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Preface

This book is about one of the greatest intellectual failures of the twentieth

century—several unsuccessful attempts to construct a scientific theory of

probability. Probability and statistics are based on very well developed

mathematical theories. Amazingly, these solid mathematical foundations

are not linked to applications via a scientific theory but via two mutually

contradictory and radical philosophies. One of these philosophical theories

(“frequency”) is an awkward attempt to provide scientific foundations for

probability. The other theory (“subjective”) is one of the most confused

theories in all of science and philosophy. A little scrutiny shows that in

practice, the two ideologies are almost entirely ignored, even by their own

“supporters.”

I will present my own vision of probability in this book, hoping that

it is close to the truth in the absolute (philosophical and scientific) sense.

This goal is very ambitious and elusive so I will be happy if I achieve a

more modest but more practical goal—to construct a theory that represents

faithfully the foundations of the sciences of probability and statistics in their

current shape. A well known definition of physics asserts that “Physics is

what physicists do.” I ask the reader to evaluate my theory by checking how

it matches the claim that, “Probability is what probabilists and statisticians

do.” I want to share my ideas on probability with other people not because

I feel that I answered all questions, but because my theory satisfies my

craving for common sense.

I have already alluded to two intellectual goals of this book, namely,

a detailed criticism of the philosophical theories of von Mises (“frequency

theory”) and de Finetti (“subjective theory”), and a presentation of my own

theory. The third goal, at least as important as the first two, is education.

The writings of von Mises and de Finetti can be easily found in libraries,

vii
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yet their main ideas seem to be almost completely unknown. How many

statisticians and other scientists realize that both von Mises and de Finetti

claimed that events do not have probabilities? How many educated people

would be able to explain in a clear way what the two philosophers tried to

say by making this bold claim? Even if the reader rejects my criticism of

von Mises’ and de Finetti’s theories, and also rejects my own theory, I hope

that at least he will attain a level of comprehension of the foundations of

probability that goes beyond the misleading folk philosophy.

It is hard to be original in philosophy but this book contains a number

of ideas that I have not seen anywhere in any form. My “scientific laws

of probability” (L1)-(L5), presented in Sec. 1.2, are new, although their

novelty lies mainly in their form and in their interpretation. My critique

of the subjective philosophy contains novel ideas, including a proof that

the subjective theory is static and so it is incompatible with the inherently

dynamic statistics (see Sec. 7.6). I show that the frequency statistics has

nothing in common with the frequency philosophy of probability, contrary

to the popular belief. Similarly, I show that, contrary to the popular belief,

the Bayesian statistics has nothing in common with the subjective philos-

ophy of probability. My interpretation of the role of Kolmogorov’s axioms

is new, and my approach to decision theory contains new proposals.

The book is written from the point of view of a scientist and it is meant

to appeal to scientists rather than philosophers. Readers interested in the

professional philosophical analysis of probability (especially in a more dis-

passionate form than mine) may want to start with one of the books listed

in Chap. 15.

I am grateful to people who offered their comments on the draft of the

manuscript and thus helped me improve the book: Itai Benjamini, Erik

Björnemo, Nicolas Bouleau, Arthur Fine, Artur Grabowski, Peter Hoff,

Wilfrid Kendall, Dan Osborn, Jeffrey Rosenthal, Jaime San Martin, Pedro

Terán, John Walsh, and anonymous referees.

Special thanks go to Janina Burdzy, my mother and a probabilist, for

teaching me combinatorial probability more than 30 years ago. The lesson

about the fundamental role of symmetry in probability was never forgotten.

I am grateful to Agnieszka Burdzy, my wife, for the steadfast support

of my professional career.

I acknowledge with gratitude generous support from the National Sci-

ence Foundation.

Seattle, 2008
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Chapter 1

Introduction

1.1 Reality and Philosophy

Two and two makes four. Imagine a mathematical theory which says that

it makes no sense to talk about the result of addition of two and two.

Imagine another mathematical theory that says that the result of addition

of two and two is whatever you think it is. Would you consider any of these

theories a reasonable foundation of science? Would you think that they are

relevant to ordinary life?

If you toss a coin, the probability of heads is 1/2. According to the

frequency philosophy of probability, it makes no sense to talk about the

probability of heads on a single toss of a coin. According to the subjective

philosophy of probability, the probability of heads is whatever you think

it is. Would you consider any of these theories a reasonable foundation of

science? Would you think that they are relevant to ordinary life?

The frequency philosophy of probability is usually considered to be the

basis of the “classical” statistics and the subjective philosophy of proba-

bility is often regarded as the basis of the “Bayesian” statistics (readers

unfamiliar with these terms should consult Chap. 14). According to the

frequency philosophy of probability, the concept of probability is limited to

long runs of identical experiments or observations, and the probability of

an event is the relative frequency of the event in the long sequence. The

subjective philosophy claims that there is no objective probability and so

probabilities are subjective views; they are rational and useful only if they

are “consistent,” that is, if they satisfy the usual mathematical probability

formulas.

Von Mises, who created the frequency philosophy, claimed that ([von

Mises (1957)], page 11),

1
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We can say nothing about the probability of death of an indi-
vidual even if we know his condition of life and health in detail.

De Finetti, who proposed the subjective philosophy, asserted that ([de

Finetti (1974)], page x),

Probability does not exist.

The standard education in probability and statistics is a process of in-

doctrination in which students are taught, explicitly or implicitly, that indi-

vidual events have probabilities, and some methods of computing probabil-

ities are scientific and rational. An alien visiting our planet from a different

galaxy would have never guessed from our textbooks on probability and

statistics that the two main branches of statistics are related to the philo-

sophical claims cited above. I believe that the above philosophical claims

are incomprehensible to all statisticians except for a handful of aficionados

of philosophy. I will try to explain their meaning and context in this book.

I will also argue that the quoted claims are not mere footnotes but they

constitute the essence of the two failed philosophical theories.

Probability is a difficult philosophical concept so it attracted a lot of

attention among philosophers and scientists. In comparison to the huge

and diverse philosophical literature on probability, this book will be very

narrowly focused. This is because only two philosophical theories of proba-

bility gained popularity in statistics and science. I will limit my analysis to

only these interpretations of the frequency and subjective theories that are

scientific in nature, in the sense that they present reasonably clear practical

recipes and make predictions similar to those made in other sciences.

1.2 Summary of the Main Claims

One of the main intellectual goals of this book is to dispel a number of

misconceptions about philosophy of probability and its relation to statistics.

I listed a number of misconceptions in Sec. 13.4. The entries on that list

are very concise and unintelligible without a proper explanation, hence

they are relegated to the end of the book, where they can be reviewed and

appreciated after being properly discussed throughout the book.

I will try to use plain non-technical language as much as I can but it

is impossible to discuss the subject without using some mathematical and

statistical concepts. A short review of basic concepts of probability and

statistics can be found in Chap. 14.
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1.2.1 Critique of the frequency and subjective theories

In a nutshell, each of the two most popular philosophies of probability,

frequency and subjective, failed in two distinct ways. First, both theories

are very weak. The frequency philosophy of von Mises provides an analysis

of long sequences of independent and identical events only. The subjective

philosophy of de Finetti offers an argument in support of the mathematical

rules of probability, with no hint on how the rules can be matched with

the real world. Second, each of the two philosophical theories failed in a

“technical” sense. The frequency theory is based on “collectives,” a notion

that was completely abandoned by the scientific community about 60 years

ago. The subjective theory is based on an argument which fails to give

any justification whatsoever for the use of the Bayes theorem. Even one

of the two failures would be sufficient to disqualify any of these theories.

The double failure makes each of the theories an embarrassment for the

scientific community.

The philosophical contents of the theories of von Mises and de Finetti

splits into (i) positive philosophical ideas, (ii) negative philosophical ideas,

and (iii) innovative technical ideas. There is nothing new about the positive

philosophical ideas in either theory. The negative philosophical ideas are

pure fantasy. The technical ideas proved to be completely useless. I will

now discuss these elements of the two theories in more detail.

Positive philosophical ideas

The central idea in the frequentist view of the world is that probability and

(relative) frequency can be identified, at least approximately, and at least in

propitious circumstances. It is inevitable that, at least at the subconscious

level, von Mises is credited with the discovery of the close relationship be-

tween probability and frequency. Nothing can be further from the truth.

At the empirical level, one could claim that a relationship between proba-

bility and frequency is known even to animals, and was certainly known to

ancient people. The mythical beginning of the modern probability theory

was an exchange of ideas between Chevalier de Mere, a gambler, and Pierre

de Fermat and Blaise Pascal, two mathematicians, in 1654. It is clear from

the context that Chevalier de Mere identified probabilities with frequencies

and the two mathematicians developed algebraic formulas. On the theoret-

ical side, the approximate equality of relative frequency and probability of

an event is known as the Law of Large Numbers. An early version of this

mathematical theorem was proved by Jacob Bernoulli in 1713.
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The main philosophical and scientific ideas associated with subjectivism

and Bayesian statistics are, obviously, the Bayes theorem and the claim that

probability is a personal opinion. Once again, one can subconsciously give

credit to de Finetti for discovering the Bayes theorem or for inventing the

idea that probability is a subjective opinion. The Bayes theorem was proved

by Thomas Bayes, of course, and published in 1763 (although it appears

that the theorem was known before Bayes). De Finetti was not the first

person to suggest that the Bayes theorem should be used in science and

other avenues of life, such as the justice system. In fact, this approach was

well known and quite popular in the nineteenth century.

Between Newton and Einstein, the unquestioned scientific view of the

world was that of a clockwise mechanism. There was nothing random about

the physical processes. Einstein himself was reluctant to accept the fact

that quantum mechanics is inseparable from randomness. Hence, before

the twentieth century, probability was necessarily an expression of limited

human knowledge of reality. Many details of de Finetti’s theory of subjec-

tive probability were definitely new but the general idea that probability is

a personal opinion was anything but new.

Negative philosophical ideas

Both von Mises and de Finetti took as a starting point a very reasonable

observation that not all everyday uses of the concept of probability deserve

to be elevated to the status of science. A good example to have in mind is

the concept of “work” which is very useful in everyday life but had to be

considerably modified to be equally useful in physics.

One of the greatest challenges for a philosopher of probability is the

question of how to measure the probability of a given event. Common

sense suggests observing the frequency of the event in a sequence of simi-

lar experiments, or under similar circumstances. It is annoying that quite

often there is no obvious choice of “similar” observations, for example, if

we want to find the probability that a given presidential candidate will win

the elections. Even when we can easily generate a sequence of identical ex-

periments, all we can get is the relative frequency which characterizes the

whole sequence, not any particular event. The observed frequency is not

necessarily equal to the true probability (if there is such a thing), accord-

ing to the mathematical theory of probability. The observed frequency is

highly probable to be close to the true probability, but applying this argu-

ment seems to be circular—we are using the concept of probability (“highly
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probable”) before we determined that the concept is meaningful.

Von Mises and de Finetti considered philosophical difficulties posed by

the measurement of probability of an event and concluded that a single

event does not have a probability. This intellectual decision was similar

to that of a philosopher coming to the conclusion that God does not exist

because the concept of God is mired in logical paradoxes. The atheist

philosophical option has a number of intellectual advantages—one does not

have to think about whether God can make a stone so heavy that He

cannot lift it Himself. More significantly, one does not have to resolve the

apparent contradiction between God’s omnipotence and His infinite love on

one hand, and all the evil in the world on the other. Likewise, von Mises

and de Finetti do not have to explain how one can measure the probability

of a single event.

While the philosophical position of von Mises and de Finetti is very

convenient, it also makes their philosophies totally alienated from science

and other branches of life. In practical life, all people have to assign proba-

bilities to single events and they have to follow rules worked out by proba-

bilists, statisticians and other scientists. Declaring that a single event does

not have probability has as much practical significance as declaring that

complex numbers do not exist.

The claim that “God does not exist” is a reasonable philosophical op-

tion. The claim that “religion does not exist” is nonsensical. The greatest

philosophical challenge in the area of probability is a probabilistic counter-

part of the question, “What does a particular religion say?” This challenge

is deceptively simple—philosophers found it very hard to pinpoint what

the basic rules for assigning probabilities are. This is exemplified by some

outright silly proposals by the “logical” school of probability. While other

philosophers tried to extend the list of basic rules of probability, von Mises

and de Finetti removed some items from the list, most notably symmetry.

The fundamental philosophical claim of von Mises and de Finetti, that

events do not have probabilities, was like a straightjacket that tied their

hands and forced them to develop very distinct but equally bizarre theo-

ries. Their fundamental claim cannot be softened or circumvented. For a

philosopher, it is impossible to be an atheist and believe in God just a little

bit. Creating a philosophical theory of God that exists just a little bit is not

any easier than creating a theory of God that fully exists. Similarly, creat-

ing a philosophy of probability which includes some events with a somewhat

objective probability is as hard as inventing a philosophy claiming that all

events have fully objective probability.
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The two philosophies can be considered normative. Then their failure

manifests itself in the fact that they are totally ignored. If the two theories

are regarded as descriptive then they are complete failures because the two

philosophers proved unable to make simple observations.

Innovative technical ideas

Von Mises came to the conclusion that the only scientific application of

probability is in the context of long sequences of identical experiments or

observations. Nowadays, such sequences are modeled mathematically by

“i.i.d.” random variables (i.i.d. is an acronym for “independent identically

distributed”). Since individual events do not have probabilities in the von

Mises’ view of the world, one cannot decide in any way whether two given

elements of the sequence are independent, or have identical distribution.

Hence, von Mises invented a notion of a “collective,” a mathematical for-

malization of the same class of real sequences. Collectives are sequences

in which the same stable frequencies of an event hold for all subsequences

chosen without prophetic powers. Collectives have been abandoned by sci-

entists about 60 years ago. One of the basic theorems about i.i.d. sequences

that scientists like to use is the Central Limit Theorem. I do not know

whether this theorem was proved for collectives and I do not think that

there is a single scientist who would like to know whether it was.

De Finetti proposed to consider probability as a purely mathematical

technique that can be used to coordinate families of decisions, or to make

them “consistent.” This idea may be interpreted in a more generous or

less generous way. The more generous way is to say that de Finetti had

nothing to say about the real practical choices between innumerable con-

sistent decision strategies. The less generous way is to say that he claimed

that all consistent probability assignments are equally good. In practice,

this would translate to chaos. The second significant failure of de Finetti’s

idea is that in a typical statistical situation, there are no multiple decisions

to be coordinated. And finally and crucially, I will show that de Finetti’s

theory has nothing to say about the Bayes theorem, the essence of Bayesian

statistics. De Finetti’s theory applies only to a handful of artificial textbook

examples, and only those where no data are collected.

1.2.2 Scientific laws of probability

I will argue that the following laws are the de facto standard of applications

of probability in all sciences.
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(L1) Probabilities are numbers between 0 and 1, assigned to events

whose outcomes may be unknown.

(L2) If events A and B cannot happen at the same time then the proba-

bility that one of them will occur is the sum of probabilities of the

individual events, that is, P (A or B) = P (A) + P (B).

(L3) If events A and B are physically independent then they are indepen-

dent in the mathematical sense, that is, P (A and B) = P (A)P (B).

(L4) If there exists a symmetry on the space of possible outcomes which

maps an event A onto an event B then the two events have equal

probabilities, that is, P (A) = P (B).

(L5) An event has probability 0 if and only if it cannot occur. An event

has probability 1 if and only if it must occur.

The shocking aspect of the above laws is the same as in the statement

that “the king is naked.” There is nothing new about the laws—they are

implicit in all textbooks. Why is it that nobody made them an explicit

scientific basis of the probability theory?

The laws (L1)-(L5) include ideas from the “classical” philosophy of prob-

ability and Popper’s suggestion on how to apply his “falsifiability” approach

to science in the probabilistic context. Hence, the laws can hardly be called

new. However, I have not seen any system of probability laws that would

be equally simple and match equally well the contents of current textbooks.

The laws (L1)-(L5) are not invented to shed the light on the true nature

of probability (although they might, as a by-product), but to provide a

codification of the science of probability at the same level as laws known in

some fields of physics, such as thermodynamics or electromagnetism. I do

not see myself as a philosopher trying to uncover deep philosophical secrets

of probability but as an anthropologist visiting a community of statisticians

and reporting back home what statisticians do. Personally, I believe that

(L1)-(L5) are objectively true but this is not my main claim. People familiar

with the probability theory at the college level will notice that (L1)-(L5) are

a concise summary of the first few chapters of any standard undergraduate

probability textbook. It is surprising that probabilists and statisticians, as

a community, cling to odd philosophical theories incompatible with (L1)-

(L5), and at the same time they teach (L1)-(L5), although most of the

time they do it implicitly, using examples. I will argue that both classical

statistics and Bayesian statistics fit quite well within the framework of (L1)-

(L5).
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The title of this book, “The Search for Certainty,” refers to a com-

mon idea in theories propounded by three philosophers of probability: de

Finetti, von Mises and Popper. The idea is that the mathematical prob-

ability theory allows its users to achieve certainty similar, in a sense, to

that known in other areas of science. The fully developed philosophical

theories of von Mises and de Finetti turned out to be complete intellectual

failures. The philosophical theory of probability proposed by Popper, al-

though known to philosophers and developed in detail in some books and

articles, is practically unknown among the general scientific community.

One of my main goals may be described as repackaging of Popper’s idea for

general consumption.

1.2.3 Statistics and philosophy

I will try to distinguish, as much as it is possible, between science and

philosophy. In particular, I will not identify “Bayesian statistics” with the

“subjective philosophy of probability,” as is commonly done. Similarly,

“classical statistics” and the “frequency theory of probability” will not be

synonyms in this book. I decided to use the term “classical statistics” that

some statisticians may find objectionable, instead of the more accepted

term “frequency statistics,” to be able to distinguish between branches of

science and philosophy. The “classical statistics” and “Bayesian statistics”

are branches of science, both consisting of some purely mathematical models

and of practical methods, dealing mostly with the analysis of data. The

“frequency theory of probability” and “subjective theory of probability”

refer to philosophical theories trying to explain the essence of probability.

I will argue that the classical statistics has nothing (essential) in com-

mon with the frequency theory of probability and the Bayesian statistics

has nothing (essential) in common with the subjective theory of probability.

The two branches of statistics and the two corresponding philosophical

theories have roots in the same intuitive ideas based on everyday observa-

tions. However, the intellectual goals of science and philosophy pulled the

developing theories apart. The basic intuition behind the classical statistics

and the frequency theory of probability derives from the fact that frequen-

cies of some events appear to be stable over long periods of time. For

example, stable frequencies have been observed by gamblers playing with

dice. Stable frequencies are commonly observed in biology, for example,

the percentage of individuals with a particular trait is often stable within a

population. The frequency philosophy of probability formalizes the notion



March 24, 2009 12:3 World Scientific Book - 9in x 6in Search4Certainty

Introduction 9

of stable frequency but it does not stop here. It makes an extra claim that

the concept of probability does not apply to individual events. This claim is

hardly needed or noticed by classical statisticians. They need the concept of

frequency to justify their computations performed under the assumption of

a “fixed but unknown” parameter (implicitly, a physical quantity). Hence,

classical statisticians turned von Mises’ philosophy on its head. Von Mises

claimed that, “If you have an observable sequence, you can apply probabil-

ity theory.” Classical statisticians transformed this claim into “If you have

a probability statement, you can interpret it using long run frequency.”

There are several intuitive sources of the Bayesian statistics and subjec-

tive philosophy of probability. People often feel that some events are likely

and other events are not likely to occur. People have to make decisions

in uncertain situations and they believe that despite the lack of determin-

istic predictions, some decision strategies are better than others. People

“learn” when they make new observations, in the sense that they change

their assessment of the likelihood of future events. The subjective philoso-

phy of probability formalizes all these intuitive ideas and observable facts

but it also makes an extra assertion that there is no objective probability.

The last claim is clearly an embarrassment for Bayesian statisticians so

they rarely mention it. Their scientific method is based on a mathemati-

cal result called the Bayes theorem. The Bayes theorem and the Bayesian

statistics are hardly related to the subjective philosophy. Just like classical

statisticians, Bayesian statisticians turned a philosophy on its head. De

Finetti claimed that, “No matter how much information you have, there is

no scientific method to assign a probability to an event.” Bayesian statis-

ticians transformed this claim into “No matter how little information you

have, you can assign a probability to an event in a scientifically acceptable

way.” Some Bayesian statisticians feel that they need the last claim to

justify their use of the prior distribution.

I do not see anything absurd in using the frequency and subjective

interpretations of probability as mental devices that help people to do ab-

stract research and to apply probability in real life. Classical statisticians

use probability outside the context of long runs of experiments or observa-

tions, but they may imagine long runs of experiments or observations, and

doing this may help them conduct research. In this sense, the frequency

theory is a purely philosophical theory—some people regard long run fre-

quency as the true essence of probability and this conviction may help them

apply probability even in situations when no real long runs of experiments

exist.
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Similarly, Bayesian statisticians assign probabilities to events in a way

that appears objective to other observers. Some Bayesian statisticians may

hold on to the view that, in fact, everything they do is subjective. This

belief may help them apply probability even though there is a striking

difference between their beliefs and actions. The subjective theory is a

purely philosophical theory in the sense that some people find comfort

in “knowing” that in essence, probability is purely subjective, even if all

scientific practice suggests otherwise.

1.3 Historical and Social Context

In order to avoid unnecessary controversy and misunderstanding, it is im-

portant for me to say what this book is not about. The controversy sur-

rounding probability has at least two axes, a scientific axis and a philosoph-

ical axis. The two controversies were often identified in the past, sometimes

for good reasons. I will not discuss the scientific controversy, that is, I will

not take any position in support of one of the branches of the science of

statistics, classical or Bayesian; this is a job for statisticians and other sci-

entists using statistics. I will limit myself to the following remarks. Both

classical statistics and Bayesian statistics are excellent scientific theories.

This is not a judgment of any particular method proposed by any of these

sciences in a specific situation—all sciences are more successful in some

circumstances than others, and the two branches of statistics are not nec-

essarily equally successful in all cases. My judgment is based on the overall

assessment of the role of statistics in our civilization, and the perception of

its value among its users.

A reader not familiar with the history of statistics may be astounded

by the audacity of my criticism of the frequency and subjective theories.

In fact, there is nothing new about it, except that some of my predecessors

were not so bold in their choice of language. Countless arguments against

the frequency and subjective philosophies were advanced in the past and

much of this book consists of a new presentation of known ideas.

Most of the book is concerned with the substance of philosophical claims

and their relationship with statistics. One is tempted, though, to ask why

it is that thousands of statisticians seem to be blind to apparently evident

truth. Why did philosophical and scientific theories, rooted in the same el-

ementary observations, develop in directions that are totally incompatible?

Although these questions are only weakly related to the main contents of

this book, I will now attempt to provide a brief diagnosis.
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Statisticians have been engaged for a long time in a healthy, legiti-

mate and quite animated scientific dispute concerning the best methods

to analyze data. Currently, the competition is viewed as a rivalry between

“classical” and “Bayesian” statistics but this scientific controversy precedes

the crystallization of these two branches of statistics into well defined sci-

entific theories in the second half of the twentieth century. An excellent

book [Howie (2002)] is devoted to the dispute between Fisher and Jeffreys,

representing competing statistical views, at the beginning of the twentieth

century. The scientific dispute within statistics was always tainted by philo-

sophical controversy. It is only fair to say that some statisticians considered

the understanding of philosophical aspects of probability to be vitally im-

portant to the scientific success of the field. My impression, though, is

that philosophy was and is treated in a purely instrumental way by many,

perhaps most, statisticians. They are hardly interested in philosophical

questions such as whether probability is an objective quantity. They treat

ideology as a weapon in scientific discussions, just like many politicians

treat religion as a weapon during a war. Most statisticians find little time

to read and think about philosophy of probability and they find it conve-

nient to maintain superficial loyalty to the same philosophy of probability

that other statisticians in the same branch of statistics profess. Moreover,

many statisticians feel that they have no real choice. They may feel that

their own philosophy of probability might be imperfect but they do not find

any alternative philosophy more enticing.

Philosophers and statisticians try to understand the same simple ob-

servations, such as more or less stable frequency of girls among babies, or

people’s beliefs about the stock-market direction. Philosophy and science

differ not only in that they use different methods but they also have their

own intellectual goals. Statisticians are primarily interested in understand-

ing complex situations involving data and uncertainty. Philosophers are

trying to determine the nature of the phenomenon of probability and they

are content with deep analysis of simple examples. It is a historical acci-

dent that the classical statistics and the frequency philosophy of probability

developed at about the same time and they both involved some frequency

ideas. These philosophical and scientific theories diverged because they had

different goals and there was no sufficient interest in coordinating the two

sides of frequency analysis—it was much easier for statisticians to ignore

the inconvenient claims of the frequency philosophy. The same can be said,

more or less, about the Bayesian statistics. The roots of the Bayesian sta-

tistics go back to Thomas Bayes in the eighteenth century but its modern



March 24, 2009 12:3 World Scientific Book - 9in x 6in Search4Certainty

12 The Search for Certainty

revival coincides, roughly, with the creation of the subjective philosophy

of probability. The needs of philosophy and science pushed the two intel-

lectual currents in incompatible directions but scientists preferred to keep

their eyes shut rather than to admit that Bayesian statistics had nothing

in common with the subjective philosophy.

One of my main theses is that the original theories of von Mises and

de Finetti are completely unrelated to statistics and totally unrealistic. So

why bother to discuss them? It is because they are the only fully devel-

oped and mostly logically consistent intellectual structures, one based on

the idea that probability is frequency, and the other one based on the idea

that probability is a subjective opinion. Both assert that individual events

do not have probabilities. Some later variants of these theories were less

extreme in their assertions and hence more palatable. But none of these

variants achieved the fame of the original theories, and for a good rea-

son. The alternative versions of the original theories are often focused on

arcane philosophical points and muddle the controversial but reasonably

clear original ideas.

1.4 Disclaimers

I have to make a disclaimer that resembles the most annoying “small print”

practices. This book is mostly devoted to philosophy but at least one

third of the material is concerned with statistics and science in general.

The philosophical material to which I refer is easily accessible and well

organized in books and articles. Both de Finetti and von Mises wrote major

books with detailed expositions of their theories. These were followed by

many commentaries. I feel that these writings are often contradictory and

confusing but I had enough material to form my own understanding of the

frequency and subjective philosophical theories. Needless to say, this does

not necessarily imply that my understanding is correct and my very low

opinion about the two theories is justified. However, if any of my claims

are factually incorrect, I have nobody but myself to blame.

When it comes to statistics, the situation is much different. On the

purely mathematical side, both classical and Bayesian statistics are very

clear. However, the philosophical views of working statisticians span a

whole spectrum of opinions, from complete indifference to philosophical

issues to fanatical support for the extreme interpretation of one of the two

popular philosophies. For this reason, whenever I write about statisticians’
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views or practices, I necessarily have to choose positions that I consider

typical. Hence my disclaimer—I accept no blame for misrepresentation of

statisticians’ philosophical positions, overt or implied.

I feel that I have to make another explicit disclaimer, so that I am not

considered ignorant and rude (at least not for the wrong reasons). Both

von Mises and de Finetti were not only philosophers but also scientists. My

claim that their theories are complete intellectual failures refers only to their

philosophical theories. Their scientific contributions are quite solid. For

example, de Finetti’s representation of exchangeable sequences as mixtures

of i.i.d. sequences is one of the most beautiful and significant theorems in

the mathematical theory of probability.

I end the introduction with an explanation of the usage of a few terms,

because readers who are not familiar with probability and statistics might

be confused when I refer to “philosophy of probability” as a foundation

for statistics rather than probability. I am a “probabilist.” Among my

colleagues, this word refers to a mathematician whose focus is a field of

mathematics called “probability.” The probability theory is applied in all

natural sciences, social sciences, business, politics, etc., but there is only one

field of natural science (as opposed to the deductive science of mathematics)

where probability is the central object of study and not just a tool—this

field is called “statistics.” For historical reasons, the phrase “philosophy of

probability” often refers to the philosophical and scientific foundations of

statistics.
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Chapter 2

Main Philosophies of Probability

My general classification of the main philosophies of probability is borrowed

from [Gillies (2000)] and [Weatherford (1982)]. Some authors pointed out

that even the classification of probability theories is rife with controversy,

so the reader should not be surprised to find a considerably different list

in [Fine (1973)]. Those who wish to learn more details and interpretations

alternative to mine should consult books listed in Chap. 15.

I will present only these versions of popular philosophical theories of

probability which I consider clear. In other words, this chapter plays a

double role. It is a short introduction to the philosophy of probability for

those who are not familiar with it. It is also my attempt to clarify the basic

claims of various theories. I think that I am faithful to the spirit of all

theories that I present but I will make little effort to present the nuances of

their various interpretations. In particular, I will discuss only this version

of the frequency theory that claims that probability is not an attribute of

a single event. This is because I believe that the need for the concept of

a “collective” used in this theory is well justified only when we adopt this

assumption. Similarly, I will not discuss the views of philosophers who

claim that both objective and subjective probabilities exist. I do not see

how one can construct a coherent and convincing theory including both

objective and subjective probabilities—see Sec. 7.14.

I will pay much more attention to the subjective and frequency theories

than to other theories, because these two theories are widely believed to be

the foundation of modern statistics and other applications of probability. I

will discuss less popular philosophies of probability first.

15
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2.1 The Classical Theory

Traditionally, the birth of the modern, mathematics-based probability the-

ory is dated back to the correspondence between Pierre de Fermat and

Blaise Pascal in 1654. They discussed a problem concerning dice posed by

Chevalier de Mere, a gambler. In fact, some calculations of probabilities can

be found in earlier books (see Chap. 1 of [Gillies (2000)] for more details).

The “classical” definition of probability gives a mathematical recipe for

calculating probabilities in highly symmetric situations, such as tossing a

coin, rolling a die or playing cards. It does not seem to be concerned with

the question of the “true” nature of probability. In 1814, Laplace stated

the definition in these words (English version after [Gillies (2000)], page

17):

The theory of chance consists in reducing all the events of the
same kind to a certain number of cases equally possible, that is
to say, to such as we may be equally undecided about in regard
to their existence, and in determining the number of cases fa-
vorable to the event whose probability is sought. The ratio of
this number to that of all the cases possible is the measure of
this probability, which is thus simply a fraction whose numera-
tor is the number of favorable cases and whose denominator is
the number of all the cases possible.

Since the definition applies only to those situations in which all outcomes

are (known to be) equally “possible,” it does not apply to a single toss or

multiple tosses of a deformed coin. The definition does not make it clear

what one should think about an experiment with a deformed coin—does the

concept of probability apply to that situation at all? The classical defini-

tion seems to be circular because it refers to “equally possible” cases—this

presumably means “equally probable” cases—and so probability is defined

using the notion of probability.

The “classical philosophy of probability” is a modern label. That “phi-

losophy” was a practical recipe and not a conscious attempt to create a phi-

losophy of probability, unlike all other philosophies reviewed below. They

were developed in the twentieth century, partly in parallel.

2.2 The Logical Theory

The “logical” theory of probability maintains that probabilities are relations

between sentences. They are weak forms of logical implication, intuitively
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speaking. According to this theory, the study of probability is a study

of a (formal) language. John Maynard Keynes and, later, Rudolf Carnap

were the most prominent representatives of this philosophical view. Their

main books were [Keynes (1921)] and [Carnap (1950)]. The version of the

theory advocated by Keynes allows for non-numerical probabilities. The

logical theory is based on the Principle of Indifference which asserts that,

informally speaking, equal probabilities should be assigned to alternatives

for which no reason is known to be different.

The Principle of Indifference does not have a unique interpretation. If

you toss a deformed coin twice, what is the probability that the results will

be different? There are four possible results: HH, TH, HT and TT (H

stands for heads, T stands for tails). The Principle of Indifference suggests

that all four results are equally likely so the probability that the results

will be different is 1/2. A generalization of this claim to a large number n

of tosses says that all sequences of outcomes are equally likely. A simple

mathematical argument then shows that the tosses are (mathematically)

independent and the probability of heads is 1/2 for each toss. Since this

conclusion is not palatable, Keynes and Carnap argued that the probability

that the results of the first two tosses will be different should be taken as

1/3. This claim and its generalizations are mathematically equivalent to

choosing the “uniform prior” in the Bayesian setting. In other words, we

should assume that the tosses are independent and identically distributed

with the probability of heads that is itself a random variable—a number

chosen uniformly from the interval [0, 1].

The logical theory seems to be almost unknown among mathematicians,

probabilists and statisticians. One reason is that some of the philosophical

writings in this area, such as [Carnap (1950)], are hard to follow for non-

experts. Moreover, the emphasis on the logical aspect of probability seems

to miss the point of the real difficulties with this concept. Statisticians and

scientists seem to be quite happy with Kolmogorov’s mathematical theory

as the formal basis of probability. Almost all of the controversy is concerned

with the implementation of the formal theory in practice.

The boundaries between different philosophies are not sharp. For ex-

ample, Carnap believed in two different concepts of probability, one appro-

priate for logic, and another one appropriate for physical sciences.

The logical theory is also known as a “necessary” or “a priori” interpre-

tation of probability.
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2.3 The Propensity Theory

The term “propensity theory” is applied to recent philosophical theories of

probability which consider probability an objective property of things or

experiments just like mass or electrical charge. Karl Popper developed the

first version of the propensity theory (see [Popper (1968)]).

The following example illustrates a problem with this interpretation of

probability. Suppose a company manufactures identical computers in plants

in Japan and Mexico. The propensity theory does not provide a convincing

interpretation of the statement “This computer was made in Japan with

probability 70%,” because it is hard to imagine what physical property this

sentence might refer to.

Popper advanced another philosophical idea, namely, that one can falsify

probabilistic statements that involve probabilities very close to 0 or 1 . He

said ([Popper (1968)], Sec. 68, p. 202),

The rule that extreme improbabilities have to be neglected [...]
agrees with the demand for scientific objectivity.

This idea is implicit in all theories of probability and one form of it was

stated by Cournot in the first half of the nineteenth century (quoted after

[Primas (1999)], page 585):

If the probability of an event is sufficiently small, one should act
in a way as if this event will not occur at a solitary realization.

Popper’s proposal did not gain much popularity in the probabilistic

and statistical community, most likely because it was not translated into

a usable scientific “law of nature” or a scientific method. A version of

Popper’s idea is an essential part of my own theory.

Popper’s two philosophical proposals in the area of probability, that

probability is a physical property, and that probability statements can be

falsified, seem to be independent, in the sense that one could adopt only

one of these philosophical positions.

2.4 The Subjective Theory

Two people arrived independently at the idea of the subjective theory of

probability in 1930’s, Frank Ramsey and Bruno de Finetti. Ramsey did not

live long enough to develop fully his thoughts so de Finetti was the founder

and the best known representative of this school of thought.
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The “subjective” theory of probability identifies probabilities with sub-

jective opinions about unknown events. This idea is deceptively simple.

First, the word “subjective” is ambiguous so I will spend a lot of time try-

ing to clarify its meaning in the subjective philosophy. Second, one has to

address the question of why the mathematical probability theory should be

used at all, if there is no objective probability.

The subjectivist theory is also known as the “personal” approach to

probability.

2.4.1 Interpreting subjectivity

De Finetti emphatically denied the existence of any objective probabilistic

statements or objective quantities representing probability. He summarized

this in his famous saying “Probability does not exist.” This slogan and the

claim that “probability is subjective” are terribly ambiguous and lead to

profound misunderstandings. Here are four interpretations of the slogans

that come naturally to my mind.

(i) “Although most people think that coin tosses and similar long run

experiments displayed some patterns in the past, scientists deter-

mined that those patterns were figments of imagination, just like

optical illusions.”

(ii) “Coin tosses and similar long run experiments displayed some pat-

terns in the past but those patterns are irrelevant for the prediction

of any future event.”

(iii) “The results of coin tosses will follow the pattern I choose, that is,

if I think that the probability of heads is 0.7 then I will observe

roughly 70% of heads in a long run of coin tosses.”

(iv) “Opinions about coin tosses vary widely among people.”

Each one of the above interpretations is false in the sense that it is not

what de Finetti said or what he was trying to say. The first interpretation

involves “patterns” that can be understood in both objective and subjective

sense. De Finetti never questioned the fact that some people noticed some

(subjective) patterns in the past random experiments. De Finetti argued

that people should be “consistent” in their probability assignments (I will

explain the meaning of consistency momentarily). That recommendation

never included a suggestion that the (subjective) patterns observed in the

past should be ignored in making one’s own subjective predictions of the

future, so (ii) is not a correct interpretation of de Finetti’s ideas either.
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Clearly, de Finetti never claimed that one can affect future events just by

thinking about them, as suggested by (iii). We know that de Finetti was

aware of the clustering of people’s opinions about some events, especially

those in science, because he addressed this issue in his writings, so again

(iv) is a false interpretation of the basic tenets of the subjective theory.

I have to add that I will later argue that the subjective theory contains

implicitly assertions (i) and (ii).

The above list and its discussion were supposed to convince the reader

that interpreting subjectivity is much harder than one may think. A

more complete review of various meanings of subjectivity will be given

in Sec. 7.13.

The correct interpretation of “subjectivity” of probability in de Finetti’s

theory requires some background. The necessity of presenting this back-

ground is a good pretext to review some problems facing the philosophy of

probability. Hence, the next section will be a digression in this direction.

2.4.2 Verification of probabilistic statements

The mathematics of probability was never very controversial. The search

for a good set of mathematical axioms for the theory took many years,

until Kolmogorov came up with an idea of using measure theory in 1933.

But even before then, the mathematical probability theory produced many

excellent results. The challenge always lay in connecting the mathematical

results and real life events. In a nutshell, how do you determine the prob-

ability of an event in real life? If you make a probabilistic statement, how

do you verify whether it is true?

It is a good idea to have in mind a concrete elementary example—a

deformed coin. What is the probability that it will fall heads up? Problems

associated with this question and possible answers span a wide spectrum

from practical to purely philosophical. Let us start with some practical

problems. A natural way to determine the probability of heads for the

deformed coin would be to toss the coin a large number of times and take the

relative frequency of heads as the probability. This procedure is suggested

by the Law of Large Numbers, a mathematical theorem. The first problem

is that, in principle, we would have to toss the coin an infinite number of

times. This, of course, is impossible, so we have to settle for a “large”

number of tosses. How large should “large” be?

Another practical problem is that a single event is often a member of

two (or more) “natural” sequences. The experiment of tossing a deformed
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coin is an element of the sequence of tosses of the same deformed coin, but

it is also an element of the sequence of experiments consisting of deforming

a coin (a different coin every time) and then tossing it. It is possible that

the frequency of heads will be 30% in the first sequence (because of the lack

of symmetry) but it will be 50% in the second sequence (by symmetry).

People who may potentially donate money to a presidential candidate

may want to know the probability that John Smith, currently a senator,

will win the elections. The obvious practical problem is that it may be

very hard to find a real sequence that would realistically represent Smith’s

probability of winning. For example, Smith’s track record as a politician

at a state level might not be a good predictor of his success at the national

level. One could try to estimate the probability of Smith’s success by

running a long sequence of computer simulations of elections. How can we

know whether the model used to write the computer program accurately

represents this incredibly complex problem?

On the philosophical side, circularity is one of the problems lurking

when we try to define probability using long run frequencies. Even if we

toss a deformed coin a “large” number of times, it is clear that the relative

frequency of heads is not necessarily equal to the probability of heads on a

single toss, but it is “close” to it. How close is “close”? One can use a math-

ematical technique to answer this question. We can use the collected data

to find a 95% “confidence interval,” that is, an interval that covers the true

value of the probability of heads with probability 95%. This probabilistic

statement is meaningful only if we can give it an operational meaning. If we

base the interpretation of the confidence interval on the long run frequency

idea, this will require constructing a long sequence of confidence intervals.

This leads either to an infinite regress (sequence of sequences of sequences,

etc.) or to a vicious circle of ideas (defining probability using probability).

Another philosophical problem concerns the relationship between a se-

quence of events and a single element of the sequence. If we could perform

an infinite number of experiments and find the relative frequency of an

event, that would presumably give us some information about other infinite

sequences of similar experiments. But would that provide any information

about any specific experiment, say, the seventh experiment in another run?

In other words, can the observations of an infinite sequence provide a basis

for the verification of a probability statement about any single event?

Suppose that every individual event has a probability. If we toss a

deformed coin 1,000 times, we will observe only one quantity, the relative

frequency of heads. This suggests that there is only one scientific quantity
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involved in the whole experiment. This objection can be answered by saying

that all individual events have the same probability. But if we assume that

all individual probabilities are the same, what is the advantage of treating

them as 1,000 different scientific quantities, rather than a single one?

2.4.3 Subjectivity as an escape from the shackles of verifi-

cation

The previous section should have given the reader a taste of the nasty

philosophical and practical problems related to the verification of proba-

bility statements. The radical idea of de Finetti was to get rid of all these

problems in one swoop. He declared that probability statements cannot be

verified at all—this is the fundamental meaning of subjectivity in his philo-

sophical theory. This idea can be presented as a great triumph of thought

or as a great failure. If you are an admirer of de Finetti, you may emphasize

the simplicity and elegance of his solution of the verification problem. If

you are his detractor, you may say that de Finetti could not find a solution

to a philosophical problem, so he tried to conceal his failure by declaring

that the problem was ill-posed. De Finetti’s idea was fascinating but, alas,

many fascinating ideas cannot be made to work. This is what I will show

in Chap. 7.

I will now offer some further clarification of de Finetti’s ideas. Proba-

bility statements are “subjective” in de Finetti’s theory in the sense that

“No probability statement is verifiable or falsifiable in any objective sense.”

Actually, according to de Finetti, probability statements are not verifiable

in any sense, “subjective” or “objective.” In his theory, when new informa-

tion is available, it is not used to verify any probability statements made in

the past. The subjective probabilities do not change at all—the only thing

that happens is that one starts to use different probabilities, based on the

old and new information. This does not affect the original probability as-

signments, except that they become irrelevant for making decisions—they

are not falsified, according to de Finetti. The observation of the occurrence

of an event or its complement cannot falsify or verify any statement about

its probability.

One of the most important aspects of de Finetti’s interpretation of sub-

jectivity, perhaps the most important aspect, is that his philosophical theory

is devoid of any means whatsoever of verifying any probability statement.

This extreme position, not universally adopted by subjectivists, is an in-

dispensable element of the theory; I will discuss this further in Chap. 7.
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A good illustration of this point is the following commentary of de Finetti

on the fact that beliefs in some probability statements are common to all

scientists, and so they seem to be objective and verifiable (quoted after

[Gillies (2000)], page 70):

Our point of view remains in all cases the same: to show that
there are rather profound psychological reasons which make the
exact or approximate agreement that is observed between the
opinions of different individuals very natural, but there are no
reasons, rational, positive, or metaphysical, that can give this
fact any meaning beyond that of a simple agreement of subjec-
tive opinions.

A similar idea was expressed by Leonard Savage, the second best known

founder of the subjective philosophy of probability after de Finetti. The

following passage indicates that he believed in the impossibility of deter-

mining which events are probable or “sure” in an objective way (page 58

of [Savage (1972)]):

When our opinions, as reflected in real or envisaged action,
are inconsistent, we sacrifice the unsure opinions to the sure
ones. The notion of “sure” and “unsure” introduced here is
vague, and my complaint is precisely that neither the theory
of personal probability, as it is developed in this book, nor any
other device known to me renders the notion less vague.

Some modern probabilists take a similar philosophical position. Wilfrid

Kendall made this remark to the author in a private communication: “I

have come to the conclusion over the years that symmetry is a matter of

belief.” The author of this book has come to the conclusion over the weeks

that Kendall’s sentiment encapsulates the difference between the subjective

theory of probability and author’s own theory presented in Chap. 3.

The subjective theory is rich in ideas—no sarcasm is intended here. In

the rest of this section, I will discuss some of these ideas: the “Dutch book”

argument, the axiomatic system for the subjective theory, the identification

of probabilities and decisions, and the Bayes theorem.

2.4.4 The Dutch book argument

Probability does not exist in an objective sense, according to the subjective

theory, so why should we use the probability calculus at all? One can jus-

tify the application of the mathematical theory of probability to subjective
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probabilities using a “Dutch book” argument. A Dutch book will be formed

against me if I place various bets in such a way that no matter which events

occur and which do not occur, I will lose some money. One can prove in a

rigorous way that it is possible to make a Dutch book against a person if

and only if the “probabilities” used by the person are not “consistent”, that

is, they do not satisfy the usual formulas of the mathematical probability

theory.

I will illustrate the idea of a Dutch book with a simple example. See

Sec. 14.1 for the definition of expectation and other mathematical con-

cepts. Consider an experiment with only three possible mutually exclu-

sive outcomes A, B and C. For example, these events may represent the

winner of a race with three runners. The mathematical theory of prob-

ability requires is that the probabilities of A, B and C are non-negative

and add up to 1, that is, P (A) + P (B) + P (C) = 1. The complement

of an event A is traditionally denoted Ac, that is, Ac is the event that A

did not occur, and the mathematical theory of probability requires that

P (Ac) = 1 − P (A). Suppose that I harbor “inconsistent” views, that is,

my personal choice of probabilities is P (A) = P (B) = P (C) = 0.9, so

that P (A) + P (B) + P (C) > 1. Since I am 90% sure that A will happen,

I am willing to pay someone $0.85, assuming that I will receive $1.00 if

A occurs (and nothing otherwise). The expected gain is positive because

$0.15 · P (A)− $0.85 · P (Ac) = $0.15 · 0.9− $0.85 · 0.1 = $0.05, so accepting

this “bet” is to my advantage. A similar calculation shows that I should

also accept two analogous bets, with A replaced by B and C. If I place all

three bets, I will have to pay $0.85 + $0.85 + $0.85 = $2.55. Only one of

the events A, B or C may occur. No matter which event occurs, A, B or

C, I will receive the payoff equal to $1.00 only. In each case, I am going to

lose $1.55. A Dutch book was formed against me because I did not follow

the usual rules of probability, that is, I used “probabilities” that did not

satisfy the condition P (A) + P (B) + P (C) = 1.

Consistency protects me against creating a situation resulting in certain

loss so I have to use the mathematics of probability in my judgments, the

subjective theory advises. Note that the claim here is not that inconsis-

tency will necessarily result in a Dutch book situation (in a given practical

situation, there may be no bets offered to me), but that consistency protects

me against the Dutch book situation under all circumstances.

The essence of the Dutch book argument is that one can achieve a deter-

ministic and empirically verifiable goal using probability calculus, without

assuming anything about existence of objective probabilities. There is a
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theoretical possibility that one could achieve a different deterministic goal

using probability calculus, although I am not aware of any.

Savage proposed that consistency is the essence of probability (page 57

of [Savage (1972)]):

According to the personalistic view, the role of the mathemat-
ical theory of probability is to enable the person using it to
detect inconsistencies in his own real or envisaged behavior.

The idea of a “Dutch book” seems to be very close to the idea of “ar-

bitrage” in modern mathematical finance. An arbitrage is a situation in

financial markets when an investor can make a positive profit with no risk.

The definition refers to the prices of financial instruments, such as stocks

and bonds. Financial theorists commonly assume that there is no arbitrage

in real financial markets. If a person has inconsistent probabilistic views

then someone else can use a Dutch book against the person to make a profit

with no risk—just like in a market that offers arbitrage opportunities. For

a more complete discussion of this point, see Sec. 7.15.

2.4.5 The axiomatic system

The subjective theory of probability is sometimes introduced using an ax-

iomatic system, as in [DeGroot (1970)] or [Fishburn (1970)]. This approach

gives the subjective theory of probability the flavor of a mathematical (log-

ical, formal) theory. The postulates are intuitively appealing, even obvious,

just as one would expect from axioms.

One could argue that logical consistency is a desirable intellectual habit

with good practical consequences but there exist some mathematical the-

ories, such as non-Euclidean geometries, which do not represent anything

real (at the human scale in ordinary life). Hence, adopting a set of axioms

does not guarantee a success in practical life—one needs an extra argument,

such as empirical verification, to justify the use of any given set of axioms.

The subjective theory claims that probability statements cannot be verified

(because probability does not exist in an objective sense) so this leaves the

Dutch book argument as the only subjectivist justification for the use of the

mathematical rules of probability and the implementation of the axiomatic

system.

The importance of the axiomatic system to (some) subjectivists is ex-

emplified by the following challenge posed by Dennis Lindley in his review

[Math Review MR0356303 (50 #8774a)] of [DeGroot (1970)]:
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Many statisticians and decision-theorists will be out of sym-
pathy with the book because it is openly Bayesian. [...] But
they would do well to consider the argument dispassionately
and consider whether the axioms are acceptable to them. If
they are, then the course is clear; if not, then they should say
why and then develop their own and the deductions from them.

Lindley clearly believed that the Bayesian statistics can be derived from

a simple set of axioms. As we will see, almost nothing can be derived from

these axioms.

2.4.6 Identification of probabilities and decisions

When one develops the theory of probability in the decision theoretic con-

text, it is clear that one needs to deal with the question of the “real” value

of money and of the value of non-monetary rewards, such as friendship. An

accepted way to deal with the problem is to introduce a utility function.

One dollar gain has typically a different utility for a pauper and for a mil-

lionaire. It is commonly assumed that the utility function is increasing and

convex, that is, people prefer to have more money than less money (you

can always give away the unwanted surplus), and the subjective satisfac-

tion from the gain of an extra dollar is smaller and smaller as your fortune

grows larger and larger.

The ultimate subjectivist approach to probability is to start with a set

of axioms for rational decision making in the face of uncertainty and derive

the mathematical laws of probability from these axioms. This approach was

developed in [Savage (1972)], but it was based in part on the von Neumann-

Morgenstern theory (see [Fishburn (1970)], Chap. 14). If one starts from a

number of quite intuitive axioms concerning decision preferences, one can

show that there exists a probability measure P and a utility function such

that a decision A is preferable to B if and only if the expected utility is

greater if we take action A rather than action B, assuming that we calculate

the expectation using P . If a probability distribution and a utility function

are given then the decision making strategy that maximizes the expected

utility satisfies the axioms proposed by Savage. Needless to say, deriving

probabilities from decision preferences does not guarantee that probability

values are related in any way to reality. One can only prove theoretically

a formal equivalence of a consistent decision strategy and a probabilistic

view of the world.
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2.4.7 The Bayes theorem

The subjective theory is implemented in the Bayesian statistics in a very

specific way. The essence of statistics is the analysis of data so the subjec-

tive theory has to supply a method for incorporating the data into a con-

sistent set of opinions. On the mathematical side, the procedure is called

“conditioning,” that is, if some new information is available, the holder of a

consistent set of probabilistic opinions is supposed to start using the proba-

bility distribution conditional on the extra information. The mathematical

theorem that shows how to calculate the conditional probabilities is called

the Bayes theorem (see Sec. 14.3). The consistent set of opinions held be-

fore the data are collected is called the “prior distribution” or simply the

“prior” and the probability distribution obtained from the prior and the

data using the Bayes theorem is called the “posterior distribution” or the

“posterior.”

2.5 The Frequency Theory

The development of the foundations of the mathematical theory of proba-

bility at the end of the seventeenth century is related to observations of the

stability of relative frequencies of some events in gambling. In the middle

of the nineteenth century, John Venn and other philosophers developed a

theory identifying probability with frequency. At the beginning of the twen-

tieth century, Richard von Mises formalized this idea using the concept of

a collective. A collective is a long (ideally, infinite) sequence of isomorphic

events. Examples of collectives include casino-type games of chance, re-

peated measurements of the same physical quantity such as the speed of

light, and measurements of a physical quantity for different individuals in

a population, such as blood pressure of patients in a hospital. Von Mises

defined a collective using its mathematical properties. For a sequence of

observations to be a collective, the relative frequency of an event must con-

verge to a limit as the number of observations grows. The limit is identified

with the probability of the event. Von Mises wanted to eliminate from this

definition some naturally occurring sequences that contained patterns. For

example, many observations related to weather show seasonal patterns, and

the same is true for some business activities. Von Mises did not consider

such examples as collectives and so he imposed an extra condition that rel-

ative frequencies of the event should be equal along “all” subsequences of

the collective. The meaning of “all” was the subject of a controversy and
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some non-trivial mathematical research. One of the subsequences is the

sequence of those times when the event occurs but it is clear that includ-

ing this subsequence goes against the spirit that the definition is trying to

capture. Hence, one should limit oneself to subsequences chosen without

prophetic powers, but as I said, this is harder to clarify and implement than

it may seem at the first sight. The issue is further complicated by the fact

that in real life, only finite sequences are available, and then the restriction

to all sequences chosen without prophetic powers is not helpful at all.

Another, perhaps more intuitive, way to present the idea of a collective

is to say that a collective is a sequence that admits no successful gambling

system. This is well understood by owners of casinos and roulette players—

the casino owners make sure that every roulette wheel is perfectly balanced

(and so, the results of spins are a collective), while the players dream of

finding a gambling system or, equivalently, a pattern in the results.

Von Mises ruled out applications of probability outside the realm of

collectives (page 28 of [von Mises (1957)]):

It is possible to speak about probabilities only in reference to a
properly defined collective.

Examples of collectives given by von Mises are very similar to those used

to explain the notions of i.i.d. (independent identically distributed) random

variables, or exchangeable sequences (see Chap. 14). Both the definition of

an i.i.d. sequence and the definition of an exchangeable sequence include,

among other things, the condition that the probabilities of the first two

events in the sequence are equal. In von Mises’ theory, individual events do

not have probabilities, so he could not define collectives the same way as

i.i.d. or exchangeable sequences are defined. Instead, he used the principle

of “place selection,” that is, he required that frequencies are stable along

all subsequences of a collective chosen without prophetic powers.

Some commentators believe that von Mises’ collectives are necessarily

deterministic sequences. In other words, von Mises regarded collectives as

static large populations or sequences, rather than sequences of random vari-

ables, with values created in a dynamic way as the time goes on. Although

this distinction may have a philosophical significance, I do not see how it

could make a practical difference, because von Mises clearly allowed for fu-

ture “real” collectives, that is, he thought that a scientist could legitimately

consider a collective that does not exist at the moment but can reasonably

be expected to be observed in real life at some future time.

Quite often, the frequency theory of von Mises and the subjective theory
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of de Finetti are portrayed as the opposite directions in the philosophical

discourse. This is sometimes expressed by labeling the two theories as

“objective” and “subjective.” In fact, the fundamental claims of both ide-

ologies make them sister theories. De Finetti claimed that probability of

an event is not measurable in any objective sense and so did von Mises.

These negative claims have profound consequences in both scientific and

philosophical arenas. Von Mises argued that there is an objectively mea-

surable quantity that can be called “probability” but it is an attribute of

a long sequence of events, not an event. De Finetti thought that it can be

proved objectively that probabilities should be assigned in a “consistent”

way. Hence, both philosophers agreed that there are no objective probabil-

ities of events but there are some objectively justifiable scientific practices

involving probability.

2.6 Summary of Philosophical Theories of Probability

A brief list of major philosophical theories of probability is given below.

The list also includes my own theory, denoted (L1)-(L5), to be presented in

Chap. 3. I like to consider my theory a scientific, not philosophical theory,

for reasons to be explained later. However, I think that it should be included

in the list for the sake of comparison. Each philosophy is accompanied by

the main intuitive idea that underlies that philosophy.

(1) The classical theory claims that probability is symmetry.

(2) The logical theory claims that probability is “weak” implication.

(3) The frequency theory claims that probability is long run frequency.

(4) The subjective theory claims that probability is personal opinion.

(5) The propensity theory claims that probability is physical property.

(6) The system (L1)-(L5) claims that probability is search for certainty.

Of course, there is some overlap between theories and between ideas.

A striking feature of the current intellectual atmosphere is that

the two most popular philosophical theories in statistics—frequency and

subjective—are the only theories that deny that the concept of probability

applies to individual events (in an objective way). The philosophical ideas

of von Mises and de Finetti were as revolutionary as those of Einstein. Ein-

stein and other physicists forced us to revise our basic instincts concerning

the relationship between the observed and the observer, the role of space

and time, the relationship between mass and energy, the limits of scientific
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knowledge, etc. The idea that events do not have probabilities is equally

counterintuitive.

Of the four well crystallized philosophies of probability, two chose the

certainty as their intellectual holy grail. These are the failed theories of

von Mises and de Finetti. The other two philosophies of probability, logical

and propensity, seem to be concerned more with the philosophical essence

or nature of probability and do not propose that achieving certainty is the

main practical goal of the science of probability. In von Mises’ theory, the

certainty is achieved by making predictions about limiting frequencies in

infinite collectives. De Finetti pointed out that one can use probability to

avoid the Dutch book with certainty.

