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our brains create thought and language a theory of lan-

guage that is intuitively plausible and also consistent

with existing scientific data at all levels.

Jerome A. Feldman is Professor of Electrical

Engineering and Computer Science and former Director

of the Cognitive Science Program at the University of

California, Berkeley, and a Research Scientist at the

International Computer Science Institute.

A Bradford Book

cognitive science

“How can the brain, a highly structured biological and chemical mechanism, made up of neurons with

axons, dendrites, and synapses and that functions via flowing ions and neurotransmitters—how can

the physical brain give rise to thought and language? Jerome Feldman, my close colleague in unlock-

ing this puzzle, has given us the first serious theory linking neurobiology to neural computation to

cognitive linguistics. From Molecule to Metaphor is an indispensable book for anyone interested in how

human beings think, act, and communicate.”

George Lakoff, Goldman Distinguished Professor of Cognitive Science and Linguistics, 
University of California, Berkeley

“Feldman has a unique perspective on human computation at all levels, drawn from his dual lifelong

experiences helping to create modern computer science and bringing deep computational ideas to

the study of cognitive science. In this exciting new book, he shows why understanding the most com-

plex computations of the human brain depends on taking account of the ontogeny and phylogeny of

our species; and, by doing so, how it might be possible to build a truly embodied cognitive science.”

Steven L. Small, Professor of Neurology and Psychology, The University of Chicago

“Jerry Feldman’s book guides the reader through the most recent developments in neural computa-

tional theories of language. His is a thought-provoking book and an important touchstone for those

interested in learning how embodiment shapes meaning.”

Vittorio Gallese, Department of Neuroscience, University of Parma

“In From Molecule to Metaphor, Jerome Feldman takes us on a fascinating tour through the mysteries of

the human brain, revealing new and unexpected vistas. The ideas are deep, as should be expected

from one of the pioneers in the field, but also lucidly presented for the nonspecialist reader.”

V.S. Ramachandran, Professor and Director of the Center for Brain and Cognition, 
University of California, San Diego

The MIT Press

Massachusetts Institute of Technology

Cambridge, Massachusetts 02142

http://mitpress.mit.edu

Cover: neuron illustration by  Gerorge Boeree

Fro
m

 M
o

lecu
le to

 M
etap

h
o

r       Feldm
an

978-0-262-06253-4
0-262-06253-4

,!7IA2G2-agcfde!:t;K;k;K;k

49734Feldman  5/26/06  10:03 AM  Page 1



From Molecule to Metaphor





From Molecule to Metaphor

A Neural Theory of Language

A Bradford Book

The MIT Press

Cambridge, Massachusetts

London, England

Jerome A. Feldman



© 2006 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any 

electronic or mechanical means (including photocopying, recording, or information

storage and retrieval) without permission in writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales

promotional use. For information, please email special_sales@mitpress.mit.edu or

write to Special Sales Department, The MIT Press, 55 Hayward Street, Cambridge,

MA 02142.

This book was set in Stone Sans and Stone Serif by SNP Best-set Typesetter Ltd., Hong

Kong and was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Feldman, Jerome A.

From molecule to metaphor : a neural theory of language / by Jerome A. Feldman.

p. cm.

Includes bibliographical references and index.

ISBN 0-262-06253-4 (hard: alk. paper)

1. Language and languages—Philosophy. 2. Psycholinguistics. 3. Neurobiology.

4. Cognitive science. I. Title.

P107.F445 2006

401—dc22

2005058045

10 9 8 7 6 5 4 3 2 1



For Debby, my sine qua non.





Contents

Preface xi

Acknowledgments xix

I Embodied Information Processing 1

1 The Mystery of Embodied Language 3

2 The Information Processing Perspective 15

3 Computational Models 29

II How the Brain Computes 41

4 Neurons and Other Cells 43

5 The Society of Neurons 59

6 Nature and Nurture 71

III How the Mind Computes 83

7 Connections in the Mind 85

8 Embodied Concepts and Their Words 95

9 The Computational Bridge 105



IV Learning Concrete Words 123

10 First Words 125

11 Conceptual Schemas and Cultural Frames 135

12 Learning Spatial Relation Words 149

V Learning Words for Actions 161

13 Embodied Knowledge of Actions 163

14 Learning Action Words 173

VI Abstract and Metaphorical Words 183

15 Conceptual Systems 185

16 Metaphors and Meaning 199

17 Understanding as Simulation 213

VII Understanding Stories 225

18 The Structure of Action and Events 227

19 Belief and Inference 235

20 Understanding News Stories 245

VIII Combining Form and Meaning 257

21 Combining Forms—Grammar 259

22 The Language Wars 271

23 Combining Meanings—Embodied Construction Grammar 283

viii Contents



IX Embodied Language 295

24 Embodied Language Understanding 297

25 Learning Constructions 311

26 Remaining Mysteries 325

27 All Together Now 333

References and Further Reading 345

Index 353

Contents ix





Preface

I hear and I forget

I see and I remember

I do and I understand

—Attributed to Confucius, 500 BCE

Many years ago, I was browsing through books on learning how to draw.

One of them, said, after a brief introduction, put down this book and start

drawing. This book is like that—it will frequently suggest a simple mental

exercise to help you personally experience a phenomenon. If this appeals

to you, you might like the book.

By now, virtually everyone agrees that the scientific explanation for

human language and cognition will be based on our bodies, brains, and

experiences. The major exception is Noam Chomsky whose dominance of

twentieth-century linguistics is unparalleled in any other academic field. I

will later quote from Chomsky’s 1993 book, Language and Thought, and he

repeatedly stated the same idea in his 2003 Berkeley lectures: “We don’t

know nearly enough about the brain for cognitive science to take it seri-

ously.” Chomsky has focused on linguistic form; since this book deals first

with meaning, we won’t encounter him again until chapter 22.

As a first mental exercise, try expressing to yourself what you know about

how your own thoughts work. How do our brains compute our minds? When

I ask Berkeley students, on the first day of class, to write a page on this

question, most of the students express mystification. Even people who

know a great deal about neuroscience, psychology, linguistics, philosophy,

and artificial intelligence often have no clear idea of how the findings of

these fields could combine to yield even a preliminary understanding of

how language is embodied in us.



This book proposes to begin integrating current insights from many dis-

ciplines into a coherent neural theory of language. It might seem that no

such effort is needed. Isn’t language obviously a function of our brains—

what else could it be? Certainly other human abilities such as motor

control, hearing, and especially vision have been studied as neural systems

for many decades. But language is still often treated as an abstract symbol

system not particularly tied to human brains or experience.

A great deal of permanent value has been learned from formal studies of

language, but it is surprising that the notion of disembodied language per-

sists. This is partly an historical artifact, but it also arises from the fact that

other animals share our visual and motor abilities but not our language

skills. Much of the progress in neural theories of vision and motor control

have come from invasive animal experiments that are thankfully prohib-

ited on people. Until recently, very little has been known about how our

brains process language.

Currently no one knows the details of how words or sentences are

processed in the brain, and there is no known methodology for finding

out. Many scientists believe it is premature (perhaps by centuries) to 

formulate explicit theories linking language to neural computation. Even

theoreticians are usually content with suggestive models, which can’t 

actually be right, but do suggest interesting experiments. However, the 

cognitive sciences reveal a great deal about how our brains produce 

language and thought. And we have a long and productive tradition, 

going back at least to the Greek atomic theories of matter, of postulating

“bridging theories” in advance of the detailed evidence. Brian Greene’s 

The Elegant Universe offers a wonderful description of the fundamental

nature of matter, though science might never deliver experimental 

verification.

In contemporary science, it is not unusual to have quite extensive knowl-

edge at both ends of a causal chain and to build and test theories to expli-

cate the bridging links. For example, astrophysics is concerned with linking

fundamental particle physics with astronomy. In economics and other

social sciences, a principle concern is how individual preferences give rise

to group behavior. Similarly, much of molecular biology is concerned with

how genetic material yields the various proteins and resultant organisms.

Higher levels of biology also try to develop bridging theories. We can see

the search for a neural theory of language as one such attempt, albeit an
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unusually ambitious one. These bridging theories are often developed as

computer simulations, and this book follows this tradition.

I treat the mind as a biological question—language and thought are

adaptations that extend abilities we share with other animals. For well over

a century, this has been the standard scientific approach to other mental

capacities such as vision and motor control. But language and thought,

even now, are usually studied as abstract formal systems that just happen

to be implemented in our brains. Instead, we pursue the great ethologist

Nico Tinbergen’s (Tinbergen 1963) four questions that must be asked of

any biological ability:

1. How does it work?

2. How does it improve fitness?

3. How does it develop and adapt?

4. How did it evolve?

The first three of these questions are covered in considerable detail. The

origins of language are still largely unknown and are discussed briefly in

chapter 26.

There is a sufficiently large gap between brain and language to contain

ecological niches for many theories, especially if their proponents are 

satisfied to ignore inconvenient findings. Understanding language and

thought requires combining findings from biology, computer science, lin-

guistics, and psychology. A theory that seems perfectly adequate from one

perspective may contradict what is known in another field. Problems that

seem intractable in one discipline might be quite approachable from a dif-

ferent direction. Taking all the constraints seriously is the only way to get

it right.

But this requires us to understand the essential ideas from several quite

different scientific domains. In any of these fields, keeping up with tech-

nical advances and doing original work are extremely demanding pursuits

and require focused effort. There are some endeavors at the boundaries

between subfields, but very little scientific work that attempts to encom-

pass the full range needed for our task. I will need to synthesize a bridg-

ing theory from separate fields, all of which have their focus elsewhere.

My approach is to pick out key findings and theories from various disci-

plines and show how, in combination, they constrain the possible bridg-

ing theories of language to a narrow family of possibilities.
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Each discussion is an oversimplification of some research field, often

involving thousands of active investigators, and thus is inherently 

incomplete. The usual references suggest more detailed discussions of

various points, but these are most useful as key words for search engines.

By the time you read this book, important new developments will have

occurred in each of these areas. Books for further reading are included 

for people who would like additional background in one or another 

direction.

While we are far from having a complete neural theory of language,

enormous scientific advances have occurred in all the relevant fields. Taken

together, these developments provide a framework in which everything we

know fits together nicely. The goal of this book is simple: I would like you,

at the end, to say, This all makes sense. It could explain how people understand

language. I will make no attempt to convince you other theories are

wrong—in fact, I assume that most of them are partially right. The book

can be seen as part of a general effort to construct a Unified Cognitive

Science that can guide the effort to understand our brains and minds. I try

to present a story here that is consistent with all the existing scientific data

and that also seems plausible to you as a description of your own mind.

Except for one thing. One part of our mental life is still scientifically

inexplicable—subjective experience. Why do we experience everything in

the way we do? The pleasure of beauty, the pain of disappointment, and

even the awareness of being alive . . . these do not feel like they are

reducible to neural firings and chemical reactions. Almost everyone

believes that his or her own personal experience has a quality that goes

beyond what this book, and science in general, can describe. If I had any-

thing technical to say about subjective experience, it would be the high-

light of the book, to say the least.

People use terms like personal experience, subjective experience, and phe-

nomenology to label this idea. Philosophers have coined a technical term,

qualia, to refer to these phenomena that are currently beyond scientific

explanation. Antonio Damasio (Damasio 2003), who in my opinion is

doing the best scientific work on subjective experience, distinguishes mea-

surable emotions from subjective feelings. Aside from a brief discussion in

chapter 26, this book focuses on what can be learned from studying the

physiological and behavioral correlates of experience—that is, what can be

measured and modeled objectively.
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My undertaking of this quixotic enterprise came as the result of a year

of explicit soul-searching around the time of my fortieth birthday. I had

the good luck of entering the field of computer science in its infancy, and

I believed this gave me the opportunity to move in almost any direction,

exploiting insights into information processing not available to previous

generations. My long-term interests in language and the brain and work

on various computer systems including some of the earliest robots, led me

to focus on the question that I just asked you—How does the brain

compute the mind? Twenty-five years later, due to advances in all fields

that were inconceivable to me at the time, the outlines of an answer seem

to be emerging.

A Brief Guide to the Book

This book is designed to be read in order; each chapter provides some of

the underpinnings for later ideas. But it should also be possible to look first

at the parts that interest you most and then decide how much effort you

wish to exert. Many forward and backward pointers are included to help

integrate the material.

Information processing is my organizing theme. Language and thought

are inherently about how information is acquired, used, and transmitted.

Chapter 1 lays out some of the richness of language and its relation to

experience. The central mechanism in my approach to the neural language

problem is neural computation. Chapters 2 and 3 provide a general intro-

duction to neural computation. Chapters 4 through 6 provide the minimal

biological background on neurons, neural circuits, and how they develop.

We focus on those properties of molecules, cells, and brain circuits that

determine the character of our thinking and language.

Chapters 7 and 8 consider thought from the external perspective and

look at the brain/mind as a behaving system. With all of this background,

chapter 9 introduces the technical tools that are used to model how various

components of language and thought are realized in the brain. A fair

amount of mechanism is required for my approach, which involves build-

ing computational models that actually exhibit the required behavior

while remaining consistent with the findings from all disciplines. I refer

to such systems as adequate computational models, which I believe are the

only hope for scientifically linking brain and behavior. There is no 
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guarantee that an adequate model is correct, but any correct model must

be adequate in the sense defined here.

The specific demonstrations begin with a study of how children learn

their first words. This involves some general review (chapter 10) and a more

thorough study of conceptual structure (chapter 11) needed for word learn-

ing. The first detailed model is presented in chapter 12, which describes

Terry Regier’s program that learns words for spatial relation concepts across

languages. This theme of concrete word learning is then extended to cover

words for simple actions in chapters 13 and 14, which describes David

Bailey’s demonstration system.

The next section extends the discussion to words for abstract and

metaphorical concepts. In chapters 15 and 16, we look further at the struc-

ture of conceptual systems and how they arise through metaphorical 

mappings from direct experience. Chapter 17 takes the informal idea of

understanding as imaginative simulation and shows how it can be made

the basis for a concrete theory. This theory is shown in chapter 18 to be

sufficiently rich to describe linguistic aspect—the shape of events. This is

enough to capture the direct effects of hearing a sentence, but for the indi-

rect consequences, we need one more computational abstraction of neural

activity—belief networks, described in chapter 19. All of these ideas are

brought together in Srinivas Narayanan’s program for understanding news

stories, discussed in chapter 20.

Chapters 21 through 25 are about language form, that is, grammar—how

grammar is learned and how grammatical processing works. Chapter 21

lays out the basic facts about the form of language that any theory must

explain. Chapter 22 is partly a digression; it discusses the hotbutton issues

surrounding how much of human grammar is innate. We see that classi-

cal questions become much different in an explicitly embodied neural

theory of language and that such theories can be expressed in standard

formalisms (chapter 23).

Chapter 24 shows how the formalized version of neural grammar can be

used scientifically and to build software systems for understanding natural

language. The poster child for the entire theory is Nancy Chang’s program

(chapter 25) that models how children learn their early grammar—as

explicit mappings (constructions) relating linguistic form to meaning.

Chapter 26 discusses two questions that are not currently answerable: the

evolution of language and the nature of subjective experience. Finally,
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chapter 27 summarizes the book and suggests that further progress will

require a broadly based unified cognitive science. But the scientific progress

to date does support a range of practical and intellectual applications and

should allow us to understand ourselves a bit better.

A version of the material in this book has been taught to hundreds of

undergraduate students at the University of California, Berkeley over the

years. There were weekly assignments, and most of the students actually

did them. The course did not work for all the students, but a significant

number of them came out of the class with the basic insights of a neural

theory of language. If you want to understand how our brains create

thought and language, there is a fair chance that this book can help.
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1 The Mystery of Embodied Language

Each of us is the world’s greatest expert on one human mind—our own.

But Nature (or God if you’d prefer) did not endow us with the ability to

comprehend how our minds work. You can’t understand by introspection

even something as basic as your eye movements as you read these words.

Cognitive scientists can predict where most people will focus their gaze—

almost everyone pauses at read these words because it is unusual to see a

sentence that talks about itself. When it comes to the mental processes

involved in understanding the meaning of the text, scientists cannot

explain even the basics, such as how the meaning of a word is represented

in the brain.

This book contains a good deal of technical detail on various scientific

subjects, but the central theme of our story on language and thought is

based on two simple related principles:

Thought is structured neural activity.

Language is inextricable from thought and experience.

All of our thought and language arises from our genetic endowment and

from our experience. Language and culture are, of course, carried by the

family and the community. But each child has to rebuild it all in his or

her own mind. From the child’s internal perspective, all social and cultural

interactions start as additional inputs that must somehow be understood

and incorporated using existing knowledge. This is more than a truism. A

neural theory of language depends critically on looking at the problem

from the perspective of the mind/brain that is learning and using language.

The human brain is a system of neurons intricately linked together.

Neurons work via electrochemistry. How can such a physical system—

biological, chemical, and electrical—have ideas and communicate them



through language? In other words, how does all of this biology, chemistry,

and electricity give rise to thought and language?

The link between neurons and physical behavior is easy to see in a well-

understood case such as the knee-jerk reflex—the lifting of your leg when

your doctor taps below your kneecap. Neural connections run from the

sensing neurons in the knee, through one link in the spinal cord, back to

motor neurons that drive the leg muscles. Although the complete under-

lying chemistry is very complex, your doctor doesn’t need to think about

that. She can quickly see if your knee is functioning correctly by taking an

information-processing perspective. The question doctors ask is, Are the

signals from the knee being effectively transmitted to the spinal cord, correctly

received there, and appropriate signals being transmitted to the leg muscles? From

this perspective, the problem of behavior (whether your knee jerks)

becomes an information-processing problem involving circuitry and

signals. As we will see, this information-processing view also applies to

learned automatic behaviors, like driving a car or understanding language.

Now imagine that your doctor, instead of tapping your knee, asks you

to lift your leg. The link between an input signal (the doctor’s words) and

the output (lifting) now does involve the brain and is much more complex,

but the neural information processing perspective is still the key to under-

standing the behavior. The sound waves produced by the doctor’s speech

strike your ear and are converted to frequency signals involving millions

of neurons. Between these incoming neural signals and the neural

command involved in volitionally lifting your leg, there is an enormous

amount of neural information processing. This is the physical embodiment

of your understanding of what the doctor says and what you choose to do

about it. Should you decide to kick, a neural signal from the motor control

region of your brain is sent to a circuit in your spinal cord, which will acti-

vate the lifting circuitry and muscles in your leg. This assumes that your

doctor asked politely—if she were nasty or arrogant, you would be more

likely to stomp out of the office or worse.

Many of the neural circuits used in moving are also used in perceiving

motion. If you watch a video of someone else kicking, this activates some

of the same brain circuits that you use for kicking with your own leg

(Buccino et al. 2001). Of course, if all of your kicking circuitry were active,

you would kick. Now imagine you are told a story about someone else

kicking. Recent biological evidence suggests that you can understand such
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stories by imagining yourself kicking (Hauk et al. 2004; Tettamanti et al.

2005). Brain imaging studies reveal that much of the neural activity

required for you to understand someone else moving his or her leg over-

laps significantly with the activity involved in actually moving your own

leg. More generally, we can say the following:

� Understanding language about perceiving and moving involves much of

the same neural circuitry as do perceiving and moving themselves.
� Neural computation links our experience of hearing and speaking to the

experience of perception, motion, and imagination.
⇒ So we need to know more about neural computation to understand 

language.

The brain is made up of some 100 billion neurons, each connected, on 

the average to thousands of other neurons. This comes to some 100 

trillion connections. The neurons and their connections (axons, dendrites,

and synapses) are biological structures that work by means of chemistry.

We will learn a lot in the book about this magnificent structure and 

how it develops, but we need a few initial insights now. Any thought 

or action involves a significant fraction of the billions of neurons—the

computation is massively parallel. The brain is self-controlling and self-

modifying, that is, no central controller tells each part what to do and no

external monitor guides its learning. Neural computation involves contin-

uously finding a best match between the inputs and current brain state,

including our goals.

The brain is constantly active, computing inferences, predictions, and

actions with each evolving situation. There has been enormous evolu-

tionary pressure toward brains that can respond fast and effectively in

complex situations. For example, a common housefly can sense changes

in air currents and quickly shift directions, which is why fly swatters have

holes.

To help get a feel for how your best-match circuitry works, look for a

minute or so at figure 1.1. This wire-frame cube can be seen in two differ-

ent ways, with either corner A or corner G appearing to closer to you. If

you are having trouble seeing corner A as closer, focus on it and imagine

it coming out of the paper toward you. This figure is called the Necker

Cube, after the nineteenth-century Swiss naturalist Louis Necker, who 

discovered that the image will spontaneously flip between the two 
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interpretations as you stare at it. We never see a mixture of the two 

versions—it’s always one coherent whole (Gestalt).

This coherence principle also holds for language. If you read the 

sentence: Josh threw a ball, you picture him hurling a sphere, probably

about the size of a baseball. But if you read, Josh threw a ball for charity,

you are more likely to imagine him sponsoring a dance. As in the 

case of the Necker Cube, we always get one coherent reading at a time, 

although it can easily change. Consider the following: Josh threw a ball

for charity, but missed the clown’s nose. This takes us back to the original

version.

The general properties of neural computation described earlier largely

determine the nature of our language and thought, but there is still a sig-

nificant conceptual gap. Thought involves ideas, feelings, and reasoning,

and language somehow links those ideas, feelings, and reasoning to per-

ceived and spoken sounds (or signs in the case of signed languages). We

know all of this must be accomplished by a physical brain in a physical

body. The question is, how?

This is not the standard where question, asking which parts of the brain

are used in thought and language. It is misleading to talk about a brain

area computing some function—areas don’t compute, neural circuits do. It

is like saying that U.S. cars are made by Detroit. The Detroit area is cer-

tainly important in automobile manufacture, but all cars have parts made

in many places and some American cars are assembled in other places.

Current technology is only able to crudely localize brain function, but by

putting together findings from different kinds of studies, we are able to

6 I. Embodied Information Processing
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address the central question of how the circuitry underlying thought and

language can work.

A quarter of a century ago, it was unimaginable that such questions

about the neural basis of language could be answered scientifically. Yet

today, the basic components of an answer are in place.

The Embodied Mind

One simple insight has driven much of the scientific study of how the

structure and function of the brain results in thought and language.

Human language and thought are crucially shaped by the properties of our

bodies and the structure of our physical and social environment. Language

and thought are not best studied as formal mathematics and logic, but 

as adaptations that enable creatures like us to thrive in a wide range of 

situations. This is essentially the same as the principle of continuity of 

the American pragmatists, most notably William James and John 

Dewey. It is unquestioned in contemporary science, except in the case of

language.

The embodied approach entails several crucial questions. How much,

and in exactly what ways, are thought and language products of our

bodies? How, exactly, does our embodied nature shape the way we think

and communicate? Here are some of the findings discussed in the course

of this book:

� Concrete words and concepts directly label our embodied experience.

Think of such short words in English as knee, kick, ask, red, want, sad.
� Spatial relations, for example, concepts expressed by words such as in,

through, above, and around, can be seen as derived from specialized circuitry

in the visual system: topographic maps of the visual field, orientation-

sensitive cells.
� What is technically called “aspect” in linguistics—the way we conceptu-

alize the structure of events, reason about events, and express events in

language—appears to stem from the neural structure of our system of

motor control.
� Abstract thought grows out of concrete embodied experiences, typically

sensory-motor experiences. Much of abstract thought makes use of rea-

soning based on the underlying embodied experience.
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� Our systems of abstract and metaphorical thought and language arise

from everyday experiences and a basic neural learning mechanism.
� Grammar consists of neural circuitry pairing embodied concepts 

with sound (or sign). Grammar is not a separate faculty, but depends on

embodied conceptual and phonological systems.
� Children first learn grammar by pairing sound combinations with 

familiar experiences.

Thought and language are thus very strongly shaped by the nature of our

bodies, our brains, and our experience functioning in the everyday world.

What this means is that any approach to an embodied theory of lan-

guage requires mechanisms of neural computation used for other purposes

and adapted to thought and language—detailed structures in the visual

system, the motor system, and basic neural learning mechanisms. This has

profound consequences:

� Thought (including abstract thought) and language make use of impor-

tant brain structures found in other mammals. Most of the brain 

mechanisms used in thought and language are not unique to human

beings.
� Thought and language are neural systems. They work by neural compu-

tation, not formal symbol manipulation. The differences between these

modes of computation and why they matter are examined as we go along.
� Thought and language are not disembodied symbol systems that happen

to be realized in the human brain through its computation properties.

Instead, thought and language are inherently embodied. They reflect the

structure of human bodies and have the inherent properties of neural

systems as well as the external physical and social environment.

The consequences of these findings for philosophy, politics, mathe-

matics, and linguistics have been described elsewhere and are reprised in

chapter 27. This book focuses on the scientific foundations of neural com-

putation and embodied language and their consequences for how we think

about our societies and ourselves.

The Integrated, Multimodal Nature of Language

Because language is complex, linguists have traditionally broken its study

artificially into “levels” or “modules” given names such as phonetics,
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phonology, morphology, syntax, the lexicon, semantics, discourse, and

pragmatics. Most linguists specialize in the study of just one level or at the

border between two adjacent subfields. Such focused studies have told us

a great deal about language and are still the norm.

However, real language is embodied, integrated, and multimodal. When

your doctor asks you to lift your leg, your understanding involves a rich

interaction among many neural systems. There is systematic structure 

to how all these components fit together to constitute language. The 

rules or patterns of language are called constructions, and these integrate

different facets of language—for example, phonology, pragmatics, seman-

tics, and syntax. A request construction might specify a grammatical form,

an intonation pattern, pragmatic constraints, and the intended meaning.

When your doctor asks you to lift your leg, all of these features are

involved.

This integrated, multifaceted nature of language is hard to express in tra-

ditional theories, which focus on the separate levels and sometimes view

each level as autonomous. But constructions can provide a natural descrip-

tion of the links between form and meaning that characterize the neural

circuitry underlying real human language. They offer a high-level compu-

tational description of a neural theory of language (NTL).

An NTL does more than just provide a neural implementation of 

standard theories of thought and language. Rather it permits a more 

accurate and full account of our thought and language and the way they

fit together. In particular, it allows the embodied and neural character of

thought and language to take center stage. The neural theory of language

described in this book helps us characterize the integrated, embodied

nature of language. The following two concrete examples illustrate what

this means.

Spinning Your Wheels

Imagine yourself trying to teach the meaning and usage of a phrase like

“spinning your wheels” to a friend who knows English but comes from a

culture where the phrase isn’t used. Let’s begin with the simplest, literal

meaning of this idiomatic expression. If your friend’s culture did not have

cars, the task would be enormous. You would first have to explain what

an automobile is, how it works, and how a car’s wheels might spin in mud,

in sand, or on ice without the car moving. One would also have to explain
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the typical effect of this on the driver, namely, frustration at not being able

to get the car to move. All of this is part of a knowledge structure called a

frame that systematically relates cars, wheels, motion, attitudes, and so on

to the situations in which the wheels are spinning but the car doesn’t

move. The expression “spinning your wheels” evokes the entire conceptual

framework, with all the appropriate knowledge and attitudes.

The phrase “spinning your wheels” can be used either literally or

metaphorically. In many cases, “spin your wheels” works in a simple and

literal manner. If you’re spinning your wheels, don’t step on the gas is an expres-

sion that is probably new to you, but you can interpret it easily because

the sentence connects directly to your own frustrating experiences or those

you’ve seen in movies. But variations that are superficially just as simple

are not allowed with this idiom, for example, He’s spinning her wheels is not

acceptable, although it could make sense (he might be driving her car) and

it does fit a pattern found in other English idioms, for example, He fixed

her wagon.

Spinning your wheels makes use of ordinary grammatical constructions of

English. It is a verb phrase; it has a verb (spinning) followed by a noun

phrase (possessive pronoun + wheels). The verb has a normal suffix –ing.

The phrase can be modified by some of the standard grammar rules of

English—one can say, We used to be spinning our wheels.

Also, the idiom is defined in relation to a knowledge frame with an

image. In the image, there is a car whose drive wheels are spinning. The

car is not moving. The driver of the car is trying to get the car to move, is

putting a lot of energy into it, and is frustrated that the car is stuck. The

most salient part of the scene is the spinning of the wheels of the car. The

noun “wheels” refers to the wheels of the car and the verb “spin” refers to

what the wheels are doing in the scene. These words become anchor points

in metaphorical uses of the phrase.

For example, there is a general conceptual metaphor in which “achiev-

ing a purpose” is conceptualized as “reaching a destination” with progress

experienced as moving closer to the destination. Consider the example, I’m

spinning my wheels working at this job. The general metaphor is that “A career

is a journey and career advancement is forward motion. If you’re spinning

your wheels, you are not moving, not making progress toward life goals,

even though you are putting effort into it. The sentence implies that you

are not advancing in your career. You are putting a lot of effort into it, not
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getting anywhere, and feel frustrated. Here, the metaphor maps the know-

ledge about the stuck-car scene onto the situation in which there is no

advancement in your career.

The phrase “spinning your wheels” (like hundreds, if not thousands, of

other motivated idioms in English) illustrates the multimodal nature of

language. As an idiom, it is like a word of English; you have to learn it,

and what you know about it does not follow from general rules. The words

involved in the idiom (spin and wheels) have images that fit the salient part

of a cultural image (a car spinning its wheels) with knowledge about the

image (no motion, desire for motion, lots of effort, frustration). And the

common metaphorical meanings make use of maps from this frame-and-

scene semantics to various abstract domains (purposeful actions, careers,

love relationships).

To know how to use “spinning your wheels” correctly, you need to have

integrated knowledge involving at least grammar (the constructions),

lexicon (the words), semantics (identity of the subject and the pronoun),

a cultural image and associated knowledge, and standard conceptual

metaphors. There must be precise linkages across all these modalities: the

ing has to fit on the same verb (spin) that (a) precedes the noun phrase in

the verb phrase construction, (b) has an image that fits into the wheel-

spinning-on-a-car image, (c) is part of the cultural knowledge associated

with the image, which entails lack of motion. Also, the lack of motion can

stand as the base of at least three different metaphors: lack of progress in

an activity, lack of advancement in a career, and lack of development in a

relationship. The remarkable fact is that these metaphors are productive—

we can apply them in novel situations and will be understood. For

example, you will be spinning your wheels if you try to understand this

book without doing the mental exercises.

Waltzing into a Recession

The waltz is a dance to music with a 1-2-3, 1-2-3, . . . rhythm. The dance

partners move in sweeping circular paths, concentrating attention pri-

marily on each other (rather than on where they are going). Ideally, it is

a dance one enjoys and is swept up in. “To waltz” is to perform such a

dance. When you waltz, you move; and, since verbs of motion can take

directional modifiers (e.g., onto the terrace), there are sentences like “Harry

and Sadie waltzed onto the terrace.”
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Now imagine reading the following sentence in the news: “France

waltzed into a recession.” Sentences like this are very common in news

stories (check it out), and this one is immediately understandable, even

though its subject is not animate and the path (into a recession) is abstract

and does not indicate a physical direction. The use of waltz in this sen-

tence appears to violate the rules of English—waltzing is done only by

people. Why is this acceptable?

The answer has to do with the complex interaction between grammar

and metaphor. In understanding the example sentence, a number of

common metaphors are being used.

� Countries are metaphorically conceptualized as people. Since a person can

be the agent of waltz, so can a metaphorical person.
� Change is metaphorically conceptualized as motion, with economic

change as a special case. More is metaphorically up and less is down. In eco-

nomics, an increase in gross domestic product is conceptualized as an upward

motion, whereas a decrease is a downward motion. States of an economy are

conceptualized metaphorically as locations, that is, bounded regions in

space. A recession is thus a metaphorical hole: it is an economic state seen

as a region in which the economy of a country is pulled downward for a

significant length of time. When a country is in such a metaphorical hole,

it tries to climb out of it, pull itself out of it, or induce another party to help

it get out.
� To understand this sentence, the brain must activate these existing

metaphorical structures to form what is called a “conceptual blend,” con-

sisting of all the metaphors linked together.
� In this sentence, France is a metaphorical person and into a recession

metaphorically indicates a direction toward a physical location. Thus, with

these metaphors, waltz fits within its normal grammatical constraints on

the kind of subjects and modifiers fit with it.
� The connotation of the sentence follows from how the metaphors apply

to our knowledge of waltzing. These metaphors connote that France 

was enjoying itself, that it was not paying attention to where it was going

economically and, as a result, fell into the recession/hole.

Grammar is the study of the principles by which elements fit together

in sentences to produce certain meanings. Here, the grammar of the 

sentence—what elements can fit with the verb waltz to form the sentence—
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depends on the complex of metaphors used to understand what is being

talked about, which can be quite subtle. Another common metaphorical

use of waltz implies an easy achievement, as in Josh waltzed into the end

zone. We don’t accept this reading for “France waltzed into a recession,”

because we don’t believe that countries have a goal of getting into 

recessions.

In general, we see that understanding a sentence involves finding the

best match between what was spoken and our current mental state. The

brain is inherently a best-match computer; its massively parallel, inter-

connected structure allows it to combine many factors in understanding 

a sentence (or image, etc.) as we saw with figure 1.1. Finding the best 

match for language input includes evoking metaphors, as we have seen 

in several examples. More details on how this works are presented in

chapter 16.

You can see the productive aspect of language at work by substituting

different verbs of motion in the example sentence, for example, France

stumbled into a recession; France rushed into a recession; and so on. With

almost any verb of motion you get a somewhat different image of France’s

economic progress. Each of these imagined situations is predictable from

the meaning of the embodied action and the metaphors involved. We can

also immediately understand France is spinning its wheels on unemployment.

This is language understanding in real life and is what this book tries to

explain. The scientific explanation of language begins with the brain and

neural computation.

The Three-Part Bridge

The bridge between neural structure and meaningful language rests on

three pillars:

Neural computation Our present understanding of how the general theory

of computation can be applied to the structure and development of the

neural circuitry of the brain. This background provides an account of 

what it means for the brain to compute, and how that computation differs

crucially from the operation of a standard digital computer.

The embodied nature of thought and language Using neural computation to

account for what has been discovered about how thought and language

are embodied, as in the preceding examples.
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The integrated organization of language Language is organized in terms of

constructions, each of which integrates many aspects—meaning, context,

affect, phonological form, and so on. Language learning and use revolve

around our ability to flexibly combine these multifaceted constructions.

The role of this bridge, as with any scientific theory, is to provide ade-

quate descriptions, explanations, and predictions about natural phenom-

ena. The natural phenomena we are studying are thought and language.

The scientific technique I use is computational modeling, in particular,

modeling using neural computation. An adequate model must actually

exhibit the required behavior and be consistent with existing data from

neuroscience, cognitive and developmental psychology, and cognitive lin-

guistics. This book is a first attempt to explore the power of this approach.

The goal is to outline the whole story of how the brain gives rise to

thought and language—enough to allow further scientific work to proceed

along these lines. Currently we have nothing close to a complete neural

computational model of thought and language, but such a model is the

ultimate goal of the approach taken here.

One of the hardest parts of our journey of discovery is understanding

the vehicle that is carrying us—the information processing perspective.

Any explanation of language and thought will obviously involve some

kind of information processing story. The tricky bit is that we need to 

use one kind of information processing system, conventional computing

theory and programs, to discuss and model a quite different kind of infor-

mation processing system, the brain. The following two chapters attempt

to spell out both the necessity of using an information processing per-

spective and the critical importance of keeping the discussion grounded in

the reality of the brain and human experience.
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2 The Information Processing Perspective

Neuroscientists speak of neurons as processing information and com-

municating by sending and receiving signals. They also talk of neurons 

as performing computations. In fact, neural computation has become the

standard way of thinking about how the brain works. But neurons are 

just cells, tiny biological entities that are alive and function by means of

chemistry. Why can we say that neurons process information and perform

computations?

Since neural computation and the information processing perspective

on the brain are central to a neural theory of language, it is important that

I say, in as simple, clear, and straightforward terms as possible, just what

I, and others who study the brain, mean by neural computation. We are

interested in a complex cell, the neuron, but it is easier to start by under-

standing a much simpler cell—the amoeba—in information processing

terms.

Amoebas as Information Processors

The amoeba, one of the simplest and best known of living things, is

depicted in figure 2.1. Amoebas are one-celled animals, somewhat smaller

than a period on this page, that have remained essentially unchanged in

their billion-year existence. Various members of the amoeba family live in

a variety of environments including fresh and salt water, and the digestive

systems of people with amoebic dysentery. Though primitive (the whole

animal is a single cell), they exhibit many of the vital behaviors of all

animals. Much about the way our neurons function can be learned from

considering amoebas. We look at some of the details of cell structure and

function in the next chapter. For now, I just want to discuss what is



involved in thinking about an amoeba from the information processing

perspective.

Three Ways of Thinking about an Amoeba

A Chemical Factory

The amoeba is what it looks like—a tiny gelatinous blob of complex mol-

ecules. To even start talking about its behavior, we need a way to think

about it—to conceptualize an amoeba in terms of something else we know

how to think about. A simple and straightforward way to conceptualize

the amoeba is from the chemical perspective, as a chemical plant—an orga-

nized system of about a million complex molecules. This view is required

for many scientific purposes, but additional perspectives are needed for a

full understanding.

A Creature with Needs, Desires, and Goals

The basic life problems of the amoeba are not very different from our own,

as Antonio Damasio (Damasio 2003) states nicely:

All living organisms from the humble amoeba to the human are born with devices

designed to solve automatically, no proper reasoning required, the basic problems of

life. Those problems are: finding sources of energy; incorporating and transforming
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energy; maintaining a chemical balance of the interior compatible with the life

process; maintaining the organism’s structure by repairing its wear and tear; and

fending off external agents of disease and physical injury.

The chemical perspective in itself doesn’t help much when we are trying

to understand the amoeba’s behavior. A common way of modeling behav-

ior is through a personification metaphor: try thinking of an amoeba as if

it were a person with needs, desires, goals, and ways of satisfying them.

Then think of yourself as that amoeba/person, and construct an imagina-

tive simulation of what you would do if you were an amoeba with such

needs, desires, and goals.

Imagine being a small aquatic blob, equipped with only crude feelers,

trying to survive in a hostile environment. From such an empathetic per-

spective, one might say that the amoeba is trying to find food and avoid

danger. It is hard to imagine really being an amoeba, because the amoeba

has no coherent control. The membrane of the amoeba regularly pushes

out in one direction or other. If the rest of the body flows behind, the

whole amoeba moves—somewhat like the U.S. Congress.

To understand how the amoeba behaves, both the chemical and the

empathetic perspectives are required at once. You need both the chemistry

and the amoeba-as-person metaphor. Bringing such multiple perspectives

to bear simultaneously is commonplace in science. Throughout this book,

we use multiple perspectives. In what follows, we show how the chemical

and empathetic perspectives work together to explain the amoeba’s 

behavior. Words from the empathetic perspective (the amoeba-as-person

metaphor) are indicated in italics.

It is no surprise that amoebas, like the rest of us animals, need to eat. But

how does a one-celled animal know what to eat? If I were an amoeba, how

would I know what to eat? Here is the answer from the chemical perspec-

tive: the amoeba’s outer membrane contains complex molecules that react

differently to different molecules in the environment. This general mech-

anism of chemical detectors in the cell membrane has evolved to play a

central role in our immune and nervous systems.

For the amoeba, some membrane detectors match up well with amoeba-

food (for example, bacteria). When the food-detector and amoeba-food

molecules come together, the resulting chemical reaction leads to shape

changes in the amoeba’s membrane molecules, eventually resulting in the

amoeba incorporating the potential food. Similarly, different membrane
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detector molecules react with amoeba-hazard molecules in the environ-

ment, causing reactions that retract amoeba tissue from the threat. That is

about what we’d expect from a one-celled animal. The amoeba is a chem-

ical system that reacts to chemicals that fit its irritant detectors differently

from ones that activate its food detectors.

Although amoebas normally function as independent cells, certain

species can (in times of famine) assemble themselves into a multicelled

creature that can sense light and heat and that gives off amoeba spores,

which can last indefinitely without food. The molecule that signals this

need for community action, cAMP, is also a major messenger in our own

cellular communication.

Here we have a reasonable, and comprehensible, account of amoeba

behavior: from the amoeba-as-person perspective, we can conceptualize

what the amoeba has to do. It needs to eat and needs to avoid hazards that

threaten it. From a purely chemical perspective, of course, amoebas do not

have needs, foods, avoidance behavior, or irritants. The chemical perspec-

tive allows for a description of how these life needs are satisfied.

The Information Processing Perspective

Now let’s think about the amoeba from an information processing per-

spective. This is another generally useful way of talking about living things,

and how they satisfy their needs and goals. It allows us to pose questions

like the following:

� What information does the amoeba use to survive?
� How does it categorize the information inputs it gets, and how does it

respond to each category?
� What is its reaction time?
� How does it know when to replicate by dividing?
� Can it remember and, if so, what is its memory capacity?
� Does it learn and, if so, how?
� Do amoebas communicate with one another?

