate when there is an arrow term f : A ` B of C(DL) such that
Gf = R. We will prove two propositions that will enable us to decide
whether a relation is legitimate.

For k and l finite ordinals, let k+l be the set {n+ l | n ∈ k}. Other
notions mentioned in the statements and proofs of our two propositions are
defined in the preceding section and in §10.2.

Proposition 1. In GAdnf = k1 + . . . + kn, for n ≥ 1, and GBcnf =
l1 + . . . + lm, for m ≥ 1, let ki, for i ∈ {1, . . . , n}, be GAi for a minimal
disjunct Ai of Adnf, and let lj, for j ∈ {1, . . . , m}, be GBj for a minimal
conjunct Bj of Bcnf. Then a relation R ⊆ GAdnf × GBcnf is legitimate
iff for every i ∈ {1, . . . , n} and every j ∈ {1, . . . , m} the relation R ∩
(k+k1+...+ki−1

i × l
+l1+...+lj−1
j) is not empty.

§11.4. Legitimate relations 269

Proof. Suppose R is legitimate; i.e., there is an arrow term f : Adnf ` Bcnf

of C(DL) such that Gf = R. By the Normal-Form Lemma of the preced-
ing section, f is equal in DL to an arrow term of C(GML) in normal
form. Then the molecular correspondence (see §10.2) is enough to prove
the proposition from left to right, because for every molecular component
f ′ we have that Gf ′ is not empty. For the other direction, we build out
of the relations R ∩ (k+k1+...+ki−1

i × l
+l1+...+lj−1
j) arrow terms of C(GML)

in bracket-free normal form, which we then combine, as molecular compo-
nents, to build an f in normal form such that Gf = R. a

We can check that the relation Gγ, which we have drawn in §10.2,
satisfies the condition equivalent to legitimacy stated in Proposition 1. For
example, for the couple (A2, B3) we have {(2, 3), (2, 4)} ⊆ Gγ ∩ (3+2 ×
3+1+2). The molecular component of γ corresponding to (A2, B3) is β3∪β4.

For the second of our two propositions, remember that, according to
the definition of §2.9, we write composition of relations from right to left,
as composition of functions.

Proposition 2. The relation R ⊆ GA × GB is legitimate iff the relation
G

∨
tB ◦R ◦G

∧
tA ⊆ GAdnf ×GBcnf is legitimate.

Proof. The left-to-right direction of the proposition is trivial. For the
other direction, suppose G

∨
tB ◦R ◦G

∧
tA is legitimate. Then

G
∨
sB ◦G

∨
tB ◦R ◦G

∧
tA ◦G

∧
sA,

which is equal to R, is legitimate. a

By combining Propositions 1 and 2 we can decide whether any relation
R ⊆ GA×GB is legitimate.

For the maximal relation Rmax ⊆ GA×GB we have (i, j) ∈ Rmax when
the i+1-th occurrence of letter in A (counting from the left) and the j+1-th
occurrence of letter in B are occurrences of the same letter. For γ : A ` B

being our arrow term of §10.2, we have that Gγ is not Rmax ⊆ GA×GB. If
γ′ is obtained from γ by replacing α3 and α4 by α3∪α4, then Gγ′ coincides
with Rmax ⊆ GA×GB.

We can use maximal relations to solve the theoremhood problem for the

270 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

category DL. If any relation R ⊆ GA × GB is legitimate, then Rmax ⊆
GA×GB is legitimate. So, to check whether there is an arrow of type A ` B

in DL, it is enough to check whether Rmax ⊆ GA×GB is legitimate. The
theoremhood problem for DL is, however, solved in a much more familiar
way by noting that there is an arrow of type A ` B in DL iff the implication
A → B is a tautology.

§11.5. Coherence of distributive dicartesian categories

To obtain the natural logical category DL>,⊥, we have that the logical
system C(DL>,⊥) is in L∧,∨,>,⊥, with the transformations α included in 1,
b, c, w-k, m, d and δ-σ. The specific equations of E(DL>,⊥) are obtained
by taking the union of those of E(DL) and E(L>,⊥) minus the equations
(m ∧

e) and (m ∨
e). We call natural DL>,⊥-categories distributive dicartesian

categories. The objects of a distributive dicartesian category that is a
partial order make a distributive lattice with top and bottom.

Note that the equations (∧σ dL), (
∨
δ dL), (

∧
δ dR) and (∨σ dR) of §7.9 hold

in DL>,⊥. It suffices to derive the first two of these equations:

(∧σ dL) d>,B,C = (∧σ←B ∨ 1C) ◦ ∧σ→B∨C ,

(
∨
δ dL) dA,B,⊥ =

∨
δ←A∧B

◦ (1A ∧
∨
δ→B);

the remaining two equations then follow easily. For (∧σ dL), since ∧
σ→B∨C =

∧
k2
>,B∨C , we have that the right-hand side is equal to

(∧σ←B ∨ 1C) ◦ (
∧
k2
>,B ∨ 1C) ◦ d>,B,C

by (d
∧
k), and this is equal to d>,B,C . Conversely, as we noted in §11.1, one

can derive (d
∧
k) from (∧σ dL) by precomposing with ∧

κA ∧1B∨C . We proceed
analogously for (

∨
δ dL).

With the help of (d
∧
k), (d

∨
k) and Lemma 2 of §9.6 we obtain the following

equations of DL>,⊥:

(d>>) dA,>,> =
∨
k1

A∧>,> ◦ (1A ∧ ∧
κ>∨>),

(d⊥⊥) d⊥,⊥,C = (∨κ⊥∧⊥ ∨ 1C) ◦
∧
k2
⊥,⊥∨C .

§11.5. Coherence of distributive dicartesian categories 271

With the help of (∧σ dL) or (d>>), together with Restricted Dicartesian
Coherence, we obtain that the equation (m>) of ML>,⊥ (see §10.3) holds

in DL>,⊥. For (m⊥) (see §10.3), we rely on (
∨
δ dL) or (d⊥⊥), and Re-

stricted Dicartesian Coherence. So in E(DL>,⊥) we have all the equations
of E(ML>,⊥).

The equations (m ∧
e) and (m ∨

e) of §11.1 are derivable for DL>,⊥. To
derive (m ∧

e), we first establish this equation for C and D being >. We can
achieve that by relying on

m>,> ◦ [
∧
δ←> ,

∧
δ←>] = 1>∨>,

for which we use (d>>). So we have

(
∧
k1

A,> ∨
∧
k1

B,>) ◦ ∧e′A,B,>,> = mA,B ◦
∧
k1

A∧B,>∨>.

Then we use
∧
k1

A,C=
∧
k1

A,> ◦ (1A ∧ ∧
κC),

∧
k1

B,D=
∧
k1

B,> ◦ (1B ∧ ∧
κD),

∧
k1

A∧B,C∨D=
∧
k1

A∧B,>∨> ◦ (1A∧B ∧ (∧κC ∨ ∧
κD)).

We proceed analogously for (m ∨
e).

Let C and C′ be respectively the logical systems C(DL>,⊥) and C(A>,⊥),
while E is E(DL>,⊥). Next, let B be C/E , that is DL>,⊥. Then it is easy
to see that the conditions (IVC) and (IVB) of §3.1 are satisfied. Since
the C′-core of C/E is the category A>,⊥, by Bimonoidal Coherence of §6.1,
we have that the condition (IVG) of §3.1 is also satisfied. So (IV) holds,
and since A>,⊥ is a preorder, by Bimonoidal Coherence, we can apply
the Strictification Theorem of §3.1 to obtain that the category DLA>,⊥

>,⊥ ,
that is DLG>,⊥, is equivalent to DL>,⊥ via two strong C(DL>,⊥)-functors.
According to §6.2, the objects of DLA>,⊥

>,⊥ may be identified with form
sequences of L∧,∨,>,⊥ in the extended sense.

Let D be now the category DLA>,⊥
>,⊥ . We use the terminology of §11.1

with the following changes.
A basic sequence of colour ξ ∈ {∧,∨} of D is a form sequence of L∧,∨,>,⊥

in the extended sense that is either of the form (A1 . . . An, ξ), for n ≥ 2
and Ai, where i ∈ {1, . . . , n}, a formula of L∧,∨,>,⊥, or it is a formula of
L∧,∨,>,⊥, or it is (∅, ξ). The basic sequence (∅, ξ) has no members.

272 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

We define Gentzen terms by induction as in §11.1 with the following
additions. Besides 1′′p : p ` p, which, as before, denotes the arrow (1p, p, p)
of D, we put among atomic Gentzen terms 1i

> : (∅,∧) ` >, which denotes
(1>, (∅,∧),>), and 1e

⊥ : ⊥ ` (∅,∨), which denotes (1⊥,⊥, (∅,∨)). The
Gentzen operations cL, cR, kL, kR, wL, wR, cut , mix , ∧L, ∧R, ∨L and ∨R

are defined as before, save that c, w and d are now replaced by c′′, w′′ and
d′′. In D we have now the equations

ξ

c ′′Θ,Ξ = 1ΘξΞ, if Θ = (∅, ξ) or Ξ = (∅, ξ), by (
ξ

c
ξ

δ
ξ

σ) (see §5.3),
ξ

w ′′
(∅,ξ) = 1(∅,ξ), by (

ξ

w
ξ

δ) (see §9.2),

d′′Θ,A,Ξ = 1Θ∧(A∨Ξ), if Θ = (∅,∧) or Ξ = (∅,∨), by (∧σ dL) or (
∨
δ dL).

Note that now
ξ

k1′′
(∅,ξ),Ξ and

ξ

k2′′
Ξ,(∅,ξ) are defined in D, and they are equal

to
ξ

κ ′′Ξ. With this in mind, we may continue using the other abbreviations
we had before.

If 1e
> denotes (1>,>, (∅,∧)), and 1i

⊥ denotes (1⊥, (∅,∨),⊥), then for
f : Γ ` ∆ we have in D the equations

(>) kL
>f = f ◦

∧
k1′′

Γ,> = f ◦ (Γ ∧ ∧
κ ′′>) = f ◦ (Γ ∧1e

>),

(⊥) kR
⊥f =

∨
k2′′⊥,∆

◦ f = (∨κ ′′⊥
∨∆) ◦ f = (1i

⊥
∨∆) ◦ f.

For (>), we rely on the fact that
∧
k2

A,B = ∧
σ→B ◦ (∧κA ∧ 1B) in

∧
L> and

∧
σ→′′X = 1X in D, and analogously for (⊥).

We prove the Gentzenization Lemma as in §11.1, with the following
additions. We have that (1>,>,>) is denoted by kL

>1i
>, while (1⊥,⊥,⊥) is

denoted by kR
⊥1e

⊥. To show that, we rely on the equations (>) and (⊥). We
also have that (∧κA, A,>) is denoted by kL

A1i
>, while (∨κA,⊥, A) is denoted

by kR
A1e

⊥. (We can define the arrow terms in the family δ-σ in terms of
those in the family κ; see §9.2.) If we have a sequent arrow (f, Γ,∆) and Γ
is (∅,∧) or ∆ is (∅,∨), then we proceed as before by using 1i

> or 1e
⊥.

As before, a Gentzen term is k-atomized when for every subterm of it
of the form kL

A or kR
A we have that A is a an atomic formula, which now

means that it is a letter or > or ⊥. We prove the Atomic-k Lemma of §11.2
exactly as before.

§11.5. Coherence of distributive dicartesian categories 273

Note that we keep the Gentzen operations kL
⊥ and kR

>, which need not
be in the spirit of Gentzen. For f : Γ ` ∆, Gentzen would perhaps equate
kL
⊥f with an arrow obtained from 1e

⊥ : ⊥ ` (∅,∨) by thinning with Γ on the
left and ∆ on the right, and he would equate kR

>f with an arrow obtained
from 1i

> : (∅,∧) ` > by thinning with Γ on the left and ∆ on the right. We
do not do that.

To define clusters and rank, we now count among the leaf formulae of
h also the occurrences of > and ⊥ in the types of 1i

> : (∅,∧) ` > and
1e
⊥ : ⊥ ` (∅,∨) when h is one of these Gentzen terms.

With the definition of blocked wL and wR subterms copied from what
we had in §11.2, we can prove the Blocked-w Lemma as before. The degree
of a cut is as before the number of occurrences of connectives in the cut
formula; here we count > and ⊥ among these connectives. We can then
prove the Cut-Elimination Theorem for the new category D.

Proof of the Cut-Elimination Theorem. We enlarge the proof in
§11.2 with the following cases.

If the complexity of our clean cut is (d, 2) for d > 0 and the cut formula is
>, then our clean cut can be of the form cut ∅,∅(1i

>, kL
>f), which for f : Γ ` ∆

is equal to f in D by relying on (>) and the equation d′′Γ,>,(∅,∨) = 1Γ∧> of

D, which we obtain by using the equation (
∨
δ dL). The remaining possible

form of our clean cut can be cut ∅,∅(kR
>g, kL

>f), which is equal to mix (f, g)
in D. (This last step is not in the spirit of Gentzen, who did not envisage
our mix .)

If the complexity of our clean cut is (d, 2) for d > 0 and the cut formula
is ⊥, then we proceed analogously. We rely now on the equations (⊥) and
(∧σ dL).

If the complexity of our clean cut is (d, r) for r > 2 and the right rank
of this clean cut is greater than 1, then we proceed as in the proof of the
Cut-Elimination Theorem in §11.2. Note that

∧
k1′′

(∅,∧),B is defined in D and

is equal to ∧
κ ′′B . So case (3) can now be handled without distinguishing

cases as in §11.2.
We proceed analogously if the left rank is greater than 1, and the re-

mainder of the proof follows the proof of the Cut-Elimination Theorem of
§11.2. a

274 CHAPTER 11. DISTRIBUTIVE LATTICE CATEGORIES

We can then prove the following.

Distributive Dicartesian Coherence. The functor G from DL>,⊥ to
Rel is faithful.

We proceed as for the proof of Distributive Lattice Coherence in §11.3. In
the Proposition and in the Normal-Form Lemma of §11.3, and at other
appropriate places, we replace L∧, L∨, DL and ML by L∧,>,⊥, L∨,>,⊥,
DL>,⊥ and ML>,⊥, respectively. We now use Restricted Mix-Dicartesian
Coherence of §10.3 instead of Restricted Mix-Lattice Coherence.

When we look for conditions of legitimacy of relations, we take over for
DL>,⊥ Proposition 2 of the preceding section as it stands. Proposition 1 of
that section can now have R∩ (k+k1+...+ki−1

i × l
+l1+...+lj−1
j) empty, provided

either ⊥ is in Ai or > is in Bj .
As far as the maximality of DL and DL>,⊥ is concerned, we conjecture

that DL is not maximal. We conjectured at the end of §10.3 that we could
extend E(ML) with mp,p = mp,p ◦

∧
cp,p without falling into preorder. We

conjecture the same thing for E(DL). There are other such equations,
which we will not try to classify here. For DL>,⊥ we can show that it is
relatively maximal in the same sense in which L>,⊥ is maximal (see §9.7).
Namely, every distributive dicartesian category that satisfies an equation
between arrow terms of C(DL>,⊥) that is not in E(DL>,⊥) satisfies also

the equations (
∧
k
∨
k) and (

∧
k
∨
k fg). The argument in §9.7 can be transferred

to the present context to demonstrate this fact. Some of these distributive
dicartesian categories may, of course, satisfy more, as indicated at the end
of §9.7.

It can be shown that the arrows of DL that are isomorphisms are de-
noted by arrow terms of C(S). So S catches the isomorphisms fragment
of DL (cf. [44] for an analogous result showing that

∧
S catches the isomor-

phisms fragment of
∧
L, and

∧
S> the isomorphisms fragment of

∧
L>). That

can be established by an argument based on coherence and on distinguished
disjunctive and conjunctive normal forms.

Chapter 12

Zero-Lattice Categories

A kind of dual of the operation of union of proofs is the notion of zero proof.
With zero proofs, which are mapped into empty relations in establishing
coherence, we disregard provability in logic. With a zero proof we can pass
from any premise to any conclusion.

We first prove coherence for categories with finite products and coprod-
ucts to which we add zero arrows, i.e. arrows that correspond to zero proofs.
We call such categories zero-lattice categories. Zero arrows amount in this
context to the inverse of the mix principle of Chapter 8. Our technique for
the proof of coherence is based on composition elimination. Maximality,
i.e. the impossibility to extend axioms without collapse into preorder, is
easy to establish for zero-lattice categories.

As an example of a zero-lattice category in which the operations cor-
responding to conjunction and disjunction are not isomorphic, we have
the category Set∗ of sets with a distinguished object ∗ and ∗-preserving
functions. By inverting the operations corresponding to conjunction and
disjunction, we have as a subcategory in every zero-lattice category, and in
Set∗ in particular, a symmetric double monoidal category with dissociativ-
ity, and without unit objects, such as those for which we proved coherence
in Chapter 7.

We also consider adding only zero arrows that correspond to proofs
in conjunctive-disjunctive logic, in the sense that we have also non-zero
proofs with the same premises and conclusions. We call such zero arrows
zero-identity arrows. We prove coherence when zero-identity arrows are

275

276 CHAPTER 12. ZERO-LATTICE CATEGORIES

added to the categories of Chapter 11, and restricted coherence when they
are added to the categories of Chapter 10. These categories are interesting
because Gentzen’s procedure can be modified to incorporate zero-identity
arrows. The modified procedure can yield coherence not only with respect
to the category whose arrows are relations between finite ordinals, but also
with respect to the category whose arrows are matrices, where composition
is matrix multiplication.

§12.1. Zero-lattice and zero-dicartesian categories

To obtain the natural logical category ZL, we have that the logical system
C(ZL) is in L∧,∨, with the transformations α included in 1, b, c, w-k and
m−1. The specific equations of E(ZL) are those of E(L) plus

(m−1 0)
∧
k2

A,B
◦m−1

A,B
◦
∨
k1

A,B =
∧
k1

B,A
◦m−1

B,A
◦
∨
k2

B,A,

(m−1 1)
∧
k1

A,B
◦m−1

A,B
◦
∨
k1

A,B =
∧
k2

B,A
◦m−1

B,A
◦
∨
k2

B,A = 1A.

We call natural ZL-categories zero-lattice categories. The reason for this
name will become clear below.

Note first that in ZL we have the equation

(cm−1) m−1
B,A

◦ ∨
cB,A = ∧

cA,B ◦m−1
A,B ,

which is dual to the equation (cm) of §8.4. We derive (cm−1) as follows,
with subscripts omitted:

m−1 ◦ ∨
c = [m−1 ◦

∨
k2,m−1 ◦

∨
k1], by (∨c) and (

∨
K 3),

= 〈[∧k1 ◦m−1 ◦
∨
k2,

∧
k1 ◦m−1 ◦

∨
k1], [

∧
k2 ◦m−1 ◦

∨
k2,

∧
k2 ◦m−1 ◦

∨
k1]〉,

by (∧η) and (
∨
K 3),

= 〈[∧k2 ◦m−1 ◦
∨
k1,

∧
k2 ◦m−1 ◦

∨
k2], [

∧
k1 ◦m−1 ◦

∨
k1,

∧
k1 ◦m−1 ◦

∨
k2]〉,

by (m−1 0) and (m−1 1),

= [〈∧k2 ◦m−1 ◦
∨
k1,

∧
k1 ◦m−1 ◦

∨
k1〉, 〈∧k2 ◦m−1 ◦

∨
k2,

∧
k1 ◦m−1 ◦

∨
k2〉],

by (in-out),

= ∧
c ◦m−1, by (

∧
K 3), (∨η) and (∧c)

(see the List of Equations at the end of the book for all the equations
mentioned in this derivation).

§12.1. Zero-lattice and zero-dicartesian categories 277

We can derive analogously the following dual of the equation (bm) of
§8.2:

(bm−1) (m−1
A,B ∧1C) ◦m−1

A∨B,C
◦
∨
b→A,B,C =

∧
b→A,B,C

◦m−1
A,B∧C

◦ (1A ∨m−1
B,C).

The equations (bm) and (cm) are specific equations for the category MS
of §8.5. The remaining specific equations of E(MS) are delivered by the
equations of E(L). Since we have a functor G from ZL to Rel, and we
have coherence for MS, i.e. the faithfulness of G from MS to Rel, we
can conclude that ZL has a subcategory isomorphic to MSop, with the
isomorphism being identity on objects.

If we assume the equation (cm−1) as primitive for E(ZL), then the
equation (m−1 0) becomes superfluous, and from the equations (m−1 1) it is
enough to keep either

∧
k1

A,B
◦m−1

A,B
◦
∨
k1

A,B = 1A or
∧
k2

B,A
◦m−1

B,A
◦
∨
k2

B,A = 1A.
A logical system C(0ZL) synonymous with C(ZL) (see the end of §2.4

for this notion of synonymity) is obtained by having as primitive instead
of m−1 the transformation 0 whose members 0A,B : A ` B are called zero
arrow terms. Zero arrow terms, which denote zero arrows, are defined in
terms of m−1 by

0A,B =df

∧
k2

A,B
◦m−1

A,B
◦
∨
k1

A,B

=
∧
k1

B,A
◦m−1

B,A
◦
∨
k2

B,A, by (m−1 0),

and m−1 is defined in terms of 0 by

m−1
A,B =df 〈[1A,0B,A], [0A,B ,1B]〉

= [〈1A,0A,B〉, 〈0B,A,1B〉], by (in-out).

It is clear that G0A,B is the empty relation ∅ ⊆ GA×GB.
The specific equations of E(0ZL) are those of E(L) plus

f ◦0A,A = 0B,B ◦ f = 0A,B ,

for f : A ` B. These equations deliver immediately the more general
equations

(0) f ◦0C,A = 0C,B , 0B,C ◦ f = 0A,C ,

278 CHAPTER 12. ZERO-LATTICE CATEGORIES

and they also deliver that the arrows 0A,A make a natural transforma-
tion from the identity functor to the identity functor; namely, one of these
equations is

(0 nat) f ◦0A,A = 0B,B ◦ f,

which becomes (1 nat) when 0A,A and 0B,B are replaced by 1A and 1B

respectively. It is straightforward to check that ZL and 0ZL are isomorphic
categories. (The notion of zero arrow satisfying (0) is considered in [100],
Section VIII.2, and [95], p. 279.)

Note that in 0ZL, and hence also in ZL, we have the equations

(0 ξ) 0A,C ξ 0B,D = 0AξB,CξD,

for ξ ∈ {∧,∨}. To derive (0∧) we have

0A,C ∧ 0B,D = 〈0A,C ◦
∧
k1

A,B ,0B,D ◦
∧
k2

A,B〉, by (∧),

= 〈∧k1
C,D,

∧
k2

C,D〉 ◦0A∧B,C∧D, by (0) and (
∧
K 3),

= 0A∧B,C∧D, by (∧η) and (cat 1), or by (0),

and we proceed analogously for (0∨). The equations (0 ξ), which are anal-
ogous to the bifunctorial equations (ξ 1) of §2.7, are null cases of the equa-
tions (∪ ξ) of §10.1.

Another logical system C(d−1ZL) synonymous with C(ZL), and hence
also with C(0ZL), is obtained by having as primitive instead of m−1, or 0,
the transformation d−1 whose members are

d−1
A,B,C : A ∨ (B ∧ C) ` (A ∨B) ∧ C.

The type of d−1
A,B,C is converse to the type of dR

A,B,C . The specific equations
of E(d−1ZL) are those of E(L) plus

(d−1 1)
∧
k1

A∨B,C
◦ d−1

A,B,C
◦
∨
k1

A,B∧C =
∨
k1

A,B ,

(d−1 2)
∧
k2

A∨B,C
◦ d−1

A,B,C
◦
∨
k2

A,B∧C =
∧
k2

B,C ,

(d−1 3)
∧
k1

A∨B,C
◦ d−1

A,B,C
◦
∨
k2

A,B∧C =
∨
k2

A,B
◦
∧
k1

B,C .

That 0ZL and d−1ZL are isomorphic is demonstrated with the following
definitions:

§12.1. Zero-lattice and zero-dicartesian categories 279

0A,C =df

∧
k2

A∨B,C
◦ d−1

A,B,C
◦
∨
k1

A,B∧C ,

d−1
A,B,C =df 〈1A ∨

∧
k1

B,C , [0A,C ,
∧
k2

B,C]〉
= [〈∨k1

A,B ,0A,C〉,
∨
k2

A,B ∧ 1C].

This demonstration is quite straightforward; we will here just check that in
d−1ZL we have

d−1
A,B,C = 〈1A ∨

∧
k1

B,C , [
∧
k2

A∨B,C
◦ d−1

A,B,C
◦
∨
k1

A,B∧C ,
∨
k2

B,C]〉.

We show first with the help of (d−1 1), (d−1 2) and (d−1 3) that the right-
hand side RHS of this equation is equal to the following arrow term with
subscripts omitted:

〈[∧k1 ◦ d−1 ◦
∨
k1,

∧
k1 ◦ d−1 ◦

∨
k2], [

∧
k2 ◦ d−1 ◦

∨
k1,

∧
k2 ◦ d−1 ◦

∨
k2]〉.

Then it is enough to establish that

∧
ki

A∨B,C
◦RHS =

∧
ki

A∨B,C
◦ d−1

A,B,C ,

for i ∈ {1, 2}, and use (∧η).
In C(ZL) we define d−1

A,B,C by combining the definition of d−1 in terms
of 0 and the definition of 0 in terms of m−1, or by the following arrow term:

(1A∨B ∧ (
∧
k2

A,C
◦m−1

A,C)) ◦ ck
A,A,B,C

◦ (∧wA ∨ 1B∧C).

That we can do so will be clear after we have established coherence for ZL
with respect to Rel. Note that Gd−1

A,B,C is an identity relation, i.e. identity
function, in Rel.

The dissociativity principle of the type A ∨ (B ∧ C) ` (A ∨ B) ∧ C

of d−1
A,B,C is contained in the trivial part of the modularity law, which is

satisfied in any lattice:

if a ≤ c, then a ∨ (b ∧ c) ≤ (a ∨ b) ∧ c

(see [9], Sections I.5 and I.7). In the presence of an arrow f : A ` C, we
have in the logical category L an arrow g : A ∨ (B ∧ C) ` (A ∨ B) ∧ C,

280 CHAPTER 12. ZERO-LATTICE CATEGORIES

which is defined like d−1
A,B,C in terms of 0 save that 0A,C in this definition

is replaced by f . The relation Gg, however, is not an identity relation in
that case, while Gd−1

A,B,C is an identity relation.
With ZL we have abandoned the realm of conjunctive-disjunctive logic

as far as provability is concerned. The type A ∨ B ` A ∧ B of m−1 does
not correspond in general to a logical consequence; namely, the implication
A ∨ B → A ∧ B is not a tautology. In ZL we have 0A,B : A ` B for any
formulae A and B. This does not mean, however, that we have abandoned
the realm of logic as far as equality of proofs is concerned. The coherence
results that we have show that adding zero arrows will not enable us to
demonstrate new equations between arrow terms in which 0 does not occur;
namely, the extension with zero arrows is conservative. And this extension
can be useful to facilitate calculations (cf. §13.1).

Bits of zero arrows already existed in all our categories whenever we had
> and ⊥, and this not only in the δ-σ and κ families, but in other families
α as well. For example, 1> : > ` >,

∧
k2

A,>: A ∧ > ` > and ∧
w>: > ` > ∧ >

all have an empty image in Rel under G, and behave like zero arrows.
We have seen in §8.1 that m is like Gentzen’s mix (Mischung) where Θ

is the empty sequence. In a similar vein, m−1 is related to the following
version of Gentzen’s mix:

Γ1 ` ∆1, Θ Θ, Γ2 ` ∆2

Γ1, Γ2 ` ∆1,∆2

where either ∆1 or Γ2 is empty, while Θ is any nonempty sequence of for-
mulae, and not necessarily a sequence of occurrences of the same formula,
as Gentzen requires. Such a principle is not logically valid as far as prov-
ability is concerned, as we have seen above. It is, however, safe to introduce
it if we are interested not in provability, but in equality of proofs.

Note that the following arrow term of C(L):

〈 ∨wA,
∨
wA〉 : A ∨A ` A ∧A,

which is equal in L to [∧wA,
∧
wA] and to (∨wA ∧ ∨

wA) ◦ ck
A,A,A,A

◦ (∧wA ∨ ∧
wA),

stands behind Gentzen’s mix, with Θ a sequence of occurrences of the same
formula. However, G〈 ∨wA,

∨
wA〉 is different from Gm−1

A,A.

§12.1. Zero-lattice and zero-dicartesian categories 281

It is pointless to add m−1 to the categories I, A and S, with appropriate
equations that guarantee coherence, since the resulting categories would be
isomorphic to MI, MA and MS. We just interchange ∧ and ∨. On the
other hand, the categories ZL and ML are not isomorphic. (Compare this
with the remark on the symmetries of A, S and L, made at the end of
§9.6.)

To obtain the natural logical category ZL>,⊥, we have that the logical
system C(ZL>,⊥) is in L∧,∨,>,⊥, with the transformations α included in 1,
b, c, w-k, δ-σ and m−1. The specific equations of E(ZL>,⊥) are obtained by
taking the union of those of E(ZL) and E(L>,⊥). We call natural ZL>,⊥-
categories zero-dicartesian categories.

Note that in ZL>,⊥ the following equations hold:
∧
κA = f = 0A,>, for f : A ` >,
∨
κA = f = 0⊥,A, for f : ⊥ ` A,

∧
κ⊥ = ∨

κ> = 0⊥,>,

∧
κ> = 1> = 0>,>,

∨
κ⊥ = 1⊥ = 0⊥,⊥,

∧
k1
⊥,⊥ =

∧
k2
⊥,⊥ = 0⊥∧⊥,⊥,

∨
k1
>,> =

∨
k2
>,> = 0>,>∨>.

The arrow 0>,⊥ : > ` ⊥ is the inverse of 0⊥,> : ⊥ ` >, and so > and ⊥
are isomorphic in ZL>,⊥. Hence > and ⊥ are both terminal and initial
objects in ZL>,⊥, which means that they are null objects in the sense of
[100] (Section I.5).

We also have in ZL>,⊥ the equation

(0>⊥) 0A,B = ∨
κB ◦0>,⊥ ◦ ∧κA,

according to which 0>,⊥ could be taken as an alternative primitive. The
equations (0) are derivable from (0>⊥). So ZL>,⊥ can be conceived as
obtained from L>,⊥ just by adding the arrow 0>,⊥, without any new equa-
tion, the equation (0>⊥) being taken as a definition. In this context, the
equations (

∧
k ⊥) and (

∨
k >) of §9.6 become derivable from the remaining

equations.
We can also conceive of ZL>,⊥ as being obtained from ZL whose objects

are formulae of L∧,∨,>,⊥ with the additional equations 1> = 0>,> and
1⊥ = 0⊥,⊥, and the definitions ∧

κA =df 0A,> and ∨
κA =df 0⊥,A.