Traditionally, we think about scientific statements as being experimen-

tally testable. Both von Mises and de Finetti appealed to empirical ob-

servations and made some empirically verifiable claims. Logic is not tradi-

tionally represented as an experimentally testable science, although logical

statements can be tested with computer programs. Hence, the logical phi-

losophy of probability does not stress the empirical verifiability of proba-

bilistic claims.

2.7 Incompleteness—The Universal Malady

The most pronounced limitation of most philosophical ideas about proba-

bility is their incompleteness. This in itself is not a problem but their propo-

nents could not stop thinking that their favorite ideas described probability

completely, and hence made silly claims.

As examples of complete scientific theories, I would take Newton’s laws

of motion, laws of thermodynamics, and Maxwell’s equations for electro-

magnetic fields. Each of these theories provided tools for the determination

of all scientific quantities in the domain of its applicability, at least in

principle.

Each of the following philosophical theories or ideas about probability

is incomplete in its own way.

The classical definition of probability was used until the end of the

nineteenth century, long after probability started to be used in situations

without “all cases equally possible.”

The logical philosophy of probability was based on the principle of in-

difference. The principle cannot be applied in any usable and convincing

way in practical situations which involve, for example, unknown quantities
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that can take any positive value, such as mass.

The theory of von Mises claims that collectives are the domain of appli-

cability of the probability theory. Leaving all other applications of proba-

bility out of the picture is totally incompatible with science in its present

form.

The advice given to statisticians by de Finetti is to use the Bayes theo-

rem. Without any additional advice on how to choose the prior distribution,

the directive is practically useless.

Kolmogorov’s axioms (see Chap. 14) are sometimes mistakenly taken as

the foundation of the science of probability. In fact, they provide only the

mathematical framework and say nothing about how to match the mathe-

matical results with reality.

Popper’s idea of how to falsify probabilistic statements is incomplete in

itself, but we can make it more usable by adding other rules.

Many scientists and philosophers have an unjustified, almost religious,

belief that the whole truth about many, perhaps all, aspects of reality

springs from a handful of simple laws. Some well known cases where such

a belief was or is applied are mathematics and fundamental physics. The

belief was quashed in mathematics by Gödel’s theorems (see [Hofstadter

(1979)]). Physicists apply this belief to the string theory, with little exper-

imental support, and with a fervor normally reserved for religious fanatics.

In my opinion, there is nothing to support this belief in general or in relation

to probability theory.

2.8 Popular Philosophy

The most popular philosophical theories in statistics, frequency and sub-

jective, are more complicated and less intuitive than most people realize.

Many examples in popular literature trying to explain these theories are

very misleading—they have little if anything to do with the theories. In

this sense, such examples do more harm than good because they suggest

interpretations inconsistent with the fundamental ideas of the two philoso-

phies.

A popular view of the frequency interpretation of probability is that “in

repeated experiments, the frequency of an event tends to a limit.” This can

mean, for example, that there are examples of real life sequences where such

a tendency has been observed. Another interpretation of this statement is

that the Law of Large Numbers is true. The problem with this “frequency
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interpretation” is that it is accepted by almost all scientists, so it does not

characterize frequentists. All people agree that frequencies of some events

seem to converge in some sequences. And people with sufficient knowledge

of mathematics do not question the validity of the Law of Large Numbers.

Similarly, the “subjective interpretation” of probability has the following

popular version: “people express subjective opinions about probabilities;

whenever you hold subjective opinions, you should be consistent.” Again,

this interpretation hardly characterizes the subjective approach to prob-

ability because it will not be easy to find anyone who would argue that

people never express subjective opinions about probability, or that it is a

good idea to be inconsistent.

The main philosophical claims of the frequency and subjective theories

are negative. According to the frequency theory, one cannot apply the con-

cept of probability to individual events, and according to the subjective

theory, objective probability does not exist at all, that is, it is impossible

to verify scientifically any probability assignments. The knowledge of the

“negative” side of each of these philosophical theories hardly percolated to

mass imagination and few people seem to be willing to embrace wholeheart-

edly these negative claims.

A good illustration of the thoroughly confused state of the popular view

of the philosophical foundations of probability can be found in one of the

most authoritative current sources of the popular knowledge—Wikipedia,

the free cooperative online encyclopedia.

The article [Wikipedia (2006a)] on “Bayesian probability”, accessed on

July 6, 2006, starts with

In the philosophy of mathematics Bayesianism is the tenet that
the mathematical theory of probability is applicable to the de-
gree to which a person believes a proposition. Bayesians also
hold that Bayes’ theorem can be used as the basis for a rule for
updating beliefs in the light of new information—such updating
is known as Bayesian inference.

The first sentence is a definition of “subjectivism,” not “Bayesianism.”

True, the two concepts merged in the collective popular mind but some

other passages in the same article indicate that the author(s) can actually

see the difference. The second sentence of the quote suggests that non-

Bayesians do not believe in the Bayes theorem, a mathematical result, or

that they believe that the Bayes theorem should not be applied to update

beliefs in real life. In fact, all scientists believe in the Bayes theorem. I am
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not aware of a person who would refuse to update his probabilities, objective

or subjective, using the Bayes theorem. The introduction to the Wikipedia

article is misleading because it lists beliefs that are almost universal, not

exclusive to subjectivists or Bayesians.

The article [Wikipedia (2006b)] on “Frequency probability”, accessed

on July 6, 2006, contains this passage

Frequentists talk about probabilities only when dealing with
well-defined random experiments. The set of all possible out-
comes of a random experiment is called the sample space of the
experiment. An event is defined as a particular subset of the
sample space that you want to consider. For any event only
two things can happen; it occurs or it occurs not. The relative
frequency of occurrence of an event, in a number of repetitions
of the experiment, is a measure of the probability of that event.
[...] Frequentists can’t assign probabilities to things outside the
scope of their definition. In particular, frequentists attribute
probabilities only to events while Bayesians apply probabilities
to arbitrary statements. For example, if one were to attribute
a probability of 1/2 to the proposition that “there was life on
Mars a billion years ago with probability 1/2” one would violate
frequentist canons, because neither an experiment nor a sample
space is defined here.

The idea that the main difference between frequentists and non-

frequentists is that the former use a sample space and events and the latter

do not must have originated in a different galaxy. Here, on our planet, all

of statistics at the research level, classical and Bayesian, is based on Kol-

mogorov’s mathematical approach and, therefore, it involves a sample space

and events. Moreover, the remarks about the probability of life on Mars

are closer to the logical theory of probability, not the subjective theory of

probability.

To be fair, not everything in Wikipedia’s presentation of philosophies of

probability is equally confused and confusing—I have chosen particularly

misleading passages.
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Chapter 3

The Science of Probability

The science of probability must provide a recipe for assigning probabilities

to real events. I will argue that the following list of five “laws of proba-

bility” is a good representation of our accumulated knowledge related to

probabilistic phenomena and that it is a reasonably accurate representation

of the actual applications of probability in science.

(L1) Probabilities are numbers between 0 and 1, assigned to events

whose outcome may be unknown.

(L2) If events A and B cannot happen at the same time then the proba-

bility that one of them will occur is the sum of probabilities of the

individual events, that is, P (A or B) = P (A) + P (B).

(L3) If events A and B are physically independent then they are indepen-

dent in the mathematical sense, that is, P (A and B) = P (A)P (B).

(L4) If there exists a symmetry on the space of possible outcomes which

maps an event A onto an event B then the two events have equal

probabilities, that is, P (A) = P (B).

(L5) An event has probability 0 if and only if it cannot occur. An event

has probability 1 if and only if it must occur.

The laws (L1)-(L5) are implicit in all textbooks, of course. I consider it

an embarrassment to the scientific community that (L1)-(L5) are presented

in textbooks only in an implicit way, while some strange philosophical ideas

are presented as the essence of probability.

A system of laws similar to (L1)-(L5) appears in [Ruelle (1991)], page

17, but it is missing (L4)-(L5) (see the end of Sec. 3.1 for more details).

The discussion of (L1)-(L5) will be divided into many subsections, deal-

ing with various scientific and philosophical aspects of the laws.

35
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3.1 Interpretation of (L1)-(L5)

The laws (L1)-(L5) should be easy to understand for anyone who has any

experience with probability but nevertheless it is a good idea to spell out

a few points.

Symmetry

The word “symmetry” should be understood as any invariance under a

transformation preserving the structure of the outcome space (model) and

its relation to the outside world. Elementary non-probabilistic symmetries

include the mirror symmetry (left and right hands are symmetric in this

sense), and translations in space and time.

A simple example of (L4) is the assertion that if you toss a coin (once)

then the probability of heads is 1/2. The classical definition of probability

(see Sec. 2.1) is often applied in situations that involve physical and spatial

symmetries, for example, games based on dice, playing cards, etc.

From the statistical point of view, the most important examples to which

(L4) applies are sequences of i.i.d. (independent, identically distributed)

or exchangeable events (see Chap. 14 for definitions). When observations

are ordered chronologically, the i.i.d. property or exchangeability can be

thought of as symmetry in time.

It is fundamentally important to realize that (L4) does not refer to the

symmetry in a gap in our knowledge but it refers to the physical (scientific)

symmetry in the problem. For example, we know that the ordering of the

results of two tosses of a deformed coin does not affect the results. But

we do not know how the asymmetry of the coin will affect the result of an

individual toss. Hence, if we toss a deformed coin twice, and T and H stand

for “tails” and “heads,” then TH and HT have equal probabilities according

to (L4), but TT and HH do not necessarily have the same probabilities. I

will discuss this example in greater depth in Sec. 3.12.

The above remark about the proper application of (L4) is closely related

to the perennial discussion of whether the use of the “uniform” distribution

can be justified in situations when we do not have any information. In

other words, does the uniform distribution properly formalize the idea of

the total lack of information? The short answer is “no.” The laws (L1)-(L5)

formalize the best practices when some information is available and have

nothing to say when there is no information available. I will try to explain

this in more detail.
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A quantity has the “uniform probability distribution” on [0, 1] if its

value is equally likely to be in any interval of the same length, for example,

it is equally likely that the quantity is in any of the intervals (0.1, 0.2),

(0.25, 0.35) and (0.85, 0.95). Some random quantities can take values in

an interval, for example, the percentage of vinegar in a mixture of vinegar

and water can take values between 0% and 100%, that is, in the interval

[0, 1]. If we have a sample of vinegar solution in water and we do not know

how it was prepared, there is no symmetry that would map the percentage

of vinegar in the interval (0.25, 0.35) onto the interval (0.85, 0.95). In this

case, (L4) does not support the use of the uniform distribution.

If we record the time a phone call is received at an office, with the

accuracy of 0.1 seconds, then the number of seconds after the last whole

minute is between 0 and 59.9. The time when a phone call is made is close

to being stationary (that is, invariant under time shifts) on time intervals of

order of one hour. We can use (L4) to conclude that the number of seconds

after the last whole minute when a phone call is recorded is uniformly

distributed between 0 and 59.9.

The uniform distribution can be used as a “seed” in a Bayesian iterative

algorithm that generates objectively verifiable predictions. This does not

imply that the probabilities described by the uniform prior distribution are

objectively true. See Sec. 8.4.2 for further discussion of this point.

Enforcement

The laws (L1)-(L5) are enforced in science and in the life of the society.

They are enforced not only in the positive sense but also in the negative

sense. A statistician cannot combine two unrelated sets of data, say, on

blood pressure and supernova brightness, into one sequence. She has to

realize that the combined sequence is not exchangeable, that is, not sym-

metric. People are required to recognize events with probabilities far from

1 and 0. For example, people are required to recognize that drowning in

a swimming pool unprotected by a fence has a non-negligible probability.

They have to take suitable precautions, for example, they should fence the

pool. Similar examples show that people are supposed to recognize both

independent and dependent events.

Limits of applicability

An implicit message in (L1)-(L5) is that there exist situations in which

one cannot assign probabilities in a scientific way. Actually, laws (L1)-(L5)
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do not say how to assign values to probabilities—they only specify some

conditions that the probabilities must satisfy. Only in some cases, such as

tosses of a symmetric coin, (L1)-(L5) uniquely determine probabilities of

all events.

It is quite popular to see the philosophy of probability as an investigation

of rational behavior in situations when our knowledge is incomplete. The

essence of the science of probability, as embodied in (L1)-(L5), is to present

the rules of rational behavior when some information is available. In other

words, the science of probability is not trying to create something out of

nothing, but delineates the boundaries of what can be rationally asserted

and verified in situations when some information is available.

(L1)-(L5) as a starting point

The relationship between (L1)-(L5) and the real probabilistic and statistical

models is analogous to the relationship of, say, Maxwell’s equations for

electromagnetic fields and a blueprint for a radio antenna. The laws (L1)-

(L5) are supposed to be the common denominator for a great variety of

methods, but there is no presumption that it should be trivial to derive

popular models, such as linear regression in statistics or geometric Brownian

motion in finance from (L1)-(L5) alone. One may find other conditions for

probabilities besides (L1)-(L5) in some specific situations but none of those

extra relations seems to be as fundamental or general as (L1)-(L5).

Some widely used procedures for assigning probabilities are not for-

malized within (L1)-(L5). These laws are similar to the periodic table of

elements in chemistry—a useful and short summary of some basic informa-

tion, with no ambition for being exhaustive. Consider the following text-

book example from classical statistics. Suppose that we have a sequence of

i.i.d. normal random variables with unknown mean and variance equal to

1. What is the best estimator of the unknown mean? This model involves

“normal” random variables so for this mathematical model to be applica-

ble, one has to recognize in practice normal random variables. There are

at least two possible approaches to this practical task. First, one can try

to determine whether the real data are normally distributed using common

sense or intuition. Alternatively, one can test the data for normality in a

formal way, using (L1)-(L5). The last option is more scientific in spirit but

it is not always practical—the amount of available data might be too small

to determine in a convincing way whether the measurements are indeed

normal.
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A simple model for stock prices provides another example of a practical

situation when probabilities are assigned in a way that does not seem to

follow directly from (L1)-(L5). A martingale is a process that has no overall

tendency to go up or down. According to some financial models, stock

prices are martingales. The reason is that the stock price is the current

best guess of the value of the stock price at some future time, say, at

the end of the calendar year. According to the same theory, the current

guess has to be the conditional expectation of the future price given the

current information. Then a mathematical theorem shows that the stock

price has to be a “Doob martingale.” In fact, nobody seems to believe

that stock prices are martingales. Nevertheless, this oversimplified model

makes a prediction that stock prices should be non-differentiable functions

of time. This is well supported by the empirical evidence. My point is that

the martingale-like properties of stock prices would be hard to derive from

(L1)-(L5) in a direct way.

Finally, let me mention the Schrödinger equation—the basis of quantum

mechanics. The solution of the equation can be interpreted as a probability

distribution. The laws (L1)-(L5) were involved in the experimental research

preceding the formulation of the Schrödinger equation but I do not see how

the probabilities generated by the equation can be derived from (L1)-(L5)

alone.

Under appropriate circumstances, one can verify probability values ar-

rived at in ways different than (L1)-(L5). Verification of probability values

will be discussed in Sec. 3.2.

Past and future events

Laws (L1)-(L5) make no distinction between events that will happen in the

future and events that happened in the past. Probability can be meaning-

fully attributed to an event if that event can be eventually determined (at

least in principle) to have occurred or not. For example, it makes sense to

talk about the probability that a scientific theory is correct.

According to the laws (L1)-(L5), probabilities are attributes of events.

This might seem completely obvious to probabilists, statisticians and other

scientists familiar with probabilistic methods. However, philosophers pro-

posed interpretations of probability in which probability was an attribute

of a long sequences of events, an object, an experiment, or a (logical) state-

ment.
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Purely mathematical independence

In relation to (L3), one should note that there exist pairs of events which are

not “physically independent” but independent in the mathematical sense. If

you roll a fair die, the event A that the number of dots is even is independent

from the event B that the number is a multiple of 3, because P (A and B) =

1/6 = 1/2 · 1/3 = P (A)P (B).

Ruelle’s view of probability

I have already mentioned that David Ruelle gave in Chap. 3 of [Ruelle

(1991)] a list of probability laws similar to (L1)-(L5), but missing (L4)-(L5).

The absence of the last two laws from that system makes it significantly

different from mine. However, this observation should not be interpreted

as a criticism of Ruelle’s list—he was not trying to develop a complete

scientific codification of probability laws. At the end of Chap. 3 of his

book, Ruelle gave a frequency interpretation of probability. In the case

when the frequency cannot be observed in real life, Ruelle suggested that

computer simulations can serve as a scientific substitute. This approach

does not address the classical problem of determining the probability of

a single event belonging to two different sequences—see Sec. 3.11. As for

computer simulations, they are a great scientific tool but they seem to

contribute little on the philosophical side—see Sec. 5.10.

3.2 A Philosophy of Probability and Scientific Verification

of (L1)-(L5)

This section and the next section on predictions contain ideas close to those

expressed in [Popper (1968)] and [Gillies (1973)]. I would like to stress,

however, that Popper and many other authors presented these and similar

ideas as a part of abstract philosophy or suggestions for rational behavior.

What I am trying to do is to describe what scientists actually do.

My philosophy of probability says that the role of the probability theory

is to identify events of probability 0 or 1 because these are the only prob-

ability values which can be verified or falsified by observations. In other

words, knowing some probabilities between 0 and 1 has some value only

to the extent that such probabilities can be used as input in calculations

leading to the identification of events of probability 0 or 1. I will call an

event with probability close to 1 a prediction.
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Single events do have probabilities, if these probabilities have values

0 or 1. As for probabilities between 0 and 1, they can be thought of as

catalysts needed to generate probabilities of interest, perhaps having no

real meaning of their own. I personally think about all probabilities as

“real” and “objective” but this is only to help me build a convenient image

of the universe in my mind.

I am tempted to steal de Finetti’s slogan “Probability does not exist”

and give it a completely new meaning. Laws (L1)-(L5) may be interpreted

as saying that probability does not exist as an independent physical quan-

tity because probability can be reduced to symmetry, lack of physical in-

fluence, etc. This is similar to the reduction of the concept of temperature

to average energy of molecules.

I attribute the success of probability theory and statistics to their abil-

ity to generate predictions as good as those of deterministic sciences. In

practice, no deterministic prediction is certain to occur, for various reasons,

such as human errors, natural disasters, oversimplified models, limited ac-

curacy of measurements, etc. Some predictions offered by the probability

theory in “evidently random” experiments, such as repeated coin tosses,

are much more reliable than a typical “deterministic” prediction.

Before I turn to the question of the scientific verification of (L1)-(L5),

I will discuss the idea of a scientific proof. I have learnt it in the form of

an anecdote told by a fellow mathematician. Mathematicians believe that

they have the strictest standards of proof among all intellectuals and so they

sometimes have a condescending view of the methods of natural sciences,

including physics. This attitude is no doubt the result of the inferiority

complex—discoveries in physics find their way to the front page of The

New York Times much more often than mathematical theorems. The idea

of a “proof” in mathematics is this: you start with a small set of axioms

and then you use a long chain of logical deductions to arrive at a statement

that you consider interesting, elegant or important. Then you say that the

statement has been proved. Physicists have a different idea of a “proof”—

you start with a large number of unrelated assumptions, you combine them

into a single prediction, and you check if the prediction agrees with the

observed data. If the agreement is within 20%, you call the assumptions

proved.

The procedure for verification of (L1)-(L5) that I advocate resembles

very much the “physics’ proof.” Consider a real system and assign prob-

abilities to various events using (L1)-(L4), before observing any of these

events. Then use the mathematical theory of probability to find an event
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A with probability very close to 1 and make a prediction that the event A

will occur. The occurrence of A can be treated as a confirmation of the

assignment of probabilities and its non-occurrence can be considered its

falsification.

A very popular scientific method of verifying probability statements

is based on repeated trials—this method is a special case of the general

verification procedure described above. It has the same intuitive roots as

the frequency theory of probability. Suppose that A is an event and we

want to verify the claim that P (A) = 0.7. Then, if practical circumstances

allow, we find events A1, A2, . . . , An such that n is large and the events

A, A1, A2, . . . , An are i.i.d. Here, “finding events” means designing an ex-

periment with repeated measurements or finding an opportunity to make

repeated observations. Let me emphasize that finding repeated observa-

tions cannot be taken for granted. The mathematics of probability says

that if P (A) = 0.7 and A, A1, A2, . . . , An are i.i.d. then the observed rel-

ative frequency of the event in the whole sequence will be very close to

70%, with very high probability. If the observed frequency is indeed close

to 70%, this can be considered a proof of both assertions: P (A) = 0.7

and A, A1, A2, . . . , An are i.i.d. Otherwise, one typically concludes that the

probability of A is different from 0.7, although in some circumstances one

may instead reject the assumption that A, A1, A2, . . . , An are i.i.d.

Recall the discussion of the two interpretations of the “proof,” the math-

ematical one and the physical one. Traditionally, the philosophy of proba-

bility concerned itself with the verification of probability statements in the

spirit of the mathematical proof. One needs to take the physics’ attitude

when it comes to the verification of probability assignments based on (L1)-

(L5), or (L1)-(L5) themselves—it is not only the probability statements but

also assumptions about symmetries or lack of physical influence that can

be falsified.

The general verification method described above works at (at least) two

levels. It is normally used to verify specific probability assignments or re-

lations. However, the combined effect of numerous instances of application

of this procedure constitutes a verification of the whole theory, that is, the

laws (L1)-(L5).

The method of verification of (L1)-(L5) proposed above works only in

the approximate sense, for practical and fundamental reasons—no events

in the universe are absolutely “physically independent,” no symmetry is

perfect, mathematical calculations usually do not yield interesting events

with probabilities exactly equal to 1, and the events of probability “very
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close” to 1 occur “almost” always, not always.

I especially like the following minimalist interpretation of (L1)-(L5).

The laws (L1)-(L5) are an account of facts and patterns observed in the

past—they are the best compromise (that I could find) between accuracy,

objectivity, brevity, and utility in description of the past situations involving

uncertainty. I will later argue that (L1)-(L5) are a better summary of what

we have observed than the von Mises theory of collectives. The subjective

theory provides no such summary at all—this is one of the fatal flaws in

that theory.

The actual implementation of experiments or observations designed to

verify (L1)-(L5) is superfluous, except for didactic reasons. Scientists ac-

cumulated an enormous amount of data over the centuries and if someone

thinks that the existing data do not provide a convincing support for (L1)-

(L5) then there is little hope that any additional experiments or observa-

tions would make any difference.

Since Popper was the creator and champion of the propensity theory of

probability, one may reach a false conclusion that his idea incorporated in

(L5) turns (L1)-(L5) into a version of propensity theory of probability. In

fact, (L1)-(L5) make no claims about the true nature of probability, just

like Newton’s laws of motion to not make any claims about the nature of

mass or force.

3.3 Predictions

Law (L5) refers to events of probability 0 or 1. In the context of probabilistic

phenomena, practically no interesting events have such probabilities—this

is almost a tautology. However, there exist many important events whose

probabilities are very close to 0 or 1. In other words, the only non-trivial

applications of (L5), as an account of the past observations or as a predic-

tion of future events, are approximate in nature. One may wonder whether

this undermines the validity of (L5) as a law of science. I believe that (L5)

does not pose a philosophical problem any deeper than that posed by the

concept of “water.” There is no pure water anywhere in nature or in any

laboratory and nobody tries to set the level of purity for a substance so that

it can be called “water”—this is done as needed in scientific and everyday

applications.

The concept of temperature applies to human-size bodies, star-size bod-

ies and bacteria-size bodies but it does not apply to individual atoms. It
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does not apply to molecules consisting of 3 atoms. The temperature of an

atom is not a useful concept, and the same applies to the temperature of a

three-atom molecule. How many atoms should a body have so that we can

talk about its temperature? As far as I know, the critical number of atoms

was never defined. Moreover, doing so would not contribute anything to

science. Similarly, it would not be useful to set a number close to 1 and

declare that a probabilistic statement is a prediction if and only if it in-

volves a probability greater than that number. I note parenthetically that

the same remarks apply to von Mises’ concept of “collective.” In principle,

the concept refers to infinite sequences. In practice, all sequences are finite.

Trying to declare how long a sequence has to be so that it can be considered

a “collective” would not contribute anything to science.

I like to think about (L1)-(L5) as an account of past events and patterns.

Hence, (L5) is a practical way of communicating past observations, even

if some people may find it philosophically imperfect. Most people use an

approximate form of (L5) in making their decisions.

Recall that a prediction is an event with probability “very close to 1.”

The goal of the science of probability is to identify situations when one can

make predictions. Two philosophical objections to the last claim are: (i) a

“probabilistic prediction” is not a prediction at all, and (ii) the definition of

a prediction is vague and so “prediction” means different things to different

people. To reject the idea of a probabilistic prediction because of (i) and

(ii) is a perfectly acceptable position from the purely philosophical point

of view. However, no science has equally high intellectual standards. If

we accept the standards implicit in (i) and (ii) then social sciences and

humanities are almost worthless intellectual endeavors. Moreover, even

natural sciences do not offer in practice anything better than probabilistic

predictions (although they do in theory). If the high standards expressed

in (i) and (ii) are adopted, then we have to reject quantum physics, an

inherently probabilistic field of science, because it makes no predictions at

all.

Predictions at various reliability levels

The law (L5), “events of probability zero cannot happen,” does not dis-

tinguish between small but significantly different probabilities, say, 0.001

and 10−100. This poses philosophical and practical problems. A person

reporting the failure of a prediction to another person does not convey a

clear piece of information. I believe that a crude rule is needed to make fine
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distinctions. I will elaborate on this idea using a deterministic example.

Consider the concepts of “black” and “white.” The ability to distinguish

between black and white is one of the abilities needed in everyday life and

science. Not all white objects are equally white, for example, not all white

pieces of paper are equally bright. Hence, one could argue that the concept

of “white” is insufficiently accurate to be acceptable in science. There are

at least two answers to this philosophical problem. The first one is that the

crude concept of “white” is sufficiently accurate to be useful.

The second answer is more delicate. One can measure degrees of white-

ness but the measurement process hinges on human ability to distinguish

between black and white in a crude way. Imagine a very precise instrument

measuring the brightness of “white” paper. The result of the measure-

ment can be displayed using a traditional gauge with a black arrow on the

white background or on the modern computer screen, using black digits

on the white background. Hence our ability to measure brightness of the

paper with great accuracy depends on our ability to read the gauge or the

numbers on the computer screen. This in turn depends on our ability to

distinguish between white and black in a crude way. In other words, a fine

distinction between degrees of whiteness depends on the crude distinction

between white and black.

Measuring physical quantities with great accuracy or measuring extreme

values of these quantities is possible but it usually requires sophisticated

scientific theories and superb engineering skills. For example, measuring

temperatures within a fraction of a degree from absolute zero, or the (in-

direct) measurement of the temperature at the center of the sun require

sophisticated theories and equipment. Similarly, to measure very small

probabilities with great accuracy, one needs either sophisticated theories,

or excellent data, or both. In theory, we could use relative frequency to

estimate a probability of the order of 10−1,000,000, but I doubt that we will

have the technology to implement this idea any time soon. The only prac-

tical way to determine a truly small probability is first to find a good model

for the phenomenon under consideration using observations and statistical

analysis, and then apply a theorem such as the Large Deviations Principle

(see Sec. 14.1.1). The statistical analysis needed in this process involves an

application of (L5) in a simple and crude form. For example, one has to

reject the possibility that the observed patterns in the data were all cre-

ated by a faulty computer program. This is effectively saying that an event

of a small probability, a computer bug, did not happen. Typically, we do

not try to determine the order of magnitude of this event in a formal or
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accurate way—a simple and rough application of (L5) seems to be suffi-

cient, and constitutes a part of a very accurate measurement of very small

probability.

The above remarks on the relationship between the rough law (L5)

and accurate scientific predictions apply also to other elements of the sys-

tem (L1)-(L5). We have to recognize symmetries in a rough way to apply

probability theory and all other scientific theories. Sometimes this is not

sufficient, so scientists measure various physical quantities with great ac-

curacy to determine, among other things, whether various quantities are

identical (symmetric). Similarly, applications of probability require that

we recognize independent events in a rough way. In some situations this is

not sufficient and statisticians measure correlation (a number characterizing

the degree of dependence) in an accurate way.

It is good to keep in mind some examples of events that function in

science as predictions. In the context of hypothesis testing (see Sec. 6.3),

events with probability 0.95 are treated quite often as predictions. In other

words, the “significance level” can be chosen to be 0.05. If an event with

probability 0.05 occurs then this is considered to be a falsification of the

underlying theory, that is, the “null hypothesis” is rejected. At the other

extreme, we have the following prediction concerning a frequency. If we

toss a fair coin 10,000 times, the probability that the observed relative

frequency of heads will be between 0.47 and 0.53 is about 0.999,999,998.

This number and 0.95 are vastly different so it is no surprise that the

concept of prediction is not easy to recognize as a unifying idea for diverse

probabilistic and statistical models.

Predictions in existing scientific and philosophical theories

Predictions are well known in the subjective philosophy, Bayesian statistics,

and classical statistics. The subjective philosophy and Bayesian statistics

agree on decision theoretic consequences of dealing with an event with very

high probability. When we calculate the expected value of utility related to

a “prediction,” that is, an event of very high probability, the value of the

expected value will be very close to that if the event had the probability

equal to 1. Hence, the decision maker should make the same decision, no

matter whether the probability of the event is very close to 1, or it is exactly

equal to 1. In other words, probabilistic “predictions” are treated in the

subjective philosophy and Bayesian statistics the same way as determin-

istic predictions. There is a fundamentally important difference, though,
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between probabilistic and deterministic predictions in the subjective phi-

losophy. If a deterministic event predicted by some theory does not occur

in reality, all people and all theories seem to agree that something must

have gone wrong—either the theory is false or its implementation is erro-

neous. The subjective philosophy does not grant probabilistic predictions

(that is, events of high probability) any special philosophical status. If you

believe that you will win a lottery with probability 99% and you do not,

the subjective theory has no advice on what you should do, except to stay

consistent. You may choose to believe that next time you will win the same

lottery with probability 99%.

An important branch of classical statistics is concerned with hypothesis

testing. A hypothesis is rejected if, assuming that the hypothesis is true,

the probability that a certain event occurs is very small, and nevertheless

the event does occur. In other words, a classical statistician makes a pre-

diction, and if the predicted event does not occur, the statistician concludes

that the assumptions on which the prediction was based must be false. The

relationship between the formal theory of hypothesis testing and (L5) is the

same as between crude informal measurements and high accuracy scientific

measurements described earlier in this section. The accurate scientific the-

ory is needed for advanced scientific applications but it is based on a crude

principle (L5) at its foundations.

Contradictory predictions

In a practical situation, two rational people may disagree about a value of a

probability, for example, two political scientists may differ in their opinions

about chances that a given presidential candidate has in the next elections.

We may feel that if the two people put the probability in question at 40%

and 60%, both claims are legitimate. Hence, one may conclude that prob-

ability is subjective in the sense that perfectly rational people may have

reasonably well justified but different opinions. The attitude to contradic-

tory probabilistic claims is different when they are predictions, that is, if the

pundits assign very high probabilities to their claims. Imagine, for example,

that one political commentator says that a candidate has 99.9% probability

of winning elections, and another commentator gives only 0.1% chance to

the same candidate. Only a small fraction of people would take the view

that there is nothing wrong with the two opinions because “rational peo-

ple may have different opinions.” The mathematical theory of probability

comes to the rescue, in the form of a theorem proved in Sec. 14.4. The theo-
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rem says that people are unlikely to make contradictory predictions even if

they have different information sources. More precisely, suppose that two

people consider an event A. Assume that each person knows some facts

unknown to the other person. Let us say that a person makes a prediction

when she says that either an event A or its complement is a prediction,

or, more precisely, the probability of A is either smaller than δ or greater

than 1 − δ, where δ > 0 is a small number, chosen (in a subjective way!)

to reflect the desired level of confidence. The two people make “contra-

dictory predictions” if one of them asserts that the probability of A is less

than δ and the other one says that the probability of A is greater than

1 − δ. The theorem in Sec. 14.4 says that the two people can make the

probability of making contradictory predictions smaller than an arbitrar-

ily small number ε > 0, if they agree on using the same sufficiently small

δ > 0 (depending on ε). This result may be interpreted as saying that, at

the operational level, predictions can be made objective, if people choose

to cooperate. This interpretation may be even reconciled with the belief

that opinions about moderate probabilities are subjective. It is best not

to overestimate the philosophical or scientific significance of the theorem

in Sec. 14.4, but I have to say that I find it reassuring. On the negative

side, the theorem appears to be somewhat circular. The assertion of the

theorem, that the probability of contradictory predictions is small, is itself

a prediction. Hence, the theorem is most likely to appeal to the converted,

that is, people who already have the same attitude to predictions as mine.

By the way, the last statement is a prediction.

Multiple predictions

When it comes to deterministic predictions, all predictions are supposed

to hold simultaneously so the failure of a single prediction may falsify a

whole theory. By nature, probabilistic predictions may fail even if the

underlying theory is correct. If a large number of predictions are made at

the same time then it is possible that with high probability, at least one

of the predictions will fail. This seems to undermine the idea that a failed

prediction falsifies the underlying theory. In practice, the problem is dealt

with using (at least) three processes that I will call selection, reduction and

amplification. Before I explain these concepts in more detail, I will describe

a purely mathematical approach to the problem of multiple predictions.

Consider a special case of independent predictions A1, A2, A3, . . . . As-

sume that all these events have probability 99%. Then in the long run,
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these predictions will fail at an approximate rate of 1%, even if the the-

ory behind these predictions is correct. The last statement is a prediction

itself and can be formalized as follows, using the Law of Large Numbers.

There exists a large number n0 such that for every number n greater than

n0, the percentage of predictions Ak that fail among the first n predictions

will be between 98.9% and 99.1%, with probability greater than 99%. The

percentages in the last statement can be changed, but then the value of n0

has to be adjusted.

The process of selection of predictions is applied mostly subconsciously.

We are surrounded with a very complex universe, full of unpredictable

events. Most of them are irrelevant to our lives, such as whether the one

hundredth leaf to fall from the linden tree in my backyard is going to fall

to the north or to the south. We normally think about a small selection

of events that can influence our lives and we try to make predictions con-

cerning these events. The fewer the number of predictions, the fewer the

number of failed predictions.

A lottery provides an example of the reduction procedure. Typically,

the probability that a specific person will win a given lottery is very small.

In other words, we can make a prediction that the person will not win the

lottery. The same prediction applies to every person playing the same lot-

tery. However, it is not true that the probability that nobody will win the

lottery is small. Nobody would make one hundred thousand predictions,

each one saying that a different specific person will not win the lottery.

The number of predictions that are actually made is reduced by combining

large families of related predictions into a smaller number of “aggregate”

predictions. For some lotteries, one can make a single “aggregate” pre-

diction that somebody will win the lottery. For some other lotteries, the

probability that someone will win the lottery may be far from 1 and 0—in

such a case, no aggregate prediction can be made.

When a specific prediction is very significant to us, we can amplify

its power by collecting more data. This is a standard practice in science.

For example, most people believe that smoking increases the probability

of cancer. Let me represent this claim in a somewhat artificial way as

a statement that the cancer rate among smokers will be higher than the

cancer rate among non-smokers in 2015 with probability p. We believe

that p is very close to 1, but to make this prediction even stronger, the

data on smokers and cancer victims are continually collected. The more

data are available, the higher value of p they justify. Both amplification and

aggregation are used in the context of hypothesis testing (see Sec. 6.3.3).
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Even after applying selection and reduction, a single person will gener-

ate a large number of predictions over his lifetime. If the predictions are

reasonably independent then one can prove, just like indicated earlier in

this section, that only a small proportion of predictions will fail, with high

probability. This claim is a single “aggregate” prediction. Such a single ag-

gregate prediction can be constructed from all predictions made by a single

physical person, or by a group of people, for example, scientists working in

a specific field.

I will now address a few more scientific and philosophical points related

to multiple predictions.

First, it is interesting to see how mathematicians approach very large

families of predictions. Consider, for example, Brownian motion. This

stochastic process is a mathematical model for a chaotically moving particle.

Let B(t) denote the position at time t of a Brownian particle moving along a

straight line. It is known that for a fixed time t, with probability one, B(t) is

not equal to 0. It is also known that for a fixed time t, with probability one,

the trajectory B(t) has no derivative, that is, it is impossible to determine

the velocity of the Brownian particle at time t. The number of times t is

infinite and, moreover, it is “uncountable.” Can we make a single prediction

that all of the above predictions about the Brownian particle at different

times t will hold simultaneously? It turns out that, with probability one,

for all times t simultaneously, there is no derivative of B(t). However, with

probability one, there exist t such that B(t) is equal to 0. These examples

show that infinitely many (uncountably many) predictions can be combined

into a single prediction or not, depending on the specific problem. On the

technical side, this is related to the fact that the product of zero and infinity

is not a well defined number. In practice, nobody makes infinitely many

simultaneous predictions about B(t) for all values of t. One can make

either several simultaneous predictions for a few specific values of t, or

an aggregate prediction concerning the behavior of the whole Brownian

trajectory.

The deterministic part of science can be viewed as a process of gener-

ating (deterministic) predictions. The mathematical theory of probability

and its applications, including statistics, also generate predictions, although

probabilistic ones. But the mathematics of probability has to address an-

other fundamentally important need—multiple (probabilistic) predictions

have to be combined into a reasonably small number of highly probable

predictions. This task is especially challenging when multiple predictions

are neither isomorphic nor independent.
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Scientists make large numbers of diverse predictions, and the same holds

for ordinary people, except that these predictions are informal. Transform-

ing a family of predictions into a single aggregate prediction may be im-

practical for several reasons. First, using mathematics to combine multiple

predictions into a single aggregate prediction may be easier said than done,

especially when individual predictions are not independent. Second, the sin-

gle combined prediction can be verified only at the end of a possibly long

period of time. Third, on the philosophical side, a single combined predic-

tion is not an attractive idea either. The falsification of a single aggregate

prediction only indicates that there is something wrong with the theory

underlying all of the constituent predictions (“theory of everything”). A

single falsified aggregate prediction provides no clue what might have gone

wrong because it is based on a very complex theoretical structure. Rather

than to combine multiple predictions into a single aggregate prediction,

a more practical way to go is to treat an individual falsified probabilistic

prediction not as a proof that the underlying theory is wrong but as an indi-

cation that it may be wrong and hence it merits further investigation. The

amplification procedure described above, that is, collecting more data, can

generate a new prediction with probability very close to 1. A large number

of predictions will all hold at the same time with very high probability, if

the constituent predictions hold with even greater probability.

It is instructive to see how the problem of multiple predictions affects

other philosophical theories of probability. First, consider the frequency

theory. This theory is concerned with collectives (sequences) that are in-

finite in theory but finite in practice. The relative frequency of an event

converges to a limit in an infinite collective. All we can say about the rela-

tive frequency of an event in a finite collective is that it is stable with a very

high probability. For example, we can say that the relative frequency in

the first half of the sequence will be very close to the relative frequency in

the second part of the sequence with very high probability; this probability

depends on the length of the sequence and it is very high for very long

sequences. The last claim is an example of a prediction. Clearly, some of

these predictions will fail if we consider a large family of finite collectives.

Hence, the frequency theory has to address the problem of multiple predic-

tions, just like my own theory. Next, consider the subjective theory. A good

operational definition of a prediction in the context of the subjective theory

is that an event is a prediction if its probability is so high that changing

this probability to 1 would not change the decision that the decision maker

has chosen. For example, a subjectivist decision maker, who is a potential



March 24, 2009 12:3 World Scientific Book - 9in x 6in Search4Certainty

52 The Search for Certainty

lottery player, can implement a prediction that a given number is not the

winning lottery number by not buying a specific lottery ticket. The same

prediction and the same decision may be applied by the same person to

every number on every ticket. However, if the same subjectivist decision

maker becomes for some reason the operator of the lottery, he is not ex-

pected to make a prediction that no number will be a winning number. The

apparent paradox can be easily resolved on the mathematical side using the

theory of i.i.d. sequences, and it can be resolved on the philosophical side

using ideas described earlier in this section.

I end this section with some remarks of purely philosophical nature.

Some predictions occasionally fail. I have explained that one way to deal

with this problem is to combine a family of predictions into a single

prediction—an aggregate of predictions. However, the process of aggre-

gation of predictions has to stop. It may stop at the personal level, when a

person considers the collection of all predictions that are significant to him,

throughout his life. Or we could consider a purely theoretical aggregate

of all predictions ever made in the universe by all sentient beings. The

ultimate prediction cannot be combined with any other predictions, by def-

inition. And it can fail, even if the underlying theory is correct. Hence,

probability is a form of non-scientific belief that the universe that we live in

(or our personal universe) is such that this single aggregate prediction will

hold. This may sound like an unacceptable mixture of an almost religious

belief and science. In fact, deterministic scientific theories are also based

on non-scientific beliefs. For example, the belief that the laws of science are

stable is not scientific. In other words, there is no scientific method that

could prove that all laws of science discovered in the past will hold in the

future.

One could say that the philosophical essence of the science of probability

is to generate a single prediction (for example, by aggregating many simple

predictions). Once the prediction is stated, a person or a group of people

who generated it act on the belief that Nature (or the Creator) will grant

the wish of the person or the people, and make the prediction come true.

The only support for this attitude (or this expectation, in the non-technical

sense of the word) is that “it seems to have worked most of the time in the

past.” This justification is basically the same as the justification for the

principle of induction. Hence, the justification will be regarded by some as

solid as a rock while others will consider it highly imperfect.
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3.4 Is Symmetry Objective?

The philosophical problems related to symmetry are very close to, possibly

identical to, the problems related to induction. I will explain this assertion

in more detail below but first let me say that the problem of induction

is well known to philosophers. In the eighteenth century, David Hume

noticed that there seems to be no good argument in support of induction,

because the natural arguments seem to be circular. Since then, philosophers

spent a lot of time and effort on this issue. It seems to me that there is

no widespread agreement on the solution to this philosophical problem.

At the same time, scientists are indifferent and possibly oblivious to the

problem. As far as I can tell, solving this philosophical problem would

make no difference to science. Having said that, it would be now sufficient

for me to argue that symmetry and induction pose the same philosophical

problems. Nevertheless, I will offer some comments on the objectivity of

symmetry.

The problem of induction is best explained by an example. If you heated

water one hundred times in the past and it boiled every time, does it follow

that water will boil next time you heat it? Hume noticed that saying that

“this logic worked in the past” is an application of induction, that is, this

short, simple and pragmatic argument is circular.

A successful application of induction involves a successful application

of symmetry. If you have witnessed boiling water one hundred times and

you want to use this information in the future, you have to recognize a

symmetry, that is, you have to determine whether a sample of water is

undergoing the same treatment as water samples that boiled in the past.

You have to determine that all differences are irrelevant, for example, the

air pressure has to be the same but the color of the vessel holding the water

sample can be arbitrary.

In my philosophy, the success of probability theory (that is, good pre-

dictions in the sense of (L5)) stems from objective information about the

real world. My theory asserts implicitly that symmetries and physical in-

dependence are objective and that they can be effectively used to make

predictions. If one adopts the philosophical position that objective sym-

metries do not exist or cannot be effectively recognized then the theory

of probability becomes practically useless. Later on, I will show that the

frequency theory and the subjective theory are meaningless without (L3)

and (L4). Hence, if there is a genuine problem with these two laws, all

philosophies of probability are severely affected.
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The problem is not unique to the probability theory and (L1)-(L5). The

ability to recognize events which are symmetric or physically unrelated is a

fundamental element of any scientific activity. The need for this ability is

so basic and self-evident that scientists almost never talk about it. Suppose

a biologist wants to find out whether zebras are omnivorous. He has to go

to Africa and observe a herd of zebras. This means finding a family of

symmetric objects, characterized by black and white stripes. In particular,

he must not mistake lions for zebras. Moreover, the zoologist must disregard

any information that is unrelated to zebras, such as data on snowstorms

in Siberia in the seventeenth century or car accidents in Brazil in the last

decade. Skills needed to recognize symmetry in the probabilistic context

are precisely the same as the ones needed if you want to count objects.

People are expected and required to recognize symmetries, for example,

shoppers and sellers are expected by the society to agree on the number of

apples in a basket—otherwise, commerce would cease to exist.

I will not try to enter into the discussion where the abilities to recognize

independent or symmetric events come from (nature or nurture), what they

really mean, and how reliable they are. The laws (L1)-(L5) are based on

principles taken for granted elsewhere in science, if not in philosophy. One

cannot prove beyond reasonable doubt that one can effectively recognize

events that are disjoint, symmetric or physically independent. But it is

clear that if this cannot be achieved then the probability theory cannot be

implemented with any degree of success.

3.5 Symmetry is Relative

Much of the confusion surrounding the subjective philosophy of probabil-

ity is caused by the fact that the word “subjective” may be mistakenly

interpreted as “relative.” I believe that when de Finetti asks “But which

symmetry?” in [de Finetti (1974)] (page xi of Preface), he refers to the fact

that symmetry is relative.

Some (perhaps all) physical quantities are relative—this is a simple ob-

servation, at a level much more elementary than Einstein’s “relativity the-

ory.” For example, if you are traveling on a train and reading a book,

the velocity of the book is zero relative to you, while it may be 70 miles

per hour relative to someone standing on the platform of a railway station.

Each of the two velocities is real and objective—this can be determined

by experiments. Passengers riding on the train can harmlessly throw the
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book between each other, while the same book thrown from a moving train

towards someone standing on the platform can harm him.

Suppose that two people are supposed to guess the color of a ball—

white or black—sampled from an urn. Suppose that one person has no

information besides the fact that the urn contains only white and black

balls, and the other person knows that there are 10 white balls and 5

black balls in the urn. The two people will see different symmetries in the

experiment and the different probability values they assign to the event of

“white ball” can be experimentally verified by repeated experiments. The

symmetry used by the first person, who does not know the number of white

and black balls in the urn, can be applied in a long sequence of similar

experiments with urns with different contents. He would be about 50%

successful in predicting the color of the ball, in the long run (see Sec. 3.12

for more details). The other person, knowing the composition of the urn,

would have a rate of success for predicting the color of the ball equal to

2/3, more or less, assuming that the samples are taken from the same urn,

with replacement. Note that the experiments demonstrating the validity of

the two symmetries and the two probability values are different, just like

the experiments demonstrating the validity of two different velocities of the

book traveling in a train are different.

The fact that symmetry is relative does not mean that it is arbitrary, just

like velocity is relative to the observer but not arbitrary. In the subjective

philosophy of probability, the word “subjective” does not mean “relative.”

3.6 Moderation is Golden

I have already noticed in Sec. 3.1 that (L1)-(L5) do not cover some popular

and significant ways of assigning probabilities to events, for example, these

laws do not provide a (direct) justification for the use of the normal dis-

tribution in some situations. Should one extend (L1)-(L5) by adding more

laws and hence make the set more complete? Or perhaps one could remove

some redundant laws from (L1)-(L5) and make the system more concise?

I believe that the fundamental criterion for the choice of a system of

laws for the science of probability should have a utilitarian nature. Can

the laws, in their present shape, be a useful didactic tool? Would they help

scientists memorize the basic principles of probability? Would they provide

clear guidance towards empirically verifiable assertions? I could not find

a set of laws less extensive or more extensive than (L1)-(L5) that would
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be more useful. It is my opinion that adding even one extra statement

to (L1)-(L5) would necessitate adding scores of similar ones and the laws

would experience a quantum jump—from a concise summary, they would

be transformed into a ten-volume encyclopedia.

I propose a somewhat speculative argument in support of not extending

the laws any further. Any probability assignment that is not specified by

(L1)-(L5) can be reduced to (L1)-(L5), at least under the best of circum-

stances. For example, suppose that a statistical model contains a statement

that a quantity has a normal distribution. A scientist might not be able to

recognize in an intuitive and reliable way whether the result of a measure-

ment has the normal distribution. But it might be possible to generate a

sequence of similar (“exchangeable”) measurements and use this sequence

to verify the hypothesis that the measurement has the normal distribution.

Let me repeat that this is practical only in some situations. This simple

procedure that verifies normality can be based only on (L1)-(L5). It is clear

that even the most complex models can be verified in a similar way, using

only (L1)-(L5), at least under the best possible circumstances. Hence, on

the philosophical side, (L1)-(L5) seem to be sufficient to derive the whole

science of probability, including statistics and all other applications of prob-

ability theory.

On the other hand, assignments of probabilities made on the basis of any

one of (L1)-(L5), especially (L2)-(L4), cannot be reduced to the analysis

using only a subset of these laws. To see this, suppose that we want to

verify a claim that the probability of a certain event A is equal to p, where

p is not close to 0 or 1. Suppose further that we can generate a sequence

of events exchangeable with A and record the frequency with which the

event occurs in the sequence. The relative frequency can be taken as an

estimate of p. The proper execution of the experiment and its analysis

require that we are able to effectively recognize the elements of the sample

space, that is, the events that cannot happen at the same time. This is

routine, of course, but it means that we have to use (L2). Next, we have

to be able to eliminate from our considerations all irrelevant information,

such as the current temperature on Mars (assuming that A is not related

to astronomy). This is an implicit application of (L3). And finally we have

to be able to identify an exchangeable sequence of events, which requires

using (L4).

A really good reason for keeping all laws (L1)-(L5) in the system is not

philosophical but practical. Even if a philosopher can demonstrate that

one of these laws can be derived from the others, removing that law from
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the system would not make the system any more practical as a teaching

tool. To see that this is the case, it suffices to consult any undergraduate

probability textbook.

Completeness—an unattainable goal

Philosophical theories tried to pinpoint the main idea of probabilistic meth-

ods in science. Symmetry was identified by the classical and logical philoso-

phies of probability. The theory of von Mises stressed long run frequencies,

and the theory of de Finetti pointed out decision-theoretic consistency.

None of these ideas fully describes the existing methods used by statisti-

cians and other scientists. Only Popper’s idea of verifiability of probabilistic

predictions seems to work, because it is extensible—no method of assigning

probabilities is singled out as the one and only one algorithm that works.

Various methods might be considered scientific and successful if they are

successfully verified using Popper’s recipe. Popper discovered the essence of

selecting scientifically acceptable probabilistic methods, not the complete

list of such methods. In my system, Popper’s idea is embodied in (L5).

3.6.1 A sixth law?

Despite arguing against extending (L1)-(L5) in Sec. 3.6, I have a temptation

to add the following sixth law to (L1)-(L5):

(L6) When an event A is observed then the probability of B changes

from P (B) to P (A and B)/P (A).

One could argue for and against (L6). This law presumably can be

derived from (L1)-(L5) by observing the relevant frequencies in long runs

of experiments. Hence, it appears to be redundant from the strictly philo-

sophical point of view. However, including (L6) into the system might have

a positive effect. It would be stretching a friendly hand to Bayesians who

are enamored with the idea of conditioning. Doing so would not destroy

the simplicity of the system. One could also argue that (L6) formalizes the

idea that you have to be able to recognize instinctively that an event (con-

dition) occurred, or otherwise you will not be able to function effectively.

This ability is at the same level and equally significant as the ability to

recognize symmetries or physical independence.

I prefer a shorter set (L1)-(L5) but I would not have a strong objection

against (L1)-(L6).
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3.7 Circularity in Science and Philosophy

Although I have no doubt that (L1)-(L5) can be effectively applied in real

life by real people (in fact they are), a careful philosophical scrutiny of (L3)

and (L4) shows that they appear to be circular, or they lead to an infinite

regress, and this seems to undermine their validity.

To apply (L3), I have to know whether the two events are physically

independent. How can I determine whether two events are physically in-

dependent or not? This knowledge can come from a long sequence of ob-

servations of similar events. If the occurrence of one of the events is not

correlated with the occurrence of the other event, we may conclude that

the events are physically unrelated. This seems to lead to a vicious circle

of ideas—we can use (L3) and conclude that two events are independent

only if we know that they are uncorrelated, that is independent.

The law (L4) applies to symmetric events, or, in other words, events

invariant under a transformation. The concept of symmetry requires that

we divide the properties of the two events into two classes. The first class

contains the properties that are satisfied by both events, and the second

class contains properties satisfied by only one event. Consider the simple

example of tossing a deformed coin twice. Let A1 be the event that the

first toss results in heads and let A2 denote heads on the second toss. The

events must be different in some way or otherwise we would not be able

to record two separate observations. In our example, A1 and A2 differ

by the time of their occurrence. The two events have some properties in

common, the most obvious being that the same coin is used in both cases.

The law (L4) can be applied only if the properties that are different for the

two events are physically unrelated to the outcome of the experiment or

observation—such properties are needed to label the results. This brings

us back to the discussion of (L3). It turns out that an effective application

of (L4) requires an implicit application of (L3), and that law seems to be

circular.

A thorough and complete discussion of the problems outlined above

would inevitably lead me into the depths of epistemology. I am not inclined

to follow this path. Nevertheless, I will offer several arguments in defense

of (L1)-(L5).

I am not aware of a probability theory that successfully avoids the

problem of circularity of recognizing physically independent or symmet-

ric events. If you want to apply the classical definition of probability, you

have to recognize “cases equally possible.” An application of the “principle
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of indifference” of the logical theory of probability presupposes the ability

to recognize the situations when the principle applies, that is, those with

some symmetries. The frequency theory is based on the notion of a “col-

lective,” involving a symmetry in an implicit way. If one cannot recognize

a collective a priori then one will collect completely unrelated data. The

subjective philosophy seems to be the only theory that successfully avoids

the problem; the cost is a trifle—the subjective theory has nothing to report

about the past observations, and makes no useful predictions.

The circularity of (L1)-(L5) discussed in this section resembles a bit a

traditional philosophical view of the probability theory. According to that

view, one can only generate probability values from some other probability

values. In fact, this applies only to the mathematical theory of probability.

My laws (L1)-(L5) say that the primary material from which probabilities

can be generated are not other probabilities but symmetries and physical

independence in the real world.

An alternative defense of(L1)-(L5) from the charge of circularity is based

on the observation that circularity is present in other branches of science.

Logicians have to use logic to build their logical theories. One cannot prove

that the logic that we are using is correct using this very same logic. A some-

what related theorem of Gödel says that the consistency of an axiomatic

system cannot be proved within the axiomatic system itself (see [Hofstadter

(1979)] for a simple exposition of Gödel’s theorem). The danger of circu-

larity is not limited to deductive sciences such as logic and mathematics.

Scientists who investigate human perception have to communicate with one

another. This includes reading research articles and, therefore, progress in

this field of science depends on human perception. From the philosophical

point of view, it is conceivable that all of the science of human perception

is totally wrong because people have very poor perception abilities and,

consequently, scientists working in the field cannot effectively communicate

with one another. I doubt that this theoretical possibility will take away

sleep from any scientist.

3.8 Applications of (L1)-(L5): Some Examples

Anyone who has ever had any contact with real science and its applications

knows that (L1)-(L5) are a de facto scientific standard, just like Newton’s

laws of motion. Nevertheless, I will give a few, mostly simple, examples.

Some of them will be derived from real science, and some of them will be
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artificial, to illustrate some philosophical points.

First of all, (L3) and (L4) are used in probability is the same way as in

the rest of science. Recall the example involving zebras in Sec. 3.4. When

a scientist wants to study some probabilistic phenomena, he often finds col-

lections of symmetric objects. For example, if a doctor wants to study the

coronary heart disease, he has to identify people, as opposed to animals,

plants and rocks. This is considered so obvious that it is never mentioned

in science. More realistically, physicians often study some human subpop-

ulations, such as white males. This is a little more problematic because the

definition of race is not clear-cut. Doctors apply (L3) by ignoring data on

volcano eruptions on other planets and observations of moon eclipses.

3.8.1 Poisson process

A non-trivial illustration of (L4) is a “Poisson process,” a popular model

for random phenomena ranging from radioactive decay to telephone calls.

This model is applied if we know that the number of “arrivals” (for example,

nuclear decays or telephone calls) in a given interval of time is independent

of the number of arrivals in any other (disjoint) interval of time. The model

can be applied only if we assume in addition a symmetry, specifically the

“invariance under time shifts”—the number of arrivals in a time interval

can depend on the length of the interval but not on its starting time. It can

be proved in a rigorous way that the independence and symmetry described

above uniquely determine a process, called a “Poisson process,” except for

its intensity, that is, the average number of arrivals in a unit amount of

time.