As observers of amoebas, we may decide to ask such questions, and doing

this requires an information processing perspective. From this perspective,

the two types of chemical reactions (to food and to irritants) can be seen

as enabling the amoeba to distinguish two kinds of inputs. In general, we

always try to understand new things by relating them to familiar concepts.
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The information processing stance is often useful because we have rich

knowledge about computing, memory, and learning, and we can use this

wisdom to help us understand what amoebas and other living things do.

An additional set of information processing questions concerns com-

munication. Since amoebas do not reproduce sexually, they normally have

nothing to communicate about, but other single-celled creatures, includ-

ing yeast, do communicate using molecular signals.

Communication and Coordinated Evolution

Much smaller than an amoeba, a yeast cell makes its living by eating sugars

(fermentation). The carbon dioxide released in this process is what makes

bread rise and gives beer its carbonation. Yeast cells sometimes reproduce

by division, as amoebas do. But they also can engage in sexual reproduc-

tion, and this requires communication among cells.

In general, communication between cells was a major evolutionary

advance and a prerequisite for the appearance of multicelled creatures like

ourselves. Individual cells, like the amoeba, survive by carefully control-

ling their internal chemistry and it goes against their nature to allow

outside agitators. Of the 4 billion years since life began, about two-thirds

was required to evolve the simplest multicellular organisms and their coor-

dination mechanisms.

The basic mechanism of the communication is molecular matching. 

This is particularly simple in yeast, which release specific molecules

(pheromones) from one cell that can interact with detecting molecules in

the walls of other yeast cells (again as in figure 2.1). This can give rise to

quite complex transformations in the receiving cell; dozens of steps of this

chain are already known. As a result of pheromone recognition, a yeast

cell can change its internal structure to reverse its gender so it can mate

with the sending cell. This is an impressive sexual feat, even by California

standards.

The emission and subsequent recognition of a signal molecule is the sim-

plest form of communication among living things. The ability to recog-

nize a molecular signal is a natural extension of specialized membrane

molecules for detecting food and hazards, since it also involves molecular

shape changes in the presence of interacting molecules.
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But communication requires more than just having cells recognize

things in their environment that are either good or bad for it. Communi-

cation occurs only when the sender and receiver agree on the nature of

messages. This inherently requires coordinated evolution. The sex life of

yeastkind depends on the coordinated evolution of at least three things:

1. a mechanism for releasing particular pheromone molecules when the

cell’s internal structure is in a mating state;

2. a detection mechanism tuned to just the right pheromone; and

3. a resulting action chain in the receiving cell.

If any of these is disrupted, communication and the resulting action 

will fail. There are, of course, also many other examples of coordinated

evolution involving separate species, most famously among predators 

and prey. We are focusing here on explicit communication within a

species. It is interesting to notice that even in this most rudimentary 

communication, the exact form of the message—the particular pheromone

indicating readiness for reproduction—is fairly arbitrary. Other species

evolved somewhat different pheromones, and it doesn’t matter much

which signal molecule is used as long as agreement regarding the message

has coevolved. The much more elaborate mating signals of higher animals

involve complex senses such as vision and hearing, but these intricate 

communication mechanisms must also be the products of coordinated

evolution.

As in the case of the amoeba, we can often ignore consideration of 

the physical details and study communication from an information 

processing perspective, which specifies what counts as an input signal,

output signal, recognition, reaction, memory, learning, communication,

and so on. The information processing perspective is crucial in the 

next chapter as we look at yet another kind of cell: the neuron. As we 

will soon see, the idea of cells communicating information using small

molecules as signals is also the necessary first step in making sense of neural

computation.

But before we turn to neural information processing, we need to under-

stand more about information processing in general and its use in 

computational modeling. Computer programs are the primary tools in for-

mulating and testing theories of brain function and behavior.
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Information Processing and Computers

This book is based on the idea that an appropriate information processing

perspective allows us to understand the neural basis of language and

thought. The amoeba and yeast examples illustrated information process-

ing in a much simpler case than neural systems. One crucial point is that

the information processing perspective is always metaphorically imposed—

it is one way of understanding a complex system in terms of something

completely well defined and very well understood. There is no abstract

information in the neurons themselves; like amoebas, neurons are cells

that work through chemistry.

An information processing metaphor creates an abstraction, in the sense

that it abstracts away from—that is, ignores—any noninformational

content of the physical system being studied, whether animate (like

neurons) or electronic (like a computer). Any living system carries out spe-

cific physical processes in which distinctions are made toward satisfying

needs and goals, and so it can be studied from the information processing

perspective.

Information processing metaphors can be extremely powerful tools for

understanding physical systems, particularly now that there are well-

developed theories within computer science of how information is

processed. The beauty of the information processing perspective is that it

can be applied to any kind of system at all (e.g., an economic or social

system, as well as a physical system), independently of how the informa-

tion processing is actually carried out physically. A thermostat, an amoeba,

a corporation, and the brain all can be analyzed using the same science.

However, we can’t understand real animals or any other complex system

using only the computational stance. Here is a simple example of the 

difference between the information processing abstraction and physical

reality and how both are needed to understand what is going on. Take the

telephone system. Ignore actual conversations for now and just think

about how a connection is established when you place a call.

If you want to place a call, you have a wide range of choices. You can

use phones connected by fixed wires, or cell phones, or combination

systems like a cordless phone that sends radio signals to a fixed phone base.

The most common methods use fixed wires to each phone and require us
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to enter the numbers either mechanically on a rotary phone or by pushing

the buttons on a touch tone phone. But we can also enter the numbers 

by voice or through a computer system. Mobile phones communicate the

numbers by local radio connections. An overseas call may go through

many countries with different companies, different media, and different

technologies.

These different physical systems work together because all of the tech-

nologies agree on an information processing abstraction—that a sequence

of digits, however represented physically, specifies a purchase order for a

telephone connection.

At one level, the telephone system depends on a shared information pro-

cessing abstraction that works the same over all realizations. At another

level, however, the physical details of how connections are made and mes-

sages transmitted become the central issue. It matters a lot to you whether

the phone you are using is hard-wired or cellular; if it is hard-wired, you

can’t take it with you in your car or to annoy your fellow patrons at a local

restaurant or on the train.

All of the science, engineering, manufacturing, and administrative effort

in communication systems focuses on how the information processing

abstraction is realized. There is currently an ongoing commercial and polit-

ical battle of global proportions over the technical and economic details

of how information is to be fed over high-speed links into your home. In

short, a wide range of important questions cannot be addressed at all using

an information processing abstraction alone. We will see that this is true

of the human brain and mind. Nevertheless, the general idea of informa-

tion processing is important and is best conveyed by looking at very simple

abstract models.

Abstract Information Processing Models

The general idea of information processing goes back to long before 

computing machines existed. The word “computer” traditionally meant a

person who performed computations. The word has, of course, come 

to refer to machines that perform computations. Much of the basic 

mathematical theory of information processing also came before electronic

computers, but not by very much; it was developed in the 1930s and 

1940s.
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Information in the technical sense, and therefore information process-

ing, is based on detectable differences. The amoeba is able to distinguish dif-

ferent chemicals in its environment. The telephone system can distinguish

one sequence of decimal digits from another. The core idea of information

processing theory is a two-way (binary) distinction, universally written as

0 and 1. The distinction between the two symbols can be captured in a

wide variety of physical systems, for example, holes in a punched card (a

hole for 1, no hole for 0), magnetization of spots on a tape or disk (mag-

netization for 1, none for 0), or dots and dashes in Morse code. An impor-

tant fact is that, from the information processing perspective, this simple

pair of symbols (0,1) is all we need to represent any message that can be

written in any alphabet, however complex.

Any number written in decimal notation can be rewritten in binary nota-

tion, using only 1s and 0s: 0 → 0, 1 → 1, 2 → 10, 3 → 11, 4 → 100, 5 →
101, and so on. Just as each number in the decimal system is the sum of

digits times 10 to some power, each number in the binary system is the

sum of digits times 2 to some power. For example

Decimal 13 = 1 * 101 + 3 * 100 = 1 * 10 + 3 * 1 = 10 + 3 = 8 + 4 + 0 + 1 

= 1 * 8 + 1 * 4 + 0 * 2 + 1 * 1 = 1 * 23 + 1 * 22 + 0 * 21 + 1 * 20

= 1101 Binary

It is equally easy to encode all the symbols on a keyboard as different

binary sequences, and all computers do this. Thus, any manipulations that

can be done with sequences of letters in an alphabet can be done equally

well with the corresponding sequences of 1s and 0s by a real or abstract

binary computer.

Within the information processing perspective, binary representations,

being abstract, are disembodied. They are independent of any physical real-

ization. Your telephone number is the same whether you are called from

a wired phone or a cell phone, a rotary phone, a touch-tone phone, or a

computer. But to understand how the phone system works, you need to

know how the disembodied information is manifested in the type of phys-

ical phone system you are using. Similarly, as we shall see, to understand

how your brain works, the disembodied information processing perspec-

tive is not enough. We need to know how that information is manifested

in the physical brain. In short, we will need a way to map from an appro-

priate information processing model to the relevant aspects of the brain.
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Alan Turing, the British mathematician who developed the standard

abstract model of computation, was keenly aware of the problem of

embodiment, as we will see in later chapters. His abstract model of com-

putation, now known as the Turing machine, has been used to develop

some of our most profound insights into disembodied information pro-

cessing. However, not all of his formalist successors have shared Turing’s

insight into the relationship between abstract computing and biological

information processing. Part of the job of this book is to return to his

insights about embodied information processing and to extend them.

Turing’s idea for characterizing disembodied information processing was

to define the simplest possible computing machine, in abstract mathe-

matical terms, so that it would be easy to see what such machines could

and could not do. One simplification he made was to use only two

symbols, 0 and 1, as we just discussed. He also assumed that the abstract

machine had as much storage as it would ever need, organized as a very

long tape on which the 0 or 1 symbols could be read or written.

Turing assumed that the input and output of the machine also appear

on this same memory tape, but it is simpler for us to assume there are sep-

arate tapes for input and output, as well as one for storage (or memory).

For the machine to do something useful (like performing arithmetic com-

putations), it needs some operations, but they can be surprisingly few.

Turing assumed that the machine could read or write one symbol on each

of the tapes (input, output, and memory) at a time (figure 2.2). For the

machine to do anything at all, it needs the ability to move each tape in

either direction, up or down, and that is almost all it needs. The one other

requirement is the ability to have the machine’s action depend on the

symbol that it is reading. Called conditional action, this is essential for all

information processing.

With this limited machinery, we can carry out a very broad class of 

computations. Let’s start with an informal description of how a particular

Turing machine might compute whether the number of consecutive 

zeros on its input tape was even or odd. Let’s suppose that its input 

tape contained some string of zeros followed by a blank square marking

the end of the sequence. We require that the machine should write a zero

on its output tape if the string of zeros has even length and a 1 if the

number of zeros in the input is odd. The following informal program will

do the job:
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1. write the current memory tape position (M) to be 0;

2. if the current input tape position (In) is blank, then copy whatever

symbol is in memory M onto the output tape and quit;

3. if the current input tape position In = 0, then flip M (that is, if M = 0

then change it to 1 and vice versa);

4. move the input tape upward so that the next square becomes the 

new In;

5. go back to line 2 and continue executing.

Let’s first look at what this machine would do with a blank input tape. 

Following rule 1, it would first write a 0 on its memory tape, M, and then

carry out rule 2. Since the input is blank, the machine will write the current

memory value, which is 0, to the output tape and quit. This is just what

we wanted; the machine correctly indicates that there was an even number

of zeros on its input.

If the input tape had exactly one zero, the machine would again first set

M to 0, obeying rule 1. The input is not blank, so the test in rule 2 is false.

Let’s follow the rest of the computation, using figure 2.2. Looking at rule

3, In does equal 0 and so the machine will flip M, writing a 1 there. This

is shown on the left in the figure. Following rule 4, the machine then

moves its input tape up, as depicted in the middle panel of the figure. Next,

following rule 5, the machine loops back to rule 2. This time the input is

blank so the machine copies M (which is now a 1) to the output tape and

quits, as shown in the righthand panel of figure 2.2. This again produces
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the correct answer: there was an odd number of zeros (one of them) in the

input and the output is 1, as required. You might want to check what

happens if there are exactly two zeros on the input followed by the blank

end marker.

A tiny example like this can convey much of the character of both infor-

mation processing in general and the direct programming of electronic

computers. The information processing perspective is appropriate for a

device that has a purpose (internally driven for an animal or externally

supplied for a machine) and a mechanism for carrying out that purpose.

It would not make sense to interpret a cloud as an information processing

system, although clouds can be thought of as having input (moisture),

output (raindrops), storage (droplets), and processing (condensation of

droplets to form raindrops). It is not the purpose of a cloud to produce rain-

drops. Clouds, like rocks, do not have purposes, although both do have

functions.

The Turing machine model allows scientists to study information pro-

cessing in the abstract, as operations on sequences of 0s and 1s. When we

consider how a physical system (like an animal or robot) satisfies its needs

and goals, performing some computations or other that get the job done

isn’t enough of an answer. Additional considerations are required, such as

its speed, storage capacity, reliability, and its interaction with the physical

world through sensors and actuators.

The use of a disembodied abstract information processing mechanism to

model how a living thing satisfies its needs and goals requires, at the least,

the following:

1. a conceptual model of the living system, that is, a model using famil-

iar concepts;

2. an abstract information processing system; and

3. a precise mapping, preserving inferences, from the abstract information

processing system to the conceptual model.

The mapping in item 3 allows one to make precise predictions about the

system. It is through this mapping that one can think of the conceptual

model as an information processing model. The mapping specifies precisely

which aspects of the physical system being studied involve information

processing. To the extent that the predictions hold, it makes scientific sense

to say that the physical system is engaged in information processing.
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Constructing such models is not easy. Writing programs that model the

information processing aspects of a physical system is extremely demand-

ing for any system of significant complexity. It is hard to be sure that a

given complex program will always do what you want it to do. In fact, one

of the main results of Turing’s theory is that, in general, you can’t prove

that an arbitrary program does what it was designed for—or even that it

will eventually stop.

The Program as Data—1s and 0s

As I mentioned earlier, the program itself can be written as a sequence 

of 1s and 0s. Here’s how. Assume that the machine has an additional

(fourth) tape for holding its instructions. Since the instructions are precise,

formal rules, we can encode them compactly into symbols. For example,

the first instruction above [Write the current memory tape position (M) to

be 0] could be coded as: w M 0. Since any letter can be coded as a sequence

of 1s and 0s, this instruction, and all other instructions, can be coded in

binary notation as well. If the code for w was 1101101 and for M was

1010111, then the instruction would be the string for the instruction w M

0 would be 1101101 1010111 0, stored on the program tape.

The idea of programs being stored as data is quite beautiful and as impor-

tant in practice as it is in theory. This means that, rather than designing

a separate (Turing or electronic) machine for each purpose, we can con-

struct a general-purpose machine that can read instructions from program

memory and carry out the calculations they specify. Such a machine could

be designed to first read a program from its input tape onto its program

tape and then carry out the program on the remaining input. Called a Uni-

versal machine, this has played a large role in discussions about the nature

of information processing in the brain as well as in computing theory and

practice.

If a universal Turing machine had enough tape and time, it could do

anything computable on any electronic machine, though it might take a

huge number of computing steps—and a correspondingly very long time.

This fact is sometimes taken to imply that all computing devices, includ-

ing the brain, are essentially the same, so there is no reason to worry about

the differences between electronic and biological information processing.

This position, called functionalism, is discussed in the next chapter. But for
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animals who survive in the real world, the speed and flexibility of their

computing mechanisms are crucial.

And the brain is not a universal computer. As wonderful as it is, the brain

cannot do most of the computations that a universal computer could do.

That is a good thing, since most of those computations are useless. The

brain evolved to meet human needs using the bodies we have. The brain

is a very special kind of information processing device. Its special proper-

ties determine the character of human thought and language, in ways that

I talk about throughout this book. Nevertheless, universal digital comput-

ers play an important role in our story—they provide the conceptual basis

and the modeling capability that allows us to formulate and test theories of

how our brains do their information processing—the subject of the next

chapter.
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3 Computational Models

Electronic digital computers have become an essential part of our civiliza-

tion. The average person in an industrialized country will use computers

many times each day—whether she is aware of it or not. A modern 

automobile, for example, has dozens of computers of differing size and

complexity. The idea of a general-purpose computer has become the 

cornerstone of the information technology industry that is changing our

world. The overwhelming bulk of the effort and cost of making modern

computer chips is in their design and setting up the process for manufac-

turing and testing them. The incremental cost of making more chips of

the same design and process is relatively small. What this means, in prac-

tice, is that it is usually much more expensive (in both effort and money)

to use a custom-built chip than to program a more general one.

Our telephone example is typical. Until fairly recently, a phone call from

Berkeley to Bombay required the commitment of dedicated switches and

a hard-wired connection over the entire distance. All the switches and

wires involved were reserved while you were connected, whether or not

you were actually talking. At an intermediate stage, electronic computers

replaced the switches linking the circuits. But with the information

encoded as bits in computers, it is no longer necessary to reserve the circuit.

Programs can break your message into digital packets and route them to

their destination over a variety of (computer) pathways. This technology

is so much more efficient that it, along with the demand for higher-speed

connections, is leading a revolution in the telecommunications industry.

Many other areas of life are also being transformed by the theory and prac-

tice of digital computation.



Simulation

Digital computers are, of course, used for a wide range of business, scien-

tific, educational, and other applications. One task of particular interest to

us is simulation. A computer simulation makes possible the study of a

complex dynamic system by designing an information processing model

of the system and running it as a program on a digital computer. This has

been so successful in science that it has become the de facto third basic

methodology of science, along with the traditional methodologies of

theory and experiment. It is also a major component in the design of all

complex physical systems. For example, the typical airplane or automobile

is largely designed by simulation modeling on powerful computers. The

current computer chips, with many millions of elements, could not be

made at all without extensive simulations at many levels.

One computational simulation that is familiar to all of us is the weather

map. The striking images of moving weather patterns we see on TV are the

result of very complex computer simulations. Since the idea of simulation

is central to this book, it is important to have some idea of how it works.

We will take weather models as an example.

The basic idea behind a weather simulation is to model the behavior of

the atmosphere over a selected region of the earth’s surface. To do this, the

atmosphere is modeled as if it were broken up into rectangular compart-

ments or boxes. The size of each compartment is determined by the goals

of the model and how much computing power is available. Since the sim-

ulation has to be fast enough to be useful, there is a tradeoff between the

number of boxes and the speed of the computation. The simulation pro-

grams for various sizes of territory use different sized boxes. For example,

current programs for the entire United States use boxes about a mile on a

side.

The simulations start with an estimate of current conditions in the

region of interest, including temperature, barometric pressure, humidity,

cloud cover, wind speed and direction, and precipitation. One step of the

simulation consists of using quite complex equations to predict the values

for all the weather conditions a short time later (about a minute for local

forecasts), taking into account the rotation of the earth and other factors.

The results of each simulation step are used as input to the next step and

can also be presented as a moving image for our viewing pleasure. The sim-
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plification that makes all this feasible is the assumption that conditions in

any box at a given time are constant and depend only on the conditions

in its directly neighboring boxes at the previous time step.

In the computational model, each box is represented by what we 

will call a frame—a structure consisting of a collection of parameters and

their values. The parameters, for example, might be temperature, baro-

metric pressure, humidity, degree of cloud cover, wind speed and direc-

tion, and precipitation over a previous length of time. The values of the

parameters are numbers indicating measurements such as temperature and

humidity. The compartments are quite large, and it is also not feasible to

get accurate measurements of all the temperatures and other parameters

that are needed. This helps explain why the predictions aren’t always 

reliable.

Parameters and Simulations

In the weather case, we can clearly see an example of an interaction that

will be of the utmost importance when we turn to computer simulations

of neural systems: the interaction between parameters and simulations. The

parameters and their values at a given time step are fixed. Initial values of

parameters are data input to the dynamic simulation. That is, the simula-

tion starts with specific values for the temperature, barometric pressure,

humidity, and so on in each compartment. The rules of interaction

between neighboring compartments are also fixed.

The simulation is carried out by a computer program. The program takes

as input the fixed relations linking the compartments, together with the

values for the parameters at the initial time step. The program computes

predicted new values of the parameters for each compartment at the next

time step. Then it takes the new values of the parameters as its new input

to make the next prediction, and so on—until, as programmed, it displays

the results we see on TV.

In a somewhat similar way, it is possible to simulate a neural network.

The connections between neurons are specified, and each neural cell is rep-

resented by a collection of parameters at each time step. The parameters

might include the values of inputs from other neurons, the multiplier

effects of synapses, whether or not there is a spike, and the value of its

intensity. The simulation program computes the values of the parameters

at the next time step, as in the weather simulation. As we shall see, this
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neuron-by-neuron approach is powerful but is not feasible for modeling

language understanding, which involves billions of neurons.

Evaluations of Simulation Models

It is easy to evaluate weather models, since they make predictions that can

be readily checked. Evaluation is much more problematic for computa-

tional models in other domains. Such programs are used for many other

simulations, including some that are largely replacing nuclear weapons

tests. The advantages of such simulations are considerable, among them

the fact that simulations do not poison the atmosphere as real tests do.

The accuracy of those simulations has been questioned, however, leading

to pressures from the military for real nuclear tests.

Cognitive scientists and neuroscientists also use computer simulations

in their studies, at both the micro level of individual cells and the macro

level of human behavior. Our little friends, the amoeba and yeast cells,

have been the subject of various modeling studies. Here, even more than

with weather models, there is a huge range of choices for the goals of a

model. At one extreme, you could try to model the million-odd molecules

in an amoeba and predict its behavior in detail. No one actually knows

how to do this; we don’t know enough about the molecules involved and

couldn’t simulate all their interactions if we did. At the other extreme, a

model could study the behavior of colonies of amoebas and treat each indi-

vidual as a unit described by a few parameters, as in the weather simula-

tion. Intermediate models can be used to study the basic life processes of

the amoeba at varying levels of detail. In the case of yeast, very large efforts

has been made to model it in detail because, in important ways, it is like

higher organisms (e.g., yeast can reproduce sexually).

Choosing what to model becomes enormously more complex when we

try to use information processing models to understand the brain, which

has billions of neurons, each rather more complex than an amoeba. Any

direct modeling of neural circuits is complicated by the fact that a neuron

can be affected by the thousands of other neurons that are connected to

it. But models built at a coarser grain risk leaving out crucial details. A

major purpose of the first section of this book is to establish a style of mod-

eling at the right level of detail for studying thought and language. We

suggest this is both feasible and informative, and such a modeling style

reveals a great deal of crucial detail about how the brain is able to embody

language and other mental functions.
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Functionalism and the Chinese Room

No one believes that a computer simulation of a weather pattern is itself

anything like the weather itself: the ever-changing clouds, the heat, the

rain on your face, the oppressive humidity, and so on. The model is clearly

distinct from the reality being modeled.

But when we use a computer program to simulate some function of the

brain, we get into some delicate philosophical questions about exactly

what is being done. One possibility is that, like the weather simulation,

the computer is simply being used to carry out a formal, computational

description of some process of the mind. The process is understood as

being carried out by the physical brain, which is quite different from the

program used to model it.

A second possibility, however, has become a major intellectual position

within Anglo-American philosophy, generative linguistics, cognitive psy-

chology, and artificial intelligence. This position is called functionalism. In

its strong form, it claims that the way the mind is physically embodied in

the brain is irrelevant to the study of mind. Functionalism as principle is

the opposite of an embodiment theory, which suggests that everything

important about language depends on the brain and body. There are also

operational functionalists, such as Ray Jackendoff (Jackendoff 2003), who

look forward to a neural theory but use functionalist models in their daily

work. These researchers have contributed greatly to our understanding of

language and thought. As we saw in the previous chapter, scientists always

study nature using various perspectives, and a functional analysis is usually

involved. Almost everyone (but see chapter 22) agrees that a functional

level of description is needed for language and thought.

Philosophical functionalism holds that everything important about lan-

guage and thought can be understood completely using information pro-

cessing models, without looking at the brain at all. An even stronger

position claims that any information processing system of sufficient 

complexity will automatically have all of the mental powers of the 

mind, including consciousness. This stance is also called strong artificial

intelligence—there is nothing to the mind but abstract information 

processing.

It is important to distinguish the field of artificial intelligence (AI) in

general from strong functionalist positions sometimes taken by some prac-

titioners in that discipline. AI tends to be oriented to particular tasks. It
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asks what known computational techniques work best for performing that

task, and it may seek to develop new techniques if that is necessary or

interesting. AI in general does not try to model how human beings would

carry out a task. There is, however, a subfield of AI called cognitive model-

ing that explicitly models human processing. By no means do all AI workers

believe in strong AI—that they are creating fully conscious minds.

A famous case is the computer program Deep Blue, which in 1998

defeated the world chess champion. The Deep Blue program looks much

more like our little Turing machine code in chapter 2 than the neural com-

putation systems we describe later in this section. There is a wide range of

such AI programs in use for solving complex planning and decision prob-

lems, transcribing speech, controlling robots, and so on. Engineers who

build these AI systems consider animal brains one clue as to how to design

them, but they feel free to use totally unbiological techniques when appro-

priate, as they should. There is no reason why a robot should not use

wheels just because animals do not happen to have them.

The touchstone problem for functionalist claims has been understand-

ing ordinary language by a computer. The standard test for machine under-

standing is called the Turing test, although the idea of using conversation

to test another mind goes back at least to Descartes. Imagine that you are

communicating in English with an unknown respondent by e-mail or

some other written medium. If the other party were a computer program,

how would you know? A program is said to pass the Turing test if you

could not be sure whether or not it was a real person using only text inter-

actions. Three related questions have been the subject of continuing

heated debate:

1. Could a program pass the Turing test?

2. If it did pass, would it understand English?

3. Would it then have subjective experience (qualia)?

The first question is empirical, and there are continuing trials and contests

on the Turing test; current programs can fool some of the people some of

the time. The third question is the one that has most exercised philoso-

phers—it is obviously related to the extreme functionalist and strong AI

positions. For this book, the second question is the most important; if

understanding can be disembodied, a major premise of the book is under-

mined—human language need not depend on its embodiment.
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The philosopher John Searle proposed a thought experiment to test the

idea of disembodied understanding of language, now famous as the

Chinese Room, here is his description of it:

Suppose that I’m locked in a room and given a large batch of Chinese writing.

Suppose furthermore (as is indeed the case) that I know no Chinese, either written

or spoken, and that I’m not even confident that I could recognize Chinese 

writing as distinct from, say, Japanese writing or meaningless squiggles. To me,

Chinese writing is just so many meaningless squiggles. Now suppose further that

after this first batch of Chinese writing I am given a second batch of Chinese script

together with a set of rules for correlating the second batch with the first batch. The

rules are in English, and I understand these rules as well as any other native speaker

of English. They enable me to correlate one set of formal symbols with another set

of formal symbols, and all that “formal” means here is that I can identify the

symbols entirely by their shapes.

Now suppose that I am given a third batch of Chinese symbols together with some

instructions, again in English, that enable me to correlate elements of this third

batch with the first two batches, and these rules instruct me how to give back certain

sorts of Chinese symbols with certain sorts of shapes in response to certain sorts of

shapes given me in the third batch. Unknown to me, the people who are giving me

all these symbols call the first batch “a script,” they call the second batch “a story,”

and they call the third batch “questions.” Furthermore, they call the symbols I give

back “answers to the questions,” and the set of rules in English that they gave me

they call “the program.”

Suppose also that after a while I get so good at following the instructions for

manipulating the Chinese symbols and the programmers get so good at writing the

programs that from the external point of view that is, from the point of view of

somebody outside the room in which I am locked, my answers to the questions are

absolutely indistinguishable from those of Chinese speakers. Nobody just looking

at my answers can tell that I don’t speak a word of Chinese.

I produce the answers by manipulating uninterpreted formal symbols. As far as

the Chinese is concerned, I simply behave like a computer; I perform computational

operations on formally specified elements. For the purposes of Chinese, I am simply

an instantiation of the computer program. (Searle 1980, p. 418)

Searle’s point, of course, is that he might well be able to pass the Turing

test in Chinese without understanding the language at all. This example

has given rise to literally hundreds of papers and theses arguing almost

every conceivable position. Most of the concern has been about question

3—is there some “system,” maybe including Searle, the room, and the

program, that has the full human experience in reading a Chinese story?

We know that the brain is chemically linked to body states and that there
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is no scientific description of qualia, so no positive answer to question 3

is currently possible.

However, much more direct and behavioral tests are available for ques-

tion 2—could the “system” fully understand Chinese? For one thing, no

system that was cut off from the world could answer questions about any-

thing that happened after the program was finished. Perhaps more strik-

ingly, suppose the building that was housing the experiment caught fire

and everyone needed to evacuate immediately. The person passing in the

Chinese symbols could send this emergency message easily enough, but

there would be no way for Searle to know it wasn’t part of the experiment.

He literally could not read Chinese to save his life. This seems to fail any

test of what it means to understand language.

Let’s look more closely at what is involved here—the fire example has

nothing to do with subjective experience. It could well be that Searle’s

instruction book had some additional rules about emergencies, but these

would need to be in a language that he understood. No symbol manipula-

tion could link the Chinese characters to actions that Searle would need

to take. So we have our answer to question 2—there are fundamental

aspects of understanding that require embodiment. The example also

doesn’t depend on the emergency. If one Chinese input said: What color

is this written in?, Searle or a program would be equally clueless on how

to respond.

Notice that this also applies to a robot in the Chinese room—language

understanding by a robot will require software relating to its body and its

computational mechanisms. Modern functionalists include this kind of

embodied connection to the world even when they deny the relevance of

the brain. There is an active and productive effort on embodied AI, par-

ticularly in the group of Rod Brooks at MIT (Brooks 2003). Moving from

an abstract to an embodied view of robot problem solving has yielded sig-

nificant advances in pure and applied robotics. But our concern is with

embodied language in people and for that we need both the functional

information processing perspective and a fundamentally neural descrip-

tion of computation.
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Neural Information Processing

The information processing stance is extremely common in the cognitive

sciences and neuroscience, so much so that it rarely needs to be mentioned.

It is simply implicit in much of the research done.

But there are many varieties of information processing, and a wide range

of specific methodologies. When we get to problems as complex as mod-

eling language, the details matter a great deal. Over the past two decades,

computational neural modeling techniques have been developed through

a large interdisciplinary effort involving biologists, psychologists, linguists,

engineers, and mathematicians as well as computer scientists. These tech-

niques have proven invaluable in helping to understand the neural basis

of language and thought.

Neural information processing systems are sufficiently different from

their electronic counterparts that it has proved necessary to develop special

theories and simulation techniques for the neural case. As table 3.1 shows,

neurons are a million times slower than electronic components. But each

neuron is connected to thousands of others, most of which are active most

of the time. In contrast, electronic computers are extremely fast, but have

only local effects and only a tiny fraction of their elements are simulta-

neously active.

This difference in basic computational character has the most profound

consequences for our project of modeling thought and language. Because

the brain is richly connected and profusely activated, there is no such thing

as an isolated or purely abstract thought. One idea automatically activates
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Table 3.1
Some major differences between brains and digital computers

Brains Computers

100,000,000,000 processing units 1–100 processing units

1000 operations/second 1,000,000,000 operations/second

Embodied Abstract, disembodied

Fault tolerant Frequently crashes

Graded, probabilistic signals Binary, deterministic signals

Evolves and is self-organizing Is explicitly designed

Learns Is programmed



others. In addition, any input of language or perception is understood

against a background of ongoing activity and is always contextual. This

has long been understood informally and is central to modern psycho-

logical theories of memory and language processing, as we discuss in

chapter 7. The main consequence of these findings will be that mental 

structure parallels active neural structure—connected concepts are neurally

connected.

Another crucial property of our brain is its intimate link to our body.

Digital computers are designed to compute general functions; brains

evolved to control animal bodies. The link between sensation and action

remains the dominant function of the human brain. Language and

thought are refined means of connecting inputs to desired outputs and

work through computational mechanisms based on the embodied brain.

Neural systems also differ from electronic systems (and the Turing

machine) in that there is no separate program. Instructions as such do not

exist, and control appears as patterns of activation in the network itself.

This also has profound implications for learning. Neural systems appear to

acquire knowledge in two ways, weight change (change at the synapses)

and structural recruitment (the strengthening of a previously latent 

connection between active neural clusters), as will be discussed in 

chapter 9.

All neural learning is the result of activity in the network itself plus feed-

back about the quality of the result. It makes no biological sense to think

of an omniscient rewiring mechanism that creates new connections in the

brain. Connections may be strengthened or weakened, but the mecha-

nisms for this must be local to the neurons involved, with some general

feedback from the overall brain state on the effectiveness of their 

functioning.

The combination of all these specifically neural computational features

have given rise to repeated efforts over the last 60 years to develop a bio-

logically plausible information-processing theory. The most recent efforts,

dating from about 1980, have yielded a theory with profound scientific

and applied ramifications.

In chapter 9, I describe in some detail these brainlike information-

processing models, which form the technical underpinning for the rest 

of the book. But first we need to learn more about what is currently 

understood about the structure, development, and function of the brain.

38 I. Embodied Information Processing



Starting from the common biochemistry of all living things, we will work

from the bottom up, through individual neurons to large neural networks,

and from there to the behavior of people. With this scientific background

in place, we will be ready in chapter 9 to present the theory of neural 

computation, which combines the general idea of information processing

with the known biological constraints. At that point, we will have the 

technical tools for neural and cognitive modeling to use in the remainder

of the book.
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4 Neurons and Other Cells

Simple animals like the amoeba must incorporate all life’s functions within

a single cell. We can choose to view such animals from the information-

processing perspective and this is instructive, but limited. In higher

animals, information processing is explicitly delegated to specialist cells—

neurons.

Neurons, the heroes of this book, share many of the properties of their

amoeboid ancestors. But rather than living independently like amoebas

and other one-celled animals, neurons have evolved to function as part of

a large, complex system of interacting cells. For comparison, the number

of neurons in the human brain (estimated to be 10 to 100 billion) is of the

same scale as the number of people on earth (6 billion). In the next section,

we explore how these billions of neurons function together to constitute

our brain, but first we should know more about them as individuals. We

will start by looking in some detail at the lives of cells in general, contin-

uing with the amoeba example from chapter 2.

Figure 2.1 depicted an amoeba in the process of enveloping some bit of

organic matter. We saw earlier that the amoeba must recognize what it

should ingest, but how does it do that? An amoeba can’t see or think. It

works by chemistry. Figure 4.1 is a general rendering of the outer wall of any

animal cell, including a neuron or amoeba. The drawing shows a small piece

of the wall of the cell in figure 2.1, magnified about a million times. Each

blob in figure 4.1 represents a complex organic molecule. Zooming in

another million times, we can look at the structure of one of these mole-

cules, as stylized in figure 4.2. Even this is only an approximation, because

each of the loops in the figure is made up of hundreds of individual atoms.

Returning to figure 4.1, we can see that a cell wall contains some very

complex molecules, for example, the long one with the corkscrew piece



that protrudes through both the inside and the outside of the cell wall.

Such specialized molecules are the sensors of a cell like the amoeba. They

detect information about what is outside the cell and convey that infor-

mation to the rest of the cell. A similar mechanism, with complex mole-

cules extending through the cell wall, is the basis for much of the human

immune system. To understand how these molecules detect information

and convey it to the rest of the cell, we need to know a bit more about

biochemical interactions.

Biochemistry, the study of chemical reactions in living things, is one of

the most complicated and important fields of contemporary science. I

won’t say much about it in this book (and don’t actually know that much),

but even some simple general ideas can be of enormous value in under-

standing how neurons and other cells carry out their functions.

The central idea of biochemistry is structural matching. A complex

protein molecule, like those depicted in figures 4.1 and 4.2, has an elabo-

rate three-dimensional shape—like the most fantastic abstract sculpture.

Various sections of one of these giant structures contain complex nooks

and crannies into which pieces of other (large or small) molecules might

fit. This is usually presented in biochemistry texts with a lock-and-key

metaphor, but you can see that the structures involved are much more

complex than any lock tumblers. The amoeba evolved to have membranes

with this kind of protruding molecule that has segments (called binding
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sites) that fit together with those of other organic substances that are par-

ticularly good or bad for amoebakind.

But molecular fitting is only the first part of the story. To understand the

dynamic part of the binding process, the lock-and-key metaphor is too

passive and must be abandoned. The large receptor molecules are not just

inert matter; their shape and function results from the interplay between

powerful basic forces of molecular attraction and repulsion. The key thing

to envision is that, when two molecules do bind together, the balance of

forces can change significantly—often leading to a major change in struc-

ture for the resulting combined molecule.

My best physical metaphor for this is to imagine elaborate abstract sculp-

tures made of strong springs and magnets. Fitting two of these contrap-

tions together could cause a total reconfiguration of shape and might even

cause some pieces to break off and take on a new shape. This is what

happens in molecular binding, but the forces involved are much stronger

relative to the size of the molecules than could actually be built with

magnets and springs. The changing shape of molecules is the basis for all

animal action. Think of the forces exerted by leaping whales or frogs to
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get a feeling for the power involved. A frog can jump twenty times its

length—equivalent to a 100-foot standing broad jump for a person.

The story so far makes it appear that interacting organic molecules just

meet at random. This sometimes happens, but most of the mechanisms of

cells are highly organized. There are specific subparts of the cell for carry-

ing out various construction and reconstruction tasks as well as trans-

portation networks, resembling microscopic railroads that allow material

to move around the cell. Enzymes, which are also large protein molecules,

bring specific molecules together in ways that can make their interactions

a million times more efficient than they would be by just relying on chance

collisions.

Most life processes, like the amoeba recognizing its food, happen repeat-

edly. They are iterative processes, with a sequence of states, returning to

the initial state to begin the process again. This requires the coevolution

of each complex chemical reaction together with a specific complemen-

tary chemical mechanism that restores the system to its previous state. All

cells, including neurons, have elaborate mechanisms for controlling the

many facets of their internal state.

Although it is not a direct part of our story, we should recall that all of

these specialized protein molecules are specified in the genetic code and

are constantly being generated in the cell nucleus. Particularly in one-

celled animals such as the amoeba, the behavior of the creature depends

largely on the shape and binding properties of the cell’s protein molecules.

As a specific example, we can imagine that the long protein molecule

protruding though the membrane in figure 4.1 evolved to signal the pres-

ence of a noxious substance to an amoeba. Following is one way this could

be signaled. Suppose that when an offending substance becomes bound to

some site on the sensor molecule outside the cell, the resulting forces cause

the whole molecule to twist slightly. This could change the shape of the

part of the molecule inside the cell wall. This shape change could, in turn,

alter the binding properties of sites on the inside of the cell.

One common result of such an overall shape change is to cause a small

molecule to split off from the inside portion of the sensor molecule to

become a second messenger, delivering the news of the noxious substance

to the inside of the cell. “Delivering the news” in chemical terms is again

fitting—here the second messenger fits some other molecule, producing

forces resulting in shape change, which in turn produces forces resulting
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in splitting off. Further processes of fitting, shape change, and splitting-off

can constitute a chain of actions that leads to the nearby section of cell

membrane retracting itself from the source of the irritation (that is, chang-

ing shape in just the right way), so that the amoeba is no longer in contact

with the irritant.

Although it is a single cell, the amoeba can—from our metaphorical per-

spective—sense, categorize, and act. In higher animals like us, sensing is

done by specialized cells, but the underlying mechanisms are similar. Our

senses of taste and smell are based on chemical shape matching much like

that of figure 4.1. Hearing, balance, and touch all depend on molecules

that change shape under mechanical pressure, and vision makes use of

molecules that are sensitive to light. Colors, which are an important part

of the overall story in this book, rely on the fact that certain specialized

pigment molecules change shape when exposed to particular wavelengths

of light. Our retinas have three different types of receptor cells, each type

sensitive to different wavelengths. All of these various sensor cells detect

differences in essentially the same way—namely, via molecular shape

change and the forces accompanying such change. This forms the common

starting point—a sensory cell receiving a signal begins the processing of

information.

In chapter 2, we looked at the life of the amoeba from a computational

perspective, asking What information does the animal process as it goes

through life? With our new understanding of molecular interactions, we

can now look at the same information-processing functions from a bio-

chemical perspective. It is completely appropriate to envision the amoeba

as a complex chemical system and study the reactions in which it partic-

ipates. However, because we are people, we cannot help but envision the

life of an amoeba as a projection of our own desires and goals. So we, and

even the most hard-nosed scientists, will also talk metaphorically about an

amoeba “trying” to engulf food or to “avoid” a noxious substance.

Multiple Perspectives

A theory of how a cell functions—its needs and how it satisfies those

needs—involves multiple perspectives. In thinking about the amoeba, we

simultaneously envision (1) a chemical factory and (2) a small agent rather

like ourselves with needs and ways of functioning to satisfy those needs.
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The factory theory involves characterizing needs and their satisfaction in

chemical terms.

Perspective 2 is an embodied perspective, based on our embodied experi-

ences. Such experiences generate questions to be answered, and criteria for

satisfactory answers to those questions. Not all questions we ask about our-

selves make sense when speaking of an amoeba, but some important 

questions do—those that are about us as living beings functioning in an

environment.