282 CHAPTER 12. ZERO-LATTICE CATEGORIES

§12.2. Coherence of zero-lattice and zero-dicartesian
categories

Our purpose now is to prove the following.

Zero-Lattice Coherence. The functor G from ZL to Rel is faithful.

We proceed by enlarging the proof of Lattice Coherence in §9.4. Through-
out this section, we assume that ZL stands for 0ZL, where 0 is primitive.

The syntactical system C(GZL) is defined as C(GL) of §9.4, save that it
has as primitive arrow terms also the arrow terms 0A,B : A ` B. The equa-
tions of E(GZL) are obtained by adding the equations (0) to the equations
of E(GL). The syntactical category GZL, which is C(GZL)/E(GZL),
is isomorphic to ZL. The syntactical category GZL>,⊥, isomorphic to
ZL>,⊥, is defined as GZL: we just replace L everywhere by L>,⊥.

We can prove Composition Elimination for GZL and GZL>,⊥ by en-
larging the proofs of Composition Elimination in §§9.1-2 and §9.4. The
equations (0) take care of all the additional cases.

Let a zero term of C(ZL) be defined inductively by: 1A and 0A,B are
zero terms for every A and B; if f and g are zero terms, then f ξ g for
ξ ∈ {∧,∨} is a zero term. A proper zero term is a zero term in which 0
occurs at least once.

It is easy to show by induction on the sum of the lengths of h1 : A ` B

and h2 : B ` C that if h1 and h2 are zero terms, then h2 ◦h1 is equal in ZL
to a zero term. (If at least one of h1 and h2 is a proper zero term, then
h2 ◦h1 is equal to a proper zero term.)

An arrow term g ◦h ◦ f of C(ZL) is in standard form when f is an arrow
term of C(∧L∨) and g is an arrow term of C(∨L∧), while h is a zero term (cf.
§9.4). Then we can prove the following.

Standard-Form Lemma. Every arrow term of C(ZL) is equal in ZL to
an arrow term in standard form.

Proof. We proceed as in the proof of the Standard-Form Lemma of §9.6,
save for the following additional cases involving 0. If in the proof of (∗) we
have for f ◦ g that f : B ` C is 0B,C or g : A ` B is 0A,B , then we apply
the equations (0). Here we treat zero terms first as ∧-factors, and next as

§12.2. Coherence of zero-lattice and zero-dicartesian categories 283

∨-factors, or vice versa. We also appeal to the fact noted above that the
composition of two zero terms is equal in ZL to a zero term. a

We can also prove the following lemma.

Zero-Term Lemma. For h : A ` B a zero term of C(ZL), if Gh = ∅, then
h = 0A,B in ZL.

Proof. We proceed by induction on the length of h. If h is 0A,B , then
we are done. Here h cannot be 1A, for if it were 1A, then Gh would
not be empty. If h is h1 ξ h2 for ξ ∈ {∧,∨}, then from Gh = ∅ we infer
Gh1 = Gh2 = ∅, and by the equation (0 ξ) of the preceding section we
obtain h = 0A,B . a

We have also the following strengthening of this lemma.

Empty-Relation Lemma. For h : A ` B an arrow term of C(ZL), if
Gh = ∅, then h = 0A,B in ZL.

Proof. By the Standard-Form Lemma above, we have h = h3 ◦h2 ◦h1 in
ZL, where h1 is an arrow term of C(∧L∨) and h3 is an arrow term of C(∨L∧),
while h2 : C ` D is a zero term. From Gh = ∅ we conclude that Gh2 must
also be empty. So h2 = 0C,D by the Zero-Term Lemma, and hence, by (0),
we obtain that h = 0A,B . a

This last lemma entails Lemma 2 of §9.6 for ZL; namely, the assertion
that if for f, g : A ` B we have Gf = Gg = ∅, then f = g in ZL. From that
we easily obtain the following.

Invertibility Remark for ∧. Let f : A1 ∧ A2 ` B be an arrow term of
C(GL). If Gf = ∅, then f is equal in ZL to an arrow term of the form
∧
K1

A2
f ′, and to an arrow term of the form

∧
K2

A1
f ′′.

This holds because if Gf = ∅, then f =
∧
K1

A2
0A1,B =

∧
K2

A1
0A2,B .

By relying on that, we can prove the analogue of the Invertibility Lemma
for ∧ of §9.6 where L is replaced by ZL and it is assumed that Gf 6= ∅. We
proceed as in the proof in §9.4, save in the case when B is B1 ∧B2 and f is
not of the form

∧
Ki

A3−i
f ′. Then f must be of the form 〈f1, f2〉 (the condition

284 CHAPTER 12. ZERO-LATTICE CATEGORIES

on Gf precludes that f be an identity arrow term or a zero arrow term).
We apply either the induction hypothesis or the Invertibility Remark for ∧
to f1 : A1 ∧A2 ` B1 and f2 : A1 ∧A2 ` B2, and use the equation (

∧
K3).

We have, of course, for ZL a dual Invertibility Lemma for ∨, based on
a dual Invertibility Remark for ∨. We can then imitate the proof of Lattice
Coherence in §9.4 to prove Zero-Lattice Coherence.

We can also prove the following in an analogous manner.

Zero-Dicartesian Coherence. The functor G from ZL>,⊥ to Rel is
faithful.

Zero terms are defined as before, and, as before, the composition of
two zero terms is equal in ZL>,⊥ to a zero term. We have a definition of
standard form for arrow terms of C(ZL>,⊥) analogous to that for C(ZL),
and the analogue of the Standard-Form Lemma for ZL>,⊥.

We can also prove the Zero-Term Lemma with ZL replaced by ZL>,⊥.
In the basis of the induction, we have to consider the case where h is 1C

for a letterless formula C. This C is isomorphic in ZL>,⊥ both to > and
to ⊥. For i : C ` > and i−1 : > ` C being inverse to each other, in ZL>,⊥
we have

1C = i−1 ◦ i

= i−1 ◦0>,> ◦ i, since 1> = 0>,>,

= 0C,C , by (0).

From the Standard-Form Lemma and the Zero-Term Lemma for ZL>,⊥
we infer as above the Empty-Relation Lemma with ZL replaced by ZL>,⊥.
For the remainder of the proof of Zero-Dicartesian Coherence, we imitate
the proof of Zero-Lattice Coherence.

An alternative, and presumably simpler, way to prove Zero-Dicartesian
Coherence is to rely on the fact that every object of ZL>,⊥ is isomorphic
to an object of ZL, or to > and ⊥. Then we use Composition Elimination
for GZL>,⊥ and Zero-Lattice Coherence.

§12.3. Maximality of zero-lattice and zero-dicartesian categories 285

§12.3. Maximality of zero-lattice and zero-dicartesian
categories

In this section, we show that ZL and ZL>,⊥ are maximal in the sense of
§9.3. We deal first with ZL.

Suppose that for some arrow terms f1, f2 : A ` B of C(ZL) we have
Gf1 6= Gf2. Suppose that for some x ∈ GA and some y ∈ GB we have
(x, y) ∈ Gf1 and (x, y) 6∈ Gf2. Then with the help of the arrow terms
∨
ki

A1,A2
: Ai ` A1 ∨A2, for i ∈ {1, 2}, together with

〈1A1 ,0A1,A2〉 : A1 ` A1 ∧A2,

〈0A2,A1 ,1A2〉 : A2 ` A1 ∧A2

and the operation of composition, we can build an arrow term h1 : p ` A

of C(ZL) such that Gh1 = {(0, x)}. The (x+1)-th occurrence of letter in
A counting from the left is an occurrence of p. Analogously, with the help
of

∧
ki

B1,B2
: B1 ∧B2 ` Bi, together with

[1B1 ,0B2,B1] : B1 ∨B2 ` B1,

[0B1,B2 ,1B2] : B1 ∨B2 ` B2

and composition, we build an arrow term h2 : B ` p of C(ZL) such that
Gh2 = {(y, 0)}. The (y+1)-th occurrence of letter in B counting from the
left is an occurrence of the same p we had for h1 : p ` A. This must be
the case because (x, y) ∈ Gf1. Then for h2 ◦ fi ◦h1 : p ` p, where i ∈ {1, 2},
we have that G(h2 ◦ f1 ◦h1) = {(0, 0)}, while G(h2 ◦ f2 ◦h1) = ∅. It follows
from Composition Elimination for GZL and from the functoriality of G

that in ZL we have

h2 ◦ f1 ◦h1 = 1p,

h2 ◦ f2 ◦h1 = 0p,p.

(This follows from Zero-Lattice Coherence too.) So, if we extend E(ZL)
with f1 = f2, then we can derive 1p = 0p,p.

If an equation f1 = f2 that is not in E(ZL) holds in a zero-lattice
category A, then by Zero-Lattice Coherence we have Gf1 6= Gf2. So 1p =
0p,p holds in A. Then for f, g : a ` b in A, with 1a = 0a,a and the equations
(0) we obtain

286 CHAPTER 12. ZERO-LATTICE CATEGORIES

f = f ◦0a,a = 0a,b = g ◦0a,a = g,

and hence A is a preorder. This proves the maximality of ZL.
Exactly the same argument serves to prove the maximality of ZL>,⊥.

We just replace ZL by ZL>,⊥, and appeal to Zero-Dicartesian Coherence.

§12.4. Zero-lattice and symmetric net categories

The category ZL has a subcategory isomorphic to the category DS of §7.6.
We define a functor F from DS to ZL in the following manner:

Fp = p,

F (A ∧B) = FA ∨ FB, F (A ∨B) = FA ∧ FB,

F1A = 1FA,

F
∧
b→A,B,C =

∨
b→FA,FB,FC , F

∨
b→A,B,C =

∧
b→FA,FB,FC

F
∧
b←A,B,C =

∨
b←FA,FB,FC , F

∨
b←A,B,C =

∧
b←FA,FB,FC ,

F
∧
cA,B = ∨

cFB,FA, F
∨
cA,B = ∧

cFB,FA,

FdA,B,C = d−1
FA,FB,FC ,

F (f ∧ g) = Ff ∨ Fg, F (f ∨ g) = Ff ∧ Fg,

F (g ◦ f) = Fg ◦Ff.

To show that F is indeed a functor, we have to check that if f = g holds
in DS, then Ff = Fg holds in ZL (cf. the penultimate paragraph of §2.4).
So suppose that f = g holds in DS; then Gf = Gg in Rel, and we have
GFf = Gf = Gg = GFg in Rel. By Zero-Lattice Coherence, we obtain
that Ff = Fg holds in ZL.

It is clear that F establishes a one-to-one correspondence on objects.
To show that F is faithful, which here implies that F is one-one on arrows,
suppose that for f, g : A ` B arrow terms of C(DS) we have Ff = Fg in
ZL. Hence in Rel we have Gf = GFf = GFg = Gg, and, by Symmetric

§12.5. Zero-identity arrows 287

Net Coherence, we obtain that f = g in DS. So the subcategory of ZL
that is the image under F of DS is isomorphic to DS.

It was shown in §9.7 that Set∗ is a lattice category with ∧ being 2× and
∨ being 2+. If we define the function 0a,b : a → b by 0a,b(x) = ∗, then it is
easy to check that Set∗ is a zero-lattice category. It is also a zero-dicartesian
category with both > and ⊥ being {∗}.

By what we have shown above, a subcategory of Set∗ is a symmetric net
category with ∧ being 2+ and ∨ being 2×. The claim made in [22] (end of Sec-
tion 3) that Set∗ with ∧ being 2× and ∨ being 2+ is a cartesian linearly (alias
weakly) distributive category, which would imply that it is a symmetric
net category, is not correct. The functions da,b,c : a 2× (b 2+ c) → (a 2× b) 2+ c

defined at that place, which are there called δL
L , and for which one has

da,b,c(x, (∗, z)) = ∗ and da,b,c(x, ∗) = ((x, ∗), ∗) for every x ∈ a and every
z ∈ c, do not make a natural transformation d. Take a = {x, ∗}, b = {∗}
and c = {z, ∗}, and let the function h : c → c be defined by h(z) = h(∗) = ∗.
Then we have

da,b,c((1a 2× (1b 2+ h))(x, (∗, z))) = ((x, ∗), ∗),
((1a 2× 1b) 2+ h)(da,b,c(x, (∗, z))) = ∗.

The category Set∗ with ∧ being 2× and ∨ being 2+ is trivially a sym-
metric net category when we take that da,b,c is defined as 0a2×(b2+c),a2×(b2+c).
With that definition, however, it is neither a distributive lattice category, in
our sense, nor a linearly distributive category, in the sense of §7.9, because
the equations (d

∧
k) and (d

∨
k), or (∧σ dL) and (

∨
δ dL), would not hold. For the

same reason, it is also not a cartesian linearly distributive category in the
sense of [22]. That no other definition of da,b,c : a 2× (b 2+ c)) → (a 2× b) 2+ c

can make of Set∗ a distributive lattice category or a cartesian linearly dis-
tributive category is shown in §13.2.

§12.5. Zero-identity arrows

Let the natural logical category ZIL in L∧,∨ be defined as 0ZL save that
the transformation 0 has as members 0A : A ` A (we write here 0A instead
of 0A,A), which are zero-identity arrow terms that stand for zero-identity
arrows, and instead of the equations (0) we have only the following conse-
quence of (0):

288 CHAPTER 12. ZERO-LATTICE CATEGORIES

(0I) f ◦0A = 0B ◦ g

for f, g : A ` B. By putting g for f , this equation delivers that 0 is a natural
transformation from the identity functor to the identity functor; namely,
we obtain the equation (0 nat) of §12.1 with 0A,A and 0B,B replaced by
0A and 0B respectively. As other consequences of (0I), we have

f ◦0A = g ◦0A,

0B ◦ f = 0B ◦ g,

and the following equation:

(00) 0A ◦0A = 0A.

In ZIL we define 0A,B by

0A,B =df f ◦0A

for some arrow term f : A ` B of C(ZIL). This definition is correct because
we have f ◦0A = g ◦0A, as remarked above. We do not have, however,
0A,B in ZIL for every A and B of L∧,∨, as we had it in ZL, but only for
those pairs (A,B) where there is an arrow of L of type A ` B. It is easy
to show, as in §12.1, that the following instance of (0 ξ):

(0I ξ) 0A ξ 0B = 0AξB

holds in ZIL, and if 0A,C and 0B,D are defined, then (0 ξ) holds too.
We cannot define in ZIL every m−1

A,B : A ∨ B ` A ∧ B of ZL, but only
those where there are arrows of the types A ` B and B ` A in L; and we
cannot define in ZIL every d−1

A,B,C : A ∨ (B ∧ C) ` (A ∨B) ∧ C of ZL, but
only those where there is an arrow of type A ` C in L.

The natural logical category ZIL>,⊥ in L∧,∨,>,⊥ is defined as ZIL save
that it is based on L>,⊥ instead of L. With ZIL and ZIL>,⊥, contrary to
what we had with ZL and ZL>,⊥, we stay within the realm of conjunctive-
disjunctive logic as far as provability is concerned (see §12.1).

§12.5. Zero-identity arrows 289

Problems arise for proving coherence for ZIL and ZIL>,⊥ with equa-
tions like

∨
k1

(A∨p)∧q,p
◦ ((

∧
k1

A,q∨0p) ∧ 0q) = ((
∨
k1

A,p∧0q) ∨ 0p) ◦
∧
k1

(A∧q)∨p,q

(cf. the end of the revised version of [47] and §7.9 above). We will not
consider this question here.

Let the natural logical categories ZIML and ZIML>,⊥ be obtained
from ML and ML>,⊥ respectively by adding the zero-identity arrow terms
and the equations (0I) and

(∪0) f ∪ 0A,B = f

for every arrow term f : A ` B of C(ZIML) or C(ZIML>,⊥). The arrow
terms 0A,B are defined in terms of 0A as above. Instead of (∪0), we could
alternatively assume its instance

1A ∪ 0A = 1A,

which yields (∪0). In ZIML and ZIML>,⊥, a hom-set whose arrows are
of type A ` B is a semilattice with the unit 0A,B (which can be conceived
as either top or bottom).

Restricted Zero-Identity Mix-Lattice Coherence is formulated as Re-
stricted Mix-Lattice Coherence in §10.2, save that ZIML replaces ML.
To prove this coherence result for ZIML we proceed as for ML, with the
following modifications.

The syntactical category GZIML differs from the category GML by
having in C(GZIML) the primitive arrow terms 0A : A ` A besides 1A :
A ` A; moreover, we assume for it in addition to the equations of E(GML)
the equations (0I) and (∪0).

For A in dnf and B in cnf, arrow terms of C(GZIML) of type A ` B

that are in normal form are defined as in §10.2 save that we allow 0p to
replace 1p in arrow terms in atomic bracket-free normal form. Arrow terms
in atomic bracket-free normal form where instead of 1p we have 0p are
called zero atomic bracket-free terms, and those with 1p nonzero atomic
bracket-free terms. We use the same terminology of “zero” and “nonzero”

290 CHAPTER 12. ZERO-LATTICE CATEGORIES

for atomic components. An analogous terminology was used in §10.3. The
settled normal form is defined as for GML>,⊥ in §10.3.

We prove Composition Elimination for GZIML by extending the proof
for GML. In that proof we apply the equation (00) and the following
equations of GZIML:

∧
Ki

Aj
f ◦0A1∧A2 =

∧
Ki

Aj
(0B ◦ f),

0A1∨A2
◦
∨
Ki

Aj
g =

∨
Ki

Aj
(g ◦0B),

for i, j ∈ {1, 2} such that i 6= j, which are easily derived with the help of

(0I) and (
ξ

K 1), as well as

0A1∧A2
◦ 〈g1, g2〉 = 〈g1 ◦0C , g2 ◦0C〉,

[f1, f2] ◦0A1∨A2 = [0C ◦ f1,0C ◦ f2],

which are easily derived with the help of (0I) and (
ξ

K 3), for ξ ∈ {∧,∨}.
To prove the Normal-Form Lemma of §10.2 with GML replaced by

GZIML, we proceed as in the proof in §10.2, and we use in addition the
equation f ∪ g = f for any zero atomic component g. This equation, which
is analogous to the equation (∪0g) of §10.3, is derivable from (0I) and
(∪0). We can then prove Restricted Zero-Identity Mix-Lattice Coherence
as Restricted Mix-Lattice Coherence in §10.2. We use in that proof the fact
that if f ′′ and g′′ are zero atomic components of the same type, then they
are equal in GZIML by (0I) and (∪0).

Restricted Zero-Identity Mix-Dicartesian Coherence is formulated anal-
ogously by replacing ZIML with ZIML>,⊥ (cf. also §10.3), and is proved
in the same manner. The equations

∧
κ> = 1> = 0>,
∨
κ⊥ = 1⊥ = 0⊥

hold in ZIL>,⊥, and hence also in ZIML>,⊥.
Let the natural logical categories ZIDL and ZIDL>,⊥ be obtained from

DL and DL>,⊥ respectively by adding the zero-identity arrow terms and
the equation (0I). In these categories, we have an arrow of type A ` B iff
the implication A → B is a tautology.

We define 0A,B by f ◦0A, as before, and we can now derive (∪0) in the
following manner. We have in ZIDL and ZIDL>,⊥

§12.5. Zero-identity arrows 291

1A ∪ 0A = ∨
wA ◦ (

∧
k1

A,A ∨ 1A) ◦ dA,A,A ◦ (1A ∧
∨
k2

A,A) ◦ (1A ∧ 0A) ◦ ∧
wA

= ∨
wA ◦ (

∧
k1

A,A ∨ 1A) ◦ dA,A,A ◦ (1A ∧
∨
k1

A,A) ◦ (1A ∧ 0A) ◦ ∧
wA, with (0I),

= ∨
wA ◦ (

∧
k1

A,A ∨ 1A) ◦
∨
k1

A∧A,A
◦ (1A ∧ 0A) ◦ ∧

wA, by (d
∨
k) of §11.1,

= 1A,

by Zero-Identity Lattice Coherence, or by applying (
ξ

k1 nat) and (
ξ

w
ξ

k), for
ξ ∈ {∧,∨} (see §9.1 and the List of Equations). From 1A ∪ 0A = 1A we
easily obtain (∪0), as we remarked above.

Then we can prove the following.

Zero-Identity Distributive Lattice Coherence. The functor G

from ZIDL to Rel is faithful.

Zero-Identity Distributive Dicartesian Coherence. The functor
G from ZIDL>,⊥ to Rel is faithful.

Let D be now the category obtained as the disjoint union of the stricti-
fied category ZIDLA and the trivial category with the single object ∅ and
the single arrow 1∅ : ∅ ` ∅ (cf. §11.1). The Gentzen terms for this category
D are defined as in §11.1 with the addition in the basis of the inductive
definition that 0′′p : p ` p, which denotes the arrow (0p, p, p) of D, is a
Gentzen term. We prove the Gentzenization Lemma of §11.1 and the Cut-
Elimination Theorem of §11.2 as before. In the proof of the Gentzenization
Lemma, we rely on (0I ξ). To define clusters and rank, we count among
leaf formulae the occurrences of p in the type p ` p of 0′′p . In the proof of
the Cut-Elimination Theorem, we have as the only additional cases, when
the complexity of our clean cut is (0, 2), the left-hand sides of the following
equations of D:

cut ∅,∅(0′′p ,1′′p) = 0′′p ,

cut ∅,∅(1′′p ,0′′p) = 0′′p ,

cut ∅,∅(0′′p ,0′′p) = 0′′p ,

cut ∅,∅(0′′p , kL
p g) = kL

p g,

cut ∅,∅(kR
p f,0′′p) = kR

p f.

292 CHAPTER 12. ZERO-LATTICE CATEGORIES

For the first two equations we use (cat 1), for the third (00), for the fourth
(
∧
k1 nat), and for the fifth (

∨
k2 nat).

For the remainder of the proof of the Cut-Elimination Theorem, we can
proceed as before, but we can also proceed differently in the cases where
our clean cut is of the form cut (f, wLg) with blocked wLg tied to our clean
cut. In all these cases—namely, (w γ 1), (w γ 2), . . . , (w∨3)—we applied an
equation of D where on the left-hand side we have a single occurrence of
h : Γ ` ∆, while on the right-hand side we have more than one occurrence
of h; this is always two occurrences of h, except in case (w ∨ 3), where we
have three occurrences of h. Now, we can put h on the right-hand side
for exactly one old occurrence of h, and replace the others by the cut-free
Gentzen term h0 obtained from the cut-free Gentzen term h by replacing
every 1′′p in h by 0′′p . It can be shown, by induction on the length of the cut-
free Gentzen term h, that in D we have h0 = 0′′∆ ◦h. This new procedure
would dispense us from applying the equation (wm) in the remainder of
the proof. Instead, we would rely on the following equations of ZIDL:

∨
wA ◦ (0A ∨ 1A) ◦mA,A ◦ ∧

wA = 1A,
∨
wA ◦ (1A ∨ 0A) ◦mA,A ◦ ∧

wA = 1A,

which amount to (∪0).
For the remainder of the proof of Zero-Identity Distributive Lattice Co-

herence, we proceed as for the proof of Distributive Lattice Coherence,
relying on Restricted Zero-Identity Mix-Lattice Coherence. We proceed
analogously for the proof of Zero-Identity Distributive Dicartesian Coher-
ence, relying on Restricted Zero-Identity Mix-Dicartesian Coherence.

It can be proved that ZIDL is maximal by imitating the proof of the
maximality of ZL in §12.3. The only difference in the proof is that for
f1, f2 : A ` B we assume that only one letter p occurs in A and B (cf. the
proofs of maximality for

∧
L and L in §9.3 and §9.5). The category ZIDL>,⊥

is maximal in the relative sense in which L>,⊥ is maximal (see §9.7).
Consider the natural logical categories ZIDL− and ZIDL−>,⊥ that differ

from ZIDL and ZIDL>,⊥ respectively by rejecting the equation (wm) for
m, or alternatively the idempotency equation (∪ idemp) for ∪. In these cat-
egories hom-sets are not necessarily semilattices with unit—they must be
only commutative monoids. Union of arrows becomes now disjoint union of

§12.5. Zero-identity arrows 293

arrows, or addition of arrows. The possibility indicated above to prove the
Cut-Elimination Theorem by not relying on (wm), but on (∪0) instead, in-
dicates that we could prove that there are faithful functors G from ZIDL−

and ZIDL−>,⊥ not into Rel, but into the category Mat, which is isomorphic
to the skeleton of the category whose objects are finite-dimensional vector
spaces over a fixed number field, and whose arrows are linear transforma-
tions. (Note that this category of vector spaces is a subcategory of the
category Set∗ of §9.7, where the null vector is ∗.)

More precisely, the objects of the category Mat are finite ordinals, i.e.
natural numbers (the dimensions of our vector spaces), and an arrow of type
n ` m is an n ×m matrix. Matrices that are images under the functor G

will have entries that are natural numbers. Composition of arrows is matrix
multiplication, and the identity arrow 1n : n ` n is the n×n identity matrix
with the entries 1n(i, j) = δ(i, j), where δ is the Kronecker delta.

Every n×m matrix M whose entries are only 0 and 1 may be identified
with a binary relation RM ⊆ n ×m such that M(i, j) = 1 iff (i, j) ∈ RM .
Multiplication of such matrices is the same as composition of relations if
we assume that 1+1 = 1.

For the proof of the faithfulness of G from ZIDL− and ZIDL−>,⊥ into
Mat we would rely on restricted coherence results for the natural logical
categories ZIML− and ZIML−>,⊥, which are obtained from ZIML and
ZIML>,⊥ respectively by rejecting the equation (wm). These restricted
coherence results are of the same type as those we had for ML, ML>,⊥,
ZIML and ZIML>,⊥. In producing the settled normal form, we just do
not rely on the equation (∪ idemp).

The fact that (wm) does not hold in Mat shows that this equation cannot
be derived from the remaining equations we have used to axiomatize the
equations of ZIDL and ZIDL>,⊥.

We conclude our consideration of zero-identity arrows with some re-
marks on formulae that are isomorphic in their presence. In ZIML we
have the isomorphism

〈[1A,0A], [0A,1A]〉 : A ∨A ` A ∧A,

whose inverse is mA,A. Let A and B be formulae of the language L{p}∧,∨,
which is the language L∧,∨ generated by P = {p}. Then it is clear that

294 CHAPTER 12. ZERO-LATTICE CATEGORIES

there are in the category L arrows of type A ` B and B ` A, and hence in
ZIML we have the isomorphism

〈[1A,0B,A], [0A,B ,1B]〉 : A ∨B ` A ∧B,

whose inverse is mA,B . It is the easy to conclude that in ZIML and ZIDL
for every pair (C, D) of formulae of L{p}∧,∨ such that in each of C and D

there are n ≥ 1 occurrences of p we have that C and D are isomorphic.
(The category ZIML generated by {p} is isomorphic to the category ZML
of §13.1 generated by {p}.) If pn stands for any of these formulae, then the
functoriality of G from ZIML and ZIDL to Rel implies that pn and pm

cannot be isomorphic in ZIML and ZIDL for n 6= m. This characterizes
completely the formulae of L{p}∧,∨ isomorphic in ZIML and ZIDL.

Let L{p}∧,∨,>,⊥ be the language L∧,∨,>,⊥ generated by P = {p}. Then

every formula of L{p}∧,∨,>,⊥ is isomorphic in ZIDL>,⊥ to one of the form pn

for n ≥ 1, or pm∧⊥, or pm∨> for m ≥ 0, where if m = 0, then pm∧⊥ is ⊥
and pm∨> is >. To prove that, we use various isomorphisms of ZIDL>,⊥,
among which isomorphisms of the following types are prominent:

pn ∨ (pm ∧ ⊥) ` pn+m,

pn ∧ (pm ∨ >) ` pn+m,

(A ∧ ⊥) ∨ (B ∧ ⊥) ` (A ∨B) ∧ ⊥,

(A ∨ >) ∧ (B ∨ >) ` (A ∧B) ∨ >,

(A ∧ ⊥) ∨ > ` A ∨ >,

(A ∨ >) ∧ ⊥ ` A ∧ ⊥.

For example, the following isomorphism is of the last of these types:

((
∨
δ→A ◦ (1A ∨ ∧

σ→⊥) ◦ dR
A,>,⊥) ∧ 1⊥) ◦

∧
b→A∨>,⊥,⊥ ◦ (1A∨> ∧ ∧

w⊥).

Since in classical logic formulae in the classes pn, pm ∧ ⊥ and pm ∨ >
are equivalent respectively to p, ⊥ and >, formulae from distinct classes
among these three cannot be isomorphic. And that, within each class,
formulae with different superscripts n or m cannot be isomorphic is shown
by appealing to the functoriality of G from ZIDL>,⊥ to Rel.

Chapter 13

Zero-Mix Lattice Categories

Zero-mix lattice categories are categories with finite products and coprod-
ucts, with or without the terminal and initial objects, to which we add the
union operation on arrows of Chapter 10 and the zero arrows of Chapter 12.
This amounts to making products isomorphic to coproducts. In zero-mix
lattice categories hom-sets are semilattices with unit, and these categories
are related to categories whose hom-sets are commutative monoids, like
linear categories, preadditive categories, additive categories and abelian
categories. In zero-mix lattice categories we have dissociativity, and these
categories are distributive lattice categories in the sense of Chapter 11. We
prove coherence for zero-mix lattice categories with the help of composition
elimination and a unique normal form inspired by linear algebra. Zero-mix
lattice categories are maximal, in the sense that it is impossible to extend
their axioms without collapse into preorder.

The category whose arrows are relations between finite ordinals, on
which we relied throughout the book for our coherence results, is a zero-mix
lattice category. This category is isomorphic to a subcategory of another
zero-mix lattice category—namely, the category of semilattices with unit,
which is itself a subcategory of the category Set∗ of sets with a distinguished
object ∗, whose arrows are ∗-preserving functions.

295

296 CHAPTER 13. ZERO-MIX LATTICE CATEGORIES

§13.1. Coherence of zero-mix lattice categories

To obtain the natural logical category ZML, we have that the logical system
C(ZML) is in L∧,∨, with the transformations α included in 1, b, c, w-k, m

and m−1. The specific equations of E(ZML) are obtained by taking the
union of those of E(ML) and E(ZL) plus

(mm−1) m−1
A,B

◦mA,B = 1A∧B , mA,B ◦m−1
A,B = 1A∨B .

So in ZML we have that A ∧B and A ∨B are isomorphic. The equations
(m nat) and (m−1 nat) entail each other in the presence of (mm−1).

We call natural ZML-categories zero-mix lattice categories. The hom-
sets in a zero-mix lattice category are semilattices with unit (see §13.3 for
references concerning related kinds of categories).

According to what we had in §10.1 and §12.1, we can take for ZML
primitives alternative to m and m−1; for example, we can take ∪ and 0,
which are defined in ZML as before (see §10.1 and §12.1).