3.8.2 Laws (L1)-(L5) as a basis for statistics

Laws (L1)-(L5) are applied by all statisticians, classical and Bayesian. A

typical statistical analysis starts with a “model,” that is, a set of assump-

tions based on (L1)-(L5). Here (L2), (L3) and (L4) are the most relevant

laws, as in the example with the Poisson process. The laws (L1)-(L5) usu-

ally do not specify all probabilities or relations between probabilities, such

as the intensity in the case of the Poisson process. The intensity is con-

sidered by classical statisticians as an “unknown but fixed” parameter that

has to be estimated using available data. Bayesian statisticians treat the

unknown parameter as a random variable and give it a distribution known

as a prior. I will discuss the classical and Bayesian branches of statistics in
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much more detail later in the book. The point that I want to make now is

that (L1)-(L5) are used by both classical and Bayesian statisticians, and the

application of these laws, especially (L3) and (L4), has nothing to do with

the official philosophies adopted by the two branches of statistics. Classical

statisticians apply (L3) and (L4) even if the available samples are small.

Models (but not all priors) used by Bayesian statisticians de facto follow the

guidelines given in (L1)-(L5) and so they attract very little philosophical

controversy.

3.8.3 Long run frequencies and (L1)-(L5)

I will show how the long run frequency interpretation of probability fits into

the framework of (L1)-(L5). I will later present a strong criticism of the von

Mises theory of “collectives” formalizing the idea of the long run frequency.

I will now argue that this staple scientific application of probability agrees

well with (L1)-(L5).

To be concrete, consider a clinical test of a new drug. For simplicity,

assume that the result of the test can be classified as a “success” or “failure”

for each individual patient. Suppose now that you have a “large” number

n of patients participating in the trial. There is an implicit other group

of patients of size m, comprised of all people afflicted by the same malady

in the general population. We apply the law (L4) to conclude that all

n + m patients form an “exchangeable” sequence. Choose an arbitrarily

small number δ > 0 describing your error tolerance and a probability p,

arbitrarily close to 1, describing the level of confidence you desire. One can

prove that for any numbers δ > 0 and p < 1, one can find n0 and m0 such

that for n > n0 and m > m0, the difference between the success rate of the

drug among the patients in the clinical trials and the success rate in the

general population will be smaller than δ with probability greater than p.

One usually assumes that the general population is large and so m > m0,

whatever the value of m0 might be. If the number of patients in the clinical

trial is sufficiently large, that is, n > n0, one can apply (L5) to treat the

clinical trial results as the predictor of the future success rate of the drug.

In other applications of the idea of the long run frequency, the coun-

terpart of the group of patients in the clinical trial may be a sequence of

identical measurements of an unknown constant. In such a case, the general

population of patients has no explicit counterpart—this role is played by

all future potential applications of the constant.
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3.8.4 Life on Mars

The question of the probability that there was or there is life on Mars is of

great practical importance. If the reader is surprised by my claim, he should

think about the enormous amount of money—billions of dollars—spent by

several nations over the course of many years on spacecraft designed to

search for life on the surface of Mars. A good way to present the prob-

abilistic and philosophical challenge related to life on Mars is to pose the

following question: Why is it rational to send life-seeking spaceship to Mars

but not to Venus?

The frequency theory of probability suggests that we should look for

a long sequence of “identical” events that incorporates life on Mars, and

another sequence for Venus. A natural idea would be to look at a long

sequence of planets “like” Mars and see what percentage of them ever sup-

ported life. There are several problems with this idea. The first is somewhat

philosophical, but it cannot be ignored from the scientific point of view ei-

ther. Which planets are “similar” to Mars? Should we consider all planets

that have the same size and the same distance from their star? Or should

we insist that they also have a similar atmosphere and a similar chemistry

of the rocks on the surface? If we specify too many similarities then our

“sequence” will consist of a single planet in the universe—Mars. A much

more practical problem is that at this time, we cannot observe even a small

sample of planets “similar” to Mars and verify whether they support life.

Even if the “long run frequency of life on planets like Mars” is a well de-

fined concept, it is of no help to scientists and politicians trying to decide

whether they should spend money on life-seeking spacecraft.

The subjective theory does not offer much in terms of practical advice

either. This theory stresses the need of being consistent. The problem

is that life is a phenomenon that is very hard to understand. It is not

unthinkable that some scientists believe that some form of life can exist on

Venus, but not on Mars. Their views may be unpopular but I do not see

how we could declare such views as unquestionably irrational. As far as

I can tell, it is consistent to believe that there was life on Mars but not

on Venus, and it is also consistent to believe that there was life on Venus

but not on Mars. De Finetti’s position is (see the quote in Sec. 2.4.3) that

sending life-seeking spacecraft to Mars but not to Venus is just a current fad

and it cannot be scientifically justified any more than sending life-seeking

spacecraft to Venus but not to Mars.

Laws (L1)-(L5) can be used to justify not sending life-seeking spacecraft
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to Venus in the following way. Multiple observations of and experiments

with different life forms on Earth show that life known on Earth can survive

only in a certain range of conditions. The spectrum of environments that

can support life is enormous, from ocean depths to deserts, but there seem

to be limits. The environment on Venus is more or less similar to (“sym-

metric with”) some environments created artificially in laboratories. Since

no life survived in laboratory experiments in similarly harsh conditions, we

believe that life does not exist on Venus. We use an approximate symmetry

to make a prediction that there is no life on Venus. The argument uses laws

(L4) and (L5).

The question of life on Mars illustrates well the “negative” use of (L5).

What we seem to know about the past environment on Mars suggests that

there might have been times in the past when the environment on Mars

was similar to (“symmetric with”) environments known on Earth or created

artificially in laboratories, in which life was sustained. Hence, we cannot

conclude that the probability of life on Mars is very small. That does not

mean that the probability is large. The only thing that we can say is that

we cannot make the prediction that signs of life on Mars will never be

found. Hence, it is not irrational to send life-seeking spaceship to Mars.

It is not irrational to stop sending life-seeking spaceship to Mars either.

In a situation when neither an event nor its complement have very small

probabilities, no action can be ruled out as irrational and the decision is a

truly subjective choice.

The last assertion needs a clarification. Decision makers often attach

significance not to the outcome of a single observation or experiment but

only to the aggregate of these. For example, shops are typically not in-

terested in the profit made on a single transaction but in the aggregate

profit over a period of time, say, a year. A decision maker has to choose an

aggregate of decisions that is significant for him. One could argue that one

should consider the biggest aggregate possible but that would mean that we

would have to consider all our personal decisions in our lifetime as a single

decision problem. This may be the theoretically optimal decision strategy

but it is hardly practical. Thus most decision makers consider “natural”

aggregates of decisions. An aggregate make consist of a single decision with

significant consequences. My suggestion that both sending of life-seeking

space probes to Mars and not sending them are both rational decisions, is

made under assumption that this action is considered in isolation. In fact,

politicians are likely to consider many spending decisions as an aggregate

and so one could try to make a prediction about the cumulative effect of
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all such decisions. The decision to send spacecraft to Mars may be rational

or not if it is considered a part of a family of decisions.

3.9 Symmetry and Data

Application of symmetry in statistics presents a scientific and philosophical

problem. Once the data are collected, they cannot be symmetric with the

future observations. The reason is that the values of all past observations

are already known and the values of the future observations are unknown.

This is a difference between the past and future data that can be hardly

considered irrelevant. It seems that according to (L4), one cannot use any

data to make predictions.

Recall a simple statistical scheme based on (L1)-(L5) from Sec. 3.8.3.

One chooses a symmetric or exchangeable group of patients in the popula-

tion. A small subgroup is invited to participate in a drug trial and given

a new medication. We can use (L4) prior to the commencement of the

trials to conclude that the percentage of patients in the whole population

whose condition is going to improve is more or less the same as the percent-

age of patients participating in the trials who show improvement. Strictly

speaking, (L4) does not allow us to make the same claim after the data are

collected.

On the practical side, it would be silly to discard the data just because

someone had forgotten to apply a standard statistical procedure before the

data were collected. However, the problem with the broken symmetry is

not purely theoretical or philosophical—it is the basis of a common practice

of manipulation of public opinion using statistics. The principal idea of this

highly questionable practice is very simple. In some areas, huge amounts of

data are collected and many diverse statistics (that is, numbers character-

izing the data) are computed. Some and only some of these statistics may

support someone’s favorite view on social, economic or political matters.

For example, the government may quote only those statistics that support

the view that the economy is doing well. This practice is an example of

broken symmetry. The government implicitly says that the economic data

in the last year and the data in the future are symmetric. Since the eco-

nomic data in the last year are positive, so will be the data in the future.

In fact, the past data chosen for the public relations campaign may have

been selected a posteriori , and the non-existent symmetry was falsely used

for making implicit predictions.
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Predictions made by people using the data in an “honest” way and

those that manipulate the data can be confronted with reality, at least in

principle. The manipulation can be documented by empirically detected

false predictions.

3.10 Probability of a Single Event

In some cases, such as tosses of a symmetric coin, laws (L1)-(L5) not only

impose some relationships between probabilities but also determine prob-

abilities of individual events. If an event has probability (close to) 0 or 1,

this value can be verified or falsified by the observation of the event. An

implicit message in (L5) is that if an event has a probability (much) differ-

ent from 0 or 1, this value cannot be verified or falsified. One has to ask

then: Does this probability exist in an objective sense?

Let us see what may happen when a probability value is chosen in an

arbitrary way. Suppose someone thinks that if you toss a coin then the

probability of heads is 1/3 and not 1/2. If that person tosses a coin only

a few times in his lifetime, he will not be able to make a prediction re-

lated to the tosses and verify or falsify his belief about the probability of

heads. Now suppose that there is a widespread belief in a certain commu-

nity that the probability of heads is 1/3, and every individual member of

the community tosses coins only a few times in his or her lifetime. Then

no individual in this population will be able to verify or falsify his beliefs,

assuming that the members of the community do not discuss coin tosses

with one another. Suppose an anthropologist visits this strange commu-

nity, interviews the people about their probabilistic beliefs and collects the

data on the results of coin tosses performed by various people in the com-

munity. She will see a great discrepancy between the aggregated results of

coin tosses and the prevalent probabilistic beliefs. This artificial example

is inspired by some real social phenomena. It has been observed that lot-

teries are more popular in poor communities than in affluent communities.

There are many reasons why this is the case, but one of them might be

the lack of understanding of probability among the poorer and supposedly

less educated people. A single poor person is unlikely to be able to verify

his beliefs about the probability of winning a lottery by observing his own

winnings or losses (because winnings are very rare). But someone who has

access to cumulative data on the lottery winnings and beliefs of gamblers

may be able to determine that members of poor communities overestimate
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the probability of winning. The point of these examples is that a state-

ment that may be unverifiable by a single person, might be an element of

a system of beliefs that yield verifiable (and falsifiable) predictions.

A single person choosing a single probability value may not know how

this probability value will be used. The discussion in Secs. 3.5, 3.11, 3.12

and 4.1.5 shows that a single event can be embedded in different sequences

or some other complex random phenomena. Hence, it is impossible to find

a unique scientific value for every probability. Nevertheless, in many prac-

tical situations, different people may agree on the context of an event and,

therefore, they may agree on a unique or similar value of the probability of

the event.

3.11 On Events that Belong to Two Sequences

A good way to test a philosophical or scientific theory is to see what it

has to say about a well known problem. Suppose that an event belongs

to two exchangeable sequences. For example, we may be interested in the

probability that a certain Mr. Winston, smoking cigarettes, will die of a

heart attack. Suppose further that we know the relevant statistics for all

smokers (men and women combined), and also statistics for men (smokers

and non-smokers combined), but there are no statistics for smoking men.

If the long run frequencies are 60% and 50% in the two groups for which

statistics are available, what are the chances of death from a heart attack

for Mr. Winston?

Laws (L1)-(L5) show that the question does not have a natural scientific

answer. One needs symmetry to apply (L4), the most relevant law here.

However, Mr. Winston is unique because we know something about him

that we do not know about any other individual in the population. For

all other individuals included in the data, we either do not know their sex

or whether they smoke. See the next section for further discussion of the

problem.

It is appropriate to make here a digression to present a common error

arising in the interpretation of the frequency theory of von Mises. Some

people believe that the frequency theory is flawed because it may assign two

(or more) values to the probability of an event belonging to two different

sequences. This is a misconception—according to the frequency theory, a

single event does not have a probability at all.
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3.12 Deformed Coins

Suppose that you will have to bet on the outcome of a single toss of a

deformed coin but you cannot see the coin beforehand. Should you assume

that the probability of heads is equal to 1/2?

There are two simple arguments, one in favor and one against the state-

ment that the probability of heads is 1/2. The first argument says that

since we do not know what effect the deformation might have, we should

assume that the probability of heads is 1/2, by symmetry. The other ar-

gument says that our general experience with asymmetric objects strongly

suggests that the probability of heads is not equal to 1/2. The probability

of heads is unknown but this does not mean that it is equal to 1/2.

The problem is resolved using (L1)-(L5) as follows. If we toss the coin

only once, we cannot generate a prediction, that is, there is no event associ-

ated with the experiment with probability very close to 1. In practice, this

means that we will never know with any degree of certainty what the prob-

ability of heads is for this particular coin. If the coin is physically destroyed

after a single toss, no amount of statistical, scientific or philosophical analy-

sis will yield a reliable or verifiable assertion about the probability of heads.

The single toss of the deformed coin might be an element of a long

sequence of tosses. If all the tosses in the sequence are performed with the

same deformed coin, we cannot generate the prediction that the long run

frequency of heads will be 1/2. Hence, in this setting, one cannot assume

that the probability of heads is equal to 1/2. But we can make a prediction

that the relative frequency of heads will converge to a limit.

Another possibility is that the single toss of the given coin will be an

element of a long sequence of tosses of deformed coins, and in each case

one will have to try to guess the outcome of the toss without inspecting the

coin beforehand. In this case, one may argue that one should assume that

the probability of heads is 1/2. This is because whatever decision related

to the toss we make, we assign our beliefs to heads and tails in a symmetric

way. In other words, the coin is not symmetric but our thoughts about

the coin are symmetric. The prediction that in the long run we will be

able to guess correctly the outcome of the toss about 50% of the time is

empirically verifiable. My main point here is not that the probability of

heads should be considered to be 1/2; I am arguing that one can generate

a prediction and verify it empirically. In case of many physical systems, we

have excellent support for our intuitive beliefs about symmetry, provided

by the past statistical data and scientific theories, such as the statistical
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physics, chaos theory, or quantum physics. My opinion is that symmetry in

human thoughts has reasonable but not perfect support in statistical data

and, unfortunately, very little, if any, theoretical support.

The “deformed coin” may seem to be a purely philosophical puzzle

with little relevance to real statistics. It is, therefore, a good idea to re-

call a heated dispute between two important scientists, Fisher and Jeffreys,

described in [Howie (2002)]. Consider three observations of a continuous

quantity, that is, three observations coming from the same unknown distri-

bution. The assumption that the quantity is “continuous” implies that, in

theory, the there will be no ties between any two of the three observed num-

bers. What is the probability that the third observation will be between the

first two? Jeffreys argued that the probability is 1/3, by symmetry, because

any of the three observations has the same probability of being the middle

one. Fisher did not accept this argument (see Chap. 5 of [Howie (2002)]).

It is easy to see that this problem that captured the minds of very applied

scientists is a version of the “deformed coin” problem. If you collect only

three observations, no scientifically verifiable prediction can be made. If

you continue making observations from the same distribution, the long run

proportion of observations that fall between the first two observations will

not be equal to 1/3 for some distributions—this is a verifiable prediction.

Similarly, if we consider a long run of triplets of observations coming from

physically unrelated distributions, the long run proportion of cases with

the third observation being in the middle will be about 1/3; this is also an

empirically verifiable prediction.

3.13 Symmetry and Theories of Probability

The law (L4) is the most conspicuous part of the system (L1)-(L5), because

it is the basis of i.i.d. and exchangeable models in the statistical context.

The importance of exchangeable events has been recognized by each of the

main philosophies of probability, under different names: “equally possible

cases” in the classical theory, “principle of indifference” in the logical theory,

“collective” in the frequency theory and “exchangeability” in the subjective

theory. None of these philosophies got it right.

The classical theory of probability was based on symmetry although the

term “symmetry” did not appear in the classical definition of probability.

Since the definition used the words “all cases possible,” it was applicable

only in highly symmetric situations, where all atoms of the outcome space
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had the same probability. I do not think that we could stretch the classi-

cal definition of probability to derive the statement that in two tosses of a

deformed coin the events HT and TH have the same probability. The clas-

sical philosophy missed the important point that symmetry is useful even if

not all elements of the outcome space have the same probability. Since the

classical philosophy was not a conscious attempt to build a complete philo-

sophical theory of probability but a byproduct of scientific investigation,

one may interpret the shortcomings of the classical theory as incomplete-

ness rather than as an error.

The law (L4) is built into the logical theory under the name of the

“Principle of Indifference.” This principle seems to apply to situations

where there is inadequate knowledge, while (L4) must be applied only in

situations when some relevant knowledge is available, and according to what

we know, the events are symmetric. For example, we know that the ordering

of the results of two tosses of a deformed coin does not affect the results.

But we do not know how the asymmetry of the coin will affect the results.

Hence, TH and HT have equal probabilities, but TT and HH do not.

According to some versions of the logical theory, the probability of TT is

1/4 or 1/3. It can be empirically proved that these probability assignments

lead to some false predictions, as follows. Consider a long sequence of

deformed coins and suppose that each coin is tossed twice. Assume that

we do not know anything about how the coins were deformed. They might

have been deformed in some “random” way, or someone might have used

some “non-random” strategy to deform them. It seems that the logical

theory implies that in the absence of any knowledge of the dependence

structure, we should assume that for every coin, the probability of TT is

either 1/4 or 1/3, depending on the version of the logical theory. This and

the mathematical theory of probability lead to the prediction that the long

run frequency of TT ’s in the sequence will be 1/4 or 1/3. This can be

empirically disproved, for some sequences of deformed coins. The problem,

at least with some versions of the logical theory, is that they extend the

principle of indifference to situations with no known physical symmetry.

The frequency theory made the “collective” (long sequence of events)

its central concept. Collectives are infinite in theory and they are presumed

to be very large in practice. The law (L4) is implicit in the definition of

the collective because the collective seems to be no more than an awkward

definition of an exchangeable sequence of events. To apply the frequency

theory in practice, one has to be able to recognize long sequences invari-

ant under permutations (that is, collectives or equivalently, exchangeable
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sequences), and so one has to use symmetry as in (L4). The frequency the-

ory fails to recognize that (L4) is useful outside the context of collectives,

that is, very long exchangeable sequences. To see this, recall the exam-

ple from the previous paragraph, concerned with a sequence of deformed

coins. The coins are not (known to be) “identical” or exchangeable, so one

cannot apply the idea of collective to make a verifiable prediction that the

long run frequency of HT ’s will be the same as the frequency of TH ’s. Of

course, one can observe long sequences of HT ’s and TH ’s and declare the

whole sequence of results a collective, but that would be a retrodiction, not

prediction. The problem with the logical theory of probability is that it ad-

vocates using symmetry in some situations when there is no symmetry and

so it makes some extra predictions which are sometimes false. The problem

with the frequency theory of probability is the opposite one—the theory

does not support using symmetry in some situations when symmetry exists

and so it fails to make some verifiable predictions.

The subjective theory’s attitude towards (L4) is the most curious among

all the theories. Exchangeability is clearly a central concept, perhaps the

central concept, in de Finetti’s system of thought, on the scientific side.

These healthy scientific instincts of de Finetti gave way to his philosoph-

ical views, alas. His philosophical theory stresses absolute subjectivity of

all probability statements and so deprives (L4) of any meaning beyond a

free and arbitrary choice of (some) individuals. All Bayesian statisticians

and subjectivists use symmetries in their probability assignments just like

everybody else. Yet the subjective theory of probability insists that none of

these probability assignments can be proved to be correct in any objective

sense.

3.14 Are Coin Tosses i.i.d. or Exchangeable?

Consider tosses of a deformed coin. One may argue that they are indepen-

dent (and so i.i.d., by symmetry and (L4)) because the result of any toss

cannot physically influence any other result, and so (L3) applies. Note that

(L1)-(L5) cannot be used to determine the probability of heads on a given

toss. Classical statisticians would refer to the sequence of results as “i.i.d.

with unknown probability of heads.”

An alternative view is that results of some tosses can give information

about other results, so the coin tosses are not independent. For example, if

we observe 90 heads in the first 100 tosses, we are likely to think that there
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will be more heads than tails in the next 100 tosses. The obvious symmetry

and (L4) make the tosses exchangeable. There are many exchangeable

distributions and, by de Finetti’s theorem (see Sec. 14.1.2), they can be all

represented as mixtures of i.i.d. sequences. Since the mixing distribution

is not known either in practice or in theory, a Bayesian statistician may

call the sequence of results an “exchangeable sequence with unknown (or

subjective) prior.”

De Finetti’s theorem shows that both ways of representing coin tosses

are equivalent because they put the same mathematical restrictions on prob-

abilities. Hence, it does not matter whether one thinks about coin tosses as

i.i.d. with unknown probability of heads or regards them as an exchange-

able sequence.

Independence is relative, just like symmetry is relative (see Sec. 3.5).

Coin tosses are independent or not, depending on whether we consider

the probability of heads on a single toss to be an unknown constant or

a random variable. Both assumptions are legitimate and can be used to

make successful predictions. The fact that independence is relative does

not mean that we can arbitrarily label some events as independent.

I have to mention a subtle mathematical point involving the equivalence

of exchangeability and i.i.d. property for a sequence. In reality, all coin

tossing sequences are finite. The exchangeability of a finite sequence is not

equivalent to the i.i.d. property, in the sense of de Finetti’s theorem. Hence,

the ability to recognize properly an i.i.d. sequence is a different (stronger)

ability from the ability to recognize symmetries. In other words, one has to

imagine an infinite sequence which is an appropriate extension of the real

finite sequence to properly recognize that the finite sequence is “infinitely

exchangeable,” that is, an i.i.d. sequence.

3.15 Physical and Epistemic Probabilities

I made hardly any attempt to distinguish between physical and epistemic

probabilities although this seems to be one of important questions in the

philosophy of probability. One can describe “physical” probabilities as

those that have nothing to do with the presence or absence of humans, and

they have nothing to do with imperfections of human knowledge. The only

solid example of such probabilities that comes to my mind are probabilities

of various events in quantum physics. The current theory says that it is

impossible to improve predictions of some events by collecting more data,
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improving the accuracy of measurements, or developing more sophisticated

theories. In other words, some probabilities in the microscopic world seem

to be a part of the physical reality, unrelated to human presence.

Most probabilities that scientists and ordinary people are concerned

with pertain to macroscopic objects and situations, such as weather, pa-

tients, stock market, etc. In many, perhaps all, situations, one can imagine

that we can collect more data, perform more accurate measurements, or

develop better theories to analyze these situations. Hence, probabilities in

these kinds of situations can be attributed more to a gap in the human

knowledge than to the real physical impossibility to predict the result of an

experiment or observation. For example, the result of a coin toss can be

predicted with great accuracy given sufficient knowledge about the initial

position and velocity of the coin.

I realize that (L4) sometimes refers to the true physical symmetry and

sometimes to the symmetry in our knowledge that may be an artifact of

our imperfect observations and information processing. Nevertheless, I do

not see how this realization could affect the uses of (L4) in science and

everyday life. We have to recognize symmetries to be able to function

and the question of whether these symmetries are physical or whether they

represent a gap in our knowledge does not affect the effectiveness of (L1)-

(L5). I am not aware of a set of scientific laws for probability that would

make an effective use of the fact that there are both physical and epistemic

probabilities, I do not think that any such system would be more helpful

than (L1)-(L5), or that it would represent the current state of the sciences

of probability and statistics in a more accurate way.

3.16 Countable Additivity

The question of σ-additivity (also known as countable additivity) of prob-

ability is only weakly related to the main theme of this book but the dis-

cussion of this question will allow me to illustrate one of my fundamental

philosophical claims—that probability is a science, besides having mathe-

matical and philosophical aspects, and so it can and should be empirically

tested.

First I will explain the concept of σ-additivity. Formally, we say that

probability is σ-additive if for any countably infinite sequence of mutually

exclusive events A1, A2, . . . , the probability of their union is the sum of

probabilities of individual events. A probability is called finitely additive if
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the last statement holds only for finite sequences (of any length) of disjoint

events A1, A2, . . . , An. To illustrate the definition, let us consider a sequence

of tosses of a deformed coin. The coin is deformed in my example to stress

that the symmetry of the coin is irrelevant. Let A1 denote the event that

the first result is tails. Let A2 be the event that the first toss results in

heads and the second one yields tails. In general, let An be the event that

the first n − 1 results are heads and the n-th result is tails. These events

are mutually exclusive, that is, no two of these events can occur at the

same time. The union of these events, call it B, is the same as the event

that one of the tosses results in tails. In other words, one of the results

is tails if and only if one of the events Ak, k = 1, 2, . . . , occurs. The σ-

additivity of probability is the statement that the probability that at least

one tail will be observed is the same as the sum of probabilities of events

Ak, k = 1, 2, . . .

The widely accepted axiomatic system for the mathematical probability

theory, proposed by Kolmogorov, assumes that probability is σ-finite. My

guess is that the main reason why σ-additivity is so popular is that it is very

convenient from the mathematical point of view. Not everybody is willing

to assume this property in real applications but finitely-additive probability

has never attracted much support.

I claim that σ-additivity is an empirically testable scientific law. Ac-

cording to Popper’s view of science [Popper (1968)], a statement belongs

to science if it can be empirically falsified. Recall the example with the

deformed coin. One can estimate probabilities of events B, A1, A2, . . . , for

example, using long run frequencies. Suppose that for some deformed coin,

the values are P (B) = 1, P (A1) = 1/4, P (A2) = 1/8, P (A3) = 1/16, etc.

Then the sum of probabilities P (Ak) is equal to 1/2, which is not the same

as the probability of B and this (hypothetical) example provides a falsifi-

cation of σ-additivity. Of course, probability estimates obtained from long

run experiments would be only approximate and one could only estimate a

finite number of probabilities P (Ak). But these imperfections would be no

different than what happens with any other scientific measurement. One

could not expect to obtain an indisputable refutation of σ-additivity but

one could obtain a strong indication that it fails.

I have to make sure that readers who are not familiar with probability

theory are not confused by the probability values presented in the last

example. According to the standard mathematical theory of probability,

one cannot have P (B) = 1, P (A1) = 1/4, P (A2) = 1/8, P (A3) = 1/16, etc.

for any deformed or symmetric coin. I made up these values to emphasize
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that it is possible, in principle, that empirical values do not match the

currently accepted mathematical theory.

I should also add that I believe that σ-additivity is strongly supported

by empirical evidence. Scientists accumulated enormous amounts of obser-

vations of random phenomena and nobody seems to have noticed patterns

contradicting σ-additivity of probability. Arguments against σ-additivity

seem to have purely philosophical nature. However, we must keep our

minds open on this question—probability is a science and one cannot make

ultimate judgments using pure reason.

3.17 Quantum Mechanics

I hesitate to write about quantum mechanics because my understanding of

this field of physics is at the level of popular science. Nevertheless, a book

on foundations of probability would have been incomplete without a few

remarks on quantum physics.

From the time of Newton and Leibnitz until early twentieth century,

the standard scientific view of the universe was that of a clockwise mech-

anism. Probability was a way to express and quantify human inability to

predict the future, despite its deterministic character. Quantum physics

brought with it a fundamental change in our understanding of the role of

randomness. Some physical processes are now believed to be inherently

random, in the sense that the outcome of some events will be never fully

predictable, no matter how much information we collect, or how accurate

our instruments might become.

The philosophical interpretation of the mathematical principles of quan-

tum physics has been a subject of much controversy and research. To this

day, some leading scientists are not convinced that we fully understand this

theory on the philosophical side—see [Penrose (2005)].

As far as I can tell, the laws (L1)-(L5) apply to quantum physics just

like to microscopic phenomena. Physicists implicitly apply (L3) when they

ignore Pacific storms in their research of electrons. Similarly, (L4) is im-

plicitly applied when physicists use their knowledge of electrons acquired in

the past in current experiments with electrons. Finally and crucially, (L5)

is applied in the context of quantum mechanics, just like in all of science,

to make predictions using long run frequencies.

I am far from claiming that the system (L1)-(L5) is sufficient to generate

all probabilistic assertions that are part of quantum physics. Quite the
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opposite, my guess is that the Schrödinger’s equation and probability values

that it generates cannot be reduced to (L1)-(L5) in any reasonable sense.

This, however, does not diminish the role of (L1)-(L5) as the basis of the

science of probability in the context of quantum physics. The laws (L1)-

(L5) can and should be supplemented by other laws, as needed.
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Chapter 4

Decision Making

I will divide my discussion of decision making into several parts. Sec. 4.1

will deal with decision making options when all the relevant probabilities

are determined by (L1)-(L5) or in some other way. Sec. 4.2 will address the

question of what to do when not all probabilities needed to make a decision

are known. For much of the discussion, I will ignore the utility function.

4.1 Decision Making in the Context of (L1)-(L5)

Decision making is not a part of science (see Sec. 11.3). Science can (try

to) predict the consequences of various decisions but it is not the role of

science to tell people what they should do.

I will now present a semi-formal description of a simple probabilistic

decision problem. Very few real life decision problems are that simple but

readers unfamiliar with the formal decision theory might get a taste of it.

Suppose one has to choose between two decisions, D1 and D2. Suppose

that if decision D1 is made, the gain may take two values G11 and G12,

with probabilities p11 and p12. Similarly, D2 may result in rewards G21

and G22, with probabilities p21 and p22. Assume that p11 + p12 = 1 and

p21 + p22 = 1, all four probabilities are strictly between 0 and 1, and

G11 < G21 < G22 < G12 so that there is no obvious reason why D1 should

be preferable to D2 or vice versa. Recall that, in this section, I assume that

the four probabilities, p11, p12, p21 and p22, are determined by (L1)-(L5) or

in some other way. Which one of decisions D1 or D2 is preferable?

I will start by criticizing the most popular philosophy of decision making

in face of uncertainty and then I will propose two other decision making

philosophies.

77
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4.1.1 Maximization of expected gain

A standard decision making philosophy is to choose a decision which maxi-

mizes the expected gain. This decision making philosophy is quite intuitive

but I will show that it has profound flaws.

If we make decision D1 then the expected gain is G11p11 + G12p12 and

if we make decision D2 then the expected gain is G21p21 + G22p22. Hence,

if we want to maximize the expected gain, we should make decision D1

if G11p11 + G12p12 > G21p21 + G22p22, and we should choose D2 if the

inequality goes the other way (the decisions are equally preferable if the

expected values are equal).

The above strategy sounds rational until we recall that, typically, the

“expected value” is not expected at all. If we roll a fair die, the “expected

number” of dots is 3.5. Of course, we do not expect to see 3.5 dots. I have

a feeling that most scientists subconsciously ignore this simple lesson. To

emphasize the true nature of the “expected value”, let me use an equivalent

but much less suggestive term “first moment.” Needless to say, “maximizing

the first moment of the gain” sounds much less attractive than “maximizing

the expected value of the gain.” Why should one try to maximize the first

moment of the gain and not minimize the third moment of the gain? I will

address the question from both frequency and subjective points of view.

The frequency theory of probability identifies the probability of an event

with the limit of relative frequencies of the event in an infinite sequence of

identical trials, that is, a collective. Similarly, the expected value (first

moment) of a random variable may be identified with the limit of averages

in an infinite sequence of i.i.d. random variables, by the Law of Large

Numbers. If we want to use the frequency theory as a justification for

maximizing of the first moment of the gain, we have to assume that we face a

long sequence of independent and identical decision problems and the same

decision is made every time. Only in rare practical situations one decision

maker deals with a sequence of independent and identical decision problems.

A single decision maker usually has to deal with decision problems that

are not isomorphic. In everyday life, various decision problems have often

completely different structure. In science and business, the form of decision

problems may sometimes remain the same but the information gained in

the course of analyzing earlier problems may be applied in later problems

and so the decision problems are not independent. The frequency theory

of probability provides a direct justification for the practice of maximizing

of the expected gain only on rare occasions.
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Maximizing of the expected gain within the subjective theory of proba-

bility seems to be a reasonable strategy for the same reason as in the case of

the frequency theory—linguistic. The subjective theory says that the only

goal that can be achieved by a decision maker is to avoid a Dutch book sit-

uation, by choosing a consistent decision strategy. There are countless ways

in which one can achieve consistency and none of them is any better than

any other way in any objective sense, according to the subjective theory.

A mathematical theorem says that if you choose any consistent strategy

then you maximize the expected gain, according to some probability dis-

tribution. The idea of “maximizing of expected gain” clearly exploits the

subconscious associations of decision makers. They think that their gain

will be large, if they choose a decision which maximizes the expected gain.

The subjective theory says that the gain can be large or small (within the

range of possible gains corresponding to a given decision) but one cannot

prove in any objective sense that the gain will be large. Moreover, the sub-

jective theory teaches that when the gain is realized, its size cannot prove or

disprove in the objective sense any claim about optimality or suboptimality

of the decision that was made. Hence, maximizing the expected gain really

means maximizing the subjective feelings about the gain. This sounds like

a piece of advice from a “self-help” book rather than science.

I will rephrase the above remarks, to make sure that my claims are clear.

Within the subjective philosophy, the idea of maximizing of subjective gain

is tautological. The prior distribution can be presented in various formal

ways. One of them is to represent the prior as a set of beliefs containing

(among other statements) conditional statements of the form “if the data

turn out to be x then my preferred decision will be D(x).” Since in the

subjective theory probabilities and expectations are only a way of encoding

consistent human preferences, an equivalent form of this statement is “given

the data x, the decision D(x) maximizes the expected gain.” Hence the

question of why you would like to maximize the expected gain is equivalent

to the question of why you think that the prior distribution is what it

is. In the subjective philosophy, it is not true that you should choose the

decision which maximizes the expected gain; the decision that maximizes

the expected gain was labeled so because you said you preferred it over

all other decisions. The Bayesian statistics is a process that successfully

obfuscates the circularity of the subjectivist preference for the maximization

of the expected gain. A Bayesian statistician starts with a prior distribution

(prior opinion), then collects the data, combines the prior distribution and

the data to derive the posterior distribution, and finally makes a decision
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that maximizes the expected gain, according to the posterior distribution.

The whole multi-stage process, often very complex from the mathematical

point of view, is a smokescreen that hides the fact that the maximization of

the expected gain according to the posterior distribution is nothing but the

execution of the original (prior) preference, not assumed by subjectivists

to have any objective value. I will later argue that the above subjectivist

interpretation of the Bayesian statistics is never applied in real life.

4.1.2 Maximization of expected gain as an axiom

Before I propose my own two alternative decision making philosophies, I

have to mention an obvious, but repugnant to me, philosophical choice—

one can adopt the maximization of the expected gain as an axiom. I will

argue in Sec. 11.3 that the choice of a decision strategy is not a part of

the science of probability and so this axiom cannot be shown to be objec-

tively correct or incorrect, except in some special situations. Hence, I am

grudgingly willing to accept this choice of the decision philosophy, if anyone

wants to make this choice. At the same time I strongly believe that the

choice is based on a linguistic illusion. If the same axiom were phrased as

“one should maximize the first moment of the gain,” most people would

demand a good explanation for such a choice. And I have already shown

that the justifications given by the frequency and subjective theories are

unconvincing.

The real answer to the question “Why is it a good idea to maximize

the expected gain?” seems to be more technical than philosophical in na-

ture. A very good technical reason to use expectations is that they are

additive, that is, the expectation of the sum of two random variables is

the sum of their expectations, no matter how dependent the random vari-

ables are. This is very convenient in many mathematical arguments. The

second reason is that assigning a single value to each decision makes all

decisions comparable, so one can always find the “best” decision. Finding

the “optimal” decision is often an illusion based on a clever manipulation of

language, but many people demand answers, even poor answers, no matter

what.

The maximization of the expected gain can be justified, at least in a

limited way, within each of the two decision making philosophies proposed

below. I find that approach much more palatable than the outright adoption

of the expected gain maximization as an axiom.
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4.1.3 Stochastic ordering of decisions

The first of my own proposals for a decision philosophy is based on an

idea that probability is the only quantity that distinguishes various events

within the probability theory. I will use an analogy to clarify this point.

Consider two samples of sulfur, one spherical and one cubic in shape. If

they have the same mass, they are indistinguishable from the point of view

of chemistry. Similarly, two balls made of different materials but with the

same radii and the same density would be indistinguishable from the point

of view of the gravitation theory. Consider two games, one involving a fair

coin and the other involving a fair die. Suppose that you can win $1 if

the coin toss results in heads, and lose $2 otherwise. You can win $1 if

the number of dots on the die is even, and otherwise you lose $2. Since

the probabilities are the only quantities that matter in this situation, one

should be indifferent between the two games.

Now consider two games whose payoffs are known and suppose that

they are stochastically ordered, that is, their payoffs G1 and G2 satisfy

P (G1 ≥ x) ≥ P (G2 ≥ x) for all x. It is elementary to see that there

exist two other games with payoffs H1 and H2 such that Gk has the same

distribution as Hk for k = 1, 2, and P (H1 ≥ H2) = 1. The game with

payoff H1 is obviously more desirable than the one with payoff H2, and by

the equivalence described in the previous paragraph, the game with payoff

G1 is more desirable than the one with payoff G2. In other words, the

decision making philosophy proposed here says that a decision is preferable

to another decision if and only if its payoff stochastically majorizes the

payoff of the other decision.

Here are some properties of the proposed decision making recipe.

(i) Consider two decisions and suppose that each one can result in a

gain of either $a or $b. Then the gain distributions are comparable. In this

simple case, the proposed decision algorithm agrees with the maximization

of the expected gain.

(ii) Two decisions may be comparable even if their expected gains are

infinite (that is, equal to plus or minus infinity), or undefined.

(iii) If two decisions are comparable and the associated gains have finite

expectations, a decision is preferable to another decisions if and only if the

associated expected gain is larger than the analogous quantity for the other

decision.

(iv) Suppose that in a decision problem, two decisions D1 and D2 are

comparable and D1 is preferable. Consider another decision problem, con-
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sisting of comparable decisions D3 and D4, with D3 being preferred. As-

sume that all random events involved in the first decision problem are

independent of all events involved in the second problem. If we consider

an aggregate decision problem in which we have to make two choices, one

between D1 and D2, and another choice between D3 and D4, then the ag-

gregate decision D1 and D3 is comparable to the aggregate decision D2 and

D4, and the first one is preferable. Unfortunately, the same conclusion need

not hold without assumption of independence of the two decision problems.

(v) One can justify the idea of maximizing of expected gain (under some

circumstances) using the idea of stochastic ordering of decisions. Suppose

that one has to deal with n decision problems, and the k-th problem is a

choice between two decisions whose gains are random variables G1
k and G2

k,

respectively. If EG1
k − EG2

k ≥ 0 for every k, the difference EG1
k − EG2

k

is reasonably large, n is not too small, and the variances of Gj
k’s are not

too large then G1
1 + · · ·+ G1

n is either truly or approximately stochastically

larger than G2
1+· · ·+G2

n. This conclusion is a mathematical theorem which

requires precise assumptions, different from one case to another. Since

G1
1 + · · ·+ G1

n is stochastically larger than G2
1 + · · ·+ G2

n, we conclude that

it is beneficial to maximize the expected gain in every of the n decision

problems. This justification of the idea of maximizing of the expected gain

does not refer to the Law of Large Numbers because it is not based on the

approximate equality of Gj
1 + · · · + Gj

n and its expectation. The number

n of decision problems does not have to be large at all—the justification

works for moderate n but the cutoff value for n depends significantly on

the joint distribution of G1
k’s and G2

k’s.

(vi) An obvious drawback of the proposed decision making philosophy

is that not all decisions are comparable. Recall the utility function used

by the subjective theory. I will make a reasonable assumption that all util-

ity functions are non-decreasing. It is easy to show that two decisions are

comparable if and only if one of the decisions has greater expected utility

than the other one for every non-decreasing utility function. Hence, the

proposed ordering of decisions is consistent with the subjective philosophy

in the following sense. In those situations in which the probabilities are

undisputable, two decisions are comparable if and only if all decision mak-

ers, with arbitrary non-decreasing utility functions, would make the same

choice. Let me use the last remark as a pretext to point out a weakness

in the subjective philosophy of probability. The comparability of all deci-

sions in the subjective theory is an illusion because the ordering of decisions

is strictly subjective, that is, it depends on an individual decision maker.
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He or she can change the ordering of decisions by fiat at any time, so the

ordering has hardly any meaning.

4.1.4 Generating predictions

My second proposal for a decision making strategy is better adapted to

laws (L1)-(L5), especially (L5), than the “stochastic ordering” presented in

the previous subsection.

The basic idea is quite old—it goes back (at least) to Cournot in the

first half of the nineteenth century (quoted after [Primas (1999)], page 585):

If the probability of an event is sufficiently small, one should act
in a way as if this event will not occur at a solitary realization.

Cournot’s recommendation contains no explicit message concerning

events which have probabilities different from 0 or 1. My proposal is to

limit the probability-based decision making only to the cases covered by

Cournot’s assertion. I postulate that probabilistic and statistical analysis

should make predictions its goal. In other words, I postulate that decision

makers should try to find events that are meaningful and have probabilities

close to 1 or 0.

I will illustrate the idea with an example of statistical flavor. Tradi-

tionally, both classical and Bayesian statistics were often concerned with

events of moderate probability. I will show how one can generate a predic-

tion in a natural way. Suppose that one faces a large number of independent

decision problems, and at the k-th stage, one has a choice between deci-

sions with payoffs G1
k and G2

k , satisfying EG1
k = x1, EG2

k = x2 < x1,

VarGj
k ≤ 1. If one chooses the first decision every time, the average

gain for the first n decisions will be approximately equal to x1. The

average will be approximately x2, if one chooses the second decision ev-

ery time. A consequence of the Large Deviations Principle is that the

probability P (
∑n

k=1 G1
k/n ≤ (x1 + x2)/2) goes to 0 exponentially fast as

n goes to infinity, and so it can be assumed to be zero for all practical

purposes, even for moderately large n. This and a similar estimate for

P (
∑n

k=1 G2
k/n ≥ (x1 + x2)/2) generate the following prediction. Making

the first decision n times will yield an average gain greater than (x1+x2)/2,

and making the second decision n times will result in an average gain smaller

than (x1 + x2)/2, with probability pn very close to 1. Here, “very close to

1” means that 1 − pn is exponentially small in n. Such a fast rate of con-
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vergence is considered excellent in the present computer science-dominated

intellectual climate.

The traditional curse of statistics is the slow rate (1/
√

n) of convergence

of approximations to the “true value,” as indicated by the Central Limit

Theorem. At the intuitive level, this means that to improve the accuracy

of statistical analysis 10 times one needs 100 times more data. The Large

Deviations Principle, when used as in the above example, yields a much

better rate of convergence to the desirable goal. I conjecture that, subcon-

sciously, decision makers pay much more attention to statements that are

based on the Large Deviations Principle than to those based on the Central

Limit Theorem.

The proposed decision making strategy is partly based on the realization

that in the course of real life we routinely ignore events of extremely small

probability, such as being hit by a falling meteor. Acting otherwise would

make life unbearable and anyhow would be doomed to failure, as nobody

could possibly account for all events of extremely small probability. An

application of the Large Deviations Principle can reduce the uncertainty to

levels which are routinely ignored in normal life, out of necessity.

Clearly, the decision making strategy proposed in this section yields

applicable advice in fewer situations than that proposed in the previous

section. This strategy should be adopted by those who think that it is

better to set goals for oneself that can be realistically and reliably attained

rather than to deceive oneself into thinking that one can find a good recipe

for success under any circumstances.

4.1.5 A new prisoner paradox

This section contains an example, partly meant to illustrate the two decision

making philosophies discussed in the last two sections, and partly meant to

be a respite from dry philosophical arguments.

Imagine that you live in a medieval kingdom. Its ruler, King Seyab, is

known for his love of mathematics and philosophy, and for cruelty. As a

very young king, 40 years ago, he ordered a group of wise men to take an

urn and fill it with 1000 white and black balls. The color of each ball was

chosen by a coin flip, independently of other balls. There is no reason to

doubt wise men’s honesty or accuracy in fulfilling king’s order. The king

examined the contents of the urn and filled another urn with 510 black and

490 white balls. The contents of the two urns is top secret and the subjects

of King Seyab never discuss it.
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The laws of the kingdom are very harsh, many ordinary crimes are

punished by death, and the courts are encouraged to met out the capital

punishment. On average, one person is sentenced to death each day. The

people sentenced to death cannot appeal for mercy but are given a chance

to survive by the following strange decree of the monarch. The prisoner

on the death row can sample 999 balls from the original urn. He is told

that the second urn contains 1000 balls, 490 of which are white. Then he

can either take the last ball from the first urn or take a single random ball

from the second urn. If the ball is white, the prisoner’s life is spared and,

moreover the prisoner cannot be sentenced to death on another occasion.

No matter what the result of the sample is, all balls are replaced into the

urns from which they came, so that the next prisoner will sample balls from

urns with the same composition.

Now imagine that you have been falsely accused of squaring a circle and

sentenced to death. You have sampled 999 balls from the first urn. The

sample contains 479 white balls. You have been told that the second urn

contains 490 white and 510 black balls. Will you take the last ball from the

first urn or sample a single ball from the second one?

In view of how the balls were originally chosen for the first urn, the

probability that the last ball in the first urn is white is 0.50. The probability

of sampling a white ball from the second urn is only 0.49. It seems that

taking the last ball from the first urn is the optimal decision. However, you

know that over 40 years, the survival rate for those who took the last ball

from the first urn was either 48% or 47.9%. The survival rate for those

who sampled from the second urn was about 49%. This frequency based

argument suggests that the optimal decision is to sample a ball from the

second urn. What would your decision be?

According to the “stochastic ordering” philosophy of decision making,

you should take the last ball from the first urn. The decision philosophy

based on “generating predictions” suggests that one should take a ball

from the second urn, because the only meaningful prediction (an event

with probability close to 1) is that the long run survival rates in the groups

of prisoners taking balls from the first urn and second urn are about 48%

and 49%, respectively.

The mathematical and scientific essence of the prisoner paradox is

the same as that of the experiment with a deformed coin, discussed in

Sec. 3.12—a single event may be an element of two different sequences.

The real problem facing the prisoner is to decide what predictions, if any,

are relevant to his situation. And what to do if none are.
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The reader might have noticed that I implicitly asserted that it is ob-

jectively true that the probability that the last ball in the first urn is white

is 50%. One could argue that the fact that the king placed 490 balls in

the second urn is informative and, therefore, the probability that the last

ball in the first urn is white is not necessarily 50%, because the symmetry

is broken. The subjective-objective controversy is irrelevant here. If the

reader does not believe that it is objectively true that the probability in

question is equal to 50%, he should consider a prisoner whose subjective

opinion is that this probability is 50%.

4.2 Events with No Probabilities

So far, my discussion of decision making was limited to situations where the

probabilities were known. This section examines a decision maker options

in the situation when (L1)-(L5) do not determine the relevant probabilities.

One of the great and undisputable victories of the subjectivist propa-

ganda machine is the widespread belief that there is always a rational way

to choose an action in any situation involving uncertainty. Many of the peo-

ple who otherwise do not agree with the subjective theory of probability,

seem to think that it is a genuine intellectual achievement of the subjec-

tive theory to provide a framework for making decisions in the absence of

relevant and useful information.

What can other sciences offer in the absence of information or relevant

theories? A physicist cannot give advice on how to build a plane flying at

twice the speed of light or how to make a room temperature superconductor.

Some things cannot be done because the laws of science prohibit them, and

some things cannot be done because we have not learnt how to do them

yet (and perhaps we never will). Nobody expects a physicist to give an

“imperfect but adequate” advice in every situation (nobody knows how to

build a plane which flies at “more or less” twice the speed of light or make a

superconductor which works at “more or less” room temperature). No such

leniency is shown towards probabilists and statisticians by people who take

the subjectivist ideology seriously—if probability is subjective then there is

no situation in which you lack anything to make probability assignments.

And, moreover, if you are consistent, you cannot be wrong!

What should one do in a situation involving uncertainty if no relevant

information is available? An honest and rather obvious answer is that

there are situations in which the probability theory has no scientific advice
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to offer because no relevant probability laws or relations are known. This

is not anything we, probabilists, should be ashamed of.

The form of laws (L1)-(L5) may shed some light on the problem. The

laws do not give a recipe for assigning values to all probabilities. They only

say that in some circumstances, the probabilities must satisfy some condi-

tions. If no relevant relations, such as lack of physical influence or symme-

try, are known then laws (L1)-(L5) are not applicable and any assignment

of values to probabilities is arbitrary. Note that every event is involved in

some relation listed in (L1)-(L5), for example, all events on Earth are phys-

ically unrelated to a supernova explosion in a distant galaxy (except for

some astronomical observations). Hence, strictly speaking, (L1)-(L5) are

always applicable but the point of the science of probability is to find suffi-

ciently many relevant relations between events so that one can find useful

events of very high probability and then apply (L5) to make a prediction.

One could argue that in a real life situation, one has to make a deci-

sion and hence one always (implicitly) assigns values to probabilities—in

this limited sense, probability always exists. However, the same argument

clearly fails to establish that “useful relations between events can be always

found.” A practical situation may force a person to make a decision and,

therefore, to make implicitly probability assignments, but nothing can force

the person to make predictions that will eventually agree with observations.

This reminds me of one of the known problems with torture (besides be-

ing inhumane): you can force every person to talk, but you do not know

whether the person will be saying the truth.

On the practical side of the matter, it is clear that people use a lot of

science in their everyday lives in an intuitive or instinctive way. Whenever

we walk, lift objects, pour water, etc., we use laws of physics, more often

than not at a subconscious level. We are quite successful with these in-

formal applications of science although not always so. The same applies

to probability—a combination of intuition, instinct, and reasoning based

on analogy and continuity can give very good practical results. This how-

ever cannot be taken as a proof that one can always assign values to all

probabilities and attack every decision problem in a scientifically justified,

rational way. As long as we stay in the realm of informal, intuitive science,

we have to trim our expectations and accept whatever results our innate

abilities might generate.
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4.3 Law Enforcement

The area of law enforcement provides excellent opportunities to document

the total disconnection between the two most popular philosophies of prob-

ability and the real applications of probability.

Consider the following two criminal cases. In the first case, a house

was burgled and some time later, Mr. A.B., a suspect, was arrested. None

of the stolen items were ever recovered but the police found a piece of

evidence suggesting his involvement in the crime. The owners of the house

kept in their home safe a ten-letter code to their bank safe. The home

safe was broken into during the burglary. The search of Mr. A.B. yielded

a piece of paper with the same ten letters as the code stored in the home

safe. In court, Mr. A.B. maintained that he randomly scribbled the ten

letters on a piece of paper, out of boredom, waiting at a bus stop. The

prosecution based its case on the utter improbability of the coincidental

agreement between the two ten-letter codes, especially since the safe code

was generated randomly and so it did not contain any obvious elements

such as a name.

The other case involved Mr. C.D. who shot and killed his neighbor,

angered by a noisy party. In court, Mr. C.D. claimed that he just wanted

to scare his neighbor with a gun. He admitted that he had pointed the gun

at the neighbor from three feet and pulled the trigger but remarked that

guns not always fire when the trigger is pulled, and the target is sometimes

missed. Under questioning, Mr. C.D. admitted that he had had years of

target practice, that his gun fired about 99.9% of time, and he missed

the target about 1% of time. Despite his experience with guns, Mr. C.D.

estimated the chance of hurting the neighbor as 1 in a billion.

I am convinced that no court in the world would hesitate to convict both

defendants. The conviction of both defendants would be based on the utter

implausibility of their claims. Each of the defendants, though, could invoke

one of the official philosophies of probability to strengthen his case. In the

case of Mr. A.B., the frequency theory says that no probabilistic statements

can be made because no long run of isomorphic observations (“collective”)

is involved. Specifically, a sequence of only ten letters cannot be called long.

Likewise, the police could not find a long run of burglaries involving stolen

codes. One could suggest running computer simulations of ten random

letters, but Mr. A.B. would object—in his view, computer simulations are

completely different from the workings of his brain, especially when he is

“inspired.” Mr. A.B. could also recall that, according to von Mises, nothing
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can be said about (im)probability of a specific event, even if it is a part of

a well defined collective.

Mr. C.D. could invoke the subjective theory of probability. No matter

what his experience with guns had been, his assessment of the probability

of killing the neighbor was as good as any other assessment, because prob-

ability is subjective. Hence, the killing of the neighbor should have been

considered an “act of God” and not a first degree murder, according to

Mr. C.D. He could even present an explicit model for his gun practice and

a prior distribution consistent with his assertion that the chance of hurting

the neighbor was 1 in a billion.

Needless to say, societies do not tolerate and cannot tolerate interpre-

tations of probability presented above. People are required to recognize

probabilities according to (L1)-(L5) and when they fail, or when they pre-

tend that they fail, they are punished. A universal (although implicit)

presumption is that (L1)-(L5) can be effectively implemented by members

of the society. If you hit somebody on the head with a brick, it will not help

you to claim that it was your opinion that the brick had the same weight

as a feather. The society effectively assumes that weight is an objective

quantity and requires its members to properly assess the weight. The soci-

ety might not have explicitly proclaimed that probability is objective but it

effectively treats the probability laws (L1)-(L5) as objective laws of science

and enforces this implicit view on its members.

There are countless examples of views—scientific, philosophical, reli-

gious, political—that used to be almost universal at one time and changed

completely at a later time. The universal recognition or implementation

of some views does not prove that they are true. One day, the society

may cease to enforce (L1)-(L5). However, neither frequentists nor sub-

jectivists object to the current situation in the least. I have no evidence

that any statistician would have much sympathy for the probabilistic argu-

ments brought up by the two defendants in my examples. The frequency

and subjective probabilists use their philosophies only when they find them

convenient and otherwise they use common sense—something I am trying

to formalize as (L1)-(L5).

All societies enforce probability values of certain events. Democratic

societies do it via elected governments. Various branches of the govern-

ment enforce safety and security regulations, implicitly saying that certain

actions decrease the probability of death, injury or sickness. For example,

manufacturers have to print warning labels on household chemicals (de-

tergents, cleaners, paint), motorists have to fasten seat belts, companies
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have to obey regulations concerning the size and shape of toys for babies

and small children, drug companies have to follow certain procedures when

developing, testing and submitting drugs for approval. Social pressure can

be as effective in enforcing probability values as the justice system. Un-

conventional probabilistic opinions (“We are likely to enjoy a meal in this

restaurant because I saw two butterflies yesterday.”) may result in social

ostracism—you may lose, or not acquire, friends, a spouse, a job, an invest-

ment opportunity, etc.

4.4 Utility in Complex Decision Problems

The utility function plays no essential role in my own philosophy of prob-

ability and philosophy of decision making. Nevertheless, I will make some

remarks on utility because it is an important element of the subjective

philosophy of probability.

A mathematical theorem proved in an axiomatic version of the subjec-

tive theory (see [Fishburn (1970)]) says that a consistent decision strategy

is equivalent to the existence of a probability measure and a utility function,

such that every decision within the consistent strategy is chosen to maxi-

mize the expected utility, computed using these probability distribution and

utility function. The important point here is that the same theorem cannot

be proved without the utility function. In other words, if we assume that

the “real” utility of x dollars is x for every x, then some decision strategies

will appear to be inconsistent, although the intention of the inventors of

the theory was to consider these strategies rational.

The utility function has to be used when we want to apply mathemat-

ical analysis to goods that do not have an obvious monetary value, such

as friendship and art. However, much of the philosophical and scientific

analysis of the utility function was devoted to the utility of money. It is

universally believed that the “real” value of x dollars is u(x), where u(x) is

not equal to x. A standard assumption about u(x) is that it is an increasing

function of x, because it is better to have more money than less money (if

you do not like the surplus, you can give it away). A popular but less ob-

vious and far from universal assumption is that u(x) is a concave function,

that is, the utility of earning an extra dollar is smaller and smaller, the

larger and larger your current fortune is.
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4.4.1 Variability of utility in time

Another standard assumption about the utility function, in addition to the

mathematical assumptions listed above, is that it represents personal pref-

erences and, therefore, it is necessarily subjective. In other words, science

cannot and should not tell people what various goods are really worth. If

the utility function is supposed to be a realistic model of real personal pref-

erences, it has to account for the real changes in such preferences. A twenty

year old man may put some utility on (various sums of) money, friendship,

success, and adventure. It would be totally unrealistic to expect the same

man to have the same preferences at the ages of forty and sixty, although

preferences may remain constant for some individuals.