There is nothing unusual or exotic about maintaining several perspec-

tives at the same time. Think of the many perspectives you have about

your bicycle or car. Each is a mode of transportation, but also an invest-

ment, a source of pleasure, and possibly a status symbol. If it isn’t func-

tioning properly, you might start to think about the details of how it works

or who could fix it for you.

The general ideas of multiple viewpoints and the embodied perspective

lie at the core of much of science, yielding such questions as, “How can

the immune system defend the body from attackers?” Not surprisingly, the

theory of language in this book makes use of this common scientific prac-

tice. And as we shall see, the scientific practice of personalization itself

arises from the standard way we conceptualize all abstract ideas—as map-

pings from our direct personal experience.

How Human Cells Sense and Signal

The same basic chemical mechanisms of structural matching and shape

change underlie all the sensing, signaling, and motor actions in higher

animals, including people. Before discussing neurons, we should look

briefly at motor cells, which are of intermediate complexity. All animal

motor activity, from our exquisitely articulate speech to the massive force

of a whale flipping its tail, are based on one particular matching-and-shape-

change system involving actin (figure 4.2) and myosin. The molecular

binding of actin and myosin causes a shape change that, repeated across

many molecules, causes muscle contraction. Since these actions repeat,

each muscle cell needs to be restored to its relaxed state. This requires

chemical energy, which is supplied by a particular small molecule, ATP.

The energy is supplied when adenosine triphosphate (ATP) binds with a

protein like actin and then changes to the related form, adenosine diphos-
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phate (ADP). ADP is restored to ATP in a separate, evolutionarily ancient,

cellular process. Our heroes, the neurons, will enter the scene as sources

of the signals that start the whole process of muscle contraction.

The message telling a muscle cell to start contraction comes in chemi-

cal form. The walls of a muscle cell are also generally like those of the 

cell in figure 4.1 in that they have specialized molecules that can react to

external chemicals and cause changes inside the cell. The signal from

neuron to muscle cell is carried by a messenger—another small molecule,

acetylcholine (ACh). Muscle cells have recognizer molecules (again as in

figure 4.1) specialized for ACh. The match between ACh and a recognizer

molecule opens a channel (cf. figure 4.4), which allows the chemical

changes that cause the contraction. The transmission of signals from 

one neuron to another also employs ACh and other small specialized 

molecules, using similar mechanisms of recognition and subsequent

action, as we will see in detail later in this chapter.

Signposts: From Neural Signals to Mind and Language

How signals are transmitted from neuron to neuron is a central part of our

story. The macroscopic properties of mind and language arise, as we shall

see, from the microscopic properties of neurons, and the mechanisms of

neural signaling, neural adaptation, and neural growth. In the next three

chapters, I describe these aspects of neural systems and how they help

explain psychological findings on how we learn and process language.

The remainder of this chapter describes how neurons receive and trans-

mit messages. In chapter 5, we examine some neural systems, including

those for motor control and vision. Chapter 6 discusses how the magni-

ficent apparatus of the brain is wired up during development and con-

tinues to adapt throughout life. With the basic biological background

complete, we proceed in chapter 7 to the psychological level. This 

chapter focuses on psychology experiments that assess aspects of language

behavior and how they fit the embodied perspective. It shows how our

understanding of neural connectivity and signaling can apply at the

macroscopic level, explaining a great deal about human linguistic and

other behavior.

Chapter 8 abstracts even further, examining what has been observed

about how children learn their first concepts and words. Finally, chapter
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9 brings all of the background material together in a notation for compu-

tational modeling that will carry us through the rest of the book. In that

chapter we develop enough background to talk concretely not only about

what it means for the physical brain to compute, but also about how such

embodied computation can give rise to ideas and language.

How Neurons Signal

In thinking about the signaling properties of neurons, the first thing to

remember is that they are cells with all the life requirements of any other

cell such as an amoeba. We see in chapter 6 that, as neurons grow and

connect, they use essentially the same kind of chemical detection and reac-

tion mechanisms described for the amoeba. All of the processes of making,

transporting, and using proteins are essentially the same for neurons as

they are for other cells. The basic requirements of life greatly constrain the

signaling possibilities of neurons. Because of the chemical complexity, it

takes about one-thousandth of a second for signal transmission between

neurons—the circuits in a home computer are a million times faster.

Yet, nature has evolved beautiful mechanisms for transmitting signals

fast enough, far enough, and extensively enough to support all we are and

do. Transmission from neuron to neuron across synapses may be relatively

slow, but evolution has outfitted us with neurons that convey signals

quickly from our toes to the spinal cord: they are several feet long,

although much narrower than an amoeba, and they provide quick trans-

mission because, within a single neuron, there are no synaptic gaps to be

crossed.

Despite slow transmission from neuron to neuron, the brain is more

powerful than any electronic computer in important ways. This is because

each neuron in the brain can receive signals from some 10,000 upstream

neurons and has ways to combine their signals. Such massive connectiv-

ity, together with the ability to combine signals in a systematic fashion,

compensates for slow transmission. This ability is what we mean when we

speak of the information-processing capacity of neurons. These two func-

tions—signal transmission and information combination—allow neurons

to function as the physical basis for all of our thoughts and actions.

Let’s look in more detail at how a neuron processes incoming informa-

tion. Again, we employ three perspectives: the chemical perspective and

the metaphorical view of a neuron as a worker doing its job as well as the
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information processing perspective. Figure 4.3 depicts all the major players

in neural computation. The centerpiece is one main neuron, shown with

a connection from a smaller neuron at the upper left and several synapses

onto its dendrites from other neurons, including the one at the upper left.

The neuron’s output is depicted as arrows along the axon, which is shown

leading to a greatly exaggerated synapse on a downstream (postsynaptic)

neuron. The two tiny cells just to the right of the cell body, near the begin-

ning of the axon, provide the myelin insulation needed for rapid electrical

signaling.

As in all cells, the neuron cell body contains a nucleus, which carries out

the manufacture of new molecules and vital life functions. From the infor-

mation processing perspective, the dendrites are the input terminals and

the axon is the single output cable of the neuron. The connections between
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pairs of neurons, synapses, are the crucial elements in memory and learn-

ing. I will describe all of these components and their interactions, starting

with a detailed view of the synapse.

The lower right section of figure 4.3 depicts one synapse at a scale much

larger than natural compared to the neuron. Each synapse links the output

signal carried by the axon of an upstream neuron to a dendritic terminal

of a downstream neuron. There is no physical contact; the small gap

between the input and output connections is called the synaptic cleft. The

chemical mechanism for signal transmission at a synapse is the movement

of specialized molecules such as ACh across the synaptic cleft.

As in the case of molecular signals in yeast, the membrane of the post-

synaptic neuron has specialized receptor molecules. Figure 4.4 is magni-

fied 10 million times to depict two neural signal receptors in a typical

neural synapse in an animal brain, showing its specialized receptors

binding to a toxin, the leaflike structures at top left. The neuron’s cell 

walls are basically like those shown in figure 4.1, with various detector 

molecules projecting from the inside to the outside of the cells. Like the

amoeba’s detector molecules, various receptor molecules of the neuron

evolved to match the molecular structure of chemical signal molecules 

and change shape when reacting with them. Since this process is the key
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to both neural signaling and neural learning, we will look at it in more

detail.

A crucial point to bear in mind is that neural signaling is all-or-none.

Before turning to the chemistry of all-or-none signaling, let us think about

this fact from the perspective of the neuron as an agent. We can think of

the neuron as having the following job: to decide, about a hundred times

per second, whether or not send an output signal. Since this is a yes/no

decision, the neuron can be seen as treating each of its (perhaps 10,000)

inputs as voting for or against emitting a signal at this instant. Based on

the perspective of the neuron as agent, these combined inputs are 

technically termed excitatory and inhibitory for positive and negative votes,

respectively.

If that were all there was to it, the information processing would be easy:

if the positive votes outnumber the negative votes by a big enough margin

(called a threshold), then output a signal. But not all input votes get equal

weight in this election; some count more than others. And, as in the

United States, only a fraction of voters usually participates. There is also a

time limit, so the neuron needs to compare the weighted sum of positive

votes against the weighted negative votes arriving in an interval. If the pos-

itive total outweighs the negative total by a big enough margin, a signal

is sent out.

Compelling evidence exists that learning depends on the change of

synaptic weights; this modification is realized through several kinds of

chemical changes involving protein synthesis at both the transmitting and

receiving sides of the synapse. We look at this in more detail in chapter 6,

which focuses on neural development and learning.

The voting metaphor uses arithmetic to model neural information pro-

cessing. It is the arithmetic that really matters here, not the voting. We

can see better what the arithmetic is modeling by looking at the electrical

aspects of the neural signaling.

Molecules can be electrically neutral or have a positive (+) or negative 

(−) electrical charge. Ordinary batteries have separate electrically positive

and negative sections. When a conducting path including, for example,

the ignition system of your car or the chip circuitry in a calculator, con-

nects these two sections, electrical current flows between them, providing

power to make your car start or your calculator function. The transmission

of a signal from one neuron to the next involves essentially the same 
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electrical processes as a battery, but also some beautiful chemical interac-

tions unique to neurons.

In a neuron, what we have called positive and negative votes are really

ions—atoms with a positive or a negative charge. Positively charged ions

function as votes for emitting a signal, while negatively charged ions are

votes against. If the positively charged ions taken together outweigh the

negatively charged ions by a sufficient amount, yielding a sufficiently large

net positive charge, the neuron emits a signal that travels down its axon.

But it is not that simple. Positive ions are chemically distinct from neg-

ative ions. Each kind of signal has different channels embedded in the cell

membrane and different signaling molecules that activate these channels.

As we discussed, detector molecules in the neuron’s wall react with signal

molecules and change shape.

Rather than just releasing a single signal molecule inside the neuron, the

neuron’s detector molecule changes its shape to become a channel, through

which many (either positive or negative) ions can flow. The opening of

such a channel is depicted in figure 4.4. The positive ions involved are

sodium and the negative ions are chloride, the two components of table

salt (sodium chloride). The flow of ions into the cell depends on the shape

of the channel molecule and also on a chemical imbalance between the

inside and outside of the cell. If there are many more sodium ions outside

the cell and an open channel that passes such ions, then a net flow of

sodium ions to the inside will occur. Since these ions are positively charged,

the overall charge of the neuron increases. We will return later to how the

cell gets rid of the excess sodium and chloride ions so that the whole

process can be repeated about a thousandth of a second (a millisecond)

later.

We need one final chemical fact to complete the neural signaling story.

The shape of some membrane molecules is affected by strong positive or

negative electrical charges in their vicinity. This occurs because the elec-

trical attraction between positive and negative ions continues when these

ions become part of large molecules such as those in the walls of cells.

Another evolutionary wonder is that some molecules in the cell walls

change shape in just the right way when enough positive ions gather

nearby inside the cell. This action is the chemical basis for the neuron’s

“decision” to send an output signal.
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These special membrane molecules change shape to form additional

channels allowing sodium ions to enter the cell, creating a positive feed-

back loop—more sodium ions lead to more open channels for sodium ions,

and so on. This is where the all-or-none signaling mechanism of the

neuron comes in. At a certain point, this process feeds on itself, produc-

ing the large electrical output signal known as a neural spike or firing.

The standard transmission of a neural signal down the axon to succes-

sor neurons is a slight variation on this sodium ion feedback loop. The

output connection (axon) of the neuron (cf. figure 4.3) has the same

charge-sensitive membrane molecules that led to the original firing. The

molecules closest to the cell body are the first to feel the effects of all those

positive sodium ions entering the cell, and themselves change shape to

admit more sodium ions. This causes a shape change in the next set of

molecules down the line, leading to more sodium coming through these

channels, and so on. This chain reaction, like toppling dominoes, effec-

tively sends a signal to downstream neurons.

This traveling wave mechanism of neural signaling is sufficient for short

distances, but for longer signal paths, nature has also evolved a faster way

to transmit signals relying on special insulating cells, called myelin glia.

These grow around the axons of long-distance neurons, like the one shown

in figure 4.3 or those connecting your knee to the spinal cord. The myelin

allows for faster, purely electrical, signaling through the insulated sections

of the axon. Every so often, the myelin insulation has a gap where sodium

influx regenerates the spike.

The speed of these signals, like those of other computations by neurons,

is measured in milliseconds, one-thousandths of a second. This transmis-

sion rate plays a central role in our reasoning about the neural basis of 

language. It takes about a millisecond for a neuron to decide whether or

not to transmit a signal and also to reset itself for the next signal. There

would be no evolutionary advantage to having one part of the process

much faster than the other parts; all systems are limited by their slowest

operation.

We can compare this with two other process speeds: the speed of human

thought and the speed of digital computers. As I discuss in chapter 7, a

wide range of experiments agree that people can react to stimuli in around

100 milliseconds, or a tenth of a second. This shows that the brain 
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computes these reactions in no more than 100 neural time steps, telling

us a great deal about what kind of computation is involved. In contrast, a

standard digital computer carries out a basic operation in about a nano-

second, one-billionth of a second, which is a million times faster than the

basic neural computation. Chapter 9 discusses in detail neural computa-

tion and its central role in explaining how the brain computes the mind.

Signals Across Synapses

The connection between the sending and the receiving neurons is not

direct (they are, after all, separate cells that need their walls) and involves

a narrow gap called a synapse, depicted nicely in figure 4.3. When I talked

earlier about trillions of neural connections, I was referring to these

synapses. One inherently slow step in neural systems involves the electri-

cal signal in one neuron turning into a chemical signal that can interact

with the channel molecules of the next neuron in a pathway.

Recall that the signal spreads down the axon of a signaling cell by a chain

reaction of sodium channels opening, with positive sodium ions entering

and building up an electrical change that then opens the adjacent chan-

nels. When this traveling electrical signal reaches the sending neuron’s end

of the synapse, it causes chemical changes that release small signal mole-

cules called “transmitters” into the synapse, or gap (cf. figure 4.3). These

chemical transmitters are released by means of a mechanism that is the

reverse of the amoeba’s enveloping of food; the transmitters are expelled

from the cell through the membrane.

In the gap, these signal molecules move randomly, so it takes some time

(again around a millisecond) before enough of them connect with recep-

tor molecules of the receiving neuron to open the channels. This segment

of the pathway is not inside any cell and is thus the most sensitive to chem-

ical disruption. It will come as no surprise that most psychoactive drugs

have their effects in the synaptic gap.

The recognition process on the receiving side of the synapse is described

in figure 4.4, which depicts closed and open receptor channels. Several

further important processes are involved, including the reuptake of trans-

mitter molecules and additional signals that trigger learning by changing

both the sending and the receiving sides of the synapse.

Another inherently slow part of neural signaling comes when the system

resets the chemistry and membrane state between one signaling action and
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the next. All cells have mechanisms to maintain their chemical balance

and the standard process of cell housekeeping suffices for the small amount

of chloride and other bit players in neural firing. But the large flows of

sodium ions require a special adaptation. In neural firing, sodium ions rush

in quickly through open channels. The excess sodium then needs to be

moved back out of the cell before the process can repeat. Evolution’s solu-

tion to this problem is the “sodium pump.” As you would guess from pre-

vious stories, sodium is removed by specialized molecules protruding

through the cell wall, again as in figure 4.1. The pumping molecule has

receptor sites for sodium on the section inside the cell. When these sites

react with sodium ions, the pump molecule changes shape and orienta-

tion so that the sodium ions end up outside the cell, where they are

released and wait around for a nearby channel to open.

The energy for all this action comes from the same workhorse ATP mol-

ecule that powers all such molecular magic. ATP is a small molecule that

can be thought of as a tiny battery or coiled spring that is a floating source

of energy for chemical reactions in the body. Many systems, including the

sodium pump, have binding sites that ATP molecules fit into. When the

bound ATP molecule changes to ADP, the energy released (like an uncoil-

ing spring) can change the shape of the much larger host molecule. An

important part of cell metabolism uses food energy to reset ADP to ATP

for future use.

Where We Are in the Story

The neuron is a highly evolved cell of enormous beauty and complexity,

but neurons do not work in isolation. In the next chapter, we explore how

networks of interacting neurons enable the brain to carry out its functions.

But first, we should review where we are and how we got here. We have

finished the third leg of a long journey to discover how the brain com-

putes the mind. I began by laying out the problem and pointing to some

commonplace properties of the mind and language that I hope to

explain—the integrated, embodied, multimodal nature of language and

thought. Chapters 2 and 3 introduced the computational stance, explained

what is meant by an information processing model, and looked at animals

and machines in terms of their information-processing behavior. It is hard

to imagine any solution to our problem that is not computational in this

general sense.
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However, the general idea of computation is not enough; the properties

of the mind depend fundamentally and in detail on the way the neural

networks that are our brains carry out information processing. One impor-

tant aspect of neural computation is that neurons, like all other cells,

operate according to a few powerful principles of biochemistry—involving

matching, shape change, and dissolution of specialized molecules. Within

this general framework, this chapter showed how neurons compute

whether to send a signal, and how such signals are propagated. The fact

that the characteristic time scale for neural computation and signaling is

about a millisecond remains a crucial point as we move on to consider net-

works of neurons, both small and large, in the next chapter.
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5 The Society of Neurons

Amazing as they are, neurons are useful only when they work together 

in networks or circuits. Although the neural circuits of the brain can be

exceedingly complex, the basic ideas can be seen in even the simplest cir-

cuits, like the knee-jerk reflex shown in figure 5.1. The evolutionary func-

tion of the knee-jerk reflex is to allow rapid balance adjustments—to shift

weight rapidly to the left leg when the right leg encounters difficulty.

Figure 5.1 shows how this happens. The large oval on the top depicts the

spinal cord, greatly magnified. Focusing on the right leg (on the left side

of the figure), you can see two outgoing axon pathways, one (labeled −)

that sends a negative signal to the extensor muscle on top of the right

knee, and the other (labeled +) that sends a positive signal to the flexor

muscle beneath the knee. The paired action of these two signals causes the

right knee to bend inwards as the flexor is contracted and the extensor is

loosened. If you like, you can recreate the story from previous chapters

detailing how the neural signals are computed and transmitted, leading 

to muscle cell contraction through the actin–myacin mechanism. Our

concern here is with the information processing aspects of this reflex and

the more complicated circuits to come.

The important new information processing idea involves the long

sensory axon pathway, shown on the far left. This leads back up from the

knee to the control neurons in the spinal cord. When this pathway is acti-

vated (e.g., by tapping the right spot on the knee), a signal goes directly

to the spinal cord, where it is shown connecting with four control neurons.

Still focusing on the right leg, we see that the sensory signal connects, after

one intermediate step, to the neurons that directly activate the appropri-

ate leg muscles. This is the basic neural circuit for a reflex—a sensory neuron
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connects quite directly to motor neurons. Obviously, this kind of circuit

can be a lot faster than one that goes through the brain. But this link

between sensing and action can’t be modified by thought—it’s just a reflex.

This is our most important take-home lesson, but some of the details are

also worth noting.

You will have noticed that the leftmost linking neuron is shown filled

in black, as is another one in the circuit for the left leg. This is one way

biologists depict inhibitory neurons, which send negative signals to their

downstream neighbors, tending to reduce rather than increase their firing

rate. Now we can see why the connection to the right extensor is labeled

(−); the reflex reduces the amount of firing of that muscle. This hard-wired

combination of tightening one muscle while relaxing its opposing muscle

is a basic principle underlying all animal motor control.

We can see the same push-pull principle at work in the circuit for the

left leg in figure 5.1. Here, the sensory signal from the right leg causes the

simultaneous contraction (+) of the left extensor and relaxation (−) of 

the left flexor. The two muscles in each leg are coordinated and, in addi-

tion, the circuit coordinates the two legs, extending one leg while the other

relaxes. Although this is not depicted in the figure, additional circuits 

modulate the knee-jerk reflex depending on what else your body is doing.

The sharp tap by your doctor overrides the normal top-down brain control

of your leg. This principle of layered or hierarchical control is universal in

animals and is important for our discussion of embodied semantics theo-

ries, beginning in chapter 17.

The knee-jerk story is our first example of the link between sensation

and action in people. This kind of direct neural connection is quite old in

evolutionary time and not that different from the direct chemical link

between sensation and action we saw in the amoeba. Reflex circuits like

the knee-jerk appear in animals without brains. In people, these networks

do not require signals to go up through the brain, which would slow every-

thing down too much. So we now understand why we are not aware in

advance of our reflex actions and cannot control them—they are hard-

wired neural circuits. This also explains why your hand moves away from

heat or pain before you are aware of the problem.
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The Frog’s Brain

Fixed reflex circuits, like the one shown in figure 5.1, are the most common

kind of neural computing found in the nervous systems of many kinds of

animal, including the frog. Some 4000 species of frog are found through-

out the world, and they have adapted to a remarkable range of living con-

ditions. They can be found just about anywhere there is fresh water, from

the desert to the Arctic, on all continents except Antarctica. Though they

thrive in warm, moist tropical climates, frogs also live in deserts and on

high mountain slopes. The frogs that have been studied the most are the

familiar ones from temperate climates that live in and out of water and

catch their insect food with a long sticky tongue.

One of the original landmark papers in neural computation appeared in

1959 with the striking title, “What the Frog’s Eye Tells the Frog’s Brain.”

Its four authors included McCulloch and Pitts, who introduced the concept

of abstract neurons in the early 1940s, and two biologists, Jerome Lettvin

and Humberto Maturana, who we will meet again later in the book. They

explored the frog’s brain by using the standard technique of making thou-

sands of measurements of individual neural responses (see chapter 4) to

different visual images. The frog has direct neural connections from the

retina to the brain, and it was generally believed that these connections

just conveyed a copy of the image, like your TV cable.

Most of the frog’s brain is organized in reflex circuits as in figure 5.1. A

frog will normally snap at any small moving dark spot and jump away

from any impending shadow. More interestingly, the frog’s reflex circuitry

for life-sustaining internal control of functions such as breathing and

digestion is much the same as that found in all higher animals, including

people. And frogs do have some ability to learn. As early as 1911, experi-

ments showed frogs could learn that caterpillars were not edible and would

then ignore them even when they moved.

Lettvin and colleagues (1959) discovered that the neurons of the frog’s

eye actually do quite a lot of computing, and this changed how scientists

think about the brain. The results were that almost all the eye neurons sig-

naled (were most active) when one of four particular visual conditions (fea-

tures) occurred at a particular place in the visual environment. Some cells

responded to local sharp edges and some to moving edges in the scene. A

third kind of cell responded strongly to small dark convex moving objects
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and was most active when the objects moved irregularly. The authors were

a bit cautious in calling these neurons “bug detectors,” but later work con-

firmed that this was largely the case. The fourth kind of cell responded 

best when there was large local dimming, by either movement or overall

darkening. Behavioral testing later showed that these cells indicated the

possible presence of a predator and caused a reflex response of the frog

jumping away.

Moving back from the details, it is worth considering why these find-

ings had such a great impact. Lettvin and coworkers showed that extremely

specific neural computations were being carried out in the frog’s eye, 

and some of these calculations had immediate life consequences for the

animal. These, and similar results by others, led to an explosion of 

interest in making detailed measurements of neural activity and in build-

ing theories of how these neural computations help explain the behavior

of animals. It is obviously much more difficult to carry out this kind of

neural modeling program for human language, but this is what I and other 

cognitive scientists are trying to do. It is also worth remembering that 

evolution builds on its past successes—much of the basic chemistry and

many neural circuits from the frog continue to be recognizable in our own

brains.

The wiring of the frog’s brain also played a key role in my personal devel-

opment. In the early 1970s, I was on a site review at the lab of Michael

Arbib, one of the pioneers of neural modeling. Coming from a traditional

computer science background, I kept wondering throughout the day of

presentations how visual input got converted to symbols for reasoning in

the frog’s brain. I still remember my epiphany when it became clear that

there was no symbolic form—the neural wiring directly connected per-

ceptual categories to appropriate actions in physical space.

The Human Brain

Neurons are the heroes of this book, but it takes billions of them to achieve

the miracle of the human mind. There are an estimated 10 billion to 100

billion neurons in the outer shell of the brain, where much of our higher

mental functions are computed. This is the same magnitude as the number

of people on earth (currently around 6 billion). It might be easier to think

about billions of people working together than about a neural circuit of
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the same scale. So, to help us understand how the mind works, we will go

through the mental exercise of trying to organize all of the people on the

planet to work together as a simulation of the brain. This is the task that

nature has solved in each of us. We will focus here on how the neural cir-

cuits could function and leave the next chapter to worry about how the

wiring could be laid down.

To make our imaginary world/brain simulation more like a society of

neurons, imagine that we are doing this around the year 1870—after 

the deployment of the telegraph but before telephones were invented in

1876. We can then imagine billions of people connected by telegraph lines

that, like neurons, can transmit simple signals. The telegraph code is sig-

nificantly richer because it allows both short signals (dots) and long ones

(dashes) and so, as we saw in chapter 3, can encode any message at all.

Neural signals, as described in chapter 4, all use the same signaling mech-

anism and this has important consequences for how the brain works. The

information conveyed in a neural message is made up of just two compo-

nents—the origin of the signal and its strength encoded as the number of

spikes per second. Timing is also important; only neural signals that arrive

at about the same time can be combined at the receiving end.

The hierarchical motor control circuits described earlier in this chapter

could be organized fairly easily to be carried out by small groups of

people—in fact, many business and government organizations work this

way now—with e-mail playing the role of the limited information channel.

We now know that specialized circuits in the brain coordinate complex

motor activities, including learned ones. These specialized circuits are often

modeled as computational schemas, and these will play an important part

in our story, beginning with chapter 11.

Other mental functions, however, including vision, complex motor coor-

dination, and language cannot be broken down into a hierarchy of simple

tasks. Billions of neurons work together to achieve these functions.

To simulate this massively parallel computation, we need a division of

labor, with various people/neurons specializing in different tasks. For con-

creteness, let’s assign the people of China to model the visual system, with

the coastal populations simulating the retina. It isn’t hard to imagine each

person on the coast looking out in a specific direction and sending tele-

graph messages about what he or she sees. However, it gets a lot harder

when we try to decide how these millions of local sightings should be com-
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bined into an overall understanding of what is being seen. For example

how would we determine what the overall weather pattern is along the

coast? This simulation is designed to help us understand how the visual

system is organized. More is known about vision than about any other

brain function, so our modeling could get very specific.

As I discussed in chapter 4, people have specialized cells with pigment

molecules that signal the color and amount of light falling on different

parts of the eye. This information is combined and used in a wide variety

of ways. One small circuit is a reflex, like the knee-jerk, that contracts the

pupil when the light is too bright. But vision requires much more elabo-

rate information processing, involving a number of computational ideas

that we will need later. For example, one way the visual system avoids

being flooded by data is by only transmitting changes in a scene. We have

all experienced this phenomenon in hearing—a repetitive noise is dis-

turbing for a while and then we stop noticing it.

The visual system has cells (as our simulation has people) that take

signals from a collection of feature detectors and send an output if there

is some pattern of interest. For example, a center-surround cell can signal

when it sees a green center surrounded by red. A vertical-edge cell can

signal when the detectors on its left report more brightness than those on

its right. There are also intermediate cells that use memory to compare

signals across time and report motion. All of these mechanisms are repli-

cated millions of times and laid out in systematic maps in the brain—light

at nearby points in space activates nearby neurons in the visual areas of

the brain. This is just the kind of organization we would use to connect

China as a vision machine. Systematic cortical maps have been created for

vision, audition, and motor control, and these will feature prominently in

our story.

Several more levels of visual processing are laid out as visual maps in the

brain. Humans (unlike bats and owls, who have sonar) have no direct way

to measure the distance to a remote object, but instead estimate distance

using stereo vision from the two eyes and a score of other cues. Some brain

areas specialize in distinguishing different textures and others respond best

to complex patterns of motion. One remaining mystery (called the binding

problem) is how we see the world as coherent scenes despite different brain

areas computing color, motion, and other characteristics separately. From

the information processing perspective, the best current hypothesis seems
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to be temporal and spatial synchronization: if units corresponding to the

same area of the visual field are active at the same time, we perceive an

integrated scene. We discuss temporal binding further in chapter 9.

The color system has played a particularly important role in the 

understanding of embodied language, and we will look at it a bit more

closely. In addition to the general dim-light detectors (rods), the retina has

three kinds of color-sensitive cells (cones), each with somewhat different

pigment molecules that are most responsive to light in a particular range

of wavelengths. Each of these pigment molecules changes shape when it

is struck by the appropriate color of light, resulting in the emission of elec-

trical signals. In the China metaphor, we could imagine teams of observers

with three different colored filters on their telescopes. The color system

has wiring that combines readings from several cones to register the hue

of an external object and even compensates fairly well for different light-

ing conditions. For example, balanced activity of the “red” cones and

“green” cones at a particular location will be seen as yellow. There are

certain shades of red, blue, and so on that are particularly good at excit-

ing human color cones, and these are easier to detect. As we will see in

chapter 8, these optimal hues play an important role in the words for color

in different languages. Discovering this link was a breakthrough in cogni-

tive science in the 1960s. It was the first proof of the embodiment of word

meaning, which is the foundation of any neural theory of language.

With all of this information about shape, motion, and color available,

we can imagine wiring up some inland groups of people in China to detect

various features of interest. Suppose that the design of the China–eye

system used numerical signals corresponding to the differing strengths of

neural connections. Each person in the system would then compute the

weighted sum of all his or her incoming messages and could transmit an

outgoing message as some higher or lower signal. For example, a person

who had the job of detecting small blue things moving slowly north at

one point in space might send a higher signal if inputs suggested strongly

that this kind of target was present in his spot. Looking ahead to models

of learning, every incoming signal could have a control so that each worker

could learn which input signals were most reliable (led to good system

results), and then increase the weight from those sources.

All this visual feature detection is fine, but the goal of perception is

action—what is out there and what should I do about it? To continue with

our China metaphor, we could have some region, say Tibet, specialized for
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recognizing faces and facial expressions. The workers of that area would

receive inputs from earlier feature-detecting units and combine these to

compute some face-specific features. Some small subset of these workers

would have the job of recognizing, for example, that a particular face 

is being observed, that it is your boss, and that she is angry. The signal

from these workers would presumably activate emotional and behavioral

responses.

All living things need to classify their inputs and act on them as best

they can. The neural best-fit matching networks of our brains are far from

perfect; for example, we often initially mistake a stranger for someone we

know. As we will see, the idea of making the best sense of complex input

data is also important in understanding language processing. It is often

useful to think of the brain as a system for finding solutions to complex

computational problems involving many variables, which themselves are

known only approximately. This kind of best-match computation is quite

difficult and slow on electronic computers and hard to express in con-

ventional programming languages, but it is essential in simulating theo-

ries that bridge brain and behavior. The connectionist computation models

described in chapter 9 are a major advance in our ability to model the evi-

dential and best-fit nature of neural systems.

To return to our world–brain metaphor, if some other place, say Kansas,

were in charge of modeling the circuitry of the knee, the workers there

would be connected as shown in figure 5.1. That is, each of the neurons

in the figure could be modeled by one worker and each of the axons

modeled by a telegraph wire.

But their work rules on combining input signals and emitting a higher

or lower output signal would be identical to those of the Chinese vision

workers. For those Kansans directly connected to simulated muscles, a high

signal would indicate a strong contraction of the downstream muscle cell

and a low signal would indicate relaxation.

We can see how the idea of neural computation allows scientists to make

detailed models of brain operations. The crucial point is that such models

are simple enough for people to understand and to simulate on comput-

ers, but they are sufficiently like neural functioning to yield scientific

insights and possible clinical interventions.

Neuroscientists are making remarkable progress at working out the

general architecture and quite a lot of the detailed circuitry of the human

brain. Some of the most striking results come from studies of monkeys
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who, as our fellow primates, have quite similar brains. Many of these

results come through recordings from individual neurons in the brains 

of awake, performing monkeys. Current experimental techniques allow

this to be done in a relatively humane way, but it is not something that

would or should be permissible on humans, except for specialized clinical 

purposes.

One of the most remarkable findings came about by accident in the lab

of Giacomo Rizzolatti and his coworkers in Parma, Italy (Rizzolatti et al.

2001). They were recording from neurons in the frontal cortex of monkeys

grasping various objects. One of the experimenters happened to pick up

the target object while the recording was still in progress. To everyone’s

surprise, strong neural activity occurred in the supposedly motor neuron

when the animal observed someone else grasping an object. These results

have now been replicated many times and are quite robust and general.

So, some neurons are activated during both the execution of pur-

poseful, goal-related hand actions, such as grasping, holding, or manipu-

lating objects, and the observation of similar actions performed by another

individual. These are called “mirror neurons.” Mirror neurons do not fire

when the monkey is just presented with an object that it can act on. Nor

do they fire when the observed action is performed with a tool, such as

pliers or pincers. Using similar techniques, physiologists have been able to

work out quite a bit of the detailed circuitry that allows the monkey to

recognize an object, decide what do with it, and carry out the appropriate

movements.

While everyone agrees that monkeys’ brains are quite like people’s, there

are clearly big differences, and it was not obvious that humans would 

have mirrorlike neural circuits that are active in both motor control and

perception of the same operations. But the Parma group and others have

provided convincing evidence, using some of the remarkable new 

methodologies now available, that we do indeed have multiple mirrorlike

circuits (Buccino et al. 2001). The fact that specific human motor circuits

are activated when we see or hear about the associated motions provides

direct support for the NTL hypothesis that meaning is embodied.

Starting around 1980, a variety of new experimental techniques have

greatly improved our ability to understand more about human brain struc-

ture and function. Figure 5.2 was made using a noninvasive technique

called functional magnetic resonance imaging (fMRI). In general, MRI
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techniques are based on the effects produced by molecules that are subject

to a strong and rapidly changing magnetic field. Magnetically more sus-

ceptible molecules yield stronger effects and this, along with a prodigious

amount of computing, enables the imaging of bodily structures. Functional

imaging (fMRI) uses the magnetic properties of oxygen-carrying hemoglo-

bin to compute brain areas that fire more strongly, and thus need more

oxygen, during such neural activity as watching a video.

The top left image in figure 5.2 is the composite fMRI scan of the right

side of the brain of a subject taken while he was viewing videos of human

actions. The different areas represent regions of the brain that were most

active during three different conditions. They are all in areas of the brain

known to control movement, so this already confirms the general existence

of mirrorlike neural systems in humans. The top right image depicts the

left side of the same subject’s brain while he was doing the task.

But there is much more. The motor cortex is well known to have soma-

totopic maps in which the circuits that control each particular body part

are systematically distributed over the motor areas, like the visual maps 

in our China–brain model. Figure 5.2 shows that mirror activity also 
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Blood flow in brain while observing videos of actions. (Source: Buccino et al. Eur J
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conforms to these maps. When the person viewed a video of someone

biting, motor cortex parts normally used in mouth motions showed the

greatest activation (in the lower parts of the brain, marked with a ///

texture). Similarly, middle regions in the figure (marked with a \\\ texture)

correspond to when the subject saw grasping (hand) actions. The higher

brain regions that are marked in solid black were most activated when the

subject saw kicking (foot) actions.

There is still more. Notice the different pattern of textured regions in the

lower pair of the images; in particular, there are now two distinct bands of

activity on each side of the brain. The videos used to generate the top pair

of images all depicted actions without a real object being acted on. For the

lower pair, subjects were shown videos where objects were being acted on:

biting an apple, grasping a cup, or kicking a ball. This led to additional

mirrorlike activation patterns in a distinct area of the brain. This area,

which is further toward the back of the brain (the left in the lower left

figure), is usually associated with vision and generally codes something

about the position of objects in space. Again, the textured markings show

the activation patterns are segregated along the lines of which effector 

is being used. When the video showed an object being kicked, the foot

subarea (upper part, marked in solid black) of this brain region was most

active. This is a remarkably detailed confirmation of the presence in

humans of perception–action circuits like those mapped out in detail for

monkeys.

Everyone involved in brain studies believes that something like this kind

of information processing happens throughout the brain. But much less is

known about language and other higher-level thinking than about the

visual and motor control networks described here. We do know that there

are parts of the brain where cells are active for specific objects or actions,

indicating specialization. And we also know there are not enough neurons

in the brain to provide a separate detector cell for any situation that we

might encounter, so some more complex code must be used. We will return

in chapter 9 to this question of how concepts are represented in our neural

machinery. In the next chapter, we focus on another classic mystery that

is rapidly being revealed—how the elaborate wiring of the brain is estab-

lished during development and how it changes with experience.
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6 Nature and Nurture

Long before scientists mapped out the intricacies of the brain, people won-

dered how something as complex as the human mind could arise. This

question has also been a core concern of philosophers over the ages. In

keeping with their generally disputatious style, the question of the origins

of mind was posed as a black/white controversy over whether the mind

was shaped by inheritance (nature) or experience (nurture).

Developmental biologists and psychologists have learned an enormous

amount about how people grow and learn. Just as you would expect,

human development involves continuous and intricate interplay of

genetic and environmental factors, and scientists in these fields have 

long abandoned the notion that there is an absolute answer to the

nature/nurture question.

For reasons that will become clear later, however, controversy still rages

among some linguists and philosophers over the extent to which language

(which means grammar in this debate) is innate. We discuss this issue in

detail in chapter 22, but some general ideas can be laid out in advance.

Two major scientific innovations of the last few years have led to a new

view of the relationship between prior structure and experience. The tra-

ditional wisdom was that development should be associated with structural

change—obviously in the body, but also in the brain and mind. Learning,

on the other hand, was viewed as a gradual process of adding skills and

knowledge. Development was associated with structural change, and learn-

ing was viewed as a cumulative process. These ideas are fine, but recent

results show that we must also construe learning as structural change and

development as a cumulative process. Here’s why.

It is now clear that learning and permanent memory in animals comes

about through the strengthening of neural connections (synapses). Some



of the evidence for these facts are discussed in this chapter. When the

strength of connections between neurons is modified, we have a funda-

mental structural change. The neural network is now different and will

respond differently to new experience. That is, learning does not add 

knowledge to an unchanging system—it changes the system.

The other new findings come from the level of gene expression. Until

fairly recently, scientists thought of the genetic code as a kind of template

for making the proteins needed for various bodily functions. Newer 

findings show it is much more than that. In protein synthesis it matters 

not just which genes are involved, but also which are expressed, that is,

actually used to make proteins. Every cell has the same genetic informa-

tion; other factors determine exactly which proteins are synthesized. The

modern view of this process is more like a computer program than a stencil.

Often the role of one protein is to facilitate or block the expression of

genetic material in the synthesis of some other proteins. Development,

even at this most fundamental level, is thus also a cumulative process.

With these new scientific insights, there seems to be no principled reason

to talk about separate notions of development (genetic, nature) and learn-

ing (experience, nurture). Both processes are cumulative, and both are real-

ized by structural change. The commonality is particularly clear in cases

of recovery from brain damage, which can involve both adaptation and

new growth. This evolving new picture can be captured with the idea 

of a structure–experience–adaptation (SEA) cycle. At any time, a system

(such as a person) has some structure. As experience is accumulated, this

leads through adaptation to a modified system structure, and the cycle 

continues.

The structure of a system at any time determines what it can experience.

If you don’t know the language being spoken, you will miss a lot of a con-

versation. Given its current state and its (social and physical) environment,

a system (e.g., a person) will have experiences, some self-initiated and

others not. Some of these experiences will lead to structural changes.

The idea of adaptation entails some notion of improvement, for example,

in enhanced survival. We are interested in the cases in which there is an

idea of system performance and a way of evaluating whether a structural

change is likely to lead to improved performance. It can be quite difficult

for a system, at any level, to evaluate how to adapt to an experience, and

I will discuss how the brain seems to do this. The criteria for what counts
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as performance improvement might themselves be controversial, as in the

case of political systems, but we won’t concern ourselves with that until

the end of the book.

The SEA cycle (figure 6.1) can be seen as a model of the development of

systems over a wide range of time and complexity scales—from molecules

to individuals to societies and species. It seems to help liberate our think-

ing from a variety of classical dilemmas, such as the nature–nurture con-

troversy. However, anything so general must be used with caution. For

example, the SEA cycle does not suggest that all adaptations are small and

incremental. Some experiences are clearly life-changing while others are

insignificant.

All of these general considerations on the relation of structure to learn-

ing will become important later in our discussion. For now, our focus is

on understanding the basic processes of neural development.

Of course, human development begins with a single fertilized cell in 

the mother’s womb. We will skip over the first 6 weeks of cell division 

and reorganization, except to note that, even at this stage, genetic and

environmental influences interact—normal development requires an

appropriate chemical environment in the womb. Our story picks up after

the point of separation when the cells destined to be ancestors of neural

tissue are segregated from those that will generate internal organs, muscle,

skin, and other parts of an individual. The cells that will become our

nervous system form a distinct neural “plate,” which over time folds in 

on itself to become a neural tube running the length of the embryo, 

following a pattern that is basically the same for all neural animals. This

is the general story, but what interests us is how the billions of individual

neurons in the brain and nervous system become connected in a way that

creates our mental life. This has been most thoroughly studied in the visual

system.
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As we saw in the last chapter, one striking property of the visual system

is the large number of topographic maps in the brain, corresponding to

various visual properties. At least a couple of dozen distinct visual areas

with spatial structure are organized according to function. All of the

sensory and motor areas of the brain have this kind of systematic map

structure (c.f. figure 5.2). For example, the brain’s representation of skin

contact (touch) is laid out as a map of the body, with more sensitive areas

represented by more neurons, and thus larger areas of the map. The audi-

tory system has maps laid out according to tone qualities, and other

factors. One question we are asking in this chapter is: How do all these

intricate maps get wired as part of neural development?