In ZML the following equations hold:

(
∧
k m)

∧
k1

A,B = [1A,0B,A] ◦mA,B ,
∧
k2

A,B = [0A,B ,1B] ◦mA,B ,

(
∨
k m)

∨
k1

A,B = mA,B ◦ 〈1A,0A,B〉,
∨
k2

A,B = mA,B ◦ 〈0B,A,1B〉.

Here is a derivation of the first (
∧
k m) equation:

∧
k1

A,B
◦m−1

A,B = [
∧
k1

A,B
◦m−1

A,B
◦
∨
k1

A,B ,
∧
k1

A,B
◦m−1

A,B
◦
∨
k2

A,B], by (∨η),

= [1A,0B,A], by (m−1 1) and (m−1 0) of §12.1;

then we apply (mm−1) (for (∨η) see the List of Equations at the end of the
book). Alternatively, we can rely on the following equation of ZL:

m−1
A,B = 〈[1A,0B,A], [0A,B ,1B]〉.

We proceed analogously for the remaining three equations of (
∧
k m) and

(
∨
k m).

For f : A ` B, let us use the following abbreviations for arrow terms of
C(ZML):

§13.1. Coherence of zero-mix lattice categories 297

∧
Z1

C f =df m−1
B,C

◦
∨
k1

B,C
◦ f,

∨
Z1

C f =df f ◦
∧
k1

A,C
◦m−1

A,C ,
∧
Z2

C f =df m−1
C,B

◦
∨
k2

C,B
◦ f,

∨
Z2

C f =df f ◦
∧
k2

C,A
◦m−1

C,A.

With the equations (
∧
k m) and (

∨
k m), it is clear that in ZML we have

∧
Z1

C f = 〈f,0A,C〉 : A ` B ∧ C,
∨
Z1

C f = [f,0C,B] : A ∨ C ` B,
∧
Z2

C f = 〈0A,C , f〉 : A ` C ∧B,
∨
Z2

C f = [0C,B , f] : C ∨A ` B.

Then we can infer that for fi : C ` Ai and gi : Ai ` C, where i ∈ {1, 2},
the following equations hold in ZML:

(
∧
Z) 〈f1, f2〉 =

∧
Z1

A2
f1 ∪

∧
Z2

A1
f2,

(
∨
Z) [g1, g2] =

∨
Z1

A2
g1 ∪

∨
Z2

A1
g2.

For (
∧
Z) we have

∨
k1

C,C ∪ ∨
k2

C,C = ∨
wC∨C ◦ (

∨
k1

C,C ∪ ∨
k2

C,C) ◦mC,C ◦ ∧
wC

= mC,C ◦ ∧
wC ,

and from that, with (mm−1), we obtain

∧
wC = m−1

C,C
◦ (
∨
k1

C,C ∪ ∨
k2

C,C),

which yields (
∧
Z). We derive (

∨
Z) analogously via

∨
wC = (

∧
k1

C,C ∪ ∧
k2

C,C) ◦m−1
C,C .

For every arrow term f : A ` B of C(ZML), in ZML we have also the
equation

(∪0) f ∪ 0A,B = f,

which we encountered already in the preceding chapter (see §12.5). Here is
a derivation of this equation:

1A ∪ 0A,A = ∨
wA ◦ (1A ∨ 0A,A) ◦mA,A ◦ ∧

wA

= [1A,0A,A] ◦mA,A ◦ ∧
wA

= 1A, by (
∧
k m) and (∧w

∧
k) of §9.1;

298 CHAPTER 13. ZERO-MIX LATTICE CATEGORIES

from that we easily obtain (∪0) with the help of (∪ ◦).
Conversely, we can derive (mm−1) from (∪0). Here is derivation, with

subscripts omitted, of the first equation of (mm−1):

m−1 ◦m = [〈1,0〉, 〈0,1〉] ◦ ((∨k1 ◦
∧
k1) ∪ (

∨
k2 ◦

∧
k2))

= ((
∧
k1 ∧ 0) ∪ (0 ∧ ∧

k2)) ◦ ∧
w, with (∪ ◦) of §10.1,

= 1, with (∪ ξ) of §10.1 and (∪0);

we proceed analogously for the second one by using m−1 = 〈[1,0], [0,1]〉.
So (∪0), or 1A ∪ 0A,A = 1A, could replace (mm−1) for the axiomatization
of E(ZML). The axiom (∪0) is more appropriate than (mm−1) if ∪ and 0
are primitive instead of m and m−1.

To prove the coherence of ZML with respect to Rel we introduce, in
the style of the preceding chapters, a syntactical category isomorphic to
ZML for which we can prove Composition Elimination. The syntactical
system C(GZML) is formulated by combining what we had for C(GML)
in §10.1 and for C(GZL) in §12.2 (which is based on §9.4), together with

the primitive operations
ξ

Zi
C on arrow terms, for ξ ∈ {∧,∨} and i ∈ {1, 2}.

The equations of E(GZML) are obtained by assuming in addition to the
equations of E(GML) and E(GZL) the equation (∪0) and the four equa-

tions given above immediately after the definitions of
ξ

Zi
C in C(ZML). Note

that in the presence of (∪0), which is f ∪ 0A,B = f , and of the analogous
equation 0A,B ∪ f = f , we can replace (∪ assoc) and (∪ com) by the single
equation

(f1 ∪ f2) ∪ (f3 ∪ f4) = (f1 ∪ f3) ∪ (f2 ∪ f4).

The syntactical category GZML is C(GZML)/E(GZML), and it is iso-
morphic to ZML.

We can prove Composition Elimination for GZML by extending the
proofs for GML and GZL, which are based on the proof of Composition
Elimination for GL in §9.4 and §9.1.

Next we introduce some definitions analogous up to a point to those
we had in Chapter 10 and §12.5. Arrow terms of C(GZML) of the form
P1. . . PnQ1. . . Qmθ, where n, m ≥ 0, and θ is of the form 1p or 0p,q, for

some letters p and q, while Pi for i ∈ {1, . . . , n} is of the form
∨
K1

C , or
∨
K2

C ,

§13.1. Coherence of zero-mix lattice categories 299

or
∧
Z1

C , or
∧
Z2

C , and Qj for j ∈ {1, . . . , m} is of the form
∧
K1

C , or
∧
K2

C , or
∨
Z1

C ,

or
∨
Z2

C , are called atomic terms. We have a zero atomic term when θ is of
the form 0p,q (where p and q can be the same letter), and a nonzero atomic
term when θ is of the form 1p.

Arrow terms of C(GZML) in normal form are defined inductively by
stipulating that atomic terms are in normal form, and that if f and g are
in normal form, then f ∪ g is in normal form.

Let f be an arrow term of C(GZML) in normal form, and let f ′ be a
subterm of f such that f ′ is an atomic term, and there is no atomic subterm
f ′′ of f with f ′ a proper subterm of f ′′. Then we say that f ′ is an atomic
component of f .

Let p occur in a formula A of L∧,∨ as the x+1-th occurrence of letter
counting from the left. Then there is a unique atomic term Q1. . . Qm1p :
A ` p such that G(Q1. . . Qm1p) = {(x, 0)}. We say that the word Q1. . . Qm

is bound to (x, 0).

Let q occur in a formula B of L∧,∨ as the y+1-th occurrence of letter
counting from the left. Then there is a unique atomic term P1. . . Pn1q :
q ` B such that G(P1. . . Pn1q) = {(0, y)}. We say that the word P1. . . Pn

is bound to (0, y).

Hence there is a unique word P1. . . PnQ1. . . Qm such that Q1. . . Qm is
bound to (x, 0) and P1. . . Pn is bound to (0, y). We say that the word
P1. . . PnQ1. . . Qm is bound to (x, y) ∈ GA×GB.

An arrow term f : A ` B of C(GZML) is in settled normal form when it
is in normal form and there is a one-to-one correspondence between the set
GA×GB and the set of atomic components of f , such that for every atomic
component P1. . . PnQ1. . . Qmθ we have that P1. . . PnQ1. . . Qm is bound to
the ordered pair in GA × GB corresponding to it. To every ordered pair
in GA × GB corresponds either a zero or a nonzero atomic component
depending on whether θ is of the form 0p,q or 1p. Then we can prove the
following.

Normal-Form Lemma. Every arrow term of C(GZML) is equal in
GZML to an arrow term in settled normal form.

Proof. Take an arrow term f : A ` B of C(GZML). By Composition

300 CHAPTER 13. ZERO-MIX LATTICE CATEGORIES

Elimination for GZML there is a composition-free arrow term f ′ : A ` B

of C(GZML) equal to f in GZML.
Then we apply the equations (

∧
K 4) and (

∨
K 4) (see §9.1 and §9.4), and

the following equations of GZML:

0A∧B,C =
∧
K1

B 0A,C , 0A∨B,C =
∨
Z1

B 0A,C ,

0C,A∧B =
∧
Z1

B 0C,A, 0C,A∨B =
∨
K1

B 0C,A,

in order to obtain a composition-free arrow term f ′′ of C(GZML), equal
to f ′ in GZML, in which every 1 and and every 0 have subscripts that are
letters. This procedure is arbitrary as far as zero arrow terms are concerned:

we could as well base it on
ξ

K2 and
ξ

Z2 instead of
ξ

K1 and
ξ

Z1. (We could
also use (∪0) to omit zero arrow terms, which will reappear through (∪0)
in another garb afterwards; see below.)

Next we apply to f ′′ the equations (
ξ

Z) and the following equations of
GZML:

ξ

Xi
A (f ∪ g) =

ξ

Xi
A f ∪

ξ

Xi
A g,

∧
Ki

A

∨
Kj

B f =
∨
Kj

B

∧
Ki

A f,
∨
Zi

A

∨
Kj

B f =
∨
Kj

B

∨
Zi

A f,

∧
Ki

A

∧
Zj

B f =
∧
Zj

B

∧
Ki

A f,
∨
Zi

A

∧
Zj

B f =
∧
Zj

B

∨
Zi

A f,

for X ∈ {K,Z}, i, j ∈ {1, 2} and ξ ∈ {∧,∨}, to obtain an arrow term f ′′′

of C(GZML) in normal form equal to f ′′ in GZML.
To transform f ′′′ into an arrow term in settled normal form, we apply the

equations (0) and (∪0) to put in the missing atomic components, and delete
the atomic components P1. . . PnQ1. . . Qm0p,p for which we have already the
atomic components P1. . . PnQ1. . . Qm1p. a

It is easy to establish that if f, g : A ` B are arrow terms of C(GZML)
in settled normal form and Gf = Gg, then the set of atomic components
of f and the set of atomic components of g must be the same set of atomic
terms. We can then easily prove the following.

Zero-Mix Lattice Coherence. The functor G from ZML to Rel is
faithful.

§13.2. Zero-mix lattice and distributive lattice categories 301

Proof. Suppose f, g : A ` B are arrow terms of C(GZML) in settled
normal form such that Gf = Gg. By the Normal-Form Lemma, we have
the arrow terms f ′ and g′ in settled normal form such that f = f ′ and g = g′

in GZML. By the functoriality of G, we have Gf = Gf ′ and Gg = Gg′;
hence Gf ′ = Gg′. So f ′ and g′ have equal sets of atomic components,
and they must be equal in GZML by applying (∪ assoc), (∪ com) and
(∪ idemp). Therefore, f = g in GZML. a

We could have used (∪ assoc), (∪ com) and (∪ idemp) to find a unique
term in settled normal form equal to an arrow term of GZML. The ad-
vantage ZML has over DL is that, due to zero arrows, we can reach this
unique composition-free normal form. For DL, a unique cut-free normal
form was not forthcoming.

We will see in the next section that DL is isomorphic to a subcategory
of ZML. For that we rely on Distributive Lattice Coherence and Zero-Mix
Lattice Coherence. The unique normal form we have for ZML can serve
as a substitute for the missing unique normal form of DL. For every arrow
term of C(DL) we take the arrow term of C(GZML) in normal form whose
image under G is the same.

§13.2. Zero-mix lattice and distributive lattice cate-
gories

To obtain the natural logical category ZDL, we have that the logical system
C(ZDL) is in L∧,∨, with the transformations α included in 1, b, c, w-k, d

and m−1. The specific equations of E(ZDL) are obtained by taking the
union of those of E(DS) and E(ZL) plus (d

∧
k) and (d

∨
k) of §11.1 and (wm)

of §10.1 for mA,A defined by (dm) of §11.1 understood as a definition. Note
that we do not assume here the equations (m ∧

e) and (m ∨
e), which would

deliver immediately the equations of E(DL′), and hence of E(DL) (see
§11.1). We will see below, however, that all the equations of E(DL) are in
E(ZDL).

We will show that the categories ZML and ZDL are isomorphic with
the definition

(md) dA,B,C =df mA∧B,C ◦
∧
b→A,B,C

◦ (1A ∧m−1
B,C)

302 CHAPTER 13. ZERO-MIX LATTICE CATEGORIES

in C(ZML) (this definition is derived from the equation (
∧
b mL) of §8.3; an

alternative definition can be obtained from (
∨
b mL)), and the definition of

mA,B in C(ZDL) corresponding to the equation (dm) of §11.1.
It is easy to conclude from Zero-Mix Lattice Coherence of the preceding

section that with (md) all the equations of E(ZDL) plus (dm) hold in
ZML. To show that with the definition of mA,B corresponding to (dm) all
the equations of E(ZML) hold in ZDL, first we derive easily (m nat) for
ZDL, by using naturality equations of ZDL. Then we infer with the help

of (
ξ

w
ξ

k
ξ

k) for ξ ∈ {∧,∨} (see §9.1 and the List of Equations) that in ZDL
we have (

∨
k1 ◦

∧
k1)∪ (

∨
k2 ◦

∧
k2) = m, with subscripts omitted. Next we derive

easily (∪ ◦) for ZDL with the help of naturality and bifunctorial equations.
The equation (∪ ξ) of §10.1 is derived for ZDL as indicated in §10.1, and
(∪0) is derived for ZDL as we derived it for ZIDL in §12.5. With all
that, we obtain (mm−1) in ZDL as in the preceding section. Since in ZDL
we have all the equations of E(ZL), we have also (bm−1) and (cm−1) (see
§12.1), which together with (mm−1) yield (bm) and (cm) in ZDL. (The
equation (m nat) follows from (m−1 nat) with the help of (mm−1), but we
relied on (m nat) in the derivation of (mm−1).) It remains only to derive
for ZDL the equation obtained from (md) by replacing mA∧B,C according
to (dm); namely,

dA,B,C = (
∧
k1

A∧B,D ∨1C) ◦ dA∧B,D,C ◦ (1A∧B∧
∨
k2

D,C) ◦
∧
b→A,B,C

◦ (1A ∧m−1
B,C).

For that it is enough to derive (
∧
b mL), as we did it for DL′ in §11.1, and

use moreover (mm−1). We can then conclude that ZML and ZDL are
isomorphic categories.

We can infer from Zero-Mix Lattice Coherence that all the equations of
E(DL) are in E(ZDL). Because of the question concerning the indepen-
dence of the equations (m ∧

e) and (m ∨
e) in our axiomatization of DL (see

§11.1), it is, however, of some interest to see how these equations are de-
rived in E(ZDL). We derive the equations (

∧
b mL), (

∨
b mL) and (cm) as we

did it for DL′ in §11.1. Then we derive the equations (m ∧
cm) and (m ∨

cm)
as we did it for DL in §11.1. Note that we do not need the equations (m ∧

e)
and (m ∨

e) for all these derivations. With (mm−1), we easily obtain from
(m ∧

cm) and (m ∨
cm) the following equations:

§13.2. Zero-mix lattice and distributive lattice categories 303

∧
e′A,B,C,D = mA∧C,B∧D ◦ ∧

cm
A,B,C,D

◦ (1A∧B ∧m−1
C,D),

∨
e′D,C,B,A = (m−1

D,C ∨ 1B∨A) ◦ ∨
cm

D,C,B,A
◦mD∨B,C∨A.

We also have in ZDL

ck
A,C,B,D

◦ ∧e′A,B,C,D
◦ (1A∧B ∧mC,D)

= ((
∧
k1

A,C ∨ ∧
k1

B,D) ∧ (
∧
k2

A,C ∨ ∧
k2

B,D)) ◦ ∧
w(A∧C)∨(B∧D) ◦mA∧C,B∧D ◦

◦ ∧
cm

A,B,C,D, by (m ∧
cm),

= mA,B ∧mC,D, by naturality equations and Lattice Coherence,

from which (m ∧
e) follows easily with the help of (mm−1). We proceed

analogously for (m ∨
e) by using (m ∨

cm).
We have seen in §12.4 that Set∗ is a zero-lattice category with ∧ being

2× and ∨ being 2+. (It is also a symmetric net category with ∧ being

2+ and ∨ being 2×.) If Set∗ with ∧ being 2× and ∨ being 2+ were also a
symmetric net category, and (d

∧
k) and (d

∨
k) were moreover satisfied, then

a 2× b and a 2+ b would be isomorphic in Set∗, which is not the case. Note
that the equation (wm) played no role in inferring above that A ∧ B and
A ∨ B are isomorphic in ZDL; namely, in deriving the equation (mm−1)
for ZDL. Since the equations (d

∧
k) and (d

∨
k) hold in the cartesian linearly

distributive categories of [22] (cf. §11.5), this shows that no definition of
da,b,c : a 2× (b 2+ c) → (a 2× b) 2+ c in Set∗ can support the claim made in
[22] (end of Section 3), which we have already considered in §12.4. Since
products and coproducts are unique up to isomorphism (see [100], Sections
IV.1-2), there is no alternative lattice-category structure to the lattice-
category structure provided by 2× and 2+ in Set∗. (This invalidates also
Proposition 3.4 of [22].)

In ZML, the arrow ck
A,C,B,D : (A∧C)∨ (B∧D) ` (A∨B)∧ (C∨D) has

an inverse cl
A,B,C,D : (A ∨B) ∧ (C ∨D) ` (A ∧ C) ∨ (B ∧D). The natural

transformation cl could be taken as a primitive instead of m and m−1, or
∪ and 0, because, for f, g : C ` B, in ZML we have the equations

f ∪ g = [
∧
k1

B,A,
∧
k2

A,B] ◦ cl
B,A,A,B

◦ 〈∨k1
B,A

◦ f,
∨
k2

A,B
◦ g〉,

0A,B = [
∧
k1

B,A,
∧
k2

A,B] ◦ cl
B,A,A,B

◦ 〈∨k2
B,A,

∨
k1

A,B〉,
which are easily checked with the help of Zero-Mix Lattice Coherence.

304 CHAPTER 13. ZERO-MIX LATTICE CATEGORIES

There are many ways to define cl
A,B,C,D in ZML. One way is

cl
A,B,C,D =df

∧
e′A,B,C,D

◦ (m−1
A,B ∧ 1C∨D),

and another

cl
D,B,C,A =df (1D∧C ∨m−1

B,A) ◦ ∨e′D,C,B,A.

These two definitions show that the equations (m ∧
e) and (m ∨

e) of §11.1 are
in ZML immediate consequences of

ck
A,C,B,D

◦ cl
A,B,C,D = 1(A∨B)∧(C∨D),

cl
A,C,B,D

◦ ck
A,B,C,D = 1(A∧B)∨(C∧D).

§13.3. Coherence of zero-mix dicartesian categories

To obtain the natural logical category ZML>,⊥, we have that the logical
system C(ZML>,⊥) is in L∧,∨.>,⊥, with the transformations α included in
1, b, c, w-k, δ-σ, m and m−1. The specific equations of E(ZML>,⊥) are
obtained by taking the union of those of E(ZML) and E(L>,⊥). We call
natural ZML>,⊥-categories zero-mix dicartesian categories.

Zero-mix dicartesian categories are linear categories in the sense of [95]
(p. 279). The difference is that linear categories need not satisfy (wm),
which amounts to (∪ idemp). So the hom-sets of linear categories are com-
mutative monoids, and not necessarily semilattices with unit, as in zero-
mix dicartesian categories (cf. the categories ZML− and ZML−>,⊥ below).
Closely related notions are the notions of Ab-category (or preadditive cat-
egory) and additive category, where the hom-sets are abelian groups (see
[100], Sections I.8 and VIII.2, and [57], p. 60). These notions enter into the
notion of abelian category (see [100], Section VIII.3, [57], Chapter 2, and
[59], Section 1.591).

The syntactical category GZML>,⊥ is defined by combining what we
had for GZML and GL>,⊥ in §9.6. We can then prove Composition Elim-
ination for GZML>,⊥ as for GZML.

We define the atomic terms of C(GZML>,⊥) as we did for C(GZML)
in §13.1, save that the indices p and q of 0p,q (but not those of 1p) can
be replaced by > or ⊥. Arrow terms of C(GZML>,⊥) in normal form,

§13.3. Coherence of zero-mix dicartesian categories 305

and their atomic components, are then defined analogously to what we had
in §13.1. Let the settled normal form for an arrow term f : A ` B of
C(GZML>,⊥) be defined as for C(GZML) when GA 6= ∅ and GB 6= ∅. If
either GA = ∅ or GB = ∅, then f is in settled normal form when it is 0A,B .

We can prove as in §13.1 the Normal-Form Lemma where GZML is
replaced by GZML>,⊥, with the following additions. We use the following
equations of GZML>,⊥:

∧
κA = 0A,>,

∨
κA = 0⊥,A,

1> = 0>,>, 1⊥ = 0⊥,⊥,

together with (0) and (∪0), to remove superfluous atomic components. We
can then prove as before the following.

Zero-Mix Dicartesian Coherence. The functor G from ZML>,⊥ to
Rel is faithful.

We prove the maximality of ZML and ZML>,⊥ as we proved the max-
imality of ZL and ZL>,⊥ in §12.3.

Let ZML− and ZML−>,⊥ differ from ZML and ZML>,⊥ by omitting
(wm), or alternatively (∪ idemp), from the specific equations. In these
categories hom-sets are not necessarily semilattices with unit—they must
be only commutative monoids. We can prove that there are faithful functors
from ZML− and ZML−>,⊥ into the category Mat of §12.5. For these proofs
we proceed as for ZML and ZML>,⊥. Note that we did not need (wm) for
Composition Elimination in GZML and GZML>,⊥. (We needed (wm) for
the cut elimination of DL in Chapter 11, but not for the cut elimination of
ZIDL in Chapter 12; see §12.5.) The settled normal form is now defined
by making every ordered pair from GA × GB correspond to a nonempty
set of atomic components bound to that pair; more precisely, a nonempty
set of occurrences of a single arrow term bound to that pair such that each
occurrence is an atomic component (cf. §13.1). This is a multiset based
on a singleton. Whether zero atomic components are duplicated in this
multiset is without importance, but we count the number of nonzero atomic
components; this number corresponds to an entry n ≥ 1 in the matrix. The
categories ZML− and ZML−>,⊥ are clearly not maximal, since we can add
the equation (wm) without falling into preorder.

306 CHAPTER 13. ZERO-MIX LATTICE CATEGORIES

§13.4. The category Semilat∗

In this section we will consider as an example of a zero-mix dicartesian
category the category Semilat∗, whose objects are semilattices with unit,
and whose arrows are unit-preserving semilattice homomorphisms. This
category is a subcategory of the category Set∗ of §9.7. Note that Semilat∗ is
not the category Setsl

∗ of §10.1, which is isomorphic to the category Semilat
of semilattices with semilattice homomorphisms.

We want to summarize matters in this section; so we give again the
following definitions from §9.7:

I = {∗}, a′ = {(x, ∗) | x ∈ a− I}, b′′ = {(∗, y) | y ∈ b− I},
a⊗ b = ((a− I)× (b− I)) ∪ I,
a 2× b = (a⊗ b) ∪ a′ ∪ b′′,
a 2+ b = a′ ∪ b′′ ∪ I.

If 〈a1, ·, ∗〉 and 〈a2, ·, ∗〉 are semilattices with unit, then we define the
semilattice with unit 〈a1, ·, ∗〉 ξ 〈a2, ·, ∗〉, for ξ ∈ {∧,∨}, as 〈a1 2× a2, ·, ∗〉,
where 2× corresponds to cartesian product. For · and ∗ we have the following
clauses (taken over from §10.1):

(x1, x2) · (y1, y2) = (x1 · y1, x2 · y2),
(x1, x2) · ∗ = ∗ · (x1, x2) = (x1, x2),
∗ · ∗ = ∗.

We have that > = ⊥ = I = {∗} is the trivial semilattice with unit.
The functions

∧
ki

a1,a2
: a1 2× a2 → ai, for i ∈ {1, 2}, are defined by

∧
ki

a1,a2
(x1, x2) = xi,

∧
ki

a1,a2
(∗) = ∗;

for fi : c → ai, the function 〈f1, f2〉 : c → a1 2× a2 is defined by

〈f1, f2〉(z) =
{

(f1(z), f2(z)) if f1(z) 6= ∗ or f2(z) 6= ∗
∗ if f1(z) = f2(z) = ∗;

and the function ∧
κa: a → I is defined by ∧

κa (x) = ∗.
The functions

∨
ki

a1,a2
: ai → a1 2× a2 are defined by

§13.4. The category Semilat∗ 307

∨
k1

a1,a2
(x) = (x, ∗), ∨

k2
a1,a2

(x) = (∗, x), for x 6= ∗,
∨
ki

a1,a2
(∗) = ∗;

for gi : ai → c, the function [g1, g2] : a1 2× a2 → c is defined by

[g1, g2](x1, x2) = g1(x1) · g2(x2),
[g1, g2](∗) = ∗;

and the function ∨
κa: I → a is defined by ∨

κa (∗) = ∗. (The clauses in the
definitions of

∧
ki

a1,a2
, 〈f1, f2〉, ∧

κa and ∨
κa are taken over from §9.7, where

they were given for Set∗, while the clauses for
∨
ki

a1,a2
and [g1, g2] are taken

over from §10.1, where they were given for Setsl
∗ .)

For f, g : a → b, we define the function f ∪ g : a → b by

(f ∪ g)(x) = f(x) · g(x)

(as for Setsl
∗ in §10.1), and, finally, we have the function 0a,b : a → b defined

by

0a,b(x) = ∗

(as for Set∗ in §12.4). It is straightforward to check that with all these
definitions Semilat∗ is a zero-mix dicartesian category.

The category Semilat∗ is a subcategory of the category ComMon of
commutative monoids with monoid homomorphisms. By repeating what we
had above, we can show that ComMon, with both ∧ and ∨ being cartesian
product, and both > and ⊥ being the trivial single-element monoid, is a
natural ZML−>,⊥-category. The category Mat of §12.5 is isomorphic to a
subcategory of ComMon, which is itself a subcategory of Set∗.

Let us summarize in a table the connections between the three subcate-
gories of Set∗ that we had as examples for various kinds of lattice categories
(see §9.7, §10.1, §10.3 and §12.4):

category ∧ ∨ > ⊥
Setsl

∗ ∼= Semilat mix-lattice ⊗ 2× I ∪{x} I
Set∗ zero-dicartesian 2× 2+ I I

Semilat∗ zero-mix dicartesian 2× 2× I I

308 CHAPTER 13. ZERO-MIX LATTICE CATEGORIES

Note that Setsl
∗ is not a dicartesian category, but only a sesquicartesian

category with > and ⊥ as in the table. We also had in §9.7 the dicartesian
category Set∅∗, where, in contradistinction to Set∗, we had that ⊥ is ∅; but
this category is not a zero-lattice category.

The category Rel is a zero-mix dicartesian category with both ∧ and ∨
being +, and both > and ⊥ being 0; the operation ∪ in Rel is union, and
the zero arrows are empty relations.

The category Rel is isomorphic to a subcategory of Semilat∗. We define
a functor F from Rel to Semilat∗ by

Fn = 〈Pn,∪, ∅〉,

where Pn is the power set of the ordinal n and ∪ is binary union of sets;
for R ⊆ n×m and X ∈ Pn we have

(FR)(X) = {y ∈ m | for some x ∈ X, xRy}.

It is straightforward to check that F is a faithful functor from Rel to
Semilat∗, which is one-one on objects. So the image under F in Semilat∗ is
isomorphic to Rel. The functor F is a strong, but not strict, C(ZML>,⊥)-
functor (see §2.8). The semilattice with unit 〈Pn,∪, ∅〉 is, up to isomor-
phism, the free semilattice with unit with n free generators.

It is known that Rel is isomorphic to the Kleisli category of the power-
set monad (or triple) on the category of finite sets with functions (see [90],
Section 0.6, p. 32). In this isomorphism, every relation R ⊆ n×m is mapped
to a function fR : n → Pm such that y ∈ fR(x) iff xRy, and fR can then
be extended in a unique way to an ∅-preserving semilattice homomorphism
FR from 〈Pn,∪, ∅〉 to 〈Pm,∪, ∅〉.

Chapter 14

Categories with Negation

In this, final, chapter of the book we bring to completion our proposed
codification of the proof theory of classical propositional logic. We first
prove a general coherence result that enables us to pass from coherence
proved in the absence of negation to coherence with a De Morgan negation
added. De Morgan negation is involutive negation that satisfies the De
Morgan laws, but does not yet amount to Boolean negation.

To obtain Boolean negation, i.e. an operation corresponding to comple-
mentation, we need extra assumptions, which, if we want coherence with
respect to the category whose arrows are relations between finite ordinals,
must be zero arrows. The effect of having these zero arrows, which yield the
zero-identity arrows of Chapter 12, is that all theorems, i.e. all propositions
proved without hypotheses, will have zero proofs. Then we prove coherence
for our Boolean categories, by reducing it to a previously proved coherence
result of Chapter 12.

We end this chapter with comments on alternatives to our approach
in categorifying the proof theory of Boolean propositional logic. Besides
the approach through bicartesian closed categories, i.e. cartesian closed
categories with finite coproducts, which with natural assumptions about
negation collapses into preorder, there are alternatives with relations be-
tween finite ordinals being replaced by a more complex kind of relation on
the sum of the ordinals in the domain and codomain. We discuss problems
that arise with these alternatives.

We conclude that if our codification of the general proof theory of clas-

309

310 CHAPTER 14. CATEGORIES WITH NEGATION

sical propositional logic is acceptable, then this proof theory is simpler than
the general proof theory of intuitionistic propositional logic, codified in bi-
cartesian closed categories, or, equivalently, in a typed lambda calculus
with product and coproduct types. In particular, equality of derivations is
easily decidable for classical logic. The categorial structure of this classical
proof theory is, however, quite rich. It covers all the categorial structures
considered in this book, except the zero-mix lattice structure of Chapter
13, and extends them conservatively with respect to identity of proofs. It
comes close to the zero-mix lattice structure, through which it is related to
linear algebra.

§14.1. De Morgan Coherence

If L is one of the languages L∧,∨ and L∧,∨,>,⊥, then let L¬ be the language
obtained by assuming in the definition of L that we have in addition the
unary (that is, 1-ary) connective ¬ of negation. The language L¬p is, on
the other hand, defined like L save that the set of letters P is replaced by
the union of P and the set P¬ = {¬p | p ∈ P}.