The variability of utility presents the following alternative to the deci-

sion theory. First, one could assume that the utility function is constant

in time. While this may be realistic in some situations, I consider it wildly

unrealistic in some other situations, even on a small time scale.

The second choice is to assume that the utility function can change

arbitrarily over time. This will split decision making into a sequence of

unrelated problems, because it will be impossible to say anything about

rationality or irrationality of families of decisions made at different times.

The middle road is an obvious third choice, actually taken by some re-

searchers. One could assume that utility can change over time but there

are some constraints on its variability. This is definitely a sound scientific

approach, trying to model real life in the best possible way. But this ap-

proach destroys the philosophical applicability of the utility function. The

more conditions on the utility function one imposes, the less convincing the

axioms of the decision theoretical version of the subjective theory are.

4.4.2 Nonlinearity of utility

I will start this section with an example concerned with a situation when

one has to make multiple decisions before observing a gain or loss resulting

from any one of them.

Suppose that someone’s worth is $100,000 and this person is offered the

following game. A fair coin will be tossed and the person will win $1.10 if

the result is heads, and otherwise the person will lose $1.00. It is usually

assumed that the utility function is (approximately) differentiable and this

implies that if the person wins the game, the utility of his wealth will be

about a + 1.1c in some abstract units and in the case he loses the game,
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the utility of his wealth will be a− c. This implies that if the person wants

to maximize his expected utility, he should play the game.

Now imagine that the person is offered to play 100,000 games, all iden-

tical to the game described above, and all based on the same toss of the

coin. In other words, if the coin falls heads, he will collect $1.10 one hun-

dred thousand times, and otherwise he will lose $1.00 the same number of

times. Of course, this is the same as playing only one game, with a possible

gain of $110,000 and a possible loss of $100,000. After the game, either

the person will be bankrupt or he will have $210,000. Recall that a typical

assumption about the utility function is that it is concave—this reflects the

common belief that $1.00 is worth less to a rich person than to a pauper.

In our example, it is possible, and I would even say quite realistic, that the

person would consider the utility of his current wealth, that is, the utility

of $100,000, to be greater than the average of utilities of $0 and $210,000.

Hence, the person would choose not to play the game in which he can win

$110,000 or lose $100,000 with equal probabilities. It follows that he would

choose not to play 100,000 games in which he can win $1.10 or lose $1.00.

This seems to contradict the analysis of a single game with possible payoffs

of $1.10 and −$1.00.

The example is artificial, of course, but the problem is real. If we

consider decision problems in isolation, we may lose the big picture and we

may make a sequence of decisions that we would not have taken as a single

aggregated action.

On the mathematical side, the resolution of the problem is quite easy—

the expected utility is not necessarily additive. Expectation is additive in

the sense that the expected value of the total monetary gain in multiple de-

cision problems is the sum of expectations of gains in individual problems,

even if the decisions are not independent. The same assertion applied to

utility is false—in general, it is not true that the expected value of utility

increment resulting from multiple decisions is the sum of expectations of

utility increments from individual decisions. There is only one fairly gen-

eral extra assumption under which the expectation of utility increment is

additive—that the utility function is a linear function of the monetary gain.

If the utility is a linear function of the monetary gain then it is totally irrel-

evant from the philosophical point of view, because mathematical formulas

show that such utility function has the same effect on decision making as

the gain expressed in terms of monetary units.

The above shows that one cannot partition a large family of decision

problems into individual problems, solve them separately, and obtain in
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this way a strategy that would apply to the original complex problem.

Theoretically, a person should consider all decision problems facing him

over his lifetime as a single decision problem. Needless to say, this cannot

be implemented even in a remotely realistic way.

In some practical cases, such as multiple simultaneous decisions made

by a big company, decision makers face an unpleasant choice. Theoretically,

they should analyze outcomes of all possible combinations of all possible

actions and all outcomes of all random events—this may be prohibitively

expensive, in terms of money and time. Or they can analyze various de-

cision problems separately, effectively assuming that the utility function

is (approximately) linear, and thus ignoring this element of the standard

decision theory.

As I indicated before, one of the main reasons for using expectation

in decision making is technical. The additivity of expectation is a trivial

mathematical fact but it is an almost miraculous scientific property—I do

not see any intuitive reason why the expectation should be additive in case

of dependent gains (random variables). The inventors of the axiomatic

approach to the subjective theory overlooked the fact that the utility func-

tion destroys one of the most convincing claims of the maximization of the

expected gain to be the most rational decision strategy. By the way, de

Finetti had an ambiguous attitude towards the utility function. This can

be hardly said about the modern supporters of the theory.

4.4.3 Utility of non-monetary rewards

The problems with utility outlined in the previous sections are even more

acute when we consider utility of non-monetary awards. Eating an ice

cream on a hot summer day may have the same utility as $3.00. Eating

two ice creams on the same day may have utility of $5.00 or $6.00. Eating

one thousand ice creams on one day has a significantly negative utility,

in my opinion. Similar remarks apply to one glass of wine, two glasses

of wine, and one hundred glasses of wine; they also apply to having one

friend, two friends, or one billion friends. This does not mean that utility

is a useless concept when we consider non-monetary rewards. People have

to make choices and their choices define utility, at least in an implicit way.

The problem is that the utility of a collection of decisions is a complicated

function of rewards in the collection. In many situations, the utility of the

collection cannot be expressed in a usable way as a function of utilities

of individual rewards. While it is theoretically possible to incorporate an
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arbitrarily complex utility function into a decision theoretic model, the

applicability of such a theory is highly questionable. Either the theory has

to require specifying the utility for any combination of rewards, which is far

beyond anything that we could do in practice, or the theory must assume

that utility is approximately additive, which limits the theory to only some

practical situations.

My philosophical objections to utility for non-monetary rewards are

similar to those in the case of the “fuzzy set” theory. The fuzzy set theory

tries to model human opinions in situations when an object cannot be easily

classified into one of two categories. In an oversimplified view of the world,

a towel is either clean or dirty. In the fuzzy set theory, a towel belongs to

the set of clean towels with a degree between 0% and 100%. While the fuzzy

set theory is clearly well rooted in human experience, its main challenge is

to model human opinions in complex situations. On one hand, the algebra

of fuzzy sets should be a realistic model for real human opinions, and on

the other hand it should be mathematically tractable. Many scientists are

skeptical about the fuzzy set theory because they believe that the two goals

are not compatible.

4.4.4 Unobservable utilities

The decision theoretic approach to statistics consists of expressing the con-

sequences of statistical analysis as losses, usually using a utility function.

For example, suppose that a drug company wants to know the probability

of side effects for a new drug. If the true probability of side effects is p and

the statistical estimate is q, we may suppose that the drug company will

incur a loss of L dollars, depending on p and q. A common assumption is

that the loss function is quadratic, that is, for some constant c, we have

L = c(p − q)2. While the utility loss can be effectively observed in some

situations, it is almost impossible to observe it in some other situations. For

example, how can we estimate the loss incurred by the humanity caused by

an error in the measurement of the atomic mass of carbon done in a specific

laboratory in 1950? The result of such practical difficulties is that much

of the literature on decision theory is non-scientific in nature. Researchers

often advocate various loss functions using philosophical arguments, with

little empirical evidence.

A sound scientific approach to utility functions that are not observable

is to make some assumptions about their shape, derive mathematical con-

sequences of the assumptions, and then compare mathematical predictions
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with observable quantities—all this in place of making direct measurements

of the utility function. Such approach is used, for example, in modeling of

investor preferences and financial markets. In my opinion, the results are

mixed, at best. There is no agreement between various studies even on the

most general characteristics of utility functions, such as convexity.

4.5 Identification of Decisions and Probabilities

The axiomatic approach to the subjective theory of probability identifies de-

cisions and probabilities [Fishburn (1970)]. Every set of consistent decisions

corresponds to a probability distribution, that is, a consistent (probabilis-

tic) view of the world, and vice versa, any probability distribution defines

a consistent set of decisions. This suggests that the discussion of decision

making in this chapter is redundant. This is the case only if we assume that

objective probabilities do not exist. If objective probabilities (or objective

relations between probabilities) exist then the identification of probabilities

and decisions is simply not true. If objective probabilities exist, decision

makers can use them in various ways. The subjectivist claim that your

decisions uniquely determine your probabilities is nothing more than a way

of encoding your decisions, of giving them labels. In principle, these labels

may have nothing to do with objective probabilities.
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Chapter 5

The Frequency Philosophy of

Probability

This chapter is devoted to a detailed critique of the frequency theory. Recall

that, according to von Mises (page 28 of [von Mises (1957)]),

It is possible to speak about probabilities only in reference to a
properly defined collective.

This may be interpreted as saying that probability is an attribute of

a “collective” and not of an event. A collective is an infinite sequence of

observations, such that the relative frequency of an event converges to the

same number along every subsequence. The common limit is called the

probability (of the event in this collective).

I will present a number of detailed arguments so it will be easy to lose

the sight of the forest for the trees. Therefore, I suggest that the reader

tries to remember the following.

(i) Von Mises claimed that scientific uses of probability are limited

only to some situations.

(ii) He claimed that probability of an event can be considered a scien-

tific concept only when we specify a collective to which this event

belongs.

The frequency theory illustrates well a natural tension between philos-

ophy and science. In one area of intellectual activity, the weakest possible

claims are the most convenient, while in the other, the strongest possible

claims are the most practical. I will argue that there is an unbridgeable gap

between the philosophical theory of collectives and the needs of science.

97
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5.1 The Smoking Gun

The quote of von Mises recalled at the beginning of this chapter is subject

to interpretation, just like everything else in philosophy. I will now argue

that the concept of a collective necessarily leads to a radical interpretation

of von Mises’ theory. Collectives are equivalent to physical evidence in a

court trial. The collective is a conspicuous element of the frequency theory

and there is no justification for its use except the radical interpretation of

the theory.

Examples of real collectives given by von Mises are of the same type

as the ones used to illustrate the ubiquitous concept of independent identi-

cally distributed (i.i.d.) random variables. On the mathematical side, i.i.d.

sequences are much more convenient than collectives (see Sec. 5.14). The

mathematical concept of i.i.d. random variables was already known in the

nineteenth century, even if this name was not always used. Why is it that

von Mises chose to formalize a class of models of real phenomena using

a considerably less convenient mathematical concept? The reason is that

the definition of an i.i.d. sequence of random variables X1, X2, . . . includes,

among other things, a statement that the following two events (i) X1 is equal

to 0 and (ii) X2 is equal to 0, have equal probabilities (I have chosen 0 as

an example; any other value would work as well). According to von Mises’

philosophy, a single event, even if it is a part of a well defined collective,

does not have its individual probability. In other words, there is no scientific

method that could be used to determine whether P (X1 = 0) = P (X2 = 0).

Hence, according to von Mises, there is no practical way in which we could

determine whether a given sequence is i.i.d. More precisely, the notion of

an i.i.d. sequence involves non-existent quantities, that is, probabilities of

individual events.

As I said, the fact that collectives are the most prominent part of von

Mises’ theory proves that the only interpretation of this theory that is com-

patible with the original philosophical idea of von Mises is that individual

events do not have probabilities.

5.2 Inconsistencies in von Mises’ Theory

The previous section discussed possible interpretations of the claim of von

Mises quoted at the beginning of the chapter. Another aspect of the same

claim also requires an interpretation. What constitutes a collective? Are
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imaginary collectives acceptable from the scientific point of view? The diffi-

culties with von Mises’ philosophical theory are well illustrated by inconsis-

tencies in his own book [von Mises (1957)]. His philosophical ideas require

that only “real” collectives are considered. When his ideas are applied to

science, “imaginary” collectives are used.

On page 9 of [von Mises (1957)] we find,

Our probability theory has nothing to do with questions such
as: ‘Is there a probability of Germany being at some time in
the future involved in a war with Liberia?’

On page 10, von Mises explains that “unlimited repetition” is a “crucial”

characteristic of a collective and gives real life examples of collectives with

this feature, such as people buying insurance. He also states explicitly that

The implication of Germany in a war with the Republic of
Liberia is not a situation which repeats itself.

Needless to say, we could easily imagine a long sequence of planets

such as Earth, with countries such as Germany and Liberia. And we could

imagine that the frequency of wars between the pairs of analogous countries

on different planets is stable. It is clear that von Mises considers such

imaginary collectives to be irrelevant and useless.

Later in the book, von Mises discusses hypothesis testing. On page

156, he says that hypothesis testing can be approached using the Bayes

method. This takes us back to pages 117–118 of his book. There, he

constructs a collective based on the observed data. For example, if the

data are observations of a Bernoulli sequence (that is, every outcome is

either a “success” or “failure”) of length n, and we observed n1 successes,

he constructs a collective using a “partition.” That is, he considers a long

sequence of data sets, such that in every case, the ratio n1/n is the same

number a. In practice, this corresponds to a purely imaginary collective.

Except for a handful of trivial applications of statistics, the data sets never

repeat themselves in real life, even if we look only at “sufficient” statistics

(that is, the relevant general numerical characteristics of the data sets).

Hence, von Mises saw nothing wrong about imaginary collectives in the

scientific context.
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5.3 Collective as an Elementary Concept

Scientific theories involve quantities and objects, such as mass, electrical

charge, and sulfur. For a theory to be applicable as a science, these quanti-

ties and objects have to be recognizable and measurable by all people, or at

least by experts in a given area of science. Some of these concepts are con-

sidered to be elementary or irreducible. In principle, one could explain how

to recognize sulfur using simpler concepts, such as yellow color. However,

the reduction has to stop somewhere, and every science chooses elementary

concepts at the level that is convenient for this theory. For example, sulfur

is an elementary concept in chemistry, although it is a complex concept is

physics.

The frequency theory is based on an elementary concept of “collective.”

This theory does not offer any advice about what one can say about the

probability of an event if there is no collective that contains the event.

Hence, students and scientists have to learn how to recognize collectives,

just like children have to recognize cats, trees and colors. Once you can

recognize collectives, you can apply probability theory to make predictions

concerning relative frequencies of various events in the same collective, or

different collectives. Von Mises points out that simple probabilistic con-

cepts, such as conditioning, require that we sometimes use several collec-

tives to study a single phenomenon.

I think that the meaning of the above remarks can be appreciated only

if we contrast them with the following common misinterpretation of the

frequency theory. In this false interpretation, the point of departure is

an i.i.d. sequence (I will argue in Sec. 5.13 and Sec. 5.14 that collectives

cannot be identified with i.i.d. sequences in von Mises’ theory). Next,

according to the false interpretation of the frequency theory, we can use

the Law of Large Numbers to make a prediction that the relative frequency

of an event will converge (or will be close) to the probability of the event.

In von Mises’ theory, the convergence of relative frequency of an event

in a collective is a defining property of the collective and thus it cannot

be deduced from more elementary assumptions or observations. Another

way to see that an application of the Law of Large Numbers is a false

interpretation of von Mises’ theory is to note that once we determine in some

way that a sequence is i.i.d., then the convergence of relative frequencies is a

consequence of the Law of Large Numbers, a mathematical theorem. Hence,

the same conclusion will be reached by supporters of any other philosophy
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of probability, including logical and subjective, because they use the same

mathematical rules of probability.

A concept may be sometimes applied to an object or a to a small con-

stituent part of the object. For example, the concept of mass applies equally

to the Earth and to an atom. Some other concepts apply only to the whole

and not to its parts. For instance, tigers are considered to be aggressive

but the same adjective is never applied to atoms in their bodies. The the-

ory of von Mises requires a considerable mental effort to be internalized.

Most people think about probability as an attribute of a single event. In

the frequency theory, probability is an attribute of a sequence, and only a

sequence.

5.4 Applications of Probability Do Not Rely on Collectives

I will present two classes of examples where the frequency theory fails to

provide a foundation for established scientific methods. In this section, I

will not try to distinguish between collectives and i.i.d. or exchangeable

sequences because I will not be concerned with the differences between

these concepts. Instead, I will discuss their common limitations.

A large number of sequences of random variables encountered in scien-

tific practice and real life applications are not i.i.d. or exchangeable—it is

a tradition to call them “stochastic processes.” Some of the best known

classes of stochastic processes are Markov processes, stationary processes

and Gaussian processes. Markov processes represent randomly evolving

systems with short or no memory. Stationary processes are invariant under

time shifts, that is, if we start observations of the process today, the se-

quence of observations will have the same probabilistic characteristics as if

we started observations yesterday. Gaussian processes are harder to explain

because their definition is somewhat technical. They are closely related to

the Gaussian (normal) distribution which arises in the Central Limit The-

orem and has the characteristic bell shape. One can make excellent predic-

tions based on a single trajectory of any of these processes. Predictions may

be based on various mathematical results such as the “ergodic” theorem or

the extreme value theory. In some cases, one can transform a stochastic

process mathematically into a sequence of i.i.d. random variables. However,

even in cases when this is possible, this purely mathematical procedure is

artificial and has little to do with von Mises’ collectives. The frequency the-

ory is useless as a scientific theory applied to stochastic processes because
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the predictions mentioned above do not correspond to frequencies within

any real collectives.

As a slightly more concrete example, consider two casinos that operate

in two different markets. Suppose that the amount of money gamblers leave

in the first casino can be reasonably modeled as an i.i.d. sequence. In the

case of the second casino, assume that there are daily cycles, because the

types of gamblers that visit the casino at different times of the day are dif-

ferent. Hence, the income process for the second casino is best modeled as

a stationary but not i.i.d. process. Suppose that in both cases, we were able

to confirm the model and estimate the parameters using the past data. In

each case we can make a prediction for earnings of the casino next year. The

theory of von Mises can be applied directly to make an income prediction in

the case of the first casino. In the case of the second casino, the frequency

theory says that we have to find an i.i.d. sequence (collective), presumably

a long sequence of similar casinos, to apply the probability theory. This

is totally unrealistic. In practice, predictions for both casinos would be

considered equally valuable, whatever that value might be. Nobody would

even think of finding a sequence of casinos in the second case.

Another class of examples when the frequency theory is miles apart from

the real science are situations involving very small probabilities. Suppose

someone invites you to play the following game. He writes a 20-digit number

on a piece of paper, without showing it to you. You have to pay him

$10 for an opportunity to win $1,000, if you guess the number. Anyone

who has even a basic knowledge of probability would decline to play the

game because the probability of winning is a meager 10−20. According

to the frequency theory, we cannot talk about the probability of winning

as long as there is no long run of identical games. The frequency theory

has no advice to offer here although no scientist would have a problem

with making a rational choice. Practical examples involve all kinds of very

unlikely events, for example, natural disasters. Some dams are built in

the US to withstand floods that may occur once every 500 hundred years.

We would have to wait many thousands of years to observe a reasonably

long sequence of such floods. In that time, several new civilizations might

succeed ours. According to the frequency theory, it makes no sense to talk

about the probability that dams will withstand floods for the next 100 years.

Even more convincing examples arise in the context of changing technology.

Suppose that scientists determine that the probability that there will be a

serious accident at a nuclear power plant in the US in the next 100 years is

1%. I guess that many people would like to believe that this estimate is not
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far from reality but the Three Mile Island and Chernobyl accidents make

this estimate rather optimistic. If the estimate is correct then one needs

to wait for 10,000 years to observe one or a handful of accidents, or wait

for 100,000 years to get a solid statistical confirmation of the probability

value. This is totally unrealistic because the technology is likely to change

in a drastic way much sooner than that, say, in 100 years. I do not think

that anyone can imagine now what nuclear power plant technology will be

1,000 years from now. The 1% estimate has obviously a lot of practical

significance but it cannot be related to any “long run” of observations that

could be made in reality.

There are many events that are not proven to be impossible but have

probability so small that they are considered impossible in practice, and

they do not fit into any reasonable long run of events. It is generally

believed that yeti does not exist and that there is no life on Venus. If we

take the frequency theory seriously, we cannot make any assertions about

probabilities of these events—this is a sure recipe for the total paralysis of

life as we know it.

5.5 Collectives in Real Life

The concept of a “collective” invented by von Mises is an awkward at-

tempt to formalize the idea of repeated experiments or observations. Two

alternative ways to formalize this idea are known as an i.i.d. (independent

identically distributed) sequence and “exchangeable” sequence, the latter

favored by de Finetti. Exchangeability is a form of symmetry—according

to the definition of an exchangeable sequence, any rearrangement of a pos-

sible sequence of results is as probable as the original sequence. The idea

of an i.i.d. sequence stresses independence of one experiment in a series

from another experiment in the same series, given the information about

the probabilities of various results for a single experiment. In interesting

practical applications, this information is missing, and then, by de Finetti’s

theorem, an i.i.d. sequence can be equivalently thought of as an exchange-

able sequence (see Sec. 14.1.2).

A fundamental problem with collectives is that they would be very hard

to use, if anybody ever tried to use them. Scientists have to analyze data

collected in the past and also to make predictions. For the concept of collec-

tive to be applicable to the past data, a scientist must be able to recognize

a collective in an effective way. The definition of a collective suggests that
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one can determine the lack of patterns in the data either at the intuitive

level, by direct examination of the sequence, or using some more formalized

but practical procedure. I will discuss scientific methods of detecting pat-

terns below. On the informal side, I do not think that people can effectively

determine whether a sequence contains non-i.i.d. patterns. A convincing

support for my position is provided by a “java applet” prepared by Susan

Holmes and available online [Holmes (2007)]. The program generates two

binary sequences, one simulating i.i.d. events, and the other one represent-

ing a (non-trivial) Markov chain, that is, dependent events. Many people

find it hard to guess whether an unlabeled sequence is i.i.d. or non-i.i.d.

The definition of a collective is really mathematical, not scientific, in

nature. The definition requires that for a given event, the relative frequency

of that event in the sequence (collective) converges, and the same is true

for “every” subsequence of the collective (the limit must be always the

same). Here “every” is limited to subsequences chosen without clairvoyant

powers, because otherwise we would have to account for the subsequence

consisting only of those times when the event occurred, and similarly for

the subsequence consisting of those times when the event did not occur.

The limits along these subsequences are 1 and 0, of course. I think that

the modern probability theory provides excellent technical tools to express

this idea—see Sec. 5.14. This technical development comes too late to

resuscitate the theory of collectives.

The requirement that the relative frequencies have same limits along

“all” subsequences is especially hard to interpret if one has a finite (but

possibly long) sequence. In this case, we necessarily have limits 1 and 0

along some subsequences, and it is hard to find a good justification for

eliminating these subsequences from our considerations. The purpose of

the requirement that the limit is the same along all subsequences is to

disallow sequences that contain patterns, such as seasonal or daily fluctua-

tions. For example, temperatures at a given location show strong daily and

seasonal patterns so temperature readings do not qualify as a collective.

Surprisingly, this seemingly philosophically intractable aspect of the defini-

tion of a collective turned out to be tractable in practice in quite a reason-

able way. One of the important tools used by modern statistics and other

sciences are random number generators. These are either clever algebraic

algorithms (generating “pseudo-random” numbers) or, more and more pop-

ular, electronic devices generating random numbers (from thermal noise,

for example). From the practical point of view, it is crucial to check that

a given random number generator does not produce numbers that contain
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patterns, and so there is a field of science devoted to the analysis of random

number generators. The results seem to be very satisfactory in the sense

that most statisticians and scientists can find a random number generator

sufficiently devoid of patterns to meet their needs. In this special sense,

von Mises is vindicated—it is possible to check in practice if a sequence

is a collective. However, widely used and accepted methods of checking

whether a sequence is “truly” random, such as George Marsaglia’s battery

of tests [Marsaglia (1995)], do not even remotely resemble von Mises’ idea

of checking the frequency of an event along every subsequence.

Mathematics is used in science to reduce the number of measurements

and to make predictions, among other things. A scientist makes a few mea-

surements and then uses mathematical formulas appropriate for a given

science to find values of some other quantities. If we adopt the frequency

view of probability, the only predictions offered by this theory are the pre-

dictions involving limits of long run relative frequencies. According to the

frequency theory, even very complex mathematical results in probability

theory should be interpreted as statements about long run frequencies for

large collections of events within the same collective. In certain applications

of probability, such as finance, this is totally unrealistic. The frequency

view of the probability theory as a calculus for certain classes of infinite

sequences is purely abstract and has very few real applications.

5.6 Collectives and Symmetry

A scientific theory has to be applicable in the sense that its laws have to be

formulated using terms that correspond to real objects and quantities ob-

servable in some reasonable sense. There is more than one way to translate

the theory of collectives into an implementable theory. If we use a collective

as an observable, we will impose a heavy burden on all scientists, because

they will have to check for the lack of patterns in all potential collectives.

This is done for random number generators out of necessity and in some

other practical situations when the provenance of a sequence is not fully

understood. But to impose this requirement on all potential collectives

would halt the science. An alternative way is to identify a collective with

an exchangeable sequence. The invariance under permutations (that is, the

defining feature of an exchangeable sequence) can be ascertained in a direct

way in many practical situations—this eliminates the need for testing for

patterns. This approach is based on symmetry, and so it implicitly refers
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to (L4) and more generally, to (L1)-(L5). Hence, either it is impossible to

implement the concept of a collective or the concept is redundant.

There is another, closely related, reason why the concept of a collective

is almost useless without (L1)-(L5). Typically, when a scientist determines

a probability by performing a large number of experiments or collecting a

large number of observations, she wants to apply this knowledge in some

other context—one could even say that this is the essence of science. Con-

sider the following routine application of statistics. A group of 1,000 pa-

tients are given a drug and improvement occurs in 65% of cases. A statis-

tician then makes a prediction that out of 2 million people afflicted by the

same ailment, about 1.3 million can be helped by the drug. The statistician

must be able to determine a part of the general population to which the

prediction can be applied. Obviously, the statistician cannot observe any

limits along any subsequences until the drug is actually widely used. Mak-

ing a prediction requires that the statistician uses symmetry to identify the

relevant part of the population—here, applying symmetry means identify-

ing people with similar medical records. One can analyze the performance

of the drug a posteriori, and look at the limits along various subsequences

of the data on 2 million patients. Checking whether there are any patterns

in the data may be useful but this does not change in any way the fact that

making a prediction requires the ability to recognize symmetries.

If we base probability theory on the concept of a collective, we will

have to apply knowledge acquired by examining one collective to some

other collective. A possible way to do that would be to combine the two

collectives into one sequence and check if it is a collective. This theoretical

possibility can be implemented in practice in two ways. First, one could

apply a series of tests to see if the combined sequence is a collective—this

would be a solid but highly impractical approach, because of its high cost

in terms of labor. The other possibility is to decide that the combined

sequence is a collective (an exchangeable sequence) using (L4), that is,

to recognize the invariance of the combined sequence under permutations.

This is a cost-efficient method but since it is based on (L4), it makes the

concept of the collective redundant.

5.7 Frequency Theory and the Law of Large Numbers

It is clear that many people think that a philosophy of probability called

the “frequency theory” is just a philosophical representation of the math-
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ematical theorem and empirical fact known as the “Law of Large Num-

bers.” Paradoxically, the philosophical approach to probability chosen by

von Mises makes it practically impossible to apply the Law of Large Num-

bers in real life.

A simple version of the Law of Large Numbers says that if we have a

sequence of independent experiments such that each one can result in a

“success” or “failure,” and the probability of success on each trial is equal

to the same number p then the proportion of successes in a long sequence

of such trials will be close to p. Probabilists call such a sequence “Bernoulli

trials.” In von Mises’ philosophical theory, probabilities are not assigned to

individual events. Hence, to give a meaning to the Law of Large Numbers,

we have to represent the “probability of success on the k-th trial” as a

long run frequency. If we want to apply the Law of Large Numbers in the

context of the frequency theory, we have to consider a long sequence of long

sequences. The constituent sequences would represent individual trials in

the Bernoulli sequence.

To apply the Law of Large Numbers in real life, you have to recognize

an i.i.d. sequence and then apply the Law of Large Numbers to make

a prediction. The von Mises theory says that you have to recognize a

collective, that is, a sequence that satisfies the Law of Large Numbers.

The frequency theory failed to recognize the real strength of the Law of

Large Numbers—one can use the Law of Large Numbers to make useful

predictions, starting from simple assumptions and observations.

5.8 Benefits of Imagination and Imaginary Benefits

A possible argument in defense of the frequency approach to probability is

that even though long runs of experiments or observations do not exist in

some situations, we can always imagine them. What can be wrong with

using our imagination? I will first examine the general question of the

benefits of imagination, before discussing imaginary collectives.

One of the human abilities that makes us so much more successful than

other animals is the ability to imagine complex future sequences of events,

complex objects, not yet made objects, etc. What is the practical signif-

icance of imagining a car? After all, you cannot drive an imaginary car.

Everything we imagine can be used to make rational choices and take ap-

propriate actions. In this sense, imagining a spaceship traveling twice as

fast as the speed of light is as beneficial as imagining a spaceship traveling
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at the speed of 10 kilometers per second. We can use the conclusions that

we arrive at by imagining both spaceships to design and build a spaceship

that will actually reach Mars. It is important to distinguish benefits of

imagination from imagined benefits. We can imagine benefits of building

a spaceship that can travel to Mars but we will actually benefit only if we

build the spaceship and it reaches Mars.

In the context of classical statistics, imagination can be invoked to jus-

tify most popular statistical methods, such as unbiased estimators or hy-

pothesis testing. Suppose that we try to estimate the value of a physical

quantity, such as the density of a material, and we make a series of mea-

surements. Under some assumptions, the average of the measurements is

an unbiased estimate of the true value of the density. The statement that

the estimator is unbiased means that the expected value of the average is

equal to the true density. The frequentist interpretation of this statement

requires that we consider a long sequence of sequences of measurements of

the density. Then the average of the sequence of estimates (each based on

a separate sequence of measurements) will be close to the true value of the

density. This is almost never done in reality. One good reason is that if a

sequence of sequences of identical measurements of the same quantity were

ever done, the first thing that statisticians would do would be to combine

all the constituent sequences into one long sequence. Then they would cal-

culate only one estimate—the overall average. I do not see any practical

justification for imagining a sequence of sequences of measurements, except

some vague help with information processing in our minds.

5.9 Imaginary Collectives

The discussion in the last section was concerned with practical implications

of imagination. I will now point out some philosophical problems with

imagined collectives.

Since we do not have direct access to anyone’s mind, imaginary collec-

tives have no operational meaning. In other words, we cannot check whether

anyone actually imagines any collectives. Hence, we can use imagination in

our own research or decision making but our imagined collectives cannot

be a part of a meaningful scientific theory. Contemporary computers cou-

pled with robots equipped with sensors can do practically everything that

humans can do (at least in principle) except for mimicking human mind

functions. In other words, we can program a computer or robot to collect
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data, analyze them, make a decision and implement it. We cannot program

a computer to imagine collectives and it is irrelevant whether we will be

ever able to build computers with an imagination—the imagination would

not make them any more useful in this context.

A different problem with imagined collectives is that in many (perhaps

all) cases one can imagine more than one collective containing a given event.

In many such cases, the probability of the event is different in the two imag-

ined collectives. Consider a single toss of a deformed coin. This single event

can be imagined to be a part of a collective of tosses of the same deformed

coin, or a part of a collective of experiments consisting of deforming dif-

ferent coins and tossing each one of them once. Both collectives are quite

natural and one can easily perform both types of experiments. The long run

frequency of heads may be different in the two collectives (see Sec. 3.12).

The frequency interpretation of probability is like the heat interpreta-

tion of energy. The essence of “energy” can be explained by saying that

energy is something that is needed to heat water from temperature 10◦C

to 20◦C (the amount of energy needed depends on the amount of water). If

we drop a stone, its potential energy is converted to the kinetic energy and

the heat energy is not involved in this process in any way. One can still

imagine that the potential and kinetic energies can be converted to heat

that is stored in a sample of water. In real life this step is not necessary to

make the concept of energy and its applications useful. Similarly, one can

always imagine that the probability of an event is exemplified by finding

an appropriate exchangeable sequence and observing the long run relative

frequency of the event in the sequence. In real life this step is not necessary

to make the concept of probability and its applications useful.

5.10 Computer Simulations

It is quite often that we cannot find a real sequence that could help us

find the probability of an event by observing the relative frequency. One

of my favorite examples is the probability that a given politician is going

to win the elections. I do not see a natural i.i.d. sequence (or collective)

into which this event would fit. Many people believe (see [Ruelle (1991)]),

page 19, for example) that computer simulations provide a modern answer

to this philosophical and scientific problem. I will argue that this is not

the case. Computer simulations are an excellent scientific tool, allowing

scientists to calculate probabilities with great accuracy and great reliability
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in many cases. But they cannot replace a nonexistent real sequence. On

the philosophical side, computer simulations contribute very little to the

discussion.

Contemporary computers can simulate very complex random systems.

Every year the speed and memory size of computers increase substantially.

However, computer simulations generate only an estimate of probability or

expectation that under ideal circumstances could be obtained in the exact

form, using pen and paper. Computer simulations play the same role as

numerical calculations (that is, deterministic computations generating an

estimate of a mathematical quantity).

Consider a statistician who does not have a full understanding of a real

phenomenon. Computer simulations may yield a very accurate probability

estimate, but this estimate pertains to the probability of an event in the

statistician’s model. If statistician’s understanding of the real situation is

really poor, there is no reason to think that the result of simulations has

anything to do with reality. There is a huge difference between estimating

what people think about the mass of the Moon, and estimating the mass

of the Moon (although the two estimates can be related).

Recall that an event may belong to more than one “natural” sequence

(see Sec. 3.12). One could simulate all these sequences and obtain signifi-

cantly different estimates of the probability of the event. The philosophical

and practical problem is to determine which of the answers is relevant and

simulations offer no answer to this question.

Computer simulations will not turn global warming into a problem well

placed in the framework of the frequency theory. According to von Mises, a

single event does not have a probability. The problem is not the lack of data.

No matter how many atoms you simulate, you cannot determine whether

an atom is aggressive. This is because the concept of aggression does not

apply to atoms. No matter how many global warmings you simulate, you

cannot determine the probability of global warming in the next 50 years.

This is because the concept of probability does not apply to individual

events, according to von Mises.

5.11 Frequency Theory and Individual Events

Scientists who deal with large data sets or who perform computer simula-

tions consisting of large numbers of repetitions might have hard time under-

standing what is wrong with the frequency theory of probability. Isn’t the
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theory confirmed by empirical evidence? The problem with the frequency

theory is that it is a philosophical theory and so its primary intellectual goal

is to find the true essence of probability. For philosophical reasons, the the-

ory denies the possibility of assigning probabilities to individual events.

Can we alter the frequency theory and make it more realistic by admit-

ting that individual events have probabilities? Suppose that a philosopher

takes a position that individual events do have probabilities. It is natural

to assume that in his theory, one could assign probabilities to all possible

outcomes in a sequence of two trials. Similarly, the theory would cover

sequences of trials of length three, four, ..., one million. Hence, there would

be no need to provide a separate philosophical meaning to long sequences

and relative frequencies of events in such sequences. The Law of Large

Numbers, a mathematical theorem, says that if an event has probability p,

then the frequency of such events in a sequence of i.i.d. trials will be close

to p with high probability. This is the statement that frequentists seem to

care most about. The statement of the Law of Large Numbers does not

contain any elements that need the philosophical theory of collectives, if

we give a meaning to probabilities of individual events. Once a philosopher

admits that individual events have probabilities, the theory of collectives

becomes totally redundant.

I have to mention that Hans Reichenbach, a frequentist respected by

some philosophers even more than von Mises (see [Weatherford (1982)],

Chap. IV, page 144), believed that the frequency theory can be applied

to individual events. I have to admit that I do not quite understand this

position. Moreover, Reichenbach’s philosophy seems to be closer to the

logical theory than frequency theory.

5.12 Collectives and Populations

Suppose that you have a box of sand with 108 grains of sand. One sand

grain has been marked using a laser and a microscope. If you pay $10,

you can choose “randomly” a grain of sand. If it has the mark, you will

receive $1,000. Just after a grain is sampled, all the sand will be dumped

into the sea. I doubt that anyone would play this game. The number of

grains of sand in the box is enormous. Does the frequency theory support

the decision not to play the game? In other words, does the frequency

theory say that the probability of finding the marked grain is 10−8? I will

argue that it does not, despite von Mises’ claim to the contrary (page 11 of
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[von Mises (1957)]):

... concept of probability ... applies ... to problems in which
either the same event repeats itself again and again, or a great
number of uniform elements are involved at the same time.

The frequency theory assigns probabilities to long sequences of events.

The above game is concerned with only one event. It does involve a large

number, 108, but that number represents the size of the population (collec-

tion) of sand grains, not the length of any sequence of events. A collective is

a family of events that does not contain patterns. This condition can apply

to a sequence, that is, an ordered set. A population is unordered. To bring

it closer to the notion of a collective, one has to endow it with an order. In

some cases, for example, a sand box, there seems to be no natural order for

the elements of the population. Some orderings of a finite population will

obviously generate patterns. If we decide to consider only those orderings

that do not generate patterns, the procedure seems to be tautological in

nature—an ordering might be a collective in the sense of having no patterns

because we have chosen an ordering that has no patterns. Overall, I doubt

that it is worth anyone’s time to try to find a fully satisfactory version of

the theory of collectives that includes populations. The game described

at the beginning of this subsection can be easily analyzed using (L1)-(L5),

specifically, using (L4).

5.13 Are All i.i.d. Sequences Collectives?

Consider the following sequence of events.

(A1) There will be a snowstorm in Warsaw on January 4-th next year.

(A2) There will be at least 300 car accidents in Rio de Janeiro next year.

(A3) There will be at least 30 students in my calculus class next spring.

Suppose that we know that each one of these events has probability 70%.

Assume that the sequence is not limited to the three events listed above

but that it continues, so that it contains at least 1,000 events, all of them

ostensibly unrelated to each other. Assume that each of the one thousand

events is 70% certain to happen. Then the sequence satisfies the mathe-

matical definition of an “i.i.d.” sequence, that is, all events are independent

and have the same probability. Is this sequence a collective? I will argue

that the answer is no.
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Standard examples of collectives, such as tosses of a deformed coin or

patients participating in medical trials, are characterized by convergent

frequencies of specified events. In these examples, we believe that the fre-

quencies converge to a limit no matter whether we can determine what the

limit is or not (prior to observing the sequence). For example, we believe

that if we are given a deformed coin to analyze, the frequency of heads will

converge to a limit, although we do not know what the limit might be.

We believe that the events in the sequence A1, A2, A3, . . . described

above will occur with frequency close to 70% only because we determined

this probability separately for each element of the sequence, in some way.

Hence, we implicitly assume that individual events, such as A1, have prob-

abilities, the existence of which von Mises denied.

The above philosophical analysis has some practical implications. Se-

quences such as A1, A2, A3, . . . can be used to make predictions. For ex-

ample, suppose that employees of a company make thousands of unrelated

decisions, and somehow we are able to determine that each decision results

in “success” with probability lower than 80%. Then we can make a verifi-

able prediction that decisions will be successful at a (not necessarily stable)

rate lower than 80%. We see that one can make successful predictions based

on the theory of i.i.d. sequences, even if the theory of collectives does not

apply.

5.14 Are Collectives i.i.d. Sequences?

This section is technical in nature, in the sense that it uses concepts that

are typically introduced at the level of Ph.D. program.

It has been pointed out that von Mises was close to inventing the con-

cept of a stopping time, fundamental to the modern theory of stochastic

processes. I will now present a mathematical definition that tries to cap-

ture the concept of a collective using the idea of a stopping time. Suppose

that X1, X2, X3, . . . are random variables taking values 0 or 1. Let Fn de-

note the σ-field generated by X1, . . . , Xn. We call T a predictable stopping

time if T is a random variable taking values in the set of strictly posi-

tive integers and for every n ≥ 2, the event {T = n} is Fn−1-measurable.

We will call X1, X2, X3, . . . a mathematical collective if for some p ∈ [0, 1]

and every sequence T1, T2, T3, . . . of predictable stopping times such that

T1 < T2 < T3 < . . . a.s., we have limn→∞ XTn
= p, a.s.
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Mathematical collectives defined above are not the same as i.i.d. se-

quences, although every i.i.d. sequence is a mathematical collective. As

far as I can tell, very few theorems known to hold for i.i.d. sequences

or exchangeable sequences have been proved for mathematical collectives.

In particular, I do not know whether the Central Limit Theorem has been

ever proved for mathematical collectives, and I doubt that the Central Limit

Theorem holds for collectives. I also doubt that mathematical community

has much interest in proving or disproving the Central Limit Theorem for

mathematical collectives.

Some commentators believe that von Mises had deterministic sequences

in mind when he defined collectives. I think that deterministic collectives

present much harder philosophical problems than mathematical collectives

defined above. Neither von Mises’ collectives nor mathematical collectives

seem to be applicable in science, and I would find it even hard to speculate

which of the two concepts is more useful.
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Chapter 6

Classical Statistics

It is a common view that the classical statistics is justified by the “fre-

quency philosophy.” It is pointless to write a chapter proving that the

classical statistics is not related to the philosophical theory of von Mises.

His theory of collectives was abandoned half a century ago. I guess that

less than one percent of classical statisticians know what a collective is.

However, I cannot summarily dismiss the idea that the “frequency inter-

pretation” of probability is the basis of the classical statistics. There is

a difficulty, though, with the analysis of the “frequency interpretation”—

unlike von Mises’ theory, the frequency interpretation is a mixture of math-

ematical theorems and intuitive feelings, not a clearly developed philosophy

of probability. Despite this problem, I will try to give a fair account of the

relationship between the classical statistics and the frequency interpretation

of probability.

Three popular methods developed by classical statisticians are estima-

tion, hypothesis testing and confidence intervals. I will argue that some

(and only some) methods of the classical statistics can be justified using

(L1)-(L5).

6.1 Confidence Intervals

The concepts of estimation and hypothesis testing seem to be more funda-

mental to classical statistics than the concept of confidence intervals. I will

discuss confidence intervals first because I will refer to some of this material

in the section on estimation.

Suppose that a parameter θ, presumably an objective physical quantity,

is unknown, but some data related to this quantity are available. A “95%-

confidence interval” is an interval constructed by a classical statistician on

115
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the basis of the data, and such that the true value of the parameter θ is

covered by the interval with probability 95%. More precisely, it is proved

that if the value of the unknown parameter θ is θ0 then the 95% confidence

interval will contain θ0 with probability 95%.

Among the basic methods of the classical statistics, confidence intervals

fit (L1)-(L5) best because they are probability statements, unlike estimators

and hypothesis tests. Hence, a single confidence interval is a prediction in

the sense of (L5), if the probability of coverage of the unknown parameter

is chosen to be very high.

Personally, I would call a confidence interval a prediction only if the

probability of the coverage of the true value of the parameter is 99% or

higher. This does not mean that we cannot generate predictions when we

use confidence intervals with lower probability of coverage—we can aggre-

gate multiple cases of confidence intervals and generate a single prediction.

A scientist or a company might not be interested in the performance of a

confidence interval in a single statistical problem, but in the performance

of an aggregate of statistical problems.

Suppose that n independent 95% confidence interval are constructed. If

n is sufficiently large then one can make a prediction that at least 94% of

the intervals will cover the true values of the parameters, with probability

99.9% or higher. No matter where we draw the line for the confidence level

for a single prediction, we can generate a prediction with this confidence

level by aggregating a sufficiently large number of confidence intervals.

Another way to analyze scientific performance of confidence intervals is

to express losses due to non-coverage errors using the units of money or

utility. We can apply, at least in principle, one of probabilistic techniques

to find the distribution of the aggregate loss due to multiple non-coverage

errors and generate a corresponding prediction, for example, a single 99.9%

confidence interval for the combined loss.

Practical challenges with statistical predictions

The methods of generating predictions from confidence intervals outlined

above may be hard to implement in practice for multiple reasons. It is best

to discuss some of the most obvious challenges rather than to try to sweep

the potential problems under the rug.

Generating a prediction from a single confidence interval requires very

solid knowledge of the tails of the distribution of the random variable used

to construct the confidence interval. If the random variable in question
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is, for example, the average of an i.i.d. sequence, then the Central Limit

Theorem becomes questionable as an appropriate mathematical tool for

the analysis of tails. We enter the domain of the Large Deviations Prin-

ciple (see Sec. 14.1.1). On the theoretical side, typically, it is harder to

prove a theorem that has the form of a Large Deviations Principle than a

version of the Central Limit Theorem. On the practical side, the Large De-

viations Principle-type results require stronger assumptions than the Law

of Large Numbers or the Central Limit Theorem—checking or guessing

whether these assumptions hold in practice might be a tall order.

Only in some situations we can assume that individual statistical prob-

lems that form an aggregate are approximately independent. Without in-

dependence, generating a prediction based on an aggregate of many cases

of statistical analysis can be very challenging.

Expressing losses due to errors in monetary terms may be hard or sub-

jective. If the value of a physical quantity is commonly used by scientists

around the world, it is not an easy task to assess the combined losses. At

the other extreme, if the statistical analysis of a scientific quantity appears

in a specialized journal and is never used directly in real life, the loss due

to a statistical error has a purely theoretical nature and is hard to express

in monetary terms.

Another practical problem with aggregates is that quite often, a statis-

tician has to analyze a single data set, and he has no idea what other con-

fidence intervals that were constructed in the past, or will be constructed

in the future, should be considered a part of the same aggregate. There

is a very convenient mathematical idea that seems to solve this problem—

expectation. The expectation of the sum of losses is equal to the sum of

expectations of losses. Hence, if we want to minimize the expected loss for

an aggregate problem, it suffices to minimize the expected loss for each in-

dividual statistical problem. While this may be a very reasonable approach

in some situations, I do not think that the reduction of decision making

to minimizing the expected value of the loss has a good justification—see

Sec. 4.1.1. On the top of that, using the additivity of expectation requires

that the utility function has to be linear (see Sec. 4.4.2); again, this may

be quite reasonable in some, but not all, situations.

A somewhat different problem with aggregates is that one of the sta-

tistical errors in the aggregate may generate, with some probability, a loss

much greater than the combined losses due to all other estimates. In some

situations involving potential catastrophic losses, if we limit our analysis

only to the expectation of losses, then we may reach an unpalatable con-
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clusion that confidence intervals capable of generating only small losses can

be more or less arbitrary, because their contribution to the total expected

loss is minuscule.

Making predictions is necessary

The long list of practical problems with predictions given in the previous

section may suggest that the idea of generating and verifying a prediction is

totally impractical. However, a moment’s thought reveals that most of these

practical problems would apply to every method of validating statistical

analysis, and they are already well known to statisticians.

Predictions have to be verified, at least in some cases, to provide em-

pirical support for a theory. Statistical predictions that have the form of

confidence intervals can be verified if and when we find the true value of

the estimated quantity.

It is not impossible to verify statistical predictions generated by confi-

dence intervals. Theoretically, we will never know the value of any scientific

quantity with perfect accuracy. However, if we measure the quantity with

an accuracy much better than the current accuracy, say, 1, 000 times better,

then we can treat the more accurate measurement as the “true value” of the

quantity, and use it to verify the statistical prediction based on the origi-

nal, less accurate measurement. The more accurate measurement might be

currently available at a cost much higher than the original measurement,

or it might be available in the future, due to technical progress.

Classical statisticians may use their own techniques to evaluate con-

fidence intervals and this is fine as long as the end users of confidence

intervals are satisfied. However, statistics is riddled with controversy so

classical statisticians must (occasionally) generate predictions in the sense

of (L5) so that their theory is falsifiable, and their critics have a chance to

disprove the methods of classical statistics. If the critics fail to falsify the

predictions then, and only then, classical statisticians can claim that their

approach to statistics is scientific and properly justified.

6.2 Estimation

The theory of estimation is concerned with unknown quantities called pa-

rameters. Examples of such quantities include the speed of light, the prob-

ability of a side effect for a given drug, and the volatility in a financial

market.
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Let us consider a simple example. If you toss a deformed coin, the

results may be represented by an i.i.d. (independent identically distributed)

sequence of heads and tails. The probability of heads (on a single toss) is

an unknown constant (parameter) θ and the goal of the statistical analysis

is to find a good estimate of the true value of θ. If n tosses were performed

and k of them resulted in heads, one can take k/n as an estimate of θ.

This estimator (that is, a function generating an estimate from the data)

is unbiased in the sense that the expected value of the estimate is the true

value of θ.

The ultimate theoretical goal of the estimation theory is to find an

explicit formula for the distribution of a given estimator, assuming a value of

the parameter θ. This, theoretically, allows one to derive all other properties

of the estimator because the distribution encapsulates all the information

about the estimator. Quite often, an explicit or even approximate formula

for the distribution is impossible to derive, so a popular weaker goal is to

prove that the estimator is unbiased, that is, its expected value is equal to

the true value of the parameter.

Suppose that an estimator is unbiased. The long run interpretation of

this statement requires that we collect a long sequence of data sets, all in the

same manner, and independently from each other. A crucial assumption is

that the parameter (presumably, a physical quantity) is known to have the

same value every time we collect a set of data. Suppose, moreover, that we

apply the same estimator every time we collect a data set. Then, according

to the Law of Large Numbers, the average of the estimates will be close

to the true value of the unknown parameter with a high probability. The

scenario described above is purely imaginary. There are many practical

situations when one of the conditions described above holds. For example,

multiple estimates of the same quantity are sometimes made (think about

estimating the speed of light). There are also applications of the estimation

theory when the same estimator is applied over and over; for example, a

medical laboratory may estimate the level of a hormone for a large number

of patients. It hardly ever happens that data sets are repeatedly collected

in an identical way and a long sequence of isomorphic estimators is derived,

in the case when the estimated quantity is known to have the same value

in each case.

The long run frequency interpretation of unbiasedness is unrealistic for

another, somewhat different, reason. Statisticians often work with only

one data set at a time and there is no explicit or implicit expectation that

isomorphic data sets will be collected in the future. I do not think that any
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statistician would feel that the value of a given (single) estimate diminished

if he learned from a clairvoyant person that no more similar estimates will be

ever made. It will not help to imagine a long sequence of similar estimation

problems. The frequency interpretation of probability or expectation based

on imagination and the Law of Large Numbers suffers from practical and

philosophical problems discussed in Sec. 3.11 and Sec. 3.12. Imagination

is an indispensable element of research and decision making but imaginary

sequences are not a substitute for real sequences.

I have already explained why the frequency interpretation does not ex-

plain why a specific property of estimators, unbiasedness, is useful in prac-

tice. I will now give a number of reasons, of various nature, why the fre-

quency interpretation does not support the statistical theory of estimation

in general.

When multiple data sets, measurements of the same physical quantity,

are collected, they often differ by their size (number of data)—this alone

disqualifies a sequence of data sets from being an i.i.d. sequence, or a

collective in the sense of von Mises.

If one statistician collects a large number of isomorphic data sets to

estimate the same unknown parameter, it is natural for her to combine all

the data sets into one large data set and generate a single accurate estimate

of the parameter. She would not derive a long sequence of estimates for the

same unknown quantity.

Classical statisticians do not require that estimators must be applied

only to very large data sets. The accuracy of the estimator depends on the

amount of data, and, of course, the larger the number of data, the better the

accuracy. This is never taken to mean that the estimator cannot be used

for small number of data. It is left to the end user of statistical methods to

decide whether the estimator is useful for any particular number of data.

This indicates that the idea of von Mises that only very long sequences

should be considered is mostly ignored.

Classical statisticians do not hesitate to analyze models which are far

from von Mises’ collectives, for example, stationary processes and Markov

processes. Some stochastic processes involve complex dependence between

their values at different times and so they are far from collectives. Some

families of stochastic processes can be parameterized, for example, distinct

members of a family of stationary processes may be labeled by one or several

real numbers. There is nothing that would prevent a classical statistician

from estimating the parameters of a process in this family. A classical

statistician would feel no obligation to find an i.i.d. sequence of trajectories
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of the process. A single trajectory of a stochastic process can be a basis for

estimation in the sense of classical statistics.

6.2.1 Estimation and (L1)-(L5)

The theory of estimation can be justified in several ways using (L1)-(L5),

just like the theory of confidence intervals.

Consider a single statistical problem of estimation. Recall that, accord-

ing to (L5), a verifiable statistical statement is a prediction, that is, an event

of probability close to 1. The only practical way to generate a prediction

from an estimator is to construct a confidence interval using this random

variable. When we estimate several parameters at the same time, or in the

infinite-dimensional (“non-parametric”) case, a confidence interval has to

be replaced with a “confidence set,” that is, a subset of a large abstract

space.

Another justification based on (L1)-(L5) for the use of estimators comes

from aggregate statistical problems. Suppose that n independent estimates

are made, and each one is used to construct a 95% confidence interval. If

n is sufficiently large then one can make a prediction that at least 94% of

the intervals will cover the true values of the parameters, with probability

99.9% or higher.

Finally, just like in case of confidence intervals, we may apply the deci-

sion theoretic approach. We may express losses due to errors using the units

of money or utility. Once the losses are expressed in the units of money or

utility, one can apply, at least in principle, one of probabilistic techniques

to find the distribution of the aggregate loss and generate a corresponding

prediction, for example, a 99.9% confidence interval for the combined loss.

Predictions generated by estimators face the same practical challenges

as those based on confidence intervals, and are equally needed—see Sec. 6.1.

6.3 Hypothesis Testing

The theory of estimation, a part of the classical statistics, has nothing in

common with von Mises’ theory of collectives. It cannot be justified by the

“frequency interpretation” of probability either, except in very few special

cases. The relationship between hypothesis testing (see Sec. 14.2) and von

Mises’ collectives, and the relationship between hypothesis testing and the

frequency interpretation of probability are more subtle.
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Hypothesis tests are prone to two kinds of errors. One can make a

Type I error also known as “false positive”, that is incorrect rejection of

the null hypothesis. The other possible error is called Type II error or “false

positive”, that is, incorrect acceptance of the null hypothesis.

There are at least three common settings for hypothesis testing. First,

in some industrial applications of testing, one has to test large numbers

of identical items for defects. The probabilities of false negatives and false

positives have a clear interpretation as long run frequencies in such situa-

tions. Another good example of long runs of isomorphic hypothesis tests

are medical tests, say, for HIV.

In a scientific laboratory, a different situation may arise. A scientist may

want to find a chemical substance with desirable properties, say, a new drug.

He may perform multiple hypothesis tests on various substances, and the

models involved in these testing problems may be very different from one

another. A statistical prediction in this case would involve the percentage

of false rejections or false acceptances of a hypothesis. Just like in the

case of estimation, one cannot use the von Mises theory of collectives in

this case because the tests are not necessarily identical. Nevertheless, if we

assume that they are independent then we can make a prediction about the

aggregate rate of false rejection and/or aggregate rate of false acceptance.

The third type of situation when hypothesis tests are used is when a

single hypothesis is tested, with no intention to relate this test to any other

hypothesis test. A good example is a criminal trial. In the US, the guilt of

a defendant has to be proved “beyond reasonable doubt.” Since the jury

has only two choices—guilty or not guilty—criminal trials are examples of

hypothesis testing, even if rarely they are formalized using the statistical

theory of hypothesis testing. If a jury votes “guilty,” it effectively makes

a prediction that the defendant committed the crime. In this case, the

prediction refers to an event in the past. In a criminal trial, a prediction

is the result of a single case of hypothesis testing. A long run frequency

interpretation of hypothesis testing in case of criminal trials is possible but

has a questionable ethical status. Presumably, given a criminal trial, the

society expects the jury to make every effort to arrive at the right decision

in this specific case.

6.3.1 Hypothesis tests and collectives

Hypothesis testing has a split personality. There is a limited number of

industrial and medical applications of hypothesis testing that fit very well
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into von Mises’ framework of collectives. However, collectives are not used

in any way except to make a prediction about the long run frequencies

of testing errors. In practice, one can make the same prediction using the

much more convenient concept of an i.i.d. sequence. The other two common

applications of hypothesis testing are individual tests and sequences of non-

isomorphic hypothesis tests. None of them fit into the von Mises theory.

A good way to tell the difference between the different approaches to

hypothesis testing is to analyze the reaction to an erroneous testing decision.

If an erroneous rejection of the null hypothesis is met with great concern

then we have the case of an individual hypothesis test. If the error is

considered a random fluctuation, a normal price that has to be paid, we

have the situation best represented as a sequence of tests. In the first case,

if a testing error is discovered, the testing procedure might be criticized

and an improvement proposed. In the latter case, there would be no reason

or desire to improve the testing procedure.