Nature’s solution to the initial wiring problem is quite elegant and harks

back to simple one-celled animals like our old friend, the amoeba. Recall

that an amoeba has a variety of complex sensing molecules penetrating its

cell membrane. As part of its survival, an amoeba has chemical mecha-

nisms that cause it to move its blobby body toward food and away from

harmful substances. Neurons are also cells and, in early development,

behave somewhat like an amoeba in approaching and avoiding various

chemicals. But rather than the whole cell moving, neural growth involves

the cell’s connecting pathway (axon) reaching out toward its downstream

partner neurons.

The basic layout of visual and other maps is established during devel-

opment by billions of neurons each separately following a pattern of chem-

ical markers to its predestined brain region and specific subareas within

that region. For example, a retinal cell that responds best to red light in

the upper left of the visual field will connect to cells in the brain that are

tuned to the same properties and these cells, in turn, will link to other cells

that use these particular properties. In the course of development, detec-

tor molecules in the growing neuron interact with guide molecules to route

the connection to the right general destination, sometimes over long dis-

tances as in the connection from the spinal cord to the knee. This will get

neural connections to the right general area, but aligning the millions of

neurons in visual and other neural maps also involves continuous chem-

ical gradients, again using mechanisms that are very old in evolutionary

terms.

I have talked about amoebas and other cells approaching food and avoid-

ing pollution. They can actually do a bit better by being sensitive to not

74 II. How the Brain Computes



only the presence of good and bad molecules, but also their concentration.

It makes a lot of sense for an animal that evolved in water to have mech-

anisms for preferentially moving in the direction where the most food 

molecules are. This gradient-following behavior tends to bring the animal

to ever richer pastures, by its standards.

For the task of wiring up visual maps, gradient following greatly simpli-

fies nature’s information processing requirements. The axon of a develop-

ing visual neuron will follow the gradient of a marker chemical related to

its destination, analogous to the amoeba’s moving in the direction of food.

A neuron destined for the upper left section of the scene in a visual map

will therefore follow two separate chemical gradients that mark areas cor-

responding to leftness and to higher elevation in the target map. When an

axon tip gets to an appropriately marked destination cell, this contact starts

a process that develops rudimentary synapses (discussed in chapter 4).

Local competition among neural axons with similar marker profiles pro-

duces some further tuning at the destination. For example, each human

muscle fiber ends up with exactly one incoming neural connection, and

this greatly facilitates fine motor control.

With enough poetic license, we can think about the neural wiring

problem in terms of the world-as-brain simulation from the previous

chapter. Real neurons find their own connections, but we can imagine

wiring crews trying to link up the right workers in, for example, the China

simulation of the visual system. The analogy to the chemical target markers

might be a latitude and longitude goal for each set of wire connections.

The wiring crews would follow local or global directions, linking to houses

in the right general area. We could model local competition as a limited

number of connections per house. Later development and learning could

be modeled as strengthening some connections and abandoning 

others.

It would be amazing if this kind of chemical scramble could produce the

exact wiring needed for all of our elaborate perception, thinking, and

acting. In fact, the initial wiring is only approximate and leaves each neu-

ronal axon connected to several places in the neighborhood of each of 

its eventual partner neurons. A second, activity-dependent mechanism is

required to complete the development process. We know that babies

become physically very active in the womb in the late prenatal period, but

it has only recently become clear how crucial this activity is to neural
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development. Moreover, of course, humans develop tremendously after

birth, and some people continue to learn even in adulthood.

The growth processes that follow chemical gradients to produce our

initial neural wiring do remarkably well, but not nearly well enough. What

is needed for survival are circuits with highly tuned and coordinated 

activity for carrying out our perceptions, actions, and thoughts. The initial

chemical wiring actually produces many more connections and somewhat

more neurons than are present in adult brains. The detailed tuning of

neural connections is done by eliminating the extra links as well as

strengthening functional synapses. This has been known for decades.

What is new is the realization of how important activity is in the prena-

tal process of tuning neural connections. Although the details are far from

complete, the general idea is clear and eminently logical. Development

must result in coordinated networks for vital functions. The knee-reflex

circuit of chapter 5 would be a simple example of such a circuit. Assum-

ing that the initial wiring was successful and the proper connections are

in place, it is just a question of eliminating the useless ones. This is done

by strengthening connections that work well together and weakening the

others. The same basic mechanisms underlie adult learning and will be an

important part of our account.

But in the womb, what provides the feedback to establish which are the

right neural circuits to strengthen? This problem doesn’t seem to be too

difficult for motor circuits—the feedback and control networks for basic

physical actions can be refined as the infant moves its limbs and, indeed,

this is what happens. However, there is no vision in the womb. Recent

research shows that systematic moving patterns of activity are sponta-

neously generated prenatally in the retina. A predictable test pattern,

changing systematically over time, provides excellent training data for

tuning the connections between visual maps (Stellwagen & Schatz 

2002).

The prenatal development of the auditory system is also interesting and

is directly relevant to embodied language. Research indicates that infants,

immediately after birth, preferentially recognize the sounds of their native

language over others. The assumption is that activity-dependent tuning

mechanisms, similar to those for vision and motor control, work with

speech signals perceived in the womb.
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The prenatal tuning of neural connections using simulated activity can

work quite well; a newborn colt or calf is essentially functional at birth.

This is necessary because the herd is always on the move. But many

animals, including people, do much of their development after birth, and

activity-dependent mechanisms can exploit experience in the real world

beyond the womb. In fact, such experience is absolutely necessary for

normal development. Early experiments with kittens showed that there are

fairly short critical periods during which animals deprived of visual input

could forever lose their ability to see motion, vertical lines, and so on. For

a similar reason, if a human child has one weak eye, the doctor will some-

times place a patch over the stronger one, forcing the weaker eye to gain

experience.

Both growth and death of neural connections occur after birth, and

current theory suggests no absolute demarcation between neural develop-

ment and adult learning. The number of human synapses reaches its peak

at around year 3 and the adult count is roughly the same as at birth. Recent

discoveries suggest that some new neurons are even generated during

human adulthood, reversing a longstanding belief to the contrary.

One more wrinkle to the basic neural wiring story becomes important

in recovery from injury. I depicted the tuning competition as eliminat-

ing the less valuable connections, and this is largely accurate. But there is

also a mechanism whereby functioning neural connections actively inhibit

rival connections without destroying them physically. If an injury causes

the original winner neuron to die, understudy neurons with connections

are “released from inhibition” and can help restore lost function. As best

we can tell, the processes of recovery from neural insult follow the same

basic patterns as the original wiring and tuning mechanisms.

I have suggested that some elements of language learning begin in the

womb, where newborns are more sensitive to the sounds of their mother’s

language. Although children don’t say their first words until they are about

a year old, our embodied perspective suggests that the development and

learning in the first year is essential for language acquisition. I will have a

lot more to say about language learning later. For now, I close this chapter

with a brief discussion of the biology of adult learning realized as changes

in the strength of neural connections. The emerging understanding of

neural learning is important for the models we will use in later chapters.
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Learning and Memory

We usually think of memory as what we have learned. This is fine for

memory of facts or episodes, but we also learn skills and this kind of learn-

ing turns out to be quite different. Certain brain injuries involving the hip-

pocampal region of the brain render their victims incapable of learning

any new facts, situations, or faces. Nevertheless, these people can still learn

new skills, including relatively abstract skills such as solving puzzles. One

famous example involves a patient who became very good at the Towers

puzzle, which requires you to move a stack of rings of decreasing size from

one peg to another, using one intermediate peg and never placing a larger

ring on a smaller one. On each trial, the patient thought the puzzle was

new and was surprised that he knew how to solve it. This, and other evi-

dence, strongly suggests that skill learning differs from learning about new

situations and facts.

Another important difference between skill and fact learning is the

number of lessons needed. You can learn a new fact, such as “George Lakoff

was born in Bayonne, New Jersey,” from one instance, if it is interesting

or important to you. Learning a new skill, such as pronunciation in a new

language, requires extensive practice, even with expert tutelage. The bio-

logical basis for learning is one of the hottest topics in contemporary

science and, while much remains to be discovered, a number of the basic

mechanisms are now known, and this can help us understand how lan-

guage and other skills are learned.

Short-term memory is known to have a different biological basis from

long-term memory of either facts or skills. To illustrate this: at the end of

this very sentence, close your eyes and see how much of the exact wording

you can remember. After you come back to the text, try it again and

compare how well you recall the first sentence. We now know that this

kind of short-term memory depends on ongoing electrical activity in the

brain. You can keep something in mind by rehearsing it, but this interferes

with your thinking about anything else. Should you try to recall the first

sentence of this chapter, you would probably come up with nothing at all,

despite the manifest brilliance of the prose.

Nevertheless, we do recall memories from decades past. These long-term

memories are known to be based on structural changes in the synaptic con-

nections between neurons. Such permanent changes require constructing
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new protein molecules and establishing them in the membranes of the

synapses connecting neurons, and this can take several hours. Thus, there

is a huge time gap between short-term memory that lasts for only a few

seconds and long-term memory that takes hours to build. In addition to

bridging the time gap, the brain needs mechanisms for converting the

content of a memory from electrical to structural form.

This so-called mystery of intermediate memory is not completely 

solved, but some of the key bridging steps have been discovered recently.

To understand them, we hark back to the story of neural transmission 

and signaling from chapter 4. Recall that a key step in neural communi-

cation was the movement of small transmitter molecules across the narrow

synaptic gap between communicating neurons. We saw that there are

receptor molecules (see figure 4.4) in the cell wall on the receiving side of

the synaptic gap, and these receptors change shape when a transmitter

molecule arrives. The main result of this shape change is the opening of a

channel allowing charged molecules to rush into the cell and, if there is

enough net positive activation, cause the receiving cell to fire as well,

sending a signal to its downstream neighbors. This is the basic picture, but

a lot more is happening, some of it crucial for neural learning. In addition

to the small neural signaling molecules, a number of other molecules pass

in both directions between the sending and receiving neurons at the

synapse, and additional molecules enter the cells from the surrounding

environment.

The key idea underlying theories of neural learning goes back to the

Canadian psychologist Donald Hebb, who formulated Hebb’s rule around

1950. From an information processing perspective, the goal of the system

is to increase the strength of the effective neural connections. Hebb pro-

posed, and recent research has confirmed, that this can be achieved by

means of a simple rule: each time a particular synaptic connection is active,

see if the receiving cell also becomes active. If it does, the connection con-

tributed to the success (firing) of the receiving cell and should be strength-

ened; if the receiving cell was not active in this time period, our synapse

was bucking the trend and should be weakened.

Elegant chemical processes realize Hebbian learning within two distinct

time scales, providing the temporal and structural bridge from short-term

electrical memory, through intermediate memory, to long-term structural

memory. In addition to the synaptic sodium and chloride channels 
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responsible for neural signaling, there are also calcium-based channels that

facilitate learning. As Hebb suggested, when a receiving neuron fires,

chemical changes take place at each synapse that was active shortly before

the great event. These changes potentiate (make more potent) each of the

winning synapses for an intermediate period, lasting from hours to days.

Repetition of a pattern of successful firing also triggers additional intra-

cellular changes that lead, in time, to an increased number of receptor

channels associated with successful synapses—the requisite structural

change for long-term memory. Related processes weaken synapses and also

strengthen pairs of synapses that are active at about the same time.

This sequence of events is now accepted as the general solution to the

problems of the temporal and structural gaps between short- and long-term

memory. However, what is stored as memory of situations, like your grad-

uation or your last lunch? The hippocampal area is known to play a central

role in forming and possibly retrieving memories of past situations. The

intermediate-term potentiation of synapses is quite pronounced in this

brain region, forming the basis for the standard theory of situational

memory, which has considerable experimental support.

Think about an old situation that you still remember well. Your memory

will include multiple modalities—vision, emotion, sound, smell, and

others. The standard theory is that memories in each particular modality

activate much of the brain circuitry that was involved in the original expe-

rience. It is generally agreed that the hippocampal area contains circuitry

that can bind the various aspects of an important experience into a coher-

ent memory. This process is believed to involve the calcium-based poten-

tiation we just discussed.

The retrieval of long-term situational memory (Nadel et al. 2000)

remains controversial. One theory suggests that the hippocampal area

retains its binding function throughout life. The other theory is that the

neural connections binding experiences into a long-term memory trace are

transferred to the cortical areas involved, freeing the hippocampal neurons

to form new memories. In either case, permanent weight changes are

needed to consolidate a memory. There is general agreement and consid-

erable evidence that dreaming is important in consolidating memory and

involves simulating experiences.

Let’s look at Hebbian learning from the perspective of a person working

as a unit in the world–brain simulation from the previous chapter. The
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worker would like to turn up the strength of his most important incom-

ing signals, if he could figure out how to do this. The Hebbian learning

rule tells him how to do it. Each time you send out a strong signal, increase

the strength of all of your inputs that were recently strong, and thus con-

tributed to your own strong output. You could also decrease the strength

of any inputs that were not active when your output was strong. This “rich

get richer” learning rule will eventually lead to some inputs dominating

the process. This is essentially the same mechanism we discussed as the

key to the fine-tuning role in neural development. This idea of strength-

ening connections that are correlated with subsequent action is very

natural and consistent with the general idea of reinforcing successful

behavior.

The activity-dependent tuning of the developing nervous system, as well

as postnatal learning and development, do well by following such a rule.

Unsurprisingly, many computational systems for engineering tasks incor-

porate versions of Hebb’s rule. However, there is an important caveat, and

you may have already spotted it. What happens if a particular neural circuit

fires, but the result is very bad for the animal, like eating something sick-

ening? A pure invocation of Hebb’s rule would strengthen all participat-

ing connections, which can’t be good. On the other hand, just weakening

all the active connections involved isn’t correct. Much of the neural activ-

ity was just recognizing the situation; we would like to change only those

connections that led to the wrong decision.

No one knows how to specify a learning rule that will change exactly

the offending connections when an error occurs. Computer systems, and

presumably nature as well, rely on statistical learning rules that tend to

make the right changes over time. You might learn that you were allergic

to walnuts by noticing over time that you broke out whenever you ate

something containing them. Neural computation learning rules use essen-

tially the same principle, and we learn more about this in chapter 9.

Given that some form of Hebb’s rule would be a good thing, what 

do we know about how it is realized in the brain? Two problems need to

be addressed. First the system must figure out which connections to

strengthen. It also must bridge the time interval between electrical 

short-term memory and the structural changes required for long-term

memory. Notice first that changing connection strengths every few

seconds wouldn’t work well, even if it were physically possible. It makes
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information processing sense to make structural changes only when a con-

nection has often proven reliable. Recent discoveries suggest at least part

of how all this happens, as follows.

Another result of coordinated activity at a synapse is to take in mole-

cules that signal the receiving cell to manufacture additional receptor mol-

ecules. Similarly, the sending side of the synapse absorbs molecules that

signal the upstream cell to provide more transmitter molecules for this

synapse. Both local and global reinforcement signals (different molecules)

also convey information on the success or failure of recent activity.

Of course, all these processes are much more complicated than I have

suggested here, and many gaps in our knowledge persist. But for our pur-

poses, the important lesson is that neural learning is moving from a

mystery to standard science. Certainly, we know enough about the details

of neural adaptation to shape theories of how our brains learn skills,

including language, and how we acquire and use knowledge. Contem-

porary theories of learning are also heavily influenced by psychological find-

ings, some of which are described in the next chapter.

82 II. How the Brain Computes



III How the Mind Computes





7 Connections in the Mind

Up to this point, we have been studying the mind by looking at its neural

and chemical structure, and have said very little about language or any

other behavior. Historically, psychologists were studying and modeling

human behavior long before anyone understood much about the under-

lying neural structures. Any plausible model of language learning and use

must agree with established psychological and psycholinguistic data as well

as what is known from neurobiology.

As an introductory exercise to behavioral studies, please name (prefer-

ably aloud) the font type (bold, italic, caps, or lower) for each word in the

first column of table 7.1, followed by the font type for the words of the

second column. You may have noticed that it was rather harder to pro-

nounce the font type in the second column, because the printed name

conflicts with the actual font type. This is the famous Stroop effect, named

for James Stroop who discovered it in 1935, using color words printed in

different colors. Such experiments have taught us a great deal about human

language and thought. One immediate lesson of the effect is that the brain

does not separate words into form and meaning. The Stroop effect is so

reliable that it is now a major tool in investigating which brain regions are

most active in resolving conflicting information.

A vast array of demonstrations of the subliminal effects of language on

action and vice versa now exist. One of the most striking examples comes

from the lab of psychologist John Bargh (Bargh et al. 1996). They reported

an experiment that cleverly primed participants with the idea of being

elderly. They did this by having the participants convert word jumbles into

sentences. Several of the trials had words associated with the elderly, such

as old, retired, and wrinkle. When they were finished, the participants were

informed that the experiment was over and they could leave. However, the



real data collection had only just begun. As the participants left the lab, a

collaborator in the hallway recorded the time it took each person to walk

from the lab to the elevator. Participants who had been given the words

related to old age walked significantly slower than participants who had

done a version of the word jumble task that did not prime the elderly

stereotype. This result sounds unlikely, but the finding has since been repli-

cated by a number of labs. Thus, it appears that unconsciously activating

a concept may influence motor processes (e.g., walking) related to that

concept.

In a striking demonstration of the effect of motor actions on language

understanding, John Cacioppo had subjects evaluate abstract ideographs

while using their hands and forearms to pull something toward themselves

or push it away (Cacioppo et al. 1993). The pulling-toward-the-self motion

was hypothesized to activate a concept of acceptance and the pushing-

away motion to prime a concept of avoidance or rejection. When the par-

ticipants were asked to rate the ideographs on a likeability scale, the images

that had been viewed during a pulling motion received significantly more

favorable ratings than those that had been viewed during a pushing

motion. Any theory or model of embodied language understanding will

need to be consistent with these and related behavioral results from psy-

chologists such as Arthur Glenberg and Brian MacWhinney.

There are also a number of techniques for directly measuring the effects

of language on thought. Much of the recent work depends on delicate

timing experiments, often also involving recording eye movements. One

kind of psychological experiment that is especially important for language

understanding involves measuring human reaction times in different cir-

cumstances. Figure 7.1 depicts a typical experimental setup from the 1970s,

when this work was started (Tanenhaus et al. 1979). A subject sits in front
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lower lower
italic ITALIC

CAPS caps

lower LOWER

bold bold

italic italic
CAPS caps



of a display on which English words and nonsense words appear briefly.

The subject is asked to press one key if the flashed image is an English word

and a different key if it is not—and to do this as rapidly and accurately as

possible. Psychologists (and we) are interested in both the amount of time

required to carry out this task and variations in time and accuracy under

different conditions.

Let’s first look at how long it takes, on average, to do one of these 

perception-reaction tasks (this can be important in driving safety). How

fast can you engage the brakes after seeing an obstacle in your path? It

takes about half a second. You can compute how far your car will go while

you are reacting and how much further it goes after the brakes are

engaged—together the total distance traveled. At 60mph in good road 

conditions, the car will go about 150 feet before stopping.

This kind of calculation can help us understand some basic facts about

how the brain computes. We saw in chapter 3 that the time for each of
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the basic processes in neural firing and signaling is about one-thousandth

of a second, or one millisecond. Let’s compare this with the average human

reaction time of half a second, 500 milliseconds. We first observe that the

speed of human response rules out any possibility that the basic opera-

tions of thought are carried out by hormones or some other non-neural

mechanisms—all of these are thousands of times too slow. The reaction

time includes the time for the image information to get from the eyes back

to the brain and the time for the motor signals to reach the muscles and

contract them. This doesn’t leave very much time for the brain to do what-

ever processing is needed to decide which button to push or whether to

slam on the brakes.

If we think of each neural action as one computing step, then our brain

is able to compute the correct reaction in around 100 steps. By way of con-

trast, computer programs (which aren’t nearly as accurate in this kind of

task anyway) take many millions of time steps to recognize an image. This

discrepancy is one of the main factors leading computer scientists to con-

clude that neural computation is radically different from ordinary com-

puting. The resulting research into how the brain computes is the keystone

of the bridge between brain and mind, and is discussed in chapter 9.

While the general human reaction time is around 500 milliseconds, the

exact time for a given task depends on many factors and psychologists

exploit this fact to study various properties of the mind. The particular

experiment depicted in figure 7.1 concerns the effects of the subject hearing

various words at about the same time she is trying to decide whether or

not a flashed letter sequence (e.g., flower) is a word of English. The exper-

iment measured the time required to respond and the number of errors

made.

Earlier work had shown that you could both improve the speed and

reduce the probability of error in such a visual reaction task by having the

subject hear the target word around the time the image was flashed. This

is a special case of the general phenomenon of priming, in which some pre-

vious experience can change the way we react to a visual or other input.

You know this from everyday life. When you are planning to buy a car,

you are much more likely to notice similar cars, without consciously

setting out to do so. Various priming experiments have contributed greatly

to what we know about language and the mind.
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Knowing that hearing a target word shortly before it is shown improves

performance, scientists tested whether this priming effect would also work

for words that were related to the unknown target word in sound or

meaning. For example, would hearing the word “rose” make one recog-

nize faster that “flower” is an English word? The answer is, this kind of

semantic priming effect does, indeed, work—the average time for recogni-

tion is a few percentage points faster when primed by a semantically related

word. Psychologists specialize in ensuring that these kinds of experiments

are reliable, and semantic priming has been replicated hundreds of times.

The priming effect is essentially the same as our common experience that

one word will often make us think of semantically related words. But the

particular experiment illustrated in figure 7.1 went further, yielding results

that were both surprising and very revealing about how words and con-

cepts are represented in the brain.

In this landmark experiment, Tannenhaus and others used recorded

speech cues that were complete English sentences, like “They all rose,” as

a possible prime for “flower.” The point is that in this sentence, the word

“rose” denotes an action, getting up, that has no close link at all to the

target word “flower.” Try to guess whether this made determining whether

the flashed letter sequence “flower” was an English word faster, slower, or

had no effect.

The answer depends on the relative timing of the speech and visual

inputs. If the misleading sentence was timed so that the word “rose”

appeared at the same time as the flash, it did make recognition of “flower”

a bit faster, so there was a priming effect even when the prime only

sounded like a word related to the target. The standard explanation of this

result is shown pictorially in figure 7.2. The boxes in the figure all depict

concepts in the mind and the lines represent various connections between

concepts. Psychologists building such models do not postulate specific

neural structures in these diagrams; the links model activation effects the

scientists see in their experiments. But these effects occur too fast to be

mediated by some complex extra processing and must be directly realized

by neural circuits.

The bottom box in figure 7.2 depicts the sound of a spoken word, “rose,”

in a phonetic alphabet. We know that the auditory system computes some-

thing roughly equivalent to this as one instance of the brain’s general 
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best-fit pattern matching. A crucial assumption is that the mental code for

the sound, “roz,” is mentally connected to both the noun (a flower) and

the verb (the past tense of rise) that share that sound. The notation used

to show connections with small triangles doesn’t matter here, but will

become important in later chapters.

The standard story in psychology is that a given sound, like “roz,” is

linked to all words with that sound; when the sound is recognized, it acti-

vates all of these words at once. In this case, activating the bottom node

in figure 7.2 leads to activation of both the noun and verb meanings of

“rose.” When the noun rose is activated, the activation can spread

(through the semantic link in the upper right of figure 7.2) to the node

representing “flower.” If the target string that the subject is trying to label

as a word happens to be “flower,” the extra activation from below consti-

tutes priming and results in faster recognition.

The psychological literature is filled with discussions of priming, spread-

ing activation, and related ideas. There is usually no specification of how

mental connections and spreading mental activation map to neural con-

nections and neural firing. Bridging this gap is an important goal of this

book that I will return to shortly.

However, we will first consider another finding from the experiment of

figure 7.1. We have seen that priming, even with the wrong meaning, can
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have a positive effect if the prime coincides with the display of the target

string. However, if a verbal cue with the wrong meaning precedes the target

by some 200 milliseconds, it can actually make the reaction time slower

than if a totally unrelated word is used. To understand how this can

happen, we go back to figure 7.2 and look at the dotted link connecting

the two rival meanings of “rose.” The circular tips on that link indicate

negative connections, following the general convention in biology, cogni-

tive science, and neural computation. As the notation suggests, the two

rival meanings of a word are connected in such a way that increasing the

activation of one decreases the activation of the other. This idea of mutual

inhibition is very common in neural systems and is widely used in models

such as those I will discuss later. If we assume that the words are linked in

this way, then the negative effect of a false prime can be explained nicely.

As the correct (verb) meaning of “rose” becomes more active, the noun

meaning is reduced in activation, making recognition of the semantically

related word “flower” harder.

A wide range of psychological findings can be explained using models

that have mechanisms no more complicated than those in figure 7.2,

although the full models can get intricate. The general idea of mental

concept nodes that are connected by positively and negatively weighted

links and have varying degrees of activation has proved to be very power-

ful in cognitive science. The graded activity of neurons and the way they

combine multiple weighted inputs can be approximated, at the computa-

tional level, by probability theory. Later I will discuss how probabilistic and

other abstract models of neural computation apply in a broad range of

applied and scientific studies. For example, such models are widely used

to describe how people normally produce speech and how various stress

conditions lead to characteristic speech errors. Such spreading activation

theories of mental function also provide the basis for linking brain to

mind.

The core idea is remarkably simple—mental connections are active neural

connections. There is every reason to believe that ideas, concepts, and the

like are represented by neural activity. The exact circuitry involved is uncer-

tain, but it suffices for us to assume that some stable connection pattern

is associated with each word, concept, schema, and so on. I will often use

a shorthand notation in which individual nodes in a connection diagram

are labeled with names of concepts and so forth. This is not intended to
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suggest that there is a single dedicated neuron for each concept; that is

impossible for reasons I explain in chapter 9. However, the notation is

intended to imply that specific connection patterns are associated with par-

ticular mental constructions, as a wide range of experiments show.

The priming effects of neural activation can be deep and subtle. You may

have noticed a tendency in writing to reuse exactly the same word several

times, even though it is not good style. The obvious explanation for this

is that the neural circuitry for a recently used word is active and thus tends

to win the competition with other terms conveying the same notion. A

similar unconscious priming effect can be shown in the choice of gram-

matical form used to express ideas.

English, like other languages, has several ways of expressing the same

thought. For example, you can say either

(a) John gave the book to Mary.

(b) John gave Mary the book.

Different syntactic forms sometimes convey subtle differences, but often

it is just a question of style. Some recent psychological experiments have

shown that activation priming can affect the choice of style without the

speaker being at all aware of it (F. Chang et al. 2000).

In these experiments, a subject is asked to describe what is happening

in a cartoonlike drawing of a simple scene. For our two example sentences,

the scene could be a male figure handing a book to a female figure. The

goal of the experiment is to test the effects of the subject’s recent experi-

ence on choosing either form (a) or form (b) to describe the scene. Before

he or she is asked to describe the scenes, the subject is presented with some

example scenes along with descriptions. If the training examples were pre-

sented in form (a), the subject also tended to use this form. Similarly, a

subject instructed with examples of form (b) tended to give descriptions

in that form.

Psychologists explain the results of these experiments in terms of spread-

ing activation. As in the previous examples, residual activation in the cir-

cuits for one grammatical form gives that form competitive advantage in

structuring the output sentence. Many other examples of subtle psycho-

logical effects are best explained as results of neural activation and there

is now general agreement that specific neural activation patterns charac-

terize each of our myriad mental processes.
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No one has established experimentally how words and concepts are rep-

resented by neural structure and activity, and this is a lively domain of

modeling and theorizing. You may have heard theories that suggest all of

our concepts are completely distributed like a hologram over large sections

of the brain. Such systems of representation have interesting mathemati-

cal properties and they are useful in applied computing, but we know our

brains are not organized this way. Existing studies have eliminated the two

extreme possibilities: either that each concept is concentrated in a single

neuron or that all concepts are spread over the same neurons. But, there

are still many theories of the neural representation of knowledge. Fortu-

nately for us, all of the realistic possibilities are consistent with the rela-

tively general requirements of a neural theory of language.

Sufficient progress has been made in the relevant areas of biology, 

psychology, and linguistics for scientists to formulate and test specific

hypotheses involving neural theories of language. One recent example

involves the mirror circuitry described in figure 5.2, which showed the acti-

vation of various brain areas while subjects were viewing simplified action

videos. Recall that the evidence from this figure suggests that viewing an

action, such as kicking, leads to increased brain response in related motor

control areas. Would these same motor control areas be activated by reading

or hearing about functions such as kicking? Some experiments aimed at

resolving this question are using fMRI imaging as well as behavioral 

measures.

These behavioral experiments use differences in reaction time, but rely

on interference rather than priming (Bergen et al. 2003). The basic task is

very simple—the subject is shown a cartoon drawing followed by a single

word and asked to indicate whether or not the word is a good caption for

the drawing. Please look at the three labels in figure 7.3 and see if any one

of them seems a bit harder to decide than the other two. Not everyone

notices the difference, but response times to examples like the third one

are reliably slower when measured experimentally. This is predicted by the

following reasoning: it is quite easy to respond to pairs where the word

and drawing fit together well; what’s interesting is the time it takes the

subject to report a mismatch. In the third example of figure 7.3, KICK, 

the word does not fit the cartoon drawing, but is the name of another

action using the same effector (mouth, hand, or foot as in the brain images

of figure 5.2). Suppose, as the theory suggests, that both the pictures and
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the words activate the same motor circuits. Reporting a mismatch between

a cartoon of running and a word such as kick that also involves the feet

should then be somewhat slower. When different effectors are involved, as

in the middle example (DRINK), reporting a mismatch is measurably easier.

Additional recent experiments using word pairs instead of images yield

similar results.

So, considerable converging evidence supports the neural embodiment

of language and thought. In this book, we invoke detailed circuitry when

it is known, as in the knee-jerk reflex (chapter 5) or color perception

(chapter 8), but are usually content with general descriptions and dia-

grams. While the details remain unclear, the general idea that mental con-

nections are active neural connections is universally accepted and is the

foundation for much research in various fields of psychology, including

psycholinguistics and cognitive psychology.

This way of linking the mind to the brain is central to our story, but it

must be spelled out with precision. The connectionist and neural for-

malisms described in chapter 9 provide us with the technical tools we need

to understand the detailed computational models that bridge molecule to

metaphor. But before getting into the computational details, we need to

learn more about human words and concepts, and their embodiment.
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8 Embodied Concepts and Their Words

The first seven chapters summarized our magnificent neural machinery,

how it develops, and how it can be studied as an information processing

system. Almost all of that discussion applies to animals in general and

there is much more to be learned by studying animals as information pro-

cessing systems, adapting to their environment and goals. But this book is

about one special adaptation, language, that is unique to humans. Human

conceptual systems are inextricably linked to language. These have been

studied in various branches of cognitive science, usually without a specific

concern for neural embodiment.

The driving question of the book remains: “How is the brain able to learn

and understand language?” In chapters 8 through 14, we examine what is

known about the learning and use of concrete words and concepts. This

chapter reviews some of the basic findings on how people learn and rep-

resent concepts. In chapter 9, I describe the technology of neural compu-

tation needed to bridge between the biology of chapters 4 through 6 and

the behavioral findings of chapters 7 and 8. Chapters 10 through 12

explain our core embodied words and concepts and present a computa-

tional model of how they might be learned. Then, in chapters 13 and 14,

I illustrate the active schemas underlying verbs and demonstrate a biolog-

ically plausible model of how children might learn them.

Chapters 15 through 19 extend these ideas to abstract concepts and 

to more complex conceptual combinations. Chapter 20 brings all these

ideas together in a biologically plausible model of how people under-

stand metaphorical language in news stories. Finally, in chapters 21 through

27, I show how the embodied neural approach to language explains

grammar—the rules that link form to meaning—and how children learn

grammar.



Most of the data that I use comes from cognitive science and was largely

developed without a specific concern for its neural substrate. However, as

neural embodiment is our central focus, I relate the behavioral data to the

brain. In some instances detailed physiological or computational model-

ing results support the bridging hypotheses linking behaviors to the brain,

but in other cases there are only plausibility arguments based on general

principles of computation and neuroscience.

The basis for concepts is categorization. As we saw in chapter 2, the

amoeba categorizes. It can tell food from nonfood chemically, and this is

a simple form of categorization. The visual system of the frog evolved to

categorize scenes into ones involving potential prey, predators, shelter, and

so on. People have 100 million detectors in the retina and only 1 million

fibers going to the brain. This reduction of 100 to 1 involves lumping

together different combinations of light patterns. Categorization occurs

whenever a lot of data are boiled down to a few values. This happens in

the retina and everywhere else in the brain, wherever a number of neurons

signal to another neuron. Categorization is not just a function of language.

All living systems categorize.

Some philosophical traditions ask us to rise above our human catego-

rizations and see the world as it really is, assuming some basic structure of

nature that is independent of people. However, this is impossible for neural

beings who evolved to do best-fit matching of input to the current context

and goals. We have good reason to believe that there is a real physical

world, but not that there is a privileged way of categorizing it. People

evolved to develop categories that match their situation and needs. These

must be consistent with the facts about the physical and social environ-

ment or they wouldn’t be of any use. But my categorization of trees is not

at all like that of an arborist.

Besides the simple categories linked directly to perception and action,

there are also more complex conceptual categories. The major concern in

this book is with how people connect low-level information at the neural

level with higher-level conceptual categories such as house, ugly, ask, truth.

Walking down the street, we categorize the pavement versus the street,

things that move versus things that stand still, things to step on versus

things not to step on, people you know versus people you don’t know,

dangerous versus nondangerous things. How can a neural system form

conceptual categories? To answer this question, we need to know more

about conceptual categories.
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When a neural system is categorizing, we would not expect categories

to be all or none, because neural systems have weighted connections 

and degrees of firing—we naturally think of degrees of beauty or truth.

That doesn’t mean that you can never have all-or-none categorization,

because neural systems also have thresholds above which they do fire 

and below which they don’t. In addition, mutual inhibition in a system

can yield all-or-nothing behavior as in the forced-choice experiments 

of the previous chapter. People routinely make binary decisions (e.g., Is 

the displayed string of letters an English word?) even when they are not

sure.

So it is natural to have all-or-nothing categories, and it is also natural to

have graded categories. What is it about neural systems that gives rise to

the nature of human categories? The purpose of this chapter is to explain

the little we know about that question and a lot of what we know about

higher-level conceptual categories.

In the classical treatment dating back to the Greeks, categories were

defined sets of necessary and sufficient (all or none) conditions, as in a

mathematical definition. The assumption has been that all categories are

like this. When we do mathematics, we can make up these kinds of cate-

gories and understand them, but we shouldn’t expect all of our naturally

learned categories to consist of necessary and sufficient conditions. People

evolved to have some all-or-none responses to categories seen as danger,

flight, mating, and so forth. However, we have also evolved to see things

in degrees.

The structure of most categories is graded. Eleanor Rosch, among others,

has done studies in which she gave subjects cues such as “A robin is a bird,”

“A chicken is a bird,” “A pelican is a bird.” She asked the subjects to

respond true or false to each statement. The responses of true were faster

for the statements involving a robin than for those with chicken or pelican.

While each of these kinds of birds is definitely a bird, the robin is a better

example of a bird than a chicken or pelican. So the category is graded. This

is an instance of an all-or-none category with clear boundaries that still

has gradations within it. The examples are clearly all birds, but some are

seen as more typical than others (Rosch 1973).

This result also applies to numbers. For instance, good examples of odd

numbers are 3, 5, and 7. But 4987 is not such a great example. This effect

comes from our greater familiarity with and ease of manipulation of the

lower numbers. As a general point, the kind of reasoning or processing that
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you usually do with particular members of a category has an effect on the

structure of the category.

There are also examples of cognitive reference points in the numbers:

100 and 1000, are cognitive reference points. In a true/false response test:

“99 is close to 100” is always much easier than “100 is close to 99.” A cog-

nitive reference point is a standard, which has a special cognitive status.

It is a prototype. Many categories have prototypical elements—for example,

if asked to think of a tool, most Americans will pick a hammer or screw-

driver, not a shovel or a wrench.

Colors present an interesting example of categories with prototypical

members. People all over the world largely agree that a prototypical red is

rather like the color of a fire engine and not any of the many other 

shades of red. These focal colors are universal because they depend on the

detailed physiological mechanisms of color vision, which were discussed

in chapter 4. We will look at this phenomenon in more detail later in this

chapter.

Several kinds of prototypes exist, each involving different styles of rea-

soning. The cognitive reference point is used to make estimates and also

for location in semantic space. Graded prototypes are used for linear scale

reasoning. For instance, how tall is someone? If A is taller than B and B is

taller than C, then A is taller than C. Social stereotypes are used for snap

judgments, sometimes made about people in a social context, and they are

challengeable. Examples include “Blondes are dumb,” and “Computer

science students are geeks.” The way people are categorized within their

society can have a profound influence on their lives—consider caste and

racial categories or medical diagnoses (Bowker and Star 1999).

Typical case prototypes are used for easy reasoning about common cases.

For instance, if someone says that there’s a bird outside, we expect to see

a small songbird, not a great auk or an ostrich. In an experiment, Lance

Rips (1995) told a group of subjects that all the robins on an island got a

certain disease and asked them if they would expect the ducks to get it.

Then he told another group of subjects that all the ducks on this island

had a certain disease and asked if they would expect the robins to get it.

The subjects were more likely to expect the ducks to catch a disease from

the robins (a typical bird) than vice versa. The inference goes from the

typical case to the category as a whole, in a way the typical case stands for

the category as a whole.
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Ideal case prototypes are used for standards of judgment or comparison.

They are different from typical prototypes as in the typical husband versus

the ideal husband or the typical used car versus the ideal used car. Paragon

exemplars are ideal individual cases. Nelson Mandela is a paragon exem-

plar for politics. Paragon exemplars are used for describing a person/thing

as excellent; for instance, “That is the Cadillac of vacuum cleaners.” The

antiparagon exemplar is the worst individual case of a category. Richard

Nixon is an antiparagon exemplar for politics. Extreme exemplars are the

actual members of a category that we perceive to be the best or the worst

members of that category. Commercials use paragons and antiparagons a

lot. In reasoning you also use these prototypes as positive and negative

role models.

Salient examples are used to make probability judgments. For instance,

after a famous DC-10 crash, people judged all DC-10s to be unsafe and

wouldn’t travel on them, even though DC-10s had the best overall safety

record at the time. After the mad cow disease scare, fewer people would

eat beef. The probability judgments are often based on prominent exam-

ples, not rational calculations.

Radial categories are very complex, particularly interesting categories.

One famous example of a radial category is “mother.” What counts as a

mother? The typical cases of mother are marked by birth, nurturance,

genetics, marriage, and culture. All of these features apply in the central

case, but in many cases, such as “stepmother,” only some of the roles 

apply. Some cases may have only one feature. For instance, the woman

who donates genetic material to a child, but doesn’t give birth to or raise

the child is a kind of mother who satisfies only the genetic feature.

These criteria are important to understanding what a mother is. For

instance, a working mother is defined relative to nurturance. A woman

who gave up her child for adoption but is still working is not a working

mother. The term “working mother” presupposes that the mother is raising

the child. If a particular case satisfies all the criteria, it is a central case of

the category. If only some of the criteria hold, the case is a less central

member of the category, but for certain purposes only one criterion needs

to be satisfied for something to be a member of the category.

Another kind of radial category has one central case (as opposed to a set

of models) with other cases as its extensions, for example “harm.” The

central kind of harm is physical, but there is also emotional, financial, and
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social harm, which are metaphorical extensions of the central case. We will

explore the embodiment of metaphorical language in chapters 16 and 20.

Radial categories have gradations; members are better or worse examples

of the category. A purely genetic mother, for instance, is not a great

example of the mother category. Because the central case in radial cate-

gories provides the basis for extension to less central category members,

we often use it cognitively. The central mother has all of the genetic, birth,

nurturing, and cultural features. In radial categories, better examples have

more features of the central case and worse examples have fewer features.

Studying categories helps us address the question, given our neural

system, how can we get such complicated structures, with so many forms

of reasoning? The answer needs to cover all of the forms of reasoning 

and types of cognition involved. We need a theory that can account 

for the totality of evidence from experimentation and other means of

investigation.

How do basic level categories arise? Brent Berlin worked on how native

people in Chiapas categorize plants (Berlin et al. 1973). With a botanist,

he examined how plants were named and identified, first looking at how

many plants people could name accurately according to the botanist. He

found that people sometimes used one name for a plant when it was iden-

tified from a distance and another when it was identified from close up.

The people were able to identify 800 to 900 species of plants. At the genus

level of biological categorization, the botanist determined that the people

of Chiapas were 90 to 95 percent accurate in identifying the plants. At the

species and subspecies level, though, they were only about 35 to 50 percent

accurate. Above the level of genus, there was much less accuracy. The genus

level of distinction is most important for ritual and culture, and the words

to describe the genus level are much shorter.