The syntactical system C(I¬) is defined by taking first for its objects
the formulae of L¬∧,∨; next, for every A, B ∈ L¬∧,∨ we have the primitive
arrow terms

1A : A ` A,

n→A : ¬¬A ` A, n←A : A ` ¬¬A,
∧
r→A,B : ¬(A ∧B) ` ¬A ∨ ¬B, ∧

r←A,B : ¬A ∨ ¬B ` ¬(A ∧B),
∨
r→A,B : ¬(A ∨B) ` ¬A ∧ ¬B, ∨

r←A,B : ¬A ∧ ¬B ` ¬(A ∨B),

and as the operations on arrow terms we have composition, ∧ and ∨. Let
the family n-r be the union of the families n→, n←, ∧r→, ∧r←, ∨r→ and ∨

r←.
The equations E(I¬) are obtained by assuming the categorial equations,
the bifunctorial equations for ∧ and ∨, and the isomorphism equations

n←A ◦n→A = 1¬¬A, n→A ◦n←A = 1A,
∧
r←A,B

◦ ∧r→A,B = 1¬(A∧B),
∧
r→A,B

◦ ∧r←A,B = 1¬A∨¬B ,
∨
r←A,B

◦ ∨r→A,B = 1¬(A∨B),
∨
r→A,B

◦ ∨r←A,B = 1¬A∧¬B .

§14.1. De Morgan Coherence 311

The syntactical category I¬ is C(I¬)/E(I¬). Due to the presence of cat-
egorial and bifunctorial equations, we can easily prove the Development
Lemma (see §2.7) for I¬ (this presupposes a definition of β-term where β

can be one of the families n→, n←, ∧r→, etc.).

An arrow term of C(I¬) is called →-directed when ← does not occur as
a superscript in it. The formulae of L¬∧,∨ that are also formulae of L¬p

∧,∨
are said to be in normal form. We can then prove the Directedness Lemma
(see §4.3) for I¬. The proof of this lemma is obtained by relying on the
bifunctorial equations for ∧ and ∨. This lemma enables us to prove the
following.

I¬ Coherence. The category I¬ is a preorder.

The proof is analogous to the proof of Associative Coherence in §4.3.

Consider the following definitions in C(I¬):

¬1A =df 1¬A, ¬n→A =df n←¬A, ¬n←A =df n→¬A,

¬ ∧
r→A,B =df n←A∧B

◦ (n→A ∧ n→B) ◦ ∨r→¬A,¬B ,

¬ ∧
r←A,B =df

∨
r←¬A,¬B

◦ (n←A ∧ n←B) ◦n→A∧B ,

¬ ∨
r→A,B =df n←A∨B

◦ (n→A ∨ n→B) ◦ ∧r→¬A,¬B ,

¬ ∨
r←A,B =df

∧
r←¬A,¬B

◦ (n←A ∨ n←B) ◦n→A∨B ,

¬(g ◦ f) =df ¬f ◦¬g,

¬(f ∧ g) =df
∧
r←A,B

◦ (¬f ∨ ¬g) ◦ ∧r→D,E ,

¬(f ∨ g) =df
∨
r←A,B

◦ (¬f ∧ ¬g) ◦ ∨r→D,E .

It is easy to see that ¬ is a functor from I¬ to I¬op, i.e. a contravariant
functor from I¬ to I¬. It follows easily from I¬ Coherence that n→, n←,
ξ

r
→ and

ξ

r
←, for ξ ∈ {∧,∨}, define natural transformations between functors

defined in terms of the identity functor, the contravariant functor ¬ and
the bifunctors ξ . Our official definition of logical category does not cover
I¬, but it is clear how we can extend this definition to cover also categories
like I¬.

312 CHAPTER 14. CATEGORIES WITH NEGATION

The syntactical category I¬>,⊥ is defined as I¬ save that its objects are
from L¬∧,∨,>,⊥, and we have in C(I¬>,⊥) the additional primitive arrow terms

∧
ρ→: ¬> ` ⊥, ∧

ρ←: ⊥ ` ¬>,
∨
ρ→: ¬⊥ ` >, ∨

ρ←: > ` ¬⊥,

and in E(I¬>,⊥) the additional isomorphism equations

∧
ρ← ◦ ∧

ρ→ = 1¬>, ∧
ρ→ ◦ ∧

ρ← = 1⊥,
∨
ρ← ◦ ∨

ρ→ = 1¬⊥, ∨
ρ→ ◦ ∨

ρ← = 1>.

We call ρ the union of the families ∧
ρ→, ∧

ρ←, ∨
ρ→ and ∨

ρ←.
By extending the proof of I¬ Coherence, we easily obtain the following.

I¬>,⊥ Coherence. The category I¬>,⊥ is a preorder.

In C(I¬>,⊥) we can introduce the definition of ¬f as in C(I¬) with the
following additions:

¬ ∧
ρ→ =df n←> ◦ ∨

ρ→, ¬ ∧
ρ← =df

∨
ρ← ◦n→> ,

¬ ∨
ρ→ =df n←⊥ ◦ ∧

ρ→, ¬ ∨
ρ← =df

∧
ρ← ◦n→⊥ ,

and obtain a functor from I¬>,⊥ to I¬op
>,⊥.

Let K be a logical category in L. Then the syntactical category K¬,
whose objects are formulae of L¬, will be obtained from K as I¬ is obtained
from the variant of I in the language L∧,∨, or as I¬>,⊥ is obtained from the
variant of I in the language L∧,∨,>,⊥. For example, in the syntactical
system C(DL¬>,⊥), whose objects are formulae of L¬∧,∨,>,⊥, we will have
besides the primitive arrow terms in the families 1, b, c, w-k, δ-σ, m and
d, those in the families n-r and ρ, and the equations of E(DL¬>,⊥) will be
obtained by assuming the union of those of E(DL>,⊥) and E(I¬>,⊥).

We define a functor F from K¬ to K in the language L¬p; we call
the latter category K¬p. The category K¬p is exactly like the old logical
category K save that it is generated not by P but by P ∪ P¬ (see the end
of §2.7).

We define a functor F from K¬ to K¬p by the following graph-morphism
from C(K¬) to C(K¬p):

§14.1. De Morgan Coherence 313

Fp = p,

F ζ = ζ, for ζ ∈ {>,⊥},
F (A ξ B) = FA ξ FB, for ξ ∈ {∧,∨},
F¬p = ¬p,

F¬> = ⊥, F¬⊥ = >,

F¬¬A = FA,

F¬(A ∧B) = F¬A ∨ F¬B, F¬(A ∨B) = F¬A ∧ F¬B;

for f : A ` B in the families n-r and ρ,

Ff = 1FA (here FA is equal to FB),

FαA1,...,An
= αFA1,...,FAn

,

F (g ◦ f) = Fg ◦Ff ,

F (f ξ g) = Ff ξ Fg, for ξ ∈ {∧,∨}.

It is easy to check that F is indeed a functor; namely, f = g in K¬ implies
Ff = Fg in K¬p (cf. the penultimate paragraph of §2.4).

Next, we define a functor F¬ from K¬p to K¬ by the graph-morphism
from C(K¬p) to C(K¬) for which we have F¬A = A, and F¬f = f . It is
clear that F and F¬ are strict C(K)-functors.

We define by induction on the length of A ∈ L¬∧,∨ the arrow terms
iA : A ` FA and i−1

A : FA ` A of C(I¬):

iA = i−1
A = 1A, if A is p or ¬p,

iA1ξA2 = iA1 ξ iA2 , for ξ ∈ {∧,∨},
i¬¬B = iB ◦n→B ,

i¬(A1∧A2) = (i¬A1 ∨ i¬A2) ◦
∧
r→A1,A2

, i¬(A1∨A2) = (i¬A1 ∧ i¬A2) ◦
∨
r→A1,A2

,

i−1
A1ξA2

= i−1
A1

ξ i−1
A2

, for ξ ∈ {∧,∨},
i−1
¬¬B = n←B ◦ i−1

B ,

i−1
¬(A1∧A2)

= ∧
r←A1,A2

◦ (i−1
¬A1

∨ i−1
¬A2

), i−1
¬(A1∨A2)

= ∨
r←A1,A2

◦ (i−1
¬A1

∧ i−1
¬A2

).

If A ∈ L¬∧,∨,>,⊥, then we define the arrow terms iA : A ` FA and i−1
A :

FA ` A of C(I¬>,⊥) with the additional clauses:

314 CHAPTER 14. CATEGORIES WITH NEGATION

iζ = 1ζ , for ζ ∈ {>,⊥},
i¬> = ∧

ρ→, i¬⊥ = ∨
ρ→,

i−1
¬> = ∧

ρ←, i−1
¬⊥ = ∨

ρ←.

It is clear that we have i−1
A

◦ iA = 1A and iA ◦ i−1
A = 1FA in I¬ or I¬>,⊥. We

can prove the following.

Auxiliary Lemma. For every arrow term f : A ` B of C(K¬) we have
f = i−1

B
◦Ff ◦ iA in K¬.

Proof. We proceed by induction on the length of f .
If f : A ` B is in the families n-r and ρ, we have that f = i−1

B
◦Ff ◦ iA

by I¬ Coherence or I¬>,⊥ Coherence.
If f is αA1,...,Ak

: Mµ(A1, . . . , Ak) ` Nν(A1, . . . , Ak), then iMµ(A1,...,Ak)

is Mµ(iA1 , . . . , iAk
) and i−1

Nν(A1,...,Ak) is Nν(i−1
A1

, . . . , i−1
Ak

); we obtain f =
i−1
B

◦Ff ◦ iA by using (α nat).
If f is f2 ◦ f1, then we have

f2 ◦ f1 = i−1
B

◦Ff2 ◦ iC ◦ i−1
C

◦Ff1 ◦ iA, by the induction hypothesis,
= i−1

B
◦F (f2 ◦ f1) ◦ iA.

If f is f1 ξ f2, for ξ ∈ {∧,∨}, then iA1ξA2 is iA1 ξ iA2 and i−1
B1ξB2

is
i−1
B1

ξ i−1
B2

; we obtain f = i−1
B

◦Ff ◦ iA by using bifunctorial equations. a

K¬-K¬p-Equivalence. The categories K¬ and K¬p are equivalent via the
functors F and F¬.

Proof. We have FF¬A = A and FF¬f = f . That i is a natural iso-
morphism from the identity functor of K¬ to the composite functor F¬F

is shown by the Auxiliary Lemma. a

Let the functor G from K¬ to Rel be defined by extending the definition
of the functor G from K to Rel with the clauses

G¬A = GA,

Gf = 1GA,

for every arrow term f : A ` B in the n-r and ρ families. Here GA must
be equal to GB, and 1GA is the identity relation, i.e. identity function, on
GA. Then we can prove the following.

§14.1. De Morgan Coherence 315

De Morgan Coherence. If G from K to Rel is faithful, then G from K¬
to Rel is faithful.

Proof. Suppose that for the arrow terms f, g : A ` B of C(K¬) we have
Gf = Gg. Then we have GFf = GFg, where F is the functor from K¬
to K¬p we have defined above. Since G from K to Rel is faithful, we have
that G from K¬p to Rel is faithful and hence Ff = Fg in K¬p. From
K¬-K¬p-Equivalence we conclude that f = g in K¬. a

We can define the functor ¬ from K¬ to K¬op by extending the defini-
tions we have for I¬ and I¬>,⊥ with the following clauses, provided C(K¬)
has the required arrow terms on the right-hand side:

¬ ∧
b→A,B,C =df

∧
r←A,B∧C

◦ (1¬A ∨ ∧
r←B,C) ◦

∨
b←¬A,¬B,¬C

◦ (∧r→A,B ∨ 1¬C) ◦ ∧r→A∧B,C ,

¬ ∧
b←A,B,C =df

∧
r←A∧B,C

◦ (∧r←A,B ∨ 1¬C) ◦
∨
b→¬A,¬B,¬C

◦ (1¬A ∨ ∧
r→B,C) ◦ ∧r→A,B∧C ,

¬ ∧
cA,B =df

∧
r←A,B

◦ ∨
c¬A,¬B ◦ ∧r→B,A,

¬ ∧
wA =df

∨
w¬A ◦ ∧r→A,A,

¬ ∧
ki

A,B =df
∧
r←A,B

◦
∨
ki
¬A,¬B , for i ∈ {1, 2},

¬dL
A,B,C =df

∧
r←A,B∨C

◦ (1¬A ∨ ∨
r←B,C) ◦ dR

¬A,¬B,¬C
◦ (∧r→A,B ∧ 1¬C) ◦ ∨r→A∧B,C ,

¬dR
C,B,A =df

∧
r←C∨B,A

◦ (∨r←C,B ∨ 1¬A) ◦ dL
¬C,¬B,¬A

◦ (1¬C ∧ ∧
r→B,A) ◦ ∨r→C,B∧A,

¬mA,B =df
∧
r←A,B

◦m¬A,¬B ◦ ∨r→A,B ,

¬m−1
A,B =df

∨
r←A,B

◦m−1
¬A,¬B

◦ ∧r→A,B ,

¬(f ∪ g) =df ¬f ∪ ¬g,

¬0A,B =df 0¬B,¬A;

the clauses for ¬ ∨
b→A,B,C and ¬ ∨

b←A,B,C are obtained from the clauses for

¬ ∧
b→A,B,C and ¬ ∧

b←A,B,C respectively by interchanging ∧ and ∨;

¬ ∨
cA,B =df

∨
r←B,A

◦ ∧
c¬A,¬B ◦ ∨r→A,B ,

¬ ∨
wA =df

∨
r←A,A

◦ ∧
w¬A,

¬ ∨
ki

A,B =df

∧
ki
¬A,¬B

◦ ∨r→A,B , for i ∈ {1, 2};

316 CHAPTER 14. CATEGORIES WITH NEGATION

¬ ∧
δ→A =df

∧
r←A,> ◦ (1¬A ∨ ∧

ρ←) ◦
∨
δ←¬A,

¬ ∧
δ←A =df

∨
δ→¬A

◦ (1¬A ∨ ∧
ρ→) ◦ ∧r→A,>,

¬ ∧
σ→A =df

∧
r←>,A

◦ (∧ρ← ∨ 1¬A) ◦ ∨σ←¬A,

¬ ∧
σ←A =df

∨
σ→¬A

◦ (∧ρ→ ∨ 1¬A) ◦ ∧r→>,A;

the clauses for ¬ ∨
δ→A , ¬ ∨

δ←A , ¬ ∨
σ→A and ¬ ∨

σ←A are obtained from the last
four clauses by interchanging ∧ with ∨, and > with ⊥;

¬ ∧
κA =df

∨
κ¬A ◦ ∧

ρ→, ¬ ∨
κA =df

∨
ρ→ ◦ ∧κ¬A.

The coherence of K¬ is a sufficient (though not a necessary) condition for
the correctness of these definitions. By the coherence of K¬, we also obtain
that n→, n←,

ξ

r
→ and

ξ

r
← for ξ ∈ {∧,∨} define natural transformations

between functors defined in terms of the identity functor, the contravariant
functor ¬ and the bifunctor ξ .

The category DL¬ corresponds in the following sense to the system Efde

of tautological entailments of [1] (Section 15, and Section 18 by J.M. Dunn;
see also [6]): there is an arrow of type A ` B in DL¬ iff A → B is a theorem
of Efde. The algebraic models with respect to which Efde is complete are
called De Morgan lattices, distributive involution lattices or quasi-Boolean
algebras (see [1], Section 18, and references therein; see also [113], Section
III.3). Complementation in De Morgan lattices is not in general Boolean
complementation (see the next section).

§14.2. Boolean Coherence

The syntactical system C(B) is defined by taking first for its objects the
formulae of L¬∧,∨,>,⊥; next, the primitive arrow terms of C(B) are those of
C(ZIDL¬>,⊥), i.e. those in the families 1, b, c, w-k, δ-σ, m, d, 0 (whose
members are 0A : A ` A), n-r and ρ, plus

ηA : > ` ¬A ∨A,

εA : A ∧ ¬A ` ⊥,

for every A in L¬∧,∨,>,⊥, and the operations on arrow terms are composition,
∧ and ∨. The equations of E(B) are obtained by assuming the union of those

§14.2. Boolean Coherence 317

of E(ZIDL>,⊥), i.e. those of E(DL>,⊥) plus (0I), and those of E(I¬>,⊥). The
syntactical category B is C(B)/E(B). Here, B comes from Boolean.

We define 0A,B in B by f ◦0A, as we did in ZIDL>,⊥, and we can infer
that the following equation holds in B:

ηA = ηA ◦1>,

= ηA ◦0>, since 1> = ∧
κ> = 0>,>,

= 0>,¬A∨A.

We derive analogously εA = 0A∧¬A,⊥. Since ηA and εA are zero arrows, we
assume that GηA and GεA are empty relations.

The following equation holds in B:

(0ηε) 0A = ∨
σ→A ◦ (εA ∨ 1A) ◦ dA,¬A,A ◦ (1A ∧ ηA) ◦

∧
δ←A ,

since

εA = εA ◦0A∧¬A

= εA ◦ (0A ∧ 0¬A), by (0I ξ) of §12.5,

which with naturality and bifunctorial equations yields that the right-hand
side RHS of (0ηε) is equal to RHS ◦0A. The equation (0ηε) shows that we
need not take 0A as a primitive arrow term: we can take it as defined in
terms of ηA and εA. We could then conceive of B as obtained by extending
DL¬>,⊥ with the arrows ηA and εA and the equations (0I) for defined 0A.

The following equations too hold in B:

(η∧) ηB∧A = (∧r←B,A ∨ 1B∧A) ◦ ∨
c¬B∨¬A,B∧A ◦ ∨e′B,A,¬B,¬A

◦

◦ (∨cB,¬B ∧ ∨
cA,¬A) ◦ (ηB ∧ ηA) ◦

∧
δ←> ,

(η∨) ηB∨A = (∨r←B,A ∨ 1B∨A) ◦ ∨e′¬B,¬A,B,A
◦ (ηB ∧ ηA) ◦

∧
δ←> ,

(ε∧) εA∧B =
∨
δ→⊥ ◦ (εA ∨ εB) ◦ ∧e′A,B,¬A,¬B

◦ (1A∧B ∧ ∧
r→A,B),

(ε∨) εA∨B =
∨
δ→⊥ ◦ (εA ∨ εB) ◦ (∧c¬A,A ∨ ∧

c¬B,B) ◦ ∧e′¬A,¬B,A,B
◦

◦ ∧
cA∨B,¬A∧¬B ◦ (1A∨B ∧ ∨

r→A,B),

(η>) η> = (∧ρ← ∨ 1>) ◦ ∨σ←> , (ε>) ε>= ∧
σ→⊥ ◦ (1> ∧ ∧

ρ→),

(η⊥) η⊥ = (∨ρ← ∨ 1⊥) ◦
∨
δ←> , (ε⊥) ε⊥=

∧
δ→⊥ ◦ (1⊥ ∧ ∨

ρ→).

318 CHAPTER 14. CATEGORIES WITH NEGATION

The syntactical system C(C) is defined by taking first for its objects
the formulae of L¬p

∧,∨,>,⊥, namely L∧,∨,>,⊥ generated by P ∪P¬; next, the
primitive arrow terms of C(C) are those of C(ZIDL>,⊥), i.e. those in the
families 1, b, c, w-k, m, d, δ-σ and 0 (whose members are 0A : A ` A) plus

ηp : > ` ¬p ∨ p,

εp : p ∧ ¬p ` ⊥,

for every p ∈ P, and the operations on arrow terms are composition, ∧
and ∨. As equations of E(C) we assume those of E(ZIDL>,⊥), i.e. those of
E(DL>,⊥) plus (0I). The syntactical category C is C(C)/E(C).

We define 0A,B in C by f ◦0A, as we did in ZIDL>,⊥ and B, and as in
B we infer ηp = 0>,¬p∨p, εp = 0p∧¬p,⊥ and (0ηε) with A replaced by p.

The category C¬ is obtained from C as I¬>,⊥ is obtained from I>,⊥;
namely, we have as objects the formulae of L¬∧,∨,>,⊥, we add to C the
arrows n-r and ρ, and we assume in addition the equations of E(I¬>,⊥).

The category C¬ is isomorphic to the category B. We define ηA and
εA in C¬ inductively with the help of (η ξ) and (ε ξ) for ξ ∈ {∧,∨}, and
(ηζ) and (εζ) for ζ ∈ {>,⊥}. Our purpose now is to show that the functor
G from C to Rel is faithful, and use this coherence result, together with
results analogous to K¬-K¬p-Equivalence and De Morgan Coherence, to
infer that G from B to Rel is faithful, i.e. that B is coherent.

Let A[>] be a formula of L¬p
∧,∨,>,⊥ with a particular occurrence of >,

and let A[B] be obtained from A[>] by replacing this particular occurrence
of > by the formula B of L¬p

∧,∨,>,⊥. Then it is clear that there is an η-term
A[ηp] : A[>] ` A[¬p ∨ p].

We define the arrow term ∧
gA[B]: A[>] ∧ B ` A[B] of C(DL>,⊥) by

induction on the length of A[>]:

∧
gB = ∧

σ→B : > ∧B ` B,

∧
gC∧A[B] = (1C ∧ ∧

gA[B]) ◦
∧
b←C,A[>],B : (C ∧A[>]) ∧B ` C ∧A[B],

∧
gA[B]∧C = (∧gA[B] ∧ 1C) ◦ (∧cB,A[>] ∧ 1C) ◦

∧
b→B,A[>],C

◦ ∧
cA[>]∧C,B :

(A[>] ∧ C) ∧B ` A[B] ∧ C,

∧
gC∨A[B] = (1C ∨ ∧

gA[B]) ◦ dR
C,A[>],B : (C ∨A[>]) ∧B ` C ∨A[B],

§14.2. Boolean Coherence 319

∧
gA[B]∨C = (∧gA[B] ∨ 1C) ◦ (∧cB,A[>] ∨ 1C) ◦ dL

B,A[>],C
◦ ∧

cA[>]∨C,B :

(A[>] ∨ C) ∧B ` A[B] ∨ C.

Then we can prove that the following equations hold in C:

(gη) A[ηp] = ∧
gA[¬p∨p]

◦ (1A[>] ∧ 0¬p∨p) ◦ (1A[>] ∧ ηp) ◦
∧
δ←A[>] .

We proceed by induction on the length of A[>]. If A is >, then

∧
σ→¬p∨p ◦ (1> ∧ 0¬p∨p) ◦ (1> ∧ ηp) ◦

∧
δ←>

= 0¬p∨p ◦ ηp, by (
∧
δ
∧
σ) and naturality equations,

= ηp, by (0I) and 0> =∧
κ>= 1>.

If A is C ∧D[>], then

(1C ∧ ∧
gD[B]) ◦

∧
b←C,D[>],B

◦ (1C∧D[>] ∧ 0¬p∨p) ◦ (1C∧D[>] ∧ ηp) ◦
∧
δ←C∧D[>]

= (1C ∧ ∧
gD[B]) ◦ (1C ∧ (1D[>] ∧ 0¬p∨p)) ◦ (1C ∧ (1D[>] ∧ ηp)) ◦

◦ (1C ∧
∧
δ←D[>]), by (

∧
b← nat), (

∧
b
∧
δ) and isomorphisms,

= 1C ∧D[ηp], by the induction hypothesis.

We proceed analogously when A is D[>] ∧ C, C ∨D[>] and D[>] ∨ C,
by applying naturality equations and Distributive Dicartesian Coherence.

For A[⊥] a formula of L¬p
∧,∨,>,⊥ with a particular occurrence of ⊥, and

A[B] obtained from A[⊥] by replacing this particular occurrence of ⊥ by
B, we have an ε-term A[εq] : A[q ∧ ¬q] ` A[⊥].

We define the arrow term ∨
gA[B]: A[B] ` A[⊥] ∨B of C(DL>,⊥) by

∨
gB = ∨

σ←B : B ` > ∨B,

∨
gC∨A[B] =

∨
b→C,A[⊥],B

◦ (1C ∨ ∨
gA[B]) : C ∨A[B] ` (C ∨A[⊥]) ∨B,

∨
gA[B]∨C = ∨

cA[⊥]∨C,B ◦
∨
b←B,A[⊥],C

◦ (∨cB,A[⊥] ∨ 1C) ◦ (∨gA[B] ∨ 1C) :

A[B] ∨ C ` (A[⊥] ∨ C) ∨B,

∨
gC∧A[B] = dL

C,A[⊥],B
◦ (1C ∧ ∨

gA[B]) : C ∧A[B] ` (C ∧A[⊥]) ∨B,
∨
gA[B]∧C = ∨

cA[⊥]∧C,B ◦ dR
B,A[⊥],C

◦ (∨cB,A[⊥] ∧ 1C) ◦ (∨gA[B] ∧ 1C) :

A[B] ∧ C ` (A[⊥] ∧ C) ∨B.

320 CHAPTER 14. CATEGORIES WITH NEGATION

Then, in a dual manner, we can prove by induction on the length of
A[⊥] that the following equations, analogous to (gη), hold in C:

(gε) A[εq] =
∨
δ→A[⊥]

◦ (1A[⊥] ∨ εq) ◦ (1A[⊥] ∨ 0q∧¬q) ◦
∨
gA[q∧¬q] .

From (gη) and (gε), we easily infer with naturality and bifunctorial equa-
tions the following equations of C:

for f : B ` A[>],

(gηf) A[ηp] ◦ f = ∧
gA[¬p∨p]

◦ (f ∧ 0¬p∨p) ◦ (1B ∧ ηp) ◦
∧
δ←B ,

for f : A[⊥] ` C,

(gεf) f ◦A[εq] =
∨
δ→C ◦ (1C ∨ εq) ◦ (f ∨ 0q∧¬q) ◦

∨
gA[q∧¬q].

Note that in the relations G(A[ηp] ◦ f) and G(∧gA[¬p∨p]
◦ (f ∧0¬p∨p)) we

have the same sets of ordered pairs, and in the relations G(f ◦A[εq]) and
G((f ∨ 0q∧¬q) ◦

∨
gA[q∧¬q]) we also have the same sets of ordered pairs.

Suppose now that we have two arrow terms f1, f2 : B ` C of C(C) such
that Gf1 = Gf2. Let p1, . . . , pn, with n ≥ 0, be the set of all occurrences of
letters that are subscripts of subterms of f1 and f2 of the form ηpi , where
i ∈ {1, . . . , n}, and let q1, . . . , qm, with m ≥ 0, be the set of all occurrences
of letters that are subscripts of subterms of f1 and f2 of the form εqj ,
where j ∈ {1, . . . , m} (the same letter may be repeated in p1, . . . , pn, or
q1, . . . , qm).

We introduce the following abbreviations by induction:

η0 = 1B , ε0 = 1C ,
ηk+1 = ηk ∧ ηpk+1 , εk+1 = εk ∨ εqk+1 ,

∧
0 0 = 1B ,

∨
0 0 = 1C ,

∧
0 k+1 =

∧
0 k ∧ 0¬pk+1∨pk+1 ,

∨
0 k+1 =

∨
0 k ∨ 0qk+1∧¬qk+1 ,

∧
B 0
> = B,

∨
C 0
⊥ = C,

∧
B k+1
> =

∧
B k
> ∧>,

∨
C k+1
⊥ =

∨
C k
⊥ ∨⊥,

∧
δ0 = 1B ,

∨
δ0 = 1C ,

∧
δk+1 =

∧
δ←∧

B k
>

◦
∧
δk,

∨
δk+1 =

∨
δk ◦

∨
δ→∨

C k
⊥

,

§14.2. Boolean Coherence 321

∧
B 0

p = B,
∨
C 0

q = C,
∧
B k+1

p =
∧
B k

p ∧(¬pk+1 ∨ pk+1),
∨
C k+1

q =
∨
C k

q ∨(qk+1 ∧ ¬qk+1),

∧
h0

f = 1B ,
∨
h0

f = 1C ,

∧
hk+1

f =

∧
hk

f ∧ 1¬pk+1∨pk+1 if ηpk+1 is in f
∧
hk

f
◦
∧
k1
∧
B k

p ,¬pk+1∨pk+1

if ηpk+1 is not in f ,

∨
hk+1

f =

∨
hk

f ∨ 1qk+1∨¬qk+1 if εqk+1 is in f
∨
k1
∨
C k

q ,qk+1∧¬qk+1

◦
∨
hk

f if εqk+1 is not in f .

Then, by relying on (gηf) and (gεf), for i ∈ {1, 2} we obtain in C the
equations

fi =
∨
δm ◦ εm ◦

∨
0m ◦

∨
hm

fi
◦ f ′i ◦

∧
hn

fi
◦
∧
0n ◦ ηn ◦

∧
δn

where f ′i is an arrow term of C(ZIDL¬p
>,⊥), and for f ′′i being

∨
0m ◦

∨
hm

fi
◦ f ′i ◦

∧
hn

fi
◦
∧
0n

we have Gf ′′1 = Gf ′′2 . Since f ′′1 and f ′′2 are also arrow terms of C(ZIDL¬p
>,⊥),

by Zero-Identity Distributive Dicartesian Coherence of §12.5 we conclude
that f ′′1 = f ′′2 in ZIDL¬p

>,⊥, and hence f1 = f2 in C. This establishes that
the functor G from C to Rel is faithful.

We prove as in the preceding section K¬-K¬p Equivalence for K¬p being
C and K¬ being C¬. (We stipulate that Fβp = βp and F¬βp = βp for
β ∈ {η, ε}.) Then, as in the proof of De Morgan Coherence, we use the
faithfulness of G from C to Rel and K¬-K¬p Equivalence to establish that
G from C¬ to Rel is faithful. The isomorphism of the categories C¬ and
B then yields the following.

Boolean Coherence. The functor G from B to Rel is faithful.

We can define the functor ¬ from B to Bop by extending the definitions
in the preceding section with

322 CHAPTER 14. CATEGORIES WITH NEGATION

¬ηA =df
∧
ρ← ◦ εA ◦ (n→A ∧ 1¬A) ◦ ∨r→¬A,A,

¬εA =df
∧
r←A,¬A

◦ (1¬A ∨ n←A) ◦ ηA ◦ ∨
ρ→ .

The transformations η and ε are dinatural transformations (see [100],
Section IX.4), which means that for f : A ` B we have

(1¬A ∨ f) ◦ ηA = (¬f ∨ 1B) ◦ ηB ,

εA ◦ (1A ∧ ¬f) = εB ◦ (f ∧ 1¬B).

These equations are satisfied trivially in B, because ηA, ηB , εA and εB are
zero arrows.

We leave open the question of maximality for the category B. In the
light of the results of §9.7, it seems natural to conjecture that this category is
not maximal. Note, however, that the category ZIDL, which is isomorphic
to a subcategory of B (see Chart 3), and covers the conjunction-disjunction
fragment of classical propositional logic, is maximal (see §12.5). For the
conjunction-disjunction fragment of classical propositional logic with the
constants > and ⊥, we have the category ZIDL>,⊥, which is also isomor-
phic to a subcategory of B, and is maximal in the relative sense in which
L>,⊥ is maximal (see §9.7 and §12.5). The technique of §9.7 suggests how
to prove some sort of relative maximality also for B.