Long sequences of hypothesis tests do not automatically fit into the von

Mises philosophy. First, a statistician may use different significance levels

for various tests in a sequence. Even if the same significance level is used

for all tests in a sequence and, therefore, the tests form an i.i.d. sequence,

they do not necessarily form a collective. The intention of von Mises was

to reserve the concept of a collective for sequences of events that were

physically identical, not only mathematically identical. In the scientific

setting, where large numbers of completely different hypothesis tests are

performed, such a long sequence is the opposite of a von Mises’ collective.

Elements of a collective have everything in common, except probability

(because a single event does not have a probability). A long sequence of

hypothesis tests may have nothing in common except the significance level

(probability of an error).

6.3.2 Hypothesis tests and the frequency interpretation of

probability

The frequency interpretation of probability does apply to hypothesis tests

and, in theory, provides a good philosophical support for this method.

Recall two situations when long runs of hypothesis tests are applied.

First, we may have a long run of isomorphic tests, with “simple” null and

alternative hypotheses. For example, a machine part can be either defective

or not defective. Then one can predict the frequency of false positives, that

is, false classification of a part as defective. Similarly, we can predict the
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frequency of false negatives. Both frequencies can be observed in practice

in some situations, and this can be easily turned into a prediction in the

sense of (L5). Hence, the theory of hypothesis testing is a well justified

science.

A subtle point here is that both frequencies, of false positives, and false

negatives, are within sequences that are unknown to the statistician. This is

because the statistician does not know in which tests the null hypothesis is

true. Hence, in many situations the predicted frequencies are not directly

observable. One could argue that the frequencies of false positives and

false negatives may be observable in the future, when improved technology

allows us to revisit old tests and determine which null hypotheses were

true. Strictly speaking, this turns the predicted frequencies of false positives

and false negatives into scientifically verifiable statements. But this does

not necessarily imply that predictions verifiable in this sense are useful in

practice. Hence, it is rational to recognize the theory of hypothesis testing

as a scientific theory (in the sense given above), but to reject it in some

practical situations because its predictions are not useful.

6.3.3 Hypothesis testing and (L1)-(L5)

Generally speaking, hypothesis testing fits into the framework of (L1)-(L5)

just like confidence intervals and estimators do. One can try to generate

predictions in the sense of (L5) based on a single hypothesis test, or on a

sequence of hypothesis tests. There are some differences, though.

Sequences of hypothesis tests

Consider a sequence of hypothesis tests and, for simplicity, assume that

the significance level is 5% in each case. Moreover, suppose that the tests

are independent, but not necessarily isomorphic. Then, in the long run,

the percentage of false positives, that is, cases when the null hypothesis

is true but it is rejected, will be about 5%. This is (or rather can be

transformed into) a scientific prediction, in the sense of (L5). Let me repeat

some remarks from the last section to make sure that my claim is not

misunderstood. The statistician does not know which null hypotheses are

true at the time when he performs the tests. He may learn this later,

for example, when a better technology is available. In case of a medical

test for a virus, the condition of a patient may change in the near future

so that it will be known whether he has the virus, or not. The time in
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the future when we learn whether the null hypothesis is true or not with

certainty may be very distant, depending on the specific problem. Hence,

the prediction, although scientifically verifiable in the abstract sense, may

be considered to be irrelevant, because of the time delay. A prediction

concerning false negatives can be generated in a similar way, but this is a

bit more complicated—I will try to outline some difficulties below.

There is a number of practical situations when the null hypothesis and

the alternative hypothesis are simple, for example, a company may want to

classify parts as defective or non-defective. However, there are also practical

situations where hypotheses are not simple, for example, when the rates of

side effects for two drugs are either identical (the null hypothesis) or they

differ by a real number between −1 and 1 (the alternative). Now the

issue of generating a prediction for false negatives in the long run setting is

complicated by the fact that it is not obvious how to choose the appropriate

sequence of tests in which a predicted frequency of false negatives will be

observed. Should we consider all cases when the two rates of side effects are

different? In theory, this would mean all tests, as it is virtually impossible

that the difference between the rates is exactly zero. Or should we consider

only those cases when the difference of rates is greater than some fixed

number, say, 5%?

Single hypothesis test

A single hypothesis test can be considered an application of (L5) in its pure

form. We incorporate the null hypothesis into our model. Then we make a

prediction that a certain random variable (the “test statistic”) will not take

a value in a certain range. We observe the value of the test statistic. If the

value is in the “rejection region,” we conclude that something was wrong

with the theory that generated the prediction, and usually this means that

we reject the null hypothesis.

The above algorithm is a correct application of (L5), and shows that a

single hypothesis test is a scientific procedure. There remain some issues

to be addressed, though. The first one is the question of the significance

level. A popular significance level is 5%. In other words, a hypothesis test

implicitly assumes that an event is a prediction if its probability is 95%

or higher. The choice of probability which makes an event a prediction is

subjective. Personally, I find 95% too low. I would hesitate to draw strong

conclusions if an event of probability 95% failed. I would prefer to raise the

level to 99%, but this choice makes effective hypothesis testing more costly.
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Second, the interpretation of hypothesis testing described above, as a

pure application of (L5), may be too crude for scientific purposes. Consider

applications of geometry. For some practical purposes, we can consider an

automobile wheel to be a circle. For some other purposes, engineers have

to describe its shape with much greater precision. They would conclude

that a wheel is not a circle when measured with great accuracy. In the

simplest setting of hypothesis testing, the rejection of the null hypothesis is

a deterministic statement. Hence, hypothesis testing makes an impression

of a crude method. We could improve it, for example, by specifying the

“degree” to which the null hypothesis is false. One way to do that is to

say that given the data, the null hypothesis is false with a probability

p. Unfortunately, one cannot create something out of nothing. To say

that the null hypothesis is false with a probability p, one has to use the

Bayesian approach, that is, one has to assign a probability to the null

hypothesis before collecting the data. In some cases, we may be reasonably

confident of our choice of the prior distribution. In some other cases, the

prior distribution does not have a solid basis, so the posterior probability

that the null hypothesis is false may have little scientific value.

6.4 Experimental Statistics—A Missing Science

An interesting contradiction in psychology was pointed out in [Nickerson

(2004)]). A large number of psychological studies of probabilistic reasoning

assume that a rational person should use Bayesian approach to decision

making. At the same time, many of these research papers in psychology

use methods of classical (frequentist) statistics, such as hypothesis testing.

A similar contradiction exists in statistics. Statisticians develop meth-

ods to study data collected by scientists working in other fields, such as

biology, physics and sociology. Broadly speaking, statisticians make little

effort to collect data that could verify their own claims.

When the results of statistical analysis are revisited many years later,

say, 30 years later, then many former statistical hypothesis are currently

known to be true or false with certainty (for all practical purposes), and

many formerly unknown quantities can be now considered to be known

constants (that is, their values are know with accuracy several orders of

magnitude greater than what was achievable 30 years ago). Revisiting old

statistical studies can generate a wealth of data on how different statistical

methods performed in practice. There is too little systematic effort in this
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direction, and whatever various statisticians contributed to this scientific

task, their efforts did not take the shape of a well defined, separate field of

experimental statistics.

There are several reasons why experimental statistics does not exist.

(1) There is no intellectual framework for experimental statistics. Hy-

pothesis testing is used precisely because we cannot check whether

a given hypothesis is true. This is implicitly taken as meaning that

we will never know whether the hypothesis is true. In fact, there

are many simple situations when the unknown hypothesis becomes

a true or false fact within a reasonable amount of time. For ex-

ample, it may become clear very soon whether someone is sick or

whether a drug has severe side effects. Similarly, many people may

have an impression that there is no way to determine experimen-

tally whether an estimator is unbiased because the true value of

the unknown quantity will be always unknown. Again, the quan-

tity may be unknown today but it may become known (with great

accuracy) in not too distant future.

(2) Some statisticians may think that computer simulations are the

experimental statistics. Everybody seems to understand the differ-

ence between simulating a nuclear explosion and an actual nuclear

explosion. The same applies to statistical methods. Computer

simulations can provide valuable data but they cannot replace the

analysis of actual data collected in the real universe.

(3) If data on performance of statistical methods are ever collected then

they will have to be analyzed using statistics. There is a clear dan-

ger that if classical methods are used to analyze the data then they

will show the superiority of classical statistics, and the same applies

to the potential misuse of Bayesian statistics. The bias of the anal-

ysis can be conscious or subconscious. However, when a sufficiently

large amount of data are available then the choice of a statistical

method might not matter. Everybody believes that smoking in-

creases the probability of cancer, both frequentists and Bayesians.

(4) Experimental statistics, or collecting of data on the past perfor-

mance of statistical methods, may not be considered glamorous. A

junior statistician is more likely to prove that a new estimator is

unbiased than to review data from the past because the first option

is more likely to advance his academic career. In other words, intel-

lectual inertia prevents the development of experimental statistics.
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(5) Reviewing past data may be costly. Granting agencies may be

unwilling to fund this activity. This is unfortunate. I think that

statistics can have as much impact on our society as human genome

and Big Bang, two of well funded directions of research.

(6) Poor performance of statistical inference in the past must have

some non-statistical roots. For example, inaccurate estimates of

the speed of light may be due to systematic bias or inadequate

physical theories, none of which can be eliminated even by the best

statistical techniques. Disentangling statistical and non-statistical

causes of the failed predictions might not be an easy task.

I realize that I am not fair by suggesting that statisticians never re-

view the real life performance of their methods. I know that some do. My

point is more philosophical than practical. The fact that statistics is an

experimental science did not sink into the collective subconsciousness of

statisticians. Textbooks and monographs such as [Berger (1985)] and [Gel-

man et al. (2004)] give too many philosophical arguments in comparison to

the number of arguments of experimental kind. Even though the discussion

of purely philosophical ideas presented in these books, such as axiomatic

systems or the Dutch book argument, is less than complimentary, the reader

may be left with an impression that philosophical arguments are on a par

with experimental evidence. Solid data on the past performance are the

only thing that is needed to justify a statistical method, and no amount of

philosophy is going to replace the experimental evidence.

My proposals for the scientific verification of the classical statistics us-

ing (L5), made earlier in this chapter, should be considered a simple ideal-

ized version of fully developed experimental statistics. The idea of testing

predictions, in the sense of (L5), is a philosophical foundation for more

sophisticated statistical methods that should be applied to study the past

performance of statistics. There is one more role that testing of predictions

based on (L5) may play. In case of irreconcilable differences between statis-

ticians, (L5) in its pure, raw form is the method of last resort to decide

what is true and what is not true in the scientific sense.

I mixed remarks on classical statistics and Bayesian textbooks ([Berger

(1985)] and [Gelman et al. (2004)]) in this section for a reason—my desire

to see experimental statistics is not linked to any of the two main branches

of statistics.
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6.5 Hypothesis Testing and (L5)

I have already pointed out a similarity between my interpretation of (L5)

and testing of statistical hypotheses. Despite unquestionable similarities,

there are some subtle but significant philosophical differences—I will outline

them in this section.

Testing a statistical hypothesis often involves a parametric model, that

is, some probability relations are taken for granted, such as exchangeability

of the data, and some parameters, such as the expected value of a single

measurement, are considered unknown. The hypothesis to be tested usually

refers to the parameter, whose value is considered “unknown.” Hence, in

hypothesis testing, only one part of the model can be falsified by the failure

of a probabilistic prediction. In general, the failure of a prediction in the

sense of (L5) invalidates some assumptions adopted on the basis of (L2)-

(L4). There is no indication in (L5) which of the assumptions might be

wrong.

The standard mathematical model for hypothesis testing involves not

only the “null hypothesis,” which is often slated for rejection, but also an

alternative hypothesis. When a prediction made on the basis of (L1)-(L5)

fails, and so one has to reject the model built using (L2)-(L4), there is no

alternative model lurking in the background. This is in agreement with gen-

eral scientific practices—a failed scientific model is not always immediately

replaced with an alternative model; some phenomena lack good scientific

models, at least temporarily.

One can wonder whether my interpretation of (L5) can be formalized

using the concept of hypothesis testing. It might, but doing so would in-

evitably lead to a vicious circle of ideas, on the philosophical side. Hypoth-

esis testing needs a scientific interpretation of probability and so it must be

based on (L1)-(L5) or a similar system. In any science, the basic building

blocks have to remain at an informal level, or otherwise one would have to

deal with an infinite regress of ideas.

6.6 Does Classical Statistics Need the Frequency Theory?

Why do classical statisticians need the frequency philosophy of probability,

if they need it at all? They seem to need it for two reasons. First, some

of the most elementary techniques of the classical statistics agree very well

with the theory of collectives. If you have a deformed coin with an unknown
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probability of heads, you may toss it a large number of times and record

the relative frequency of heads. This relative frequency represents prob-

ability in the von Mises theory, and it is also the most popular unbiased

estimator in the classical statistics. A closely related method is to aver-

age measurement results because this reduces the impact of measurement

errors. From the perspective of a professional statistician, the estimation

procedures described here are textbook examples for undergraduates. For

some scientists, the long run frequency approach is the essence of probabil-

ity because it is arguably the most frequently applied probabilistic method

in science.

Classical statisticians use the frequency theory in an implicit way to

justify the use of expectation in their analysis. It is generally recognized

that an estimator is good if it is “unbiased,” that is, if its expected value is

equal to the true value of the unknown parameter. People subconsciously

like the idea that the expected value of the estimator is equal to the true

value of the parameter even if they know that the mathematical “expected

value” is not expected at all in most cases. An implicit philosophical justi-

fication for unbiased estimators is that the expected value is the long run

average, so even if our estimator is not quite equal to the true value of the

unknown parameter, at least this is true “on average.” The problem here,

swept under the rug, is that, in a typical case, there is no long run aver-

age to talk about, that is, the process of estimation of the same unknown

constant is not repeated by collecting a long sequence of isomorphic data

sets.

Overall, applications of the frequency interpretation of probability are

limited in classical statistics to a few elementary examples, and some con-

fusion surrounding expectation.
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Chapter 7

The Subjective Philosophy of

Probability

“Motion does not exist.” Zeno of Elea (c. 450 B.C.)

“Probability does not exist.” Bruno de Finetti (c. 1950 A.D.)

The subjective theory of probability is by far the most confused theory

among all scientific, mathematical and philosophical theories of probability.

This is a pity, because several beautiful and interesting ideas went into its

construction (no sarcasm here). A lesson for thinkers is that even the most

innovative and promising ideas may lead to an intellectual dead end.

My main complaint is that de Finetti’s theory is utterly unscientific, just

as that of Zeno. The failure of many scientists to notice that the subjective

theory is unscientific is as striking as the failure of the theory itself. Much

of this chapter is devoted to the discussion of “technical” problems with

de Finetti’s theory. De Finetti also made a striking philosophical error.

A major philosophical challenge in the area of probability is to find a link

between subjective human beliefs and objective reality. People may be right

or wrong when they say that the probability of heads is 1/2 when you toss

a coin. De Finetti’s theory of consistency fails to explain why they think

that the probability of heads is 1/2.

7.1 The Smoking Gun

This section is analogous to Sec. 5.1 in that I will argue that my extreme

interpretation of de Finetti’s theory is the only interpretation compatible

with the most prominent technical part of that theory—the decision theo-

retic foundations.

131
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An axiom in the mathematical theory of probability says that if we

have two events A and B that cannot occur at the same time and C is

the event that either A or B occurs, then the probability of C is equal to

the sum of the probabilities of A and B. In symbols, the axiom says that

P (A ∪ B) = P (A) + P (B) if P (A ∩ B) = ∅. The Central Limit Theorem,

a much more complicated mathematical assertion, is another example of a

probabilistic statement (see Sec. 14.1.1).

A standard way to verify scientific statements such as F = ma, one of

Newton’s laws of motion, is to measure all quantities involved in the state-

ment and check whether the results of the measurements satisfy the math-

ematical formula. In the case of Newton’s law, we would measure the force

F , mass m and acceleration a. It is important to remember that it is im-

possible to check the law F = ma in all instances. For example, we cannot

measure at this time any physical quantities characterizing falling rocks on

planets outside of our solar system. Moreover, scientific measurements were

never perfect, and perfection was never a realistic goal, even before quan-

tum mechanics made the perfect measurement theoretically unattainable.

If the statements that P (A∪B) = P (A) + P (B) for mutually exclusive

events A and B, and the Central Limit Theorem, are scientific laws then

the course of action is clear—we should measure probability values in the

most objective and accurate way in as many cases as is practical, and

we should check whether the values satisfy these mathematical formulas,

at least in an approximate way. It has been pointed out long time ago

by David Hume that, on the philosophical side, this procedure cannot be

considered a conclusive proof of a scientific statement. However, verifying

probability statements in this way would put them in the same league as

other scientific statements.

Instead of following the simple and intuitive approach described above,

de Finetti proposed to derive probability laws from postulates represent-

ing rational decision making (see page 87 of [de Finetti (1974)] for the

Dutch book argument). He proposed to limit rational decision strategies

to a family nowadays referred to as “consistent” or “coherent” strategies.

And then he showed that choosing a consistent decision strategy is mathe-

matically equivalent to choosing a probability distribution to describe the

(unknown) outcomes of random events. This seems to be an incredibly

roundabout way to verify the laws of probability. Would anyone care to

derive Newton’s laws of motion from axioms describing rational decision

making? There is only one conceivable reason why de Finetti chose to de-

rive probability laws from decision theoretic postulates—he did not believe
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that one could measure probabilities in a fairly objective and reliable way.

This agrees perfectly with his famous (infamous?) claim that “Probability

does not exist.” His claim is not just a rhetorical slogan—it is the essence

of de Finetti’s philosophy.

De Finetti made a very interesting discovery that probability calculus

can be used to make desirable deterministic predictions. He also declared

that objective probability does not exist. The two philosophical claims

are logically independent but the first one is truly significant only in the

presence of the second one.

7.2 How to Eat the Cake and Have It Too

It is clear from the way de Finetti presented his theory that he wanted to eat

the cake and have it too. On one hand, it appears that he claimed that the

choice of probability values should be based on the available information

about the real world, and on the other hand he vehemently denied that

probability values can be chosen or verified using objective evidence, such

as symmetry or frequency.

On page 111, Chap. II, of his essay in [Kyburg and Smokler (1964)],

he approvingly writes about two standard ways of assigning probabilities—

using symmetry and using long run frequencies. However, he does not invest

these methods with any objective meaning. In this way, he is absolved from

any philosophical responsibility to justify them. This magical trick can

be used to provide philosophical foundations of any theory, for example,

the theory of gravitation. On one hand, one can take a vaguely positive

view towards Einstein’s equations for gravitation. At the same time, one

can declare that the available evidence of gravitation’s existence is not

sufficiently objective and scientific.

De Finetti has this to say about symmetry (page 7 of [de Finetti (1974)]):

[...] let us denote by O statements often made by objectivists,
and by S those which a subjectivist (or, anyway, this author)
would reply.

O: Two events of the same type in identical conditions for all the
relevant circumstances are ‘identical’ and, therefore, necessarily
have the same probability.

S: Two distinct events are always different, by virtue of an infi-
nite number of circumstances (otherwise how would it be pos-
sible to distinguish them?!). They are equally probable (for an
individual) if—and so far as—he judges them as such (possibly
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by judging the differences to be irrelevant in the sense that they
do not influence his judgment).

On the philosophical side, de Finetti dismissed any connection between

objective symmetry and probability. On the scientific side, he discussed fair

coin tosses in Chap. 7 of [de Finetti (1975)]. One can compare de Finetti’s

book to a treatise on tuberculosis, in which the author asserts early in the

book that eating garlic has no effect on tuberculosis, but later writes several

chapters on growing, buying and cooking garlic.

De Finetti defined “previsions” as follows ([de Finetti (1974)], page 72):

Prevision, in the sense we give to the term and approve of
(judging it to be something serious, well founded and necessary,
in contrast to prediction), consists in considering, after careful
reflection, all the possible alternatives, in order to distribute
among them, in the way which will appear most appropriate,
one’s own expectations, one’s own sensations of probability.

Later in the book, de Finetti makes these remarks on the relationship

between “previsions” and observed frequencies ([de Finetti (1974)], page

207):

Previsions are not predictions, and so there is no point in
comparing the previsions with the results in order to discuss
whether the former have been ‘confirmed’ or ‘contradicted’, as
if it made sense, being ‘wise after the event’, to ask whether
they were ‘right’ or ‘wrong’. For frequencies, as for everything
else, it is a question of prevision not prediction. It is a question
of previsions made in the light of a given state of information;
these cannot be judged in the light of one’s ‘wisdom after the
event’, when the state of information is a different one (indeed,
for the given prevision, the latter information is complete: the
uncertainty, the evaluation of which was the subject under dis-
cussion, no longer exists). Only if one came to realize that there
were inadequacies in the analysis and use of the original state
of information, which one should have been aware of at that
time (like errors in calculation, oversights which one noticed
soon after, etc.), would it be permissible to talk of ‘mistakes’ in
making a prevision.

De Finetti’s “prevision” is a family of probabilities assigned to all pos-

sible events, that is, a (prior) probability distribution. De Finetti claimed

that the prior distribution cannot be falsified by the data, and neither can

it be confirmed by the data. Hence, according to de Finetti, the scientific

(practical) success of theories of Markov processes and stationary processes,
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presented in Chap. 9 of [de Finetti (1975)], was never “confirmed” by any

observations. Just like von Mises (see Sec. 5.2), de Finetti had no choice

but to be (logically) inconsistent, in the sense that he endorsed models for

which, he claimed, was no empirical support.

I will now go back to the question of my interpretation of de Finetti’s

theory. De Finetti made some conspicuous and bold statements, for exam-

ple, he fully capitalized and displayed at the center of the page his claim

that “Probability does not exist” (page x of [de Finetti (1974)]). He also

called this claim “genuine” in the same paragraph. On the other hand, he

used language that I find greatly ambivalent and confusing. For example,

in the dialog between “O” and “S” quoted above, S seems to reject in the

first sentence the idea that there exist objective symmetries that would ne-

cessitate assigning the same probability value to two events. However, in

the second sentence, de Finetti uses the phrase “he judges” in reference to

“events ... equally probable.” Very few people would interpret the phrase

“he judges” as saying that an individual can assign probabilities in an arbi-

trary way, as long as they satisfy Kolmogorov’s axioms. So de Finetti seems

to suggest that probabilities should be chosen using some information about

the real world.

I have chosen to interpret de Finetti’s theory as saying that probabilities

can be chosen in an arbitrary way, as long as they satisfy the usual math-

ematical formulas. I consider this the only interpretation consistent with

the most significant elements of de Finetti’s theory. Looking into the past,

he asserted that there is no objective symmetry that can be used to find

probabilities. Looking into the future, he claimed that observed frequencies

cannot falsify any prevision. Hence, a subjective probability distribution

may appear to be rational and anchored in reality to its holder, but no

other person can prove or disprove in an objective way that the distribu-

tion is correct. For all practical purposes, this is the same as saying that

probability distributions can be chosen in an arbitrary way.

I have already commented on logical inconsistencies in the dialog be-

tween O and S. The quote on the frequencies is similarly annoying because

it contains statements that nullify the original assertion. Suppose that at

the end of clinical trials, a subjectivist statistician concludes that the side

effect probability for a given drug is 2%. Suppose further that when the

drug is sold to a large number of patients in the general population, the

observed side effect rate is 17%. It would be very natural for the statistician

to review the original study. Suppose that he concludes that the original

estimate of 2% does not match the 17% rate in the general population be-



March 24, 2009 12:3 World Scientific Book - 9in x 6in Search4Certainty

136 The Search for Certainty

cause the patients in the clinical trials were unusually young. This seems

to fit perfectly into the category of “oversights” that de Finetti mentions

parenthetically. Hence, de Finetti’s supporters can claim that his theory

agrees well with scientific practice. De Finetti labeled as “oversight” every

case when the data falsify the prevision. In this way, he did not have to

treat the thorny philosophical issue of how frequencies falsify probability

statements—something to which Popper devoted many pages in [Popper

(1968)].

7.3 The Subjective Theory of Probability is Objective

The labels “personal probability” and “subjective probability” used for de

Finetti’s theory are highly misleading. His theory is objective and has

nothing to do with any personal or subjective opinions. De Finetti says

that certain actions have a deterministic result, namely, if you take actions

that are coordinated in a way called “consistent” or “coherent” then there

will be no Dutch book formed against you. This argument has nothing to

do with the fact that the decision maker is a person. The same argument

applies to other decision makers: businesses, states, computer programs,

robots and aliens living in a different galaxy.

In practice, probability values in de Finetti’s theory have to be chosen

by people but this does not make his theory any more subjective than

Newton’s laws of motion. A person has to choose a body and force to

be applied to the body but this does not make acceleration predicted by

Newton subjective. Newton’s claim is that the acceleration depends only

on the mass of the body and the strength of the force and has nothing to

do with the personal or any other way in which the body and force have

been chosen. Similarly, de Finetti’s predictions are objective. Even if a

broken computer chooses a consistent decision strategy by pure chance, de

Finetti’s theory makes an objective and verifiable prediction that no Dutch

book will be formed against the beneficiary of computer’s decisions.

This brings us to a closely related issue that needs to be clarified. In de

Finetti’s theory, one should talk about beneficiary and not decision maker.

The two can be different, for example, a computer can be the decision

maker and a human can be the beneficiary, or an employee can be the de-

cision maker and her employer can be the beneficiary. De Finetti’s analysis

makes predictions concerning the beneficiary. The decision maker is in the

background, he is almost irrelevant. The use of adjectives “personal” and
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“subjective” is misleading because it suggests that the decision maker is the

main protagonist of the theory. In fact, the theory is concerned exclusively

with predictions concerning the beneficiary.

De Finetti is sometimes portrayed as a person who tried to smuggle a

non-scientific concept (subjectivity) into science, like an alchemist or as-

trologer. Nothing can be further from the truth. De Finetti wanted to

purge all non-scientific concepts from science—he considered probability to

be one of them. De Finetti did not promote the idea that one should use

personal or subjective probability because doing so would be beneficial. He

was saying that choosing probabilities in a consistent way is necessary if

one wants to avoid deterministic losses. Choosing probabilities by applying

personal preferences is practical but there is nothing in de Finetti’s theory

that says that using any other way of choosing probabilities (say, using

computer software) would be less beneficial.

A chemist or engineer could propose a “theory of painting” by claiming

that “painting a wooden table increases its durability.” The following prac-

tical choices have no effect on his prediction: (i) the color of the paint, (ii)

the gender of the painter, (iii) the day of the week. De Finetti made a sci-

entific and verifiable prediction that you can avoid a Dutch book situation

if you use probability. The following choices have no effect on de Finetti’s

prediction: (i) the probability values (as long as they satisfy Kolmogorov’s

axioms), (ii) the gender of the decision maker, (iii) the day of the week. De

Finetti’s theory is no more subjective than the “theory of painting.”

7.4 A Science without Empirical Content

De Finetti’s theory fails one of the basic tests for a scientific theory of

probability—it does not report any probabilistic facts or patterns observed

in the past. I will illustrate this claim with some examples from physics

and probability.

Facts and patterns can be classified according to their generality. Con-

sider the following facts and patterns.

(A1) John Brown cut a branch of a tree on May 17, 1963, and noticed

that the saw was very warm when he finished the task.

(A2) Whenever a saw is used to cut wood, its temperature increases.

(A3) Friction generates heat.

(A4) Mechanical energy can be transformed into heat energy.

(A5) Energy is always preserved.
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I might have skipped a few levels of generality but I am sure that the

example is clear. Here are probabilistic counterparts of the above facts and

patterns.

(B1) John Brown flipped a coin on May 17, 1963. It fell heads up.

(B2) About 50% of coin flips in America in 1963 resulted in heads.

(B3) Symmetries in an experiment such as coin tossing or in a piece

of equipment such as a lottery machine are usually reflected by

symmetries in the relative frequencies of events.

(B4) Probabilities of symmetric events, such as these in (B3), are iden-

tical.

I consider the omission of (B4) from the subjective theory to be its fatal

flaw that destroys its claim to be a scientific theory representing probability.

I will examine possible excuses for the omission.

Some sciences, such as paleontology, report individual facts at the same

level of generality as (A1) or (B1) but I have to admit that the theory of

probability cannot do that. One of the reasons is that the number of indi-

vidual facts relevant to probability is so large that they cannot be reported

in any usable way, and even if we could find such a way, the current tech-

nology does not provide tools to analyze all the data ever collected by the

humanity.

The omission of (B2) by the subjective theory is harder to understand

but it can be explained. It is obvious that most people consider this type

of information useful and relevant. Truly scientific examples at the level

of generality of (B2) would not deal with coin tosses but with repeated

measurements of scientific constants, for example, the frequency of side

effects for a drug. It is a legitimate claim that observed patterns at this

level of generality belong to various fields of science such as chemistry,

biology, physics, etc. They are in fact reported by scientists working in

these fields and so there is no need to incorporate them into the theory of

probability. One could even say that such patterns do not belong to the

probability theory because they belong to some other sciences.

Finally, we come to (B3) and (B4). Clearly, these patterns do not belong

to any science such as biology or chemistry. If the science of probability

does not report these patterns, who will?

If you roll a die, the probability that the number of dots is less than 3

is 1/3; this is a concise summary of some observed patterns. Every theory

of probability reported this finding in some way, except for the subjective

theory. Needless to say, de Finetti did not omit such statements from his
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theory because he was not aware of them—the omission was a conscious

choice. De Finetti’s choice can be easily explained. If he reported any prob-

abilistic patterns, such as the apparent stability of relative frequencies in

long runs of experiments, his account would have taken the form of a “sci-

entific law.” Scientific laws need to be verified (or need to be falsifiable, in

Popper’s version of the same idea). Stating any scientific laws of probabil-

ity would have completely destroyed de Finetti’s philosophical theory. The

undeniable strength of his theory is that it avoids in a very simple way the

thorny question of verifiability of probabilistic statements—it denies that

there are any objectively true probabilistic statements. The same feature

that is a philosophical strength, is a scientific weakness. No matter how

attractive the subjective theory may appear to the philosophically minded

people, it has nothing to offer on the scientific side.

7.5 The Weakest Scientific Theory Ever

One of the most extraordinary claims ever made in science and philosophy

is that consistency alone is the sufficient basis for a science, specifically, for

the science of probability and Bayesian statistics. I feel that people who

support this claim lack imagination. I will try to help them by presenting

an example of what may happen when consistency is indeed taken as the

only basis for making probability assignments.

7.5.1 Creating something out of nothing

Dyslexia is a mild disability which makes people misinterpret written words,

for example, by rearranging their letters, as in “tow” and “two.” Let us con-

sider the case of Mr. P. Di Es, an individual suffering from a probabilistic

counterpart of dyslexia, a “Probabilistic Dysfunctionality Syndrome.” Mr.

P. Di Es cannot recognize events which are disjoint, physically independent

or invariant under symmetries, and the last two categories are especially

challenging for him. Hence, Mr. P. Di Es cannot apply (L1)-(L5) to make

decisions. Here are some examples of Mr. P. Di Es’ perceptions. He thinks

that the event that a bird comes to the bird feeder in his yard tomorrow

is not physically independent from the event that a new war breaks out in

Africa next year. At the same time, Mr. P. Di Es does not see any rela-

tionship between a cloudy sky in the morning and rain in the afternoon.

Similarly, Mr. P. Di Es has problems with sorting out which sequences
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are exchangeable. When he reads a newspaper, he thinks that all digits

printed in a given issue form an exchangeable sequence, including those in

the weather section and stocks analysis. Mr. P. Di Es buys bread at a

local bakery and is shortchanged by a dishonest baker about 50% of the

time. He is unhappy every time he discovers that he was cheated but he

does not realize that the sequence of bread purchases in the same bakery

can be considered exchangeable and so he goes to the bakery with the same

trusting attitude every day.

Some mental disabilities are almost miraculously compensated in some

other extraordinary ways, for example, some autistic children have excep-

tional artistic talents. Mr. P. Di Es is similarly talented in a very special

way—he is absolutely consistent in his opinions, in the sense of de Finetti.

Needless to say, a person impaired as severely as Mr. P. Di Es would be as

helpless as a baby. The ability of Mr. P. Di Es to assign probabilities to

events in a consistent way would have no discernible positive effect on his

life.

The example is clearly artificial—there are very few, if any, people with

this particular combination of disabilities and abilities. This is probably the

reason why so many people do not notice that consistency alone is totally

useless. Consistency is never applied without (L1)-(L5) in real life. It is

amazing that the subjective philosophy, and implicitly the consistency idea,

claim all the credit for the unquestionable achievements of the Bayesian

statistics.

7.5.2 The essence of probability

I will formalize the example given in the last section. First, it will be

convenient to talk about “agents” rather than people. An agent may be a

person or a computer program. It might be easier to imagine an imperfect

or faulty computer program, rather than a human being, acting just as Mr.

P. Di Es does.

Consider four agents, applying different strategies in face of uncertainty.

(A1) Agent A1 assigns probabilities to events without using the math-

ematics of probability, without using consistency and without us-

ing (L1)-(L5). He does not use any other guiding principle in his

choices of probability values.

(A2) Agent A2 is consistent but does not use (L1)-(L5). In other words,

he acts as Mr. P. Di Es does.
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(A3) Agent A3 uses (L1)-(L5) in his probability assignments but does

not use the mathematical rules for manipulating probability values.

(A4) Agent A4 applies both (L1)-(L5) and the mathematical theory of

probability (in particular, he is “consistent”).

Let me make a digression. I guess that agent A3 is a good representation

for a sizeable proportion of the human population. I believe that (L1)-(L5)

are at least partly instinctive and so they are common to most people but

the mathematical rules of probability are not easy to apply at the instinctive

level and they are mostly inaccessible to people lacking education. Whether

my guess is correct is inessential since I will focus on agents A1, A2 and

A4.

Before I compare the four agents, I want to make a comment on the in-

terpretation of the laws of science. Every law contains an implicit assertion

that the elements of reality not mentioned explicitly in the law do not mat-

ter. Consider the following example. One of the Newton’s laws of motion

says that the acceleration of a body is proportional to the force acting on

the body and inversely proportional to the mass of the body. An implicit

message is that if the body is green and we paint it red, doing this will not

change the acceleration of the body. (This interpretation is not universally

accepted—some young people buy red cars and replace ordinary mufflers

with noise-making mufflers in the hope that the red color and noise will

improve the acceleration of the car.)

It is quite clear that agents A1 and A4 lie at the two ends of spectrum

when it comes to the success in ordinary life, but even more so in science.

Where should we place agent A2? I have no doubt that A2 would have no

more than 1% greater success rate than A1. In other words, consistency

can account for less than 1% of the overall success of probability theory.

I guess that A3 would be about half-way between A1 and A4, but such a

speculation is not needed for my arguments.

Now I am ready to argue that the subjective theory of probability is

false as a scientific theory. The theory claims that probability is subjective,

there is no objective probability, and you have to be consistent. An im-

plicit message is that if you assign equal probabilities to symmetric events,

as in (L4), you will not gain anything, just like you cannot increase the

acceleration of a body by painting it red. Similarly, the subjective theory

claims that using (L3) cannot improve your performance. In other words,

the subjective theory asserts that agent A2 will do in life as well as agent

A4. I consider this assertion absurd.
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De Finetti failed in a spectacular way by formalizing only this part of

the probabilistic methods which explains less than 1% of the success of

probability—he formalized only the consistency, that is, the necessity of

applying the mathematical rules of probability.

I do not see any way in which the subjective science of probability can be

repaired. It faces the following alternative: either it insists that (L1)-(L5)

can give no extra advantage to people who are consistent, and thus makes

itself ridiculous by advocating Mr. P. Di Es-style behavior; or it admits

that (L1)-(L5) indeed provide an extra advantage, but then it collapses

into ashes. If (L1)-(L5) provide an extra advantage, it means that there

exists a link between the real universe and good probability assignments,

so the subjective philosophy is false.

The subjective philosophy is walking on a tightrope. It must classify

some decision families or probability distributions as “rational” and some

as “irrational.” The best I can tell, only inconsistent families of probabil-

ities are branded irrational. All other families are rational. Moving some

consistent families of decisions, that is, some probability distributions, to

the “irrational” category would destroy the beauty and simplicity of the

subjective philosophy. Leaving them where they are, makes the theory

disjoint from the scientific practice.

When designing a theory one can either choose axioms that are strong

and yield strong conclusions or choose axioms that are weak and yield few

conclusions. There is a wide misconception among statisticians concerning

the strength of de Finetti’s theory. The axioms of his theory are chosen

to be very weak, so that they are acceptable to many people. The price

that you have to pay for this intellectual choice is that the conclusions are

incredibly weak.

The widespread belief that de Finetti justified the use of subjective

priors in Bayesian statistics is based on a simple logical mistake, illustrated

by the following proof that number 7 is lucky. (i) The concept of “lucky”

does not apply to numbers. (ii) Hence, one cannot say that 7 is unlucky.

(iii) It follows that 7 is lucky. The corresponding subjectivist reasoning

is: (i) Probability does not exist, that is, prior probabilities are neither

correct nor incorrect. (ii) Hence, one cannot say that subjective priors are

incorrect. (iii) It follows that subjective priors are correct.
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7.6 The Subjective Theory Does Not Imply the Bayes The-

orem

This section is devoted to the most profound failure of the subjectivist

approach to probability. It is clear that the main claim to fame of the

subjective philosophy of probability is that it justifies the Bayesian statis-

tics. Many people agree that the philosophical and scientific status of the

(subjective) prior distribution is controversial. However, nobody seems to

question the validity of the claim that the subjective theory provides a solid

formal support for the use of the Bayes theorem in the analysis of statistical

data. It turns out that the subjective theory does not provide any justifi-

cation for the use of the Bayes theorem whatsoever—the widespread belief

that it does is based on a subtle but profound logical error. I will explain

the logical error in a series of examples and formal arguments, starting

with the most statistical and applied reasoning and progressing towards

more abstract proofs. I feel that I have to prove the same claim multiple

times and in multiple ways because, obviously, it was missed by genera-

tions of philosophers and statisticians, so it cannot be considered obvious

or easy to see. I have to say, though, that the logical error has the quality

of being “totally obvious, once you see it.” I have not seen this logical

mistake spelled out anywhere in print so I believe that its discovery is the

most substantial new philosophical contribution of this book. I have to say,

though, that I was lead to this discovery by the ideas presented in [Ryder

(1981)], as quoted in [Gillies (2000)], page 173. My idea involves bets made

at different times. Van Fraassen has an argument using bets made at dif-

ferent times in support of a different philosophical claim (see [van Fraassen

(1984)]).

The brief summary of the problem is the following. The essence of the

Bayesian statistics is the coordination of the prior and posterior beliefs (dis-

tributions), using the data and the Bayes theorem. In the subjective theory,

probability does not exist, so the subjectivist view is that the essence of

the Bayesian statistics is the coordination of decisions made before the data

are collected and decisions made after the data are collected. The essence

of the subjectivist postulates is identification of decision strategies that are

irrational, that is, inconsistent. The main problem with this approach to

statistics is the following.

A family of decisions made before the data are collected might be in-

consistent. A family of decisions made after the data are collected might
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be inconsistent. The two families of decisions cannot be inconsistent with

each other.

Hence, the subjectivist theory provides arguments in support of using

probability to identify rational families of decisions that can be made before

collecting data. Similarly, one can use subjectivist arguments to conclude

that probability should be used to identify rational families of decisions

after the data are collected. The subjectivist philosophy does not provide

any arguments that would justify coordinating the probability distributions

used before and after the data are collected. There is no justification for

the use of the Bayes theorem in the subjective theory.

Much of the analysis of the subjective theory is focused on the meaning

of consistency, mainly on the question of whether all consistent decision

strategies are equally acceptable. On the other hand, it is almost uni-

versally assumed that inconsistent decision strategies are unacceptable, in

every conceivable sense, subjective and objective alike. Hence, some people

believe that although de Finetti’s treatment of consistent decision strategies

might be incomplete, at least he successfully identified irrational, that is,

inconsistent strategies. It turns out that the class of inconsistent strategies

does not contain any strategies of interest to statisticians. If you believe

that the most constructive and persuasive part of de Finetti’s theory says

that “inconsistent strategies should be eliminated” then you should know

that in the context of Bayesian statistics, de Finetti’s theory says that

“nothing should be eliminated.”

I will rephrase the above claims and provide more details in the following

subsections, starting with “applied” examples.

7.6.1 Sequential decisions in statistics

My first presentation of the fundamental incompatibility of the subjectivist

axioms and Bayesian statistics is the most statistical in character among

all my arguments in support of this claim.

Consider the following simple sequential decision problem involving sta-

tistical data. Suppose that a doctor prescribes a dose of a drug to patients

with high blood pressure in his care. For simplicity, I will assume that each

patient receives only one dose of the drug and patients come to the doctor

sequentially. The doctor records three pieces of data for each patient—the

dose of the drug and the blood pressure before and after the drug is taken.

The drug is a recent arrival on the market and the doctor feels that he has

to learn from his observations what doses are best for his patients.
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The standard Bayesian analysis of this problem is the following. The

doctor should start with a prior distribution describing his opinion about

the effect of the drug on patients with various levels of blood pressure. As

he collects the data, he should use the Bayes theorem to update his views,

hence generating a new posterior distribution after each patient. This new

posterior distribution should be used to determine the best drug dose for

the next patient.

Let us examine the subjectivist justification for the above procedure.

According to the subjectivists, objective probability does not exist but

one can use the probability calculus to distinguish between consistent and

inconsistent strategies. A decision strategy is consistent if and only if it

is represented by a probabilistic view of the world. The Bayes theorem is

a part of the probability calculus so one should apply the Bayes theorem

when some new data are collected.

It turns out that in the above example every decision strategy applied by

the doctor can be represented using a probabilistic prior. The proof of this

claim is rather easy, similar to some well known constructions, such as Tul-

cea’s theorem on Markov processes ([Ethier and Kurtz (1986)], Appendix

9). Hence, all strategies available to the doctor are consistent in the subjec-

tivist sense. It follows that the doctor does not have to do any calculations

and can prescribe arbitrary doses of the drug to his patients—whatever he

does, he is consistent.

Of course, no Bayesian statistician would suggest that the doctor should

abandon the Bayes theorem. This shows that whatever it is that Bayesians

are trying to achieve in cases like this, it has absolutely nothing to do with

de Finetti’s commandment to avoid inconsistency.

In my example, at every point of time, there are no decisions to be

coordinated in a consistent way (because there is only one decision) and the

doctor has the total freedom of choice. If the doctor had to make several

decisions between any two batches of data, he would have to coordinate

them in a consistent way but the same mathematical argument would show

that the doctor would not have to coordinate decisions made at different

times.

7.6.2 Honest mistakes

Another practical illustration of the same logical problem inherent in the

subjectivist philosophy involves our attitude to past mistakes.
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Suppose that some investors can buy stocks or bonds only once a day.

Assume that they receive new economic and financial information late in

the day, too late to trade on the same day. Consider three investors whose

priors may be different but the following is true for each one of them. The

prior and the information that arrived on Sunday night are such that for

any information that may become available on Monday night, the following

strategies are consistent: (i) buy stocks on Monday and buy stocks on

Tuesday, or (ii) buy bonds on Monday and buy bonds on Tuesday. It is

inconsistent to (iii) buy stocks on Monday and buy bonds on Tuesday, or

(iv) buy bonds on Monday and buy stocks on Tuesday.

Suppose that Investor I buys some bonds on Monday and some bonds

on Tuesday. He is consistent and rational. Investor II wants to buy stocks

on Monday but his computer malfunctions and he ends up buying bonds

on Monday. On Tuesday, the same investor realizes that a mistake was

made by the computer program on the previous day. He considers this an

accidental loss and buys stocks on Tuesday, in agreement with his original

investment strategy. Investor II could have followed the example of Investor

I and he could have bought bonds on Tuesday—that would have made his

investments consistent.

Investor III buys some bonds on Monday and buys some stocks on

Tuesday, although he knows very well that this is an inconsistent strategy.

He confides to a friend that he bought stocks on Tuesday because he was

bored of buying bonds every day.

The actions taken by Investors II and III are identical but most people

would brand Investor II rational and Investor III irrational. It is hard

to see how the subjective theory can justify ignoring mistakes, that is,

the behavior illustrated by Investor II above. The subjective philosophy

says that being consistent is objectively good and being inconsistent is

objectively bad. What practical benefits can Investor II reap that would

not apply to Investor III, who is blatantly irrational and inconsistent but

takes the same actions as Investor II?

An objectivist would have no problem analyzing the “mistake” made

on Monday. A mistake is a situation when an action taken on Monday

is incompatible with the objective probabilities. In the objectivist view, a

mistake can be discovered on Monday, on Tuesday, at some later time, or

never. After the discovery of the objective mistake, all new actions have

to take into account the true objective probabilities (and results of all past

actions, including the errors).
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Mistakes are made not only by computers but also by humans, needless

to say. Suppose that Investor II mistakenly bought some bonds on Monday

for one of the following reasons:

(a) he read a newsletter and missed the crucial word “not” in a sen-

tence;

(b) he did some calculations in his mind but made a mistake in them;

(c) he was angry at a person handling stock transactions and so he

bought some bonds instead of stocks.

Not everybody would consider (c) a “good excuse” but I think that most

people would agree that if (a), (b) or (c) happened, then it is a rational

course of action for Investor II to buy stocks on Tuesday. Now consider the

following possible causes of the mistaken purchase of bonds on Monday:

(d) headache;

(e) not sufficient attention to detail;

(f) poor judgment.

The reasons for the mistake become more and more vague as we move down

the list. The last item, “poor judgment,” is so general that it applies to

practically every situation in which a decision maker is unhappy with one

of his actions taken in the past. If we accept (f) as a good excuse and

we commend Investor II for buying stocks on Tuesday because he came

to the conclusion that buying bonds on Monday was a “poor judgment,”

then we effectively nullify any subjectivist justification for the consistency

of decision making before and after collecting data. It seems that we have

to draw the line somewhere, but where should be the line?

7.6.3 The past and the future are decoupled

The system of subjectivist postulates is a scientific theory, see Sec. 7.3. I will

propose and discuss a different formulation of the subjectivist postulates in

this section.

How can we justify the subjectivist postulates using scientific observa-

tions? The postulates say that one should avoid certain decision choices

that most people would regard as “irrational.” Why do we feel that the

“bad” choices are irrational and that they should be rejected? A good jus-

tification is that if we do not follow the postulates then in some practical

situations we will be confused—different beliefs in our system of beliefs will

push us in different directions. If we believe that action A is strictly better
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than action B and action B is strictly better than action A then we will

be paralyzed when we have to choose between the two actions. A good

way to visualize the postulates is to imagine a computer program. Suppose

that a piece of software is designed to take some actions on our behalf, for

example, a computer program may invest some of our savings in stocks or

government bonds or corporate bonds. Suppose further that the instruc-

tions in this program say that stocks are strictly preferable to government

bonds, that government bonds are strictly preferable to corporate bonds

and that corporate bonds are strictly better than stocks. It should be clear

to anyone having even minimal experience with computer programming

that this program will malfunction. It is hard to say what the computer

will do but one thing is absolutely clear—the computer cannot execute all

instructions listed in the code. This gives us means of representing the

subjectivist axioms as verifiable scientific statements.

If we program a computer using the subjectivist axioms, the computer

will execute one of the instructions and will not malfunction (this does

not imply that the action taken by the computer will result in a positive

gain). On the other hand, if the computer program is inconsistent, in the

sense that it violates one of the subjectivist postulates, then under some

conditions the program will malfunction, that is, it will not execute some

of the instructions that the code says it should execute. These claims

are testable just like any other scientific theory. One can write various

computer programs, some following the subjectivist postulates, and some

violating some of the postulates. Then one can collect the output of the

programs and check whether programs properly executed all instructions in

the code. Needless to say, nobody is likely to perform the actual experiment

as nobody would doubt its outcome.

I stop to make a technical digression. Most of the subjectivist postulates

are easy to interpret as rules that ensure that a computer program will not

malfunction. For example, Assumption SP1 of [DeGroot (1970)], page 71,

effectively says that given two possible actions, the program must have

either a strict preference for the first one, or a strict preference for the

second one, or should treat both actions as equally desirable. Assumption

SP2 is more complicated but one can translate it into the language of

computer programs quite easily. Suppose that events A1 and A2 cannot

occur at the same time. Likewise, assume that B1 and B2 cannot occur at

the same time. Suppose that the computer has to decide what to do with

four tickets, each resulting in the same prize under some circumstances.

Ticket a1 entitles the holder to a prize if and only if A1 occurs. Similarly,
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a2 entitles the holder to a prize if and only if A2 occurs, and the same holds

for b1 and B1, and b2 and B2. Assumption SP2 says that if the computer

program prefers holding b1 to a1 and b2 is preferable to a2, then holding b1

and b2 is preferable to holding a1 and a2. It is perhaps best to see what can

happen when a computer program does not implement Assumption SP2,

that is, if it tries to act according to the beliefs that holding b1 is better

than holding a1, b2 is preferable to a2, and holding a1 and a2 is preferable

to holding b1 and b2. Suppose that the computer owns both tickets a1 and

a2. Then the program will exchange a1 for b1, then it will exchange a2 for

b2, then it will exchange b1 and b2 for a1 and a2, and then it will repeat

this three-step process infinitely many times. Hence, Assumption SP2 can

be interpreted as a condition that prevents a computer from going into an

infinite loop under some circumstances. I will not try to translate other

elements of DeGroot’s formal theory in [DeGroot (1970)] to the language

of computer programming—this can be safely left to the reader because

this task is not more complex than the above example.

In statistics, the subjectivist ideas are used to justify the transforma-

tion of the prior distribution into the posterior distribution, using the data

and the Bayes theorem. Let us imagine that the prior distribution en-

codes a consistent decision strategy on Monday, the data are collected on

Tuesday and the posterior distribution encodes the decision strategy used

on Wednesday. The prior distribution is further encoded as a computer

program taking actions on Monday. The posterior distribution determines

decisions made by the computer on Wednesday. It is now clear that the

programs used on Monday and Wednesday need not be related in any way.

If we want to avoid malfunctions of the computer programs on both days,

we can write one program for Monday that follows a consistent strategy and

another program for Wednesday following a consistent strategy but there

is no need to coordinate the two programs in any way. This statement

can be scientifically tested in the way described earlier. In terms of statis-

tics, this means that every consistent posterior distribution is consistent

with any consistent prior distribution. The subjectivist postulates implic-

itly tell statisticians that they can completely ignore the data and choose

any consistent posterior distribution. In particular, the Bayes theorem is

completely useless from the subjectivist point of view.

The above claims are obviously counterintuitive to most Bayesian statis-

ticians so I will try to make them more palatable. It happens on some

occasions that a scientist has no available data. In reality, we constantly

collect enormous amounts of data, for example, by observing our surround-



March 24, 2009 12:3 World Scientific Book - 9in x 6in Search4Certainty

150 The Search for Certainty

ings with our own eyes. So “no data” really means that all available data

are independent from the future events that we are trying to predict. The

prior distribution is determined by the events observed in the past, on

Monday and before, and our personal beliefs. It is consistent, in the sense

of subjectivist axioms, to believe that all future events (those on Tuesday

and later) are independent from the events observed in the past, although

it is not a popular scientific model for the universe. Hence, the data col-

lected on Tuesday will be the only relevant basis for the decisions made

on Wednesday because all information collected on Monday or earlier will

not enter the usual Bayesian calculations. Hence, the posterior, that is, the

decision strategy for Wednesday, need not be coordinated at all with the

prior, that is, the decision strategy for Monday. For any pair of prior and

posterior distributions, if each one of them is consistent separately, then

the pair forms a consistent system of probabilistic beliefs. Note that my

claim is not that there is anything good about such a strategy, only that

the subjectivist postulates do not brand it inconsistent.

Another explanation of the problem involves a look at the subjectivist

postulates from the point of view of a computer program. The postulates

involve a comparison of or choice between some actions. Suppose that I and

J stand for distinct pieces of information stored in the computer memory.

Suppose that at any fixed time, the computer memory can either contain

information I or J but not both. A computer program may compare

actions in real time, that is, it may compare various actions given the same

information. A computer can effectively choose between action A given

information I and action B given information I. There does not exist an

operational meaning of a “choice between action A given information I and

action B given information J .” A little bit more practical version of the

same statement is that “you cannot choose between action A given what

you know on Monday, and action B given what you know on Wednesday.”

7.6.4 The Dutch book argument is static

Recall the Dutch book argument from Sec. 2.4.4. It is a scientific represen-

tation of subjectivist axioms because it makes verifiable predictions. The

scientific claim is that if you adopt a consistent decision strategy then a

Dutch book will never be formed against you. The essential detail of this

scientific claim, totally overlooked by subjectivists, is that the Dutch book

argument refers only to bets made at the same time. In other words, if you

are consistent and if someone offers several bets to you then you will choose
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only some of these bets and there will be no Dutch book. The argument

completely fails in the statistical setting.

Before I go into technical explanations, I want to clarify a certain is-

sue concerning the meaning of the Dutch book argument. I have already

pointed out in Sec. 2.4.4 that the essence of the Dutch book argument is

that one can achieve a deterministic and empirically verifiable goal using

probability calculus, without assuming anything about existence of objec-

tive probabilities. I want to avoid a pointless discussion of whether the

idea of the Dutch book can or cannot be applied in the presence of data,

or whether the transformation of the prior distribution into the posterior

distribution somehow modifies the essence and meaning of the Dutch book

argument. In this section, when I use the term “Dutch book argument,”

the only thing that I have in mind is the ability of a decision maker to

achieve a deterministic goal. The Dutch book argument shows explicitly

one particular desirable deterministically achievable goal. I will argue that

de Finetti’s theory fails because in the presence of data, the Bayes theorem

does not help to achieve any new deterministic goals (in addition to those

that are already achievable). My claim applies to new deterministic goals

related to the Dutch book argument and any other deterministic goals.

Consider the following simple example. Suppose that Susan is shown

two urns, the first one with two white balls and one black ball, and the

other with two black balls and one white ball. Someone tosses a coin

without showing it to Susan and notes the result on a piece of paper. It is

natural for Susan to assume that the result of the coin toss is heads with

probability 1/2. Susan is offered and accepts the following bet (Bet I) on

the result of the coin toss. She will collect $8 if the result is tails; otherwise

she will lose $7. Then someone looks at the result of the coin toss and

samples a ball from the first urn if the result is heads; he samples a ball

from the other urn otherwise. Suppose Susan is shown a white ball but she

is not told which urn the ball came from. The Bayes theorem implies that

the posterior probability of heads is 2/3. Susan is now offered and accepts

a bet (Bet II) that pays $6 if the result of the coin toss is heads; otherwise

she loses $9. A Dutch book has been formed against Susan because she

accepted both bets—no matter what the result of the coin toss was, she

will lose $1 once the result is revealed. A simple way for Susan to avoid a

Dutch book would have been to take 1/2 as the probability of heads, before

and after observing the color of the sampled ball.

The decision strategy used by Susan follows the standard Bayesian lines.

The example shows that the Dutch book can be formed against a Bayesian
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statistician, in the sense, that after making bets based on the prior and

posterior distributions, the loss will be certain. The Dutch book argument

shows that the consistent prior will protect the statistician against certain

loss if she makes bets based only on the prior distribution. Similarly, if

her posterior is consistent, she will be protected against certain loss if she

makes bets based only on the posterior distribution. Note that if she wants

to achieve these two decision theoretic goals, she does not have to coordinate

the prior and posterior distributions in any way. In particular, she does not

have to use the Bayes theorem. However, when she makes bets based on

both prior and posterior distributions, she may find herself in a situation

when she is certain that she will lose money. Hence, the Bayesian approach

to statistical decision making does not protect a statistician from finding

herself in a Dutch book situation. Clearly, Bayesian statisticians believe

that their method is beneficial but whatever that benefit might be, it is

not the protection against situations in which the loss is certain. Let me

repeat that, curiously, the Bayesian statistician could avoid the danger of

the Dutch book in a simple way, by not changing her prior distribution. I

do not see how one can justify the “irrational” behavior of changing the

prior distribution to the posterior distribution, and so exposing oneself to

the Dutch book, without resorting to some “objective” argument. If we

assume that there is no objective probability, why is it rational or beneficial

for Susan to accept both bets?

I will now try to relate the Dutch book argument to the argument

based on computer programming described in the previous subsection. The

crucial elements of the last example are ordered in time as follows.

Bet I −→ Arrival of data −→ Bet II −→ Dutch book (?)