In Chiapas, the botanists found that there was usually only one species

of a plant in each ecological niche, but all the plants in a niche looked

pretty much alike. The genus involves differences we can see, while the

species distinction involves breeding, which is not easy to see. So, it is

easiest for us to distinguish between things at the genus level. For instance,

it is easy for us to tell sheep from goats, redwoods from live oaks, but harder

to distinguish coast redwoods from giant sequoias.

Berlin looked for defining characteristics of the genus and noticed that

they support gestalt perception; we can pick them out from a distance. He
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also found that children learn the distinction between genera earlier than

the distinction between species. Basic levels are optimal for interacting

with the world with our bodies, perceptual systems, motor systems, and

so on. That means the basic levels are not defined by the external world,

but by our interactions in it. Much of this ability has to do with the struc-

ture of our bodies and our brains. We have evolved to make certain per-

ceptual distinctions and carry out various motor programs; it is no surprise

that these distinctions play a prominent role in the way we form cate-

gories. The general term for this is affordances; we categorize the world

around the possibilities it affords us.

Eleanor Rosch found that this categorization happens with ordinary

objects around us. If you look at a hierarchy of categories, such as furni-

ture > chair > rocking chair, the middle of the hierarchy is a basic level cat-

egory. In general, basic level categories have mental images associated with

them. Chairs evoke an image, but generalized furniture doesn’t. We have

motor programs for interacting with these things. For instance, we have

standard motor programs for interacting with a chair, but there’s no motor

program for interacting in general with furniture. In addition, much of our

knowledge is organized at the basic level. We know a great deal about how

to interact with chairs and tables, but little about furniture in general. Aside

from a few very general categories such as animals and vehicles, children

learn basic level distinctions first.

Let’s look more carefully at words and how we learn them. A central

question is the relationship between words and the world. The traditional

view was that the world determines which concepts are needed and words

are arbitrary labels different languages use for the fixed set of concepts that

the world provides. But common sense tells us that our concepts depend

on how we interact with the world. This can differ widely among cultures

and professions. Nevertheless, all people share the same underlying phys-

iology and we now know that many concepts and their words are deter-

mined directly by their embodiment. For example, think of the short words

in English—hand, hear, hit, hot, hungry, happy.

The central insight is that the interaction of people with their physical

and social environment defines various semantic spaces, such as the space

of colors, emotions, or dance steps. Languages differ in how they talk about

each of these semantic spaces, but all languages must have ways of express-

ing the conceptual primitives that all people share.
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The paradigm example involves the words for colors in the languages of

the world. Berlin and Kay (Berlin et al. 1969) showed that, in languages

around the world, basic color terms had essentially the same focal colors,

even though boundaries around color categories varied. The neurophysi-

ology of color vision was seen as directly providing the best explana-

tion. There are now a number of competing explanations for the com-

monality of focal colors, but they all are based on embodiment (Kay et al.

2005).

The eleven basic color terms in English are red, blue, yellow, green,

brown, orange, purple, pink, gray, white, black. The basic color terms are

all short words; they are not based on a color of a thing in the world, such

as gold, copper, or blonde; they are not subsets of other colors, such as

scarlet, which is a kind of red; and they are in general use. Languages have

from two to twelve basic color terms. The New Guinean language Dani has

two, Russian and Turkish have twelve.

In the 1950s, color names were believed to be arbitrary in different lan-

guages. The assumption was that you couldn’t predict the ranges of these

different color terms. Paul Kay and Brent Berlin did a study in which they

asked where the boundaries of color terms were and also what colors from

a color chart were the best examples of each term. Between their own

experiments and the literature, they surveyed about 100 languages. They

found that the boundaries for different languages were somewhat differ-

ent, but the best examples were quite similar. This study has since been

greatly expanded and the basic result confirmed (Kay et al. 2005).

For instance, if a language has one color term that covers both blue and

green, the best examples selected for that color are usually either central

blue or central green. Central blue and central green are the same hues

chosen by English speakers as the best examples of blue and green, respec-

tively. Some variability in the central colors may be caused in part by

gender differences. Do not argue with someone of the opposite gender over

whether something looks blue or green. In some cultures, certain colors

may be environmentally very prominent (such as the color of a certain

type of plant), and these colors may be chosen as best examples of their

category rather than the physiologically central color.

Dani is a language that has two colors, light-warm (covering white, red,

yellow, and orange) and dark-cool (covering black, blue, green, and purple).

Speakers of Dani generally chose central red, central white, or central
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yellow as the best examples of the warm category and central blue, central

black, or central green as best examples of the cool category. A given

speaker might choose different central colors as best examples on differ-

ent trials.

There is also considerable evidence on how the color word system

evolves over time—usually when its community encounters other lan-

guages. Figure 8.1 outlines the development as speakers of a language (like

Dani) that has only two color words come to express further distinctions.

Systematically, when a third word is added, it distinguishes white from

warm; a fourth term will separate black from cool, and so on. Since this

progression appears to hold very widely, it is further evidence that human

color terms are anything but arbitrary. Eleanor Rosch tried to teach Dani

speakers two types of color systems, one based on the English system and

one random system in which the color terms didn’t necessarily include

central colors. The Dani speakers easily learned the English system, but

couldn’t learn the random system. Why is this?

The focal colors are determined by the properties of the color pathways

in the visual system (Dowling 2000). Color is largely determined by cones

in the retina and subsequent cortical processing. Three kinds of retinal

cone cells respond preferentially to long, medium, and short wavelengths

of light. People who have only two types of cones are called color-blind.

Further along the color pathway are neurons with center–surround 
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receptive fields. These cells respond maximally to configurations of one

color in the center and a contrasting color surrounding, such as a red center

and a green surround. Our perception of color is based on the relative

strengths of the signals from different cells sensing light from each point

in space. A strong signal from a red center–green surround cell is perceived

as red. If you look hard at something that is bright green and quickly shift

to something white, there will be a pale pink tinge to the new object.

Why is this interesting? It shows that there are human universals of

color; color isn’t arbitrary. In addition, it shows that color is not out there

in the world. Colors are not individual wavelengths or collections of adja-

cent wavelengths. The color we perceive depends on the interaction

between the illumination, a reflecting object, the reflections of nearby

objects, and the detailed structure of our eyes and brains. We see in chapter

15 that a person’s concepts and language can affect how he or she per-

ceives color.

A child learning her native language has the task of figuring out how

her community labels phenomena, such as colors, that she is experienc-

ing. We need to understand in detail how our brains are able to do this.

The next chapter summarizes how the relevant facts about the brain can

be captured in computational models and used in theories of language

learning. The following chapters present some of the fascinating results of

studies about how children learn their first words.
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9 The Computational Bridge

In previous chapters, we saw how mental activities such as recognizing

words could be described in neural terms. People are generally comfortable

with the idea that words or concepts and the connections among them are

entities in the mind. It also seems reasonable, in an informal way, to asso-

ciate each mental concept with some neural structure and imagine con-

ceptual links being captured as active neural connections. As we saw in

chapter 7, we can explain various kinds of simple mental functions, such

as priming or reminding, as direct consequences of spreading activation at

the neural level. That is, mental connections are active neural connections. But

there is a lot more to language and thought than simple spreading activa-

tion. We need to spell out how these more complex mental functions can

also be realized as active neural connections.

Even to begin to explain the intricate processes of language learning and

use requires a way of describing language and thought processes. A long

and distinguished tradition, going back at least to the Greeks, has tried to

define some formal “laws of thought” characterizing meaning and rea-

soning. Attempts to define exact grammatical rules for language go back

to Sanskrit scholars of many centuries ago. The current work of many lin-

guists is concerned with trying to describe the form and meaning of 

language in strict mathematical formalisms, deliberately avoiding any 

connection to human bodies or experience. Another group, the cognitive

linguists, studies how language interacts with other mental functions, but

they have lacked formal notations for expressing their insights.

Recent developments have suggested the possibility of finding a means

of scientific expression rich enough to express the links of language to

embodied cognition and also sufficiently rigorous to support simulation

and direct experimental testing. The scientific notation that I adopt here



is neurally inspired and based on the abstract model of neural computa-

tion presented in this chapter. The resulting methodology for describing

language is discussed in chapters 21 through 24 and is the core of our treat-

ment of grammar.

Even if we have a good way of describing the complexities of grammar, how

could we explain language use in terms of neural structures and activity? The

key insight is that, for many purposes, the brain can be viewed as an infor-

mation processing system. All of the brain’s intricate circuitry and exquisite

processes of development and learning evolved to enable people to extract

information from the environment and use it to achieve their goals.

Chapter 2 presented a general discussion of the information processing

perspective on the functioning of animals. I will now explain some of the

detailed mechanisms for describing neural computation that cognitive 

scientists have developed. The goal of their effort has been to establish 

a precise scientific methodology for specifying how the functioning of

neural structures supports various behaviors. A theory of neural informa-

tion processing is just what we need to build a bridge between brain and

mind.

Any such theory will need to provide a neural account of three crucial

information processing functions:

1. How are words and concepts represented in the brain?

2. How do these representations cooperate in mental activity?

3. How does the brain learn language?

There are no definitive answers to any of these questions, but enough is

known to seriously constrain theories of language and thought. Notice that

even the framing of question 2 assumes that any answers must explicitly

involve the massive parallel character of our neural architecture.

Some insightful work was done on neural computation in the nineteenth

century. The two greatest psychologists of the time, Sigmund Freud and

William James, clearly understood that mental functions could be

described as neural operations. It is no coincidence that they both started

as biologists. Figure 9.1 is a mental connection diagram taken from Freud’s

early Project for a Scientific Psychology (Freud 1895/1950), of which he wrote,

“The intention is to furnish a psychology that shall be a natural science;

that is, to represent psychical processes as quantitatively determinate states

of specifiable material processes, thus making those processes perspicacious
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and free from contradiction.” Freud later abandoned this project, and it

remained largely unknown until fairly recently.

William James’s 1892 text, Psychology: Briefer Course, contains several of

the key ideas of neural computation and learning: “The amount of activ-

ity at any point in the brain-cortex is the sum of the tendencies of all other

points to discharge into it. . . .” The same section also anticipates Hebb’s

(see chapter 6) learning rule: “When two elementary brain processes have

been active together or in immediate succession, one of them on recur-

ring, tends to propagate its excitement into the other.”

Neural Computation at Mid-Century

The idea of neural computation as a theory of mental activity was largely

dormant for a half-century, until the 1940s. We have already met Donald

Hebb who, in addition to his rule of coincidence learning, pioneered in

thinking about the group behavior of assemblies of neurons. Working at

about the same time, Warren McCulloch and Walter Pitts were more con-

cerned with design of particular neural circuits, and this began the close

cooperation with computer science and engineering that remains a major

feature of current work on modeling neural computation.

The advent of electronic computers, starting in the 1950s, had a pro-

found impact on how scientists thought about the information processing
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in the brain. Some of the basic ideas of electronic computers and pro-

gramming, described in chapter 2, were immediately put to use in trying

to model intelligence—but in two quite different ways. For most computer

scientists, the goal was producing intelligent behavior and the structure of

the brain was considered too complex and too mysterious to worry about.

They focused instead on rules and representations that described mental

functions in conventional computer programming terms. This functional

approach to producing machines with humanlike abilities became the field

of artificial intelligence, which continues to play a major role in cognitive

theories and many practical applications such as expert systems for plan-

ning and decision making.

But the availability of powerful computers also enabled a radically dif-

ferent approach to building intelligent systems. Some scientists of the 1950s,

most famously Frank Rosenblatt, sought to exploit the learning abilities of

the brain by modeling collections of neurons to yield smart machines. The

idea was to build (or simulate on an ordinary computer) a system that had a

large number of neuronlike computational units, each randomly connected

to some others. This research focused on discovering and testing training

mechanisms that would enable such systems to learn from experience. We

saw in chapter 6 that Hebb’s coincidence learning rule does not enable a

system to learn from its mistakes, so new ideas were needed.

Following what was already known about nature, all the learning rules

in computational models focus on changing the strength of connections

between (model) neurons. Ideally, one would like a rule that weakened

connections that caused the system to make an error. But even in the sim-

plified computer models for recognizing printed letters, thousands of

neural connections participate in each decision, and there is no obvious

way to know which were most responsible for the mistake.

Rosenblatt and others developed formal versions of an intuitively

obvious idea. When the model network guessed wrong, all of the connec-

tions to the wrong guess were weakened by a small amount and the con-

nections to the right answer were made a bit stronger. For certain simple

networks, Rosenblatt proved that such rules would learn to solve any problem

that was in their range. This caused great excitement for a while, until it was

shown that many natural tasks could not be learned by rules of this kind.

For example, such networks can not compute whether two inputs have the

same value (both are 0 or both are 1).
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The following two decades again saw relatively little interest in neural

computation, until the arrival of the so-called new connectionists around

1980. This latest round of biological intelligence modeling has gone well

beyond previous attempts and provides the technical foundation for the

rest of this book.

Neural Computation and Connectionist Models

All scientific work is based on simplification, and many scientific break-

throughs rely on finding a simpler way to view some complex phenome-

non. But even our brief tour of neural structure and modification presents

a picture of baffling complexity. How could all these facts about the brain

and its operation help us understand how it learns and processes language?

What we need for a neural theory of language is a way to abstract away

from the biochemical details of brain function while preserving the infor-

mation processing properties of neural systems that are essential for mod-

eling human language and thought. This was also the goal of Freud, James,

McCulloch, Hebb, Rosenblatt, and others, but our current theories of

neural computation required major advances in both biology and compu-

tation to be developed and exploited for modeling intelligence.

We have already used some of the basic principles of neural computa-

tion informally in earlier chapters. If you recall the knee-jerk reflex of figure

5.1, the discussion was based on a simplified story of neural activity as a

numerical quantity that could have positive or negative weighted con-

nections to the receiving neuron, promoting or inhibiting its firing. At a

more cognitive level, the discussion of priming effects in naming words

(see figure 7.2) was also in terms of numerical quantities of “activity”

spreading among connected concepts.

Contemporary neural computation modeling techniques allow both of

these domains (biological and psychological) to be expressed in the same

formalism. They also enable us to describe theories of how complex cog-

nitive operations can be carried out at the neural level. This is clearly a

cornerstone of any attempt to scientifically bridge mind and brain.

One of the beauties of the theory of neural computation is its simplicity.

We saw in chapter 4 that a neuron transmits signals as individual “spikes”

that depend in complex ways on the internal state of the neuron and its

combined input. But the receiving units use only the number of spikes per
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second, or signal frequency. So in the computational theory, neural sig-

naling is captured as a single numerical value, corresponding to this

spiking frequency. Neurons are modeled as simple computational units,

each of which combines incoming numerical signal values and computes

the appropriate output signal strength. The output signal is then trans-

mitted to all of its downstream neighbors, and the process continues.

In the most common models, each unit computes its output signal based

on the weighted sum of its inputs. In such models, neural learning is 

represented as changing the weight on the incoming connections to each

model neuron. The details can get complicated, but the basic theory needs

no additional assumptions beyond weighted combinations of numerical

signals. Such models are simple enough for people to understand and 

simulate on computers, but they are also enough like real neural func-

tioning to yield scientific insights. It is possible, but usually not necessary,

to extend the models to capture additional details of neural behavior.

We can already see that these neural computation models have several

crucial properties needed to explain how the brain computes the mind (see

table 3.1). The most important and striking feature is massive parallelism:

all of the units in the model (like those in the brain) can be computing at

the same time. This contrasts starkly with a conventional computer, which

has a single central processing unit. In human brains, it is this massive par-

allelism that allows our relatively slow neurons to respond to visual input

fast enough for our species to survive in tropical or urban jungles. In sim-

ulations, the numerically valued signals and weights allow the models to

make graded judgments, not just yes/no decisions, again like the brain.

The very wide connectivity, with each unit connected to thousands of

others, permits our models to be sensitive to many contextual factors, as

we know any system that understands language must be.

Representation: Holograms and Grandmother Cells

The mechanisms of neural computation are quite general; in fact they

could be used as a universal programming language, as described in 

chapter 2. The many research groups working in this field agree on the

basic principles of neural computation, but differ widely on how they 

use the general ideas to model and theorize about neural and mental 

processing.

110 III. How the Mind Computes



One central question is, How many neurons are there in the basic com-

putational or conceptual unit? Our discussion of the brain–world model

was expressed in terms of a specific unit for each function. If we think of

each unit as a single neuron, this would be an extreme “grandmother cell”

theory, in honor of the one cell that would fire whenever you saw your

grandmother. At the other extreme would be the holographic theory in

which the core concept of your grandmother would be spread over mil-

lions of cells that also represented apple pie, the American way, and all the

other concepts you know. No one knows exactly how concepts are repre-

sented in the brain, but it is clear that neither extreme theory can be right.

I will give an idea of why this is so.

The simplest form of the grandmother cell theory makes no sense; any

neuron has meaning only in terms of its connection patterns in a circuit.

A possible, but also provably false, variant is that everything you know

about your grandmother is linked to a single cell that is active if and only

if your grandmother comes to mind. There aren’t enough cells in the brain

to dedicate one to every possible concept. Furthermore, such a coding

system would be crippled by damage to a single key cell and would also

have no way of representing graded concepts.

Spreading all the concepts over all your linking cells is equally implau-

sible. If it takes a particular pattern over all the neurons to represent your

grandmother, what would represent your whole extended family? If think-

ing about one thing activates all your concept neurons, how would you

think about two things? Also, if a concept requires a pattern of millions of

neurons, how could the brain express relations among concepts such as “a

rose is a type of flower,” as illustrated in figure 7.2. Despite heroic efforts,

no one has shown how to model even the most basic operations of logic

and reasoning with holographic representations.

In fact, there is compelling evidence that the neurons in the brain have

specific, but overlapping functions. In our world–brain simulation of pre-

vious chapters, several people in China would have overlapping responsi-

bilities for responding to various combinations of visual features. This has

the obvious advantage of error tolerance—if some neurons die (which they

do) the system can still function adequately. This overlapping function

arrangement also has computational advantages. By pooling the activity

of several neurons, the brain is able to judge differences finer than could

be detected by individual cells in the retina.
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Excluding the extreme hologram and grandmother cell theories still

leaves a wide range of possibilities for how many neurons capture a

concept and how much the same neuron is used to model many disparate

concepts. I lean toward the low end, with each concept being represented

as the activity of a focal cluster of 10 to 100 neurons connected to other

such clusters. The details don’t matter, but it is important to have explicit

representations of concepts and the relations among them. For simplicity,

we will use diagrams with a single node for each concept, but this should

be read as shorthand for the small group representation.

Spatial and Other Maps

Neural representation is also characterized by dozens of systematic maps—

collections of linked neurons with related functionality. We have talked

several times about spatial maps. Starting with the retina, the neurons of

the visual system are laid out in the brain in maps, according to the posi-

tion in space that excites them. Other brain areas are laid out in system-

atic maps based on other properties; for example, the auditory cortex has

maps organized by pitch. Sensory and motor cortices have maps based on

the body part involved. This is particularly striking in figure 7.2, showing

that video sequences depicting various motor activities differentially acti-

vated different parts of the motor map.

Neural maps also play an important role in theories and models of brain

function. Some explicit computations in visual maps form a central part

of Regier’s model of word learning (see chapter 12). More generally, there

is reason to believe that spatial maps are the key to understanding how

the brain’s widespread activity is coordinated. We are situated and act in

physical space. Any mechanism linking our perceptions to actions must

include an encoding of where to act, and neuroscientists are learning how

the brain does this. At a more speculative level, some leading theories of

memory for events suggests that the hippocampal region of the brain uses

spatial setting as the organizing principle in remembering episodes. That is,

we organize our memories of events based on where they happened (Nadel

et al. 2000).

But these maps are all relatively static structures and change very little

in normal life. We also need to know how the brain represents and uses

new ideas, like all the great ones you are getting from reading this book.
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The discussion here focuses on how entities and relationships are repre-

sented and learned; more complex forms of knowledge will come up in

later chapters.

Relations: Triangle Nodes

In particular, our models make extensive use of the idea of specific neural

realization of concepts and their relations, such as those in figure 7.2. In

the discussion in chapter 7, we considered the little triangles connecting

concepts as just a convenient notation. In fact, the triangles represent an

important theoretical stance on the structure of knowledge in neural com-

putation models. If concepts are represented compactly, the connections

between them can also be captured by small groups of links, which is what

triangle nodes are intended to convey. Triangle nodes also depict a “2/3”

activation rule that has proven to be very useful in neural computation. A

triangle node is the graphical representation of a small network linking

(the clusters for) three concepts, with the property that strong activity in

any two of the concepts activates all three. We can see how this works and

why it is useful with the help of figure 9.2.
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Figure 9.2 depicts a tiny fragment of what someone might know about

food, in the triangle node format. All theories of the mind assume that

there is some capability for representing roles (e.g., has-taste) and fillers

(e.g., salty). Triangle nodes depict a neurally plausible way that roles and

fillers might appear in the brain, and we use this theory extensively in this

book. For example, the leftmost triangle node represents the belief that

ham tends to taste salty. Since activating two inputs of a triangle node

leads to the activation of the third input, our little system can answer such

questions as “What do you think is the taste of ham?” Activating “taste”

and “ham” would activate the (neural cluster of the) leftmost triangle

node, leading to the answer “salty.”

The same circuit can function in another, more interesting, mode.

Because of the 2/3 property, activation of “taste” and “salty” (by direct

tasting, a story, etc.) would tend to activate “ham” along with all other

salty foods. Now if “color” and “pink” were also activated at the same time,

“ham” would be double activated, but not sardines. That is, the network

of figure 9.2 is also able to activate the food that is the best match to some

set of active properties. Knowledge networks that carry out multiple tasks

are important in our story, as are the idea of networks that find the best

match to a collection of features. These neural computation properties go

far toward explaining the basic nature of human concepts and language.

But the main attraction of neural computation theories is the ability of

these models to learn from experience.

Learning is the hallmark of intelligence, and even quite simple animals

adapt to their environment. A key issue for any learning system, animal

or machine, is the correlation problem. Suppose you move to a new job and

want to be liked by your new coworkers. It might not be at all easy to figure

out which of your actions are well received and under what circumstances.

In general, real-world situations have many aspects and a large part of

learning is deducing which features and actions are important for (corre-

late with) good and bad outcomes. Both the animal and computer learn-

ing systems I will be describing are able to extract correlations from

ongoing experience.
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Learning with Neural Computation

It is somewhat surprising that a massively parallel system can learn at all,

since there is no central controller to decide what should be learned. Under

the right conditions, independent local adaptation by each unit in a large

system can lead to learning in the system as a whole. By looking at neural

learning in several ways, we should be able to get a feel for the mechanism

and for how it shapes language and thought.

We already know that weights (defining the strength of connection)

linking one unit to another are the only thing in the model that can

change, so learning must happen there. Going back to the underlying neu-

robiology discussed in chapters 4, 5, and 6, we recall that there are posi-

tive and negative synaptic connections between neurons. These biological

synapses have differing strength depending on their size and the type and

concentration of transmitting and receiving molecules. In connectionist

models, modifiable connection weights model this varying strength of

synaptic connections. 

Supervised Learning

We saw in chapter 6 that synapses are formed and expanded in response

to neural activity. This is the key to the first and simplest kind of learning

we will study, called Hebbian learning after Donald Hebb. Much of neural

development and some learning can be modeled as coincidence or

Hebbian learning. But there is a problem with the Hebb rule for general

learning—it has no information on the outcome of any action. This

“neurons that fire together, wire together” principle has no way to correct

an existing connection that consistently leads to disaster; some kind of

feedback is needed. This was recognized in the 1950s, and the resulting

adaptive control theory has been important in engineering and modeling

ever since.

The most efficient learning could take place if each unit had a teacher

who could (magically) tell it, at each time step, what signal it should have

sent. An idealized learning rule could then exploit this detailed feedback

to make weight changes to make the unit perform better in the future.

Although it is an idealization, this supervised learning plays an important

role in neural computation. The basic rule is for each unit (model neuron)
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to change each of its incoming weights in the direction that would make

its output value closer to the desired value, supplied as part of supervised

training. So, when the output was too high, each unit should slightly

decrease the weight on all input lines that just sent it high signals and

slightly increase the weights on lines that sent it low signals. This ideal of

direct supervision can be realized in very simple situations in which the

output is directly linked to the training signals. In this case, the supervised

learning rule is guaranteed to find a good set of connection weights if there

is one. This is essentially the Rosenblatt result, which (in the 1950s) trig-

gered the hope that we could easily build machines that could learn as well

as people do.

This seemed too good to be true, and it was. The learning guarantee

holds only for networks with a single layer of units (figure 9.3), and many

calculations cannot be realized with such simple structures. The real brain

has very complex circuits with important calculations many steps removed

from any direct connection to the world and thus must be modeled by cir-

cuits with multiple layers. We still do not have mathematical learning rules

for circuits as complex as the brain, but around 1980, several people real-

ized that supervised learning could be extended to neural models with

several layers of units, provided the structure was not too complicated and

supervised training was available. These supervised learning techniques are

now in widespread commercial use for applications from currency specu-

lation to speech recognition.
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Backpropagation and PDP Learning Models

The same ideas of supervised learning in layered neural networks are being

applied in many areas of cognitive science, including models of language

learning and use. In fact, this style of connectionist modeling is the most

widely known, and the whole range of neural computation is sometimes

identified with this one subtype. For clarity, we refer to cognitive models

based on gradual weight change in layered networks as PDP connectionism,

after the Parallel Distributed Processing group, originally at UCSD, that

produced much of the basic methodology behind this approach. As we saw

earlier, the problem with the learning rules of the 1950s is that is that they

worked only for weights that connected (model) neurons directly to known

desired outputs. The challenge of extending this to multilayer networks

was met around 1980, using mathematical techniques that were already

known in control theory, but it was some years before the relationship

between the two fields was understood.

Using figure 9.3, we can understand the basic idea behind training mul-

tilayer networks. The figure shows only some of the connections; in the

usual case each unit in one layer would be connected with every unit in

the layer above. This figure has three layers of units, with connections

(solid arrows) going exclusively from lower to higher layers. Each unit com-

putes its output signal as a function of the weighted sum of its inputs. The

weight connecting unit 3 to unit 1 is named w31, and so on. Units 1 and

2 are output units and capture the results of the network’s activity. Inputs

to the network would come to units 7, 8, and 9.

As a simple example, imagine that we were trying to train the network

to recognize whether words of English could be nouns (unit 1 should be

active), verbs (unit 2 should be active), or both. If we used the spelling of

the words as inputs, we would need additional units in the bottom layer

for all the letters, but that is easy enough. The big problem is that the

spelling of an English word is a weak clue about its part of speech. So,

although this is usually not stressed, the learning performance of a multi-

layer network depends crucially on the features used as input. No one

seems to have tried our noun–verb task, and it is not obvious what 

input features of individual English words might work for it. There are 

programs that learn to do well at this task by looking at the surrounding

context.
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In any case, during the learning process, each of the output units gets

training feedback, shown here as dashed arrows, from external sources t1

and t2. As in the earlier Rosenblatt systems, the idea is to change connec-

tion weights to bring the output of unit 1 closer to the answer t1, and so

on. For each output unit (here units 1 and 2), we compute its error as the

difference between what it computed and what it should have computed.

For example, for the word “rose” both units 1 and 2 should have high

output because “rose” can be both a noun and a verb. The weights on con-

nections to the output unit are then modified by some small amount. The

change must be small because weight modification is done for each train-

ing example, often millions of them.

Suppose the current example data caused unit 1 to produce a result

smaller than its target, t1; the error would then be negative. Learning

should involve increasing the input weights to t1 (e.g., w31). This is done

for all weights unless the output of the previous level (e.g., unit 3) was zero

in this example. This is because multiplying a zero output by any weight

has no effect. The exact size of the change is a function of the error, the

value computed by unit 3, and the current weight linking w31 to unit 1.

A similar weight change operation can be done for all the links connect-

ing the top two layers (w62, etc.). Given enough training data, this process

often leads to network weights that compute outputs close to the desired

results.

But what about a unit (like unit 8 in figure 9.3) that is deeper in the

network and not directly connected to a training signal? This is where the

clever idea comes in. If we are a bit careful with our mathematics, we can

define an error score for units, like unit 5, that do not get direct feedback.

We start, as before, with the fact that some units do get direct error feed-

back. If the network is strictly in layers, some units will be in the next-to-

the top layer (here units 3–6). We can assign each of these units an error

score equal to a weighted average of the error score of all of its downstream

neighbors, each of which does have a direct value. For example, the error

score for unit 5 is a combination of the error of unit 1 multiplied by the

weight w51 and the error of unit 2 multiplied by the weight w52. Once

we have a net error for an interior unit like unit 5, the same learning rule

as before can be applied to its incoming weights—w85, and so on.

Again, the rule is to change each weight by a small amount in the direc-

tion that will reduce the overall network error on the current example.
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Since errors are passed backwards along each weighted connection, the

learning technique is usually called error backpropagation. For units that

(like unit 8) are two steps from direct feedback, the error score is a weighted

average of the error scores of its recipients, and thus an average of aver-

ages. This calculation becomes unreliable after a few steps, so almost all

PDP networks have four or fewer layers. Practical applications, like speech

processing, often involve networks with thousands of units and millions

of connections. The training process for such networks can require weeks

of computer time.

Some of the discussions of neural computation in this book, particularly

in chapters 12 and 22, invoke these PDP backpropagation learning tech-

niques and strictly layered networks. But neither the architecture nor the

learning techniques are biologically plausible. Everyone knows that real

neural circuits have feedback loops and the PDP computations also require

unrealistic training signals and accuracy. Cognitive researchers use these

techniques effectively to study what can be accomplished by pure learn-

ing methods using overly simple initial networks. For the detailed model-

ing that is our goal, another learning rule is more important.

Recruitment Learning

All of the rules discussed so far learn by making small changes in connec-

tion weights, typically taking thousands of training steps to converge to a

desired outcome. Much of human learning is like this, particularly for skills

such as a tennis backhand stroke or a child learning to pronounce the

sounds of her native language. But there is also a lot of one-trial learning

in language. For example, you probably didn’t know that I was born in

Pittsburgh, but now you do. The technical question is how this kind of

immediate fact learning could be done by a neural system, using the only

available mechanism for permanent learning—changes in connection

weights. As we saw in chapter 6, human learning involves at least two

shorter-term electrical and chemical memory mechanisms, but we can

ignore them for now. What we need is a way to incorporate new infor-

mation into a structured knowledge base like that depicted in figure 9.2.

The proposed mechanism for doing this, recruitment learning, will play a

central role in the remainder of this book. Returning again to our

world–brain simulation, let’s think about linking up some piece of new
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knowledge such as the wife of George Lakoff. We could imagine that the

workers of Switzerland, for example, were connected in both directions to

various units representing different men’s names (maybe in Italy) and units

representing women’s names (in France). There aren’t enough workers in

Switzerland (or neurons in the brain) to dedicate one unit to each possible

pairing of a man with a woman. But suppose that each Swiss worker was

connected randomly to a thousand French (women’s name) units and a

thousand Italian (men’s name) units. Under realistic assumptions, a few

Swiss units will happen to be linked to both the “George Lakoff” units in

Italy and the “Kathleen Frumkin “ units in France. What we would like to

do is recruit these linking units to represent our new fact (Feldman 1982).

Here is how recruitment learning can quickly learn a single new fact:

First, imagine a broadcast throughout Switzerland saying that a new

pairing is being learned. All Swiss units that are not yet representing other

links are put on alert. The two elements of our new fact (man, woman) are

then highly activated. Each is randomly connected to some thousand Swiss

linking units, but the odds are high that only a few Swiss units are con-

nected to both “George Lakoff” and “Kathleen Frumkin.” Now each Swiss

unit worker looks at the total signal to its unit. If the total signal is very

high, the worker knows his or her unit is connected to both inputs and

can be recruited to link George with his wife. In the extreme case, the

worker could set the weights on his currently active links to the maximum

value and reduce all other weights to zero. At his point, activating the units

that represent either marriage partner will tend to activate the other

partner, because they are now connected by our newly recruited Swiss

units.

This is the essence of recruitment learning, in which an important fact

leads to selecting a previous uncommitted set of units to remember what

should be linked together. Still in the imagined world–brain model, we

must add one further complication to our description of recruitment learn-

ing. As we saw in figures 7.2 and 9.3, it is not enough to just link two

related concepts; we also need to know how they are related. George Lakoff

is linked to many women besides Kathleen—his mother, his ex-wife, his

students, and others. So the recruitment learning model needs to be

expanded to include another unit, representing the kind of relationship

involved. In this version, potential triangle nodes (like those of figures 7.2

and 9.2) are also connected to relationship-type units (say in Austria, in our
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world–brain simulation). When a new fact is to be learned, the three com-

ponents of the fact (e.g., wife of George Lakoff is Kathleen Frumkin) are

activated. Potential Swiss triangle nodes that happen to be well connected

to all three active units can be recruited to be the kind of triangle nodes

depicted in figures 7.2 and 9.2.

Essentially the same recruitment mechanism could be used to provide

one solution to the binding problem raised earlier in this book. The general

problem is that thinking about anything (e.g., a trip) activates many sep-

arate circuits in the brain, all of which must work together without a

central controller to keep track of everything. In addition, the trip plan-

ning networks must have changeable roles (e.g., destination) and fillers

(e.g., Helsinki, store, bookcase) as discussed previously for the taste of ham.

In each specific case, the destination role could be temporarily bound to

Helsinki, for example, by the activation of triangle nodes in the recruit-

ment procedure.

In later chapters, we will also be concerned with binding fillers to roles

in motor actions, such as picking up objects of different shape; for

example, the pick-up action schema will have an object as a parameter. One

possible solution to the binding problem involves coordination through

timing (Shastri 2002). If all the neurons involved in a coherent thought

had synchronized patterns of activity, they could work cooperatively

without interference from other networks that were active at different

times. In the world–brain model, we could imagine different groups of 

Austrian–Italian–Swiss–French linking units working on different days of

the week, and thus not interfering with each other. Of course, any neural

version of this story would need to have much shorter (millisecond) time

periods, but experimental results suggest some coordinated firing cycles

among neural circuits. Whatever the mechanism, some plausible binding

theory is necessary for a neural theory of language.

Several of the computational models we will discuss later rely on both

triangle nodes and binding for roles, along with recruitment learning 

to build them. There is no direct evidence in the brain for the recruit-

ment model or indeed for any other theory of concept learning, but all of

the basic mechanisms are known to be neurally plausible. The story of

rapid recruitment is consistent with the standard models of binding 

for episodic memories involving the hippocampal area, as described in

chapter 6.
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This is a case in which theory is ahead of experiment and suggests pos-

sibilities to test. The rest of this book does not depend on the details of

the particular recruitment model, but does presume that there is some way

of directly learning conceptual knowledge as neural structure. As we have

discussed, there is considerable evidence that conceptual structure is

directly captured in neural structure. Recruitment learning is a plausible

model of how this might come about.

This story of the neural computation formalism and its role in bridging

brain and mind completes the first stage of our journey of discovery. We

have seen that much of language and thought is based on our direct expe-

rience, expressed as neural activity. The remarkable new insights from 

biologists into the chemistry and physiology of neural development and

functioning provide a strong foundation for linking neural states with

mental states. In some simple cases, like mental priming, the relation

between neural and mental activation can be quite direct. For higher

thought and language, we need to describe more elaborate processes. The

scientific language of neural computation provides a proven way of

expressing biologically plausible theories of mental function.

But, as always in science, the devil is in the details. The chapters of the

next parts (part IV and V) study how individual concepts and words are

learned and used by the embodied mind. We examine a wide range of lin-

guistic and psychological evidence and review detailed neural computa-

tion models of how the brain might produce these well-known behaviors.

In part VI, after working through concrete linguistic expressions we will

look at abstract and metaphorical language. Part VII shows how the ideas

of embodied language can be realized in a computer program that under-

stands the meaning of news stories, including those that employ metaphor

extensively. Finally, parts VIII and IX address the questions of how

meaning structures are combined using grammar and how this complex

process is learned. There is still a lot of ground to cover, but the ideas and

tools we have developed in this chapter provide the basis for the remain-

ing journey.
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10 First Words

We now know that infants start to learn their native language several weeks

before birth. I mentioned this surprising result in the discussion of neural

development (chapter 6), and it may well have struck you as implausible.

How could the baby learn anything about language in the womb, and how

could psychologists prove that it did so?

Even the youngest children get bored and psychologists have two main

ways of measuring boredom versus interest. When an infant’s interest is

aroused, she will suck more vigorously on a pacifier. Also babies will look

longer at and play more with things that interest them. Using these kinds

of measurements, psychologists have learned that infants have consider-

able neural abilities very early in life. The finding that is most relevant to

us is that children, essentially from birth, have a preference for the sounds

of their mother’s language. In retrospect, the neural learning story of

chapter 6, tells us why this should be so. Recall that neural wiring is par-

tially specified by chemical markers, but the final tuning depends on expe-

rience. A baby in the womb receives the sounds of the mother’s voice and

we should not be surprised that the wiring of the auditory system uses this

input in its development. The tuning of the auditory system continues

after birth. We know that adults cannot fully learn to pronounce exotic

language sounds, like the tones of languages such as Chinese. Even in the

first year, the auditory system looses some of its flexibility.

Of course, a child needs to know a lot more about her language than the

sounds it uses. Language has a wide range of social and emotional dimen-

sions in addition to its function of conveying factual information. Much

of our concern will be with various aspects of language learning and use

and how they depend on the properties of the brain. In this chapter we

focus on how children come to learn their first words. The central idea is



simple—the child’s early words name her experiences and are used to commu-

nicate with caregivers.

Communication is crucial for a social species like ours and particularly

for human infants who are dependent on others for years. Not only can

caregivers understand the cries, postures, and facial expressions of children

but infants can, from birth, imitate adult expressions and thus establish

an emotional bond. Our best evidence suggests that no other animal has

the same ability to imitate, and it is a remarkable feat of neural computa-

tion (Meltzoff & Prinz 2002).

Somehow, infants are born with neural connections that map a com-

plex visual image (mother’s expression) onto commands to the baby’s 

facial muscles that produce a comparable expression. It was thought that

only a fixed set of expressions could be imitated; this could be realized 

by a few reflexes like the knee jerk. But children a few months old can

imitate a very wide range of novel actions by adults or other children. 

For example, days after a single observation of someone doing a unique

action with some novel toy (e.g., touching it with one ear), children will

imitate the action the first time they are given that toy (Meltzoff & Prinz

2002).

No one knows exactly how imitation works in infants, but some recent

neuroscience research in monkeys and human adults provides important

cues.

As we saw in chapter 1, neurons (called mirror neurons) in the monkey’s

brain respond equally to the monkey performing an action, such as biting,

and observing another primate doing the same action. It is not acceptable

to record from individual neurons in people, but it is possible to observe

areas of the human brain that show similar mirroring behavior. For

example, a person watching a film of someone chewing exhibits activation

in areas of the brain involved in controlling the chewing muscles. A brain

circuit that responds to both observing and performing the same action

would be a plausible basis for imitation.

In addition to imitation, several other forms of parent–child communi-

cation also develop well before language. These include shared gaze, greet-

ings, and pointing. One interesting example is the child’s raising of both

arms to indicate a desire to be lifted up. As we will see later in this chapter,

some of the child’s earliest words are verbal equivalents of these well-

established communication actions.
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When children do start to learn language, they first learn to recognize

words (as well as emotional tone, etc.) and only later produce words or the

signs of sign language. There is no good way to tell exactly what an infant

understands, so almost all of the research has been about what words chil-

dren produce. As an important first step in producing language, the child

must learn to produce the sounds of her language, which she already can

recognize. These efforts are known as babbling and similar practice takes

place in the hand movements of children learning signed languages. From

a neural perspective, the long struggle to master sound production seems

to be quite well modeled by the supervised skill learning methods described

in chapter 9. In this case, the supervisory feedback on how good some-

thing sounds can come from the child’s recently acquired mastery of the

sounds of her language.

Once the child can produce enough of the basic phonemes of her 

language, the production of words starts and there is no looking back. The

generally accepted estimate is that a child learns an average of ten new

words a day between the ages of 2 and 12 years. At the beginning, the

learning is slower, more like ten words per week. There are several remark-

able things to discuss about the learning of single words before we move

on to more complex language (P. Bloom 2002).

For one thing, the child (and adults) can often learn a new word from

a single example. Called fast-mapping, this places severe constraints on the-

ories of language learning. It extends beyond language, allowing infants

to learn, from a single presentation, the appropriate action for a novel toy

(such as touching it with the forehead). We can compare the fast-mapping

requirement with various neural learning mechanisms discussed in chapter

9. It turns out that only one technique—recruitment learning—meets the

fast-mapping requirement. Recall that this involves “recruiting” from a

pool of randomly connected units, those units that happen to form a

strongly linked path between the two concepts being learned.

This contrasts sharply with learning how to produce the sounds of one’s

native language, which is much better modeled by the gradual weight

change of supervised incremental learning. It is no surprise that different

aspects of language learning involve different kinds of computation. We

now know that, in general, learning skills (e.g., pronunciation) and learn-

ing facts (e.g., word meanings) use largely independent brain mechanisms

that are quite different in character.
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Another fundamental question in word learning can be called the label-

ing problem—how does the child know what is being labeled by some 

new word that she hears? This is often called Quine’s problem, after the

philosopher W.V.O. Quine, who posed it for the case of an adult trying to

learn a totally unknown language. If the learner sees a rabbit hopping near

a tree and hears some new word, how could she know whether the word

referred to the rabbit, a part of the rabbit, an action, the tree, or something

else? This is a real problem for children learning language, and a good deal

is now known about how they deal with it.