§14.3. Boolean categories

A distributive dicartesian category A for which we have a functor ¬ from
A to Aop, natural isomorphisms like those in the families n-r and ρ, and
dinatural transformations ε and η will be called a Boolean category.

A Boolean category is called a zero-identity Boolean category when for
every 0a defined by (0ηε) of the preceding section, where A is replaced by
the object a, we have for every f, g : a ` b the equation (0I), namely f ◦0a =
0b ◦ g. The category B is the zero-identity Boolean category generated by
P.

The connection of Boolean categories with Boolean algebras is the fol-
lowing. We have an arrow of type A ` B in B iff A → B is a tautology of
propositional logic. This is how B is connected to classical propositional

§14.3. Boolean categories 323

logic. A partially ordered Boolean category, which must be a zero-identity
Boolean category, is a Boolean algebra (in which top and bottom are not
necessarily distinct).

Note that the equations of B cover cut elimination—i.e. they enable us
to prove a cut-elimination theorem, such as we had in §11.2. They cover
first the cut elimination of ZIDL>,⊥. As far as negation is concerned, the
key equation is (0ηε), whose right-hand side corresponds to the cut

f : (∅,∧) ` ¬A∨A g : A∧¬A ` (∅,∨)

cut (∅,∧),(∅,∨)(f, g) : A ` A

With (0ηε), we have that cut (∅,∧),(∅,∨)(f, g) is not equal to 1A : A ` A, but
to 0A : A ` A.

To prove a cut-elimination theorem, we can rely on Gentzen terms like
those in §11.1, to which we would add dual primitive Gentzen terms and
Gentzen operations where ¬A ∧ ¬B, ¬A ∨ ¬B, > and ⊥ are replaced re-
spectively by ¬(A ∨ B), ¬(A ∧ B), ¬⊥ and ¬>. For example, we would
have the operation

f : Γ∧¬A∧¬B ` ∆

¬ ∨L f =dn f ◦ (Γ∧1e
A∧B) ◦ (Γ∧∨r→′′A,B) : Γ∧¬(A ∨B) ` ∆

Our strictification result should be adjusted to support such operations. As
additional primitive Gentzen terms, we would have 1′′¬p : ¬p ` ¬p, 0′′p : p ` p,
0′′¬p : ¬p ` ¬p, η′′p : (∅,∧) ` ¬p∨p and ε′′p : p∧¬p ` (∅,∨), and we would have
the additional Gentzen operations

f : Γ∧A ` ∆

¬¬Lf =dn f ◦ (Γ∧n→′′A) : Γ∧¬¬A ` ∆

f : Γ ` A∨∆

¬¬Rf =dn (n←′′A
∨∆) ◦ f : Γ ` ¬¬A∨∆

A similar idea underlies a sequent system in [1] (Section 17) for tautological
entailments, which correspond to De Morgan lattices.

The usual introduction and elimination rules for negation:

324 CHAPTER 14. CATEGORIES WITH NEGATION

f : Γ ` A∨∆

¬Lf : Γ∧¬A ` ∆

f : Γ∧A ` ∆

¬Rf : Γ ` ¬A∨∆

would be admissible in the cut-free system; i.e., we can find cut-free Gentzen
terms that define ¬Lf and ¬Rf . This does not mean that the operations
¬L and ¬R are defined in terms of the postulated Gentzen operations; in
such a case, we would speak of derivable rules. The arrow terms ¬Lf and
¬Rf involve zero arrow terms.

Zero-identity arrows make equal in B many arrow terms of the same
type involving negation. In particular, all arrow terms of the type > ` A

where A is a tautology are equal. However, B is far from being a preorder.
There is an argument from which it is usually concluded that it is hope-

less to try to find a categorification of Boolean algebras. All plausible
candidates seem to be categories that are preorders. To present this ar-
gument, we rely on notions defined in [90]. The argument is based on the
fact that in every bicartesian closed category (i.e. cartesian closed category
with finite coproducts), for every object a there is at most one arrow of
type a ` ⊥, for ⊥ an initial object. In [90] the discovery of that fact is
credited to Joyal (p. 116), and the fact is established (on p. 67, Proposition
8.3) by relying on a proposition of Freyd (see [58], p. 7, Proposition 1.12)
to the effect that if in a cartesian closed category the hom-set Hom(a,⊥)
is not empty, then a ∼= ⊥; that is, a is isomorphic to ⊥. Here is a simpler
proof of the same fact (from [40], Section 5).

Proposition 1. In every cartesian closed category with an initial object
⊥ we have that Hom(a,⊥) is either empty or a singleton.

Proof. In every cartesian closed category with ⊥ we have
∧
k1
⊥,⊥ =

∧
k2
⊥,⊥:

⊥ ∧ ⊥ ` ⊥, because Hom(⊥ ∧ ⊥,⊥) ∼= Hom(⊥,⊥⊥). Then for f, g : a ` ⊥
we have

∧
k1
⊥,⊥ ◦ 〈f, g〉 =

∧
k2
⊥,⊥ ◦ 〈f, g〉, and so f = g. a

In [90] (p. 67) it is concluded from Proposition 1 that if in a bicartesian
closed category for every object a we have a ∼= ¬¬a, where the negation ¬b

is ⊥b (which corresponds to b → ⊥), then this category is a preorder.
If the requirement a ∼= ¬¬a is deemed too strong, here are other simi-

§14.3. Boolean categories 325

lar propositions (taken over from [40], Section 5), in which preordering is
inferred from other natural requirements.

Proposition 2. Every cartesian closed category with an initial object ⊥ in
which we have a natural transformation whose members are n→a : ¬¬a ` a

is a preorder.

Proof. Take f, g : ¬¬a ` b, and take the canonical arrow n←a : a ` ¬¬a,
which we have by the cartesian closed structure of our category. Then we
have ¬¬(f ◦n←a) = ¬¬(g ◦n←a) by Proposition 1, and from

n→b ◦¬¬(f ◦n←a) = n→b ◦¬¬(g ◦n←a),

by the naturality of n→, we infer

f ◦n←a ◦n→a = g ◦n←a ◦n→a .

Since n←a ◦n→a = 1¬¬a by Proposition 1, we have f = g.
Then, for > terminal, we have

Hom(c, d) ∼= Hom(>, dc)
∼= Hom(¬¬>, dc),

since > ∼= ¬¬>, and Hom(¬¬>, dc) is at most a singleton, as we have
shown above. a

Proposition 3. Every bicartesian closed category in which we have a
dinatural transformation whose members are ηa : > ` ¬a ∨ a is a preorder.

Proof. Take f, g : > ` a. Then ¬f = ¬g by Proposition 1, and from

(¬f ∨ 1a) ◦ ηa = (¬g ∨ 1a) ◦ ηa,

by the dinaturality of η we infer

(1¬> ∨ f) ◦ η> = (1¬> ∨ g) ◦ η>.

Since η> : > ` ¬> ∨ > is an isomorphism, we obtain 1¬> ∨ f = 1¬> ∨ g,
from which f = g follows with the help of ∨

σ←. a

326 CHAPTER 14. CATEGORIES WITH NEGATION

(For an argument along similar lines, based on De Morgan isomorphisms,
see [124].)

With Boolean categories, and with B in particular, we have, however,
that A is isomorphic to ¬¬A, and we have also that n→ is a natural trans-
formation and η a dinatural transformation, without falling into preorder.
We believe that our notion of Boolean category, which does not imply pre-
order, gives a reasonable categorification of the concept of Boolean algebra.
Moreover, this notion delivers cut elimination, as we have indicated above.

That ηA and εA ended up by being zero arrows in B is dictated by
Rel, since we have no other choice in Rel for GηA and GεA save the empty
relation. With another category, replacing Rel for coherence results, we
need not take ηA and εA as zero arrows.

A category that could replace Rel is the category whose objects are
finite ordinals and whose arrows are split equivalence relations (see [50] and
[51]). These are equivalence relations defined on the sum of the ordinals in
the source and target. For that category, Gηp and Gεp would correspond
to the diagrams

¶³ µ´
¬p ∨ p ⊥

> p ∧¬p

Gηp Gεp

In that context, the left-hand side 0A of (0ηε) would be replaced by 1A,
and that equation would become similar to a triangular equation of adjunc-
tion (see [100], Section IV.1). But in this direction there is a heavy price
to pay. The transformations in the families w-k, δ-σ and κ cannot remain
natural if we want coherence. (Lack of naturality for these transformations
jeopardizes cut elimination.) For example, for the following instance of
(∧w nat):

∧
w¬p∨p ◦ ηp = (ηp ∧ ηp) ◦

∧
w>

we would not have that G(∧w¬p∨p ◦ ηp) is equal to G((ηp ∧ η¬p) ◦
∧
w>), as

can be seen from the diagrams

§14.3. Boolean categories 327

¶³

¶³ ¶³
¡

¡
¡

¡
Q

QQ
Q

QQ

(¬p ∨ p) ∧ (¬p ∨ p)

¬p ∨ p

>

G
∧
w¬p∨p

Gηp

(¬p ∨ p) ∧ (¬p ∨ p)

> ∧ >

>

G(ηp ∧ ηp)

G
∧
w>

One may perhaps envisage a categorification of Boolean algebras where
these transformations are not always natural, as they are in our Boolean
categories. (In [67], Section 5.4, rejecting bifunctoriality is envisaged for the
same purpose; we have no reason to reject bifunctoriality here.) Problems
would, however, not cease once naturality is rejected for w-k, δ-σ and κ in
the presence of negation.

The question is should G
∧
wp be the relation in the left one or in the

right one of the following two diagrams:

¶³
¢
¢

A
A

¢
¢

A
A

p ∧ p p ∧ p

p p

The second option, induced by dealing with equivalence relations, or by
connecting all letters that must remain the same in generalizing proofs,
would lead to abolishing the naturality of ∧

w even in the absence of negation.
For example, in the following instance of (∧w nat):

∧
wp ◦ ∨κp = (∨κp ∧ ∨

κp) ◦
∧
w⊥

we do not have that G(∧wp ◦ ∨κp) is equal to G((∨κp ∧ ∨
κp) ◦

∧
w⊥):

¶³
¢
¢

A
A

p ∧ p

p

⊥

p ∧ p

⊥ ∧ ⊥

⊥

G
∧
wp

G
∨
κp G

∧
w⊥

G(∨κp ∧ ∨
κp)

We obtain similarly that ∨
κ cannot be natural.

If, on the other hand, we keep for G
∧
wp the relation in the left diagram—

the same we had in Rel—there would still be problems. We foresee problems
for cut elimination based on equality of arrow terms, such as we understood

328 CHAPTER 14. CATEGORIES WITH NEGATION

it in this book. This would, however, involve dealing with matters outside
of the scope of the book.

Although in the introduction we have motivated the category Rel by
the Generality Conjecture, it should be stressed that this category does not
always correspond to the intuitive idea of generality. This is so even if we do
not consider the split equivalence relations of [50] and [51], but stay within
Rel. For arrows of Rel capturing generality it is natural to assume that
they are difunctional in the sense of [114] (Section 7), a binary relation R

being difunctional when R ◦R−1 ◦R ⊆ R (in other words, if xRz, yRz and
yRu, then xRu). It is easy to see that the image under G of an arrow of DL
is not necessarily difunctional. For example, G(mp,p ∪ (

∨
k1

p,p
◦
∧
k2

p,p)) is not
a difunctional relation. The claim made in [40] (Section 4) that the image
under G of any arrow of L is difunctional is not correct. A counterexample
is provided by G〈[∧k1

p,p,1p], [
∧
k2

p,p,1p]〉, which is not difunctional.
The category Rel captures, however, the intuitive idea of generality for

all categories in Chart 1 except for L and the three categories above L. It
captures this idea for the category MDS, too, and for all categories below
MDS in Chart 2.

§14.4. Concluding remarks

Our coherence results show that a number of logical categories that we have
investigated here are isomorphic to subcategories of the Boolean category
B, and B is isomorphic to a subcategory of ZML¬>,⊥. We record all these
results about subcategories in Charts 1-3. Such results about subcategories
are sometimes taken for granted, and, indeed, they are not surprising, but
it is not trivial to establish them. One means of proving them is via coher-
ence, which, as we have seen, is often established with considerable effort.
(Another means can be via maximality.)

In general, we have the following situation. Suppose a syntactical system
S ′ is a subsystem of a syntactical system S. Suppose also that we have the
syntactical categories S ′/E ′ and S/E such that the set of equations E ′ is
a subset of E , the functor G from S ′/E ′ to Rel is faithful, and there is a
functor from S/E to Rel that extends G. Then S ′/E ′ is isomorphic to a
subcategory of S/E , with the isomorphism being identity on objects.

§14.4. Concluding remarks 329

To show that, it is enough to show that the identity maps on the objects
and arrow terms of S ′ induce a functor from S ′/E ′ to S/E that is inclusion
on objects and one-one on arrows (see the penultimate paragraph of §2.4).
This amounts to showing that for f and g arrow terms of S ′ of the same
type we have f = g in S ′/E ′ iff f = g in S/E . It is clear that f = g in
S ′/E ′ implies f = g in S/E , since E ′ is included in E . For the converse,
from f = g in S/E we infer Gf = Gg, and then, by the faithfulness of G

assumed above, we obtain that f = g in S ′/E ′ (cf. the end of §4.3). Note
that S ′/E ′ is only isomorphic to a subcategory of S/E , and is not actually
a subcategory of S/E , because an arrow term f of S ′ stands in S ′/E ′ for an
equivalence class of arrow terms (this is an arrow of S ′/E ′) that is a subset,
maybe proper, of the equivalence class for which f stands in S/E (see §2.3).

Note that if for S ′ a subsystem of S and E ′ a subset of E we have that
S ′/E ′ is a preorder, then we can ascertain that S ′/E ′ is isomorphic to a
subcategory of S/E without appealing to the functor G and Rel. We have
such a situation with many of our categories where coherence amounts to
preorder, but we also have it where preorder does not amount to coherence,
as with the categories S′ and

∧
S′ of §6.5.

There are coherence results with respect to Rel, related to the coherence
results of this book, about categories that have arrows of the w kind, but
not those of the k kind, and vice versa, about categories that have arrows
of the k kind, but not those of the w kind. These categories are tied to
substructural logics: the former to relevant logic, and the latter to affine
logic. These coherences are proved in [108] for logical categories in the
language L∧,> in between

∧
S> and

∧
L>.

Speaking of categories tied to relevant logic, there is in the neighbour-
hood a sort of category interesting for strictification. If to the relevant
natural logical category in L∧, which is like

∧
L save that it lacks the natural

transformations
∧
ki, we add the natural isomorphism ∧

w−1, whose members
are ∧

w−1
A : A ∧ A ` A, and whose inverse is ∧

w, then we obtain a groupoid
that is a preorder. (The logical principle standing behind ∧

w−1 is called
mingle in relevant logic; see [1], Section 8.15.) If this groupoid, which is
a preorder, happens to be the category G involved in the strictification of
some category, the equivalence classes introduced by strictification will cor-
respond to finite nonempty sets. When G is

∧
S plus ∧

cA,A= 1A∧A, then we

330 CHAPTER 14. CATEGORIES WITH NEGATION

have multisets instead of sets (cf. §7.7), and with
∧
A we have sequences (see

§4.5).
We need not, however, assume that ∧

w−1 is an isomorphism. We can keep
just ∧

w−1
A

◦ ∧
wA = 1A, reject ∧

wA ◦ ∧
w−1

A = 1A∧A, and have only equations that
will yield coherence with respect to Rel with the assumption that G

∧
w−1

A is

equal to G(
∧
k1

A,A ∪ ∧
k2

A,A). Defining ∧
w−1

A by
∧
k1

A,A ∪ ∧
k2

A,A we have all these
equations in DL, and hence also in B. (Another possibility is to define ∧

w−1
A

as just
∧
k1

A,A, or just
∧
k2

A,A.)
If we are right that B provides a reasonable notion of identity of proofs

in classical propositional logic, and if bicartesian closed categories provide
the notion of identity of proofs in intuitionistic propositional logic, we can
conclude that the general proof theory of the former logic is simpler than
that of the latter. Equality of derivations in classical propositional logic,
i.e. equality of arrow terms in B, would be decided via Rel, in an elementary
way. It was assumed before that classical general proof theory should be
simpler, because it was assumed that all derivations with the same premise
and conclusion are equal in classical logic. In other words, it was assumed
that for a given premise and conclusion we cannot have more than one proof.
We do not agree with that, and though we provide with B a relatively simple
codification of that proof theory, it is not that simple.

It is true that all theorems, i.e. all propositions proved without hypothe-
ses, will have zero proofs, which is not the case in the standard formulations
of intuitionistic general proof theory. If we are right, with the theorems of
classical logic we do not find a record of the deductive metatheory. But
this metatheory of proofs from hypotheses exists, and it is not trivial. Our
charts (see Charts 1-3) give an idea of the number of important mathe-
matical structures that enter into the notion of Boolean category. We can
also note in Chart 3 how with B we have come close to ZML¬>,⊥, which is
related to linear algebra.

Problems Left Open

1) How to axiomatize the equations E such that C(DA>,⊥)/E is a pre-
order (see §7.9)?

2) Let C(DS>,⊥) be like C(DA>,⊥) with the transformation c added.
How to axiomatize the equations E such that C(DS>,⊥)/E is coherent
with respect to Rel (see §7.9)?

3) How to axiomatize equations for mix-bimonoidal categories, symmet-
ric or not symmetric, dissociative or not dissociative, for which one
could prove coherence with respect to Rel (see Chapter 8)?

4) How to axiomatize the equations E such that C(L>,⊥)/E is coher-
ent with respect to Rel (see §9.6, and the revised version of [47]—in
particular the end)?

5) For K being ZIL or ZIL>,⊥, how to axiomatize the equations E such
that C(K)/E is coherent with respect to Rel (see §12.5)?

6) Can one prove coherence with respect to Rel for ML, ML>,⊥, ZIML
and ZIML>,⊥ (see §§10.2-3 and §12.5)? If not, what extended ax-
iomatization delivers coherence?

7) For K being ML, ML>,⊥, DL or DL>,⊥, prove that one could prop-
erly extend E(K) without falling into preorder (see §10.3 and §11.5).
Classify the equations that give such extensions.

8) Can one derive the equations (m ∧
e) and (m ∨

e) from the remaining
axioms of E(DL) (see §11.1)?

9) Find concrete examples, distinct from DL, DL>,⊥ and B, of distribu-
tive lattice, distributive dicartesian and Boolean categories in which
∧ and ∨ are not isomorphic (see Chapters 11 and 14).

10) Consider the maximality question for the category B (see the end of
§14.2).

331

List of Equations

We list here the equations assumed as axioms for the logical categories
in our book. Besides that, we list prominent equations and definitions
that were used in derivations or alternative axiomatizations. We mention
in parentheses the sections where the equations were first introduced. A
number of equations for ∨ were not stated explicitly in the main text, but
appear here for the first time. We put the equations for ∨ immediately
below the dual equations for ∧. Otherwise, the list follows the order in
which the equations appear in the book.

Categorial equations:

(cat 1) f ◦1a = 1b ◦ f = f : a ` b (§2.2)

(cat 2) h ◦ (g ◦ f) = (h ◦ g) ◦ f (§2.2)

Bifunctorial equations:

(∧1) 1A ∧ 1B = 1A∧B (§2.7)

(∨1) 1A ∨ 1B = 1A∨B (§2.7)

(∧2) (g1 ◦ f1) ∧ (g2 ◦ f2) = (g1 ∧ g2) ◦ (f1 ∧ f2) (§2.7)

(∨2) (g1 ◦ f1) ∨ (g2 ◦ f2) = (g1 ∨ g2) ◦ (f1 ∨ f2) (§2.7)

Naturality equations (for f : A ` D, g : B ` E and h : C ` F):

(
∧
b→ nat) ((f ∧ g) ∧ h) ◦

∧
b→A,B,C =

∧
b→D,E,F

◦ (f ∧ (g ∧ h)) (§2.7)

(
∨
b→ nat) ((f ∨ g) ∨ h) ◦

∨
b→A,B,C =

∨
b→D,E,F

◦ (f ∨ (g ∨ h)) (§2.7)

(
∧
b← nat) (f ∧ (g ∧ h)) ◦

∧
b←A,B,C =

∧
b←D,E,F

◦ ((f ∧ g) ∧ h) (§2.7)

(
∨
b← nat) (f ∨ (g ∨ h)) ◦

∨
b←A,B,C =

∨
b←D,E,F

◦ ((f ∨ g) ∨ h) (§2.7)

(
∧
δ→ nat) f ◦

∧
δ→A =

∧
δ→D ◦ (f ∧ 1>) (§2.7)

(
∨
δ→ nat) f ◦

∨
δ→A =

∨
δ→D ◦ (f ∨ 1⊥) (§2.7)

(
∧
δ← nat) (f ∧ 1>) ◦

∧
δ←A =

∧
δ←D ◦ f (§2.7)

(
∨
δ← nat) (f ∨ 1⊥) ◦

∨
δ←A =

∨
δ←D ◦ f (§2.7)

332

List of Equations 333

(∧σ→ nat) f ◦ ∧σ→A = ∧
σ→D ◦ (1> ∧ f) (§2.7)

(∨σ→ nat) f ◦ ∨σ→A = ∨
σ→D ◦ (1⊥ ∨ f) (§2.7)

(∧σ← nat) (1> ∧ f) ◦ ∧σ←A = ∧
σ←D ◦ f (§2.7)

(∨σ← nat) (1⊥ ∨ f) ◦ ∨σ←A = ∨
σ←D ◦ f (§2.7)

(∧c nat) (g ∧ f) ◦ ∧
cA,B = ∧

cD,E ◦ (f ∧ g) (§2.7)

(∨c nat) (g ∨ f) ◦ ∨
cB,A = ∨

cE,D ◦ (f ∨ g) (§2.7)

(∧w nat) (f ∧ f) ◦ ∧
wA = ∧

wD ◦ f (§2.7)

(∨w nat) f ◦ ∨
wA = ∨

wD ◦ (f ∨ f) (§2.7)

(
∧
k1 nat) f ◦

∧
k1

A,B =
∧
k1

D,E
◦ (f ∧ g) (§2.7)

(
∨
k1 nat) (g ∨ f) ◦

∨
k1

B,A =
∨
k1

E,D
◦ g (§2.7)

(
∧
k2 nat) g ◦

∧
k2

A,B =
∧
k2

D,E
◦ (f ∧ g) (§2.7)

(
∨
k2 nat) (g ∨ f) ◦

∨
k2

B,A =
∨
k2

E,D
◦ f (§2.7)

(∧κ nat) 1> ◦ ∧κA = ∧
κD ◦ f (§2.7)

(∨κ nat) f ◦ ∨κA = ∨
κD ◦1⊥ (§2.7)

(dL nat) ((f ∧ g) ∨ h) ◦ dL
A,B,C = dL

D,E,F
◦ (f ∧ (g ∨ h)) (§2.7)

(dR nat) (h ∨ (g ∧ f)) ◦ dR
C,B,A = dR

F,E,D
◦ ((h ∨ g) ∧ f) (§2.7)

(m nat) (f ∨ g) ◦mA,B = mD,E ◦ (f ∧ g) (§2.7)

(m−1 nat) (f ∧ g) ◦m−1
A,B = m−1

D,E
◦ (f ∨ g)

Specific and other equations:

(
∧
b 5)

∧
b→A∧B,C,D

◦
∧
b→A,B,C∧D = (

∧
b→A,B,C ∧ 1D) ◦

∧
b→A,B∧C,D

◦ (1A ∧
∧
b→B,C,D)

(§4.2)

(
∨
b 5)

∨
b→A∨B,C,D

◦
∨
b→A,B,C∨D = (

∨
b→A,B,C ∨ 1D) ◦

∨
b→A,B∨C,D

◦ (1A ∨
∨
b→B,C,D)

(
∧
b
∧
b)

∧
b←A,B,C

◦
∧
b→A,B,C = 1A∧(B∧C),

∧
b→A,B,C

◦
∧
b←A,B,C = 1(A∧B)∧C (§4.3)

(
∨
b
∨
b)

∨
b←A,B,C

◦
∨
b→A,B,C = 1A∨(B∨C),

∨
b→A,B,C

◦
∨
b←A,B,C = 1(A∨B)∨C

(
∧
δ
∧
δ)

∧
δ←A ◦

∧
δ→A = 1A∧>,

∧
δ→A ◦

∧
δ←A = 1A (§4.6)

(
∨
δ
∨
δ)

∨
δ←A ◦

∨
δ→A = 1A∨⊥,

∨
δ→A ◦

∨
δ←A = 1A

334 List of Equations

(∧σ ∧
σ) ∧

σ←A ◦ ∧σ→A = 1>∧A,
∧
σ→A ◦ ∧σ←A = 1A (§4.6)

(∨σ ∨
σ) ∨

σ←A ◦ ∨σ→A = 1⊥∨A,
∨
σ→A ◦ ∨σ←A = 1A

(
∧
b
∧
δ
∧
σ)

∧
b→A,>,C = (

∧
δ←A ∧ 1C) ◦ (1A ∧ ∧

σ→C) (§4.6)

(
∨
b
∨
δ
∨
σ)

∨
b→A,⊥,C = (

∨
δ←A ∨ 1C) ◦ (1A ∨ ∨

σ→C)

(
∧
b
∧
δ)

∧
b→A,B,> =

∧
δ←A∧B

◦ (1A ∧
∧
δ→B) (§4.6)

(
∨
b
∨
δ)

∨
b→A,B,⊥ =

∨
δ←A∨B

◦ (1A ∨
∨
δ→B)

(
∧
b
∧
σ)

∧
b→>,B,C = (∧σ←B ∧ 1C) ◦ ∧σ→B∧C (§4.6)

(
∨
b
∨
σ)

∨
b→⊥,B,C = (∨σ←B ∨ 1C) ◦ ∨σ→B∨C

(
∧
δ
∧
σ)

∧
δ→> = ∧

σ→> (§4.6)

(
∨
δ
∨
σ)

∨
δ→⊥ = ∨

σ→⊥

(∧c ∧c) ∧
cB,A ◦ ∧

cA,B = 1A∧B (§5.1)

(∨c ∨c) ∨
cA,B ◦ ∨

cB,A = 1A∨B

(
∧
b
∧
c) ∧

cA,B∧C =
∧
b→B,C,A

◦ (1B ∧ ∧
cA,C) ◦

∧
b←B,A,C

◦ (∧cA,B ∧ 1C) ◦
∧
b→A,B,C

(§5.1)

(
∨
b
∨
c) ∨

cB∨C,A =
∨
b→B,C,A

◦ (1B ∨ ∨
cC,A) ◦

∨
b←B,A,C

◦ (∨cB,A ∨ 1C) ◦
∨
b→A,B,C

(∧c
∧
δ
∧
σ) ∧

cA,> = ∧
σ←A ◦

∧
δ→A (§5.3)

(∨c
∨
δ
∨
σ) ∨

c⊥,A = ∨
σ←A ◦

∨
δ→A

(∧c⊥) ∧
cC,C = 1C∧C , for letterless C (§6.4)

(∨c>) ∨
cC,C = 1C∨C , for letterless C (§6.4)

(∧c 1) ∧
cA,A = 1A∧A (§6.5)

(∨c 1) ∨
cA,A = 1A∨A (§6.5)

(dL∧) dL
A∧B,C,D = (

∧
b→A,B,C ∨ 1D) ◦ dL

A,B∧C,D
◦ (1A ∧ dL

B,C,D) ◦
∧
b←A,B,C∨D

(§7.2)

(dL∨) dL
D,C,B∨A =

∨
b←D∧C,B,A

◦ (dL
D,C,B ∨ 1A) ◦ dL

D,C∨B,A
◦ (1D ∧ ∨

b→C,B,A)
(§7.2)

List of Equations 335

(dR∧) dR
D,C,B∧A = (1D ∨ ∧

b←C,B,A) ◦ dR
D,C∧B,A

◦ (dR
D,C,B ∧ 1A) ◦

∧
b→D∨C,B,A

(§7.2)

(dR∨) dR
A∨B,C,D =

∨
b→A,B,C∧D

◦ (1A ∨ dR
B,C,D) ◦ dR

A,B∨C,D
◦ (
∨
b←A,B,C ∧ 1D)

(§7.2)

(d
∧
b) dR

A∧B,C,D
◦ (dL

A,B,C ∧ 1D) = dL
A,B,C∧D

◦ (1A ∧ dR
B,C,D) ◦

∧
b←A,B∨C,D

(§7.2)

(d
∨
b) (dR

A,B,C ∨ 1D) ◦ dL
A∨B,C,D =

∨
b→A,B∧C,D

◦ (1A ∨ dL
B,C,D) ◦ dR

A,B,C∨D

(§7.2)
(dRc) dR

C,B,A = ∨
cC,B∧A ◦ (∧cA,B ∨ 1C) ◦ dL

A,B,C
◦ (1A ∧ ∨

cB,C) ◦ ∧
cC∨B,A

(§7.6)
∧
eA,B,C,D =df dA,D,B∧C ◦ (1A∧ ∨

cD,B∧C) ◦ (1A∧ dB,C,D) ◦
∧
b←A,B,C∨D:

(A ∧B) ∧ (C ∨D) ` (A ∧D) ∨ (B ∧ C) (§7.6)
∧
e′A,B,C,D =df

∧
eA,B,D,C ◦ (1A∧B ∧ ∨

cD,C) :
(A ∧B) ∧ (C ∨D) ` (A ∧ C) ∨ (B ∧D) (§7.6)

(∧e) ∨
cB∧C,A∧D ◦ ∧

eA,B,C,D = ∧
e′B,A,C,D

◦ (∧cA,B ∧ 1C∨D) (§7.6)
∨
eD,C,B,A =df

∨
b←D∧C,B,A

◦ (dD,C,B ∨ 1A) ◦ (∧cC∨B,D∨1A) ◦ dC∨B,D,A:
(C ∨B) ∧ (D ∨A) ` (D ∧ C) ∨ (B ∨A) (§7.6)

∨
e′D,C,B,A =df (∧cC,D ∨ 1B∨A) ◦ ∨

eC,D,B,A:
(D ∨B) ∧ (C ∨A) ` (D ∧ C) ∨ (B ∨A) (§7.6)

(∨e) (1D∧C ∨ ∨
cB,A) ◦ ∨e′D,C,A,B = ∨

eD,C,B,A ◦ ∧
cD∨A,C∨B (§7.6)

(∧σ dL) dL
>,B,C = (∧σ←B ∨ 1C) ◦ ∧σ→B∨C (§7.9)

(
∨
δ dL) dL

A,B,⊥ =
∨
δ←A∧B

◦ (1A ∧
∨
δ→B) (§7.9)