−→ Observation of the event and payoff of bets

Bets I and II are offered before the relevant event (coin toss result)

can be observed—otherwise they would not be bets. The sole purpose

of the probability theory, according to the Dutch book interpretation of

the subjective theory, is to coordinate bets so that no Dutch book is ever

formed, that is, the bets are consistent. The subjective theory claims that

this goal is indeed attainable. The theory goes on to say that after the

arrival of data, the Bayes theorem must be used to coordinate Bets I and

II to achieve the goal of consistency, that is, to avoid a Dutch book. In

my example, a Dutch book is formed if the Bayes theorem is applied. This

proves that an application of the Bayes theorem yields a contradiction in

the subjective theory.
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The Dutch book argument in support of consistency (and, therefore, in

support of using probability to express one’s opinions) is static in nature—

the probabilities are assumed to be immutable. Statistics is a naturally

dynamic science—the assessment of probabilities keeps changing as the data

accumulate.

Suppose that someone brings a deformed coin to a subjectivist and

proposes the following game. The coin will be tossed and if it comes up

heads, the subjectivist will receive $10, otherwise he will lose $10. The

subjectivist can (but does not have to) toss the coin up to 100 times before

playing the game. A consistent strategy for the subjectivist is not to toss

the coin before the game and to accept the terms of the game and play. To

see that this is a consistent strategy, consider the following prior. All tosses

are independent, the probability of heads is 50% on the first 100 tosses and

90% on the 101-st toss. This shows that subjectivist Bayesian statisticians

do not have to collect data. In terms of the Dutch book argument, it is

clear that if a subjectivist statistician decides not to collect any data then

this action does not create any additional opportunities to generate a Dutch

book against him. Since all statisticians would choose to collect data under

all circumstances (assuming that the costs are not prohibitive), de Finetti’s

theory fails completely to explain statistics.

7.6.5 Cohabitation with an evil demiurge

A good way to visualize the futility of the subjectivist philosophy of decision

making in the presence of data is to use a concept that we are all more or

less familiar with—a supernatural being. Imagine a world governed by an

evil demiurge bent on confusing people and making their lives miserable.

The demiurge changes the laws of nature in arbitrary and unpredictable

ways. Sometimes he announces the timing and nature of changes. Some-

times he cheats by making false announcements, and sometimes he makes

changes without announcing them. Some of the changes are permanent, for

example, he changed the speed of light at some point. Some changes are

temporary, for example, coffee was a strong poison for just one day. Some

changes may affect only one person, for example, John Smith was able to

see all electromagnetic waves with his own eyes for one year, but nobody

else was affected similarly.

In a universe governed by the evil demiurge, no knowledge of the past

events can be used to make a deterministic prediction of any future events.

Likewise, statistical predictions do not have the same value as in our uni-
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verse. For example, the demiurge once changed the properties of a new

drug developed by a pharmaceutical company. The drug had been 80%

effective in medical trials but it became 1% effective when the company

started selling it.

The idea of a world with an evil demiurge is very similar to an an idea

of a chaotic and unpredictable world invented by David Hume as a part of

an argument exposing a logical weakness of the principle of induction. One

may doubt whether any science could have been developed in a universe

without any stable laws of nature but I will not pursue this question. In-

stead, I will analyze the subjectivist strategy in that uncooperative world.

Given any past observations, the future may take any shape whatsoever.

People living in that strange world may have a great variety of opinions

about the future and it is hard to argue that one opinion is more rational

than another because the demiurge is completely unpredictable from the

human point of view. Consistency (in de Finetti’s sense) does place re-

strictions on families of probabilistic opinions and decision strategies. But

consistency does not place any restriction on the relationship between fu-

ture events and past observations in that world—anything can happen in

the future, no matter what happened in the past. Hence, Bayesian statis-

ticians may choose arbitrary posterior distributions without need to use

the Bayes theorem. Some Bayesian statisticians may choose to use the

Bayes theorem to coordinate their prior and posterior distributions accord-

ing to the standards of Bayesian statistics. However, their efforts cannot

be empirically verified in a universe governed by an evil and unpredictable

demiurge. Even if some past observations support the Bayesian approach,

the demiurge may manipulate the nature in such a way that all future

Bayesian decisions will lead to huge losses.

It is obvious that Bayesian statisticians believe that the past perfor-

mance of the Bayesian methods in our universe is excellent. Yet the sub-

jective philosophy does not make any argument that is specific to our uni-

verse, which would not apply to the universe governed by an evil demiurge.

Bayesian statistics would be useless in that strange universe but it is not

useless in ours. De Finetti failed to notice that consistency is blind to the

stability of the laws of nature. This stability is the foundation of statistics

just as it is the foundation of all science. Statistics that does not acknowl-

edge the stability of the laws of nature is an empty shell of a theory.
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7.6.6 The Bayes theorem is unobservable

More accurately, I will argue that the failure to apply the Bayes theo-

rem cannot be inferred from the observations of decisions and their conse-

quences. This is logically equivalent to our inability to detect those cases

when the Bayes theorem was applied.

Consider a situation when our views are changed dramatically by the

data. Here are some examples.

(i) The data show that our prior distribution was based on a mistake.

In other words, the “data” are the discovery of an error underlying

our prior beliefs. For example, a number printed in a book was a

typographical error.

(ii) A natural disaster hits an area and this dramatically influences

consumer sentiments and choices. A local business may have to

substantially revise its business plan.

(iii) A new technological discovery makes a device obsolete and forces

a company to completely revise its investment strategy.

Suppose that you learn that a decision maker took actions A1,A2,A3, . . .

before the data were collected and these actions were consistent. Suppose

that the same decision maker took actions B1,B2,B3, . . . after the data were

collected and these actions were also consistent. In practice, it is impossible

to determine that the whole family of actions A1,A2,A3, . . . ,B1,B2,B3, . . . ,

is irrational because some extremely unusual event might have forced the

decision maker to change the decision strategy. The change might have

been made according to the Bayesian rules of inference.

By definition of consistency, actions A1,A2,A3, . . . were based on some

information formally expressed as a prior distribution P1. Since the actions

B1,B2,B3, . . . were also consistent, they also corresponded to some proba-

bility posterior distribution P2. Strictly speaking, from the mathematical

point of view, data cannot change any prior distribution P1 into an arbi-

trary posterior distribution P2. But such a transformation is possible with

accuracy that is “sufficient for all practical purposes” (see the next section

for a mathematical argument). For example, if one discovers a mistake,

as in (i) above, then practically any prior “false” distribution P1 can be

replaced with an arbitrary posterior “true” distribution P2.

The argument does not need to invoke “mistakes,” as in (i). The defi-

nition of “rationality” implicitly assumes that a rational person is willing

to change her mind on any subject, given sufficiently convincing empirical
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evidence. In Popper’s view of science, only falsifiable statements can be

considered scientific. Similarly, it is hard to call two probabilistic views of

future events “rational” if their holders will never agree on one of the views,

no matter what the empirical evidence is.

7.6.7 All statistical strategies are Bayesian

In this section, I will present the most formal (and boring) version of my

argument showing that the subjectivist postulates fail to justify the use

of the Bayes theorem. The following argument is somewhat technical so

it is intended for readers who have some background in probability, at

least at the elementary level. To simplify the argument, I will make some

assumptions—I do not think that they are very restrictive. The argument

will be divided into logical steps using, among other things, subjectivist

claims.

(i) Probability does not exist as an objective quantity.

(ii) One should adopt a set of axioms specifying “consistent” decisions

strategies.

(iii) Although probability does not exist, one can use the calculus of

probability to identify consistent strategies. A mathematical the-

orem shows that, informally speaking, a decision strategy is con-

sistent if and only if it can be represented as the maximization of

expected utility using some probabilistic view of the world.

(iv) Suppose that a decision maker knows that a set of data will be

collected, some decisions will be made before the data are collected,

and some other decisions will be made after the data are collected.

(v) Suppose that the decision maker chose a consistent decision strat-

egy D1 for the decisions to be made before the data are collected.

The strategy can be represented by a probability distribution P ,

but P encodes also the decision choices made after the data are

available.

(vi) I assume that the decision maker can perform an auxiliary experi-

ment, say, a toss of a coin, that does not affect any decisions that

are relevant. In other words, the toss is represented under the

probability distribution P as an experiment independent of all the

relevant events.

(vii) Suppose that after collecting the data and recording the result of

the toss of the coin, the decision maker chooses an arbitrary de-
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cision strategy D2 that is self-consistent but may have no relation

whatsoever to the prior decision strategy represented by P .

(viii) The posterior strategy D2 can be represented as the maximization

of expected utility under a probability measure Q, because it is

consistent.

(ix) I will now modify the probability distribution P describing all the

future events, where “future” is relative to the information known

before the data are collected and the coin is tossed. Suppose that

the result of the toss was heads. The new probability distribution

P1 assigns extremely small probability p to heads. Conditional on

tails, the distribution P1 is the same as the conditional distribu-

tion under P , given tails. Conditional on heads and all the observed

data, under P1, the future is described by Q, by definition. If p

is sufficiently small (think about p = 10−1,000,000) then the deci-

sion strategy based on the maximization of the expected utility

under the prior distribution P1 will be D1, the same as under the

distribution P , for decisions made before the toss of the coin.

(x) The Bayes theorem shows that given the prior distribution P1,

the data and the observed coin toss result (heads), the posterior

distribution is Q. Since P1 and Q represent decision strategies

for actions taken before and after the data, the collection of all

decisions in the union of D1 and D2 is consistent.

(xi) Since D1 and D2 have been chosen in arbitrary way, with no relation

to each other, the argument shows that the union of D1 and D2 is

consistent if each of the families of decisions is consistent by itself.

(xii) A statistician who wants to be consistent can choose a posterior

distribution in an arbitrary way, as long as it is self-consistent. One

does not need to apply the Bayes theorem to obtain a consistent

posterior strategy.

The reader might be shocked by my manipulation of the prior distri-

bution. I changed the prior distribution from P to P1 after observing the

data. I do not claim that P1 is real or realistic. The distribution P1 is a

purely mathematical tool used to verify that the union of D1 and D2 is

consistent.
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7.7 The Dutch Book Argument is Rejected by Bayesians

The failure of the Dutch book argument is much deeper than what I have

presented in Sec. 7.6.4. First, I will repeat my argument from that section

in a slightly different manner. The main new claim of this section will be

given in the last paragraph. Recall from the beginning of Sec. 7.6.4 that

it is best to think about de Finetti’s theory as a method of achieving a

deterministic goal, so that we avoid a trivial discussion of which situations

should carry the label “Dutch book.”

Consider a case of Bayesian decision analysis, based on some data. To

make the argument simple, I will assume that all the contracts that the

decision maker can sign have payoffs that may depend only on events that

will be observed in the distant future, that is, after the data are collected

and the posterior distribution is computed.

A deterministic goal that one can achieve in a statistical situation, that

is, a situation when data are collected, is to avoid signing contracts such

that at a certain point of time, before the payoff of any of the contracts,

it is already known that the combined effect of all contracts is a sure loss

for the decision maker. As I said, whether we call this a “Dutch book”

argument or not is irrelevant. The goal outlined above can be achieved in a

deterministic, that is sure, way by using the same posterior distribution as

the prior one. Clearly, if all contracts based on the prior distribution do not

form a Dutch book, neither those based on the posterior distribution will

form a Dutch book. The two sets of contracts will form one large consistent

family of contracts, because all of them are based on the same probability

distribution.

Bayesian statisticians never take the posterior distribution to be the

prior distribution, except perhaps in some trivial cases. Hence, the deter-

ministic goal that I presented above is rejected by the Bayesians although

no other deterministic goal seems to replace it (I am not aware of any). This

proves that Bayesian statisticians prefer to achieve some other goal rather

than the deterministic goal of avoiding my version of the Dutch book.

The above reasoning undermines the whole idea of the Dutch book ar-

gument, both in the statistical setting, and in situations when no data are

collected. I have demonstrated that there is a practical situation (actually,

a commonplace occurrence) when a deterministic goal is rejected in favor

of some other unspecified potential gain, presumably of probabilistic (ran-

dom) nature. This in turn implies that the original Dutch book argument

is far from obvious. De Finetti presented the Dutch book argument as a
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self-evident choice of all rational people, supposedly because every rational

person would like to achieve a deterministic and beneficial goal. To com-

plete his argument, de Finetti would have to show that no random goal

can be considered more valuable than a deterministic goal. The behavior

of Bayesian statisticians shows that rational people do not consider every

deterministic goal to be more desirable than every randomly achievable

goal.

7.8 No Need to Collect Data

In many practical situations, scientists are not limited to studying existing

data sets but they can choose whether to collect some data or not. As

long as they have interest in the subject and sufficient resources, such as

money, manpower and laboratories, they inevitably choose to collect data.

De Finetti’s theory fails to explain why they do so, and does so at many

different levels, so to speak.

The easiest way to see that there is no need to collect data is to notice

that, according to de Finetti, the only purpose of the probability theory is

to eliminate inconsistent decision strategies. In every situation, no matter

what information you have, there is at least one consistent strategy. Hence,

if you do not collect any data, you can still act in a consistent way. Quite

often, not collecting data would result in substantial financial savings, so

the choice is obvious—stop collecting data.

I will look at the need to collect data in two other ways. Suppose a

person is given a chance to play the following game with a deformed coin,

previously unknown to him. The coin will be tossed once. The player will

receive 10 dollars if the result is heads and he will lose 8 dollars otherwise.

His only choice is to play the game or not. The coin will be destroyed after

the game is played, or immediately after the player decides not to play

the game. Now suppose that the person can examine the deformed coin

by tossing it for 10 minutes before making a decision whether to play or

not. Every rational person would toss the coin for a few minutes to collect

some data, before deciding whether to play the game. A simple intuitive

explanation for collecting the data is that the information thus collected

may show that the game is highly advantageous to the player, so collecting

the data may open an opportunity for the player to enrich himself with

minimal risk. On the other hand, the process of collecting the data itself

cannot result in any substantial loss, except some time (I realize that 10
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minutes of someone’s time may be worth even 100 dollars, so we may have

to adjust the numbers used in this example appropriately). According to

de Finetti’s theory, there is no point in collecting the data because there are

no decisions to be coordinated—the person has only one decision to make.

Suppose that we have a situation when multiple decisions need coordi-

nation and there is plenty of opportunity for inconsistent behavior. Let us

limit our considerations to a case of statistical analysis when potential gains

and losses do not depend on the data, only on some future random events.

The decision maker may generate an artificial data set, say, by writing ar-

bitrary numbers or using a random number generator. Then he can find a

consistent set of decisions based on this artificial data set. The resulting

decision strategy will be consistent because the payoffs do not depend on

the data, so they do not depend on whether the data are genuine or not.

The cost of collecting real data can be cut down to almost nothing, by

using artificial data. A different way to present this idea is this. Suppose

that you learn that a scientist falsified a data set. Will you be able to find

inconsistencies in his or anyone else’s decisions? Scientists insist on using

only genuine data sets, but this is not because anyone ever found himself

in a Dutch book situation because of using a fake data set.

7.9 Empty Promises

De Finetti’s postulates contain a pseudo-scientific implicit claim that fol-

lowing a consistent strategy will generate the maximal expected gain. This

is highly misleading. From the purely mathematical point of view, a con-

sistent decision strategy is equivalent to a strategy that maximizes the

expected gain. However, there are infinitely many totally incompatible

consistent decision strategies and each one of them maximizes the expected

gain. Clearly, something is wrong with this logic. The problem is that a

consistent decision strategy maximizes the expected gain where the expec-

tation is calculated using some probability distribution. The mathematical

theory does not and cannot say whether the probability assignments repre-

senting a consistent decision strategy have anything to do with reality. The

claim about the maximized expected gain is a purely abstract statement

that often applies equally to two contradictory (but individually consistent)

strategies. To see this, consider the following example.

Consider a game with two players that involves repeated tosses of a

deformed coin. The game requires that one side of the coin should be
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marked before the tosses start. The players will play the game only if they

agree beforehand on the side to be marked. Once the coin is marked, a

single round of the game consists of a toss of the coin. The first player pays

$1.00 to the second player if the coin lands with the marked side up, and

otherwise the second player pays $1.00 to the first one. A consistent set

of beliefs for the first player is to assume that the tosses are independent

with probability of heads being 90%. A consistent set of beliefs for the

second player is to assume that the tosses are independent with probability

of heads equal to 10%. If the two players adopt these views then they

will agree that the mark should be made on the side of the tails. If the

coin is highly biased and the players repeat the game many times, one of

the players will do much better than the other one. Yet according to the

subjectivist postulates both players will be always consistent and each one

of them will always maximize his expected gain.

A remark for more advanced readers—note that the example is based

on the assumption that both players believe that coin tosses are i.i.d., not

merely exchangeable. It is consistent to believe that tosses of a deformed

coin are i.i.d., even if you see the coin for the first time.

7.10 The Meaning of Consistency

The following remarks belong to Chap. 10 on abuse of language but I con-

sider them sufficiently important to be repeated twice, in a somewhat dif-

ferent way.

The word “consistent” is used in a different sense in everyday life than

in the subjective philosophy or science.

A common everyday practice is to use logic in a non-scientific way. “If

you do not eat your broccoli then you will not have ice-cream,” a mother

may say to her child. This really means “If you do not eat your broccoli

then you will not have ice-cream, and if you eat your broccoli then you will

have ice-cream.” I do not consider the equivalence of the two sentences in

everyday speech to be “illogical.” Every convention is acceptable as long

as all parties agree on the rules.

Just like everyday logic is not identical with the formal logic, the every-

day meaning of “consistent” is not the same as the meaning of “consistent”

in the subjective theory. Consider the following conversation. Mr A.: “My

child goes to Viewridge Elementary School. The school is disorganized and

the teachers are not helpful at all.” Mr B.: “What you have just said is
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consistent with what I have heard from other parents.” Mr C.: “I also

have a child in the same school and I disagree. The school is well organized

and the teachers are great.” Mr B.: “This is also consistent with what I

have heard from other parents.” This imaginary conversation strikes us as

illogical. In other words, two contradictory statements would not have been

described by anyone as consistent with the same piece of information. As a

consequence, “consistent” is a stronger statement in everyday speech than

in the subjective theory. To see this, consider the following claims. “Smok-

ing increases the chance of cancer” and “Smoking decreases the chance of

cancer.” Both statements are consistent with the data, in the sense that

for any of these statements, a statistician may choose a prior such that his

posterior distribution can be summarized by the designated statement. My

guess is that most Bayesian statisticians believe that smoking increases the

chance of cancer. Many people believe that this is due to consistency. In

fact, the formal notion of consistency neither supports nor falsifies any of

the above contradictory statements about smoking and cancer.

7.11 Interpreting Miracles

A popular definition of a “miracle” is that it is a very unlikely event that

actually occurred (in theology, a miracle is a “sign from God,” a substan-

tially different concept). In my theory based on (L1)-(L5), a miracle is the

opposite of a successful prediction. Both von Mises and de Finetti mis-

understood the role of miracles in probability but in different ways. Von

Mises associated predictions and, therefore, miracles, only with collectives,

that is, long sequences of identical observations.

In the subjective theory, the concept of consistency puts a straightjacket

onto a subjectivist decision maker, as noticed, for example, in [Weather-

ford (1982)]. Miracles are expected to affect the mind of a rational person

but consistency removes any flexibility from decision making. Consider, for

example, two friends who have strong trust in each other. Suppose that

for some reason, one of them betrays the other (this is a “miracle”), and

keeps betraying him on numerous occasions. The common view is that

the repeated breach of one’s trust should be reciprocated with the more

cautious attitude towards the offender. Many people would argue that

continued loyalty of the betrayed party could be only rationally explained

by “irrational emotions.” In the subjectivist scheme of things, there is no

such thing as irrational loyalty. For some prior distributions, no amount
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of disloyalty can change the mind of a person. De Finetti’s theory does

not provide any philosophical arguments that would support eliminating

such extreme priors. I do not argue that one should abandon all ethical

and human considerations and I do not advocate swift adjustment of one’s

attitude according to circumstances, that is, a form of opportunism. My

point is that the subjectivist philosophy does not provide an explanation

or theoretical support for common patterns of behavior—no consistent at-

titude, even the most insensitive to environmental clues, is irrational in de

Finetti’s theory.

I have to add that the problem of extreme inflexibility of the subjec-

tivist theory is well known to philosophers. In the statistical context, a

statistician who considers a future sequence of events exchangeable will

never change his mind about exchangeability of the sequence, no matter

how non-exchangeable data seem to be. Some philosophers proposed an

ad hoc solution to the problem—one should not use a prior that is totally

concentrated on one family of distributions. This is a perfectly rational

and practical advice except that it runs against the spirit and letter of

subjectivism. If some priors are (objectively) better than some other pri-

ors then there must be an objective link between reality and probability

assignments, contrary to the philosophical claims of the subjective theory.

7.12 Science, Probability and Subjectivism

Recall from Sec. 2.4.3 what de Finetti has to say about the fact that beliefs

in some probability statements are common to all scientists (quote after

[Gillies (2000)], page 70):

Our point of view remains in all cases the same: to show that
there are rather profound psychological reasons which make the
exact or approximate agreement that is observed between the
opinions of different individuals very natural, but there are no
reasons, rational, positive, or metaphysical, that can give this
fact any meaning beyond that of a simple agreement of subjec-
tive opinions.

This psychological explanation for the agreement of opinions is vacu-

ous and dishonest. It is vacuous because it can explain everything, so it

explains nothing. Note that the statement does not even mention proba-

bility. It applies equally well to gravitation. The statement is dishonest,

because it suggests that individuals are free to hold views that disagree
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with the general sentiment. You may privately hold the view that smoking

cigarettes decreases the probability of cancer but you are not allowed to act

accordingly—the sale of tobacco products to minors is prohibited by law.

The fact that all scientists agree on the probability that the spin of an

electron will be positive under some experimental conditions is not subjec-

tive or objective—this agreement is the essence of science. The question

of whether this agreement has any objective meaning can be safely left

to philosophers because it does not affect science. No branch of “deter-

ministic” science has anything to offer besides the “simple agreement of

subjective opinions” of scientists. Nobody knows the objective truth, un-

less he or she has a direct line to God—even Newton’s physics proved to

be wrong, or at least inaccurate. The agreement of probabilistic opinions

held by various scientists is as valuable in practice as their agreement on

deterministic facts and patterns. Consensus on an issue cannot be identi-

fied with the objective truth. But consensus usually indicates that people

believe that a claim is an objective truth.

De Finetti correctly noticed (just like everybody else) that the evidence

in support of probabilistic laws, such as (L1)-(L5), is less convincing than

that in support of deterministic laws (but I would argue that this is true

only in the purely philosophical sense). Hence, the users of probability have

the right to treat the laws of probability with greater caution than the laws

of the deterministic science. However, I see no evidence that they exercise

this right; laws (L1)-(L5) are slavishly followed even by the most avowed

supporters of the subjectivist viewpoint.

De Finetti did not distinguish between the account of the accumulated

knowledge and the application of the same knowledge. Science has to sum-

marize the available information the best it can, so the science of proba-

bility must consist of some laws such as (L1)-(L5). The same science of

probability must honestly explain how the laws were arrived at. A user of

probability may choose to consider all probabilistic statements subjective,

as proposed by de Finetti, but there is nothing peculiar about the probabil-

ity theory here—quantum physics and even Newton’s laws of motion can be

considered subjective as well, because one cannot provide an unassailable

proof that any given law is objectively true.
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7.13 A Word with a Thousand Meanings

One of the reasons why the subjective theory of probability is so successful

is because the word “subjective” has numerous meanings and everyone can

choose a meaning that fits his own understanding of the theory. I will

review some of the meanings of the word “subjective” in the hope that this

will help the discussions surrounding the subjective theory—one cannot

expect a substantial convergence of opposing philosophical views if their

holders use the same word in different ways. Dictionaries contain long lists

of different meanings of the word “subjective” but many of those meanings

are not relevant to this discussion, and vice versa, some meanings used in

the specialized probabilistic context cannot be found in the dictionaries.

The meaning of “subjective” in de Finetti’s theory is presented in (v)

below. When Bayesian statisticians talk about subjective probability, they

use the word “subjective” as in (vi), (vii), (ix) or (x) on the following list.

I start my review by repeating verbatim four possible interpretations of

the statement that “probability is subjective” and their discussion from

Sec. 2.4.1.

(i) “Although most people think that coin tosses and similar long run

experiments displayed some patterns in the past, scientists deter-

mined that those patterns were figments of imagination, just like

optical illusions.”

(ii) “Coin tosses and similar long run experiments displayed some pat-

terns in the past but those patterns are irrelevant for the prediction

of any future event.”

(iii) “The results of coin tosses will follow the pattern I choose, that is,

if I think that the probability of heads is 0.7 then I will observe

roughly 70% of heads in a long run of coin tosses.”

(iv) “Opinions about coin tosses vary widely among people.”

Each one of the above interpretations is false in the sense that it is not

what de Finetti said or what he was trying to say. The first interpretation

involves “patterns” that can be understood in both objective and subjective

sense. De Finetti never questioned the fact that some people noticed some

(subjective) patterns in the past random experiments. De Finetti argued

that people should be “consistent” in their probability assignments and that

recommendation never included a suggestion that the (subjective) patterns

observed in the past should be ignored in making one’s own subjective

predictions of the future, so (ii) is not a correct interpretation of de Finetti’s
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ideas either. Clearly, de Finetti never claimed that one can affect future

events just by thinking about them, as suggested by (iii). We know that de

Finetti was aware of the clustering of people’s opinions about some events,

especially those in science, because he addressed this issue in his writings,

so again (iv) is a false interpretation of the basic tenets of the subjective

theory.

(v) I continue the review with the meaning that was given to the word

“subjective” by de Finetti. According to him, a probability state-

ment cannot be proved or disproved, verified or falsified. In other

words, “probability” does not refer to anything that can be mea-

sured in an objective way in the real universe.

(vi) The word “subjective” is sometimes confused with the adjective

“relative,” see Sec. 3.5. Different people have different information

and, as is recognized in different ways by all theories, the prob-

ability of an event depends on the information possessed by the

probability assessor. One can deduce from this that probability is

necessarily subjective, because one cannot imagine a realistic situ-

ation in which two people have identical knowledge. This interpre-

tation of the word “subjective” contradicts in a fundamental way

the spirit of the subjective theory. The main idea of the subjective

theory is that two rational people with access to the same informa-

tion can differ in their assessment of probabilities. If the differences

in the probability assessments were attributable to the differences

in the knowledge, one could try to reconcile the differences by ex-

changing the information. No such possibility is suggested by the

subjective theory of probability, because that would imply that

probabilities are a unique function of the information, and in this

sense they are objective. De Finetti was not trying to say that the

impossibility of perfect communication between people is the only

obstacle preventing us from finding objective probabilities.

(vii) Another meaning of subjectivity is that information is processed

by human beings so it is imperfect for various reasons, such as inac-

curate sensory measurements, memory loss, imprecise application

of laws of science, etc. Humans are informal measuring devices. A

person can informally assess the height of a tree, for example. This

is often reasonable and useful. Similarly, informal assessment of

probabilities is only an informal processing of information, without

explicit use of probabilistic formulas. This is often reasonable and



March 24, 2009 12:3 World Scientific Book - 9in x 6in Search4Certainty

The Subjective Philosophy of Probability 167

useful. But this is not what de Finetti meant by subjective proba-

bility, although this is considered to be the subjective probability

by many people.

In order to implement (L1)-(L5) in practice, one has to recognize

events that are disjoint, independent or symmetric. This may be

hard for a number of reasons. One of them is that no pair of

events is perfectly symmetric, just like no real wheel is a perfect

circle. Hence, one has to use a “subjective” judgment to decide

whether any particular pair of events is symmetric or not. Even

if we assume that some events are perfectly symmetric, the imper-

fect nature of our observations makes it impossible to discern such

events and, therefore, any attempt at application of (L1)-(L5) must

be subjective in nature. This interpretation of the word subjective

is as far from de Finetti’s definition as the interpretation in (vi).

In de Finetti’s theory, real world symmetries are totally irrelevant

when it comes to the assignment of probabilities. In his theory,

probability is subjective in the sense that numbers representing

probabilities are not linked in any way to the observable world.

Probability values chosen using symmetries are not verifiable, just

like any other probability values, so symmetry considerations have

no role to play in the subjective theory.

(viii) “Subjective” opinion can mean “arbitrary” or “chaotic” in the

sense that nobody, including the holder of the opinion, can give

any rational explanation or guiding principle for the choice of the

opinion. This meaning of subjectivity is likely to be attributed to

subjectivists by their critics. In some sense, this critical attitude

is justified by the subjective theory—as long as the theory does

not explicitly specify how to choose a consistent opinion about the

world, you never know what a given person might do. I do not

think that de Finetti understood subjectivity in this way. It seems

to me that he believed that an individual may have a clear, well

organized view of the world. De Finetti argued that it is a good

idea to make your views consistent, but he also argued that nothing

can validate any specific set of such views in a scientific way.

(ix) “Subjective” can mean “objectively true” or “objectively valuable”

but “varying from person to person.” For example, my apprecia-

tion of Thai food is subjective because not all people share the

same taste in food. However, my culinary preferences are objective

in another sense. Although my inner feeling of satisfaction when
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I leave a Thai restaurant is not directly accessible to any other

person, an observer could record my facial expressions, verbal ut-

terances and restaurant choices to confirm in quite an objective way

that Thai food indeed gives me pleasure and is among my favorite

choices. There is no evidence that this interpretation of the word

“subjective” has anything to do with de Finetti’s theory. In many

situations, such as scientific research, the consequences of various

decisions are directly observable by all interested people and there

is a universal agreement on their significance. In such cases, a re-

sult of a decision cannot be “good” or “true” for one person but

not for some other person.

(x) One may interpret “subjectivity” as an attitude. A quantity is

“objective” if scientists attempt to measure it in more and more

accurate ways, by designing better equipment and developing new

theories. In case of subjective preferences, one can measure the

prevailing attitudes in the population (for example, popularity of

different restaurants), but no deeper meaning is given to such sta-

tistics.

In other words, subjectivity may be considered the antonym of

objectivity, and objectivity may be identified with consensus. For

most people, the only way to know that quantum mechanics is true

is that there is a consensus among physicists on this subject. Hence,

objectivity may be identified with consensus, in the operational

sense.

(xi) We may define subjectivity using its antonym—objectivity, but

this time we may choose a different definition of objectivity. A

quantity may be called objective if it may exist without human

presence, knowledge or intervention, for example, the temperature

on the largest planet in the closest galaxy to the Milky Way is

objective.

(xii) One can try to characterize subjectivity or objectivity opera-

tionally, in terms of the attitude of the society towards attempts

at changing someone’s mind. Consider the following statements:

“blond hair is beautiful,” “lions eat zebras” and “smoking tobacco

increases the probability of cancer.” Suppose, for the sake of argu-

ment, that most people believe in each of these statements. Cos-

metics companies might want to sell more dark hair dye and so they

might start an advertising campaign, trying to convince women

that dark hair has a lot of sex appeal, with no reference to solid
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empirical evidence for the last claim. Although people have mixed

feelings towards advertising, nobody would complain that such an

advertising campaign is fundamentally unethical. As for lions and

zebras, it would be unthinkable for anyone to start a campaign try-

ing to convince people that zebras eat lions, without some striking

new evidence. It is clear that the statement about smoking and

cancer belongs to the category of scientific facts rather than sub-

jective opinions from the point of view of advertising. A tobacco

company trying to convince people that smoking is healthy would

draw public wrath, unless its claims were supported by very solid

scientific data.

(xiii) Some critics of the Bayesian statistics assert that the use of subjec-

tive priors makes the theory unscientific because there is no place

for subjectivity in science. Bayesians retort that frequentist models

and significance levels are also chosen in a subjective way. I will not

comment here on the merits of either argument. I want to make a

linguistic point. I believe that when some people criticize the use of

“subjective” priors in statistics, what they really mean is that the

source of (some) priors is not explicitly known and amenable to sci-

entific scrutiny, unlike frequentist and Bayesian statistical models.

I will try to clarify my point by discussing a case when a prior is

subjective in some sense but not subjective in the sense that I have

just defined. Suppose that a Bayesian statistician claims that in a

given situation, there is no prior information available, so it is best

to use a non-informative prior, which happens to be the uniform

distribution in this particular case. This prior is subjective in the

sense that an individual chose to use the uniform prior based on

his personal judgment. But this prior is not subjective in the sense

that it is based on unknown and unknowable information processed

in an unknown and unknowable way.

7.14 Apples and Oranges

Can you mix objective and subjective probabilities in one theory? The

reader might have noticed that many of my arguments were based on the

same categorical assumption that was made by de Finetti, that no objective

probability can exist whatsoever. It may seem unfair to find a weak point

in a theory and to exploit it to the limit. One could expect that if this
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one hole is patched in some way, the rest of the theory might be quite

reasonable. Although I disagree with de Finetti on almost everything, I

totally agree with him on one point—it is not possible to mix objective

and subjective probabilities in a single philosophical theory. This was not

a fanatical position of de Finetti, but his profound understanding of the

philosophical problems that would be faced by anyone trying to create a

hybrid theory. I will explain what these problems are in just a moment.

First, let me say that the idea that some probabilities are subjective and

some are objective goes back at least to Ramsey, the other co-inventor of

the subjective theory, in 1920’s. Carnap, the most prominent representative

of the logical theory of probability, talked about two kinds of probability

in his theory. And even now, Gillies seems to advocate a dual approach to

probability in [Gillies (2000)]. Other people made similar suggestions but

all this remains in the realm of pure heuristics.

If you assume that both objective and subjective probabilities exist,

your theory will be a Frankenstein monster uniting all the philosophical

problems of both theories and creating some problems of its own. You will

have to answer the following questions, among others.

(i) If some probabilities are objective, how do you verify objective

probability statements? Since subjective probability statements

cannot be objectively verified, do they have the same value as ob-

jective statements or are they inferior? If the two kinds of probabil-

ity are equally valuable, why bother to verify objective probability

statements if one can use subjective probabilities? If the two kinds

of probability are not equally valuable, how do you define and mea-

sure the degree of inferiority of subjective statements?

(ii) If you multiply an objective probability by a subjective probability,

is the result objective or subjective?

(iii) Are all probabilities totally objective or totally subjective, or can

a probability be, say, 70% subjective? If so, question (ii) has to

be modified: If you multiply a 30% objective probability by a 60%

objective probability, to what degree is the result objective? How

do you measure the degree to which a probability is objective?

There is no point in continuing the list—I am not aware of any theory that

would be able to give even remotely convincing answers to (i)-(iii).
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The ideas that “probability is long run frequency” and “you should be

consistent” are perfectly legitimate within the scientific context, because

they are not exclusive—they are some of many good ideas used in practice,

in some circumstances. Doctors do not expect any drug to be a panacea

and similarly statisticians and probabilists cannot expect their field to be

based on just one good idea. The peaceful coexistence of these ideas in the

scientific context cannot be emulated in the philosophical context. This is

because each of the frequency and subjective philosophies has to claim that

its main idea is all there is to say about probability. Otherwise, the two ide-

ologies become marginal philosophical theories, formalizing and justifying

only those aspects of probability that were never controversial.

7.15 Arbitrage

Paradoxically, an excellent illustration of the failure of de Finetti’s philoso-

phy is provided by the only example of its successful scientific application.

The Black-Scholes option pricing theory is a mathematical method used in

finance. It incorporates two ideas: (i) one can achieve a desirable practi-

cal goal (to duplicate the payoff of an option on the maturity date) in a

deterministic way in a situation involving randomness, and (ii) the “real

probabilities”, whether they exist or not, whether they are objective or not,

do not matter. These two ideas are stunningly close, and perhaps identical,

to the two main philosophical ideas of de Finetti.

When the Black-Scholes theory is taught, students have to be indoc-

trinated to internalize ideas (i) and (ii). These ideas are totally alien to

anyone who have previously taken any class on probability or statistics.

Ideas (i) and (ii) are not taught in any other scientific context.

The Black-Scholes theory is based on the concept of “arbitrage”, that

is, a situation on the market when an investor can make a profit without

risk. This is, in a sense, the opposite of the Dutch book situation in which

a decision maker sustains a loss with certainty. The standard theoretical

assumption is that real markets do not admit arbitrage.

It is interesting to notice that de Finetti is not given any credit for pro-

viding the basic philosophy for the Black-Scholes theory. My guess is that

this is because de Finetti’s supporters think that de Finetti designed the

foundations for all of probability and statistics—so why bother to mention

a particular application of probability to option trading? Sadly, this is the

only practical application of de Finetti’s philosophy.
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7.16 Subjective Theory and Atheism

The concept of God presents a number of difficult philosophical puzzles,

just like the concept of probability. Theological paradoxes depend on the

specific religion. Here are some examples related to Catholicism. If God is

omnipotent, can He make a stone so heavy that He cannot lift the stone

himself? How is it possible that there is only one God but there is also

the Holy Trinity? If God is omnipotent and loves people, why didn’t He

stop the Nazis from building concentration camps? Theologians have some

answers to these questions but their arguments are far from self-evident.

There is one philosophical attitude towards God that provides easy answers

to all of these and similar questions—atheism. An atheist philosopher can

answer all these questions in only four words: “God does not exist.”

Atheism may be considered attractive from the philosophical point of

view by some people but it has a very inconvenient aspect—it is totally

inflexible. An atheist philosopher must deny the existence of God in any

form and in any sense. The reason is that if a philosopher admits that

God might exist in some sense then the same philosopher must answer

all inconvenient questions concerning God. Constructing a philosophical

theory of “partly existing God” is not any easier than constructing a theory

of 100% existing God.

De Finetti was an atheist of probability. His fundamental philosophical

idea was that “probability does not exist.” This claim instantly solved all

“paradoxes” involving probabilities. I respect de Finetti for bravely admit-

ting the total lack of flexibility of his philosophy. His statement quoted

in Sec. 2.4.3 may appear to be silly to people who have no patience for

philosophical subtleties. In fact, the statement is the proof that de Finetti

understood the essence of his own theory—something that cannot be said

about scores of his followers. A common view among “non-extremist” sub-

jectivists and Bayesian statisticians is that some probabilities are at least

partly objective. This view cannot be adopted by a subjectivist philosopher.

Building a philosophical theory of probability in which some probabilities

are 1% objective is not any easier than building a philosophical theory of

probability in which all probabilities are 100% objective. In either case,

probabilistic “paradoxes” are equally hard to resolve.
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7.17 Imagination and Probability

The idea that probability is mainly used to coordinate decisions so that they

are not inconsistent is merely unrealistic, if we assume that probability is

objective. If we assume that probability is subjective, the same idea is

self-contradictory.

A common criticism of the frequency theory coming from the subjec-

tivist camp is that the frequency theory applies only to long sequences of

i.i.d. events; in other words, it does not apply to individual events. Iron-

ically, subjectivists fail to notice that a very similar criticism applies to

their theory, because the subjective theory is meaningful only if one has to

make at least two distinct decisions—the Dutch book argument is vacuous

otherwise. Both theories have problems explaining the common practice of

assigning a probability to a unique event in the context of a single decision.

The subjective theory is meaningless even in the context of a complex sit-

uation involving many events, as long as only one decision is to be made.

Typically, for any given event, its probability can be any number in the

interval from 0 to 1, for some consistent set of opinions about all future

events, that is, for some probability distribution. If a single decision is to

be made and it depends on the assessment of the probability of such an

event, the subjective theory has no advice to offer. There are spheres of

human activity, such as business, investment and warfare, where multiple

decisions have to be coordinated for the optimal result. However, there

are plenty of probabilistic situations, both in everyday life and scientific

practice when only isolated decisions are made.

Let us have a look at a standard statistical problem. Suppose a scientist

makes repeated measurements of a physical quantity, such as the speed of

light, and then he analyzes the data. If he is a Bayesian then he chooses a

prior and calculates the posterior distribution of the speed of light, using

the Bayes theorem. Quite often, the only action that the scientist takes in

relation to such measurements is the publication of the results and their

statistical analysis in a journal. There are no other actions taken, so there

can be no families of inconsistent actions, in de Finetti’s sense. It is possible

that some other people may take actions that would be inconsistent with

the publication of the data and their analysis, but this is beyond scientist’s

control. Of course, the value of the physical constant published by the

scientist may be wrong, for various reasons. However, de Finetti’s theory

is concerned only with consistency and does not promise in any way that

the results of the Bayesian analysis would yield probability values that
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are “realistic.” In simple statistical situations, there is no opportunity to

be inconsistent in de Finetti’s sense in real life. One can only imagine

inconsistent actions.

One can present the above argument in a slightly different way. Some

subjectivists claim that their theory can deal with individual events, unlike

the frequency theory. All that the subjective theory can say about an in-

dividual event is that its probability is between 0 and 1—a totally useless

piece of advice.

A careful analysis of imaginary decisions shows that de Finetti’s theory

is self-contradictory. I will use a decision-theoretic approach to probability

to arrive at a contradiction. A decision maker has to take into account all

possible decision problems, at least in principle. Some of possible actions

may result in inconsistencies, and hence losses. Some of possible decision

problems may or may not materialize in reality. For every potential decision

problem, one should calculate the expected utility loss due to inconsistencies

that may arise when the relevant decisions are not coordinated with other

decisions. The number of possible decision problems is incredibly large,

so we have to discard most of them at the intuitive level, or otherwise we

would not be able to function. For example, a doctor advising a patient

must subconsciously disregard all the facts that he knows about planets

and spaceships. For any potential decision, one has to decide intuitively

whether the expected utility loss is greater than the value of time and

effort spent on the calculations that are needed to coordinate the decision

with all other decisions. If the cost of time is higher, the decision problem

should be disregarded. In some situations, one can decide to disregard all

decisions or all decisions but one. Then nothing remains to be coordinated,

so probability theory is useless. But this is not the crux of the matter. The

real point is that in de Finetti’s theory, objective probability does not exist.

If one chooses any probability values that satisfy the usual mathematical

rules, the corresponding decision strategy is consistent. Hence, one can

choose probabilities so that all decision problems have very small chance,

and the expected utility loss resulting from ignoring all decision problems

is smaller than the value of the time that would be needed to do the usual

Bayesian analysis. Thus it is consistent to disregard all decisions in every

situation, assuming that time of the decision maker has at least a little

bit of utility. It follows that the probability theory is useless—one can be

consistent by simply never doing any probabilistic calculations.

The subjective theory of probability suffers from the dependence on the

imagined entities, just like the frequency theory. In the case of the fre-
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quency theory, one has to imagine non-existent collectives; in the case of

the subjective theory of probability, one has to imagine non-existent col-

lections of decisions (subjective probabilities are just a way of encoding

consistent choices between various imaginary decisions). The philosophical

and practical problems arising here are very similar in both theories. On the

philosophical side, it is hard to see why we have to imagine sequences of ex-

periments or collections of decisions to be able to apply probability theory to

real life events. Why no other scientific theory insists that people use their

imagination? On the practical side, imagined entities differ from person to

person, so a science based on imagination cannot generate reliable advice.

7.18 A Misleading Slogan

Ideologies use slogans that often are not interpreted literally but are used as

guiding principles. For example, “freedom of speech” is not taken literally

as an absolute freedom—it is illegal to reveal military secrets and nobody

suggests that it should be otherwise. Many Christians support military

forces and do not think that this necessarily contradicts the command-

ment that “you shall not kill.” These slogans are interpreted as guiding

principles—most people believe that freedom of speech should be stretched

as far as possible, sometimes including unpopular material, such as pornog-

raphy. For many people, “you shall not kill” includes the prohibition of

abortion.

The frequentist idea that “probability is a long run frequency” can be

defended as saying that one should determine values of probabilities by

repeated experiments or observations whenever practical. Or one could

interpret this slogan as saying that observing long run frequencies is the

“best” way of finding probability values. I have a feeling that most classical

statisticians and other frequentists try to live by these rules. In other words,

they may not interpret their slogan literally but their interpretation is more

or less in line with the common understanding of other slogans.

I cannot be equally lenient towards the subjectivist ideology. Its slo-

gans, “probability is subjective” and “probability does not exist,” are never

interpreted as “one should remove any objectivity from probabilities.” All

statistical practice is concerned with finding probabilities that are as ob-

jective as possible. Subjectivity is considered to be a necessary evil. The

Bayesian statistics can be described as a miraculous transmutation of the

subjective into the objective—see the next chapter.
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7.19 Axiomatic System as a Magical Trick

The axiomatic system in the subjective theory is a magical trick. It is

designed to draw attention of the audience to something that is totally

irrelevant. The axiomatic system may be used to justify only the following

statement about probabilities:

(S) Probabilities are non-negative, not greater than 1, and if
two events cannot occur at the same time, the probability that
one of them is going to occur is the sum of probabilities of the
two events.

De Finetti successfully formalized (S). However, (S) is trivial from the

philosophical point of view, because (S) was never the subject of a scien-

tific or philosophical controversy. Moreover, every mathematical, scientific

and philosophical theory of probability contains (S), either explicitly or

implicitly.

The subjectivist axiomatic system draws attention away from the truly

significant claim of de Finetti that “probability does not exist.” Needless to

say, this claim would be hard to sell to most scientists without any magical

tricks.
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Bayesian Statistics

Bayesian statistics is a very successful branch of science because it is ca-

pable of making excellent predictions, in the sense of (L5). It is hard to

find anything that de Finetti’s philosophy and Bayesian statistics have in

common. I will list and discuss major differences between the two in this

chapter.

The general structure of Bayesian analysis is universal—the same

scheme applies to all cases of statistical analysis. One of the elements of

the initial setup is a “prior,” that is, a prior probability distribution, a con-

sistent view of the world. The data from an experiment or observations are

the second element. A Bayesian statistician then applies the Bayes theo-

rem to derive the “posterior,” that is the posterior probability distribution,

a new consistent view of the world. The posterior can be used to make

decisions—one has to find the expected value of gain associated with every

possible decision and make the decision that maximizes this expectation.

8.1 Two Faces of Subjectivity

There are several fundamental philosophical differences between de Finetti’s

theory and Bayesian statistics.

8.1.1 Non-existence vs. informal assessment

See Sec. 7.13 for the discussion of various meanings of the word “subjec-

tive.” In de Finetti’s philosophical theory, the word means “non-existent”

because this is the only meaning that fits de Finetti’s main philosophical

idea—probability is a quantity that is not measurable in any objective or

scientific way. In Bayesian statistics, the word “subjective” means “infor-

177
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mally assessed.” Typically, the word refers to the informal summary of

scientist’s prior knowledge in the form of the prior distribution. The prior

is considered to be subjective in the sense that the scientist cannot justify

his beliefs in an explicit way. That does not mean that Bayesian scientists

consider prior distributions to be completely arbitrary. Quite the opposite,

a prior distribution that is based on some solid empirical evidence, for ex-

ample, some observations of long run frequencies, is considered preferable

to a purely informal prior distribution.

8.1.2 Are all probabilities subjective?

In de Finetti’s theory, it is necessary to assume that all probabilities are

subjective. If de Finetti admits that some probabilities are objective then

his theory collapses, on the philosophical side. If even a single probability

in the universe is objective then the philosopher has to answer all rele-

vant philosophical questions, such as what it means for the probability to

exist in the objective sense or how to measure the probability in an objec-

tive sense (see Secs. 7.1 and 7.14). Bayesian statisticians are willing to use

subjective prior distributions but they never consider their posterior distri-

butions to be equally subjective. One could even say that the essence of

Bayesian statistics is the transformation of subjective priors into objective

posteriors.

8.1.3 Conditioning vs. individuality

Individuals, ordinary people and scientists alike, sometimes express proba-

bilistic views different from those of other individuals. In Bayesian statis-

tics, different statisticians or users of statistics may want to use dif-

ferent prior distributions because priors reflect their personal knowledge

and knowledge varies from person to person. We can represent this as

P (A | B) 6= P (A | C). Here B and C stand for different information that

different people have and the mathematical formula says that different peo-

ple may estimate the probability of an event A in a different way, because

they have different prior information. De Finetti did not try to say that

different people may have different opinions about the future because they

have different information about the past. The last statement is a part of

every scientific and philosophical theory of probability and it is not contro-

versial at all; it is a simple mathematical fact expressed by the mathematical

formula given above. The main claim of de Finetti’s philosophical theory
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can be represented by a different formula, namely, P1(A | B) 6= P2(A | B).

What he was saying is that two people having the same information may

differ in the assessment of the probability of a future event and there is no

objective way to verify who is right and who is wrong.

8.1.4 Nonexistent decisions

De Finetti’s theory is based on the idea that probability does not exist but

we can use the calculus of probability to coordinate decisions so that they

are rational, that is, consistent. Hence, according to de Finetti, the Bayes

theorem in Bayesian statistics is not used to calculate any real probabili-

ties because they do not exist. The Bayes theorem is a mathematical tool

used to coordinate decisions made on the basis of the prior and posterior

distributions. This philosophical idea does not match standard Bayesian

practices at all. Bayesian statisticians see nothing wrong with collecting

data first and starting the statistical analysis later. The prior distribution

is chosen either to represent the prior knowledge of the scientist or in a

technically convenient way. There is no attempt to choose the prior distri-

bution so that it represents decisions made before the collection of the data

and hardly ever a Bayesian statistician is concerned with the coordination

of the mythical prior decisions with the posterior decisions.

8.2 Elements of Bayesian Analysis

Recall the general structure of Bayesian analysis from the beginning of this

chapter. One of the elements of the initial setup is a “prior,” that is, a

prior probability distribution, a consistent view of the world. The data

from an experiment or observations are the second element. A Bayesian

statistician then applies the Bayes theorem to derive the “posterior,” that

is, the posterior probability distribution, a new consistent view of the world.

The posterior can be used to make decisions—one has to find the expected

value of gain associated with every possible decision and make the decision

that maximizes this expectation.

This simple and clear scheme conceals an important difference between

philosophical “priors” and Bayesian “priors.” In the subjective philosophy,

a prior is a complete probabilistic description of the universe, used before

the data are collected. In Bayesian statistics, the same complete description

of the universe is split into a “model” and a “prior” (see example below).



March 24, 2009 12:3 World Scientific Book - 9in x 6in Search4Certainty

180 The Search for Certainty

These poor linguistic practices lead to considerable confusion. Some peo-

ple believe that using (statistical) subjective priors is a legitimate scientific

practice, but the same people would not be willing to accept the use of sub-

jective models. On the philosophical side, there is no distinction between

subjective priors and subjective models.

Consider tosses of a deformed coin—a simple example illustrating sta-

tistical usage of the words “prior” and “model.” The prior distribution will

be specified in two steps. First, a “model” will be found. The model will in-

volve some unknown numbers, called “parameters.” The term “prior” refers

in Bayesian statistics only to the unknown distribution of the “parameters.”

In a sequence of coin tosses, the results are usually represented mathemat-

ically as an exchangeable sequence. According to de Finetti’s theorem,

an exchangeable sequence is equivalent (mathematically) to a mixture of

“i.i.d.” sequences. Here, an “i.i.d. sequence” refers to a sequence of inde-

pendent tosses of a coin with a fixed probability of heads. The assumption

that the sequence of tosses is exchangeable is a “model.” This model does

not uniquely specify which i.i.d. sequences enter the mixture and with what

weights. The mixing distribution (that is, the information on which i.i.d.

sequences are a part of the mixture, and with what weights), and only this

distribution, is customarily referred to as a “prior” in Bayesian statistics.

8.3 Models

In Bayesian analysis, models are treated as objective representations of

objective reality. One of the common misunderstandings about the meaning

of the word “subjective” comes here to play. Bayesian statisticians may

differ in their opinions about a particular model that would fit a particular

real life situation—in this sense, their views are subjective. For example,

some of them may think that the distribution of a given random variable is

symmetric, and some others may have the opposite opinion. This kind of

subjectivity has nothing to do with de Finetti’s subjectivity—according to

his theory, symmetry in the real world, even if it is objective, is not linked in

any way to probabilities, because probability values cannot be objectively

determined. Hence, according to the subjective theory, differences in views

between Bayesian statisticians on a particular model are totally irrelevant

from the point of view of the future success of the statistical analysis—no

matter what happens, nothing will prove that any particular model is right

or wrong. I do not find even a shade of this attitude among the Bayesians.
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The importance of matching the model to the real world is taken as seriously

in Bayesian statistics as in the classical statistics. Bayesian statisticians

think that it is a good idea to make their mathematical model symmetric if

the corresponding real phenomenon is symmetric. In other words, they act

as if they believed in some objective probability relations. Bayesian models

are based on (L1)-(L5) and other laws, specific to each case of statistical

analysis.

See Sec. 8.6.1 for further discussion of Bayesian models.

8.4 Priors

One could expect that of all the elements of the Bayesian method, the prior

distribution would be the most subjective. Recall that in practice, the

term “prior distribution” refers only to the opinion about the “unknown

parameters,” that is, that part of the model which is not determined by

(L1)-(L5) or some other considerations specific to the problem, in a way

that can be considered objective.

There are strong indications that priors are not considered subjective

and that they do not play the role assigned to them by the subjective theory.

One of them is a common practice to chose the prior after collecting the

data. This disagrees with the subjective ideology in several ways. From

the practical point of view, one can suspect that the prior is tailored to

achieve a particular result. From the subjectivist point of view, the prior is

meant to represent decisions made before collecting the data—the fact that

the prior is often chosen after collecting the data shows that there were no

relevant decisions made before collecting the data and so there is no need

to coordinate anything.

Surprisingly, Bayesian statisticians discuss the merits of different prior

distributions. This suggests that they do not believe in the subjectivity of

priors. If a prior is subjective in the personal sense, that is, if it reflects

one’s own opinion, then there is nothing to discuss—the prior is what it is.

Moreover, deliberations of various properties of priors indicate that some

priors may have some demonstrably good properties—this contradicts the

spirit and the letter of the subjective theory.

According to the subjective theory, no subjective prior can be shown to

be more true than any other prior. Hence, one could try to derive some

benefits by simplifying the prior. Many priors can save money and time

by reducing the computational complexity of a problem. For example, we
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could assume that the future events are independent from the data and the

past. Then one does not have to apply the Bayes theorem—the savings of

time and money can be enormous. In the context of deformed coin tossing,

a very convenient prior is the one that makes the sequence of coin tosses

i.i.d. with probability of heads equal to 70%. This subjective opinion does

not require Bayesian updating when data are collected—the posterior is the

same as the prior. Needless to say, in Bayesian statistics, priors are never

chosen just on the basis of their technical complexity. Bayesian statisticians

clearly believe that they benefit in an objective way by rejecting simplistic

but computationally convenient priors.

Bayesian statisticians choose priors to obtain the most reliable predic-

tions based on the posterior distributions. The matter is somewhat com-

plicated by mathematical and technical limitations. Not all priors lead to

tractable mathematical formulas and some priors require enormous amount

of computer time to be processed. Setting these considerations aside, we can

distinguish at least three popular ways of choosing priors in Bayesian statis-

tics: (i) an application of (L1)-(L5), (ii) a technically convenient probability

distribution, not pretending to represent any real probabilities, and (iii) in-

formal summary of statistician’s knowledge. I will discuss these choices in

more detail.

8.4.1 Objective priors

The adjective “objective” in the title of this subsection indicates that some

priors involve probability assignments that can be objectively verified, for

example, by long run repetitions that do not involve any Bayes-related

reasoning.

Textbook examples show how one can choose a prior using (L1)-(L5).

Suppose that there are two urns, the first contains 2 black and 7 white

balls, and the second one contains 5 black and 4 white balls. Someone

tosses a coin and samples a ball from the first urn if the result of the toss

is heads. Otherwise a ball is sampled from the second urn. Suppose that

the color of the sampled ball is black. What is the probability that the coin

toss resulted in tails? In this problem, the prior distribution assigns equal

probabilities to tails and heads, by symmetry. More interesting situations

arise when long run frequencies are available. For example, suppose that

1% of the population in a certain country is infected with HIV, and an HIV

test generates 1% false negatives and 10% false positives. (A false positive

is when someone does not have HIV but the test says he does.) If someone
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tests positive, what is the probability that he actually has HIV? In this

case, the prior distribution says that a person has HIV with probability

1%. This is based on the long run frequency and, therefore, implicitly on

(L1)-(L5). In other words, a symmetry is applied because the tested person

is considered “identical” to other people in the population.

8.4.2 Bayesian statistics as an iterative method

Some priors play the role of the “seed” in an iterative method. Such meth-

ods are popular in mathematics and numerical analysis.