When children are explicitly being taught a new word, adults provide

several kinds of clues including emphasizing the new word and pointing

to or gazing at the object being named. This helps quite a bit, but children

also use some strategies of their own. The child already has a rich base of

experience in the world and assumes that new words label some aspect of

that experience. On hearing a new word associated with an object, chil-

dren assume that the word names the whole object and not a part or a

property of the object. They also tend to assume that the object is being

described as a basic level category, as discussed in chapter 8. For example,

they will guess that the new toy is being labeled as a truck and not a vehicle

or a Ford pickup. All of this was quite well understood by Saint Augustine

(Augustine 1992):

When [my elders] named any thing, and as they spoke turned towards it, I saw and

remembered that they called what they would point out by the name they uttered.

And that they meant this thing and no other was plain from the motion of their

body; the natural language, as it were, of all nations, expressed by the countenances,

glances of the eye, gestures of the limbs, and tones of the voice, indicating the affec-

tions of the mind as it pursues, possesses, rejects, or shuns. And thus by constantly

hearing words, as they occurred in various sentences, I collected gradually for what

they stood; and having broken my mouth to these signs, I thereby gave utterance

to my will.

But children also need to learn words for parts and properties of objects.

The key to doing this is another child learning strategy called the mutual-

exclusion principle. The child tends to assume that there is only one name

for each thing, and so other words associated with that thing must be

describing some part or feature of it, not just providing an alternative name

for the same thing. So, if the child knows the word dog, she assumes that

“black dog” and “paw” are not just synonyms for dog.
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None of these strategies is perfect, and children do make mistakes in

word learning. As we will discuss later in this chapter, when children move

beyond single words and start to learn grammar, strong additional rules

help determine the meaning of a novel word or phrase.

There is an even more basic problem in learning how words refer to

things in the external world, which is usually ignored, but is important for

our neural understanding of language. If, as our theory suggests, the child’s

experience is the product of her neural and hormonal activity, why should

she believe in entities in the external world? A simple and traditional, but

inadequate, answer is that the world is inherently made up of fixed enti-

ties and our brains evolved to recognize and deal with these entities, like

the amoeba’s food-detector molecules evolved. But, as we saw in chapter

8, humans categorize experience in various ways according to their situa-

tion and needs.

One part of an adequate explanation for our belief in an external world

involves this general human tendency to categorize inputs. As adults, we

don’t often need to deal with wholly new situations, but you can remem-

ber or imagine traveling to a culture that you know nothing about. Chil-

dren distinguish early between entities that are able to act on their own

(agents) and passive entities (objects), and we would certainly use this dis-

tinction in this situation as novices in a new culture. What we would do

is try to find cues about what objects might have properties (affordances)

that could be useful to us and how we might understand and influence

the behavior of agents. There is good evidence that children do something

like this, both before and during language learning.

Another part of the story of how children learn about the world is sug-

gested by recent findings on causal modeling. The details aren’t important

here, but the central idea is that it is very effective to model the world as

having causal structure and that both children and adults do assume that

events have causes.

These results suggest that children need to postulate external entities to

act as the bearers of causation. That is, we assume that our experiences are

caused by agents and objects in the world and seek to learn what causes

our experiences. The scenarios we construct, postulating entities in the

external world, can be used to simulate possible effects of our own actions

and are crucial for planning. Much of the child’s early play seems to be

directed at understanding the effects of her actions.
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The child’s search for causal explanations is not always productive; some

putative explanations turn out to be superstitions. But, in general, think-

ing in terms of causes provides a basis for reasoning and acting in the

world, which inherently requires us to postulate the existence of entities

in the world. Notice that this reverses the old view that says the world is

predivided into entities and we must learn to recognize this eternal struc-

ture. The key idea is that our minds partition the world into entities in a

way that enables us to make predictions about what we experience. This

has profound implications for how language is learned and some of these

will be important in later chapters.

I have been talking about word learning as the child labeling her direct

experience, but have not yet said enough about that experience. For

example, pushing something, being pushed yourself, and watching some

pushing that doesn’t involve you directly are quite different experiences.

We refer to these as three different perspectives on experience: the agent, 

the undergoer, and the observer perspective, respectively. Even as adults, 

the experience we associate with a word and thus its meaning differs 

depending on our age, gender, profession, and so on. People who only

watch a sport event or artistic performance cannot fully understand 

participants’ conversation about the activity. As we discuss in chapter 18,

all languages have grammatical constructions to specify which perspective

is intended.

We will see that children learn some of their first words from each of

these three perspectives. No research seems to have been done on how or

when children learn to automatically extend a new word to all three per-

spectives, although the mirror neuron system discussed earlier provides

some clues about how this might work.

With all this background, we can look at the words children do learn

early and see how well our preliminary neural story covers the data. Table

10.1 presents the words learned by most of the 2-year-olds in a preschool

center studied by the developmental linguist Lois Bloom (L. Bloom 1993).

The left side of the table presents the nouns, which comprise about half

of the set of early words. Notice that these nouns can be divided into object

categories with fundamental functions for the child: the first column

involves eating, the second column toys, and the fourth column people.

The third column has one word each for clothing (shoe), body parts (eye),

and the room (door).
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The nouns (except mommy and daddy) all name basic level categories,

as predicted by theory. Notice that most of the nouns are experienced 

from both the agent and observer perspectives—the child interacts with

them and also observes them from afar. Some words, such as “shoe” and

“spoon,” are first learned from the undergoer perspective—they are

involved in something that is done to the child. It isn’t at all difficult to

imagine children learning these words through the kind of direct instruc-

tion scenario St. Augustine talked about. In general, although a great deal

of research has been dedicated to noun learning, the results do little to dis-

tinguish one theory of language acquisition from another.

The words in the right half of table 10.1 are much more interesting. The

first column to the right contains four words for common sounds. Chil-

dren need to learn the difference between “cow’ and “moo,” but parents

and teachers provide lots of cues including using a very different pronun-

ciation of the words for sounds. The second column to the right contains

four words (oh, uhoh, whee, yum) for expressing the child’s emotional

state. Again, it is not hard to imagine how children learn these by notic-

ing how they feel when these words are said. Of course, it is a bit more

complicated; “yum” is associated with food and “uhoh” involves an unex-

pected problem.

The column on the far right has words that label previously learned 

nonverbal acts of communication (yes, no, hi, bye, more, no more). These

can be quite complex, but the preverbal gestures already have the same
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Table 10.1
Words learned by most 2-year-olds in a play school (Bloom 1993)

Preposi- Demon-

Food Toys Misc. People Sound Emotion Action tions stratives Social

cow

apple ball yes

juice bead girl down no
more

bottle truck baby woof yum go up this more

spoon hammer shoe daddy moo whee get out there bye

banana box eye mommy choo- uhoh sit in here hi
choo

cookie horse door boy boom oh open on that no



complexity. Notice that these words explicitly involve acts of com-

munication with another person. As we will discuss later, this seems to

require that the child have causal simulation models that involve other

people.

The second column from the right contains four words (this, that, here,

there) that can be viewed as verbal equivalents of pointing or shared gaze

communication. These again entail the existence of another person and

an expectation of changing that person’s behavior through an act of

speech. Given the appropriate modeling and preverbal communication

abilities, it is not difficult to craft a plausible neural story about how these

words might be learned by being paired with the underlying gesture. The

number word “two” was also spoken frequently; children at this age tend

to know that the word has something to do with number, but not exactly

what that is.

But the middle two columns on the right are much more complex to

understand and model. How could children learn words for actions (go,

get, sit, open) or spatial relation words (in, on, up, down, out)? It is prob-

ably true that, for many young children, “up” is the verbal equivalent of

the raised arms gesture we discussed earlier and “down” a general request

to be taken out of a highchair, for instance. If so, these words could also

be learned as labels for earlier communication gestures. But the other

examples present genuinely new and challenging issues for any theory of

how children learn the meaning of words.

There is no simple way to model how children could learn either action

verbs or spatial relation words. Much of this section of the book is con-

cerned with demonstrating how the neural theory of language explains the

learning of this kind of complex concept. Considerable evidence indicates

our understanding of spatial relations is based on a relatively small number

of quite general concepts such as support, containment, and so on.

Chapter 11 describes these primitives and their use in language as 

well as some additional primary mental frames that seem to underlie our

thought and language. Chapter 16 suggests how abstract concepts arise

from experience with these embodied basic ones. With this cognitive 

linguistic background, we are ready, in chapter 12, to study the first

detailed computational model of how children learn the meaning 

of complex relational words such as “in” and “on” for a wide range of 

different languages.
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The meanings of verbs of action, such as “go” or “sit,” are even more

complex. We can visualize a noun like “ball” as a picture and imagine there

is some comparable representation in the brain. For a spatial relation word

such as “on” we can visualize a canonical case—a pencil on a desk. But for

an action word such as “go,” there is no static picture that captures its

meaning. We seem to need some little cartoon or film clip to visualize the

meaning. In chapter 13, we describe a neural model of how the brain could

represent actions in a way that would allow us to learn and use verbs. Then,

in chapter 14, this neural theory of action is used in a detailed computer

model of how children learn words of hand action such as “shove” and

“grasp.” This model has been quite successful and suggests a general theory

of how children could learn individual words of all kinds from labeled

experience.

Children do not need to learn all words in isolation. In addition to the

cues provided by parents through intonation, gesture, and so forth, human

languages have grammatical rules that can help greatly. I describe in detail

how children learn grammar in chapters 21 through 25, but now we can

look a bit at what is called syntactic bootstrapping—using grammar to help

in word learning. Table 10.2 (from Lois Bloom) shows some of the basic

clues from grammar in English.
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Table 10.2
Grammatical clues to English word types

Syntactic Cue Usual Type of Meaning Examples

“This is a fep / the fep.” Individual member of a category Cat, forest

“These are feps.” Multiple members of a category Cats, forests

“This is fep.” Specific individual Fido, John

“This is some fep.” Nonindividuated stuff Water, sand

“John feps.” Action with one participant Sleeps, stands

John feps Bill.” Action with two participants Hits, kisses

“This thing is feppy.” Property Big, good

“This dog is fep the table.” Spatial relationship On, near



Syntactic Cues to Possible Word Meanings

But, of course, children need to learn more than the kind of word involved;

they also need to know the specific meaning, like the difference between

“in” and “on.” This is the heart of the problem of learning word mean-

ings and has proven quite hard to understand or model. In fact, it was the

attempts to model detailed word learning by our research group that led

to the neural theory of language that is the focus of this book.

We saw in chapter 8 how, in all languages, the words for basic color terms

are grounded in the neural representation of colors. This is the simplest

case of what I believe to be the general embodied nature of meaning. Words

for describing spatial relations such as “in” and “on” also appear to be

based on underlying neural circuitry, but the story—the subject of 

chapter 12—is more complex. Before examining this detailed modeling

study, we need to learn more about conceptual systems in general, and 

particularly about the representation of space in languages around the

world.
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11 Conceptual Schemas and Cultural Frames

The child’s first words are labels for his or her experience, but not all expe-

riences can be described with a single word. Actions such as “grasp” or

spatial relations such as “support” inherently have multiple participants,

or roles. Grasping requires roles for at least the grasper and the thing being

grasped. We saw in chapter 5 that coordinated motor activities such as

grasping are called motor schemas. The same term, schemas, is used to

describe relational information as in the concept of “support.” Many of

these cognitive structures are universal across all languages and cultures,

and I refer to all of these as conceptual schemas or sometimes just schemas.

The embodied theory of meaning suggests that the child needs to have

conceptual structures for understanding experiences before the words for

labeling them can make sense. For example, every language has a notion

of physical support, with roles for the supporter and the supported. The

support schema is central to the literal meaning of the English word “on”

and to related literal and metaphorical meanings in other languages.

Other coherent collections of experience are particular to some culture,

and following convention I refer to these as frames. Typically, a cultural

frame such as the baseball frame will involve several basic conceptual

schemas such as run, grasp, contact, and goal. Notice that a single word,

like “shortstop,” can evoke the baseball frame, with its many roles, actions,

and relations. In this chapter, I discuss both schemas and frames and also

introduce notation for computationally modeling their roles.

Color and the words that describe it are a particularly simple case of 

universal language tendencies. When cognitive scientists look for phe-

nomena that are “universal,” they cannot look at every language in the

world, so they study several languages from different language families. If

they find the same phenomenon in these unrelated languages, it is likely



to be universal. Cognitive scientists have extensively explored the idea of

conceptual schemas (like support) as universal, bodily based representa-

tions of experience.

Proposed universal schemas, such as support, arise from our common

genetic heritage and shared developmental experiences. Every child learns

how to perceive and understand quite a lot about his or her body and envi-

ronment before learning language. No one knows how many universal

schemas there might be, but the best estimates are in the range of a few

hundred. We will look carefully at a few schemas that are particularly well

studied and seem to be important in language and thought.

For now, I focus on static schemas representing fixed relationships

between things, such as the supporter and the object that is supported. In

chapter 13, we extend the discussion to include actions, events, and other

changes over time. In chapter 15 and 16, we examine how universal

schemas and cultural frames form the metaphorical basis for abstract

thought and language. Schemas will continue to play a central role

throughout our discussion.

One of the most thoroughly worked-out classes of schemas involves the

conceptualization of physical space and its use in organizing other domains.

The first major insight came from Len Talmy, in the summer of 1975.

Talmy, looking at a wide variety of languages, had a deep insight. Language

constructions that describe space can be broken down into primitive

spatial relations, where each language uses the same primitives, but puts

them together in different ways. The central sense of English on, for

example, uses the conceptual primitives above, contact, and support. Not

all languages have a complex concept corresponding to on, but they all

have ways of expressing above, contact, and support. Talmy also noticed

that primitive image-schemas fall into three types:

Topological (where relative nearness is preserved under shape change) A con-

tainer (that is, a bounded region of space) is one example, and a path is

another. If you change their size and twist them around, they remain

bounded regions and paths. Contact is also topological.

Orientational (defined relative to bodily orientations) “In front of” is an

example.

Some schemas are also oriented around external features such as gravity

or the horizon.
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Force-dynamic (making use of some kind of force) “Against” is an example.

In addition, each primary image-schema comes with what Talmy calls a

trajector and a landmark. For example, in The car is in the garage, the garage

is the landmark, relative to which the car (the trajector) is located. What

is important for our purposes is that all of these are embodied, with 

orientations such as in front of defined relative to beings with fronts, 

and force-dynamic schemas defined relative to how muscles and sensors

operate.

These structures have been extensively studied by cognitive scientists

under the name image schemas. In English, spatial relation words include

above, below, through, under, and around. Are these expressed the same

way in other languages? No, they are very different, even in languages

similar to English, such as German or Dutch. In some languages, the entire

system is different. For example, in the Mexican language Mixtec, the

system of spatial relations is based on bodily projections, so “The cat is

sitting under the tree” would be expressed as “The cat is sitting the tree’s

foot.” We have similar expressions in English, but in Mixtec all spatial 

relations are described in this bodily projection fashion.

While the concepts that are given names vary, a universal set of image

schemas do seem to support spatial relation terms in all languages. Some

of these schemas are directly related to our sensing of the physical world,

for example, up/down, which is based on gravity. The English word above

is based on this schema. Many image schemas are expressed in terms of a

reference object (landmark) and a usually smaller object (trajector) that is

moving or located with respect to the landmark. Other related schemas

include physical contact and support. The most basic meaning of the

English on involves all three of these schemas—the pen (trajector) is 

above the table (landmark), it is in contact with it, and is supported by it.

In German, this concept is labeled auf and another word, an, is used to

describe situations such as a picture on a wall, where only contact and

support are involved. Dutch has three terms covering roughly the same

semantic territory.

The English word in labels a more complicated situation. There is a

schematic container or bounded region in space composed of a boundary,

interior, and exterior. There also must be a landmark located in the inte-

rior of the container and a trajector that is at least partly within the con-
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tainer region. Some uses of in also entail a force-dynamic schema in which

the container exerts force on the material located in the interior. For

instance, the bottle keeps the water in it from spilling out. Watching a

toddler at play should convince anyone that children teach themselves

about fundamental schemas like support and containers well before they

learn the words for labeling them.

A rich semantics of spatial relations is covered by the English words in,

on, above, and around. Other languages name regions of this semantic space

quite differently. For example, Spanish en is used much more widely than

English in and sobre much more narrowly than on. The important point

about these examples is that around the world the image schemas are the

same, but they are organized in different ways. For instance, the container

and support schemas are found in language after language, but are com-

bined with other schemas differently in various vocabularies.

Another important universal image schema is the source/path/goal/ or

SPG schema. In its concrete embodied form, the SPG involves moving from

a source, along a path, to a goal. For a young child, uses of the SPG schema

include putting something in her mouth, moving herself, or inducing her

parent to move her or some desired object. Image schemas come with infer-

ence rules. For example, the SPG schema entails the rule that if you travel

from point A to point C, you have reached all the points on the path

between A and C as well. As we will see in chapter 16, metaphorical pro-

jections of these schematic inference rules are the basis for much of our

abstract and technical reasoning.

Magnitude is important for certain kinds of reasoning about space, but

some spatial relations terms, including many prepositions, are indepen-

dent of magnitude. They are topological. Knowledge of the world some-

times adds to our understanding of terms, such as “to.” For instance,

“going to Thailand” and “going to a neighbor’s house” suggest different

distances and forms of travel, but that kind of reasoning is based on real-

world knowledge, not on the spatial relations schema evoked by “to.” For

many other concepts, magnitude is of the essence. In fact, there seem to

be general universal schemas for scales that appear in myriad literal and

metaphorical uses. All of these schemas are part of our neural wiring, but

to talk scientifically about them and their properties, we need some tech-

nical terminology.
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The Computational Level of Description

We have been talking about schemas in ordinary language, but we know

that they are really embodied structures in our brains. Neuroscientists

studying the neural basis of verbal behavior must make computational

models that are significantly less detailed than the real network of neurons.

The elaborate neural structure is not known and, even if it were, we would

not be able to model and understand a system with millions of interact-

ing units. I have talked (see chapter 9) about connectionist network models

as a crucial link between brain and behavior. Some simple schemas (e.g.,

contact) can be described as connectionist models, and we will see some

examples in the next chapter. But for complex schemas and frames such

as baseball, to keep the complexity manageable we need one more level of

modeling, the computational level.

Table 11.1 presents the four levels of description that I use in the rest of

this book. Of course, the goal is to describe how the top level, language

and thought, can be realized by the neural systems at the bottom level.

This follows the standard practice in neuroscience of introducing sim-

plified computational models to help describe and understand complex

systems. The key, as in all scientific modeling, is to suppress some detail

while preserving the crucial features that help explain the phenomena

under investigation. The mechanisms at the computational level 2 form a

bridge between levels 1 and 3 and must do two linking jobs at once: the

modeling of cognitive and linguistic behavior at level 1 and the represen-

tation of computational function in the connectionist structures at level

3. This is the key link in the chain from language to the brain.

The example shown at level 1 in table 11.1 is Spanish for “Ham tastes

salty.” As we will soon see, property descriptions like this are very common
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Table 11.1
Four levels of description

Level Example

1. Language and thought El jamón prueba salado.

2. Computational models Table 11.2

3. Connectionist networks Figure 9.2

4. Neural systems Figure 5.1



in computational level modeling. Figure 9.2 depicts this same fact in terms

of triangle nodes, which are a way of graphically presenting connection-

ist models of neural-like computation. No one knows exactly how such

facts are actually represented in the brain, but it is presumably with neural

circuits, something akin to that in figure 5.1.

We will introduce the computational level using the example of feature

structures. The general idea of entities having features (or roles or proper-

ties) is universal in science and everyday language use, and it plays an

important role in the theory of knowledge. There is convincing evidence

that people organize their perceptions and actions in terms of features and

values.

Table 11.2 presents four distinct kinds of semantic feature structures.

First notice that all four columns of table 11.2 have the same form—two

entities each with a list of feature names and a value or type of value for

each, like color ∼ pink. The left column of table 11.2 presents data that

might be contained in a university payroll system.

As we saw with colors, the neural circuitry supporting a concept is active

and is connected with circuitry that supports other mental activity. There

aren’t any isolated concepts in the brain. But it wouldn’t be helpful to write

down all these interlinked circuits, even if we could. So, following stan-

dard practice, I will describe schemas using isolated symbolic descriptions,

with the understanding that the text is a shorthand for the neural 

140 IV. Learning Concrete Words

Table 11.2
Feature structures in four domains

Feldman Ham Container Push

dept ∼ Comp color ∼ pink inside ∼ region schema ∼ slide

salary ∼ 10000 taste ∼ salty outside ∼ region posture ∼ palm

start ∼ 1/1/1988 boundary ∼ curve duration ∼ ANY

direction ∼ away

Lakoff Pea Commercial event Stroll

dept ∼ Ling color ∼ green buyer ∼ person schema ∼ walk

salary ∼ 11000 taste ∼ sweet seller ∼ person speed ∼ slow

start ∼ 9/1/1968 cost ∼ money direction ∼ ANY

goods ∼ thing



connections. The second column of table 11.2 contains an alternative way

of expressing the information about some features of foods that was pre-

sented as a connectionist model in figure 9.2. When cognitive scientists

write out the text form of a schema or frame, they use notation such as

that in the table. They are trying to produce some description of neural

structure that can be used for reasoning about and designing experiments.

The third column shows how both image schemas and cultural frames

can also be described in terms of features and value types. The general con-

tainer schema can be described by features for exterior, interior, and so on

along with the types of entity required for each. A particular instance of

the container schema such as your house would have specific values for

each feature. This kind of description also works well for the cultural frames

discussed later in this chapter. The lower example in the third column

shows how some of our knowledge of commercial transactions can also be

represented in terms of features and values.

The right-hand column, which also has similar form, describes some of

the features and values associated with basic actions, here strolling or

sliding an object on a table. These descriptions of dynamic schemas are

discussed in chapter 13, and they play a central role in the learning of

words about action, as we will see in chapter 14.

For both practical and pedagogical reasons, our computational level

models are based on formalisms and techniques that are well established

in computer and cognitive sciences. Using standard computational ideas

makes it easier to communicate with colleagues pursuing different

approaches and often makes it possible to exploit existing results and

sometimes actual computer code for parts of a model, as I will soon show.

There are also dangers in using conventional formalisms and methods.

None of the traditional techniques were developed for linking brain activ-

ity to behavior and they all are inadequate if used only in the conventional

way. In addition, the standard notation might be taken as the whole

theory, ignoring the underlying bridge to the brain. Computer scientists

and engineers building applied AI systems use some of the same compu-

tational techniques in their programs. But the goals of engineering systems

and those of neural models are quite different.

For embodied cognitive science, any computational level formalisms

must be effectively reducible to the connectionist level and thus to brain
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mechanisms. Computational level descriptions may fail to capture several

key neural properties, including massive parallelism, robustness, spreading

activation, context sensitivity, and adaptation and learning. As in all

science, the trick is to have levels of description that are mutually consis-

tent, with each facilitating different kinds of reasoning.

The fact that all of these situations, and many more, can be partially

described in terms of features and values suggests that some similar mech-

anism might well be an important part of our ability to think and use lan-

guage. I use variants of this notation in several examples throughout this

book. The following definition from embodied construction grammar (dis-

cussed in chapter 23) is one convenient way of describing feature struc-

tures and schemas:

schema: Container

roles

inside: Region

outside: Region

boundary: Curve

Feature structures, as depicted in the left column of table 11.2, are typical

computational level mechanisms that are widely used in programming

electronic computers. These routine database applications have both sim-

ilarities and differences with neural information processing. In both cases,

the information is organized as features and values associated with each

entity. In a payroll program, each feature has a precise value that is set by

an administrator, and these data are used only when the payroll program

is called on to compute something about a particular person. The com-

putational mechanisms are quite different for neural systems or their 

connectionist models, as we described in chapter 9. In a connectionist or

neural system, features will have graded values: ham is not nearly as salty

as pretzels. Also, neural systems are richly connected and continuously

active; no central program “accesses” the value of a feature—the action

resides in the knowledge itself.

So, even though the second column of table 11.2 has a similar form to

the database features, the computational implications are quite different.

For us, the feature structure formalism is a convenient means of express-

ing the triangle node diagrams like those of figure 9.2. This is what I mean

by the statement that a computational level mechanism is reducible to the
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connectionist level. For some purposes, we can focus on just the names of

the features and their values, and not worry about the neural processing

details. At other times, we will need to invoke neural and connectionist

principles to explain why various aspects of language work the way they

do. For example, one thought will often remind you of other related

thoughts. The notation in table 11.2 does not capture this spreading 

activation nature of neural networks, and engineers have been unable to

replicate it in computer systems.

I will also use another formalism that lies between the fixed values of 

a database and the spreading activation of neural and connectionist

systems—probabilistic models. In this version of table 11.2, we would allow

a feature to be described as having several possible values with different

probabilities. For example, the direction associated with push is usually

away, but we can also talk about pushing something to the left or right.

So the possible values for the direction feature of push could be given as

[away (.8), left(.1), right (.1)], where as always, the probabilities must add

up to 1.0. I use these probabilistic feature values in chapter 14 to discuss

a model for learning in which features and values determine the meaning

of various action words. In later chapters we also use inferences among

probability values—for example, computing the probability that recession

will lead to increased unemployment.

Both the simplified versions and the full connectionist interpretation

will be needed in discussing how feature structures interact with the

schemas used to describe motor control, as suggested by the right-hand

column of table 11.2. In a general way, we can see that pushing an object

lying on a table can be viewed as a slide action away from the body, with

a force of any magnitude. By way of contrast, “shove” can be used for a

wide range of directions, but does imply a high degree of force. In chapter

14, we will see the crucial part these feature characterizations of actions

play in learning simple verbs.

Image schemas play two important roles in what follows. First, we use

the ideas around image schemas as a basis for the first demonstration of a

connectionist model of language learning in children. In the next chapter,

I describe a program by Terry Regier that is able to learn words describing

spatial relations across a wide range of languages. More generally, image

schemas play a central role in metaphorical mappings of abstract language

to direct embodied experience, as is discussed in chapter 16.
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Image schemas are conceptual primitives, but they also have internal

structure. A container schema has features or roles for a boundary, an inte-

rior, a portal, and the exterior. A spatial relation word, such as in, evokes

an instance of the container schema and this brings along all of its roles.

So when we hear a phrase, like “in the bottle,” it is natural to associate the

parts of the bottle with the roles of the container schema. This idea of

evoking structural roles becomes even more important in the next section,

where we discuss cultural frames, which usually have many more roles than

primitive schemas.

But schemas, like neurons, never work in isolation. Thought and lan-

guage are the result of complex interactions among schemas; recall that

schemas are just our way of writing down basic neural structures. We need

notation to describe how multiple schemas are linked in representing the

meaning of a word, phrase, or story. Consider the English word into, which

combines in and to in the following way: In is defined relative to a con-

tainer schema (a bounded region of space); it locates an object in the inte-

rior of container. To is defined relative to a source-path-goal schema, and

locates an entity on a path with a goal. Into combines both the container

and source-path-goal (SPG) schemas, so that the goal is in the interior of

the container and the source is outside the container.

There is a standard way to diagram these schema relations, which we use

in later, more complicated cases. We use multislot boxes, as in table 11.2,

to represent the features of each schema. The conceptual links between

schemas are depicted as double-headed arrows, as we can see from the ren-

dition of into in figure 11.1. The arrows depict graphically the facts that
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inside

outside

boundary

goal

path

source

trajector

Source-Path-GoalContainer

Figure 11.1
Into binds inside to goal.



the exterior of the container is the source and the interior the goal of the

SPG schema for into.

Related concepts have similar diagrams. English out of would have a link

between the exterior of the container and the goal of the SPG schema. And

through specifies that both the source and goal of the SPG link to the exte-

rior of the container and the path of the SPG link to the interior of the

container.

Cultural Frames

Image schemas are used to describe basic and universal packages of human

knowledge. There are obviously also many packages of knowledge that are

specific to a given culture, profession, or other entity. In the mid-1970s,

Charles Fillmore (Fillmore 1989) observed that to really understand the

relationships between related words, you had to understand the structure

underlying the conceptual setting, which he called a frame. For instance,

to understand the relationships between words such as “buy” and “sell”

you have to understand the commercial event frame. In any frame, there

are participants. In the commercial event frame, the main participants are

“buyer” and “seller.” Other entities are “money” and “goods.” Some frames

also have scenarios, which have multiple states. In the commercial event

frame, the progression is as follows:

The initial state:

Buyer has money and wants goods.

Seller has goods and wants money.

The middle state is an exchange.

The Buyer gives money to the Seller.

The Seller gives goods to the Buyer.

In the final state:

The Buyer has goods.

The Seller has money.

The concepts in the frame, such as “have” and “want,” are simpler than

“buy” and “sell” and could be primitive conceptual schemas of the sort

discussed previously.

You can also make inferences given the structure. For instance, if you

say “John bought a book from Mary,” you can infer that John owns the
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book now and Mary had more money afterwards. The idea is that words

such as buy and sell derive their meanings from frames—from the overall

structure of related frames. The frames integrate all the entities and 

also define semantic roles of the participants and entities, such as agent,

patient, and source. In the phrase, “John bought the book from Mary,”

John is the agent; Mary is the source; the book is the patient.

Frames are important to our story in two ways. From the embodied 

perspective, we experience the world in coherent scenarios, and it 

makes sense that we should organize our knowledge this way. As we 

will see, words can be best understood as calling into mind (evoking) a

frame. Many words can evoke the commercial event frame, including ones

that are not explicitly mentioned in its definition including price, cost,

and bargain.

There is also a more technical way in which frames are important for

our purposes. Frames encourage us to describe events as a sequence of sit-

uations, each of which is described by a collection of features (like buyer)

and fillers (like John). Both the idea of sequences of actions and their rep-

resentation in terms of features and values are used throughout this book.

We can also consider frames for basic actions such as walking or 

touching a nearby object. When you think about it, we know remarkably

little about how our bodies and brain actually carry out these actions. We

saw the same thing earlier in discussing color perception and vision in

general—we have no way to consciously tap into the massive neural com-

putations that we now know are responsible for our vision.

It is worth experiencing again this inaccessibility of detailed mechanism.

Try to figure out what is happening as you reach to touch some nearby

object. In fact, this action involves elaborate coordination of many muscle

and control systems including shifting your body posture to balance the

movement. Although you probably didn’t think of this, the motion is

accompanied by adjustments in the visual system that take into account

your changed head position and gaze.

So a great deal of our bodily activity cannot be talked about directly in

language or consciously thought about or modified. Of course, some fea-

tures of our actions we can talk about and, it seems, these are the same

features that we can consciously control. For example, in touching an

object you can choose the body part that does the touching, the direction,

speed, and force of your movement, and possibly a few other parameters.
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Some indirectly relevant parameters include the properties of the target

object and your reason for doing the touching. There are also some general

control parameters that can accompany any action, for example, whether

it is done once or repeatedly.

The limited accessibility of the details of actions raises an intriguing 

possibility: perhaps frames represent all we can say directly about bodily

actions. This fits in beautifully with the embodied idea of word meaning

this book explores. Each of us has rich experience with our bodily actions

and perceptions, but we can say only a very restricted set of things about

them. Since speakers and listeners share both the experience and the frame

parameters, however, a word or expression can convey a great deal of

meaning. The theory developed over the next few chapters relies heavily

on the ideas that language primarily operates at the level of frame para-

meters and understanding involves imaginative simulation invoked by

these frames.

This simple picture has two complications, and they are both important.

While we have little direct control over the fine structure of a movement

(say, touching), there are many indirect ways of modifying our actions that

can be readily conveyed in language. So you could reach to touch an object

as if you were a baby, very old, very tired, frightened, and so on. This 

kind of language use also has an obvious base in experience (and mirror

neurons; see chapter 6). We discuss this in connection with metaphorical

language, which plays a central role in the second half of this book.

The other complication with the idea of universal meaning frames is 

that human languages differ greatly in how they express things, including

actions. As with words for spatial relations, different languages have quite

distinct ways of talking about the same underlying actions. For example,

Spanish has two words, pulsar and presionar, that capture different senses

of the English push. The first of these would be used for pushing a button

and the second for pushing a box.

The diversity of ways to describe actions across languages presents a chal-

lenge for frame semantics and, indeed, for any theory of language under-

standing. In fact, the packaging of information into frames can differ

markedly among languages, requiring a more fundamental cross-linguistic

level of representation. Image schemas, including the primitive motor

schemas, are the cognitive scientist’s means of describing these language-

independent foundations of thought.
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Image schemas and cultural frames figure prominently in the core

semantics of human language. They form a crucial part of the computa-

tional level description of our neural circuitry for language and thought.

We use them in the discussion of news story understanding in chapter 20

and they are central to the theory of language understanding and learn-

ing developed in chapters 21 through 25. In the next chapter, we will see

a first instance of how image schemas can combine with connectionist

modeling to support a detailed simulation of word learning.
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12 Learning Spatial Relation Words

We are finally in a position to see how all of the scientific findings sum-

marized in the preceding chapters can be brought together to help explain

how children could learn the words of their language. The core of this

demonstration is a detailed computational model that learns how to label

a visual scene with an appropriate spatial relation word. The same program

learns words correctly for each of the several languages tested, although,

as we saw in the previous chapter, spatial terms differ very widely across

languages. The program incorporates many aspects of embodied language.

It also illustrates how a neural theory can be applied to the specific task of

learning words that describe spatial relationships.

We explored the idea of computational models in chapter 3, using

weather prediction as the prototypical example. We saw how people can

build a computer program incorporating an approximate version of the

laws of physics as they apply to weather systems. After feeding the program

measurements of various weather parameters, the computer is run and 

predictions about future weather are produced. The main limitations are

the computing power and measurements involved—the science is not

completely understood, but is developed enough to make quite good 

predictions given accurate data and enough computing time.

Chapter 2 also briefly discussed computational models in science, 

and we now consider these issues more carefully. The traditional method-

ology of science involves two techniques for understanding nature: theory

and experiment. The conventional paradigm is that preliminary observa-

tions and experiments suggest a possible theory. For a theory to be con-

sidered scientific, it must explain existing data, but also must predict 

results for experiments that have not yet been done, and possibly suggest

new experiments. This has meant that scientific theories in the physical



sciences had to be expressed in very precise terms, usually in some math-

ematical form. The cycle is complete when the predictions of the theory

are compared with the results of new experiments, often leading to a

revised theory.

The growth of computational modeling has altered and significantly

enhanced the options for gaining scientific understanding. Any scientific

theory must be expressed in a technical language so that its consequences

can be predicted and tested. Traditional theories formulated as mathe-

matics are often too hard for people to evaluate, that is, to prove what the

consequences of the theory would be in some untested situation. The won-

derful property of computational models is that they can be simulated to

yield predictions, rather like weather forecasts. Scientists in all fields now

use computer models to explain and predict data in situations that are

much too complex to be treated with traditional mathematical theories

and the predictions computable from them by human proofs.

In contrast to weather prediction, the link between scientific computer

models and measurable data is often indirect. This is also true when

weather prediction is extended to climate modeling, where the whole

point is to make predictions about probable future conditions long before

any confirming data arrive. This modeling in advance of the data is 

especially necessary for theories in cognitive science, like those I will be

describing.

As yet we have only limited knowledge of the neural circuitry that under-

lies the human ability to use language. Even if we could make detailed 

predictions about this circuitry, there are no available techniques for 

measuring human brain activity at a sufficiently fine-grained level to 

determine if the predictions are accurate. There is a wide range of relevant

behavioral experiments, some of which were described in chapter 7, but

these only link indirectly to neural theories of language. Studies of patients

with brain injuries and, more recently brain imaging studies, supply some

general ideas of how we process language. Taken as a whole, the available

data can rule out many possible theories of language understanding, but

cannot provide sufficient support for the correctness of any detailed theory.

Although we know a great deal about the chemistry and biology of the

brain and have considerable understanding of how language is learned and

used, we have no verifiable theory of how the neural circuitry produces

any particular language behavior. Too many alternative models would 
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yield essentially the same results at the crude level of experiment available

to us.

The problem of linking structure to behavior is characteristic of science

in general. For example, astronomers know a great deal about stars and

have elegant theories of the underlying physics, but they have not worked

out the linking mechanisms. Similarly, biologists appreciate the laws of

physics and have remarkable knowledge of protein structure and function,

but very little is understood of how sequences of amino acids specified by

DNA fold into their three-dimensional shapes. In all such cases, bridging

theories are used to suggest how to link (fairly well) known structure to

observed behavior.

Starting with this chapter, I will be presenting detailed computational

models that attempt to link what is known about neural computation to

the observed regularities of language use and learning. This is conventional

science, but is somewhat controversial. Given the current impossibility of

confirming detailed neural models of language understanding, many sci-

entists believe (and say loudly) that it is premature to even think about

the problem as a whole. It is better, they say, for each discipline to pursue

its own questions by its own lights and let later generations worry about

how it might all fit together. I have no objection to this trade unionism,

but am myself driven to understand what I can about the neural basis of

thought and language in my lifetime.

Given that one is committed to doing scientific work in an area in which

the ultimate truth is beyond our reach, the obvious strategy is to search

for partial truths (Greene 2000). As we mentioned, ample data are avail-

able to rule out many neural theories of language understanding. The ques-

tion is, what kinds of theories are not ruled out by what is known about

language at all the various levels from molecule to metaphor. Currently,

the most effective way to evaluate the viability of a theory in this area is

to construct it as a computational model and see how well the model sat-

isfies all the known biological, behavioral, and computational constraints.

Because there are so many converging constraints, this kind of adequacy

test is the gold standard in cognitive science and the one used in this 

book.

Terry Regier’s model of how children could learn the meaning of spatial

relation terms is the first of these detailed models (Regier 1996). Like all 

of the models we will discuss, it starts with a task that is known to be 
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relevant to the overall problem of explaining embodied language and that

has not been achieved by any existing program or explained by any exist-

ing theory. A computational system is constructed (this usually takes

several years) to model some key aspects of the task while being consistent

with the general constraints from all the relevant science.

To the extent that the model, using neural theory of language (NTL)

principles, satisfies all the requirements above it can be viewed as support

for the idea of studying language from the embodied perspective. In

Regier’s case, and the others to follow, there is no other model of any kind

that accomplishes the target task at all, much less under the plausibility

requirements discussed earlier. In general, the NTL approach enables us to

attack and solve important problems not currently treatable by any other

methodology or theory. This should, at the least, make the methodology

an interesting framework for thinking about language from molecule to

metaphor.

Regier’s Program for Learning Spatial Relation Terms

Regier built his program to emulate a child viewing a simple geometric

scene and being told a word that describes something about that scene in

her language. The bottom of figure 12.1 depicts a typical scene with a circle

somewhat above a rectangle, labeled by the English word above. One object

is designated as Landmark and another as Trajector; in this example the

rectangle is designated as the Landmark (LM) and the circle the Trajector

(TR). The same scene could also be labeled below with the TR and LM roles

reversed.

In different training sessions, native speakers of various languages (e.g.,

Russian, Bengali, Chinese, English) provided as input to the system the

spatial relations term for the situation depicted. In each training session,

the job of the model is to learn the spatial conceptual system of the 

language and its spatial relations terms well enough that the program can

give the correct names for novel spatial configurations presented to the

computer.

The program incorporates several of the connectionist modeling 

techniques that were discussed in chapter 9. The top of figure 12.1 shows 

how training data supplied by a native speaker is fed (dashed lines) 

to a learning system. The learning system itself is a version of the error
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backpropagation network depicted in figure 9.3 and described in that

section. The learning network was quite small; there was one unit for 

each possible spatial relation term (8 of them in figure 12.1) and about 

10 units in the hidden middle layer from figure 9.3. Training times were

also modest because of the small network and a clever and biologically

motivated choice of the input features. The biologically based features 

also help fulfill another crucial requirement of the model—language 

independence.

The crucial requirement is that the same program should learn the 

words of whatever language it is taught, as a child would. As we saw in

chapter 11, languages differ widely in how they describe spatial relations,

so the program will fail if it tries to fit the words of all languages to the

concepts that happen to have distinct words in English, because other 

languages might have more or fewer distinctly marked concepts. So the
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program needs to have a quite flexible way of dealing with the domain

(here spatial relations).

Someone who believed in tabula rasa learning (pure nurture) might try

to achieve the required behavior with a completely general program for

machine learning, of which there are hundreds. There is no way to prove

that this couldn’t ever work, but Regier and others have tried this approach

without success, and there are theoretical reasons to believe that existing

pure statistical techniques will always fail. In short, if the program is not

given enough definite structure, it will fail to learn at all, but if it is given

culturally specific structure it will fail to learn languages that partition the

world differently.

Regier’s solution to this dilemma is important not only because it worked

well, but also for what it suggests about how human language learning

could develop. One of the key insights he exploited was that, while cul-

tures differ, all people have essentially the same neural wiring and live on

the same planet with its gravity, lighting, and so on. By building into his

program a simple model of the visual system, he was able to introduce

enough structure for the model to learn from examples, without intro-

ducing cultural bias that would cripple it.