(
∧
δ dR) dR

C,B,> = (1C ∨
∧
δ←B) ◦

∧
δ→C∨B (§7.9)

(∨σ dR) dR
⊥,B,A = ∨

σ←B∧A
◦ (∨σ→B ∧ 1A) (§7.9)

f 3 g =df (f ∨ g) ◦mA,B , for f : A ` D and g : B ` E (§8.1)

(3) (g1 3 g2) ◦ (f1 ∧ f2) = (g1 ∨ g2) ◦ (f1 3 f2) = (g1 ◦ f1) 3 (g2 ◦ f2)
(§8.1)

mA,B =df 1A 31B (§8.1)

336 List of Equations

(bm) (mA,B ∨ 1C) ◦mA∧B,C ◦
∧
b→A,B,C =

∨
b→A,B,C

◦mA,B∨C ◦ (1A ∧mB,C)
(§8.2)

((f 3 g)3h) ◦
∧
b→A,B,C =

∨
b→D,E,F

◦ (f 3 (g 3 h)) (§8.2)

(
∧
b mL) mA∧B,C ◦

∧
b→A,B,C = dL

A,B,C
◦ (1A ∧mB,C) (§8.3)

(
∨
b mL)

∨
b→A,B,C

◦mA,B∨C = (mA,B ∨ 1C) ◦ dL
A,B,C (§8.3)

(
∧
b mR) mC,B∧A ◦

∧
b←C,B,A = dR

C,B,A
◦ (mC,B ∧ 1A) (§8.3)

(
∨
b mR)

∨
b←C,B,A

◦mC∨B,A = (1C ∨mB,A) ◦ dR
C,B,A (§8.3)

(cm) mB,A ◦ ∧
cA,B = ∨

cB,A ◦mA,B (§8.4)

(g 3 f) ◦ ∧
cA,B = ∨

cE,D ◦ (f 3 g) (§8.4)

(
∧
b
∧
w)

∧
b→A,A,A

◦ (1A ∧ ∧
wA) ◦ ∧

wA = (∧wA ∧1A) ◦ ∧
wA (§9.1)

(
∨
b
∨
w) ∨

wA ◦ (1A ∨ ∨
wA) ◦

∨
b←A,A,A = ∨

wA ◦ (∨wA ∨ 1A)

(∧c ∧
w) ∧

cA,A ◦ ∧
wA = ∧

wA (§9.1)

(∨c ∨
w) ∨

wA ◦ ∨
cA,A = ∨

wA

∧
cm

A,B,C,D =df

∧
b→A,C,B∧D

◦ (1A ∧ (
∧
b←C,B,D

◦ (∧cB,C ∧ 1D) ◦
∧
b→B,C,D)) ◦

∧
b←A,B,C∧D:

(A ∧B) ∧ (C ∧D) ` (A ∧ C) ∧ (B ∧D) (§9.1)

(
∧
b
∧
c
∧
w) ∧

wA∧B = ∧
cm

A,A,B,B
◦ (∧wA ∧ ∧

wB) (§9.1)
∨
cm

A,B,C,D =df

∨
b→A,B,C∨D

◦ (1A ∨ (
∨
b←B,C,D

◦ (∨cB,C ∨ 1D) ◦
∨
b→C,B,D)) ◦

∨
b←A,C,B∨D:

(A ∨ C) ∨ (B ∨D) ` (A ∨B) ∨ (C ∨D)

(
∨
b
∨
c
∨
w) ∨

wA∨B = (∨wA ∨ ∨
wB) ◦ ∨

cm
A,A,B,B

(
∧
b
∧
k) (

∧
k1

A,B ∧ 1C) ◦
∧
b→A,B,C = 1A ∧

∧
k2

B,C (§9.1)

(
∨
b
∨
k)

∨
b←A,B,C

◦ (
∨
k1

A,B ∨ 1C) = 1A ∨
∨
k2

B,C

(∧c
∧
k)

∧
k2

A,B =
∧
k1

B,A
◦ ∧

cA,B (§9.1)

(∨c
∨
k)

∨
k2

A,B = ∨
cA,B ◦

∨
k1

B,A

(∧w
∧
k)

∧
ki

A,A
◦ ∧
wA = 1A, for i ∈ {1, 2} (§9.1)

(∨w
∨
k) ∨

wA ◦
∨
ki

A,A = 1A, for i ∈ {1, 2}

List of Equations 337

(
∧
b
∧
k1)

∧
k1

A∧B,C = (1A ∧
∧
k1

B,C) ◦
∧
b←A,B,C (§9.1)

(
∨
b
∨
k1)

∨
k1

A∨B,C =
∨
b→A,B,C

◦ (1A ∨
∨
k1

B,C)

(
∧
b
∧
k2)

∧
k2

C,B∧A = (
∧
k2

C,B ∧ 1A) ◦
∧
b→C,B,A (§9.1)

(
∨
b
∨
k2)

∨
k2

C,B∨A =
∨
b←C,B,A

◦ (
∨
k2

C,B ∨ 1A)

(∧w
∧
k
∧
k) (

∧
k1

A,B ∧ ∧
k2

A,B) ◦ ∧
wA∧B = 1A∧B (§9.1)

(∨w
∨
k
∨
k) ∨

wA∨B ◦ (
∨
k1

A,B ∨ ∨
k2

A,B) = 1A∨B

(〈 , 〉) 〈f1, f2〉 =df (f1 ∧ f2) ◦
∧
wC , for f1 : C ` A1 and f2 : C ` A2 (§9.1)

[g1, g2] =df
∨
wC ◦ (g1 ∨ g2), for g1 : A1 ` C and g2 : A2 ` C (§9.4)

(∧) f ∧ g = 〈f ◦
∧
k1

A,B , g ◦
∧
k2

A,B〉, for f : A ` D and g : B ` E (§9.1)

(∨) f ∨ g = [
∨
k1

D,E
◦ f,

∨
k2

D,E
◦ g], for f : A ` D and g : B ` E

(
∧
b→)

∧
b→A,B,C = 〈1A ∧

∧
k1

B,C ,
∧
k2

B,C
◦
∧
k2

A,B∧C〉 (§9.1)

(
∨
b←)

∨
b←A,B,C = [1A ∨

∨
k1

B,C ,
∨
k2

A,B∨C
◦
∨
k2

B,C]

(
∧
b←)

∧
b←C,B,A = 〈∧k1

C,B
◦
∧
k1

C∧B,A,
∧
k2

C,B ∧1A〉 (§9.1)

(
∨
b→)

∨
b→C,B,A = [

∨
k1

C∨B,A
◦
∨
k1

C,B ,
∨
k2

C,B ∨1A]

(∧c) ∧
cA,B = 〈∧k2

A,B ,
∧
k1

A,B〉 (§9.1)

(∨c) ∨
cA,B = [

∨
k2

A,B ,
∨
k1

A,B]

(∧w) ∧
wA = 〈1A,1A〉 (§9.1)

(∨w) ∨
wA = [1A,1A]

(∧β)
∧
ki

A1,A2
◦ 〈f1, f2〉 = fi, for fi : C ` Ai and i ∈ {1, 2} (§9.1)

(∨β) [g1, g2] ◦
∨
ki

A1,A2
= gi, for gi : Ai ` C and i ∈ {1, 2}

(∧η) 〈∧k1
A1,A2

◦h,
∧
k2

A1,A2
◦h〉 = h, for h : C ` A1 ∧A2 (§9.1)

(∨η) [h ◦
∨
k1

A1,A2
, h ◦

∨
k2

A1,A2
] = h, for h : A1 ∨A2 ` C

∧
K1

A2
g1 =df g1 ◦

∧
k1

A1,A2
, for g1 : A1 ` C (§9.1)

∨
K1

A2
f1 =df

∨
k1

A1,A2
◦ f1, for f1 : C ` A1 (§9.4)

338 List of Equations

∧
K2

A1
g2 =df g2 ◦

∧
k2

A1,A2
, for g2 : A2 ` C (§9.1)

∨
K2

A1
f2 =df

∨
k2

A1,A2
◦ f2, for f2 : C ` A2 (§9.4)

for i ∈ {1, 2}, and f , g, fi and gi of appropriate types,

(
∧
K1) g ◦

∧
Ki

A f =
∧
Ki

A (g ◦ f) (§9.1)

(
∨
K1)

∨
Ki

A g ◦ f =
∨
Ki

A (g ◦ f) (§9.4)

(
∧
K2)

∧
Ki

A g ◦ 〈f1, f2〉 = g ◦ fi (§9.1)

(
∨
K2) [g1, g2] ◦

∨
Ki

A f = gi ◦ f (§9.4)

(
∧
K3) 〈g1, g2〉 ◦ f = 〈g1 ◦ f, g2 ◦ f〉 (§9.1)

(
∨
K3) g ◦ [f1, f2] = [g ◦ f1, g ◦ f2] (§9.4)

(
∧
K4) 1A∧B = 〈 ∧K1

B 1A,
∧
K2

A 1B〉 (§9.1)

(
∨
K4) 1A∨B = [

∨
K1

B 1A,
∨
K2

A 1B] (§9.4)

(
∧
K5)

∧
Ki

A 〈f, g〉 = 〈 ∧Ki
A f,

∧
Ki

A g〉 (§9.1)

(
∨
K5)

∨
Ki

A [f, g] = [
∨
Ki

A f,
∨
Ki

A g]
∧
k1

A1,A2
=df

∧
K1

A2
1A1 (§9.1)

∨
k1

A1,A2
=df

∨
K1

A2
1A1

∧
k2

A1,A2
=df

∧
K2

A1
1A2 (§9.1)

∨
k2

A1,A2
=df

∨
K2

A1
1A2

(
∧
k
∧
δ)

∧
k1

A,> =
∧
δ→A (§9.2)

(
∨
k
∨
δ)

∨
k1

A,⊥ =
∨
δ←A

(∧w
∧
δ) ∧

w> =
∧
δ←> (§9.2)

(∨w
∨
δ) ∨

w⊥ =
∨
δ→⊥

∧
κA =df

∧
k2

A,> ◦
∧
δ←A (§9.2)

∨
κA =df

∨
δ→A ◦

∨
k2

A,⊥ (§9.6)

(∧κ1) ∧
κ> = 1> (§9.2)

(∨κ1) ∨
κ⊥ = 1⊥ (§9.6)

List of Equations 339

(∧κ) ∧
κA = f , for f : A ` > (§9.2)

(∨κ) ∨
κA = f , for f : ⊥ ` A (§9.6)
∧
δ←A = 〈1A,

∧
κA〉 (§9.2)

∧
σ←A = 〈∧κA,1A〉 (§9.2)
∧
k1

A,B =
∧
δ→A ◦ (1A ∧ ∧

κB) (§9.2)
∧
k2

A,B = ∧
σ→B ◦ (∧κA ∧ 1B) (§9.2)

(
∧
k
∧
k)

∧
k1

p,p =
∧
k2

p,p (§9.3)

(
∨
k
∨
k)

∨
k1

p,p =
∨
k2

p,p (§9.5)

(in-out) 〈[f, g], [h, j]〉 = [〈f, h〉, 〈g, j〉] (§9.4)

ck
A,B,C,D =df 〈

∧
k1

A,B ∨ ∧
k1

C,D,
∧
k2

A,B ∨ ∧
k2

C,D〉 :
(A ∧B) ∨ (C ∧D) ` (A ∨ C) ∧ (B ∨D) (§9.4)

ck
A,B,C,D = [

∨
k1

A,C ∧ ∨
k1

B,D,
∨
k2

A,C ∧ ∨
k2

B,D] (§9.4)
∧
wA∨B = ck

A,A,B,B
◦ (∧wA ∨ ∧

wB) (§9.4)
∨
wA∧B = (∨wA ∧ ∨

wB) ◦ ck
A,B,A,B (§9.4)

∧
cm

A,B,C,D = 〈∧k1
A,B ∧ ∧

k1
C,D,

∧
k2

A,B ∧ ∧
k2

C,D〉 (§9.4)
∨
cm

D,C,B,A = [
∨
k1

D,C ∨ ∨
k1

B,A,
∨
k2

D,C ∨ ∨
k2

B,A] (§9.4)

(
∧⊥) ∧

c⊥,⊥ = 1⊥∧⊥ (§9.6)

(
∨>) ∨

c>,> = 1>∨> (§9.6)

(
∧
k⊥)

∧
k1
⊥,⊥ =

∧
k2
⊥,⊥ (§9.6)

(
∨
k>)

∨
k1
>,> =

∨
k2
>,> (§9.6)

(
∧
K⊥)

∧
K1
⊥1⊥ =

∧
K2
⊥1⊥ (§9.6)

(
∨
K>)

∨
K1
>1> =

∨
K2
>1> (§9.6)

(
∧
k
∨
k)

∨
k1

p,> ◦
∧
k1

p,⊥ =
∨
k2

p,> ◦0⊥,> ◦
∧
k2

p,⊥, for 0⊥,> = ∧
κ⊥= ∨

κ> (§9.7)

(
∧
k
∨
κ)

∧
k1

p,⊥ = ∨
κp ◦

∧
k2

p,⊥ (§9.7)

(
∨
k
∧
κ)

∨
k1

p,> =
∨
k2

p,> ◦ ∧κp (§9.7)

(
∧
k
∨
k fg)

∨
k1

b,> ◦ f ◦
∧
k1

a,⊥ =
∨
k1

b,> ◦ g ◦
∧
k1

a,⊥, for f, g : a ` b (§9.7)

340 List of Equations

(wm) ∨
wA ◦mA,A ◦ ∧

wA = 1A (§10.1)

f ∪ g =df
∨
wB ◦ (f 3 g) ◦ ∧

wA, for f, g : A ` B (§10.1)

mA,B =df

∨
K1

B

∧
K1

B 1A ∪
∨
K2

A

∧
K2

A 1B (§10.1)

(∪ ◦) (f ∪ g) ◦h = (f ◦h) ∪ (g ◦h), h ◦ (f ∪ g) = (h ◦ f) ∪ (h ◦ g) (§10.1)

(∪ assoc) f ∪ (g ∪ h) = (f ∪ g) ∪ h (§10.1)

(∪ com) f ∪ g = g ∪ f (§10.1)

(∪ idemp) f ∪ f = f (§10.1)

(∪∧) (f1 ∪ f2) ∧ (g1 ∪ g2) = (f1 ∧ g1) ∪ (f2 ∧ g2) (§10.1)

(∪∨) (f1 ∪ f2) ∨ (g1 ∪ g2) = (f1 ∨ g1) ∪ (f2 ∨ g2) (§10.1)

ck
A,C,B,D

◦mA∧C,B∧D ◦ ∧
cm

A,B,C,D = mA,B ∧mC,D (§10.1)
∨
cm

A,B,C,D
◦mA∨C,B∨D ◦ ck

A,B,C,D = mA,B ∨mC,D (§10.1)

(m>) mA,> =
∨
k1

A,> ◦
∧
k1

A,> (§10.3)

(m⊥) mA,⊥ =
∨
k1

A,⊥ ◦
∧
k1

A,⊥ (§10.3)

mA,C =
∨
k1

A,C
◦
∧
k1

A,C , for letterless C (§10.3)

mC,A =
∨
k2

C,A
◦
∧
k2

C,A, for letterless C (§10.3)

(∪0>) 1A∨> ∪
∨
K2

A
∧
κA∨> = 1A∨> (§10.3)

(∪0⊥) 1A∧⊥ ∪
∧
K2

A
∨
κA∧⊥ = 1A∧⊥ (§10.3)

(∪0g) f ∪ g = f , for a null term g (§10.3)

(d
∧
k)

∧
k2

A,B∨C = (
∧
k2

A,B ∨ 1C) ◦ dA,B,C (§11.1)

(d
∨
k)

∨
k1

C∧B,A = dC,B,A ◦ (1C ∧
∨
k1

B,A) (§11.1)

(dm) mA,C = (
∧
k1

A,B ∨ 1C) ◦ dA,B,C ◦ (1A ∧
∨
k2

B,C) (§11.1)

mA,C = (1A ∨
∧
k2

B,C) ◦ dR
A,B,C

◦ (
∨
k1

A,B ∧ 1C) (§11.1)

(m ∧
e) ck

A,C,B,D
◦ ∧e′A,B,C,D = mA,B ∧ 1C∨D (§11.1)

(m ∨
e) ∨

e′D,C,B,A
◦ ck

D,C,B,A = 1D∧C ∨mB,A (§11.1)

List of Equations 341

(
∧
k1

A,C ∨ ∧
k1

B,D) ◦ ∧e′A,B,C,D = mA,B ◦
∧
k1

A∧B,C∨D (§11.1)
∨
e′D,C,B,A

◦ (
∨
k2

D,B ∧ ∨
k2

C,A) =
∨
k2

D∧C,B∨A
◦mB,A (§11.1)

(wm
∧
e) (∨wA ∧ 1C∨D) ◦ ck

A,C,A,D
◦ ∧e′A,A,C,D

◦ (∧wA ∧ 1C∨D) = 1A∧(C∨D)

(§11.1)

(wm
∨
e) (1D∧C ∨ ∨

wA) ◦ ∨e′D,C,A,A
◦ ck

D,C,A,A
◦ (1D∧C ∨ ∧

wA) = 1(D∧C)∨A

(§11.1)

(m ∧
cm) mA∧C,B∧D ◦ ∧

cm
A,B,C,D = ∧

e′A,B,C,D
◦ (1A∧B ∧mC,D) (§11.1)

(m ∨
cm) ∨

cm
D,C,B,A

◦mD∨B,C∨A = (mD,C ∨ 1B∨A) ◦ ∨e′D,C,B,A (§11.1)
∧
sA,C,D =df

∧
e′A,A,C,D

◦ (∧wA ∧ 1C∨D) : A ∧ (C ∨D) ` (A ∧ C) ∨ (A ∧D)
(§11.3)

∨
sD,C,A =df (1D∧C ∨ ∨

wA) ◦ ∨e′D,C,A,A : (D ∨A) ∧ (C ∨A) ` (D ∧ C) ∨A

(§11.3)
∧
tA,C,D =df (∨wA ∧ 1A∨D) ◦ ck

A,C,A,D : (A ∧ C) ∨ (A ∧D) ` A ∧ (C ∨D)
(§11.3)

∨
tD,C,A =df ck

D,C,A,A
◦ (1D∧C ∨ ∧

wA) : (D ∧ C) ∨A ` (D ∨A) ∧ (C ∨A)
(§11.3)

∧
tA,C,D

◦ ∧
sA,C,D = 1A∧(C∨D) (§11.3)

∨
sD,C,A

◦
∨
tD,C,A = 1(D∧C)∨A (§11.3)

dA,B,C = (1A∧B ∨
∧
k2

A,C) ◦ ∧e′A,A,B,C
◦ (∧wA ∧ 1B∨C) (§11.3)

dC,B,A = (1C∧B ∨ ∨
wA) ◦ ∨e′C,B,A,A

◦ (
∨
k1

C,A ∧ 1B∨A) (§11.3)

(d>>) dA,>,> =
∨
k1

A∧>,> ◦ (1A ∧ ∧
κ>∨>) (§11.3)

(d⊥⊥) d⊥,⊥,C = (∨κ⊥∧⊥ ∨ 1C) ◦
∧
k2
⊥,⊥∨C (§11.3)

(m−1 0)
∧
k2

A,B
◦m−1

A,B
◦
∨
k1

A,B =
∧
k1

B,A
◦m−1

B,A
◦
∨
k2

B,A (§12.1)

(m−1 1)
∧
k1

A,B
◦m−1

A,B
◦
∨
k1

A,B =
∧
k2

B,A
◦m−1

B,A
◦
∨
k2

B,A = 1A (§12.1)

(bm−1) (m−1
A,B ∧ 1C) ◦m−1

A∨B,C
◦
∨
b→A,B,C =

∧
b→A,B,C

◦m−1
A,B∧C

◦ (1A ∨m−1
B,C)

(§12.1)

(cm−1) m−1
B,A

◦ ∨
cB,A = ∧

cA,B ◦m−1
A,B (§12.1)

342 List of Equations

0A,B =df

∧
k2

A,B
◦m−1

A,B
◦
∨
k1

A,B =
∧
k1

B,A
◦m−1

B,A
◦
∨
k2

B,A (§12.1)

m−1
A,B =df 〈[1A,0B,A], [0A,B ,1B]〉=[〈1A,0A,B〉, 〈0B,A,1B〉] (§12.1)

f ◦0A,A = 0B,B ◦ f = 0A,B , for f : A ` B (§12.1)

(0) f ◦0C,A = 0C,B , 0B,C ◦ f = 0A,C , for f : A ` B (§12.1)

(0 nat) f ◦0A,A = 0B,B ◦ f , for f : A ` B (§12.1)

(0∧) 0A,C ∧ 0B,D = 0A∧B,C∧D (§12.1)

(0∨) 0A,C ∨ 0B,D = 0A∨B,C∨D (§12.1)

d−1
A,B,C =df 〈1A∨

∧
k1

B,C , [0A,C ,
∧
k2

B,C]〉 = [〈∨k1
A,B ,0A,C〉,

∨
k2

A,B ∧1C] :
A ∨ (B ∧ C) ` (A ∨B) ∧ C (§12.1)

0A,C =df

∧
k2

A∨B,C
◦ d−1

A,B,C
◦
∨
k1

A,B∧C (§12.1)

(d−1 1)
∧
k1

A∨B,C
◦ d−1

A,B,C
◦
∨
k1

A,B∧C =
∨
k1

A,B (§12.1)

(d−1 2)
∧
k2

A∨B,C
◦ d−1

A,B,C
◦
∨
k2

A,B∧C =
∧
k2

B,C (§12.1)

(d−1 3)
∧
k1

A∨B,C
◦ d−1

A,B,C
◦
∨
k2

A,B∧C =
∨
k2

A,B
◦
∧
k1

B,C (§12.1)
∧
κA = f = 0A,>, for f : A ` > (§12.1)
∨
κA = f = 0⊥,A, for f : ⊥ ` A (§12.1)
∧
κ⊥ = ∨

κ> = 0⊥,> (§12.1)
∧
κ> = 1> = 0>,> (§12.1)
∨
κ⊥ = 1⊥ = 0⊥,⊥ (§12.1)
∧
k1
⊥,⊥ =

∧
k2
⊥,⊥ = 0⊥∧⊥,⊥ (§12.1)

∨
k1
>,> =

∨
k2
>,> = 0>,>∨> (§12.1)

(0>⊥) 0A,B = ∨
κB ◦0>,⊥ ◦ ∧κA (§12.1)

(0I) f ◦0A = 0B ◦ g, for f, g : A ` B (§12.5)

f ◦0A = g ◦0A, for f, g : A ` B (§12.5)

0B ◦ f = 0B ◦ g, for f, g : A ` B (§12.5)

(00) 0A ◦0A = 0A (§12.5)

0A,B =df f ◦0A, for f : A ` B (§12.5)

List of Equations 343

(0I∧) 0A ∧ 0B = 0A∧B (§12.5)

(0I∨) 0A ∨ 0B = 0A∨B (§12.5)

(∪0) f ∪ 0A,B = f , for f : A ` B (§12.5)

1A ∪ 0A = 1A (§12.5)

(mm−1) m−1
A,B

◦mA,B = 1A∧B , mA,B ◦m−1
A,B = 1A∨B (§13.1)

(
∧
k m)

∧
k1

A,B = [1A,0B,A] ◦mA,B ,
∧
k2

A,B = [0A,B ,1B] ◦mA,B (§13.1)

(
∨
k m)

∨
k1

A,B = mA,B ◦ 〈1A,0A,B〉,
∨
k2

A,B = mA,B ◦ 〈0B,A,1B〉 (§13.1)

for f : A ` B,
∧
Z1

C f =df m−1
B,C

◦
∨
k1

B,C
◦ f = 〈f,0A,C〉 : A ` B ∧ C (§13.1)

∨
Z1

C f =df f ◦
∧
k1

A,C
◦m−1

A,C = [f,0C,B] : A ∨ C ` B (§13.1)
∧
Z2

C f =df m−1
C,B

◦
∨
k2

C,B
◦ f = 〈0A,C , f〉 : A ` C ∧B (§13.1)

∨
Z2

C f =df f ◦
∧
k2

C,A
◦m−1

C,A = [0C,B , f] : C ∨A ` B (§13.1)

(
∧
Z) 〈f1, f2〉 =

∧
Z1

A2
f1 ∪

∧
Z2

A1
f2, for f1 : C ` A1 and f2 : C ` A2 (§13.1)

(
∨
Z) [g1, g2] =

∨
Z1

A2
g1 ∪

∨
Z2

A1
g2, for g1 : A1 ` C and g2 : A2 ` C (§13.1)

∧
wC = m−1

C,C
◦ (
∨
k1

C,C ∪ ∨
k2

C,C) (§13.1)
∨
wC = (

∧
k1

C,C ∪ ∧
k2

C,C) ◦m−1
C,C (§13.1)

(f1 ∪ f2) ∪ (f3 ∪ f4) = (f1 ∪ f3) ∪ (f2 ∪ f4) (§13.1)

(md) dA,B,C =df mA∧B,C ◦
∧
b→A,B,C

◦ (1A ∧m−1
B,C) (§13.2)

∧
e′A,B,C,D = mA∧C,B∧D ◦ ∧

cm
A,B,C,D

◦ (1A∧B ∧m−1
C,D) (§13.2)

∨
e′D,C,B,A = (m−1

D,C ∨ 1B∨A) ◦ ∨
cm

D,C,B,A
◦mD∨B,C∨A (§13.2)

cl
A,B,C,D =df

∧
e′A,B,C,D

◦ (m−1
A,B ∧ 1C∨D) :

(A ∨B) ∧ (C ∨D) ` (A ∧ C) ∨ (B ∧D) (§13.2)

cl
D,B,C,A =df (1D∧C ∨m−1

B,A) ◦ ∨e′D,C,B,A (§13.2)

f ∪ g = [
∧
k1

B,A,
∧
k2

A,B] ◦ cl
B,A,A,B

◦ 〈∨k1
B,A

◦ f,
∨
k2

A,B
◦ g〉 (§13.2)

0A,B = [
∧
k1

B,A,
∧
k2

A,B] ◦ cl
B,A,A,B

◦ 〈∨k2
B,A,

∨
k1

A,B〉 (§13.2)

344 List of Equations

ck
A,C,B,D

◦ cl
A,B,C,D = 1(A∨B)∧(C∨D) (§13.2)

cl
A,C,B,D

◦ ck
A,B,C,D = 1(A∧B)∨(C∧D) (§13.2)

n←A ◦n→A = 1¬¬A (§14.1)

n→A ◦n←A = 1A (§14.1)
∧
r←A,B

◦ ∧r→A,B = 1¬(A∧B) (§14.1)
∧
r→A,B

◦ ∧r←A,B = 1¬A∨¬B (§14.1)
∨
r←A,B

◦ ∨r→A,B = 1¬(A∨B) (§14.1)
∨
r→A,B

◦ ∨r←A,B = 1¬A∧¬B (§14.1)
∧
ρ← ◦ ∧

ρ→ = 1¬> (§14.1)
∧
ρ→ ◦ ∧

ρ← = 1⊥ (§14.1)
∨
ρ← ◦ ∨

ρ→ = 1¬⊥ (§14.1)
∨
ρ→ ◦ ∨

ρ← = 1> (§14.1)

(0ηε) 0A = ∨
σ→A ◦ (εA ∨ 1A) ◦ dA,¬A,A ◦ (1A ∧ ηA) ◦

∧
δ←A (§14.2)

(η∧) ηB∧A = (∧r←B,A ∨ 1B∧A) ◦ ∨
c¬B∨¬A,B∧A ◦ ∨e′B,A,¬B,¬A

◦

◦ (∨cB,¬B ∧ ∨
cA,¬A) ◦ (ηB ∧ ηA) ◦

∧
δ←> (§14.2)

(η∨) ηB∨A = (∨r←B,A ∨ 1B∨A) ◦ ∨e′¬B,¬A,B,A
◦ (ηB ∧ ηA) ◦

∧
δ←> (§14.2)

(ε∧) εA∧B =
∨
δ→⊥ ◦ (εA ∨ εB) ◦ ∧e′A,B,¬A,¬B

◦ (1A∧B ∧ ∧
r→A,B) (§14.2)

(ε∨) εA∨B =
∨
δ→⊥ ◦ (εA ∨ εB) ◦ (∧c¬A,A ∨ ∧

c¬B,B) ◦ ∧e′¬A,¬B,A,B
◦

◦ ∧
cA∨B,¬A∧¬B ◦ (1A∨B ∧ ∨

r→A,B) (§14.2)

(η>) η> = (∧ρ← ∨ 1>) ◦ ∨σ←> (§14.2)

(η⊥) η⊥ = (∨ρ← ∨ 1⊥) ◦
∨
δ←> (§14.2)

(ε>) ε> = ∧
σ→⊥ ◦ (1> ∧ ∧

ρ→) (§14.2)

(ε⊥) ε⊥ =
∧
δ→⊥ ◦ (1⊥ ∧ ∨

ρ→) (§14.2)

(1¬A ∨ f) ◦ ηA = (¬f ∨ 1B) ◦ ηB , for f : A ` B (§14.2)

εA ◦ (1A ∧ ¬f) = εB ◦ (f ∧ 1¬B), for f : A ` B (§14.2)

List of Categories

We list in the table below the logical categories and some other related
categories we deal with in the book. We present the categories involving ∨
immediately below the dual categories involving ∧. Otherwise, we follow
the ascending order in which the categories appear in the Charts that follow,
which is close to the order in which they appear in the book.

category language families specific equations section
∧
I L∧ 1 §4.1
∨
I L∨ 1
I L∧,∨ 1 §4.1
∧
A→ L∧ 1,

∧
b→ (

∧
b 5) §4.2

∧
A L∧ 1,

∧
b (

∧
b 5), (

∧
b
∧
b) §4.3

∨
A L∨ 1,

∨
b (

∨
b 5), (

∨
b
∨
b) §6.1

∧
A> L∧,> 1,

∧
b, (

∧
b 5), (

∧
b
∧
b), §4.6

∧
δ -∧σ (

∧
δ
∧
δ), (∧σ ∧

σ), (
∧
b
∧
δ
∧
σ)

∨
A⊥ L∨,⊥ 1,

∨
b, (

∨
b 5), (

∨
b
∨
b), §6.1

∨
δ -∨σ (

∨
δ
∨
δ), (∨σ ∨

σ), (
∨
b
∨
δ
∨
σ)

A L∧,∨ 1, b (
∧
b 5), (

∧
b
∧
b), §6.1

(
∨
b 5), (

∨
b
∨
b)

A>,⊥ L∧,∨,>,⊥ 1, b, (
∧
b 5), (

∧
b
∧
b), §6.1

δ-σ (
∨
b 5), (

∨
b
∨
b),

(
∧
δ
∧
δ), (∧σ ∧

σ), (
∧
b
∧
δ
∧
σ),

(
∨
δ
∨
δ), (∨σ ∨

σ), (
∨
b
∨
δ
∨
σ)