Suppose that we want to find a solution to a differential equation, that

is, a function that solves the equation. An iterative method starts with

a function S1, that is, a “seed.” Then one has to specify an appropriate

transformation S1 → S2 that takes S1 into a function S2. Usually, the

same transformation is used to map S2 onto S3, and so on. The method

works well if one can prove that the sequence S1, S2, S3, . . . converges to

the desirable limit, that is, the solution of the differential equation. The

convergence has been proved in many cases. This iterative method is used

in both pure mathematics and applied numerical methods. The seed S1

is not assumed or expected to be a solution to the differential equation or

to be even close to such a solution. Not all seeds will generate a sequence

of Sk’s converging fast to the desirable limit, and the number of iterations

needed for a good approximation of the solution depends on the problem

itself and on the seed. The choice of an efficient transformation Sk → Sk+1

and the seed S1 is a non-trivial problem with no general solution—the

answer depends on the specific situation.

The Bayesian method can be interpreted as an iterative scheme when

the number of data is reasonably large. The following two procedures are

equivalent from the mathematical point of view. The standard algorithm

is to combine the prior distribution with all of the available data, using the

Bayes theorem, to obtain the posterior distribution. An alternative, math-

ematically equivalent representation, is to start by combining the prior dis-

tribution with a single piece of data to obtain an intermediate distribution.

This new distribution can be combined with another single piece of data to

obtain another intermediate distribution, and so on. When we finish the

process by including the last piece of the data, the resulting distribution is

the same as the one obtained in one swoop.

The general success of iterative methods suggests that Bayesian statis-

tics might be successful as well, because it can be represented as an iterative
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scheme. This is indeed the case in typical situations. I will illustrate the

claim with a simple example. Consider tosses of a deformed coin. It is

popular to use the “uniform” prior, that is, to assume that the sequence

of tosses is a mixture of i.i.d. sequences, each i.i.d. sequence represents

a coin with the probability of heads equal to p, and p itself is a random

variable which lies in any subinterval [a, b] of [0, 1] with probability b − a.

If there were k heads in the first n trials then the posterior distribution

includes the statement that the probability of heads on the (n + 1)-st toss

is (k + 1)/(n + 2). For large n, this is very close to k/n, a value that many

people would consider a good intuitive estimate of the probability of heads

on the (n + 1)-st toss. The reliability of the estimate (k + 1)/(n + 2) can

be confirmed by real data.

The uniform prior in the last example does not represent any “subjective

opinion” and it does not represent any “objective probability” either. It is

a seed in an iterative method, and it works in an almost magical way—no

matter what your coin is, you can expect the posterior distribution to yield

excellent probability estimates. I said “magical” because in mathematics in

general, there is no reason to expect every iterative method and seed to be

equally efficient. The practice of using the prior distribution as an abstract

seed in an iterative method is perfectly well justified by (L1)-(L5), because

one can empirically verify predictions implicit in the posterior distribution,

in the spirit of (L5).

An important lesson from the representation of some Bayesian algo-

rithms as an iterative method is that they may yield little useful informa-

tion if the data set is not large. What this really means depends, of course,

on the specific situation. It is clear that most people assume, at least im-

plicitly, that the value of the posterior is almost negligible when the model

and the prior are not based on (L1)-(L5) or the data set is small. The

subjective philosophy makes no distinction whatsoever between probabil-

ity values arrived at in various ways—they are all equally subjective and

unverifiable.

8.4.3 Truly subjective priors

A prior may represent scientist’s prior knowledge in an informal way. Using

such priors is a sound scientific practice but this practice might be the most

misunderstood element of Bayesian statistics. Statisticians know that using

personal prior distributions often yields excellent results. Hence, a common
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view is that “subjective priors” work and hence the subjective theory of

probability is vindicated.

It is clear that Bayesian statisticians expect posterior distributions to

generate reliable predictions. Hence, the question is why and how personal

priors can be the basis of objectively verifiable predictions? I see at least

two good explanations. Recall that some priors are based on (L1)-(L5)

and, therefore, they yield reliable predictions. A prior opinion of a scientist

may be based on an informal processing of past observations according to

(L1)-(L5). A prior distribution generated in this way may be somewhat

different from the distribution that would have been generated by formal

mathematical calculations. But that does not mean that such an informal

prior is completely different from the results of a formal calculation. This

is similar to an informal assessment of temperature. We cannot precisely

measure the outside temperature using our own senses but that does not

mean that our subjective opinions about temperature are hopelessly inac-

curate or useless. Hence, some personal priors work because they are not

much different from “objective priors” discussed in Sec. 8.4.1.

The second reason why priors representing personal knowledge often

work well is that sometimes they are combined with large amounts of data.

In such a case, the posterior distribution is not very sensitive to the choice

of the prior. In other words, in such cases, the personal prior plays the

role of a seed in an iterative method and quite often its intrinsic value is

irrelevant.

I do not want to leave am impression that I am a strong supporter of

personal priors. Except for some trivial situations, one can always come

up with a prior that will lead to absurd predictions. Hence, priors that

summarize personal knowledge in an informal way are not guaranteed to

generate reliable posterior distributions. They summarize what cannot be

built into the model—this alone is suspicious. They can be taught only

by example and cannot be formalized, by definition. They generate extra

predictions that are not meant to be used (see Sec. 8.8). Personal priors are

also related to a disturbing practice of choosing priors that are convenient

from some point of view, say, purely mathematical point of view. While

simplification of scientific models is an intrinsic element of science, the ulti-

mate criterion for the choice of a model and a prior must be the reliability

of predictions generated by the posterior distribution.

Finding a good prior is similar to finding a symmetry—it is a skill,

perhaps innate, perhaps learnt. Recognizing symmetries and finding good

priors are taught by examples. However, there is a quantum jump from the
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ability to recognize symmetries to the ability to recognize good priors. The

first skill can and is required of all people. The second skill is an example

of “magic.” I call a phenomenon “magical” when reliable results can be

achieved but the method cannot be fully understood, explained or taught

to others. A somewhat silly example of magic is the ability of some people

to move their ears. A more interesting example of magic were mathemat-

ical achievements of Srinivasa Ramanujan, an Indian mathematician (see

[Kanigel (1991)]). He generated true mathematical theorems by magic, that

is, in a reliable way that nobody else could emulate. People who have such

talents are lucky but science cannot rely on magic.

An important problem with magic is that we do not understand how

it works, so we can discern only statistical regularities. This makes magic

unreliable, in general. Consider the following example. Some scientists

believed that they had taught an artificial neural network to recognize tanks

in photographs. After many successful experiments, the neural network

failed to recognize tanks in a new photograph. A detailed analysis showed

that in fact the neural network had learnt to recognize sunny weather in

photographs, not tanks. A lesson for Bayesian statisticians is that personal

priors have a character of magic and, therefore, they cannot be considered

reliable.

The subjective ideology is harmful to Bayesian statistics because it mud-

dles the distinction between priors which represent information gathered

and processed in an informal way and priors that are objective or are seeds

of an iterative algorithm. It has been proposed that some priors, for ex-

ample, uniform priors, represent the “lack of knowledge”. This may be an

intuitively appealing idea but it is hard to see why a prior representing the

“lack of knowledge” is useful in any way. The sole test of the utilitarian

value of a prior is the quality of predictions generated by the posterior

distribution corresponding to a given prior.

To see the true role of the prior, consider the following example. Suppose

that a scientist has to make a decision. She decides to use the Bayesian

approach, chooses a prior, and collects the data. When she is finished,

the computer memory fails, she loses all the data and she has no time

to collect any more data before making the decision. According to the

subjective philosophy, the prior represents the best course of action in the

absence of any additional information. Hence, according to the subjective

theory, the statistician has to make the decision on the basis of her prior.

In reality, nobody seems to be trying to choose a prior taking into account

a potential disaster described above. If anything like this ever happened,
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there would be no expectation that the prior chosen to fit with the whole

statistical process (including data collection and analysis) would be useful

in any sense in the absence of data.

8.5 Data

It happens sometimes that the observed data do not seem to fit the model

at all. In its pure subjectivist version, the Bayesian approach is totally

inflexible—the posterior distribution must be derived from the prior and

the data using the Bayes theorem, no matter what the data are. In practice,

when the data do not match the model, the model would be modified. This

practice is well justified by (L1)-(L5), as an attempt to improve the reli-

ability of predictions. The subjective philosophy provides no justification

for changing the model or the prior, once the data are collected.

Paradoxically, the subjective philosophy provides no support for the

idea that it is better to have a lot of data than to have little data—see

Sec. 7.8. Since the subjective philosophy is only concerned with consistency

of decisions, collecting more data will not make it any easier for the decision

maker to be consistent, than in the case when he has little or no data.

Needless to say, Bayesian statisticians believe that collecting extra data is

beneficial.

8.6 Posteriors

The posterior has the least subjective status of all elements of the Bayesian

statistics, mainly because of the reality of the society. Business people, sci-

entists, and ordinary people would have nothing to do with a theory that

emphasized the subjective nature of its advice. Hence, the subjectivity of

priors may be mentioned in some circumstances but posterior distributions

are implicitly advertised as objective. Take, for example, the title of a classi-

cal textbook [DeGroot (1970)] on Bayesian statistics, “Optimal Statistical

Decisions”. Optimal? According to the subjective theory of probability,

your opinions can be either consistent or inconsistent, they cannot be true

or false, and hence your decisions cannot be optimal or suboptimal. Of

course, you may consider your own decisions optimal, but this does not

say anything beyond the fact that you have not found any inconsistencies

in your views—the optimality of your decisions is tautological. Decisions

may be also optimal in some purely mathematical sense, but I doubt that
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that was the intention of DeGroot when he chose a title for his book. The

title was chosen, consciously or subconsciously, to suggest some objective

optimality of Bayesian decisions.

The posterior distribution is the result of combining the prior and the

model with the data. Quite often, the prior is not objective (see Sec. 8.4.1)

so the posterior is not based on (L1)-(L5) alone. This is one reason why

posterior probability assignments are not always correct, in the sense of pre-

dictions, as in (L5). The weakest point of the philosophical foundations of

the Bayesian statistics is that they do not stress the necessity of a proof (in

the sense of (L5)) that the posterior distribution has desirable properties.

The subjective philosophy not only fails to make such a recommendation

but asserts that this cannot be done at all. Needless to say, Bayesian statis-

ticians routinely ignore this part of the subjectivist philosophy and verify

the validity of their models, priors and posteriors in various ways.

From time to time, somebody expresses an opinion that the successes

of the Bayesian statistics vindicate the claims of the subjective philosophy.

The irony is that according to the subjective theory itself, nothing can

confirm any probabilistic claims—the only successes that the Bayesians

could claim are consistency and absence of Dutch book situations—this

alone would hardly make much of an impression on anyone.

8.6.1 Non-convergence of posterior distributions

One of the most profound misconceptions about de Finetti’s theory and

Bayesian statistics is the claim that even if two people have two different

prior distributions then their posterior distributions will be closer and closer

to each other, as the number of available data grows larger and larger. This

misunderstanding is firmly rooted in the ambiguity of the word “prior.” The

philosophical “prior” includes the statistical “prior” and “model.”

Consider the following example. Let Xk be the number of heads minus

the number of tails in the first k tosses of a coin. Let Yk be 0 if Xk is less

than 0 and let Yk be equal to 1 otherwise. The sequence X1, X2, X3, . . . is

known as a simple random walk, and the sequence Y1, Y2, Y3, . . . is known

not to be exchangeable. Suppose that two people are shown a number

of values of Y1, Y2, Y3, . . . , but only one of them knows how this sequence

of zeroes and ones was generated. The other person might assume that

Y1, Y2, Y3, . . . is exchangeable, not knowing anything about its origin. If he

does so, the posterior distributions of the two observers will not converge

to each other as the number of observations grows.
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The above elementary example is quite typical. If two statisticians do

not agree on the model then there is no reason to think that their posterior

distributions will be close to each other, no matter how much data they

observe. Conversely, if two statisticians adopted the same model but used

two different priors then their posterior distributions will be closer and

closer as the number of data grows, under mild technical assumptions.

I propose to turn the above observations into the following “axiomatic”

definition of a model in Bayesian statistics. A “model” consists of a family

of probability distributions describing the future (“philosophical priors”),

and a sequence of random variables Z1, Z2, Z3, . . . (“data”), such that for

any two probability distributions in this family, with probability one, the

posterior distributions will converge to each other as the number of observed

values of Z1, Z2, Z3, . . . grows to infinity. In the context of (L1)-(L5), a

model represents objective reality. Opinions of Bayesian statisticians who

adopted the same model will converge to each other, as the number of

available data grows. I believe that the opinions will actually converge to

the objective truth but from the operational point of view, this philosophical

interpretation of the convergence of opinions is irrelevant.

The above discussion of Bayesian models paints a picture of the world

that is far too optimistic. According to the above vision, rational people

should agree on an objective model, and collect enough data so that their

posterior distributions are close. Thus achieved consensus is a reasonable

substitute for the objective truth. The catch is that my definition of a

model (and all limit theorems in probability and statistics) assume that

the number of data grows to infinity. In practice, the number of data is

never infinite. We may be impressed by numbers such as “trillion” but even

trillion data can be easily overridden by a sufficiently singular prior distri-

bution. In other words, for a typical Bayesian model, and an arbitrarily

large data set, one can find a prior distribution which will totally determine

the posterior distribution, pushing all the data aside. One may dismiss this

scenario as a purely theoretical possibility that never occurs in practice. I

beg to differ. When it comes to religion, politics and social issues, some

people will never change their current opinions, no matter what arguments

other people may present, or what new facts may come to light. Some of

this intransigence may be explained away by irrationality. In case of dispute

between rational people, the irreconcilable differences may be explained by

the use of different models. But I believe that at least in some cases, groups

of rational people use the same model but start with prior distributions so
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different from one another that no amount of data that could be collected

by our civilization would bridge the gap between the intellectual opponents.

8.7 Bayesian Statistics and (L1)-(L5)

Methods of Bayesian statistics can be justified just like the methods of clas-

sical statistics—see Secs. 6.1 and 6.2.1. Briefly, Bayesian statisticians can

generate predictions in the sense of (L5). These can take the form of con-

fidence intervals (also called “credible intervals” in the Bayesian context).

Predictions can be also based on aggregates of statistical problems, or can

be made using decision theoretic approach. The general discussion of prac-

tical problems with predictions given in Sec. 6.1 applies also to predictions

based on Bayesian posterior distributions. Recall why these somewhat im-

practical predictions are needed. Bayesian statisticians may use their own

methods of evaluating their techniques, as long as users of Bayesian statis-

tics are satisfied. Predictions, in the sense of (L5), are needed because of

the existing controversy within the field of statistics. Critics of Bayesian

statistics must be given a chance to falsify predictions made by Bayesian

statisticians. If the critics fail to falsify them then, and only then, Bayesian

statisticians may claim that their methods form a solid branch of science.

8.8 Spurious Predictions

The Bayesian approach to statistics has some subtle problems that are un-

derstood well by statisticians at the intuitive level but are rarely discussed

explicitly.

Recall that some priors are used only as seeds in an iterative method.

These priors introduce probabilities which are not meant to be used. For

example, suppose that a statistical consultant analyzes many problems deal-

ing with parameters in the interval [0, 1] over his career. Typically, such

priors represent unknown probabilities. Suppose further that he always

uses the uniform prior on [0, 1], a mathematically convenient distribution.

Assuming that the consultant treats different statistical problems as inde-

pendent, his choice of priors generates a prediction (in the sense of (L5))

that about 70% of time, the true value of the parameter lies in the interval

[0, 0.7]. It is clear that very few people want to make such a prediction. In

fact, the uniform prior is commonly considered to be “uninformative,” and

so it is not supposed to be used in any direct predictions.
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8.9 Who Needs Subjectivism?

There are (at least) two reasons why some Bayesian statisticians embrace

the subjective philosophy. One is the mistaken belief that in some cases,

there is no scientific justification for the use of the prior distribution except

that it represents the subjective views of the decision maker. I argued that

the prior is sometimes based on (L1)-(L5), sometimes it is the seed of an

iterative method, and sometimes it is the result of informal processing of

information, using (L1)-(L5). The justification for all of these choices of

the prior is quite simple—predictions based on posterior distributions can

be reliable.

Another reason for the popularity of the subjective philosophy among

some Bayesians is that the subjective theory provides an excellent excuse

for using the expected value of the (utility of) gain as the only determinant

of the value of a decision. As I argued in Secs. 4.1.1, 4.4.2 and 4.5, this

is an illusion based on a clever linguistic manipulation—the identification

of decisions and probabilities is true only by a philosopher’s fiat. If prob-

abilities are derived from decisions, there is no reason to think that they

represent anything in the real world. The argument in support of using

the expected value is circular—probabilities are used to encode a rational

choice of decisions and then decisions are justified by appealing to thus

generated probabilities.

Bayesian statisticians often point out that their methods “work” and

this proves the scientific value of the Bayesian theory. Clearly, this is a

statement about the methods and about the choice of prior distributions.

It is obvious that if prior distributions had been chosen in a considerably

different way, the results would not have been equally impressive. Hence,

prior distributions have hardly the status of arbitrary opinions. They are

subjective only in the sense that a lot of personal effort went into their

creation.

One could say that (some) Bayesian statisticians are victims of the clas-

sical statisticians’ propaganda. They believe in the criticism directed at

the Bayesian statistics, saying that subjectivity and science do not mix. As

a reaction to this criticism, they try to justify using subjective priors by

invoking de Finetti’s philosophical theory. In fact, using subjective priors

is just fine because the whole science is subjective in the same sense as

subjective priors are. Science is about matching idealized theories with the

real world, and the match is necessarily imperfect and subjective. Bayesian

priors are not any more subjective than, for example, assumptions made by
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physicist about the Big Bang. The only thing that matters in all sciences,

including statistics, is the quality of predictions.

8.10 Preaching to the Converted

Many of the claims and arguments presented in this chapter are known to

and accepted by (some) Bayesian statisticians. It will be instructive to see

how philosophical issues are addressed in two books on Bayesian analysis,

[Berger (1985)] and [Gelman et al. (2004)].

I start with a review of a few statements made in [Gelman et al. (2004)],

a graduate level textbook on Bayesian statistics. On page 13, the authors

call the axiomatic or normative approach “suggestive but not compelling.”

On the same page, they refer to the Dutch book argument as “coherence

of bets” and they say that “the betting rationale has some fundamental

difficulties.” At the end of p. 13, they say about probabilities that “the

ultimate proof is in the success of the applications.” What I find missing

here is an explanation of what the “success” means. In my theory, the

success is a prediction, in the sense of (L5), that is fulfilled. The authors

seem to believe in predictions because they say the following on p. 159,

More formally, we can check a model by external validation

using the model to make predictions about future data, and
then collecting those data and comparing to their predictions.
Posterior means should be correct on average, 50% intervals
should contain the true values half the time, and so forth.

The above may suggest that the only probabilistic predictions that can

be made are based on long run frequencies. Frequency based predictions

are just an example of probabilistic predictions, that is, events of very high

probability. The only special thing about long run frequencies is that, quite

often, they are the shortest path to predictions with very high probabilities,

thanks to the Large Deviations Principle.

I am not sure how to interpret remarks of the authors of [Gelman et al.

(2004)] on subjectivity on pages 12 and 14. It seems to me that they are

saying that subjectivity is an inherent element of statistical analysis. In my

opinion, all their arguments apply equally well to science in general. As far

as I know, standard textbooks on chemistry do not discuss subjectivity in

their introductions, and so statistical textbooks need not to do that either

(except to present historical misconceptions).
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Overall, I consider the discussion of philosophical issues in Sec. 1.5 of

[Gelman et al. (2004)] level headed and reasonable. However, the funda-

mental philosophical problem of verification of probability statements is

swept under the rug. On pages 12 and 13, the authors show that the fre-

quency approach to the problem of confirmation of probability values has

limitations, but they do not present an alternative method, except for the

nebulous “success of the applications” at the top of page 14.

Berger’s book [Berger (1985)], a monograph on decision theory and

Bayesian analysis, is especially interesting because Berger does not avoid

philosophical issues, discusses them in detail, and takes a pragmatic and

moderate stance. All this is in addition to the highest scientific level and

clarity of his presentation of statistical techniques. I will argue that Berger

completely rejects de Finetti’s philosophy but this leaves his book in a

philosophical limbo.

I could not find a trace of de Finetti’s attitude in Berger’s book. The

Dutch book argument is presented in Sec. 4.8.3 of [Berger (1985)] and

given little weight, on both philosophical and practical sides. The axiomatic

approach to Bayesian statistics is described in Sec. 4.1. IV of [Berger (1985)].

Berger points out that axiomatic systems do not prove that “any Bayesian

analysis is good.”

Berger clearly believes that (some) objective probabilities exist and he

identifies them with long run frequencies; see, for example, the analysis of

Example 12 in Sec. 1.6.3 of [Berger (1985)].

Berger calls subjective probability “personal belief” in Sec. 3.1 of his

book. The best I can tell, Berger does not mean by “personal belief” an

arbitrary opinion, but an informal assessment of objective probability. In

Sec. 1.2, he writes that Bayesian analysis “seeks to utilize prior informa-

tion.” I interpret this as scientifically justified (but possibly partly informal)

processing of objective information.

The philosophical cracks show in Berger’s book at several places. Berger

is a victim of the frequentist propaganda—he believes that frequency, when

available, is an objective measurement of objective probability, but other-

wise we do not have objective methods of verifying statistical methods. For

example, in Sec. 3.3.4, Berger points out that in some situations there ap-

pear to be several different “non-informative priors.” Berger’s discussion

of this problem is vague and complicated. He does mention a “sensible

answer” without defining the concept. In my approach, the problem with

competing non-informative priors is trivial on the philosophical side. One

should use these priors in real applications of statistics, generate useful
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predictions in the sense of (L5), and then see how reliable the predictions

are. One can generate a prediction on the basis of a single case of Bayesian

statistical analysis (a credible interval), or one can use an aggregate of inde-

pendent (or dependent!) cases of Bayesian analysis to generate a prediction.

It might not be easy to verify a given prediction, but this problem affects

all sciences, from high energy particle physics to human genomics.

I am troubled by the unjustified use of expectation in Berger’s exposi-

tion. In Sec. 1.6.2 of [Berger (1985)], we find a standard justification of the

use of expectation—if we have repeated cases of statistical analysis then the

long run average of losses is close to the expectation of loss. However, it is

clear that Berger does not believe that statistical methods are applicable

only if we have repeated cases of statistical analysis. Berger’s rather critical

and cautious attitude towards the Dutch book argument and axiomatic sys-

tems indicates that he does not consider them as the solid justification for

the use of expectation. This leaves, in my opinion, the only other option—

expected value is implicitly presented as something that we should expect

to observe. I have already expressed my highly negative opinion about this

intuitive justification of expectation in Sec. 4.1.1 of this book.

Berger gives seven justifications for the use of Bayesian analysis in

Sec. 4.1 of [Berger (1985)]. This alone may raise a red flag—why is not

any one of them sufficient? Do seven partial justifications add up to a sin-

gle good justification? In fact, all these justifications are perfectly good,

but we have to understand their role. The only scientific way for Bayesian

analysis to prove its worth is to generate reliable predictions, as described

in this book. We do not need to have observable frequencies to obtain veri-

fiable predictions. Berger’s seven justifications can be used before we verify

any predictions, to justify the expense of labor, time and money. Once we

determine that Bayesian analysis generates useful and reliable predictions,

the seven justifications may be used to explain the success of Bayesian anal-

ysis, to make improvements to the existing methods, and to search for even

better methods to make predictions.

Overall, [Berger (1985)] overwhelms the reader (especially the beginner)

with an avalanche of detailed philosophical analysis of technical points.

What is lost in this careful analysis is a simple message that statistical

theories can be tested just like any other scientific theory—by making and

verifying predictions.
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8.11 Constants and Random Variables

One of the philosophical views of the classical and Bayesian statistics says

that one of the main differences between the two branches of statistics is

that the same quantities are treated as constants by the classical statistics,

and as random variables by the Bayesian statistics. For example, suppose

that a statistician has some data on tosses of a deformed coin. A classical

statistician would say that the probability of heads is an unknown con-

stant (not a random variable). The data are mathematically represented

as random variables; of course, once the data are collected, the values of

the random variables are known. A Bayesian statistician considers the data

to be known constants. The probability of heads on any future toss of the

same coin is an unknown number and, therefore, it is a random variable.

The reason is that a subjectivist decision maker must effectively treat any

unknown number as a random variable.

I consider the above distinction irrelevant from the point of view of (L1)-

(L5). A statistical theory can be tested only in one way—by verifying its

predictions. Predictions are events which have high probabilities. Generally

speaking, classical and Bayesian statisticians agree on what can be called

an “event” in real life. They can point out events that they think have high

probabilities. The users of statistics can decide whether predictions are

successful or not. A statistical theory may be found to be weak if it makes

very few predictions. Another statistical theory may be found erroneous if

it makes many predictions that prove to be false. It is up to the users of

statistics to decide which theory supplies the greatest number of reliable and

relevant predictions. Whether a statistician considers parameters constants

or random variables, and similarly whether data are considered constants

or random variables, seems to be irrelevant from the user’s point of view.

These philosophical choices do not seem to be empirically verifiable, unlike

predictions.

Let us consider a specific example. Is the speed of light an unknown

constant or a random variable? One can use each of these assumptions to

make predictions.

First, let us assume that the speed of light is an unknown constant.

Suppose that, in the next five years, the accuracy of measurements of the

speed of light will not be better than 10−10 in some units and that in the

same interval of time, about one hundred (independent) 90%-confidence

intervals will be obtained by various laboratories. Assume that one hundred

years from now, the accuracy of measurements will be much better, say,
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10−100, so by today’s standards, the speed of light will be known with

perfect accuracy. All confidence intervals obtained in the next five years

could be reviewed one hundred years from now and one could check if

they cover the “true value” of the speed of light, that is, the best estimate

obtained one hundred years from now. We can assert today that more

than 85% of confidence intervals obtained in the next five years will cover

the “true value” of the speed of light—this is a prediction obtained by

combining classical statistical methods and (L5). In other words, the last

statement describes an event and gives it a very high probability.

Next, I will argue that we can generate scientific predictions if we assume

that the speed of light is a random variable. Suppose that over the next one

hundred years, the speed of light is estimated repeatedly with varying accu-

racy. The results of each experiment are analyzed using Bayesian methods

and a posterior distribution for the speed of light is calculated every time.

If the posterior distributions are used for some practical purposes, one can

calculate the distribution of combined losses (due to inaccurate knowledge

of the speed of light) incurred by our civilization over the next one hundred

years. One can use this distribution to make a prediction that the total

accumulated losses will exceed a specific value with probability less than,

say, 0.1%. This prediction is obtained by combining Bayesian methods and

decision theoretic ideas with (L5).

Verifying predictions described in the last two paragraphs my be very

hard in practice. But the idea may be applied with greater success when

we limit ourselves to a scientific quantity of lesser practical significance

than the speed of light. My real goal is not to suggest a realistic scientific

procedure for the analysis of various measurements of the speed of light. I

want to make a philosophical point—verifiable predictions, in the sense of

(L5), are not dependent on whether we consider scientific quantities to be

constants or random variables.

8.12 Criminal Trials

Criminal trials present an excellent opportunity to test a philosophical the-

ory of probability. In the American tradition, the guilt of a defendant has

to be proved “beyond reasonable doubt.” I will discuss criminal trials in

the Bayesian framework. I do not have simple answers—I will list some

options.
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Suppose jurors are Bayesians and, therefore, they have to start with

a prior opinion before they learn anything about the defendant. Here are

some possible choices for the prior distribution.

(i) Use symmetry to conclude that the probability of the defendant be-

ing guilty is 50%. This is likely to be unacceptable to many people

because the prior probability of being guilty seems to be very high,

inconsistent with the principle that you are innocent until proven

guilty. The appeal to symmetry is highly questionable—what is

symmetric about guilt and innocence? The symmetry seems to

refer to the gap in our knowledge—using this symmetry to decide

someone’s fate does not seem to be well justified.

(ii) Suppose that 2% of people in the general population are convicted

criminals. Use exchangeability to conclude that the prior proba-

bility of defendant being guilty is 2%. This use of symmetry in

the form of exchangeability is questionable because the defendant

is not randomly (uniformly) selected from the population.

(iii) Suppose that 80% of people charged with committing a crime are

found to be guilty. One could argue that this piece of information,

just like all information, must be built into the prior because one

must always process every bit of data in the Bayesian framework.

Hence, one could start with a prior of the defendant being guilty

equal to 80%, or some other number larger than 50%. An impor-

tant objection here is that the mere fact that someone is charged

with committing a crime increases the probability that he is guilty.

This seems to contradict the presumption of innocence and opens

a way for abuse of power.

(iv) One can argue that none of the uses of symmetry outlined in (i)-(iii)

is convincing so there is no symmetry that can be used to assign

the prior probability in an objective way. Hence, one has to use a

personal prior. This suggestion invites an objection based on the

past history—white juries used to have negative prejudices against

black defendants. A prior not rooted strongly in an objective reality

is suspect.

The difficulties in choosing a good prior distribution are compounded by

difficulties in choosing the right utility function. What is the loss due to

convicting an innocent person? What is the loss due to letting a criminal

go free? And who should determine the utility function? The jurors? The

society? The unjustly imprisoned person?
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Jurors may choose to approach their decision problem using a method

developed by the classical statistics—hypothesis testing. It is natural to

take innocence of the defendant as the null hypothesis. I do not see any

obvious choice for the significance level, just like do not see any obvious

choice for the prior distribution in the Bayesian setting.

Both approaches to the decision problem, Bayesian and hypothesis test-

ing, can generate predictions in the sense of (L5). Predictions can be made

in at least two ways. First, one can make a prediction that a given innocent

defendant will not be found guilty or that a given criminal will not be found

innocent. One of the problems with this “prediction” is that it might not

have a sufficiently large probability, by anyone’s standards, to be called a

prediction in the sense of (L5). Another problem is that it may be very

hard to verify whether such a “prediction” is true. Jury trials deal with

precisely those cases when neither guilt nor innocence are totally obvious.

Another possible prediction in the context of jury trials can be made

about percentages, in a long sequence of trials, of defendants that are falsely

convicted and criminals that are found not guilty. This prediction might

be verifiable, at least approximately, using statistical methods. And the

percentages can be changed by educating jurors and adjusting the legal

system in other ways. I consider this prediction to be the most solid of

all probabilistic approaches to criminal trials. However, I do see potential

problems. If the legal system is tailored to achieve certain desirable per-

centage targets, defendants may feel that verdicts in their individual cases

will be skewed by general instructions given to juries that have nothing to

do with their individual circumstances.

I do not have an easy solution to the problem of criminal trials in the

context of (L1)-(L5). I do not think that the frequency and subjective

theories can offer clear and convincing solutions either.
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Teaching Probability

I do not have an ambition to reform statistics although I think that statistics

might benefit if statisticians abandon the frequency and subjective ideolo-

gies and embrace (L1)-(L5). I do have an ambition to reform teaching of

probability, because it is in an awful state of confusion at the moment. I

have only one explanation for the remarkable practical successes of statis-

tics and probability in view of the totally confused state of teaching of the

foundations of probability—philosophical explanations given to students

are so confused that students do not understand almost any of them and

they learn the true meaning of probability from examples. I will review the

current teaching practices—they illustrate well the disconnection between

the frequency and subjective philosophies on one hand and the real science

of probability on the other.

The current teaching of probability and statistics is unsatisfactory for

several reasons.

(i) The frequency and subjective philosophical theories are presented

in vulgarized versions. It is more accurate to say that they are not

presented at all. Instead, only some intuitive ideas related to both

theories are mentioned.

(ii) Even these distorted philosophical theories are soon forgotten and

the sciences of probability and statistics are taught by example.

(iii) Implicit explanations of why statistics is effective are false. The

unquestionable success of statistics has little to do with long run

frequencies or consistent decision strategies.

In the frequency theory, the transition from probability to long run

frequency is rather straightforward because it is based on a mathematical

199
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theorem, the Law of Large Numbers. Probability textbooks are missing

the real philosophical difficulty—going from sequences of observations to

probabilities. A standard approach is to explain that the average of the

observations is an unbiased estimator of the mean. From the philosophical

point of view, this is already quite a sophisticated claim. The most elemen-

tary level of the frequency ideology, the von Mises’ theory of collectives, is

completely ignored. And for a good reason, I hasten to add. Except that

students end up with no knowledge of what the frequency philosophy of

probability is.

On the Bayesian side, standard textbooks sweep under the rug some

inconvenient claims and questions. If any elements of the Bayesian setup

are subjective, can the posterior be fully objective? Is there a way to

measure subjectivity? If a textbook is based on an axiomatic system, does

it mean that there is no way to verify empirically predictions implicit in

the posterior distribution?

At the undergraduate college level and at schools, the teaching of prob-

ability starts with combinatorial models using coins, dice, playing cards,

etc., as real life examples. At the next stage some continuous distributions

and models are introduced, such as the exponential distribution and the

Poisson process. The models are implicitly based on (L1)-(L5) and are

clearly designed to imbue (L1)-(L5) into the minds of students (of course,

(L1)-(L5) are not explicitly stated in contemporary textbooks in the form

given in this book). Many textbooks and teachers present Kolmogorov’s

axioms at this point but this does more harm than good. The elementary

and uncontroversial portion of Kolmogorov’s axioms states that probabili-

ties are numbers between 0 and 1, and that probability is additive, in the

sense that the probability of the union of two mutually exclusive events

is the sum of the probabilities of the events. The only other axiom in

Kolmogorov’s system is that probability is countably additive, that is, for

any countably infinite family of mutually exclusive events, the probability

of their union is the sum of the probabilities of individual events. From

the point of view of mathematical research in probability theory, this last

axiom is of fundamental importance. From the point of view of under-

graduate probability, countable additivity has very limited significance. It

can be used, for example, to justify formulas for the probability mass func-

tions of the geometric and Poisson distributions. Kolmogorov’s axioms do

not mention independence, suggesting to students that independence does

not merit to be included among the most fundamental laws of probability.

Kolmogorov’s axioms proved to be a perfect platform for the theoretical
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research in probability but undergraduate students do not have sufficient

background to comprehend their significance.

In a typical undergraduate probability textbook, the frequency and sub-

jective theories enter the picture in their pristine philosophical attire. They

are used to explain what probability “really is.” A teacher who likes the

frequency theory may say that the proper understanding of the statement

“probability of heads is 1/2” is that if you toss a coin many times, the rela-

tive frequency of heads will be close to 1/2. Teachers who like the subjective

philosophy may give examples of other nature, such as the probability that

your friend will invite you to her party, to show that probability may be

given a subjective meaning. In either case, it is clear from the context that

the frequency and subjective “definitions” of probability are meant to be

only philosophical interpretations and one must not try to implement them

in real life. I will illustrate the last point with the following example, re-

sembling textbook problems of combinatorial nature. A class consists of 36

students; 20 of them are women. The professor randomly divides the class

into 6 groups of 6 students, so that they can collaborate in small groups

on a project. What is the probability that every group will contain at least

one woman? The frequency theory suggests that the “probability” in the

question makes sense only if the professor divides the same class repeatedly

very many times. Needless to say, such an assumption is unrealistic, and

students have no problem understanding that the frequency interpretation

refers to an imaginary sequence of experiments. Hence, students learn to

use the frequency interpretation as a mental device that has nothing to do

with von Mises’ theory of collectives. As far as I can tell, all “subjectivist”

instructors would show students how to calculate the probability that every

group will contain a woman using the classical definition of probability. I

do not know how many of them would explicitly call the answer “objective”

but it is clear to me that students would get the message nevertheless—some

probabilities are objective. It seems to me that the only “subjectivity” that

students are exposed to is the fact that some probabilities are hard to esti-

mate using simple methods, such as the probability that you will be invited

to a birthday party. This has nothing in common with de Finetti’s theory.

At the graduate level, the teaching of probability is more sterile. A

graduate textbook in probability theory often identifies implicitly the sci-

ence of probability with the mathematical theory based on Kolmogorov’s

axioms. In other words, no distinction seems to be made between mathe-

matical and scientific aspects of probability. It is left to students to figure

out how one can match mathematical formulas and scientific observations.
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Students taking a course in classical statistics can easily understand

how the frequency interpretation of probability applies to the significance

level in hypothesis testing. It is a mystery to me how one can give a

frequency interpretation to one of the most elementary concepts of classical

statistics—unbiased estimator. My guess is that students are supposed to

imagine a long sequence of identical statistical problems and accept it as a

substitute for a real sequence.

A course in Bayesian statistics may start with an axiomatic system for

decision making (this is how the author was introduced to the Bayesian

statistics). The axioms and the elementary deductions from them are suf-

ficiently boring to make an impression of a solid mathematical theory. The

only really important elements of the Bayesian statistics, the model and

the prior, are then taught by example. The official line seems to be “you

are free to have any subjective and consistent set of opinions” but “all rea-

sonable people would agree on exchangeability of deformed coin tosses.”

Students (sometimes) waste their time learning the useless axiomatic sys-

tem and then have to learn the only meaningful part of Bayesian statistics

from examples.

An alternative way to teach Bayesian statistics is to sweep the philosoph-

ical baggage under the rug and to tell the students that Bayesian methods

“work” without explaining in a solid way what it means for a statistical

theory to “work.”

9.1 Teaching Independence

Neither undergraduate nor graduate textbooks try to explain the difference

between physical and mathematical independence to students. Typically,

at both levels of instruction, the formula P (A and B) = P (A)P (B) is given

as the definition of independence. Of course, there is nothing wrong with

this definition but my guess is that most students never fully understand the

difference between physical and mathematical independence. The physical

independence, or lack of relationship, is something that we have to recog-

nize intuitively and instantly. In cases when the physical independence is

not obvious or clear, one has to design an experiment to verify whether

independence holds. But there are also simple cases of mathematical inde-

pendence that have nothing to do with lack of physical relationship. For

example, if you roll a die, then the event that the number of dots is less

than 3 and the event that number of dots is even are independent. This
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lack of understanding of the difference between the physical and mathe-

matical independence can potentially lead to misinterpretation of scientific

data. For example, a scientist may determine that the level of a hormone

is (mathematically) independent from the fact that someone has a cancer.

This may be misinterpreted as saying that the hormone does not interact

with cancer cells.

The above problem is related to but somewhat different from the prob-

lem of distinguishing between association and causation. A classical ex-

ample illustrating the difference between association and causation is that

there is a positive correlation between the number of storks present in a

given season of the year and the number of babies born in the same season.

This is an example of association that is not causation.

9.2 Probability and Frequency

No matter what ideology the author of a textbook subscribes to, it seems

that there can be no harm in introducing students early on to the fact that

observed frequencies match theoretical probabilities very well. My own

attitude towards presenting this relationship early in the course is deeply

ambiguous. On one hand, I cannot imagine a course on probability that

would fail to mention the relationship between probability and frequency

at the very beginning. This is how I was taught probability, how I teach

probability, and how the modern probability theory started, with Chevalier

de Mere observing some stable frequencies.

On the other hand, I see several compelling philosophical and didactic

reasons why the presentation of the relationship between probability and

frequency should be relegated to later chapters of textbooks. First, novices

have no conceptual framework into which the equality of probability and

observed frequencies can be placed. The mathematical framework needed

here is that of the Law of Large Numbers. Understanding of the simplest

version of the Law of Large Numbers requires the knowledge of the concept

of i.i.d. random variables. The simplest proof of the “weak” Law of Large

Numbers is based on the so called Chebyshev inequality, which involves

concepts of expectation and variance. The presentation of the concepts

of random variables, i.i.d. sequences, expectation and variance takes up

several chapters of an undergraduate textbook and several months of an

undergraduate course.
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If students have no proper background and learn about the approxi-

mate equality of probabilities and frequencies, they may develop two false

intuitive ideas about sequences of random variables. Students may believe

that averages of observations of i.i.d. sequences of random variables must

converge to a finite number. This is not the case when the random variables

in the sequence do not have finite expectations. Students may also come to

the conclusion that stable frequencies are a sure sign of an i.i.d. sequence.

This is also false. Roughly speaking, stable frequencies are a characteristic

feature of so called “ergodic” sequences, which include some Markov chains.

I would not go as far as to recommend that probability instructors stop

teaching about the relationship between probability and frequency early

in the course. But I think that they should at least try to alleviate the

didactic problems described above.

9.3 Undergraduate Textbooks

Explanations of the frequency and subjective interpretations of probability

in popular undergraduate textbooks are inconsistent with the philosophical

theories of von Mises and de Finetti. My feeling is that the explanations

represent textbook authors’ own views and they are not meant to repre-

sent faithfully the formal philosophical theories. The problem is that these

informal views do not form a well defined philosophy of probability. De

Finetti and von Mises had some good reasons why they made some bold

statements. These reasons are not discussed in the textbooks. This creates

an impression that the frequency and subjective interpretations of proba-

bility are easier to formalize than in fact they are. I will illustrate my point

by reviewing two standard and popular undergraduate textbooks, [Pitman

(1993)] and [Ross (2006)].

Pitman writes on page 11 of his book about frequency and subjective in-

terpretations of probability that “Which (if either) of these interpretations

is ‘right’ is something which philosophers, scientists, and statisticians have

argued bitterly for centuries. And very intelligent people still disagree.” I

could not agree more. But Pitman gives no hint why the interpretations

are controversial. In the first part of Sect. 1.2 in [Pitman (1993)], he dis-

cusses long run frequency of heads in a sequence of coin tosses, and also

presents very convincing data in support of the claim that the probability

that a newborn is a boy is 0.513. What might be controversial about these

examples? Why would “very intelligent people” disagree?
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The part of the section on “opinions” is even more confusing. On page

16, Pitman discusses the probability of a particular patient surviving an

operation. He presents a convincing argument explaining why doctors may

reasonably disagree about this probability. But this disagreement is differ-

ent from the disagreement between philosophers concerning the significance

of subjective probabilities. Reasonable people may disagree about the tem-

perature outside. One person may say that it “feels like” 95 degrees, and

another one may say that the temperature is 90 degrees. Why don’t physi-

cists study “subjective temperature”?

Pitman does not explain why we should care about subjective opinions.

If I declare that there will be an earthquake in Berkeley next year with

probability 88%, why should anyone (including me) care? The Dutch book

argument and the decision theoretic axiomatic system are not mentioned.

I have a feeling that Pitman is trying to say that “subjective” proba-

bilities are crude intuitive estimates of “objective” probabilities. If this is

the case, Pitman takes a strongly objectivist position in his presentation of

subjective probabilities. My guess is based on this statement on page 17

in [Pitman (1993)], “Subjective probabilities are necessarily rather impre-

cise.” The only interpretation of “imprecise” that comes to my mind is that

there exist objective probabilities, and the differences between subjective

probabilities and objective probabilities are necessarily large.

A popular textbook [Ross (2006)] confuses philosophy, mathematics and

science by comparing the frequency theory and Kolmogorov’s axioms in

Sec. 2.3. The frequency theory of probability is a philosophical and sci-

entific theory. The axioms of Kolmogorov are mathematical statements.

Comparing them is like comparing apples and oranges. The author ex-

plains in Sec. 2.7 of [Ross (2006)] that probability can be regarded as a

measure of the individual’s belief, and provides examples that would be

hard to interpret using frequency. Hence, all of the three most popular

probabilistic ideologies, those invented by von Mises, de Finetti and Kol-

mogorov, are mentioned in [Ross (2006)]. I will discuss a routine homework

problem given in that book and show that it is incompatible with the three

ideologies.

Problem 53 (b) on page 194 of [Ross (2006)] states that “Approximately

80,000 marriages took place in the state of New York last year. Estimate

the probability that for at least one of these couples both partners cele-

brated their birthday on the same day of the year.” The answer at the end

of the book gives the probability as 1−e−219.18. It is hard to see how any of

the three approaches to probability presented in [Ross (2006)] can help stu-
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dents interpret this problem and its solution. It is impossible to derive the

answer from Kolmogorov’s axioms unless one introduces some significant

extra postulates, such as (L4). There is nothing in Kolmogorov’s axioms

that suggests that we should solve this problem using “cases equally possi-

ble.” I doubt that Ross would like students to believe that the answer to

Problem 53 (b) is “subjective” in the sense that the answer represents only

a measure of an individual’s belief, and some rational people may believe

that the probability is different from 1 − e−219.18.

A natural frequency interpretation of the problem can be based on a

sequence of data for a number of consecutive years. Even if we make a

generous assumption that the New York state will not change significantly

in the next 10,000 years, a sequence of data for 10,000 consecutive years

cannot yield a relative frequency approximately equal to 1 − e−219.18 but

significantly different from 1. A more precise formulation of the last claim is

the following. It is more natural to consider the accuracy of an estimate of

the probability of the complementary event, that is, “none of the partners

celebrated their birthday on the same day of the year.” Its mathematical

probability is e−219.18. If we take the relative frequency of this event in

a sequence of 10,000 observations (in 10,000 years) as an estimate of the

true probability, and the true probability is e−219.18, then the relative error

of the estimate will be at least 100%. If the mathematical answer to the

problem, that is, 1− e−219.18, has any practical significance, it has nothing

to do with any real sequence.

It is easy to see that the answer to Problem 53 (b) can be given a simple

practical interpretation, based on (L5). For example, if a TV station is

looking for a recently married couple with the same birthdays for a TV

show, it can be certain that it will find such a couple within the state of

New York.
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Abuse of Language

Much of the confusion surrounding probability can be attributed to the

abuse of language. Some ordinary words were adopted by statistics, fol-

lowing the custom adopted by all sciences. In principle, every such word

should acquire a meaning consistent with the statistical method using it. In

fact, the words often retain much of the original colloquial meaning. This

is sometimes used in dubious philosophical arguments. More often, the

practice exploits subconscious associations of the users of statistics. The

questionable terms often contain hidden promises with no solid justification.

I will review terms that I consider ambiguous.

Expected value

The “expected value” of the number of dots on a fair die is 3.5. Clearly,

this value is not expected at all. In practice, the “expected value” is hardly

ever expected. See Sec. 4.1.1 for a more complete discussion.

Standard deviation

The “standard deviation” of the number of dots on a fair die is about 1.7.

The possible (absolute) deviations from the mean are 0.5, 1.5 and 2.5, so 1.7

is not among them. Hence, the phrase “standard deviation” is misleading

for the same reason that “expected value” is misleading. In my opinion,

“standard deviation” does less damage than “expected value.”

Subjective opinions

See Sec. 7.13 for a long list of different meanings of “subjectivity” in the

probabilistic context. Only one of them, (v), fits well with the philosoph-

207
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ical theory invented by de Finetti. This special meaning is rarely, if ever,

invoked by statisticians and users of statistics.

Optimal Bayesian decisions

Subjectivist decisions cannot be optimal, contrary to the implicit assertion

contained in the title of [DeGroot (1970)], “Optimal Statistical Decisions.”

Families of decisions can be consistent or inconsistent according to the

subjective theory. One can artificially add some criteria of optimality to

the subjective philosophy, but no such criteria emanate naturally from the

theory itself.

Confidence intervals

Confidence intervals are used by classical statisticians. The word “confi-

dence” is hard to comprehend in the “objective” context. It would make

much more sense in the subjectivist theory and practice. A similar concept

in Bayesian statistics is called a “credible interval.” I do not think that the

last term is confusing but I find it rather awkward.

Significant difference

When a statistical hypothesis is tested by a classical statistician, a decision

to reject or accept the hypothesis is based on a number called a “signifi-

cance level.” The word “significant” means in this context “detectable by

statistical methods using the available data.” This does not necessarily

mean “significant” in the ordinary sense. For example, suppose that the

smoking rates in two countries are 48.5% and 48.7%. This may be statisti-

cally significant, in the sense that a statistician may be able to detect the

difference, but the difference itself may be insignificant from the point of

view of health care system.

Consistency

The word “consistent” is applied in de Finetti’s theory to decision strategies

that satisfy a certain system of axioms. The word has a different meaning

in everyday life. For example, a scientist may say that “The only conclusion

consistent with the data on smoking and cancer is that smoking cigarettes

increases the probability of lung cancer.” In this case, “consistent” means

“rational” or “scientifically justifiable.” In fact, the statement that “smok-

ing cigarettes decreases the probability of lung cancer” is also consistent in
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de Finetti’s sense. More precisely, there exists a consistent set of probabilis-

tic views that holds that smoking is healthy. There is more than one way

to see this but the simplest one is to notice that the posterior distribution

is determined in part by the prior distribution. If the prior distribution is

sufficiently concentrated on the mathematical equivalent of the claim that

smoking is healthy than even the data on 10100 cancer patients will not have

much effect on the posterior distribution—it will also say that smoking is

healthy.

On the top of the problem described above, the word “consistent” has a

different meaning in logic. For this reason, many philosophers use the word

“coherent” rather than “consistent” when they discuss de Finetti’s theory.

To be consistent in the sense of de Finetti is not the same as to be logical.

Subjectivist consistency is equivalent, by definition, to acceptance of a set

of axioms.

Objective Bayesian methods

A field of Bayesian statistics adopted the name of “objective Bayesian meth-

ods.” The name of the field is misleading because it suggests that other

Bayesians choose their probabilities in a subjective way. In fact, nobody

likes subjectivity and all Bayesian statisticians try to choose their proba-

bilities in the most objective way they can.

Prior

In the subjective philosophy, a prior is a complete probabilistic description

of the universe, used before the data are collected. In Bayesian statistics,

the same complete description of the universe is split into a “model” and a

“prior.”

Non-informative prior

The phrase is used in the Bayesian context and, therefore, it is associated

in the minds of many people with the subjective theory. The term suggests

that some (other) priors are informative. The last word is vague but it

may be interpreted as “containing some objective information.” In the

subjective theory, no objective information about probabilities exists.
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Chapter 11

What is Science?

It is a daunting task to explain the essence of science because the problem

involves the fundamental questions of ontology and epistemology. It is not

my intention to compete in this field with the greatest minds in philosophy.

All I want to achieve is to place my criticism of the popular philosophies of

probability in a proper context.

A unique feature of humans among all species is our ability to commu-

nicate using language. Many other species, from mammals to insects, can

exchange some information between each other, but none of these examples

comes even close to the effectiveness of human oral and written communi-

cation. The language gives us multiple sets of eyes and ears. Facts observed

by other people are accessible to us via speech, books, radio, etc.

The wealth of available facts is a blessing and a problem. We often

complain that we are overwhelmed with information. A simple solution to

this problem emerged in human culture long time ago—data compression.

Families of similar facts are arranged into patterns and only patterns are

reported to other people. Pattern recognition is not only needed for data

compression, it is also the basis of successful predictions. People generally

assume that patterns observed in the past will continue in the future and

so knowing patterns gives us an advantage in life. An important example

of “patterns” are laws of science. Some people are not as good at pat-

tern recognition as others so communication gives them not only access to

multiple sets of eyes and ears but also access to multiple brains.

The process described above is not perfect. Our senses are imperfect,

our memory is imperfect and our ability to recognize patterns is imperfect.

On the top of that, communication adds its own errors. Some of them

are random but some of them are typically human. What we say may

be colored by our political or religious beliefs, for example. Some people

211
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pursue their goals by spreading misinformation, that is, they lie. Experi-

ence taught people to be somewhat skeptical about information acquired

from other people. Information is categorized and different batches of in-

formation are considered to be reliable to different degree. Science may be

defined as the most respected and most reliable knowledge that people offer

to other people. The distinguishing feature of science is its method. Sci-

ence achieved its high status in various ways, for example, scientific claims

are often repeatedly verified, the ethical standards imposed in science are

much higher than in politics, assault on established theories is approved,

facts rather than feelings are stressed, the simplest theory is chosen among

all that explain known facts, etc. Religion seems to lie at the other extreme

of major ideologies. The utterly counterintuitive claims of the quantum

theory and general relativity are widely accepted by populations as diverse

as democratic societies and communist societies, Catholics and Muslims.

On the other hand, the humanity seems to have reconciled itself to the

coexistence of various religions without any hope for the ultimate coordi-

nation of their beliefs. In other words, religious information conveyed from

one person to another may be met with total skepticism, especially if the

two people are followers of different religions.

To maintain its elevated status, science has to present facts and patterns

in the most reliable way. The most general patterns are called “laws” in

natural sciences. The history of science showed that we cannot fully trust

any laws, for example, the highly successful gravitation theory discovered

(or invented) by Newton was later fundamentally revised by Einstein. The

laws of science are the most reliable information on facts and patterns

available at this time, but they are not necessarily absolute truths.

The success of science (and human communication in general) depends

very much on universality of certain basic perceptions. In other words,

almost all people agree on certain basic facts, such as numbers and col-

ors. When I look at five red apples, I am quite sure that any other person

would also see five red apples, not seven green pears. Of course, we do make

counting mistakes from time to time. The further we are from numbers, the

harder it is to agree on directly perceived facts. If two people cannot agree

on an answer to a question such as “Is the water in the lake cold or warm?”,

they can use a scientific approach to this question by translating the prob-

lem into the language of numbers. In this particular case, one can measure

the water temperature using a thermometer. Numbers displayed by ther-

mometers and other measuring devices are a highly reliable way to relay

information between people. One has to note, however, that no scientific
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equipment or method can be a substitute for the prescientific agreement

between different people on some basic facts. For example, suppose that a

distance is measured and it is determined that it is 8 meters. A person may

want to communicate this information to another person in writing. This

depends on the ability of the other person to recognize the written symbol

“8” as the number “eight.” The problem cannot be resolved by measuring

and describing the shape of the symbol because a report on the findings

of such a procedure would contain words and symbols that might not be

recognized by another person. The example seems to be academic but it is

less so if we think about pattern recognition by computers.

One of the main reasons for the success of natural sciences is that most of

their findings are based on directly and reliably recognizable facts, such as

numbers, or they can be translated into such language. Measuring the spin

of an electron is far beyond the ability of an ordinary person (and even most

scientists) but the procedure can be reduced to highly reliable instructions

and the results can be represented as numbers. The further we go away

from natural sciences, the harder it is for people to agree, in part because

they cannot agree even on the basic facts and perceptions. A statement

that “Harsh laws lead to the alienation of the people” contains the words

“harsh” and “alienation” whose meaning is not universally agreed upon.

A very precise definition, legal-style, may be proposed for these words but

such a definition need not be universally accepted.

I expect science to give me reliable practical advice and I think most

other people expect the same from science. The meaning and sources of this

reliability are among the fundamental philosophical problems. However,

both ordinary life and science must proceed forward with a simple and

straightforward understanding of reliability, whether or not the philosophy

can supply a theory on which we all could agree.

I am a strong critic of the subjective theory of probability but my own

theory of science is somewhat subjective in the sense that it uses human

interactions as its reference point. The difference between my theory and de

Finetti’s subjective theory is that his subjectivism implies the impossibility

of exchanging objectively useful probabilistic information between people,

except for the raw facts. Recall that any agreement between people on

probabilities is attributed by de Finetti to psychological effects.

I leave the question of objectivity of the universe and our knowledge

to philosophers, because this is not a scientific question. Science adopted

certain procedures and intellectual honesty requires that we follow them as

closely as possible, if we want to call our activity “science.” A number of
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ideologies—political, philosophical and religious—tried to steal the prestige

of science by presenting themselves as scientific. The subjective theory of

probability is one of them. What most people expect from science is not an

“objective” knowledge in some abstract philosophical sense but an honest

account of what other people learnt (or what they think they learnt) in

their research. Scientists cannot say whether this knowledge is objective.

11.1 From Intuition to Science

Well developed ideologies have many components, for example, intuitive

feelings, formal theory, and practical implementations. Probability also has

such components. There are several sources and manifestations of proba-

bilistic intuition. One can try to turn each one of them into a formal or

scientific theory. Not all such attempts were equally successful. Here are

some examples of probabilistic intuition.

(i) Probabilities manifest themselves as long run relative frequencies,

when the same experiment is repeated over and over. This observation is

the basis of von Mises’ philosophy of probability. Although the stability

of long run frequencies was successfully formalized in the mathematical

context, as the Law of Large Numbers, the same intuition proved to be a

poor material for a philosophical theory (see Chap. 5).

(ii) Probabilities appear as subjective opinions, for example, someone

may be 90% certain that a (specific) defendant is guilty. This intuition gave

rise to the subjective theory of probability of de Finetti. There is an extra

intuitive component in this idea, namely, subjective opinions should be

“rational,” that is, it is neither practical nor fair to have arbitrary subjective

opinions. This is formalized as “consistency” in de Finetti’s theory. This

philosophical theory does not specify any connections between subjective

opinions and real world and hence it is placed in a vacuum, with no usable

advice in most practical situations.

(iii) Probabilities are relations between logical statements, as a weak

form of implication. This idea gave rise to the logical theory of probability.