We saw earlier with color terms that the focal colors in all languages have

obvious links to the neurophysiology of color perception. Regier reasoned

that there should also be universal primitives of spatial relation percep-

tion, but realized they would not be as simple as in the case of color. His

technical challenge became understanding which properties of visual

scenes are used in describing spatial relations in the world’s languages.

Regier had done research in computer vision and also studied the cog-

nitive science of image schemas, which we discussed in the last chapter.

Previous cognitive linguistic studies had established that two distinct

classes of visual features were important—quantitative geometric features

(e.g., angles) and qualitative topological features such as contact. For

example, one reason we see figure 12.1 as a good example of above is that

an imaginary line connecting the centers of the LM and TR would be

approximately vertical. If the circle were off to one side, we would be less

inclined to describe it as above the rectangle. Native English speakers vary

widely on this judgment; some people would label a scene with above if

the circle were moved all the way to one side of the figure; others are much

stricter about the vertical alignment requirement. Your friends will differ
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on this. If there was also contact between the circle and the rectangle, we

would have a good example of English on.

Although all languages make use of the same visual primitives, these are

combined in rather different ways. Rather than try to guess which combi-

nations of features might be needed for each language, Regier combined

his visual system model with a general supervised learning network, like

the one of figure 9.3. Using constraints from both the biology and 

linguistics of spatial relations, he built a simple structured connectionist

model of the visual computations that could support the learning needed

for his task. The model used components known to be present in the

human visual system, including center–surround cells, edge–sensitive cells,

and systematic visual maps, all of which were discussed in chapter 5. He

designed this model visual system to compute features that were known

to be important in various languages including the image schematic

notions of contact and containment, discussed in chapter 11. The visual

system model also had connectionist networks for computing geometric

relations such as the angle between center of the landmark and that of the

trajector. The features computed by the model visual system were repre-

sented as activity in nodes of the neural network, and these were connected

as inputs to the learning circuit.

Figure 12.1 gives an overview of Regier’s computer program. Recall that

the goal is to model how a child might learn to use the spatial relation

words of her native language. The program is trained by being presented

with a series of word-image pairs. The model assumes that the child has

already learned which set of words is used for describing spatial relations

and now needs to discover exactly what each word means. The simulation

is also realistic in that the system, like a child, is not explicitly told when

one of its answers is wrong. Later we will see some of the system’s weak-

nesses as a model of child learning, but let’s first look at what it can do

and a bit about how it works.

The example shown in figure 12.1 shows a simple scene with a circle

labeled TR above a rectangle labeled LM. The set of possible labels for this

scene is shown as eight nodes (small ovals) at the top of the diagram. The

model is trained for a given language in a series of episodes. At each step,

a simple picture is presented as data to the program and, at the same time,

the program is told which label goes with the scene. This instruction is

done by an informant setting one of the eight top nodes to a positive value,

12. Learning Spatial Relation Words 155



while the other nodes are all set to zero. The program is given dozens of

such training examples, each pairing a scene with a word. Then the

program is tested on instances that are different from any it has seen.

The large box in the middle of figure 12.1 stands for a model neural

network that links the visual image input to the various possible output

node labels. Following the general model for simulated neural networks,

the program works by activation spreading from the input image, through

the network to the eight output units on top. The goal of learning is to

train the connection weights between units in the network so that each

input image strongly activates just the correct word node in the top layer

of the figure. If the network has learned well, the correct top output node

will become highly activated by a novel picture.

The training method that Regier used was discussed in chapter 9: the

standard error backpropagation algorithm for using supervision to change

the connection weights between units in a network. On each learning trial,

the system is given an input image. Using the current values for the con-

nection weights, the neural network spreads varying amounts of activa-

tion to the competing answer nodes representing the different possible

labels for the given scene.

In backpropagation training, the system is directly provided with the

desired answer, here an appropriate word for describing the scene. Without

worrying about the computational details, we can see how the system can

change weights to improve its labeling performance. Any weights that

connect to the supplied correct answer will be made stronger and weights

to alternative answers will be made weaker. Another presentation of exactly

the same image will lead to higher activation of the correct label and lower

activations of the erroneous competing word labels. It is not obvious 

that this procedure will improve performance on unseen examples, but it

often does.

One trick that works well for this system, and probably for children, uses

the idea that answer feedback differing from your current guess is an

implicit negative, as shown on the top of the figure. When the system is

told that a scene should be labeled above, it implicitly assumes that the

other possible labels do not apply. This isn’t always right, but it does serve

as a valuable rule of thumb. For example, if the current weights in figure

12.1 made left the most active output and the training said the answer was

above, then left is just wrong. But if the system’s calculation yielded out as
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the most active, that is another perfectly good answer for this example. By

making smaller learning changes for incorrect answers, the model allows

for multiple correct labels for a given scene.

As we discussed in chapter 9, computational learning programs work

because, in the long run, the right answers correlate with the relevant fea-

tures more than with unrelated features that appear occasionally in the

scene. There is good reason to believe that similar statistical principles are

a crucial part of the mechanism for human learning of words and con-

cepts. If you are in a foreign country and hear a certain word spoken when-

ever a trolley car goes by, it is a good guess that the word has something

to do with trolleys. As we saw in chapter 8, children do (subconsciously,

of course) use this kind of reasoning.

After completing his program, Regier tested it with a variety of situations

and languages. The situation suggested by figure 12.1 is an experiment in

which he trained the program on a set of examples including several vari-

ants on all eight spatial relations named at the top with a variety of object

shapes and no explicit negatives. After the weights were trained, he tested

the system using a novel landmark shape (a triangle) that the model had

never seen in training. Essentially all of the test scenes were labeled cor-

rectly, and there were no gross errors.

The same program was tested (less extensively) by having scenes labeled

with terms from Arabic, Bengali, Chinese, Mixtec (see chapter 11), and

Russian, with largely similar results. Regier went on to extend the system

to deal with scenarios in which simple objects moved and the motion was

named. For example, the program learned quite well the difference

between English into, through, and around. This involved an additional

structured connectionist model of human motion perception followed by

another supervised learning network, but the ideas are essentially the same

as those we have discussed. No other program before or since has been able

to model the learning of spatial relation terms across such a wide range of

languages.

Regier’s system for learning spatial relation words was an important 

first step in demonstrating the link between brain and language. A simple

and biologically motivated computational model was able to learn spatial

relation words of a wide range of languages from just labeled scenes. It 

did this without explicitly being told when it was wrong. The same system

was extended to learn names for simple scenarios involving moving
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objects. As with any good theory, the model made a number of specific

predictions about language learning, and these continue to be explored

experimentally.

But the model also had a number of limitations, some of which turned

out to be fundamental. Any pioneering effort makes certain simplifications

to focus on the core problem—here, naming visual scenes. From the infor-

mation processing perspective, children do several things with concepts

that the program was not able to do. While it was great at recognizing a

concept such as “left” in an image, it had no way to reason with the

concept or use the concept in an action of its own such as moving its left

hand or drawing a circle to the left of a square.

It wasn’t just that the program lacked drawing ability, which would be

easy to add. The pattern of connection weights that enabled it to recog-

nize “left” simply isn’t the right kind of information to control an action.

From a linguistic perspective, the program could understand only the most

literal and direct uses of words. And, of course, it could only deal with

single words. Children learn spatial relation terms in a larger linguistic

context, not as isolated words as the program does. A more realistic model

of the child’s learning of longer utterances is presented in chapter 25.

There were also limitations from the biological modeling perspective.

Although the visual system model was neurologically plausible, learning

words through supervised slow weight change is not realistic. Children

learn words quickly, sometimes after a single example—weight change

learning requires thousands of example runs. Also, no one considers the

mathematical details of how weight-change learning is carried out by the

backpropagation technique to be biologically plausible.

Much of the rest if this book lays out the tale of how these various 

limitations of the spatial-relation learning model were overcome. This

required several new insights in cognitive science and computational 

modeling, which I will describe. But, at the end of the day (and of the

book), many of Regier’s ideas remain central to the bridge between brain

and language.

Several of the limitations that we have been discussing arose from the

use of supervised slow weight change (backpropagation) as the learning

mechanism. This is a computational issue and addressing it requires com-

putational solutions. One of these was described in chapter 9—recruitment

learning is a faster and biologically more plausible model of neural adap-
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tation than backpropagation. Other improvements have come from a

variety of disciplines. As often happens in science, attacking a more diffi-

cult problem led to solutions that also overcome some of the Regier’s

model’s limitations.

In this case, the more difficult problem was building a model of how

children learn the words to describe actions, such as pushing a block. This

was solved by David Bailey, as will be discussed soon. Bailey and his col-

leagues needed to develop additional computational mechanisms for bio-

logically plausible models of action. The work also involved formalizing

the cognitive science idea of frames. Computational models of frames and

executing schemas are described in the next chapter and later applied to

the task of building models of how children learn words for actions, again

across languages.
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13 Embodied Knowledge of Actions

In this chapter, we explore how children learn words for describing actions,

such as walking or pushing. We saw in chapter 10 that action words are

among the first a child learns. Nervous systems evolved for sensing and

action; language is a very recent extra. We start with two simple facts: (1)

kids are very good at carrying out many actions before they learn the words

for them and (2) an action unfolds through time, so the child has some

unconscious neural plan for the actions she or he performs. The question

for this chapter is how children, around the age of 2, learn how their own

actions are described in their native language.

We begin by asking what the child’s internal neural circuitry for actions

might be like and how it could be modeled. For reflexes, such as the 

knee-jerk reflex described in chapter 5, the circuitry is extremely well

understood and can be described, at a moderate level of detail, using 

diagrams such as the one in figure 5.1. This depicts the neural circuits as

abstract computational units and shows which connections have excita-

tory and inhibitory effects, without specifying details such as the strength

of various connections. The other important insight is that all motor

control networks in the body involve feedback from sensory neurons in

circuits that run through the spinal cord and various substructures of the

brain.

The control circuits for nonreflex actions, like walking or pushing, are

somewhat similar to that in figure 5.1, but they have multiple levels of

control circuits. In fact, what we call the knee-jerk reflex is one compo-

nent of the full control circuit for standing and walking. This reflex causes

one leg to support more of our weight when the other leg slips. Compu-

tational modeling of complex motor behaviors such as walking requires

the mathematics of control theory. We will not need this level of detail, but



the executing schemas introduced later in this chapter are motivated by

the key ideas of control loops and feedback.

The complete circuitry for walking has not been worked out, but what

is known would already make any diagram in the style of figure 5.1 much

too complex to be very useful. What scientists often do is to make more

abstract and schematic representations of motor control such as the gait

control model shown in figure 13.1. This depicts the control circuitry for

two gaits of the cat. In the top half of figure 13.1, we see an image of the

cat trotting. We can observe that in trotting, the left hind leg (LH) and 

the right front leg (RF) contact the ground at the same time, followed by

the LF and RH legs simultaneously supporting the animal, in a repeating

pattern.

This contrasts with the depiction of pacing (ordinary walking) in the

lower half of the figure. Here, the LH and LF make simultaneous contact

followed by the RH and RF coinciding, again, in a repeating pattern. The

cat’s fastest gait, the gallop, has the two hind legs making contact together,
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then the two front legs, and so on. One important finding for our purposes

is that the cat’s brain signals which gait to use by encoding the value of a

single parameter, the desired speed. The decision of which gait to use is

made by lower motor circuits.

This idea of characterizing actions by their parameters plays a central

role in our models of language learning. Consider what you know about

your own gaits (walking, skipping, etc.). People have no direct knowledge

of what muscles and firing patterns are involved in walking, but can think

and talk about a few parameters such as the speed, direction, and assertive-

ness of the motion.

Let’s now look at the circuit diagrams on the right side of figure 13.1.

These employ the usual convention that a link with a circular tip is

inhibitory, so that activation of that link tends to turn off activity in the

receiving unit. The models proposed in the figure suggest that trotting can

be characterized as mutual inhibition between the activation circuitry for

all the adjacent limbs. The proposed model suggests that pacing differs

from trotting in that the limbs on each side have mutually positive 

connections, and thus tend to extend at the same time. We need not be

concerned with the accuracy of this model, but should focus on the 

way it allows us to make precise predictions. In practice such models are

evaluated by computational simulation, neurologic experiments, or both.

What matters to us most about figure 13.1, is the general idea of abstract

neural models of motor control systems. The units and connections in 

the figure are not intended to depict neurons, but rather to model the

behavior of the whole system. Another crucial fact about the figure is that

it depicts what we will call an executing schema. The diagrams can be viewed

as simple routines for controlling the cat’s gaits and simulated to show

how they work. They are sufficiently detailed to serve as programs for 

controlling robots, and similar notations are being used for such purposes.

Our theory of language learning and use relies heavily on this idea of

executing schemas, and most of this chapter is concerned with spelling

these schemas out. The theory also involves parameter (feature) values, like

the desired speed of the cat’s locomotion. The general story of feature

values as computational level representation of neural parameters (see

table 11.2) applies here as well. Describing motor activity in terms of fea-

tures and values is an important simplification of the underlying connec-

tionist models and neural circuitry.

13. Embodied Knowledge of Actions 165



More complex actions, such as human manipulations, will require

several parameters and more elaborate executing schemas. These parame-

ters play a central role in the theory of how children learn words to describe

their actions. Consider the word “grasp.” Everyone will agree that the

meaning of the word involves the motor action of grasping in some way.

The embodied neural approach to language suggests that the complex

neural circuitry that supports grasping is the core meaning of the word. 

I choose this particular example because we know a great deal about the

intricate distributed neural circuitry involved in grasping by monkeys and

humans.

The action of grasping has both a motor component (what you do in

grasping) and various perceptual components (what it looks like for

someone to grasp and what a graspable object looks like). Other modali-

ties are involved as well, such as the sensory component (what it feels like

to grasp something or to be grasped yourself). And all voluntary actions

have an associated goal and plan. Both the meaning of a word and the

behavior it defines are context dependent—you grasp differently for dif-

ferent objects and purposes.

This embodied theory also suggests that the meaning of a noun (e.g.,

chair) involves how humans relate to it. We are willing to label all sorts 

of objects as chairs if people use them for sitting. Linguistic evidence 

also supports this idea that the meaning of a noun depends on the uses of

the underlying thing. Many languages around the world, including

Assamese, Bantu, Chinese, Navajo, Swahili, and Thai, often require adding

a grammatical classifier to a noun. Such languages might have a classifier

for “long-thin-thing,” for example. In Chinese “one person” is: “yi ge ren”

(“one CLF person”), where CLF stands for the classifier “ge,” meaning

single entity. Interestingly, nouns classified similarly must name the 

same category of thing, although the rules for what counts as “the same

category” develop in some subtle ways. George Lakoff’s (1987) book

Women, Fire, and Dangerous Things is replete with such extended category

examples.

Independent of any linguistic evidence, extensive brain imaging data

now supports the idea of embodied language. More generally, there is

increasing evidence for the common neural circuitry for actions and action

words. Rizzolatti and coworkers (2001), over the last 20 years, have shown

that the frontal area of both monkey and human brains contain neurons
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that integrate motor, visual, and proprioceptive modalities for the purpose

of controlling actions in space and perceiving the area of space reachable

by body parts. More recently, they have shown that these areas integrate

not only visual but also auditory information about the location of objects

within nearby space. These so-called mirror neurons and circuits show the

same activity when the subject sees an action as when she or he does the

action (Buccino et al. 2001).

Mirror neurons in monkeys and people suggest an overlap of the under-

lying brain circuits for the execution of actions and the perception of 

the same action. This is a plausible neural basis for the fact that an action

word, such as grasp, denotes grasping, being grasped, or observing grasp-

ing. Several studies using different experimental methodologies and tech-

niques have demonstrated the existence in humans of a mirror system,

which responds similarly to action observation and execution of the same

action.

The brain areas involved in spatial and motor behaviors, rather than

having separate and independent functions, are neurally integrated not

only to control action, but also to serve the function of constructing an

integrated representation of (a) actions together with (b) objects acted on

and (c) locations toward which actions are directed. This complex is what

we take to be the substrate of the meaning of action words. If we accept

this complex of neural circuits and behaviors as the core meaning of grasp-

ing, it remains to show how a word such as “grasp” gets associated with

the embodied concept.

But there seems to be a fundamental complexity barrier. How could the

meaning of an action word be the activity of a vast distributed network of

neurons? The key to overcoming this difficulty in the models and, we

believe also in the brain, is parameterization. A motor action such as grasp-

ing involves many coordinated neural firings, muscle contractions, and

other elements, but we have no conscious awareness of these details. What

we can be aware of (and talk about) are certain parameters of the action—

force, direction, effector, posture, repetition, and so on.

The crucial hypothesis is that languages label only the action properties of

which we can be aware. That is, a fixed set of experienced features deter-

mine the semantic space for any set of embodied concepts, such as motor

actions. So, kids need to learn only which properties of their actions are

crucial for their language.
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We will be looking closely at feature representations of actions that a

person might carry out with one hand on objects on a table. The top half

of figure 13.2 presents a general schema for sliding an object across the

table and is used in the next chapter as part of the model for learning the

meanings of words such as “push” and “pull.” As with the description of

cat gaits, this schema is a breakdown of the overall action into subparts

and the control links between them. This is at the computational level of

description and, as such, is a shorthand for a more elaborate underlying

connectionist model.

Let’s follow the flow of control in the top of figure 13.2, starting from

the left. If you reach to push a nearby object, notice that two things happen

at the same time. Your hand attains the right shape for the target object

while your arm is moving. This is modeled by the two arrows of control,

one to the box labeled shape hand (size) and the other to move arm (loca-

tion). When both of these actions are finished, the sliding can proceed and

this is modeled by the arrows converging into the box labeled apply hand.

Notice that the two initial actions both have parameters; preshaping
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depends on the size of the target object, and moving the arm obviously

depends on the location of the target object.

The right part of the push schema is a control loop, more sophisticated

than the knee-jerk circuit of figure 5.1. The basic idea is that the arm 

should continue moving until the goal is reached. The main action, move

arm (direction, force), has as its parameters the desired direction of 

movement and the desired force. In this schema, the arm continues to

move until it is explicitly stopped by an inhibitory feedback signal. So the

parameters or features of this schema are location, size, direction, force,

and goal.

Executing schemas such as those just described can characterize human

motor actions quite well. In fact, such descriptions can be used to control

the simulated android, Jack (Badler et al. 2002). Jack is a large, complex

computer program that not only simulates muscle actions, but also com-

putes the forces a human body would feel in acting or being acted on. Its

programs are quite realistic in that a high-force push will cause the model

shoulder to “lean in” as people do. Jack is used commercially to test how

human bodies might fare in various work or danger situations, like a 

simulated car crash (Shi et al. 1999).

The engineers who built and market Jack use parameterized schemas like

those of figure 13.2 to ease the task of programming Jack to simulate the

actions required for some particular test. They hope eventually to use

embodied semantic models, such as those described in this book, to

command Jack directly in ordinary language. As we will see in the next

chapter, Jack can also be used to demonstrate that a computational learn-

ing model has correctly learned the meaning of an English word such as

“drop.”

Let’s also look at a simplified version of the executing schema for another

common motor action, walking, which is shown on the bottom half of

figure 13.2. Here just a single parameter, speed, controls the rate of moving

one leg after the other. Walking, as opposed to running, is characterized

by the right leg not moving until the left leg is felt to be stable. At a lower

level of control, this involves the knee-jerk circuit of figure 5.1. We will

look at a more complete schema for walking in chapter 17, in conjunction

with the general discussion of repetitive actions. Walking is the base for

many metaphors about progress of any sort and we use this metaphor

extensively in chapter 20.
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Executing schemas are central to the development of an embodied

neural theory of language. While we have discussed the slide and walk

schemas as controllers of motor activity, the same schemas can be used in

several other ways. In our discussion of mirror neurons (chapter 5), we

noted that some neurons (in monkeys) and neural systems (in people)

show similar behavior when the animal sees the action or carries it out.

We hypothesize that the schema representations of actions, as in 

figure 13.2, are also used to recognize the appropriate action when

observed by the animal. No one has yet built a computer model that both

executes and recognizes using the same schema, but some very successful

models of action recognition use schemas quite like those presented here

(Bregler 1997).

It is worth considering how these programs for visual recognition of

human gaits do their magic. The central idea is prediction. Any animal or

computer vision system needs to decide the best explanation for the flood

of image data constantly coming in from its sensors. This is another

instance of the general best-fit nature of neural computation. The problem

becomes enormously easier if the system can predict the most likely pos-

sibilities. If you have no context, the next image you see might be of any-

thing at all. In recognizing, for example, human gaits, we obviously can

(and do) make quite detailed predictions of what we should see next—but

how?

Action schemas like those of figure 13.2 provide an elegant answer. 

If the vision system has recognized someone walking to the left at 3

miles/hour, the action schema for walking can be used as a model to

predict where various body parts should be going. The programs (and

almost certainly our brains) actually do something a bit fancier. Starting

off the recognition of a new action, the system cannot be sure which

schemas and parameters fit best. The programs allow several alternative

schemas to compete in trying to match the evolving input scene, and the

model that makes the best predictions is the winner.

Computer models that use schemas for an action to recognize that action

were developed before the discovery of mirror neurons, but fit beautifully

with those findings. Using executing schemas for prediction and inference

is a key feature of the language understanding theory we lay out later.

Another use of executing schemas, which is important for language and

thought, is in imagination or simulation. There is very good evidence that
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people use much of the same neural circuitry while imagining an action

as they do when it is really being carried out. Similarly, much of the brain

that is active in perception is also active in visual imagination. Dreaming,

even in animals, is also known to involve simulated action. There is a brain

center that blocks dream activity from moving muscles, and failure of that

center leads to dreams that are physically enacted, sometimes causing great

trouble.

If a common executing schema underlies action, recognition of action,

planning, and simulation, then many questions in language become less

mysterious. Shared and parameterized neural circuitry for executing and

describing actions provides a natural grounding for semantics. We can

understand someone by imagining ourselves in their situation, and we

apparently have evolved mechanisms that do this automatically. Imagi-

nation or simulation will play a key role in our theory of embodied 

language understanding, coming in chapter 20 and 24.

The remainder of this book relies heavily on the idea of executing

schemas, each of which has a relatively small set of determining parame-

ters or features. As a first example, the next chapter describes how a com-

puter program based on these concepts is able to model how children learn

action words across a broad range of languages.
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14 Learning Action Words

We saw in chapter 10 that children first learn words that name their direct

experience, including feelings, objects, properties, and actions. We all have

strong intuitions about how to describe the properties of objects and can

imagine how children learn to link the names of objects with their prop-

erties. The child’s own actions are surely among its most salient experi-

ences, so it is not surprising that some action words (verbs in English) are

learned quite early. But we have much less intuition about how to describe

actions and how children could learn to name them. The executing schema

formalism described in the previous chapter provides a basis for describ-

ing actions and, in this chapter, is used in a model how children learn

words for their own actions.

Our first model (chapter 12) of child word learning was Regier’s program

for learning spatial relation words in different languages. This system

learned to label novel scenes with the correct word but had several limi-

tations as a model of human language learning. For our purposes, the most

important limitations of Regier’s system were its very long training times

and its inability to do anything with words except apply them as labels.

When people learn the meaning of a word, they can also use it in reason-

ing and to request and carry out actions based on the meaning they have

learned.

A few years after Regier completed his thesis, David Bailey set out to build

a program that would overcome these difficulties and model child word

learning in the challenging domain of actions. To limit the complexity of

the task, Bailey restricted consideration to actions that could be carried out

by one hand with objects on a table. The program is modeling a scenario

in which a child is performing an action and hearing her parent’s (one

word) label. The child’s (and program’s) main task is solving the correlation



problem—what features of the situation and of my actions is my parent

talking about (Bailey 1997)?

To conduct experiments on this task, the system was programmed to

have the simulated android Jack carry out various one-handed actions. 

For each example, a native speaker of the target language types a word 

that best describes that action in her or his language and this word is 

given to the program, thereby modeling the situation where the child 

hears the parent’s label for an action. Using techniques that we will be 

discussing shortly, the program tries to solve the correlation problem and

learn which executing schemas and features should be associated with each

word.

Before looking at how the model works, let’s think some more about its

task. Even for actions involving only one hand, there are quite a lot of

verbs in English including seize, snatch, grab, grasp, pick up, hold, grip,

clutch, put, place, lay, drop, release, pull, push, shove, yank, slide, flick,

tug, nudge, lift, raise, lower, lob, toss, fling, tap, rap, slap, press, poke,

punch, rub, shake, pry, turn, flip, rotate, spin, twirl, squeeze, pinch, twist,

bounce, stroke, wave, caress, stack, salute, and many, many more.

And that’s only English. Other languages make distinctions that English

does not. Moreover, each language has its own unique collection of lin-

guistic gaps that reflect conceptual differences in the concepts named. Here

are a few examples:

� In Tamil, thallu and ilu correspond to English push and pull, except that

they denote a sudden action as opposed to a smooth continuous force. The

continuous reading can be obtained by adding a directional suffix, but

there is no word to indicate smooth pushing or pulling in an arbitrary

direction.
� In Farsi, zadan refers to a large number of object manipulations involv-

ing quick motions. The prototypical zadan is a hitting action, though it

can also mean to snatch (ghaap zadan) or to strum a guitar or play any

other musical instrument.
� In Cantonese, meet covers both pinching and tearing. It connotes force-

ful manipulation using the two-finger posture, but is also acceptable for

tearing larger items using two full grasps. Cantonese has no distinct word

equivalent to drop; there is a word meaning release, but it applies whether

or not the object is supported.
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� In Spanish, there are two separate words for different senses of the

English verb push. The word pulsar corresponds to pushing a button and

presionar covers most of the other uses.

In general, different languages combine meanings in differing ways.

Whenever there are multiple senses (meanings) for the same word, this

creates serious learning problems for children and computers.

Like Regier, Bailey was faced with the problem of building a program

that needed to incorporate the conceptual differences across languages to

learn word meanings. Again, building in too many assumptions would pre-

clude learning some languages, and leaving everything unspecified would

give the program no chance at all of learning. It will come as no surprise

that Bailey used the same strategy on what structure to build into the

system—base it on the body and on neural control networks. Just as 

Regier employed a simple model of the visual system, Bailey’s program is 

based on the executing schema formalism of motor actions described in

chapter 13.

Figure 14.1 presents an overview of Bailey’s model for learning words

that describe one-handed actions. The first thing to notice is that there is

an intermediate set of feature structures, shown as a large rectangle in the

middle of the figure. As you may recall from the previous chapter, people

do not have access to the elaborate neural networks that coordinate our

actions. What we can consciously know about our own actions can be

described by a relatively small number of features. This parameterization

of action (also discussed in chapter 13) is one key to the success of the

computer program. The particular features used in the program, and

depicted in the middle of the figure, were chosen to fit the basic X-schemas

and capture the properties known to be relevant to distinctions made in

various languages.

Also, please notice that figure 14.1 shows arrows in both directions. The

system not only learns to label actions with words, but it will also carry

out requests expressed using the words it has learned. The two arrows on

the right describe the labeling pathway; features are extracted from exe-

cuting schemas (bottom right arrow) and these features are then used to

decide which verb is the most appropriate label for the action. The arrows

on the left depict the command pathway. A word that has been learned

(e.g., shove) will activate a particular set of linking features and this will

determine the particular action that is carried out.
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The two downward arrows on the left capture an ability not present in

Regier’s model nor in any other system based on the supervised weight-

change learning described in chapter 9—bidirectional learning. This

pathway is used by the system to carry out actions that are requested using

a verb that has been learned. For example, suppose that the program has

learned (as it does) that the word shove involves using the slide-executing

schema with high force and short duration. This information on which

schema and parameter define the word shove would be stored as part of

the word’s definition. When asked to shove something, the system would

activate the definition and select the appropriate schema and parameters
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from the large collection available in the middle of the figure. These can

then be used to activate the appropriate schema (lower left arrow), here

slide; this then leads to the simulated android Jack carrying out the

requested shoving.

As we will see in later chapters, this ability to perform actions described

by verbal input is the key to all language understanding. A system that can

only label situations with an appropriate word has not come close to

knowing the meaning of the word. The pathway on the left of figure 14.1—

feature activation followed by execution guidance—underlies understand-

ing of any language input. In the case shown here of simple verbs, the

features in the middle of the figure need only specify which schema to

execute and a few of its parameters, such as duration and posture.

According to the NTL, almost exactly the same thing happens when you

hear a story about someone else carrying out an action like pushing. The

only difference is that instead of acting yourself, you imagine (or simulate)

someone else’s action. This is what we call simulation semantics—you

understand a story by simulating it. This is easy to believe for concrete lan-

guage, but what about abstract stories like someone pushing for a promo-

tion or ramming a legislative program through Congress? The NTL suggests

that abstract meanings are understood by mapping them metaphorically

to concrete image and action schemas such as those described in chapters

11 and 13. The metaphors and how they support language understanding

in general are discussed in chapters 16 through 20. For now we focus on

just the learning and understanding of concrete verbs of action.

As with Regier’s model, Bailey trained and tested his program extensively

in English and more sparsely in several other languages. In the main ex-

periment, he presented the system with 165 labeled examples of actions

corresponding to 15 English verbs and 18 word senses. Using learning 

techniques that I will describe shortly, the program was able to deduce the

correct number of words and word senses. The system was then tested by

asking it to label 37 novel actions according to the definitions it had

learned. The performance was quite good; 80 percent of the scenes were

given exactly the right label. Moreover, all of the errors involved overlap-

ping concepts; for example, move for push or jerk for lift.

With no further training, the program was then tested for its ability to

carry out the actions specified by the words it had learned. In these tests,

the program was given a word that it had learned, and it generated 
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parameters for the corresponding action. The execution plan was consid-

ered correct if the system assigned the original word to that action descrip-

tion. The results were quite similar; around 80 percent of the actions were

optimal and the rest were near misses; of course, children make similar

errors.

Bailey also tried some additional tests on English verb compounds such

as push left or pull up. Some positive results were achieved, but it was rec-

ognized that real progress required a theory of grammar that was not then

available. Chapters 21 through 25 discuss how models of word learning

can be extended to cover complex patterns of words—grammar.

In addition to English words, Bailey tested his program on examples

from Farsi, Hebrew, and Russian. The results for basic examples were good,

but more complicated examples involve patterns within and across words,

even more so than in English, and thus required a theory of grammar.

Let’s now look into how Bailey’s program works and what this can tell

us about language and learning in people. The model improves on previ-

ous work in several ways. We know from the “fast mapping” results of

chapter 10 that older children can learn words in a single episode. Bailey’s

program uses techniques with this one-shot learning property, which was

missing from Regier’s supervised learning model (chapter 12). The program

requires only one presentation of each example because it uses a compu-

tational learning rule called model merging, which is the computational

level version of recruitment learning (chapter 9) and is described below.

Model merging, plus the use of the explicit features shown in the middle

of figure 14.1, also provide the computational basis for the wider abilities

depicted by the two upper arrows in that figure—learning to use words,

not just treat them as labels.

We can see Bailey’s model merging technique in action by following

through the steps depicted in figure 14.2. In every case, the top row shows

the names of features and the bottom row the given or predicted fillers for

each feature. For example, the elbow motion feature could have as its

values either extended or fixed.

On the left side of the figure are four episodes in which the program

heard “push” in response to a variety of Jack’s actions, and the right 

side depicts, at each step, the program’s current guess about the word’s

meaning. On hearing push for the first time, the system’s first model is

(always) that the word meaning is close to what the robot just did. This is
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shown on the top right as a definition feature structure, which is the same

as the action features except that each value is allowed certain fuzziness,

shown as probability 0.9. Now suppose the system also hears the same

word after doing a push of much shorter duration, as shown in the second

row of the figure. The program revises its idea of the meaning of push to

capture the fact that the duration seems equally likely to be either short

or medium, as shown in the second row on the right. Technically, the

program merges its original model of what push means with the informa-

tion from the second example.

You can see how a program (or a neural system) that kept track of the

various situations involving each word could come to learn the required

correlations—the probability of various features’ values being present in a

scenario when each particular word is used. Looking back to Regier’s system

in chapter 12, we can view his program as using supervised learning tech-

niques to learn connection weights that capture the correlation between

visual scene features and the words used to label it.

But a major complication shows up in the third row of figure 14.2. The

English word “push” is also used in situations that are fundamentally dif-

ferent from the standard one; here the features in example 3 represent the

action of pushing against an unmoving object such as a wall. As we noted

earlier, some languages such as Farsi use different words for these different

actions, but English does not, and this is a problem for learning.

As figure 14.2 also shows, linguists refer to disparate meanings of a given

word as different word senses. A crucial task for the child (and the program)

is to decide whether or not to learn multiple senses for a given word. We

will return to this question shortly. For the example shown, the program

did decide to add a distinct word sense. The final example at the bottom

of the figure differs somewhat from the standard “push,” but not by too

much for the basic definition to be modified to also include this example.

Since the final example involves pushing with the index finger, the posture

feature in the definition must be revised. Because two out of three exam-

ples involved the palm posture, the probabilities are set to approximate

this data.

More interesting, the duration feature is now totally missing from the

basic definition of push. Technically, a feature is removed from a defini-

tion when its values appear to be irrelevant. In this case, all three possible

durations occur equally often in the basic push scenario so duration
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doesn’t seem to matter. Of course, the situation has many other features,

that are irrelevant to the use of the word “push.” The color of the object,

the time of day, the room we are in, and many other features need to be

removed from the definition of push and these should, in principle, have

been included in figure 14.2. But features that don’t matter for one defin-

ition can be crucial for another; for example, the time of day is crucial in

learning the names of meals.

Let’s return to the problem of choosing the correct number of distinct

senses for a word like “push.” This is the most difficult technical problem

in Bailey’s system, and it is not important to explore the full details of how

he and other computer scientists solve this kind of best-explanation

problem. The techniques are quite close to those for choosing a best

grammar, which we outline in chapter 22. But the general idea of evaluat-

ing competing mental models is important and well worth considering

further.

We all frequently make internal mental models—of other people, of how

things work, of routes to work. These internal models allow us to predict

how we can get what we want. Choosing word senses is a special case of

the general problem of deciding which situations to lump together in a

single internal model. For example, you might decide that all professors

are alike for your purposes and treat them all the same. Scientists devel-

oping theories about nature face the same problem—is it better to have

one theory (model) of neurons, or should they be thought of as several

different types?

You can see that the choice of how many models to use involves trade-

offs. If you make too many distinct models, you might miss generaliza-

tions that can be crucial for dealing with new situations. On the other

hand, if we lump too many situations into a single model, we lose the

ability to make critical distinctions—if you are a student, it is not a great

idea to treat all your professors the same way.

Bailey’s program and many other machine learning systems use standard

computational treatment of these model selection tradeoffs. The central

idea is to use a measure of overall model goodness that is the sum of two

terms. The first term is a measure of the complexity of the model itself,

with simpler and more probable models being better. The second term 

evaluates how well each proposed model explains the data. In the case of

learning action words, the program introduces a new word sense (see figure
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14.2) when the extra complexity added to the vocabulary is more than 

balanced by each definition being a better fit to its subset of the scenarios.

This is as far as we need to go in our discussion of how children learn

words that name their direct experience and how this can be modeled

using an NTL. Of course, the child’s experience of actions is much richer

than the programs described here can model, but there does not seem to

be any inherent barrier to more complete demonstrations.

In addition, many words, even for young children, do not directly label

immediate experiences. Fairly early in life children start to use the same

word in both concrete and metaphorical senses. One common example is

when a parent says (with a pained tone) “Now, see what you’ve done.” The

child knows that she is supposed to learn (see) as well as perceive her trans-

gression. In an NTL, abstract and metaphorical words derive their mean-

ings from concrete words. Next, in chapters 15–17, we explore how this

happens and some of the consequences for theories of language and

thought.
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15 Conceptual Systems

In previous chapters, we discovered how children learn to talk about their

experience of spatial relations (chapter 12) and motor actions (chapter 14).

For perception, action, emotions, and so on, human experience and the

social relations shared by all people provide the basis for learning words.

We explored in detail how children around the world learn their first words

for colors, for naming things, for spatial relations, and for their own

actions. The same basic labeling processes apply to many other aspects of

direct experience, including the properties of objects and actions, personal

desires, and family relations. The depth and breadth of the child’s experi-

ence is remarkably rich and, as we will see, provides the source for all

advanced concepts.

Of course, this universal shared experience of children is still only a small

part of what comprises adult conceptual systems and language. The three

chapters of this section outline a theory of how abstract, cultural, and tech-

nical words and concepts arise from the opulent substrate of direct expe-

rience. Neural embodiment remains central to the story—people, as neural

systems, understand abstract ideas because these concepts are mapped to

and activate brain circuits involved in embodied experience.

Let’s start with a simple example of how children learn concrete words

and concepts that go beyond their direct experience. Even the most fun-

damental embodied concepts fall into three distinct types. All of our exam-

ples so far have focused on only one of these—the basic level categories.

Concepts at the basic level include car, green, cow, walk, screwdriver—

categories of things that you know how to picture and interact with. Chil-

dren learn these words first, but they soon move on to words that denote

both more and less general types of categories. The more general super-

ordinate categories corresponding to these examples would be vehicle,



animal, colors, locomotion, and tool. Some more specific examples of each

category at the subordinate level might be Camry car, turquoise, Guernsey

cow, saunter, and Phillips #1 screwdriver.

Cognitive scientists, starting in the 1960s, have shown that concepts at

the three levels are treated rather differently in language and thought.

Eleanor Rosch, among others, demonstrated that basic-level categories

have cognitive properties quite dissimilar from those of superordinate cat-

egories (Rosch 1973). The basic categories are defined by our capacities for

motor movement, mental imagery, and gestalt perception (seeing things

as meaningful wholes). Compare chair and furniture. You can get a mental

image of a chair, but not of a general piece of furniture (as opposed to a

chair, bed, table, or couch). You have motor schemas for interacting with

chairs, but none for interacting with general pieces of furniture. Our

concept of a chair has to do, after all, with our ability to sit, which has

everything to do with our bodies. It is a fundamentally embodied concept.

In short, the basic level is the highest level at which shared mental imagery,

motor schemas, and gestalt perception characterize the entire category.

Higher, superordinate, categories such as furniture do have some com-

monality, but it is more abstract.

The basic category level is associated with human interactions, but not

all individuals or cultures experience the world the same way. For many

city dwellers, tree is a basic level category—we interact the same way with

all trees. But for a professional gardener, tree is definitely a superordinate

category; all trees have important common properties, but the gardener’s

daily interactions with various kinds of trees are very different. One of the

most compelling findings in this field is that each person’s performance

on psychological tests such as those of chapter 7 is consistent with his or

her own category structure. You can learn much about how people cate-

gorize the world from their performance on such tests.

Of the many findings on levels of categories, the one that most interests

us is that children, apparently everywhere, first learn words for concepts

at the basic level. This makes sense because the basic-level concepts are

those that arise in direct experience, as we have seen. There is no mystery

about how children move on to learn names for more specific (subordi-

nate) concepts as these become important to them. Caregivers point out

and name specific instances that are important to the group and culture.
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What is not so obvious is how children can go beyond direct experience

and learn words for such superordinate concepts as furniture, vehicle, tool,

and animal.

From the information processing perspective, there are very good reasons

for working with concepts, like animal, at the superordinate level. We

know a lot about the properties of animals in general, and it is inefficient

to store each of these features separately for each class of animals. Even

worse, there would be no way to know that some new animal you just

learned about shares these general animal properties. In the case of super-

ordinate concepts, there is therefore considerable evidence that people do

go beyond direct experience, organizing their knowledge into more general

categories and relationships. A few special superordinate category distinc-

tions, for example, things that can and cannot act on their own, seem to

be part of our biological heritage, but children still learn the words for

them rather late.

From our embodied perspective, predicting that children will also find

it natural to learn labels for this kind of superordinate knowledge is no

problem. Recall from chapter 10 that children tend to assume a new word

is not just a synonym for a word they already know. On hearing a super-

ordinate category name such as animal associated with different specific

animals, the child could make a good guess that the new word refers to

some class that includes these specific cases. In fact, the process works in

both directions—learning superordinate words also helps children organize

their knowledge. Again, the particular superordinate category names pre-

sented to children will be a function of their physical and social environ-

ment. In any case, hearing all sorts of different-looking animals referred to

as dogs definitely helps the child structure his or her world.

This interplay between direct experience and language-driven learning

is the primary basis for the transmission of culture to children. As a child

learns to deal with the world, family and community point out and label

features of the physical and social environment they consider important.

This inevitably controls the way the child perceives the world and orga-

nizes knowledge and behavior—it determines the child’s conceptual system.

One of the most heated controversies involving the brain and language is

whether the language (English, etc.) a person speaks limits what he or she

can think about—often called linguistic determinism.
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All Those Eskimo Words for Snow

Benjamin Lee Whorf and his teacher, Edward Sapir, in the first half of the

twentieth century formulated the traditional basis of linguistic deter-

minism in what is known as the “Sapir-Whorf Hypothesis.”