∧
S L∧ 1,

∧
b, ∧

c (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c) §5.1

∧
S′ L∧ 1,

∧
b, ∧

c (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §6.5

(∧c 1)
∨
S L∨ 1,

∨
b, ∨

c (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c) §6.3

∧
S> L∧,> 1,

∧
b, ∧

c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §5.3

∧
δ -∧σ (

∧
δ
∧
δ), (∧σ ∧

σ), (
∧
b
∧
δ
∧
σ)

∨
S⊥ L∨,⊥ 1,

∨
b, ∨

c, (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c), §6.4

∨
δ -∨σ (

∨
δ
∨
δ), (∨σ ∨

σ), (
∨
b
∨
δ
∨
σ)

345

346 List of Categories

category language families specific equations section

S L∧,∨ 1, b, c (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §6.3

(
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c)

S′ L∧,∨ 1, b, c (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §6.5

(
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

(∧c 1), (∨c 1)

S>,⊥ L∧,∨,>,⊥ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §6.4

δ-σ (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

(
∧
δ
∧
δ), (∧σ ∧

σ), (
∧
b
∧
δ
∧
σ),

(
∨
δ
∨
δ), (∨σ ∨

σ), (
∨
b
∨
δ
∨
σ),

(∧c⊥), (∨c>)
∧
L L∧ 1,

∧
b, ∧

c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §9.1

∧
w-

∧
k (

∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k)

∨
L L∨ 1,

∨
b, ∨

c, (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c), §9.4

∨
w-

∨
k (

∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k)

∧
L> L∧,> 1,

∧
b, ∧

c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §9.2

∧
w-

∧
k,

∧
δ -∧σ (

∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∧
δ
∧
δ), (∧σ ∧

σ), (
∧
b
∧
δ
∧
σ),

(
∧
k
∧
δ)

∨
L⊥ L∨,⊥ 1,

∨
b, ∨

c, (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c), §9.6

∨
w-

∨
k,

∨
δ -∨σ (

∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(
∨
δ
∨
δ), (∨σ ∨

σ), (
∨
b
∨
δ
∨
σ),

(
∨
k
∨
δ)

∧
L∨ L∧,∨ 1,

∧
b, ∧

c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §9.4

∧
w-

∧
k (

∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k)

∨
L∧ L∧,∨ 1,

∨
b, ∨

c, (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c), §9.4

∨
w-

∨
k (

∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k)

List of Categories 347

category language families specific equations section

L L∧,∨ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §9.4

w-k (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

(
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k)

L> L∧,∨,> 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §9.6

w-k,
∧
δ -∧σ (

∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

(
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(
∧
δ
∧
δ), (∧σ ∧

σ), (
∧
b
∧
δ
∧
σ),

(
∧
k
∧
δ), (∨c>)

L⊥ L∧,∨,⊥ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §9.6

w-k,
∨
δ -∨σ (

∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

(
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(
∨
δ
∨
δ), (∨σ ∨

σ), (
∨
b
∨
δ
∨
σ),

(
∨
k
∨
δ), (∧c⊥)

L>,⊥ L∧,∨,>,⊥ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §9.6

w-k, δ-σ (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

(
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(
∧
δ
∧
δ), (∧σ ∧

σ), (
∧
b
∧
δ
∧
σ),

(
∨
δ
∨
δ), (∨σ ∨

σ), (
∨
b
∨
δ
∨
σ),

(
∧
k
∧
δ), (

∨
k
∨
δ), (∧c⊥), (∨c>)

DI L∧,∨ 1, d §7.1

DLA L∧,∨ 1, b, dL (
∧
b 5), (

∧
b
∧
b), (dL∧), §7.5

(
∨
b 5), (

∨
b
∨
b), (dL∨)

348 List of Categories

category language families specific equations section

DA L∧,∨ 1, b, d (
∧
b 5), (

∧
b
∧
b), (dL∧), (dR∧), §7.2

(
∨
b 5), (

∨
b
∨
b), (dL∨), (dR∨),

(d
∧
b), (d

∨
b)

DA>,⊥ L∧,∨,>,⊥ 1, b, δ-σ, (
∧
b 5), (

∧
b
∧
b), (dL∧), (dR∧), §7.9

d (
∨
b 5), (

∨
b
∨
b), (dL∨), (dR∨),

(d
∧
b), (d

∨
b),

(
∧
δ
∧
δ), (∧σ ∧

σ), (
∧
b
∧
δ
∧
σ),

(
∨
δ
∨
δ), (∨σ ∨

σ), (
∨
b
∨
δ
∨
σ),

(∧σ dL), (
∨
δ dL), (

∧
δ dR), (∨σ dR)

DS L∧,∨ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §7.6

d (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

(dL∧), (dL∨), (dR∧), (dR∨),

(d
∧
b), (d

∨
b), (dRc)

MI L∧,∨ 1, m §8.1

MA L∧,∨ 1, b, m (
∧
b 5), (

∧
b
∧
b), (

∨
b 5), (

∨
b
∨
b), (bm) §8.2

MS L∧,∨ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §8.5

m (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

(bm), (cm)

ML L∧,∨ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §10.1

w-k, m (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

(
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(bm), (cm), (wm)

ML>,⊥ L∧,∨,>,⊥ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §10.3

w-k, m, (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

δ-σ (
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(bm), (cm), (wm),

(
∧
δ
∧
δ), (∧σ ∧

σ), (
∧
b
∧
δ
∧
σ),

(
∨
δ
∨
δ), (∨σ ∨

σ), (
∨
b
∨
δ
∨
σ),

(
∧
k
∧
δ), (

∨
k
∨
δ), (∧c⊥), (∨c>),

(m>), (m⊥)

List of Categories 349

category language families specific equations section
MDI L∧,∨ 1, d, m §8.1

MDA L∧,∨ 1, b, d, (
∧
b 5), (

∧
b
∧
b), (dL∧), (dR∧), §8.3

m (
∨
b 5), (

∨
b
∨
b), (dL∨), (dR∨),

(d
∧
b), (

∧
b mL), (

∧
b mR),

(d
∨
b), (

∨
b mL), (

∨
b mR)

MDS L∧,∨ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §8.4

d, m (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

(dL∧), (dL∨), (dR∧), (dR∨),

(d
∧
b), (

∧
b mL), (

∧
b mR),

(d
∨
b), (

∨
b mR), (

∨
b mL),

(dRc), (cm)

DL L∧,∨ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §11.1

w-k, m, (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

d (
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(bm), (cm), (wm), (dm),
(dL∧), (dL∨), (dR∧), (dR∨),

(d
∧
b), (d

∧
k), (m ∧

e),

(d
∨
b), (d

∨
k), (m ∨

e), (dRc)

DL>,⊥ L∧,∨,>,⊥ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §11.5

w-k, m, (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

d, δ-σ (
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(bm), (cm), (wm), (dm),
(dL∧), (dL∨), (dR∧), (dR∨),

(d
∧
b), (d

∧
k),

(d
∨
b), (d

∨
k), (dRc),

(
∧
δ
∧
δ), (∧σ ∧

σ), (
∧
b
∧
δ
∧
σ),

(
∨
δ
∨
δ), (∨σ ∨

σ), (
∨
b
∨
δ
∨
σ),

(
∧
k
∧
δ), (

∨
k
∨
δ), (∧c⊥), (∨c>)

350 List of Categories

category language families specific equations section

ZIL L∧,∨ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §12.5

w-k, 0A (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

(
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(0I)

ZL L∧,∨ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §12.1

w-k, m−1 (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

(
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(m−1 0), (m−1 1)

ZIL>,⊥ L∧,∨,>,⊥ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §12.5

w-k, δ-σ, (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

0A (
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(0I)

(
∧
δ
∧
δ), (∧σ ∧

σ), (
∧
b
∧
δ
∧
σ),

(
∨
δ
∨
δ), (∨σ ∨

σ), (
∨
b
∨
δ
∨
σ),

(
∧
k
∧
δ), (

∨
k
∨
δ), (∧c⊥), (∨c>),

ZL>,⊥ L∧,∨,>,⊥ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §12.1

w-k, δ-σ, (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

m−1 (
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(m−1 0), (m−1 1)

(
∧
δ
∧
δ), (∧σ ∧

σ), (
∧
b
∧
δ
∧
σ),

(
∨
δ
∨
δ), (∨σ ∨

σ), (
∨
b
∨
δ
∨
σ),

(
∧
k
∧
δ), (

∨
k
∨
δ), (∧c⊥), (∨c>),

List of Categories 351

category language families specific equations section

ZIML L∧,∨ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §12.5

w-k, m, (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

0A (
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(bm), (cm), (wm),
(0I), (∪0)

ZIML>,⊥ L∧,∨,>,⊥ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §12.5

w-k, m, (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

δ-σ, 0A (
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(bm), (cm), (wm),

(
∧
δ
∧
δ), (∧σ ∧

σ), (
∧
b
∧
δ
∧
σ),

(
∨
δ
∨
δ), (∨σ ∨

σ), (
∨
b
∨
δ
∨
σ),

(
∧
k
∧
δ), (

∨
k
∨
δ), (∧c⊥), (∨c>),

(m>), (m⊥), (0I), (∪0)

ZIDL L∧,∨ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §12.5

w-k, m, (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

d, 0A (
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(bm), (cm), (wm), (dm),
(dL∧), (dL∨), (dR∧), (dR∨),

(d
∧
b), (d

∧
k), (m ∧

e),

(d
∨
b), (d

∨
k), (m ∨

e), (dRc),
(0I)

352 List of Categories

category language families specific equations section

ZIDL>,⊥ L∧,∨,>,⊥ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §12.5

w-k, m, (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

d, δ-σ, (
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

0A (
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(bm), (cm), (wm), (dm),
(dL∧), (dL∨), (dR∧), (dR∨),

(d
∧
b), (d

∧
k), (m ∧

e),

(d
∨
b), (d

∨
k), (m ∨

e), (dRc),
(0I),

(
∧
δ
∧
δ), (∧σ ∧

σ), (
∧
b
∧
δ
∧
σ),

(
∨
δ
∨
δ), (∨σ ∨

σ), (
∨
b
∨
δ
∨
σ),

(
∧
k
∧
δ), (

∨
k
∨
δ), (∧c⊥), (∨c>)

B L¬∧,∨,>,⊥ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §14.2

w-k, m, (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

d, δ-σ, (
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

0A, n-r, (
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

ρ, η, ε (
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(bm), (cm), (wm), (dm),
(dL∧), (dL∨), (dR∧), (dR∨),

(d
∧
b), (d

∧
k), (m ∧

e),

(d
∨
b), (d

∨
k), (m ∨

e), (dRc),
(0I),

(
∧
δ
∧
δ), (∧σ ∧

σ), (
∧
b
∧
δ
∧
σ),

(
∨
δ
∨
δ), (∨σ ∨

σ), (
∨
b
∨
δ
∨
σ),

(
∧
k
∧
δ), (

∨
k
∨
δ), (∧c⊥), (∨c>),

n-r and ρ isomorphisms

List of Categories 353

category language families specific equations section

ZML L∧,∨ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §13.1

w-k, m, (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

m−1 (
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(bm), (cm), (wm),
(m−1 0), (m−1 1), (mm−1)

ZML>,⊥ L∧,∨,>,⊥ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §13.3

w-k, δ-σ, (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

m, m−1 (
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

(
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(bm), (cm), (wm),
(m−1 0), (m−1 1), (mm−1),

(
∧
δ
∧
δ), (∧σ ∧

σ), (
∧
b
∧
δ
∧
σ),

(
∨
δ
∨
δ), (∨σ ∨

σ), (
∨
b
∨
δ
∨
σ),

(
∧
k
∧
δ), (

∨
k
∨
δ), (∧c⊥), (∨c>),

ZML¬>,⊥ L¬∧,∨,>,⊥ 1, b, c, (
∧
b 5), (

∧
b
∧
b), (∧c ∧c), (

∧
b
∧
c), §14.1

w-k, δ-σ, (
∨
b 5), (

∨
b
∨
b), (∨c ∨c), (

∨
b
∨
c),

m, m−1, (
∧
b
∧
w), (∧c ∧

w), (
∧
b
∧
c
∧
w),

n-r, ρ (
∨
b
∨
w), (∨c ∨

w), (
∨
b
∨
c
∨
w),

(
∧
b
∧
k), (∧c

∧
k), (∧w

∧
k),

(
∨
b
∨
k), (∨c

∨
k), (∨w

∨
k),

(bm), (cm), (wm),
(m−1 0), (m−1 1), (mm−1),

(
∧
δ
∧
δ), (∧σ ∧

σ), (
∧
b
∧
δ
∧
σ),

(
∨
δ
∨
δ), (∨σ ∨

σ), (
∨
b
∨
δ
∨
σ),

(
∧
k
∧
δ), (

∨
k
∨
δ), (∧c⊥), (∨c>),

n-r and ρ isomorphisms

Charts

The charts we present on the next three pages are to be read as follows.
When the category A is joined by an upward-going line to the category B,
this means that A is isomorphic to a subcategory of B, with the isomor-
phism being identity on objects. The assertion that A is isomorphic to a
subcategory of B is established by appealing to the fact that A is a pre-
order or that A is coherent with respect to Rel, as explained in §14.4. The
three charts could be combined into a single chart by pasting them together
in growing order over the parts in which they overlap. For practical, and
aesthetical, reasons we have preferred not to make this pasting, and have
three separate charts.

We have established coherence with respect to Rel for all categories in
the charts except

∧
S′, S′, DA>,⊥, L>,⊥, ML, ML>,⊥, ZIL, ZIL>,⊥, ZIML

and ZIML>,⊥. For
∧
S′ and S′ we have that they are preorders, though they

are not coherent with respect to Rel (see §6.5). The category DA>,⊥ was
considered in §7.9. For L>,⊥, ML, ML>,⊥, ZIML and ZIML>,⊥ we have
proved only a restricted form of coherence (see §9.6, §§10.2-3 and §12.5).
This explains the absence of some lines in Charts 2 and 3.

Of the categories with negation, we have mentioned only two, B and
ZML¬>,⊥, at the top of Chart 3, which is also the top of all the charts pasted
together. We have, however, coherence for categories with negation where
we have coherence without negation (see §14.1), and there are replicas of
Charts 2 and 3 involving such categories.

354

Charts 355

©©©©©©©©©©©©
©©©©©©©©©©©©
©©©©©©©©©©©©
©©©©©©©©©©©©©©©©©

©©©©©©©©©©©©

©©©©©©©©©©©©
©©©©©©©©©©©©

HHH

HHH

HHHHHHHHHHHH
HHHHHHHHHHHH
HHHHHHHHHHHHHH
HHHHHHHHHHHH

HHHHHHHHHHHH
HHHHHHHHHHHH
Q

Q
Q

Q
Q

Q
Q

QQ(((((((((

´
´

´
´

´
´

´
´́

»»»»»»

»»»»»»

»»»»»»

»»»»»»

»»»»»»

»»»»»»

»»»»»»

»»»»»»

r r

r

r r r
r r

r r r
r r r r

r r r

r
r r r

r
r

r
r r

r

∧
S ′

∧
I

∧
A→

∧
A

∧
S

∧
L

∧
L∨

∧
A>

∧
S>

∧
L>

S′

I

A

S

L
L>

A>,⊥

S>,⊥

L>,⊥

∨
L∧

L⊥

∨
I

∨
A

∨
S

∨
L

∨
A⊥

∨
S⊥

∨
L⊥

Chart 1

356 Charts

©©©©©©©©©©©©©©©
©©©©©©©©©©©©©©©
©©©©©©©©©©©©©©©

©©©©©©©©©©©©©©©
©©©©©©©©©©©©©©©©©©
©©©©©©©©©©©©©©©
©©©©©©©©©©©©©©©

PPPPPPPPPPP

PPPPPPPPPPP

PPPPPPPPPPP

PPPPPPPPPPP

PPPPPPPPPPP

PPPPPPPPPPP

PPPPPPPPPPP@
@

@
@

@
@

@
@

@
@

@

³³³³³³³³³³³

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

MI

MA

MS

ML

ML>,⊥

I

A

S

L

L>,⊥

MDI

MDA

MDS

DLA

DI

DA

DS

DL

DL>,⊥

DA>,⊥

Chart 2

Charts 357

³³³³³³³³³³³³³³³³³³³³³³³³

³³

³³³³³³³³³³³³

¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤

¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤

¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤

r

r

r

r

r

r

r

r

r

r

r

r

r

L

L>,⊥ r

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢

DL

DL>,⊥

ML

ML>,⊥

ZIL>,⊥r

ZIDL

ZIDL>,⊥

B

ZIML

ZIML>,⊥

r

r

ZL

ZL>,⊥

ZML

ZML>,⊥

ZML¬>,⊥

ZILr

ÃÃÃÃÃÃÃÃÃÃÃÃ

©©©©©©©©©©©©

,
,

,
,

,
,

,
,

,
,

,
,

,
,

,
,

´
´

´
´

´
´

´
´

´
´

´
´

´
´

´
´

Chart 3

Bibliography

[§...] The sections where a reference is mentioned are listed at the end in
square brackets.

[1] A.R. Anderson and N.D. Belnap, Entailment: The Logic of
Relevance and Necessity, Vol. I , Princeton University Press,
Princeton, 1975 [§7.1, §14.1, §§14.3-4]

[2] J.C. Baez and J. Dolan, Categorification, Higher Category The-
ory (E. Getzler et al., editors), Contemporary Mathematics, vol. 230,
American Mathematical Society, Providence, 1998, pp. 1-36 [§1.2]

[3] C. Balteanu, Z. Fiedorowicz, R. Schwänzl and R. Vogt, It-
erated monoidal categories, Advances in Mathematics, vol. 176
(2003), pp. 277-349 [§9.4]

[4] H.P. Barendregt, The Lambda Calculus: Its Syntax and Se-
mantics, North-Holland, Amsterdam, 1981 [§4.2, §9.3]

[5] G. Bellin, Two paradigms of logical computation in affine logic?,
Logic for Concurrency and Synchronization (R.J.G.B. de
Queiroz, editor), Kluwer, Dordrecht, 2003, pp. 111-144 [§1.6]

[6] N.D. Belnap, A useful four-valued logic, Modern Uses of Mul-
tiple-Valued Logic (J.M. Dunn and G. Epstein, editors), Reidel,
Dordrecht, 1977, pp. 8-37 [§14.1]

[7] J. Bénabou, Catégories avec multiplication, Comptes Rendus de
l’Académie des Sciences, Paris, Série I, Mathématique, vol. 256
(1963), pp. 1887-1890 [§2.8, §4.6]

[8] ——–, Structures algébriques dans les catégories, Cahiers de
Topologie et Géométrie Différentielle , vol. 10 (1968), pp. 1-126
[§4.2, §7.3]

359

360 Bibliography

[9] G. Birkhoff, Lattice Theory , third edition, American Mathemat-
ical Society, Providence, 1967 (first edition, 1940) [§7.1, §12.1]

[10] R. Blute, Linear logic, coherence and dinaturality, Theoretical
Computer Science , vol. 115 (1993), pp. 3-41 [§8.1]

[11] R. Blute, J.R.B. Cockett, R.A.G. Seely and T.H. Trimble,
Natural deduction and coherence for weakly distributive categories,
Journal of Pure and Applied Algebra , vol. 113 (1996), pp. 229-
296 [§7.9]

[12] M. Borisavljević, A cut-elimination proof in intuitionistic predi-
cate logic, Annals of Pure and Applied Logic, vol. 99 (1999), pp.
105-136 [Preface, §11.1]

[13] ——–, Two measures for proving Gentzen’s Hauptsatz without mix,
Archive for Mathematical Logic, vol. 42 (2003), pp. 371-387
[§11.1]

[14] M. Borisavljević, K. Došen and Z. Petrić, On permuting cut
with contraction, Mathematical Structures in Computer Sci-
ence , vol. 10 (2000), pp. 99-136 [Preface, §§11.1-2]

[15] R. Brauer, On algebras which are connected with the semisimple
continuous groups, Annals of Mathematics, vol. 38 (1937), pp.
857-872 [§1.4]

[16] K. Brünnler and A.F. Tiu, A local system for classical logic, Logic
for Programming, Artificial Intelligence and Reasoning , Lec-
ture Notes in Computer Science, vol. 2250, Springer, Berlin, 2001, pp.
347-361 [§7.1, §11.1]

[17] W. Burnside, Theory of Groups of Finite Order , second edi-
tion, Cambridge University Press, Cambridge, 1911 (reprint, Dover,
New York, 1955) [§5.2]

[18] S.R. Buss, The undecidability of k-provability, Annals of Pure and
Applied Logic, vol. 53 (1991), pp. 75-102 [§1.4]

[19] A. Carbone, Interpolants, cut elimination and flow graphs for the
propositional calculus, Annals of Pure and Applied Logic, vol.
83 (1997), pp. 249-299 [§1.4]

[20] J.R.B. Cockett, Introduction to distributive categories, Mathe-
matical Structures in Computer Science , vol. 3 (1993), pp. 277-
307 [§1.2, §11.1]

Bibliography 361

[21] J.R.B. Cockett and R.A.G. Seely, Weakly distributive categories,
Applications of Categories in Computer Science (M.P. Four-
man et al., editors), Cambridge University Press, Cambridge, 1992,
pp. 45-65 [§§7.1-2]

[22] ——–, Weakly distributive categories, Journal of Pure and Ap-
plied Algebra , vol. 114 (1997), pp. 133-173 (updated version avail-
able in 2004 at: http://www.math.mcgill.ca/rags) [Preface, §1.2,
Chapter 7, §§7.1-2, §7.9, §11.1, §11.3, §12.4, §13.2]

[23] ——–, Proof theory for full intuitionistic linear logic, bilinear logic
and mix categories, Theory and Application of Categories, vol.
3 (1997), pp. 85-131 [§7.9, §8.1, §8.5, §11.1]

[24] ——–, Finite sum-product logic, Theory and Application of Cat-
egories, vol. 8 (2001), pp. 63-99 [§9.6]

[25] J.R.B. Cockett, J. Koslowski and R.A.G. Seely, Introduction
to linear bicategories, Mathematical Structures in Computer
Science , vol. 10 (2000), pp. 165-203 [§1.2, §7.2, §7.9]

[26] H.S.M. Coxeter and W.O.J. Moser, Generators and Rela-
tions for Discrete Groups, Springer, Berlin, 1957 [§5.1]

[27] L. Crane and D.N. Yetter, Examples of categorification, Cahiers
de Topologie et Géométrie Différentielle Catégoriques, vol. 39
(1998), pp. 3-25 [§1.2]

[28] Dj. Čubrić, Interpolation property for bicartesian closed categories,
Archive for Mathematical Logic, vol. 33 (1994), pp. 291-319
[Preface]

[29] ——–, On the semantics of the universal quantifier, Annals of Pure
and Applied Logic, vol. 87 (1997), pp. 209-239 [Preface]

[30] ——–, Embedding of a free cartesian closed category into the category
of sets, Journal of Pure and Applied Algebra , vol. 126 (1998),
pp. 121-147 [Preface, §9.3]

[31] H.B. Curry, A note on the reduction of Gentzen’s calculus LJ*,
Bulletin of the American Mathematical Society , vol. 45 (1939),
pp. 288-293 [§1.3]

[32] ——–, Foundations of Mathematical Logic, McGraw-Hill, New
York, 1963 (second edition, Dover, New York, 1977) [§1.3]

362 Bibliography

[33] V. Danos and L. Regnier, The structure of multiplicatives,
Archive for Mathematical Logic, vol. 28 (1989), pp. 181-203 [§7.2,
§7.8, §8.1]

[34] P. Dehornoy, The structure group for the associativity identity,
Journal of Pure and Applied Algebra , vol. 111 (1996), pp. 59-82
[§4.2]

[35] N. Dershowitz and Z. Manna, Proving termination with multiset
orderings, Communications of the Association for Computing
Machinery , vol. 22 (1979), pp. 465-476 [§11.2]

[36] K. Došen, Modal translations in substructural logics, Journal of
Philosophical Logic, vol. 21 (1992), pp. 283-336 [§11.2]

[37] ——–, Deductive completeness, The Bulletin of Symbolic Logic,
vol. 2 (1996), pp. 243-283, 523 (for corrections see [38], Section 5.1.7,
and [39]) [§1.3]

[38] ——–, Cut Elimination in Categories, Kluwer, Dordrecht, 1999
[Preface, §§1.3-5, §9.3]

[39] ——–, Abstraction and application in adjunction, Proceedings of
the Tenth Congress of Yugoslav Mathematicians (Z. Kadel-
burg, editor), Faculty of Mathematics, University of Belgrade, Bel-
grade, 2001, pp. 33-46 (available at: http://arXiv.org/math.CT/
0111061) [§1.3]

[40] ——–, Identity of proofs based on normalization and generality, The
Bulletin of Symbolic Logic, vol. 9 (2003), pp. 477-503 (ver-
sion with corrected remark on difunctionality available at: http://
arXiv.org/math.LO/0208094) [Preface, Chapter 1, §1.3, §14.3]

[41] ——–, Models of deduction, Proof-Theoretic Semantics (R. Kahle
and P. Schroeder-Heister, editors), Proceedings of the Workshop
“Proof-Theoretic Semantics, Tübingen 1999”, Synthese , vol. 148
(2006), pp. 639-657 [§1.3]

[42] ——–, Simplicial endomorphisms, to appear in Communications
in Algebra (available at: http://arXiv.org/math.GT/ 0301302),
preprint, 2003 [§1.4]

[43] K. Došen and Z. Petrić, Modal functional completeness, Proof
Theory of Modal Logic (H. Wansing, editor), Kluwer, Dordrecht,
1996, pp. 167-211 [§1.3, §9.1, §11.1]

Bibliography 363

[44] ——–, Cartesian isomorphisms are symmetric monoidal: A justifi-
cation of linear logic, The Journal of Symbolic Logic, vol. 64
(1999), pp. 227-242 [§9.1, §11.2, §11.5]

[45] ——–, The maximality of the typed lambda calculus and of carte-
sian closed categories, Publications de l’Institut Mathématique
(N.S.), vol. 68(82) (2000), pp. 1-19 (available at: http://arXiv.org/
math.CT/9911073) [§1.5, §9.3]

[46] ——–, The maximality of cartesian categories, Mathematical Logic
Quarterly , vol. 47 (2001), pp. 137-144 (available at: http://arXiv.
org/math.CT/911059) [§§1.4-5, Chapter 9, §§9.2-3]

[47] ——–, Coherent bicartesian and sesquicartesian categories, Proof
Theory in Computer Science (R. Kahle et al., editors), Lecture
Notes in Computer Science, vol. 2183, Springer, Berlin, 2001, pp.
78-92 (revised version, with major corrections, available at: http://
arXiv.org/math.CT/0006091) [§1.4, Chapter 9, §9.6]

[48] ——–, Bicartesian coherence, Studia Logica , vol. 71 (2002), pp.
331-353 (version with some corrections in the proof of maximality
available at: http://arXiv.org/math.CT/0006052) [§§1.4-5, Chapter
9, §§9.4-6, §11.1]

[49] ——–, Self-adjunctions and matrices, Journal of Pure and Ap-
plied Algebra , vol. 184 (2003), pp. 7-39 (unabridged version avail-
able at: http://arXiv.org/math.GT/0111058) [§1.4]

[50] ——–, Generality of proofs and its Brauerian representation, The
Journal of Symbolic Logic, vol. 68 (2003), pp. 740-750 (available
at: http://arXiv.org/math.LO/0211090) [§1.4, §14.3]

[51] ——–, A Brauerian representation of split preorders, Mathematical
Logic Quarterly , vol. 49 (2003), pp. 579-586 (available at: http://
arXiv.org/math.LO/0211277) [§1.4, §14.3]

[52] J.M. Dunn and G.M. Hardegree, Algebraic Methods in Philo-
sophical Logic, Oxford University Press, Oxford, 2001 [§7.1]

[53] B. Eckmann and P.J. Hilton, Group-like structures in general cate-
gories I: Multiplications and comultiplications, Mathematische An-
nalen , vol. 145 (1962), pp. 227-255 [§9.1]

364 Bibliography

[54] S. Eilenberg and G.M. Kelly, A generalization of the functorial
calculus, Journal of Algebra , vol. 3 (1966), pp. 366-375 [Preface,
§1.4]

[55] ——–, Closed categories, Proceedings of the Conference on Cat-
egorical Algebra, La Jolla 1965 (S. Eilenberg et al., editors),
Springer, Berlin, 1966, pp. 421-562 [§9.1]

[56] A. Fleury and C. Retoré, The mix rule, Mathematical Struc-
tures in Computer Science , vol. 4 (1994), pp. 273-285 [§8.1]

[57] P.J. Freyd, Abelian Categories: An Introduction to the The-
ory of Functors, Harper & Row, New York, 1964 [§13.3]

[58] ——–, Aspects of topoi, Bulletin of the Australian Mathemati-
cal Society , vol. 7 (1972), pp. 1-76 [§14.3]

[59] P.J. Freyd and A. Scedrov, Categories, Allegories, North-
Holland, Amsterdam, 1990 [§13.3]

[60] G. Gentzen, Untersuchungen über das logische Schließen, Mathe-
matische Zeitschrift , vol. 39 (1935), pp. 176-210, 405-431 (English
translation: Investigations into logical deduction, in [62], pp. 68-131)
[Chapter 1, §1.3, §1.6, §7.6, §8.1, §§11.1-2]

[61] ——–, Neue Fassung des Widerspruchsfreiheitsbeweises für die reine
Zahlentheorie, Forschungen zur Logik und zur Grundlegung
der exakten Wissenschaften (N.S.), vol. 4 (1938), pp. 19-44 (En-
glish translation: New version of the consistency proof for elementary
number theory, in [62], pp. 252-286) [§11.2]

[62] ——–, The Collected Papers of Gerhard Gentzen (M.E. Szabo,
editor), North-Holland, Amsterdam, 1969

[63] J.-Y. Girard, Linear logic, Theoretical Computer Science , vol.
50 (1987), pp. 1-101 [§7.2, §7.8, §8.1]

[64] J.-Y. Girard, P. Taylor and Y. Lafont, Proofs and Types,
Cambridge University Press, Cambridge, 1989 [§1.6, §11.1]

[65] V.N. Grishin, A generalization of the Ajdukiewicz-Lambek system
(in Russian), Investigations in Nonclassical Logics and For-
mal Systems (in Russian), Nauka, Moscow, 1983, pp. 315-334
(Mathematical Reviews 85f:03068) [§7.1]

Bibliography 365

[66] D. Hilbert and W. Ackermann, Grundzüge der theoretischen
Logik , Springer, Berlin, 1928 (English translation of the second edi-
tion from 1938, Principles of Mathematical Logic, Chelsea, New
York, 1950) [§1.5, §9.3]

[67] J.M.E. Hyland, Proof theory in the abstract, Annals of Pure and
Applied Logic, vol. 114 (2002), pp. 43-78 [§1.6, §11.1, §14.3]