In this theory, the concept of symmetry is embodied in the principle of

indifference in a non-scientific way because the principle’s validity is not

subject to empirical tests. The logical theory is not popular in science at

all because the main intellectual challenge in the area of probability is not

to provide a new logical or mathematical structure but to find a usable
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relationship between purely mathematical theory based on Kolmogorov’s

axioms and real observations.

(iv) Symmetric events should have identical probabilities. This intuition

is incorporated in the classical and logical theories of probability. This as-

sumption and the mathematical laws of probability can be used to calculate

effectively some probabilities of interest. These, in turn, can be used to

make inferences or decisions. However, symmetry alone is effective in only

a limited number of practical situations.

(v) Physically unrelated events are mathematically independent. This

observation is implicit in all theories of probability but it is not the main

basis of any theory. Taken alone, it is not sufficient to be the basis of a

complete philosophy of probability.

(vi) Events whose mathematical probability is very close to 1 are prac-

tically certain to occur. Again, this observation alone is too weak to be the

basis of a fully developed philosophy of probability but it is implicit in all

philosophical theories.

(vii) Probabilities may be considered physical quantities, just like mass

or charge. This intuition is the basis of the propensity philosophy of prob-

ability. A deformed coin falls heads up on a different proportion of tosses

than an ordinary coin. This seems to be a property of the coin, just like

its diameter or weight. This intuition is hard to reconcile formally with the

fact that the same experiment may be an element of two (or more) different

sequences of experiments (see Sec. 3.11).

(viii) Probability may be regarded as a quantitative manifestation of

uncertainty. This intuition is somewhat different from (ii) because it is less

personal. Uncertainty may be objective, in principle. This intuitive idea

seems to be one of motivations for de Finetti’s theory.

(ix) An intuition very close to (viii) is that probability is a way to

relate unpredictable events to each other in a way that is better than using

arbitrary opinions. Again, this intuition seems to be present in de Finetti’s

theory.

The intuitive ideas presented in (i), (ii), (viii) and (ix) were transformed

beyond recognition in the formal theories of von Mises and de Finetti. The

basic philosophical claim common to both theories, that individual events

have no probabilities, does not correspond to anything that could be called

a “gut feeling.”
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11.2 Science as Service

Users of probability should have the right to say what they expect from

the science of probability and how they will evaluate different theories.

I have a feeling that, currently, philosophers and scientists tell the users

what they should think. People sometimes have non-scientific needs and

these should not be totally ignored by scientists. Some needs are rather

nebulous, for example, a “profound understanding of the subject.” Here

are some possible needs of users of probability.

(i) Reliable predictions. This is what my theory, (L1)-(L5), offers (see

Chap. 3). This theory of probability stresses making predictions as the main

objective of the science of probability. This idea was present in [Popper

(1968)] and [Gillies (1973)], for example.

(ii) A reliable way of calculating probabilities, at least in some situa-

tions. This is the essence of the classical philosophy of probability. The

classical theory lacks clarity about independent events and the philosophi-

cal status of predictions. It is (L1)-(L5) in an embryonic state.

(iii) Predictions in the context of long run frequencies. This is a special

case of (i). Long run frequency predictions are not any more reliable than

any other type of predictions. The frequency theory implicitly assumes

that this is all that probability users need. This is not sufficient—users

need predictions in other situations as well.

(iv) A rational explanation of probability. I would say that the logical

and propensity theories pay most attention to this need, among all philoso-

phies of probability. This need is (or at least should be) at the top of the

philosophical “to do” list but ordinary users of probability do not seem to

place it that high.

(v) Coordination of decisions. This is what the subjective theory offers.

The problem is that the coordination of decisions offered by the subjec-

tive theory (“consistency”) is a very weak property. Most of important

decisions in everyday life and science are well coordinated with other deci-

sions, in the sense of consistency. Other theories of probability leave aside,

quite sensibly, the decision theoretic questions because they form a separate

intellectual challenge.

(vi) Guidance for making rational decisions in face of uncertainty. This

is what the subjective theory is supposed to offer according to some of its

supporters. It does not. Its recommendations are weak to the point of

being useless.



March 24, 2009 12:3 World Scientific Book - 9in x 6in Search4Certainty

What is Science? 217

(vii) Guidance in situations when a single random experiment or obser-

vation is involved. Some subjectivists (but not the subjective theory) make

empty promises in this area.

(viii) Interpretation of data from random experiments. The frequency

and subjective theories address this need in the sense that statisticians

chose to use them as the philosophical foundations of statistics. Needless

to say, I believe that the laws (L1)-(L5) address this need much better.

One of my main claims is that probability is a science in the sense

that it can satisfy the need (i), that is, it can offer reliable predictions,

and that users of probability expect reliable predictions from any theory

of probability and statistics. This does not mean that (ii)-(viii) should be

ignored or that the science of probability cannot satisfy needs listed in

(ii)-(viii).

11.3 Decision Making

The unique characteristic of statistics among all natural sciences is that

the decision theory is embedded in it in a seemingly inextricable way. I

tried to separate the inseparable in Chaps. 3 and 4. Here, I will outline my

philosophy of decision making in relation to my philosophy of science.

In deterministic situations, decision making is not considered a part of

science. For example, it is up to a physicist to find the melting temperature

of gold (1064◦C) but it is left to potential users of physics to implement this

piece of scientific knowledge. If anybody needs to work with melted gold,

he or she has to heat it to 1064◦C. The decision to heat or not to heat a

piece of gold is not considered a part of physics. The laws of deterministic

sciences can be presented as instructions or logical implications: if you

heat gold to 1064◦C then it will melt. If you want to achieve a goal, all you

have to do is to consult a book, find a law which explains how to achieve

that goal, and implement the recipe. This simple procedure fails when

a decision problem involves probability because the goal (the maximum

possible gain, for example) often cannot be achieved with certainty. It is

standard to assume in decision theory that the decision maker would like to

maximize his or her gain. If no decision maximizes the gain with certainty,

the decision maker has to choose among available decisions using some

criterion not based on the sure attainability of the goal. The choice is not

obvious in many practical situations and so decision making is historically a

part of statistics—scientists feel that it would be unfair to leave this matter
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in the hands of lay people, who might not be sufficiently knowledgeable

about decision making.

The decision making problem is not scientific in nature. Science can pre-

dict the results of different decisions, sometimes with certainty and some-

times with some probability, but it is not the business of science to tell

people what decisions they should make.

The identification of decision making and probability assignments by the

subjective theory of probability is misleading (see Sec. 4.5). The identifica-

tion is only a mathematical trick. The subjectivist claim that your decision

preferences uniquely determine your probabilities (and vice versa) refers

to nothing more than a purely abstract way of encoding your preferences

using mathematical probabilities. This part of the subjective theory shows

only a mathematical possibility of passing from probabilities to decisions

and the other way around, using a well defined mathematical algorithm.

If probability is objective, it is not obvious at all that decision preferences

and probabilities should be identified (see Chap. 4).

11.4 Mathematical Foundations of Probability

Customarily, Kolmogorov’s axioms (see Sec. 14.1) are cited as the mathe-

matical basis for the probability theory. In fact, they are not axioms in the

ordinary (mathematical) sense of the word.

It is hard to overestimate the influence and importance of Kolmogorov’s

idea for the probability theory, statistics and related fields. Simple random

phenomena, such as casino games or imperfect measurements of physical

quantities, can be described using very old mathematical concepts, bor-

rowed from combinatorics and classical analysis. On the other hand, mod-

ern probability theory, especially stochastic analysis, uses in a crucial way

measure theory, a fairly recent field of mathematics. It was Kolmogorov

who realized that measure theory was a perfect framework for all rigor-

ous theorems that represent real random phenomena. In addition, measure

theory provided a unified treatment of “continuous” and “discrete” mod-

els, adding elegance and depth to our understanding of probability. A few

alternative rigorous approaches to probability, such as “finitely additive

probability” and “non-standard probability” (a probabilistic counterpart

of a strangely named field of mathematics, “non-standard analysis”), have

only a handful of supporters.

None of the above means that Kolmogorov’s “axioms” are axioms. Cur-

rently published articles in mathematical journals specializing in probability
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contain concepts from other fields of mathematics, such as complex analysis

and partial differential equations, to name just two. I do not think that

anybody would propose to relabel a mathematical theorem containing an

estimate of the probability of an event as “non-probabilistic” only because

its proof contains methods derived from complex analysis or partial differ-

ential equations. As far as I know, Kolmogorov’s axioms cannot generate

mathematical theorems proved in complex analysis and partial differen-

tial equations. All mathematical theorems in probability and statistics are

based on the same system of axioms as the rest of mathematics—the current

almost universal choice for the axioms seems to be the “ZFC” (Zermelo-

Fraenkel system with the axiom of choice, see [Jech (2003)]). The philo-

sophical status of Kolmogorov’s axioms is really strange. They are neither

mathematical axioms nor scientific laws of probability.

The lack of understanding of the role that Kolmogorov’s axioms play

in probability theory might be caused, at least in part, by poor linguistic

practices. The mathematical theory based on Kolmogorov’s axioms uses

the same jargon as statistics and related sciences, for example, the fol-

lowing terms are used in both mathematics and science: “sample space,”

“event” and “probability.” The equivalent mathematical terms, “measur-

able space,” “element of the σ-field” and “normalized measure” are not

popular in statistics and only occasionally used in mathematical research

papers. The linguistic identification of mathematical and scientific concepts

in the field of probability creates an illusion that Kolmogorov’s axioms con-

stitute a scientific theory. In fact, they are only a mathematical theory. For

comparison, let us have a brief look at the mathematical field of partial dif-

ferential equations. Nobody has any doubt that the “second derivative”

is a mathematical term and in certain situations it corresponds to “accel-

eration,” a physical concept. A result of this linguistic separation is that

scientists understand very well that the role of a physicist is to find a good

match between some partial differential equations (purely mathematical ob-

jects) and reality. For example some partial differential equations were used

by Maxwell to describe electric and magnetic fields, some other equations

were used by Einstein to describe space and time in his relativity theory,

and yet a different one was used by Schrödinger to lay foundations of quan-

tum physics. The role of probabilists, statisticians and other scientists is to

find a good match between elements of Kolmogorov’s mathematical theory

and real events and measurements. The misconception that Kolmogorov’s

axioms represent a scientific or philosophical theory is a source of much

confusion.
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11.5 Axioms versus Laws of Science

Some scientific theories, mostly mathematics, are summarized using “ax-

ioms.” Many natural sciences are summarized using “laws of science.”

Axioms are statements accepted without proof. Laws of science can be

falsified by experiments and observations.

Axioms work well in mathematics, where most researchers agree on the

advanced parts of the theory, and axioms are needed only to formalize it and

clarify some subtle points. If scientists do not agree on advanced techniques

in a field of science then there is no reason why they should agree on

the axioms. For this reason, trying to axiomatize probability or statistics

is a bad intellectual choice. Axioms are accepted without justification—

this is the meaning of axioms. Since statistics is riddled with controversy,

an opponent of the subjective theory has the intellectual right to reject

subjectivist axioms with only superficial justification.

Probability should be based on laws of science, not axioms. The suscep-

tibility of the laws of science to refutation by experiments or observations

is built into their definition, at least implicitly. True, the standards of

refutation are subject to scientific and philosophical scrutiny. Hence, a de-

scription of the verification procedure should be included explicitly or at

least implicitly in the given set of laws.

“Self-evident” axioms would clearly fail in some highly non-trivial fields

of science. Most people would choose axioms of Newton’s physics over

Einstein’s physics or quantum mechanics, because Newton’s physics is “self-

evident.” Yet the twentieth century physics theories are considered superior

to Newton’s because they agree with experimental data and make excellent

predictions. Only predictions can validate a scientific theory. Axioms are

appropriate only for a mathematical theory.
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What is Philosophy?

It would be preposterous for me to try to define and explain philosophy.

The main purpose of this chapter is much less ambitious and very narrow.

I will describe the sources of confusion in the area of probability stemming

from the inadequate understanding of the roles of philosophy and science.

I will also try to pinpoint the main philosophical challenge posed by the

concept of probability.

Quite often, philosophy and science start with the same basic obser-

vations, such as “2 apples and 2 apples makes 4 apples.” The bulk of

research in mathematics and science consists of building more and more so-

phisticated theories dealing with more and more complex real phenomena.

Philosophy, on the other hand, often goes in the opposite direction and

analyzes the foundations of our knowledge, questioning “obvious” truths.

I will illustrate the above claims with a brief description of where the

analysis of “2 + 2 = 4” can take mathematicians and philosophers. Math-

ematicians developed a theory of numbers that includes not only addition

but also subtraction, multiplication and division. They developed inter-

est in “prime” numbers. A prime number cannot be divided by any other

number except itself and 1. Then mathematicians asked whether there ex-

ist infinitely many prime numbers and whether there exist infinitely many

pairs of prime numbers which differ only by 2. They proved that there are

infinitely many prime numbers but they still do not know (at the time of

this writing) whether there are infinitely many pairs of prime numbers that

differ by 2.

A philosopher may start with a few examples which seem to contradict

the assertion that 2 + 2 = 4. If we place two zebras and two lions in the

same cage, we will soon have only two animals in the cage, hence, 2+2 = 2

in this case. Two drops of water and two drops of water can combine
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into a single drop of water, so 2 + 2 = 1 in some situations. If we place

two male rabbits and two female rabbits in a cage, we may have soon 37

rabbits, so 2+2 = 37 under some circumstances. Of course, we feel that all

these examples are misleading, in some sense. Pinpointing what is exactly

wrong with these examples is not quite easy. Is it that these examples are

“dynamic” in nature, so 2 + 2 = 4 does not apply? The answer cannot be

that simple, because we can envision a dynamic experiment of placing 2

apples and 2 oranges in a basket. The result will be that we will have 4

fruit in the basket, vindicating the claim that 2 + 2 = 4.

Including philosophical questions in scientific research is detrimental to

the latter. Scientists have to move forward and they have to take many

things for granted even if philosophers have reasonable objections. Mathe-

maticians and scientists have to assume that 2+2 = 4. This is not because

they have an ultimate philosophical or scientific proof that this statement

is objectively true but because doing otherwise would paralyze science.

Philosophers discovered long time ago that many standard scientific prac-

tices and claims seem to be shaky on the philosophical side. Scientists have

no choice but to ignore these objections, even if they seem to be justifiable.

In order to apply the statement “2 + 2 = 4,” children have to learn

to recognize situations when this law applies, by example. There is a wide

spectrum of situations that can be reliably recognized by most people where

the law 2 + 2 = 4 applies. A similar remark applies to probability. There

is a wide spectrum of situations, easily recognized by most people, where

probabilities can be assigned using standard recipes. The role of the science

of probability, at the most elementary level, is to find these situations and

present them as scientific laws.

One of the greatest mistakes made by von Mises and de Finetti was an

attempt to mix philosophical objections into scientific research. The state-

ment that “if you toss a coin, the probability of heads is 1/2” has the same

scientific status as the statement “2 + 2 = 4.” Both statements summa-

rize facts observed in the past and provide a basis for many actions taken

by scientists. The idea advanced by von Mises and de Finetti alike, that

probability cannot be assigned to a single event, is a purely philosophical

objection that can only confuse scientists and, especially, students. There

is no science without 2 + 2 = 4 and there is no probability theory and

statistics without P (heads) = 1/2. The philosophical objections have to be

disregarded in probability and statistics for the same reason why they are

ignored in number theory and physics. Of course, statistics has not been

paralyzed by the philosophical claims of von Mises and de Finetti. The



March 24, 2009 12:3 World Scientific Book - 9in x 6in Search4Certainty

What is Philosophy? 223

statement that P (heads) = 1/2 is treated as an objective fact in statis-

tics and one has to wonder why some people believe that the philosophical

theories of von Mises and de Finetti have anything to do with science.

The three aspects of probability

The terribly confused state of the foundations of probability and statis-

tics may be at least partly attributed to the lack of clear recognition that

probability has three aspects: mathematical, scientific and philosophical.

The mathematics of probability is mostly uncontroversial, in the sense that

almost all (but not all) probabilists and statisticians are happy with Kol-

mogorov’s axioms. However, these axioms are sometimes incorrectly clas-

sified as a scientific or philosophical theory (see Sec. 11.4).

There is no question that von Mises and de Finetti intended their theo-

ries to be the foundation of a branch of science—probability and statistics.

This does not logically imply that these theories are scientific theories. I

believe that they are, in the sense that we can express both theories as

falsifiable statements. This is not the standard practice in the field. In-

stead of presenting various theories of probability as falsifiable, and hence

scientific, statements, it is a common practice to state them as axiomatic

systems or to use philosophical arguments. Popper stressed falsifiability in

his book [Popper (1968)] but, alas, did not create a clear theory that could

gain popularity in the scientific community.

12.1 What is Philosophy of Probability?

A philosopher studying probability faces the same questions that arise in

the study of other quantities used in science. In fact, philosophical research

on probability involves the basic questions of philosophy, probed already in

antiquity: what exists? what do we know? how is our knowledge related

to reality?

The measurement problem

What makes the philosophy of probability different from the general phi-

losophy of science is the fact that probability is a quantity that cannot be

measured in the same way as other physical quantities. Distance, veloc-

ity, temperature and electrical charge can all be measured. Measurements

present various scientific and philosophical challenges. On the scientific
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side, no measurement is perfect. Sometimes there are formidable techni-

cal difficulties. For example, the temperature at the center of the Earth

cannot be measured in a direct way; it can be only inferred from some

other measurements and theories. Scientific theories themselves put limits

on the accuracy and universality of measurements—this is the case of mea-

surements in quantum physics and relativity theory. In some situations,

physical theories make us question our naive understanding of what “ex-

ists” in science. According to the current physics, we will never be able to

measure and record on Earth the temperature below the horizon of a black

hole. Does it mean that it makes no sense to talk about temperature in a

small neighborhood of a black hole?

On the philosophical side, measurements present a variety of problems of

different flavor. All measurements are performed by people or instruments

designed and made by people. Since people have to make choices, does

it mean that all measurements are subjective? If a measurement has a

subjective component, can it be objective? How can we measure the degree

of subjectivity? A different philosophical problem is that of stability of our

universe, in particular the stability of scientific quantities. Assuming that

we have performed a very accurate measurement of a quantity, what makes

us think that the same value will be relevant in the future? If the distance

between two cities is 167 miles today, is there any reason to think that it will

be the same tomorrow? Can we logically deduce this from the fact that all

measurements of this distance yielded the same answers in the past? The

last problem can be thought of as a special case of the problem of induction.

In the eighteenth century, Hume noticed that the method of induction that

underlies science seems to have no solid philosophical justification.

Many of the above scientific and philosophical problems are relevant

to probability but there is one more striking difficulty. If we assert that

the temperature of an object is 70◦C then, in principle, a measurement

of the temperature can yield 70◦C. Hence, we can have a perfect or very

close match between a scientific assertion and the result of an empirical

measurement. If we assign a probability to an event then the only direct

“measurement” of this quantity is the observation of the event. The event

either occurs or not—this is a binary information that can be encoded

by 0 (event did not happen) or 1 (it did happen). Probabilities can take

values 0 and 1 but they can also take values between 0 and 1. The profound

difference between probability and other scientific quantities is that a direct

measurement of probability (that is, the observation of an event) yields 0

or 1 and this cannot match the conjectured value of probability, except for
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the special case when the probability is equal to 0 or 1. Thus, the basic

problem of the philosophy of probability is the “measurement problem.” I

borrowed this term from the philosophy of quantum physics but I doubt

that anyone will be confused.

One of the standard scientific methods of measuring probability is based

on repeated experiments or observations. The probability of an event is

identified with the long run frequency of the event in the sequence. This

method is widely accepted by scientists. However, the method presents a

number of philosophical and scientific challenges—see Sec. 2.4.2. My own

preference is to use Popper’s approach to the measurement problem, as

embodied in (L5) (see Sec. 3.3).

The initial assignment of values

Some philosophers believe that the basic problem of philosophy of proba-

bility is the problem of initial assignment of probability values. Nobody

questions the validity of the mathematical theory of probability, so once we

assign probabilities to some events in a correct way, we can derive other

probability values using accepted mathematical formulas. This formula-

tion of the basic problem of philosophy of probability is clearly inspired by

mathematics. In mathematics, once you prove that a mathematical object

belongs to a well known family of objects, then you can be sure that the

object has all the properties that have been proved for the whole family

in the past. For example, if you prove that a function is “harmonic” then

you can immediately claim that it has all the known properties of harmonic

functions.

In my opinion, the above view of the main challenge of philosophy of

probability is mistaken. In science, you cannot be sure of any assertion, no

matter how it was arrived at. There are multiple reasons why no scientific

assertion can be fully trusted: many scientific theories are oversimplified; a

scientific assertion may be based on faulty calculations or inaccurate values

of input quantities; a computer program generating predictions may have

a “bug.” There is only one way that a scientist can be sure that a scientific

claim is correct—the claim has to be confirmed by observations. Often,

direct observations are impossible, for a variety of reasons, for example,

scientists studying the “big bang” cannot make any direct observations.

But the general scientific approach is always the same—scientific claims

have to be verified by experiments and observations.
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12.2 Is Probability a Science?

Intellectual activity branched into several major areas including science,

mathematics, philosophy and religion. This list is not meant to be exhaus-

tive. For example, one could argue that art belongs to this list and should

be a separate entry.

The above classification is based on the standards of validation or ver-

ification widely accepted in the field. A simplified description of various

forms of validation is the following. Religion considers holy books and re-

lated texts as the ultimate source of truth. Science is based on validation of

its claims via successful predictions. Mathematics is based on rigid logical

deductions from basic axioms. Philosophy is perhaps hardest to describe.

The interesting part of philosophy is based on ordinary logic. Its theories

can be evaluated on the basis of perceived significance, depth and novelty.

However, the quality standards for philosophical theories can and are a le-

gitimate subject of philosophical research so the issue is somewhat circular

and clouded.

Different validation standards for different intellectual activities have

an important consequence—a perfectly reasonable and respectable theory

in one of these areas may become nonsensical when it is transported to

another area in its original form. The clash between religion and science

is often the result of using validation methods or claims from one of these

fields in the context of the other. The theological claim that there is one

God and there is also the Holy Trinity makes no sense in the mathematical

context—one is not equal to three. Scientific description of a human being

as a bipedal mammal is totally irrelevant in the theological context because

it completely misses important questions such as the one about the meaning

of life.

The clash between religion and science is well known. I think that it

is even more instructive to consider the clash between mathematics and

science. The mathematical method of validation of statements based on

the absolutely rigid logic is unusable in the scientific context. If we applied

this standard to physics, we would have to turn the clock back by 100

years and all of science, technology and civilization would collapse in a day

or less. Similarly, introduction of scientific (non-rigorous) reasoning into

mathematics would kill mathematics as we know it.

Von Mises and de Finetti created theories that are significant, reason-

able and respectable as purely philosophical structures. They teach us

what one can and what one cannot prove starting from some assumptions.
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The transplantation of these theories into the scientific context transformed

them into laughable fantasies.

One could argue that probability should be considered an intellectual

activity fundamentally different from science, mathematics, philosophy and

religion. The reason for separating probability from mathematics, science

and philosophy is that the philosophical research showed that the valida-

tion rules for probability are different from the rules used in any of the

other fields on the list. My law (L5), based on Popper’s idea, is the val-

idation rule for probabilistic statements. Probability is not mathematics.

Of course, there is a huge area of mathematics called “probability” but the

real intellectual challenge in the area of probability is concerned with ap-

plications of probability in real life. One could argue that probability is not

science because it does not make deterministic predictions. The theories of

von Mises and de Finetti tried to turn probability into mainstream science

by proposing deterministic predictions related to collectives and consistency

and based on the mathematics of probability. The failure of both theories

shows that trying to turn probability into a deterministic science is like

trying to put a square peg into a round hole.

12.3 Objective and Subjective Probabilities

It is impossible to write a book on foundations of probability and avoid

the question of whether probability is objective or subjective. The reason

is that much of the earlier discussion of the subject was devoted to this

question and to ignore it would make the book highly incomplete.

The concept of subjectivity does not belong to science. Scientists argue

about whether their results, claims and theories are true of false, correct

or incorrect, exact or approximate, rigorous or heuristic. The statement

that “zebras are omnivorous” may be true or false but scientists do not

spend any time arguing whether it is objective or subjective. A new theory

in physics known as the “string theory” may be called speculative but

I do not think that anybody suggests that it is subjective. The idea of

bringing subjectivity into the scientific foundations of probability created

only confusion.

The question of what part of our knowledge and beliefs is subjective is

a legitimate, profound and difficult philosophical problem. I do not find

it interesting because it has very little, if anything, to do with probability.

The problem of subjectivity is a part of a bigger problem of the relationship
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between our knowledge and the reality. This problem is ancient and the

best known ancient philosopher who asserted that our knowledge is only an

approximate representation of reality was Plato. Since then, philosophers

spent a lot of time discussing the foundations of our knowledge and science

in particular.

My favorite view of probability is that certain laws, that I call (L1)-

(L5), are enforced by the society. Examples of enforcement include all

safety regulations, such as obligatory seat belt use, to lower the probability

of death in an accident. Societies enforce laws that can be regarded as

subjective, such as driving on the right hand side of the road in the US, and

some laws that can be regarded as objective, such as the rules of arithmetic

used in the calculation of taxes. In principle, all laws can be changed but I

would expect much resistance if anyone proposed to abandon enforcement

of “objective” laws. As far as I can tell, changing the implicit enforcement

of (L1)-(L5) would require arguments similar to those that would be needed

to stop the enforcement of “objective” laws, such as the laws of physics used

in building codes. Hence, (L1)-(L5) are objective in the sense that they are

treated by the society just like the laws that are considered unquestionably

objective.

The word “subjective” has completely different meanings in de Finetti’s

theory and Bayesian statistics, compounding the difficulties of the discus-

sion (see Sec. 7.13 and Chap. 8).

Probability has ontological and epistemological aspects, just like every-

thing else, but I am not particularly interested in studying this dichotomy—

I do not feel that this distinction is relevant to science. After all, chemists

do not have a separate journal for the ontology of sulfur and epistemology

of sulfur.

12.4 Yin and Yang

The relationship between the philosophy of probability and statistics is

analogous to that between mathematics and physics. In those fields of

mathematics and physics which can be directly compared to each other,

mathematicians accomplished very little because they insist on rigorous

proofs. Physicists often perform mathematical operations that are not jus-

tified in a rigorous way. They generate many claims because they prefer

to generate all possible true claims at the price of generating some false

claims.
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Similarly, all best known philosophies of probability (classical, logical,

frequency and subjective) strike us as very limited in scope, because they

insist on detailed and profound analysis of even the most obvious claims

about probability. Statisticians are willing to accept every method that

proved to be reasonably beneficial in practice.

There is a difference, though, between the two pairs of fields. Both

mathematicians and physicists are very well aware of strengths and weak-

nesses of their own and their colleagues’ approaches to science. Historically

speaking, there is a much stronger tendency in statistics to mix science

with philosophy, despite philosophy’s conspicuously different methods and

goals.

12.5 What Exists?

Scientists are accustomed to conflicting claims concerning existence or non-

existence of an object. For example, in basic algebra, there does not exist a

square root of a negative number. On the other hand, the field of complex

analysis is based on the notion of the imaginary unit, which is the square

root of −1. A more arcane example is the derivative of Brownian motion.

It can be proved that Brownian trajectories do not have derivatives. On

the other hand, scientists and mathematicians routinely use the notion of

“white noise,” which is precisely that—the derivative of Brownian motion.

In the end, the only thing that matters is the operational definition of an

object that “exists.” For example, you can add two complex numbers but

there is no useful ordering of complex numbers, similar to the ordering of

real numbers. There is a useful notion of independence of two white noise

processes but there is no useful notion of the value of a white noise at a

fixed time.

For a scientist, what really matters is the operational meaning of the

theories of von Mises and de Finetti. The two philosophers agreed that

one cannot measure the probability of a single event in a scientific way.

This claim is in sharp contrast to reality. Scientists go to great lengths

to find consensus on the value of probability of important events, such as

global warming. At the operational level, there is no fundamental difference

between efforts of scientists to find an accurate value of the speed of light,

the age of the universe, or the probability of New Orleans being devastated

by a hurricane in the next 50 years. In this sense, probability of a single

event does exist.
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12.6 Who Needs Philosophy?

Many people feel that the philosophical analysis of scientific research has

little impact on science and ordinary life. One may feel that philosophical

questions should be left to philosophers; scientists should apply common

sense. This strategy seems to work well in most of scientific fields. It takes

only a moment to realize that we cannot adopt this ostrich strategy in

probability and statistics. The main reason is that there is no agreement

between statisticians on what “common sense” dictates in some practical

situations. As an illustration, consider the following question: should we

send life-seeking probes to Mars? What is the probability that there was life

on Mars? Can we interpret this probability using the frequency theory, in a

way that would help to make a decision whether we should send life-seeking

probes to Mars? If the probability in question is subjective, does that mean

that all subjective opinions are equally valid? If not, which opinions are

more valid than others? And how can we decide which opinions are more

valuable than others? Intuitive ideas about probability do not provide clear

and widely accepted answers to the above questions. Intuitive ideas can be

used as guiding principles or motivation but we need a careful philosophical

analysis of all aspects of probability to understand the meaning of our

choices.
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Concluding Remarks

This chapter contains a handful of general comments that did not fit well

anywhere else.

13.1 Does Science Have to be Rational?

Science is the antithesis of subjectivity. How is it possible that the grotesque

subjective theory of probability is taken seriously by scores of otherwise

rational people? I think that the blame should be assigned to the quantum

theory and the relativity theory, or rather to their popular representations.

These two greatest achievements of the twentieth century physics demand

that we revise most of our standard intuitive notions of time, space, relation

between events, etc. A popular image of modern physics is that it is “absurd

but nevertheless true.” Nothing can be further from the truth. The power

of the relativity theory and quantum physics derives from the fact that

their predictions are much more reliable and accurate than the predictions

of any theory based on Newton’s ideas. The predictions of modern physics

are not absurd at all—they perfectly agree with our usual intuitive concepts.

Einstein’s relativity theory was accepted because it explained the trajectory

of Mercury better than any other theory, among other things. Every CD

player contains transistors and a laser, both based on quantum effects, but

the music that we hear when the CD player is turned on is not an illusion

any more than the sounds coming from a piano. Quantum physicists bend

their minds only because this is the only way to generate reliable predictions

that actually agree with our intuition.

My guess is that most subjectivists think that their theory of proba-

bility is just like quantum mechanics. They believe that one has to start

with a totally counterintuitive theory to be able to generate reliable predic-
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tions that match very well our usual intuition. Perhaps one day somebody

will invent a philosophical theory representing this scheme of thinking but

de Finetti’s theory is miles away from implementing this idea. According

to de Finetti, all probability is subjective so there are no reliable predic-

tions whatsoever—you cannot verify or falsify any probability statement.

Any attempt to build reliable predictions into de Finetti’s theory would

completely destroy it.

13.2 Common Elements in Frequency and Subjective

Theories

Despite enormous differences between the frequency and subjective theories

of probability, there are some similarities between them. Both von Mises

and de Finetti tried to find certainty in the world of uncertainty. Von Mises

identified probabilities with frequencies in infinite sequences (collectives).

According to the strong Law of Large Numbers, the identification is perfect,

that is, it occurs with certainty. The fact that real sequences are finite may

be dismissed as an imperfect match between theory and reality—something

that afflicts all scientific theories. De Finetti argued that probability can

be used to achieve a different practical goal with certainty—if you use the

mathematical theory of probability to coordinate your decisions then you

will not find yourself in the Dutch book situation. None of the two philoso-

phers could think of a justification for the scientific uses of probability that

would not involve perfect, that is, deterministic, predictions.

One may present the above philosophical choice of von Mises and de

Finetti as their common belief that in any scientific theory, probability

should be a physical quantity measurable in the same way as mass, electri-

cal charge or length. In other words, one should have an effective way of

measuring the probability of any event. Von Mises defined probability in

an operational way, as a result of a specific measurement procedure—the

observation of the limiting relative frequency of an event in an infinite (or

very long) sequence of isomorphic experiments. He unnecessarily denied

the existence of probability in other settings. De Finetti could not think of

any scientific way to achieve the goal of measuring probability with perfect

accuracy so he settled for an unscientific measurement. In the subjective

theory, the measurement of probability is straightforward and perfect—all

you have to do is to ask yourself what you think about an event. The

incredibly high standards for the measurement of probability set by von
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Mises and de Finetti have no parallel in science. Take, for example, tem-

perature. A convenient and reliable way to measure temperature is to use

a thermometer. However, if the temperature is defined as the result of this

specific measurement procedure, then we have to conclude that there is

no temperature at the center of the sun. At this time, it seems that we

will never be able to design a thermometer capable of withstanding tem-

peratures found at the center of our star. Needless to say, physicists do

not question the existence of the temperature at the center of the sun. Its

value may be predicted using known theories. The value can be experi-

mentally verified by combining observations of the radius, luminosity, and

other properties of the sun with physical theories. Von Mises and de Finetti

failed for the same reason—they set unattainable goals for their theories.

13.3 On Peaceful Coexistence

One of the philosophical views of probability tries to reconcile various

philosophies by assigning different domains of applicability to them. Some-

times it is suggested that the frequency theory is appropriate for natural

sciences such as physics and the subjective theory is more appropriate for

other sciences, such as economics, and everyday life. I strongly disagree

with this opinion. The frequency theory is extremely narrow in its scope—

it fails to account for a number of common scientific uses of probability and

hence it fails to be a good representation of probability in general, not only

in areas far removed from the natural sciences. The subjective theory is

nothing but a failed attempt to create something out of nothing, that is,

to provide guidelines for rational behavior in situations where there is no

relevant information available to a decision maker.

13.4 Common Misconceptions

For reference, I list common misconceptions about the frequency and sub-

jective philosophies of probability. All items have been discussed in some

detail in the book. The list is eclectic. It contains a quick review of some

of my main claims, and some widespread elementary misconceptions.

(i) The main claims of the frequency and subjective philosophies are

positive. In fact, they are negative: “individual events do not have

probabilities.”
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(ii) The two philosophies are at the opposite ends of the intellectual

spectrum. In fact, they are the only philosophies of probability

that claim that individual events do not have probabilities.

(iii) The frequency philosophy is based on the notion of an i.i.d. se-

quence. In fact, it is based on the notion of a collective. A col-

lective is a given deterministic sequence, not a sequence of random

variables. Hence, it is hard to talk about independence of its ele-

ments.

(iv) According to the frequency theory, an event may have two (or

more) probabilities because it may belong to two different se-

quences. In fact, according to the frequency theory, a single event

does not have a probability at all.

(v) De Finetti’s theory is subjective. In fact, it is objective.

(vi) The theory of von Mises justifies hypothesis testing. In fact, it

cannot be applied to sequences of non-isomorphic hypothesis tests.

Elements of collectives have everything in common except probabil-

ities. Some sequences of hypothesis tests have nothing in common

except probabilities.

(vii) Statistical priors are the same as philosophical priors. In fact,

a philosophical “prior” corresponds to statistical “prior” and

“model”.

(viii) The frequency theory endows every probability with a meaning

via a relative frequency in some, perhaps imagined, sequence. In

fact, von Mises thought that probability cannot be applied to some

events although we can always imagine a corresponding collective.

(ix) Computer simulations supply the missing collective in case there is

no real one. In fact, they contribute nothing on the philosophical

side. They are just a very effective algorithm for calculations.

(x) “Subjective” means “informally assessed.” In fact, in de Finetti’s

theory “subjective” means “does not exist.”

(xi) According to de Finetti, some probabilities are subjective. In fact,

according to de Finetti, all probabilities are subjective (do not

exist).

(xii) According to the subjective theory of probability, two people may

have different subjective opinions about probabilities if they have

different information. In fact, according to the subjective theory

of probability, two people may have different subjective opinions

about probabilities even if they have identical information.
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(xiii) Bayesian statisticians use probability to coordinate decisions. In

fact, in most cases there are no decisions that need to be coordi-

nated.

(xiv) The statement that “smoking decreases the probability of cancer”

is inconsistent. Actually, it is neither consistent nor inconsistent

because the concept of consistency applies only to families of state-

ments involving probability. This particular statement about smok-

ing is a part of a consistent view of the world.

(xv) Posterior distributions converge when the amount of data increases.

This is not true. If one person thinks that a certain sequence is

exchangeable and someone else has the opposite view then their

posterior distributions might never be close.

(xvi) De Finetti’s theory, unlike the frequency theory, endows probabil-

ities of individual events with a meaning. In fact, his theory only

says that the probabilities of the event and its complement should

sum up to 1.
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Chapter 14

Mathematical Methods of Probability

and Statistics

I will present a review of some mathematical methods of probability and

statistics used in the philosophical arguments in this book. This short re-

view is not a substitute for a solid course in probability. Good textbooks

at the undergraduate level are [Pitman (1993)] and [Ross (2006)].

14.1 Probability

The mathematics of probability is based on Kolmogorov’s axioms. The

fully rigorous presentation of the axioms requires some definitions from

the “measure theory,” a field of mathematics. This material is not needed

in this book, so I will present the axioms in an elementary way. Any

probabilistic model, no matter how complicated, is represented by a space

of all possible outcomes Ω. The individual outcomes ω in Ω can be very

simple (for example, “heads,” if you toss a coin) or very complicated—a

single outcome ω may represent temperatures at all places around the globe

over the next year. Individual outcomes may be combined to form events.

If you roll a die, individual outcomes ω are numbers 1, 2, . . . , 6, that is

Ω = {1, 2, 3, 4, 5, 6}. The event “even number of dots” is represented by a

subset of Ω, specifically, by {2, 4, 6}. Every event has a probability, that is,

probability is a function that assigns a number between 0 and 1 (0 and 1 are

not excluded) to every event. If you roll a “fair” die then all outcomes are

equally probable, that is, P (1) = P (2) = · · · = P (6) = 1/6. Kolmogorov’s

axioms put only one restriction on probabilities—if events A1, A2, . . . , An

are disjoint, that is, at most one of them can occur, then the probability that

at least one of them will occur is the sum of probabilities of A1, A2, . . . , An.

In symbols,

P (A1 or A2 or . . . or An) = P (A1) + P (A2) + · · · + P (An).

237
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Kolmogorov’s axioms include an analogous statement for a countably in-

finite sequence of mutually exclusive events—this is called σ-additivity or

countable additivity.

A curious feature of Kolmogorov’s axiomatic system is that it does not

include at all the notion of independence. We call two events (mathemati-

cally) independent if the probability of their joint occurrence is the product

of their probabilities, in symbols, P (A and B) = P (A)P (B). The intuitive

meaning of independence is that the occurrence of one of the events does

not give any information about the possibility of occurrence of the other

event.

If a quantity X depends on the outcome ω of an experiment or obser-

vation then we call it a random variable. For example, if the experiment

is a roll of two dice, the sum of dots is a random variable. If a random

variable X may take values x1, x2, . . . , xn with probabilities p1, p2, . . . , pn

then the number EX = p1x1 + p2x2 + · · · + pnxn is called the expected

value or expectation of X . Intuitively speaking, the expectation of X is the

(weighted) average, mean or central value of all possible values, although

each one of these descriptions is questionable. The expected value of the

number of dots on a fair die is 1/6 ·1+1/6 ·2+ · · ·+1/6 ·6 = 3.5. Note that

the “expected value” of the number dots is not expected at all because the

number of dots must be an integer.

The expectation of (X − EX)2, that is, E(X − EX)2 is called the

variance of X and denoted VarX . Its square root is called the standard

deviation of X and denoted σX , that is σX =
√

VarX. It is much easier to

explain the intuitive meaning of standard deviation than that of variance.

Most random variables take values different from their expectations and the

standard deviation signifies a typical difference between the value taken by

the random variable and its expectation. The strange definition of the stan-

dard deviation, via variance and square root, has an excellent theoretical

support—a mathematical result known as the Central Limit Theorem, to

be reviewed next.

14.1.1 Law of Large Numbers, Central Limit Theorem and

Large Deviations Principle

A sequence of random variables X1, X2, X3, . . . is called i.i.d. if these ran-

dom variables are independent and have identical distributions.



March 24, 2009 12:3 World Scientific Book - 9in x 6in Search4Certainty

Mathematical Methods of Probability and Statistics 239

The Strong Law of Large Numbers says that if X1, X2, X3, . . . are i.i.d.

and EX1 exists then the averages (X1 +X2 + · · ·+Xn)/n converge to EX1

with probability 1.

The weak Law of Large Numbers asserts that if X1, X2, X3, . . . are i.i.d.

and EX1 exists then for every ε > 0 and p < 1 we can find n so large that

P (|(X1 + X2 + · · · + Xn)/n − EX1| < ε) > p.

A random variable Y is said to have the standard normal distribution

if P (Y < y) = (1/
√

2π)
∫ y

−∞
exp(−x2/2)dx. Intuitively, the distribution of

possible values of a standard normal random variable is represented by a

bell-shaped curve centered at 0.

Suppose that X1, X2, X3, . . . are i.i.d., the expectation of any of these

random variables is µ and its standard deviation is σ. The Central Limit

Theorem says that for large n, the normalized sum (1/σ
√

n)
∑n

k=1(Xk −µ)

has a distribution very close to the standard normal distribution.

Roughly speaking, the Large Deviations Principle (LDP) says that un-

der appropriate assumptions, observing a value of a random variable far

away from its mean has a probability much smaller than a naive intu-

ition might suggest. For example, if X has the standard normal distribu-

tion, the probability that X will take a value greater than x is of order

(1/x) exp(−x2/2) for large x. The probability that the standard normal

random variable will take a value 10 times greater than its standard devi-

ation is about 10−38. The Central Limit Theorem suggests that the Large

Deviations Principle applies to sums or averages of sequences of i.i.d. ran-

dom variables. In fact, it does, but the precise formulation of LDP will not

be given here. The LDP-type estimates are not always as extremely small

as the above example might suggest.

14.1.2 Exchangeability and de Finetti’s theorem

A permutation π of a set {1, 2, . . . , n} is any one-to-one func-

tion mapping this set into itself. A sequence of random variables

(X1, X2, . . . , Xn) is called exchangeable if it has the same distribution as

(Xπ(1), Xπ(2), . . . , Xπ(n)) for every permutation π of {1, 2, . . . , n}. Infor-

mally, (X1, X2, . . . , Xn) are exchangeable if for any sequence of possible

values of these random variables, any other ordering of the same values is

equally likely. Recall that a sequence of random variables (X1, X2, . . . , Xn)

is called i.i.d. if these random variables are independent and have identical

distributions.
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A celebrated theorem of de Finetti says that an infinite exchangeable

sequence of random variables is a mixture of i.i.d. sequences. For example,

for any given infinite exchangeable sequence of random variables taking

values 0 or 1, one can generate a sequence with the same probabilistic

properties by first choosing randomly, in an appropriate way, a number p

in the interval [0, 1], and then generating an i.i.d. sequence whose elements

Xk take values 1 with probability p.

Deform a coin and encode the result of the k-th toss as Xk, that is, let

Xk = 1 if the k-th toss is heads and Xk = 0 otherwise. Then X1, X2, X3, . . .

is an exchangeable sequence. Some probabilists and statisticians consider

this sequence to be i.i.d. with “unknown probability of heads.”

14.2 Classical Statistics

Statistics is concerned with the analysis of data, although there is no unan-

imous agreement on whether this means “inference,” that is, the search for

the truth, or making decisions, or both.

One of the methods of classical statistics is estimation—I will explain it

using an example. Suppose that you have a deformed coin and you would

like to know the probability p of heads (this formulation of the problem

contains an implicit assumption that the probability p is objective). We

can toss the coin n times and encode the results as a sequence of numbers

(random variables) X1, X2, . . . , Xn, with the convention that Xk = 1 if

the result of the k-th toss is heads and Xk = 0 otherwise. Then we can

calculate p = (X1 +X2 + · · ·+Xn)/n, an “estimator” of p. The estimator p

is our guess about the true value of p. One of its good properties is that it

is “unbiased,” that is, its expectation is equal to p. The standard deviation

of p is
√

npq.

Another procedure used by classical statisticians is hypothesis testing.

Consider the following drug-testing example. Suppose that a new drug is

expected to give better results than an old drug. Doctors adopt (temporar-

ily) a hypothesis H (often called a “null hypothesis”) that the new drug is

not better than the old drug and choose a level of significance, often 5% or

1%. Then they give one drug to one group of patients and the other drug to

another group of patients. When the results are collected, the probability

of the observed results is calculated, assuming the hypothesis H is true. If

the probability is smaller than the significance level, the “null” hypothesis

H is rejected and the new drug is declared to be better than the old drug.
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On the mathematical side, hypothesis testing proceeds along slightly

different lines. Usually, at least two hypothesis are considered. Suppose

that you can observe a random variable X whose distribution is either P0 or

P1. Let H0 be the hypothesis that the distribution is in fact P0, and let H1

be the hypothesis that the distribution of X is P1. An appropriate number

c is found, corresponding to the significance level. When X is observed and

its value is x, the ratio of probabilities P0(X = x)/P1(X = x) is calculated.

If the ratio is less than c then the hypothesis H0 is rejected and otherwise it

is accepted. The constant c can be adjusted to make one of the two possible

errors small: rejecting H0 when it is true or accepting it when it is false.

Finally, I will outline the idea of a “confidence interval,” as usual us-

ing an example. Suppose a scientist wants to find the value of a phys-

ical quantity θ. Assume further that he has at his disposal a measur-

ing device that does not generate systematic errors, that is, the errors do

not have a tendency to be mostly positive or mostly negative. Suppose

that the measurements are X1, X2, . . . , Xn. The average of these numbers,

Xn = (X1 + X2 + · · · + Xn)/n, can be taken as an estimate of θ. The

empirical standard deviation σn =
√

(1/n)
∑n

k=1(Xk − Xn)2 is a measure

of accuracy of the estimate. If the number of measurements is large, and

some other assumptions are satisfied, the interval (Xn − σn, Xn + σn) cov-

ers the true value of θ with probability equal to about 68%. If the length

of the interval is increased to 4 standard deviations, that is, if we use

(Xn − 2σn, Xn + 2σn), the probability of coverage of the true value of θ

becomes 95%.

14.3 Bayesian Statistics

The Bayesian statistics derives its name from the Bayes theorem. Here is

a very simple version of the theorem. Let P (A | B) denote the probability

of an event A given the information that an event B occurred. Then P (A |
B) = P (A and B)/P (B). Suppose that events A1 and A2 cannot occur

at the same time but one of them must occur. The Bayes theorem is the

following formula,

P (A1 | B) =
P (B | A1)P (A1)

P (B | A1)P (A1) + P (B | A2)P (A2)
.

Intuitively, the Bayes theorem is a form of a retrodiction, that is, it gives

the probability of one of several causes (A1 or A2), given that an effect (B)

has been observed.
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One of the simplest examples of the Bayesian methods is the analysis

of tosses of a deformed coin. A popular Bayesian model assumes that the

coin tosses are exchangeable. According to de Finetti’s theorem, this is

mathematically equivalent to the assumption that there exists an unknown

number Θ (a random variable), between 0 and 1, representing the proba-

bility of heads on a single toss. If we assume that the value of Θ is θ then

the sequence of tosses is i.i.d. with the probability of heads on a given toss

equal to θ. The Bayesian analysis starts with a prior distribution of Θ. A

typical choice is the uniform distribution on [0, 1], that is, the probability

that Θ is in a given subinterval of [0, 1] of length r is equal to r. Suppose

that the coin was tossed n times and k heads were observed. The Bayes

theorem can be used to show that, given these observations and assuming

the uniform prior for Θ, the posterior probability of heads on the (n+1)-st

toss is (k + 1)/(n + 2). Some readers may be puzzled by the presence of

constants 1 and 2 in the formula—one could expect the answer to be k/n.

If we tossed the coin only once and the result was heads, then the Bayesian

posterior probability of heads on the next toss is (k+1)/(n+2) = 2/3; this

seems to be much more reasonable than k/n = 1.

14.4 Contradictory Predictions

This section is devoted to a rigorous mathematical proof of a simple theorem

formalizing the idea that two people are unlikely to make contradictory

predictions even if they have different information sources. More precisely,

suppose that two people consider an event A and they may know different

facts. In this section, we will say that a person makes a prediction when

she says that the probability of A is either smaller than δ or greater than

1 − δ, where δ > 0 is a small number, chosen (in a subjective way!) to

reflect the desired level of confidence. The two people make “contradictory

predictions” if one of them asserts that the probability of A is less than

δ and the other one says that the probability of A is greater than 1 −
δ. The theorem proved below implies that the two people can make the

probability of making contradictory predictions smaller than an arbitrarily

small number ε > 0, if they agree on using the same sufficiently small δ > 0

(depending on ε).

I have not seen the theorem proved in this section elsewhere—it might

be a new modest purely mathematical contribution of this book.
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For the notation and definitions of σ-fields, conditional probabilities,

etc., see any standard graduate level textbook on probability, such as [Dur-

rett (1996)].

Theorem 14.1. For any ε > 0 there exists δ > 0 such that for any prob-

ability space (Ω,F , P ), any σ-fields G,H ⊂ F and any event A ∈ F , we

have

P
(

|P (A | G) − P (A | H)| ≥ 1− 2δ
)

≤ ε.

For ε ≤ 1/2, we can take δ = ε/10.

Proof. Let ρ = 2δ,

B = {|P (A | G) − P (A | H)| ≥ 1 − ρ},
C = {P (A | G) − P (A | H) ≥ 1 − ρ},
D = {P (A | G) − P (A | H) ≤ 1 − ρ}.

Then P (A | G) ≥ 1 − ρ and P (A | H) ≤ ρ on C. Hence P (Ac | H) ≥ 1 − ρ

on C. We either have P (A ∩ C) ≥ P (C)/2, or P (Ac ∩ C) ≥ P (C)/2, or

both. First assume that P (Ac∩C) ≥ P (C)/2. Let F = {P (A | G) ≥ 1−ρ}
and note that C ⊂ F . It follows that

P (A ∩ F ) = E(1A1F ) = E(E(1A1F | G))

= E(1F E(1A | G)) ≥ (1 − ρ)P (F ),

so P (Ac ∩ F ) ≤ ρP (F ), and, therefore,

1 ≥ P (A ∩ F ) ≥ 1 − ρ

ρ
P (Ac ∩ F ) ≥ 1 − ρ

ρ
P (Ac ∩ C) ≥ 1 − ρ

ρ
P (C)/2.

In other words, P (C) ≤ 2ρ/(1 − ρ).

If P (A ∩C) ≥ P (C)/2 then we let F1 = {P (Ac | H) ≥ 1− ρ}. We have

C ⊂ F1 and

P (Ac ∩ F1) = E(1Ac1F1
) = E(E(1Ac1F1

| H))

= E(1F1
E(1Ac | H)) ≥ (1 − ρ)P (F1),

so

1 ≥ P (Ac ∩ F1) ≥
1 − ρ

ρ
P (A ∩ F1) ≥

1 − ρ

ρ
P (A ∩ C) ≥ 1 − ρ

ρ
P (C)/2.

In this case, we also have P (C) ≤ 2ρ/(1 − ρ). In a completely analogous

way, we can prove that P (D) ≤ 2ρ/(1− ρ). Thus, P (B) ≤ P (C) + P (D) ≤
4ρ/(1−ρ). For a given ε > 0, we choose ρ > 0 such that 4ρ/(1−ρ) = ε. This

proves the first assertion of the theorem. To complete the proof, note that

for ε ≤ 1/2 and ρ = ε/5, we have 4ρ/(1− ρ) = 4ε/(5(1− ε/5)) < ε. �
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Chapter 15

Literature Review

Literature on philosophical foundations of probability is enormous. The

short review presented below is far from being exhaustive or systematic.

But I hope that anybody looking for an entry point into this field will find

a book of interest to him, especially that many of the books listed below

have their own extensive bibliographies.

15.1 Classics

I find the book of von Mises [von Mises (1957)] on the frequency theory

and the book of Savage [Savage (1972)] on “personal” probability quite

accessible. De Finetti’s two volumes [de Finetti (1974, 1975)] are partly a

standard mathematical introduction to probability, and partly a philosoph-

ical treatise. The two aspects of the discussion are intertwined to the point

that the book has a reputation of being too philosophical for mathemati-

cians and too mathematical for philosophers. Frankly, one could apply the

same complaint to [von Mises (1957)] and [Savage (1972)], and many other

books listed below.

The book by Jeffreys [Jeffreys (1973)] presenting a subjectivist theory

belongs to the category of classics because it was first published in 1931.

The logical theory can be found in a book by Keynes [Keynes (1921)]

and a later book by Carnap [Carnap (1950)]. The philosophy in the latter

book is not easy to classify because Carnap believed in both logical and

physical probability.

Popper’s book [Popper (1968)] contains his philosophical theory of de-

terministic science and an application of the same philosophical program

to probability. This book is not a casual reading.

245
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15.2 Philosophy

I highly recommend to non-experts two very accessible monographs de-

voted to the history of philosophy of probability, by Gillies [Gillies (2000)]

and Weatherford [Weatherford (1982)]. The book by Gillies is rather ca-

sual in style and easy to read while the monograph by Weatherford is a

meticulous and well organized review of various philosophical theories of

probability. An online article [Hájek (2007)] is another excellent historical

review, although at some places, it might be somewhat challenging to non-

philosophers. On the personal side, I am disappointed that Hájek’s article

seems to ignore those aspects of Popper’s philosophy that form the basis of

my law (L5).

An article by Primas [Primas (1999)] is a very interesting and useful

review of many philosophical problems of probability although it is techni-

cally challenging at some places.

The book of Hacking [Hacking (1965)] presents a version of the propen-

sity theory. It is easy to read and contains many examples and arguments

that everyone interested in the subject should know. I do not agree with

Hacking’s theory because it does not explain why one can attribute two

different probabilities to a single outcome of a single experiment and it

puts too much stress on the long run frequencies, thus creating a hybrid

propensity-frequency theory open to attack on several fronts.

A collection of essays on subjective probability edited by Kyburg and

Smokler [Kyburg and Smokler (1964)] is an interesting review of classical

writings in this area.

A book by Skyrms [Skyrms (1966)] is an excellent introduction to the

philosophy of probability. The book of von Plato [von Plato (1994)] is a

superbly researched and documented history of the philosophy of probabil-

ity, with emphasis on the first half of the twentieth century. I have to say,

though, that my own interpretation of philosophies of von Mises and de

Finetti is significantly different from that presented in [von Plato (1994)].

15.3 Philosophy and Mathematics

Fine’s book [Fine (1973)] is demanding because it mixes philosophy with

some non-trivial mathematics, mostly mathematical logic and other foun-

dational questions. Hence, the reader must have some interest and back-

ground in both of these fields to enjoy the book. The author has a large
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number of interesting observations but I could not determine what his main

message was. I do recommend the book, though, because the introduction

contains a clear review of several theories and philosophical questions.

A very recent, posthumously published book of Jaynes [Jaynes (2003)]

similarly mixes philosophy and mathematics but its mathematics is largely

statistics. Unlike Fine’s book, Jaynes’ book is mostly devoted to author’s

own theory. The book is written in a very clear style but it is far from

being a casual reading. I am not sure whether Jaynes’ theory should be

called subjective or logical. I reject Jaynes’ philosophy because he failed

to explain how his theory might be falsified. His axioms have the feel of a

subjectivist system despite the word “logic” in the title of the book.

Keuzenkamp’s book [Keuzenkamp (2006)] contains a fair amount of

mathematics but I like its clear style and a detailed review and critique

of the main trends in the philosophy of probability.

New books with new ideas on interpretation of probability keep on ap-

pearing. One of them is a book by Rocchi, [Rocchi (2003)], presenting a

“structural” theory of probability. The new idea is certainly interesting

but I do not see how this interpretation could be built into undergraduate

textbooks on probability.

A few scientific monographs have non-negligible philosophical contents,

at least implicitly. A book of [DeGroot (1970)] was perhaps the first

openly Bayesian statistical textbook. A more recent graduate textbook on

Bayesian analysis, [Gelman et al. (2004)], takes a non-ideological stance, so

it seems to be closer to the mainstream Bayesian statistics. Berger’s book

[Berger (1985)] is quite unique and extremely valuable because it combines

research level mathematics and statistics with a very detailed and careful

review of philosophical issues specific to various statistical techniques.

A superbly researched monograph by Nickerson [Nickerson (2004)] is

easy to read. Just as its title says, it mostly pays attention to the human

side of the story, although it does contain a lot of philosophy and some

mathematics.
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