[68] J.M.E. Hyland and V. de Paiva, Full intuitionistic linear logic
(extended abstract), Annals of Pure and Applied Logic, vol. 64
(1993), pp. 273-291 [§7.1]

[69] C.B. Jay, Coherence in category theory and the Church-Rosser prop-
erty, Notre Dame Journal of Formal Logic, vol. 33 (1992), pp.
140-143 [Preface]

[70] V.F.R. Jones, A quotient of the affine Hecke algebra in the Brauer
algebra, L’Enseignement Mathématique (2), vol. 40 (1994), pp.
313-344 [§1.4]

[71] A. Joyal and R. Street, The geometry of tensor calculus, I, Ad-
vances in Mathematics, vol. 88 (1991), pp. 55-112 [§4.6]

[72] ——–, Braided tensor categories, Advances in Mathematics, vol.
102 (1993), pp. 20-78 [Preface, §1.7, §3.1, §§4.5-7, §9.4]

[73] C. Kassel, Quantum Groups, Springer, Berlin, 1995 [§1.4]

[74] L.H. Kauffman and S.L. Lins, Temperley-Lieb Recoupling
Theory and Invariants of 3-Manifolds, Annals of Mathemat-
ical Studies, vol. 134, Princeton University Press, Princeton, 1994
[§1.4]

[75] G.M. Kelly, On Mac Lane’s conditions for coherence of natural
associativities, commutativities, etc., Journal of Algebra , vol. 1
(1964), pp. 397-402 [§4.6, §5.3]

[76] ——–, Many-variable functorial calculus, I, in [79], pp. 66-105 [§11.1]

[77] ——–, An abstract approach to coherence, in [79], pp. 106-147 [Pref-
ace, §9.2]

[78] ——–, A cut-elimination theorem, in [79], pp. 196-213 [Preface]

[79] G.M. Kelly et al., editors, Coherence in Categories, Lecture
Notes in Mathematics, vol. 281, Springer, Berlin, 1972 [§1.1]

366 Bibliography

[80] G.M. Kelly and M.L. Laplaza, Coherence for compact closed cat-
egories, Journal of Pure and Applied Algebra , vol. 19 (1980),
pp. 193-213 [Preface, §1.1]

[81] G.M. Kelly and S. Mac Lane, Coherence in closed categories,
Journal of Pure and Applied Algebra , vol. 1 (1971), pp. 97-140,
219 [Preface, §1.1, §1.4]

[82] S.C. Kleene, Introduction to Metamathematics, North-Hol-
land, Amsterdam, 1952 [Chapter 1]

[83] G. Kreisel, A survey of proof theory II, Proceedings of the
Second Scandinavian Logic Symposium (J.E. Fenstad, editor),
North-Holland, Amsterdam, 1971, pp. 109-170 [§1.5]

[84] J. Lambek, Deductive systems and categories I: Syntactic calculus
and residuated categories, Mathematical Systems Theory , vol. 2
(1968), pp. 287-318 [Preface, §1.1, §1.4]

[85] ——–, Deductive systems and categories II: Standard constructions
and closed categories, Category Theory, Homology Theory and
their Applications I , Lecture Notes in Mathematics, vol. 86,
Springer, Berlin, 1969, pp. 76-122 [Preface, §1.1, §1.4, §7.8]

[86] ——–, Deductive systems and categories III: Cartesian closed cat-
egories, intuitionist propositional calculus, and combinatory logic,
Toposes, Algebraic Geometry and Logic (F.W. Lawvere, edi-
tor), Lecture Notes in Mathematics, vol. 274, Springer, Berlin, 1972,
pp. 57-82 [Preface, §1.4]

[87] ——–, Functional completeness of cartesian categories, Annals of
Mathematical Logic, vol. 6 (1974), pp. 259-292 [Preface, §§1.3-4]

[88] ——–, Multicategories revisited, Categories in Computer Science
and Logic (J.W. Gray and A. Scedrov, editors), American Mathe-
matical Society, Providence, 1989, pp. 217-239 [§7.8]

[89] ——–, From categorial grammar to bilinear logic, Substructural
Logics (K. Došen and P. Schroeder-Heister, editors), Oxford Uni-
versity Press, Oxford, 1993, pp. 207-237 [§7.1]

[90] J. Lambek and P.J. Scott, Introduction to Higher Order Cat-
egorical Logic, Cambridge University Press, Cambridge, 1986 [Pref-
ace, Chapter 1, §§1.1-3, §2.2, §9.1, §9.6, §13.4, §14.3]

Bibliography 367

[91] M.L. Laplaza, Coherence for distributivity, in [79], pp. 29-65 [§11.3]

[92] ——–, A new result of coherence for distributivity, in [79], pp. 214-235
[§11.3]

[93] ——–, Coherence for associativity not an isomorphism, Journal of
Pure and Applied Algebra , vol. 2 (1972), pp. 107-120 [§4.2]

[94] F.W. Lawvere, Adjointness in foundations, Dialectica , vol. 23
(1969), pp. 281-296 [Preface, §1.3]

[95] F.W. Lawvere and S.H. Schanuel, Conceptual Mathematics:
A First Introduction to Categories, Cambridge University Press,
Cambridge, 1997 [§1.2, §11.1, §12.1, §13.3]

[96] T. Leinster, A survey of definitions of n-category, Theory and
Application of Categories, vol. 10 (2002), pp. 1-70 [§1.1, §1.4]

[97] W.B.R. Lickorish, An Introduction to Knot Theory , Springer,
Berlin, 1997 [§1.1, §1.4]

[98] J.-L. Loday et al., editors, Operads: Proceedings of Renais-
sance Conferences, Contemporary Mathematics, vol. 202, Ameri-
can Mathematical Society, Providence, 1997

[99] S. Mac Lane, Natural associativity and commutativity, Rice Uni-
versity Studies, Papers in Mathematics, vol. 49 (1963), pp. 28-
46 [Preface, §1.1, §1.4, §2.9, §§3.1-2, Chapter 4, §§4.2-3, §4.6, Chapter
5, §5.1, §5.3]

[100] ——–, Categories for the Working Mathematician , Springer,
Berlin, 1971 (incorporated in the expanded edition [102]) [Chapter 1,
§1.7, §§3.1-2, Chapter 4, §§4.2-3, §4.6, §5.1, §7.9, §11.3, §12.1, §§13.2-
3, §§14.2-3]

[101] ——–, Why commutative diagrams coincide with equivalent proofs,
Algebraist’s Homage: Papers in Ring Theory and Related
Topics (S.A. Amitsur et al., editors), Contemporary Mathematics,
vol. 13, American Mathematical Society, Providence, 1982, pp. 387-
401 [Preface]

[102] ——–, Categories for the Working Mathematician , second edi-
tion, Springer, Berlin, 1998 [§1.7, §2.8, §§3.1-2, §4.5, §4.7, Chapter 5,
§5.1]

368 Bibliography

[103] S. Maehara, Eine Darstellung der intuitionistischen Logik in der
klassischen, Nagoya Mathematical Journal , vol. 7 (1954), pp.
45-64 [§1.3, §11.2]

[104] M. Makkai and G.E. Reyes, First Order Categorical Logic,
Lecture Notes in Mathematics, vol. 611, Springer, Berlin, 1977 [Chap-
ter 2]

[105] C.R. Mann, The connection between equivalence of proofs and carte-
sian closed categories, Proceedings of the London Mathematical
Society (3), vol. 31 (1975), pp. 289-310 [§1.4]

[106] G.E. Mints, Category theory and proof theory (in Russian), Ak-
tual’nye voprosy logiki i metodologii nauki , Naukova Dumka,
Kiev, 1980, pp. 252-278 (English translation, with permuted title,
in: G.E. Mints, Selected Papers in Proof Theory , Bibliopolis, Naples,
1992) [§9.2]

[107] Y.N. Moschovakis, What is an algorithm?, Mathematics Un-
limited—2001 and Beyond (B. Engquist and W. Schmid, editors),
Springer, Berlin, 2001, pp. 919-936 [§1.3]

[108] Z. Petrić, Coherence in substructural categories, Studia Logica ,
vol. 70 (2002), pp. 271-296 (available at: http://arXiv.org/math.CT/
0006061) [§1.4, §9.2, §11.1, §14.4]

[109] ——–, G-Dinaturality, Annals of Pure and Applied Logic, vol.
122 (2003), pp. 131-173 (available at: http://arXiv.org/math.CT/
0012019) [§1.1, §1.3, §11.1]

[110] V.V. Prasolov and A.B. Sosinskĭı, Knots, Links, Braids and
3-Manifolds (in Russian), MCNMO, Moscow, 1997 [§1.4]

[111] D. Prawitz, Natural Deduction: A Proof-Theoretical Study ,
Almqvist & Wiksell, Stockholm, 1965 [Chapter 1, §1.3]

[112] ——–, Ideas and results in proof theory, Proceedings of the Second
Scandinavian Logic Symposium (J.E. Fenstad, editor), North-
Holland, Amsterdam, 1971, pp. 235-307 [§1.3, §1.5]

[113] H. Rasiowa An Algebraic Approach to Non-Classical Logics,
North-Holland, Amsterdam, 1974 [§14.1]

[114] J. Riguet, Relations binaires, fermetures, correspondances de Ga-
lois, Bulletin de la Société mathématique de France , vol. 76
(1948), pp. 114-155 [§1.4, §14.3]

Bibliography 369

[115] R.R. Schneck, Natural deduction and coherence for non-symmetric
linearly distributive categories, Theory and Applications of Cat-
egories, vol. 6 (1999), pp. 105-146 [§7.9]

[116] M.C. Shum, Tortile tensor categories, Journal of Pure and Ap-
plied Algebra , vol. 93 (1994), pp. 57-110 [§3.2]

[117] A.K. Simpson, Categorical completeness results for the simply-typed
lambda-calculus, Typed Lambda Calculi and Applications (M.
Dezani-Ciancaglini and G. Plotkin, editors), Lecture Notes in Com-
puter Science, vol. 902, Springer, Berlin, 1995, pp. 414-427 [Preface,
§1.5, §9.3]

[118] S.V. Soloviev, The category of finite sets and cartesian closed cat-
egories (in Russian), Zapiski Nauchnykh Seminarov (LOMI),
vol. 105 (1981), pp. 174-194 (English translation in Journal of So-
viet Mathematics, vol. 22 (1983), pp. 1387-1400) [Preface]

[119] ——–, On the conditions of full coherence in closed categories, Jour-
nal of Pure and Applied Algebra , vol. 69 (1990), pp. 301-
329 (Russian version in Matematicheskie metody postroeniya
i analiza algoritmov , A.O. Slisenko and S.V. Soloviev, editors,
Nauka, Leningrad, 1990, pp. 163-189) [Preface, §7.9]

[120] ——–, Proof of a conjecture of S. Mac Lane, Annals of Pure and
Applied Logic, vol. 90 (1997), pp. 101-162 [Preface]

[121] R. Statman, λ-definable functionals and βη-conversion, Archiv
für mathematische Logik und Grundlagenforschung , vol. 23
(1983), pp. 21-26 [§1.5]

[122] J.D. Stasheff, The pre-history of operads, in [98], pp. 9-14 [§1.1]

[123] ——–, From operads to ‘physically’ inspired theories, in [98], pp. 53-81
[§1.1]

[124] M.E. Szabo, A categorical characterization of Boolean algebras, Al-
gebra Universalis, vol. 4 (1974), pp. 192-194 [§14.3]

[125] ——–, A counter-example to coherence in cartesian closed categories,
Canadian Mathematical Bulletin , vol. 18 (1975), pp. 111-114
[§1.4]

[126] ——–, Polycategories, Communications in Algebra , vol. 3(8)
(1975), pp. 663-689 [§7.9]

370 Bibliography

[127] ——–, Algebra of Proofs, North-Holland, Amsterdam, 1978 [Pref-
ace, §1.6]

[128] A.S. Troelstra and H. Schwichtenberg, Basic Proof Theory ,
Cambridge University Press, Cambridge, 1996 (second edition, 2000)
[Preface, Chapter 1, §9.2]

[129] V.G. Turaev, Operator invariants of tangles and R-matrices (in
Russian), Izvestiya Akademii Nauk SSSR, Seriya Matem-
aticheskaya , vol. 53 (1989), pp. 1073-1107 (English translation in
Mathematics of the USSR-Izvestiya , vol. 35, 1990, pp. 411-444)
[§1.4]

[130] J. von Plato, A proof of Gentzen’s Hauptsatz without multicut,
Archive for Mathematical Logic, vol. 40 (2001), pp. 9-18 [§11.1]

[131] R. Voreadou, Coherence and Non-Commutative Diagrams
in Closed Categories, Memoirs of the American Mathematical So-
ciety, no 182, American Mathematical Society, Providence, 1977 [§1.1]

[132] H. Wenzl, On the structure of Brauer’s centralizer algebras, Annals
of Mathematics, vol. 128 (1988), pp. 173-193 [§1.4]

[133] F. Widebäck, Identity of Proofs, doctoral dissertation, Univer-
sity of Stockholm, Almqvist & Wiksell, Stockholm, 2001 [§1.5]

[134] D.N. Yetter, Markov algebras, Braids (J.S. Birman and A. Lib-
gober, editors), Contemporary Mathematics, vol. 78, American Math-
ematical Society, Providence, 1988, pp. 705-730 [§1.4]

[135] R. Zach, Completeness before Post: Bernays, Hilbert, and the de-
velopment of propositional logic, The Bulletin of Symbolic Logic,
vol. 5 (1999), pp. 331-366 [§1.5, §9.3]

Index

A, 115, 345
A>,⊥, 116, 345
∧
A, 93, 345
∧
A→, 89, 345
∧
A>, 101, 345
∨
A, 115, 345
∨
A⊥, 116, 345
Ab-categories, 304
abelian categories, 304
Acnf, 264
addition of proofs, 26
additive categories, 304
adjunction, 164
admissible rule, 324
Adnf, 264
alternative definition of α′′, 72
angle normal form, 223
arrow, 36
arrow term, 38
Artin, E., 18
associative category, 94
Associative Coherence, 94
associative normal form, 98
Associative Normal-Form Proposition,

98
atomic bracket-free normal form, 223
atomic component, 223, 299
atomic correspondence, 226
atomic formula, 35
atomic term, 299
Atomic-k Lemma, 246, 272

atomized
ξ

c-term, 120
atomized arrow term, 170
axiom, 41
axiomatizability, 3

B, 317, 352
b, 47
∧
b-term, ∧

c-term, etc., 50
Böhm’s Theorem, 25, 194
Balance Remark, 157
balance weight, 198
balanced type, 84
Barendregt, H.P., 25
basic arrow term, 122
basic sequence, 238, 271
Basic-Development Lemma, 122, 123
basically developed arrow term, 122
Bernays, P., 25, 196
biassociative category, 115
Biassociative Coherence, 116
bicartesian category, 208
biendofunctor, 43
bifunctor, 42
bifunctorial category, 54
bifunctorial equations, 42, 51
bimonoidal category, 116
Bimonoidal Coherence, 117
binary connective, 34
blocked wL term, 250
blocked wR term, 252
Blocked-w Lemma, 253, 273
Boolean category, 322

371

372 Index

Boolean Coherence, 321
Boolean negation, 309
bound, 299
bracket-free normal form, 223
branching, 35
Brauer algebras, 18
Brauer, R., 19
Bund, 248

C, 318
c, 47
c-equivalent form sequences, 148
C-functor, 54
C-strict category, 75
C-strict deductive system, 75
Card, 83
cartesian category, 191
Cartesian Coherence, 193
cartesian linearly distributive cate-

gories, 234, 303
categorial equations, 38
categorification, 6
category, 38
category of the C kind, 54
Cayley, A., 105
C/E-category, 59
(C/E , C′)-strictified category, 76
Church-Rosser property, 93
clean cut, 253
cluster, 248
C¬, 318
(co), 40
cocartesian category, 207
Cockett, J.R.B., ii, iii, 8, 128
coherence, 1, 17, 62
coherent bicartesian category, 208
coherent sesquicartesian categories,

208
colour of form sequence, 117
ComMon, 307
commuting problem, 2

comparable form sequences, 135
comparable formulae, 36
completeness, 1
complex identity, 50
complexity of topmost cut, 152, 253
Composition Elimination, 169, 189,

201, 203, 282, 290, 298, 304
composition of arrows, 37
confluence property, 93
conjunctive normal form, cnf, 212,

223
connectedness in proof nets, 158
constant object, 122
contravariant functor, 43
correspond obviously, 171
C′-core, 73
Čubrić, Dj., ii
Curry-Howard correspondence, 12
cut, 246
cut formula, 241
Cut-Elimination Theorem, 152, 177,

253, 273, 291, 323
cut-free Gentzen term, 151, 246
Cut-Free Preordering, 163, 182

D, 238, 271, 291
d, 47, 145
DA, 132, 348
DAst, 133
DA>,⊥, 163, 348
De Morgan Coherence, 315
De Morgan lattices, 316
De Morgan negation, 309
decidability, 2
deductive system, 37
deductive system of the C kind, 54
definable connective, 45
degree of cut, 253
δ, 47
δ-σ, 47

Index 373

depth of subterm of Gentzen term,
151

derivable rule, 324
derivation, in equational system, 41
developed arrow term, 53
Development Lemma, 53, 311
DI, 128, 347
dicartesian category, 208
difunctional relation, 20, 328
direct strictification, 78
Direct-Strictification Theorem, 81
→-directed arrow term, 94, 102, 115,

116, 311
Directedness Lemma, 94, 102, 311
discrete deductive system, 37
disjunctive normal form, dnf, 212,

223
dissociative biassociative category, 132
dissociative bimonoidal category, 164
dissociative category, 128
Dissociative Coherence, 130
dissociativity, 8, 127, 128
distributive dicartesian category, 270
Distributive Dicartesian Coherence,

274
distributive involution lattices, 316
distributive lattice category, 234
Distributive Lattice Coherence, 266
diversified arrow term, 85
diversified formula, 85
diversified type, 85
DL, 233, 349
DLA, 237
DLA, 143, 347
DLAst, 144
DLA>,⊥

>,⊥ , 271
DL′, 235
DL>,⊥, 270, 349
DS, 145, 348
dual C-functor, 54

dual graph, 37
Dunn, J.M., 316
d−1ZL, 278

Efde, 316
Empty-Relation Lemma, 283
endofunctor, 43
epi arrow, 39
Epstein, D.B.A., 2
equation, in syntactical system, 39
equational system, 39
equivalent categories, 44
equivalent deductive systems, 44
Extraction Lemma, 91, 96, 129, 136,

144, 175

factor, 53
∧-factor, 210
∨-factor, 210
factorized arrow term, 53
faithful functor, 42
faithful graph-morphism, 42
finite tree, 35
flowing through, 43, 73
fluent C-functor, 56
form multiset of letters, 148
form sequence, 117, 118
form sequence of letters, 133
form sequence, extended sense, 119
form sequence, nonextended sense,

119
form set of letters, 148
formula, 35
fractional notation, 37
Freyd, P.J., 324
full subsystem, 39
functor, 42

GDS, 148
generality, 16
Generality Conjecture, 17

374 Index

generatively discrete equivalence re-
lation, 67

generatively discrete logical system,
69

Gentzen operations, 149, 177, 240,
323

Gentzen term, 291
Gentzen terms, 149, 177, 240, 323
Gentzen, G., i–iv, 11, 12, 14, 22, 26–

28, 31, 148, 163, 167, 168,
185, 188, 231–233, 239, 240,
243–245, 248, 249, 253–255,
257, 263, 273, 276, 280

Gentzenization Lemma, 151, 177, 245,
272, 291

GL, 201
GL>,⊥, 209
GL′>,⊥, 209

G
∧
L, 188

G
∧
L∨, 203

G
∧
L>, 192

G
∨
L, 200

G
∨
L∧, 203

GMDS, 177
GML, 220
GML>,⊥, 227
grade, 193
graph, 36
graph-morphism, 42
graphical category, 17
groupoid, 39
groupoidal C-functor, 57
GZIML, 289
GZL, 282
GZL>,⊥, 282
GZML, 298
GZML>,⊥, 304

head, 50
height of a node, 36

hexagonal equation, 107
Hilbert, D., v, 25, 28, 196
holding, of equation, 41
hom-set, 37

I, 89, 345
∧
I, 89, 345
∨
I, 345
I¬, 311
I¬ Coherence, 311
I¬>,⊥, 312
I¬>,⊥ Coherence, 312
identity arrow, 37
identity arrow term, 38
identity functor, 43
immediate scope, 36
inducing a graph-morphism, 44
infix notation, 35
initial object, 37
inverse, 39
invertibility, 148
Invertibility Lemma for ∧, 159, 178,

181, 201, 283
Invertibility Lemma for ∨, 162, 178,

181, 202, 284
Invertibility Lemma for mix , 181
Invertibility Remark for ∧, 283
Invertibility Remark for ∨, 284
Isbell, J., 83
isomorphic categories, 44
isomorphic deductive systems, 44
isomorphic objects, 39
isomorphism, 39

Jones, V.F.R., 18
Joyal, A., 30, 65, 245, 324

K, 88
k, 47
k-atomized Gentzen term, 246
κ, 47

Index 375

Kelly, G.M., ii, 4, 21
Kleisli category, 308
K¬, 312
K¬-K¬p-Equivalence, 314
K¬p, 312
Kreisel, G., 25

L, 200, 347
L>, 208, 347
L>,⊥, 207, 347
L′>,⊥, 208
L⊥, 208, 347
∧
L, 185, 346
∧
L∨, 203, 346
∧
L>, 191, 346
∨
L, 199, 346
∨
L∧, 203, 346
∨
L⊥, 207, 346
L, 34
L∧, L∨, etc., 36
L¬, 310
L¬p, 310
label, 248
Lafont, Y., 27, 233
Lambek, J., ii, 13, 15–18, 20, 24
language, 34
last falling slope, 111
lattice category, 200
Lattice Coherence, 202
Lawvere, F.W., ii, 13, 18, 22
leaf, 35
leaf formulae, 247
left cut formula, 249
left rank, 249
left-hand side, in a planar tree, 36
legitimate relation, 268
length of a word, 34
letter length, 35
letters, 34
level of atomized

ξ

c-term, 120

lexicographical order, 152, 193, 253
linear category, 304
linearly distributive category, 164
logical category, 51
logical system, 47
lower contraction formula, 247
lower parametric basic sequences, 248

m, 47
m−1, 47
MA, 169, 348
MAst, 170
Mac Lane, S., i, ii, iv, 2–4, 21, 30, 58,

63, 65, 82, 87–89, 94, 107,
108, 245

main conjunct, 36
main disjunct, 36
manageable category, 4
Martin-Löf, P., 11
Mat, 293
maximal relation, 269
maximality, 24, 194, 197, 198, 213,

274, 285, 292, 305, 322
MDA, 173, 349
MDA-comparable, 174
MDAst, 174
MDI, 169, 349
MDS, 176, 349
member of basic sequence, 238
MI, 167, 348
mingle, 329
minimal conjunct, 225
minimal disjunct, 225
Mischung, 167, 244, 280
mix, 26, 167
mix category, 167
Mix Coherence, 169
mix-biassociative category, 170
Mix-Biassociative Coherence, 173
mix-dicartesian category, 227
mix-dissociative category, 169

376 Index

Mix-Dissociative Coherence, 169
mix-lattice category, 219
mix-net category, 173
Mix-Net Coherence, 176
mix-symmetric biassociative category,

182
Mix-Symmetric Biassociative Coher-

ence, 182
mix-symmetric net category, 177
Mix-Symmetric Net Coherence, 177
ML, 219, 348
ML>,⊥, 227, 348
modularity law, 128
molecular component, 226
molecular correspondence, 226
mono arrow, 39
monoidal category, 101
Monoidal Coherence, 103
MS, 182, 348
multiple-conclusion sequent, 232

n, 310
n-ary branching, 35
n-ary connective, 34
n-categories, 4, 7, 23
n-endofunctor, 42
natural C/E-category, 59
natural in, 43
natural isomorphism, 43
natural logical category, 51
natural notation, 117
natural transformation, 43
naturality equations, 43, 52
naturally isomorphic functors, 44
negation, 310
net category, 132
Net Coherence, 138
net normal form, 143
node, 35
Nonoverlapping Lemma, 134

nonzero atomic bracket-free term, 230,
289

nonzero atomic term, 299
normal form, 94, 110, 115, 116, 189,

192, 223, 229, 299
Normal-Form Lemma, 111, 189, 192,

224, 265, 290, 299, 305
Normalization Conjecture, 11
nose, 58
null object, 281
null term, 229
nullary connective, 34

0, 277
0A, 287
object, 37
obvious correspondence, 171
octagonal equation, 186
on the nose, 58
operation on arrow terms, 38
0ZL, 277

P, 34
partial C-functor, 56
partial order, 38
partial skeleton, 39
path, 35
pentagonal equation, 89, 132
place, in form sequence, 135, 174
place, in formula, 36
planar finite tree, 36
plural sequent, 14, 232
P¬, 310
Polish notation, 35
polycategories, 165
Post completeness, 24, 194
power-set monad, 308
Prawitz, D., 10–13, 15, 16, 21, 24,

25, 28
preadditive categories, 304
predecessor, 35

Index 377

prefix notation, 35
preorder, 37
presentation by generators and rela-

tions, 3
primitive arrow term, 38
product of deductive systems, 42
proof nets, 132, 158, 163, 165
proper subword, 36
proper zero term, 282
propositional constant, 34
propositional formula, 35
propositional language, 34
propositional letter, 34
propositional variable, 34

quantity of letters in arrow, 163
quasi-Boolean algebras, 316

r, 310
rank, 249
rank of topmost cut, 152
∧-rank, 151
∨-rank, 152
p-rank, 152
(re), 40
Reducibility Lemma, 250
reducible subterm, 250, 252
Reidemeister moves, 3, 18
Rel, 59
relevant net categories, 238
Restricted Dicartesian Coherence, 212
Restricted Mix-Dicartesian Coherence,

229
Restricted Mix-Lattice Coherence, 226
Restricted Zero-Identity Mix-Dicarte-

sian Coherence, 290
Restricted Zero-Identity Mix-Lattice

Coherence, 289
ρ, 312
right cut formula, 249
right rank, 249

root, 35

S, 119, 346
S>,⊥, 121, 346
∧
S, 107, 345
∧
S>, 112, 345
∨
S, 119, 345
∧
Sdiv, 113
∧
Sdiv
> , 113

∨
S⊥, 121, 345
S′, 124, 346
∧
S′, 125, 345
S′st, 124
Sst, 119
∧
Sst, 109
∧
Sst
>, 113

Sst
>,⊥, 122

same place, in form sequence, 135
same place, in formula, 36
scope, 36
Scott, P.J., ii
Seely, R.A.G., ii, iii, 8, 128
semiassociative category, 89
Semiassociative Coherence, 92
semidissociative biassociatice category,

143
Semilat, 222, 228, 306, 307
Semilat∗, 306, 307
semilattice category, 186
Semilattice Coherence, 190
sequent, 239
sequent arrow, 239
sesquicartesian category, 208
Sesquicartesian Coherence, 209
Set, 9, 38, 83, 121, 208, 267
Set∗, 213, 214, 275, 287, 303, 307
Set∅∗, 214
Setsl

∗ , 221, 228, 307
settled normal form, 223, 230, 299

378 Index

Shnider, S., 2
σ, 47
Simpson, A.K., ii
single-conclusion sequent, 232
singular sequent, 14, 232
skeleton, 39
small categories, 38
Soloviev, S.V., ii
source, 36, 37
span of atomized

ξ

c-term, 120
specific equation, 88
split equivalence relations, 326
Split-Normalization Lemma, 180
split-normalized Gentzen term, 180
splittable arrow, 157
splittable pair of form sets, 157
Splitting Corollary, 158
Splitting Remark, 158
standard form, 209, 282
Standard-Form Lemma, 209, 282
Stasheff, J.D., 2
Street, R., 30, 65, 245
strict C-functor, 58
strict category, 65
strictification, 29, 65
Strictification Corollary, 76
Strictification Theorem, 76
Strictification-Coherence Equivalence,

77
Strictification-Coherence Implication,

78
strictified category, 65, 76
strictifying equation, 79
strong C-functor, 58
structural rules, 240
structure-preserving functor, 55, 56,

58
(su), 51
subcategory, 39
subformula, 36

subgraph, 39
subsystem, 39
subterm, 38
subword, 36
successor, 35
(sy), 40
symbol, 34
symmetric associative category, 108
Symmetric Associative Coherence, 108
symmetric biassociative category, 119
Symmetric Biassociative Coherence,

120
symmetric bimonoidal category, 121
Symmetric Bimonoidal Coherence, 123
symmetric groups, 110
symmetric monoidal category, 113
Symmetric Monoidal Coherence, 113
symmetric net category, 145
Symmetric Net Coherence, 147
synonymous syntactical systems, 44
syntactical category, 6, 17, 41
syntactical system, 38

Tait, W.W., 11
tangles, 18
target, 36, 37
Temperley-Lieb algebras, 18
tensor category, 101
terminal object, 37
theoremhood problem, 2
Theoremhood Proposition, 91, 129,

137, 142, 144, 175
tied, subterm tied to cut, 249
topmost cut, 151, 189, 246
total C-functor, 56
total split, 157
(tr), 40
transformation, 43
tree, 35
type, 37

Index 379

unary connective, 34
union of proofs, 26
Uniqueness Lemma, 111, 190, 193
upper contraction formulae, 247
upper parametric basic sequence, 248

valuation, 57
variable object, 122

w, 47
weakly distributive category, 164
wL subterm, 249
wL term, 249
word, 34

zero arrow, 277
zero arrow term, 277
zero atomic bracket-free term, 230,

289
zero atomic term, 299
zero proof, 27
zero term, 282
zero-dicartesian category, 281
Zero-Dicartesian Coherence, 284
zero-identity arrow, 287
zero-identity arrow term, 287
zero-identity Boolean category, 322
Zero-Identity Distributive Dicartesian

Coherence, 291
Zero-Identity Distributive Lattice Co-

herence, 291
zero-lattice category, 276
Zero-Lattice Coherence, 282
zero-mix dicartesian category, 304
Zero-Mix Dicartesian Coherence, 305
zero-mix lattice category, 296
Zero-Mix Lattice Coherence, 300
Zero-Term Lemma, 283, 284
ZIDL, 290, 351
ZIDLA, 291
ZIDL−, 292

ZIDL>,⊥, 290, 352
ZIDL−>,⊥, 292
ZIL, 287, 350
ZIL>,⊥, 288, 350
ZIML, 289, 351
ZIML−, 293
ZIML>,⊥, 289, 351
ZIML−>,⊥, 293
ZL, 276, 350
ZL>,⊥, 281, 350
ZML, 296, 353
ZML−, 305
ZML>,⊥, 304, 353
ZML−>,⊥, 305
ZML¬>,⊥, 353