Whorf proposed that “We cut nature up, organize it into concepts, and

ascribe significances as we do, largely because we are parties to an agree-

ment to organize it in this way—an agreement that holds throughout our

speech community and is codified in the patterns of our language” (Whorf

1940; in Whorf & Carroll 1956, pp. 213–214).

And, in the words of Sapir: “Human beings . . . are very much at the

mercy of the particular language which has become the medium of expres-

sion for their society. . . . The fact of the matter is that the ‘real world’ is

to a large extent unconsciously built up on the language [my emphasis]

habits of the group” (Sapir 1929; Mandelbaum 1958, p. 162).

The idea that language determines thought reached the mainstream 

perception through the popular concept that Eskimos had an enormous

number of words for snow, because it was so important to them. The facts

in this specific case aren’t very important, but let’s look at them. It is a bit

complicated because there are several Eskimo languages and they all have

grammar rules that use compound words for what would be a phrase or

sentence in English (German does this to a much lesser extent than

Eskimo). But there really are significantly more distinct words relating to

snow in Eskimo languages. For example, a dictionary of West Greenlandic

has at least 49 distinct snow entries, including basic words for such things

as nutarniq, meaning “new ice formed in a crack in old ice.” None of this

is at all surprising from our perspective of language as labeling human

experience. In fact, the existence of specialized vocabulary is no longer the

core of the linguistic determinism controversy.

Several versions of the Sapir-Whorf hypothesis state that language con-

trols thought, some of which are clearly wrong. For example, it is not true

that people whose language lacks some grammatical feature, such as spatial

relation words, cannot think about those features. They just express them

differently, as we saw in the case of Mixtec in chapter 11. That discussion

of Regier’s program also described an embodied neural model of how chil-

dren can learn the conceptual systems for space used by their culture, along

with how it is expressed in their language.
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But it is also clearly true that one cannot talk about (or think about) slam

dunks, stock options, or the Internet in Mixtec or in most of the world’s

thousands of other languages. Thinking about a complex technical or cul-

tural domain requires an extensive vocabulary and conceptual system, and

there is usually not enough of a language community to build such a base.

Similarly, English has no words for most of the plants named by Brent

Berlin’s native informants. Why would there be? The Tibetan language has

distinct terms for several stages of meditation that most of us can’t con-

template at all.

Recall that in chapter 8, we discussed universal conceptual schemas that

are part of all human experience and introduced the contrasting idea of

cultural frames. A cultural frame is a collection of words, concepts, and

relationships characterizing some domain of human experience that is not

universal, such as baseball, biophysics, meditation, or the Eskimo hunting

culture. Although this is currently not provable, the embodied theory of

language suggests that all universal conceptual schemas are expressible in

any language, but many cultural frames will not be directly expressible in

most languages.

So, we know that individuals’ culture and conceptual systems, expressed

through their vocabulary, do have a huge effect on the way they interact

with each other and the world. Do any additional effects come from the

rules of the native language itself—its grammar? Grammar generally 

refers to the rules of composition of a language, distinct from the meaning

of individual words. We will be talking a lot about grammar in the last

quarter of the book, but we won’t need all that detail in discussing the

(grammar) version of the Sapir-Whorf hypothesis, which is concerned 

with linguistic form. This is the core of the current controversy, 

mostly because it is part of a larger language war (see chapter 22) over 

the separation of grammar from meaning; that is, the autonomy of 

syntax.

The core unresolved issue is this: does the grammar of language that a

person speaks affect the way she or he thinks. Grammatical influences were

very important to Whorf. One of his core examples was the Hopi language,

which uses verbal prefixes that distinguish different kinds of motion such

as waving, spinning, flapping, and turning. Whorf wrote that “The Hopi

aspectual-contrast which we have observed, being obligatory upon their

verb forms, practically forces the Hopi to notice and observe vibratory 
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phenomena, and furthermore encourages them to find names for and to

classify such phenomena.”

The general idea is that, if the grammar of a language requires a certain

distinction to be expressed, speakers of that language will tend to be 

more attentive to that distinction. The interesting cases involve universal

schemas of experience such as space, time, and color. We already know

that specific cultural frames and their linguistic expression will cause

people to notice and think about different aspects of a situation.

It is quite difficult to assess how grammar affects thought, because it is

hard to test a person’s thinking without using language. Difficult, but not

impossible. A number of results from various labs now show language-

related differences on some tasks. All of these results are tendencies—no

absolute differences are known to arise from variations in the grammati-

cal form of one’s language. However, we now know that the language

people speak does have a measurable effect on how they think.

Paul Kay and William Kempton (1984) carried out one of the most direct

experiments relating language to judgment as an extension of their work

on color terms, discussed in chapter 8. They tested, on a color-matching

task, English speakers and speakers of Tarahumara, a Mexican language

that has a single word covering the English colors green and blue. Subjects

were each shown three color chips from a narrow range of blue-green and

were asked which of the three differed most from the other two. As pre-

dicted, English speakers systematically identified as similar two chips that

are given the same English name while Tarahumara speakers had no such

bias, presumably because their language does not make this distinction.

More recently, Kay and colleagues have shown that English speakers will

fail to show linguistic bias if there is an interfering language task.

Steven Levinson and colleagues attained some fascinating Whorfian

results on spatial cognition. There is another Mexican language, Tzeltal, in

which the dominant way of representing spatial relations is absolute, as in

the English cardinal directions N, E, W, S. Tzeltal speakers normally refer

to the relation between objects, even indoors, in terms of being uphill or

downhill from one another. When given a comparison task about which

of two arrows was the same as the one they saw before from another angle,

Tzeltal speakers overwhelmingly chose the one pointing in the same

absolute direction. By contrast, speakers of English can be made to choose

either absolute or relative (left, right) directions, depending on the task
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context. Levinson has gone on to show that speakers of languages that rely

on absolute coordinates do notice and remember absolute spatial relations

much better than speakers of English or Dutch (Levinson 2003).

John Lucy and his colleagues have worked extensively with speakers of

another Mexican language, Yucatec Maya. Yucatec differs from English in

that nouns for discrete objects like a banana refer primarily to the mater-

ial involved and are further differentiated by a classifier term. Yucatec thus

has phrases about bananas that are equivalent to one long-thin banana

(fruit), one load banana (bunch), one plant banana (tree). When subjects

are asked to sort objects into groups or decide which two of three objects

are most similar, Yucatec speakers are much more likely to use the under-

lying material rather than shape or function, which are preferred by

English speakers. So, the grammatical system based on materials and not

shapes has Yucatec speakers focus more on the composition of an object

than on its shape (Lucy 2004).

Time is another fundamental experience that can be conceptualized dif-

ferently. We are used to thinking of time on a horizontal axis, but Man-

darin Chinese also employs vertical scales. In a series of experiments, Lera

Boroditsky showed that this distinction can result in measurable differ-

ences in reaction times. For example, bilingual Mandarin speakers identi-

fied that March comes before April faster just after viewing a vertical list

of digits, even when the instructions were in English. English speakers do

not initially show this priming effect, but will do so if they are explicitly

taught to think of time vertically.

In another set of experiments, Boroditsky tested how well people could

remember pairs of words such as (apple ∼ Patricia). Subjects were native

speakers of Spanish and German; both languages mark nouns for gram-

matical gender, but sometimes differently. Although the test was con-

ducted in English, subjects were better at remembering pairs when the

gender in their native language was the same as that of the paired word.

Since apple is masculine (der Apfel) in German and feminine (la manzana)

in Spanish, Spanish subjects are significantly more likely to remember

apple ∼ Patricia than are German subjects (Boroditsky et al. 2003). This is

another indication of some measurable connection between grammatical

form and cognitive behavior.

Dan Slobin (Slobin 2003) has explored the Whorfian idea systematically

in “Thinking for Speaking.” In a wide range of studies, Slobin showed that
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there are indeed differences in what people tend to notice and remember,

depending on what distinctions are required by the grammar of the lan-

guage used, even for bilinguals. Much of this work focuses on how people

describe motion events in languages with differing grammatical structure.

The key distinction is between languages similar to English (Slavic, 

Germanic, etc.) that code the manner of motion in specific verbs and

others such as the Romance languages, Semitic, and Japanese that use an

auxiliary phrase. For example, we would normally say in English

The dog ran/walked/dashed/ into the house.

In romance languages such as Spanish, this would be expressed as

The dog entered the house, running/walking.

In addition, verb-rich languages such as English have rather more words

describing specific actions (leap, bound, jump, skip, etc.), which we will

call manner verbs, after Slobin.

Slobin and his colleagues have studied the extent to which the gram-

matical style of a subject’s language affects how he or she describes a 

scenario and what the person remembers about it. In one study of 

spontaneous conversation, speakers of verb-rich English used 34 different

manner verbs while speakers of Spanish and Turkish used only the equiv-

alent of walk. In studies of spoken event descriptions by children and also

in famous novels, users of verb-rich languages used about twice as many

manner verbs as those from the other language type. Slobin also suggests

that speakers of verb-rich languages report imaging activities as continu-

ous while speakers of sparse-verb languages tend to envision events as a

series of separate frames.

The psychologist Richard Nisbett (Nisbett 2003) has assembled wide-

ranging evidence suggesting a significant difference in cognitive style

between northern Europeans (and especially Americans) and Asians,

including cultures of West Asia (the Middle East). Americans and Euro-

peans tend to classify objects into unchanging context-independent cate-

gories (as described earlier in this chapter) and are more likely to use logical

reasoning and seek absolute answers. The Asian tendency is to focuse more

on situated, relational, and modifiable categories, empirical reasonable-

ness, and graded answers. He notes that several grammatical distinctions

between East Asian and European languages are consistent with these dif-

ferences in cognitive style. Asian languages are more prone to omit nouns
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when they can be understood from context. There are no general abstrac-

tion rules such as the English “-ness” that allow us to make adjectives into

nouns, as in selfishness. These language distinctions interact with varia-

tions in childrearing and other practices that constitute the distinct cog-

nitive style.

These neo-Whorfian studies are rather new and require further confir-

mation, but grammatical form clearly has some measurable effects on cog-

nition. All of this makes perfect sense from the perspective of this book.

The brain is a massively interconnected system, and spreading activation

is its basic mode of operation. Many, many influences shape the way a

person thinks and interacts with the world. It would be very strange,

indeed, if no regularities of grammar were among the factors affecting

thought. If the grammatical feminine gender is often associated with real-

world femininity, we should fully expect some priming of female names

from feminine grammatical marking. All of these results are surprising only

against a theoretical background that requires grammar to be a formal

system separate from thought. We will come back to theories of grammar

in chapter 21; for now we look more deeply at conceptual systems and

their relation to language.

There are some grammatical distinctions that can bolster fundamental

societal mores. In all languages, there are ways of expressing varying

degrees of respect for other people, for what is being discussed, and so on.

But there are a number of languages in which the grammatical form used

in every utterance must explicitly encode the social relation between the

speaker and hearer. Here, the social system, the conceptual system, and the

rules of grammar reinforce one another so strongly that it makes no sense

to try to say which is influencing the other.

A most striking example of a language in which social relations are

encoded in grammar is Javanese. There are three main dialects of Javanese,

each with its own stratification along social lines. The peasant dialect has

three strata, the urbanite dialect has five, and the upper-class dialect has

another five levels. The language rules apparently correspond closely to the

general rules of social behavior, serving to encode and reinforce them.

Observers agree that any fundamental change in the class structure would

need to be accompanied by a corresponding change in language usage. As

Stephen Levinson puts it, “Clearly, any language that forces a language-

specific coding of events causes people to remember the relevant 
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parameters at the time at which the events are experienced.” The fact that

one’s language requires certain distinctions influences, but does not deter-

mine, how one perceives and remembers events in the world.

Abstract and Cultural Concepts

More generally, there is always a rich interaction between culture, con-

ceptual systems, and the language used to talk about them. As we have

seen, it is relatively unusual to have important conceptual differences

encoded in grammar; most concepts are coded by vocabulary. The

grammar of languages changes rather slowly, but all languages can easily

incorporate new words for things, actions, properties, and so on. In earlier

chapters, we suggested how an embodied mind could learn words for

immediate experience. Earlier in this chapter, this capacity was extended

to encompass learning of superordinate categories over such direct 

experiences.

But all of this covers only what we have been calling primary concep-

tual schemas. How do people learn the concepts and language covering

rich array of cultural frames such as baseball, marriage, and politics? In

particular, what does the embodied NTL have to say about learning and

using the language of cultural discourse?

The answer is metaphor. Metaphor in general refers to understanding one

domain in terms of another, as discussed in chapter 1 (Lakoff & Johnson,

2003). The NTL approach suggests that all of our cultural frames derive

their meanings from metaphorical mappings to the embodied experience

represented in primary conceptual schemas. The next few chapters elabo-

rate on the related ideas of meaning as metaphor and simulation, culmi-

nating (chapter 20) in a demonstration of the theory in a program for

understanding news stories through metaphorical simulation.

But before getting into the full development, it is worth looking at the

metaphorical structure of one particular conceptual domain—our ways of

thinking and talking about language and thought itself. This is more than

just a random example; much of the language used throughout this book

is inevitably based on conventional metaphors for thought and language.

T.S. Eliot’s Sweeney Agonistes famously said “I gotta use words when I talk

to you.” Well, you gotta use metaphors when you talk about technical and

abstract domains, including language.
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Conceptual Models of Communicating and Thinking

Michael Reddy in 1977 and George Lakoff in 1978 discovered one of the

most basic concepts in cognitive science, changing how we think about

the mind. Reddy, in his classic paper on the conduit metaphor (Reddy 1979),

suggested that the concept of communicating is best seen as metaphori-

cal. Reddy’s original description of the conduit metaphor is a good example

of how conceptual systems derive their meaning from embodied schemas.

The mapping looks like this:

Ideas are objects

Phrases are containers (for idea-objects)

Communicating is sending (idea-objects in phrase-containers)

In this conceptual system, communicators put idea-objects into phrase-

containers and attempt to “get the idea across” to their interlocutor. 

Communication is successful if the interlocutor “gets” what they say. The

metaphor has further details. Idea-objects don’t fit into arbitrary word-

containers; there are right and wrong words for an idea, and it is up to the

speaker to put his or her ideas in the right words. In most cases, “the

meaning is in the words.” But when a speaker communicates insincerely,

the words may be “hollow” or “empty.” A speaker who is trying not to

communicate directly can “hide her meaning” in “dense” paragraphs.

Reddy lists some 140 such common, everyday expressions for this one con-

ceptual metaphor.

Eve Sweetser observed that the conduit metaphor is a special case of a

much more general and elaborate metaphor system—the mind-as-body

system. The general mapping is as follows:

The mind is a body

Thinking is physical functioning

Ideas are entities (relative to which the body functions)

This general metaphor has four special cases of physical functioning:

manipulating objects, perceiving, moving, and eating.

The conduit metaphor is a special case of thinking as manipulating

objects. This metaphor includes the conception of understanding as 

grasping, teaching as providing students with ideas and includes such

expressions as “tossing ideas around,” “playing with ideas,” and shaping

a theory.
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Under the mapping Thinking is perceiving, we have examples such as

knowing is seeing, coming to know is observing, understanding is seeing

clearly, communicating is showing, and so on. This metaphor is used in

expressions like “shedding light on the subject,” “being enlightened,”

“pointing out a fact,” “a clear presentation,” “a murky paragraph,” and 

so on.

Another mapping is Thinking is moving, in which one can “lead

someone step by step through an argument,” “follow an argument” or “get

lost,” “talk in circles,” “go directly to the point,” “reach conclusions,” “skip

steps in an argument,” or “zoom through a lecture.”

A nice one is Thinking is eating, in which ideas are food, communicat-

ing is feeding, accepting is swallowing, understanding is digesting, and so

on. This metaphor gives rise to such expressions as “spoon-feeding your

students,” “regurgitating information on the exam,” “letting ideas simmer

for a while,” and so on. French, as you might expect, has a very elaborate

version of this metaphor. A typical expression is “aux petites onions” (with

little onions), which means a particularly exquisite idea.

These examples are all clearly metaphorical. They are systematic. They

involve applying the reasoning of the embodied (source) domains to the

abstract (target) domain. They define a large proportion of our modes of

comprehension of what ideas, thought, understanding, and communica-

tion are. Try having a conversation about thinking, communicating, and

understanding for 10 minutes without using any of these metaphors or

any of the reasoning that arises from their use. You probably won’t 

notice unless you pay close attention, but you will be using some of these

metaphors.

Three other important metaphors for ideas are the following:

Thought is language. Examples include “Do I have to spell it out for you?”;

“Let me make a mental note of that”; “She’s an open book to me”; “I can

read her mind”; “The argument is abbreviated”; “He’s reading between the

lines”; “That’s Greek to me.”

Thought is mathematical calculation. Expressions include “It doesn’t add

up”; “What does it all add up to?”; “What’s the bottom line?”; “Give me

an accounting of what went on”; and “We won’t count that.”

The mind is a machine. Expressions include “I’m feeling a little rusty

today”; “The wheels are really turning now”; “He’s cranking out ideas”;

and “He had a breakdown.”
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Each of these metaphors for mind conceptualizes ideas in a somewhat

different way, with different inferences. Yet they define the normal way we

think and talk about ideas and the mind. Since a lot of this book is about

language and thought, it uses such metaphors extensively. This is the 

standard way in which people try to understand new ideas in terms of

familiar ones.

Cognitive scientists have studied many additional examples of complex

conceptual systems, some of which are described in the next chapter.

Diverse cultures, professions, and age groups, conceptualize a domain in

different ways, and this has a profound influence on how people act. But

the evidence suggests that all abstract conceptualizations share one 

character—they are mappings from embodied experience. In the next

chapter, we explain how these metaphorical mappings are learned and

how they dominate much of our reasoning.
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16 Metaphor and Meaning

In the last chapter we saw some of the incredible richness of human con-

ceptual systems and the language used to describe them. Is there any way

to explain how children learn the vast range of interlinked concepts that

constitute their culture? The answer is both extremely simple and quite

profound. There is now very strong evidence that essentially all of our cul-

tural, abstract, and theoretical concepts derive their meanings by mapping,

through metaphor, to the embodied experiential concepts we explored in

earlier chapters.

In a general way, the embodied basis for abstract meanings can be seen

as inevitable. A child starts life with certain basic abilities and builds on

these through experience. Everything the child learns must be based on

what she or he already understands. We know that prior conceptual know-

ledge has a strong influence even on what people will notice in a given

situation. Someone who understands baseball will observe many subtleties

of the game that a novice would not. All cultural knowledge must there-

fore arise from embodied experience.

But the data support a much more specific theory relating abstract 

concepts to experience. Elaborate systems of structural mappings link 

all domains of knowledge to the primitive schemas that I described in

chapters 11 and 13. Much of the reasoning we use in thinking about

complex and abstract subjects derives from our basic embodied knowledge

of actions, goals, forces, and so on. We can learn to memorize disembodied

facts such as “Silesia produces flax” without knowing anything about

Silesia or flax, but it is unnatural.

In the introductory chapter, I talked about the metaphor “spinning your

wheels” as a general way of describing futility in any goal-oriented acti-

vity. In this chapter, we will see how this is one special case of a pervasive



family of metaphors about goals (called the event structure metaphor) that

has been found in every language that has been studied. We will also con-

sider in some detail how the abstract notion of causality can arise from

embodied concepts, particularly physical force. Much of the discussion

follows George Lakoff’s lecture notes for our joint Berkeley class.

Primary Metaphor

A general theory elaborated by Joseph Grady in 1996 suggests that the

metaphor system is grounded in the body in terms of “primary

metaphors.” In each primary metaphor, such as affection is warmth, an

experience brings together a subjective judgment (here, affection) and a

sensory-motor occurrence (temperature). For this metaphor, such an

experience might be cuddling by a parent. Such correlations often show

up in language, in which affection is described in terms of warmth. Here

is a sample of the primary metaphors Grady studied:

Affection is warmth

Subjective Affection

Sensory-motor Temperature

Example They greeted me warmly.

Experience Feeling warm while being held affectionately.

Intimacy is closeness

Subjective experience Intimacy

Sensory-motor experience Being physically close

Example We’ve been close for years, but we’re beginning to drift apart.

Experience Being physically close to people you are intimate with.

Important is big

Subjective Importance

Sensory-motor Size

Example Tomorrow is a big day.

Experience As a child, important things in your environment are often big,

for example, parents.

Happy is up

Subjective Happiness

Sensory-motor Bodily orientation
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Example I’m feeling up today.

Experience Feeling happy and energetic and taking an upright posture.

Bad is stinky

Subjective Evaluation

Sensory-motor Smell

Example This movie stinks.

Experience Being repelled by foul-smelling objects, such as rotten food.

More is up

Subjective Quantity

Sensory-motor Vertical orientation

Example Prices are high.

Experience Observing rise and fall of levels of piles and fluids as more is

added or subtracted.

Help is support

Subjective Assistance

Sensory-motor Physical support

Example Support your local charities.

Experience A child is often aided through physical support.

These primary metaphors allow one to express a private internal (subjec-

tive) experience in terms of a publicly available event; this is one 

crucial feature of metaphorical language. I will follow the standard ter-

minology and call the sensory-motor activity the source domain and the

subjective experience the target domain of the metaphor. Largely universal,

primary metaphors provide the grounding for much of the metaphor

system.

From our neural perspective, primary metaphors can be seen as a normal

consequence of associative learning. Recall from earlier chapters one of the

central facts about the brain: neurons that fire together, wire together. This was

shown in chapter 6 to be the key to detailed brain development and is 

also the basis for both Hebbian and recruitment learning, described in

chapter 9.

The influential British philosopher of language, I. A. Richards, expressed

this idea of association nicely in 1936 when he described metaphor as “two

thoughts of different things active together and supported by a single word

or phrase whose meaning is a resultant of their interaction.”

16. Metaphors and Meaning 201



When subjective and sensory-motor experiences are brought together 

in an episode, both domains are coactive. This, according to association

learning theory, causes the strengthening of connections between the

neural circuits supporting the different modalities. The new, strengthened

connections physically constitute the metaphorical mapping. It is impor-

tant that the modalities remain distinct (it is still possible to experience

one without the other) for example, warmth without affection.

Learning Primary Metaphors

In Metaphors We Live By, Lakoff and Mark Johnson hypothesized that

certain very basic conceptual metaphors arose from correlations in every-

day experience. The example they gave was More is up, with expressions

such as: The temperature is rising; Stock prices hit bottom; and Thefts have

soared in London. They suggested that the metaphor could arise from the

regular correlation of quantity with verticality, as when one creates piles

or pours liquid into a glass.

This hypothesis was confirmed in research on child language learning

by Christopher Johnson (Johnson 1999). In a study of the acquisition of

the Knowing is seeing metaphor, Johnson found that children first learn

the literal sense of see as in See doggie and See Daddy. Then they learn cases

Johnson referred to as conflations, in which the domains of seeing and

knowing are coactive, that is, both are involved, as in sentences such as:

“See Daddy come in,” or “See what I spilled.” Finally, children learn pure

metaphorical cases such as: “See what I mean.” Johnson has argued that

metaphor arises from such conflation, or neural coactivation, in everyday

experience of the source and target domains of the metaphor. The cases

he studied occurred before the age of 3 years.

Conceptual Metaphor and Abstract Concepts

Joe Grady has shown that complex metaphors are conceptual combina-

tions of primary metaphors. Each primary metaphor is directly grounded

in everyday experience linking our (often sensory-motor) experience to our

subjective judgments. For example, the primary conceptual metaphor

Affection is warmth arises because our earliest experiences with affection

correlate with the physical experience of the warmth of being held closely.
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Grady, like Johnson, discussed previously, argued that primary metaphors

arise via conflation.

The primary metaphors appear to be learned mainly to help the child

understand and express language about subjective experience. But they

also provide a mechanism for conceptualizing and discussing the full range

of cultural and abstract concepts needed in human society. The metaphor

mechanism also interacts with our capacity for organizing experience into

the frames discussed in chapter 11. Metaphors usually map between con-

ceptual frames (e.g., journey and career) rather than just relating two iso-

lated words.

A child’s early experiences involve various entities that play fundamen-

tal semantic roles such as agent, goal, source, and time. There is evidence

that basic grammatical forms are based on the structure of these primary

experiences, and we will discuss this further in chapter 21. Structural ele-

ments such as “agent” are also mapped by metaphor from various target

domains to the domain of direct experience. For example, in the case of

Spinning your wheels, the metaphorical agent always maps to the driver

of the car.

Metaphors are selective mappings: many things that we know about cars

(steering wheels, fuel, speed limits) have no role in the Spinning your

wheels metaphor, although they are used in other metaphors involving

the car journey frame. Much of cognitive linguistics is concerned with

exactly how this works. As an illustrative example, we will examine in

some detail the abstract notion of cause and how it can be conceptualized

in terms of primary metaphors and schemas.

Causes Are Forces

The first cognitively modern study of causation was Leonard Talmy’s classic

paper from the mid-1980s, “Force Dynamics in Language and Thought,”

which showed that causation is metaphorically based on our embodied use

of force in everyday life (Talmy 1988). Causes are forces is a primary

metaphor, learned automatically and subconsciously in early childhood. It

lies at the center of an elaborate metaphor system for causation, described

in meticulous detail in Lakoff and Johnson’s Philosophy in the Flesh (1999).

Let’s start with a few representative sentences exemplifying causation. The

words in bold express causation—of one sort or another.

16. Metaphors and Meaning 203



The noise gave me a headache.

The aspirin took it away.

The democrats blocked the balanced budget amendment in the senate.

FDR’s leadership brought the country out of the depression.

He pulled me out of my depression.

A settlement emerged from long discussions.

Difficulties began to arise.

The data forced me to change my theory.

They are trying to produce a new theory of physics.

All of these sentences express causation—but not the same concept of cau-

sation. Consider the verbs of forced motion, such as bring, take, push, pull,

propel, throw, send, carry, drive, and so on. Using the metaphors Causes are

forces, States are location, and Change is motion, these can all be used to

express causation. But each verb has a different logic, and each carries over

to metaphorical uses. When you bring something, it accompanies you; you

are applying force and control the whole way. But when you throw some-

thing, you apply force to an object initially, and then it moves on its own.

These literal logics are used metaphorically in causal sentences “FDR

brought the U.S. out of the Depression.” Here FDR exerted force and control

over the whole period, and the verb throw cannot be substituted. Compare

this with “The rail strike threw France into a recession.”

When causation results in a change of structural form, we conceptual-

ize it via causes are forces, where states are shapes. Examples include

reshaping the bureaucracy and reforming politics. When causation results

in a new entity, we use physical creation metaphors, such as forging a new

alliance, or progeneration concepts, as in “The Internet gave birth to a new

era of commerce.”

The embodied inferences concerning literal force are preserved in the

abstract domain of general causation. There are kinds of causation with

different inference structures, all of which are preserved under the

metaphors. We do not have a single concept of causation, but many, each

with different inference structures. The central metaphor is Causes are

forces. It combines with other metaphors to yield complex causation con-

cepts. Causation is embodied, mapping back to the everyday experience of

exerting force.

Complex metaphors (e.g., the event structure metaphor) could arise neu-

rally because primary metaphors can be coactive. When this happens, con-
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nections between the coactive maps can give rise to circuits connecting

the maps and allowing for their repeated coactivation, as in figure 16.1.

This is a neural account of the basic metaphor phenomena, employing the

general paradigm of recruitment learning (see chapter 9).

The Causes are forces metaphor combines with several other metaphors

to produce a general mapping between physical journeys and any goal-

oriented activity, however abstract. Some of the key primary metaphors

involved are shown below. The resulting event structure metaphor appears

in every language studied and is applied in a wide range of contexts.

States are locations

Subjective A subjective state

Sensory-motor Being in a bounded region of space

Example I’m close to being in a depression and might go over the 

edge.

Experience Experiencing a certain state as correlated with a certain loca-

tion, for example, being cool under a tree, feeling secure in bed.

Action is motion

Subjective Experience Action

Sensory-motor Moving oneself through space
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Example I’m moving right along on the project.

Experience One of our most common actions is moving ourselves through

space.

Change is motion

Subjective experience Experiencing a change of state

Sensory-motor Moving oneself or being moved

Example My car has gone from bad to worse lately.

Experience Feeling the change in, for example, temperature as one moves.

Purposes are destinations

Subjective Achieving a purpose

Sensory-motor experience Reaching a destination

Example He’ll ultimately be successful, but he isn’t there yet.

Experience Achieving a purpose is correlated with reaching destinations,

for example, if you want a drink, you have to go to the water cooler.

Causes are physical forces

Subjective Achieving result

Sensory-motor Exertion of force

Example They pushed the bill through Congress.

Experience Achieving results by exerting forces on physical objects to

move or change them.

Difficulties are burdens

Subjective Difficulty

Sensory-motor Muscular exertion

Example She’s weighed down by responsibilities.

Experience The discomfort or disabling effect of lifting or carrying heavy

objects.

Linear scales are paths

Subjective Degree

Sensory-motor Motion

Example John’s intelligence goes way beyond Bill’s.

Experience Observing the amount of progress made by an object in motion.
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The Event Structure Metaphor

The event structure metaphor combines several primary metaphors and

organizes them in a complex way. It also relies on the common frame

semantics of motion or journeys, which include the various source domain

concepts such as locations, movements, paths, and forced movements. The

mappings transfer the logic of this motion frame and apply it to the

domain of events. Linguistic examples are given with the mappings below,

but it is important to remember that the metaphor is not in the words—

it is in the conceptual mappings. Particular linguistic examples may be

ambiguous about which metaphor they are referring to, such as “move the

meeting ahead” or “it’s all downhill from here.” The basic mappings in the

event structure metaphor include the following:

Causes are forces.

States are locations (bounded regions in space).

Changes are movements (into or out of bounded regions).

Actions are self-propelled movements.

Purposes are destinations.

Means are paths (to destinations).

Difficulties are impediments to motion.

Expected progress is a travel schedule; a schedule is a virtual traveler, who

reaches a prearranged destination at a prearranged time.

External events are large, moving objects.

Long-term, purposeful activities are journeys.

This mapping generalizes over an extremely wide range of expressions. For

example, consider states and changes. We speak of being in or out of a

state, of going into or out of it, of entering or leaving it, of getting to a

state or emerging from it. This is a rich and complex metaphor whose parts

interact in several ways. To get an idea of how it works, consider the

submapping Difficulties are impediments to motion. In this metaphor, 

purposive action is self-propelled motion toward a destination. A difficulty

is something that impedes motion toward such a destination. Metaphori-

cal difficulties of this sort come in five types: blockages, features of the

terrain, burdens, counterforces, and lack of an energy source. Here are

examples of each:
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Blockages He got over his divorce. He’s trying to get around the regula-

tions. He went through the trial. We ran into a brick wall. We’ve got him

boxed into a corner.

Features of the terrain He’s between a rock and a hard place. It’s been uphill

all the way. We’ve been bogged down. France slipped into recession.

Burdens He’s carrying quite a load. He’s weighed down by a lot of assign-

ments. He’s been trying to shoulder all the responsibility. Get off my back!

Counterforces Quit pushing me around. She’s leading him around by the

nose. She’s holding him back.

Lack of an energy source I’m out of gas. The economy is running out of

steam.

Such examples provide overwhelming empirical support for the existence

of the event structure metaphor. And the existence of that metaphor shows

that some common abstract concepts—TIME, STATE, CHANGE, CAUSA-

TION, ACTION, PURPOSE, and MEANS—are conceptualized via metaphor.

Since such concepts are at the very center of our conceptual systems, the

fact that they are conceptualized metaphorically shows that metaphorical

mappings are linked to our core ideas. Metaphors are often organized in

hierarchical structures, in which more specific mappings in the hierarchy

inherit the structures of the more general mappings.

This inheritance hierarchy accounts for a range of generalizations. 

First are generalizations about words. Take the word “crossroads”. Its

central meaning is in the domain of space. But it can be used in a

metaphorical sense to speak of any extended activity, of one’s life, of a love

relationship, or of a career. I’m at a crossroads on this project. I’m at a

crossroads in life. We’re at a crossroads in our relationship. Crossroads is

extended lexically by the submetaphor of the event structure metaphor

that Long-term purposeful activities are journeys; separate word senses are

not needed.

Thus, the understanding of difficulties as impediments to travel occurs

not only for events in general, but also in more specific cases, such as in

a purposeful life, in economic progress, and in a career. The metaphor

shows how the understanding of difficulties in life, love, economics, and

careers is a consequence of such an understanding of difficulties of acti-

vities in general. The hierarchy also allows us to characterize words whose

meanings are more restricted. Thus, climbing the ladder refers only to
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careers, not to love relationships or life in general. Such hierarchical orga-

nization is a very prominent feature of the metaphor system of English

and other languages. Linguists have found that the metaphors higher up

in the hierarchy tend to be more widespread than lower-level mappings.

Thus, the event structure metaphor is very widespread (and may even be

universal), while particular metaphors for life, love, and careers are much

more restricted culturally.

Each conventional metaphor, that is, each mapping instance, is a fixed

pattern of correspondences across conceptual domains. As such, each

mapping defines an open-ended class of potential correspondences across

inference patterns. When activated, a mapping may apply to a novel source

domain knowledge structure and characterize a corresponding target

domain knowledge structure. For example, if you hear someone talk 

about a “career detour,” you might consider your own career somewhat

differently.

Once a domain of knowledge becomes well known, it can itself serve 

as a source domain (basis) for understanding more novel concepts. We

sometimes get metaphors mapping both ways, for example, between war

and sports. These create no difficulty—the appropriate concepts in each

domain are activated and inferences are drawn from the combined 

activation.

Metaphorical mappings should not be thought of as processes, or as algo-

rithms that mechanically take source domain inputs and produce target

domain outputs. Each mapping should be seen, instead, as a pattern of

neural connections across domains that may or may not evoke a source

domain knowledge structure. Words that are conventional in the 

source domain are not always conventional in the target domain. The

source domain word may not have a conventional sense in the target

domain, but can still be actively mapped in the case of novel metaphor.

For example, the words “freeway” and “fast lane” are not conventionally

used for love, but the meanings associated with them are mapped by the

Love is a journey metaphor in such cases as “We’re driving in the fast lane

on the freeway of love.”

In general, much of the power of metaphor comes from the ability to

activate novel conceptual linkages. The remarkable fact is that we auto-

matically carry over the crucial inferences from the source (embodied)

domain to the usually more abstract target domain. Metaphorical 
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mappings preserve the cognitive topology (that is, the frame and schema

structure) of the source domain, in a way consistent with the inherent

structure of the target domain. This is called the invariance principle.

The invariance principle specifies, for example, that for container

schemas, interiors will be mapped onto interiors, exteriors onto exteriors,

and boundaries onto boundaries; for path-schemas, sources will be mapped

onto sources, goals onto goals, trajectories onto trajectories; and so on. As

a consequence, the image-schematic structure of the target domain cannot

be violated: one cannot find cases in which a source domain interior is

mapped onto a target domain exterior, or a source domain exterior is

mapped onto a target domain path. This simply does not happen. As we

saw earlier, grammatical roles such as agent and patient are also always

preserved.

This seems almost magical until we recall that our knowledge of abstract

domains is constructed using these principles. We build our cultural frames

by mapping them systematically to our experience. Because the principles

of mapping are consistent, we know how to use the mappings in novel

cases, like the previous freeway of love example.

The event structure metaphor is extremely rich. How can it be repre-

sented neurally and how would it arise? The theory of primary metaphors

at the beginning of this chapter is an account of how the metaphors might

originate. The claim is that the brain uses structures it has, such as the rich,

detailed networks for sensory-motor concepts, and adapts them to other

things, such as abstract concepts. Everything the mind does has to be done

physically by the brain. Everything that is in the brain needs to be built

in or learned.

We can also think about how metaphors would work in the neural pro-

cessing of language. We know that metaphorical interpretations are often

needed to understand a sentence. But how could the brain know which

metaphor map to use before understanding what the sentence is about?

This is another example of the kind of best-fit problem the brain evolved

to solve. Figure 16.1 uses the triangle node mechanism (c.f. figure 9.2) to

suggest how metaphor selection and sentence understanding work

together. Recall that a triangle node is an abstract representation of a neural

circuit that becomes active when two of the three clusters that are linked

to it both become active. Figure 16.1 depicts a small part of a network that

could both match and use the event structure metaphor. In a sentence such
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as “France stumbled into recession,” the word “France” activates the idea of

actor and another word, “stumbled,” evokes the idea of walking and there-

fore a mover.

We can see from figure 16.1 that actor and mover are linked to the same

triangle node—when both are active, the triangle node circuit T1 will

become active. This, in turn, will spread activation to the top node of the

figure, which represents the event structure metaphor as a whole. A sen-

tence will always have other competing interpretations, but let’s assume

that the circuit of figure 16.1 is currently the most active and think about

the effect this will have on the second triangle node, T2. Node T2 has one

active input from above and there will also be activation on the Path unit,

because it is associated with stumble as an interruption in walking. Now,

since T2 has two active inputs, it will tend to activate its third neighbor,

plan. We can interpret this as encoding the brain’s knowledge that, under

the event structure metaphor, a path is a plan. As before, the triangle node

formulation models how the brain can bring together and exploit diverse

pieces of knowledge.

If metaphorical mappings are embodied like this, we should be able to

do psychological experiments on them. Ray Gibbs and his colleagues have

done several revealing studies (Gibbs 1994). In one study, subjects were

first asked to read little stories about anger, such as one in which someone

returned John’s car with new dents in it. They were then given the lexical

decision task we described in chapter 7—decide as fast as possible whether

some string of letters is an English word. They were given three different

kinds of sentences as priming contexts:

(1) He blew his stack (appropriate idiom).

(2) He got very angry (literal).

(3) He saw many dents (neutral control phrase).

The target strings were either metaphorically connected words like “heat,”

unrelated words, or nonwords. When primed by sentence 1, subjects

responded faster for heat, but not for unrelated words or nonwords, even

though sentence 1 has no direct mention of anything involving heat.

Neither literal sentences nor different metaphors for anger had this

priming effect. Recall that priming is believed to work by spreading acti-

vation among related neural representations. The obvious explanation for

the findings is that a metaphorical sentence like sentence 1 evokes the
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mapping from anger to heat and thus makes it faster for people to iden-

tify the string heat as an English word.

Let’s suppose that abstract domains really do derive their meaning from

metaphorical mappings, usually to domains of direct experience. Does this

tell us anything about how people reason and comprehend language?

Decidedly so—the next four chapters present a detailed and implemented

model of story understanding that relies crucially on embodied semantics.

The key idea is again simulation; we understand a story by imagining our-

selves in it or observing it. By linking abstract language to embodied

knowledge, we are able to tap into all of our rich experience of the world

and social systems as the basis for inference. The process is not simple, but

it does provide the only worked out theory of how people are able to under-

stand stories containing novel ideas and language.
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17 Understanding as Simulation

We are now ready to look in detail at language understanding from an

embodied neural perspective. Let’s proceed like linguists and examine a

collection of related sentences (table 17.1, overleaf ). Try to think about

what it is like to comprehend each of the examples in the table. First, reflect

back on the kind of café you brought into the story—is it in a city or town,

does it serve coffee or liquor, is it upscale or seedy, and so on? None of the

sentences suggest anything in particular about the café, but we need to fill

in some details to imagine (simulate) the situations they describe—an

essential part of understanding the discourse. In this chapter, we will

explore the neural basis for mental simulation and a variety of ways in

which simulation is used in language comprehension.

Each of the seven examples has a distinctly different meaning and lin-

guists can explain how each meaning derives from the sentence structure.

Example b suggests that Harry started near the café and definitely entered

it. Example a (“to” instead of “into”) suggests that Harry started rather far

from the café and leaves open whether or not he entered it. In example c,

where he walks into the wall, we get a different meaning of into and much

richer inferences about his possible state before and after the event.

Example d, with “came,” places the speaker on the inside of the café; the

first three are described from an exterior perspective.

The important point for us is that much of language can be seen as

setting up the conditions for imagining the scene being portrayed. Exam-

ples e and f, with Harry waltzing or stumbling, obviously give extra detail

on how he entered, but they also do a great deal more. Waltzing or stum-

bling evokes graphic suggestions of Harry’s probable mental and physical

state. By offering us more information on Harry, these sentences also invite

us to simulate the scene from Harry’s perspective; we can imagine being



Harry in this situation. The first four examples are detached and lead us

naturally to imagine the scenario as an observer—we watch Harry do his

thing. The final example, with Harry escorting Josh, is even richer in pos-

sibilities. We can also imagine or simulate this scene from the perspective

of Josh, who is not the initiator of action in this scenario, but is being

acted on. At least in my dialect, the last example has overtones of coer-

cion, which it would lack if Josh had been Jane.

So, the process of understanding through embodied simulation inher-

ently involves a choice of perspective. The three basic alternatives are agent

(pushing), experiencer (being pushed), and observer (seeing third party

pushing). We can use this insight and think back to the word learning pro-

grams discussed in earlier chapters. Regier’s system for learning spatial rela-

tion words was done entirely in the observer perspective; it modeled a child

looking at visual scenes. Bailey’s program for learning verbs of hand action

was done from the agent perspective—it models a child doing things and

hearing verbal names for the actions. No one has built a program model-

ing the child as an experiencer, although that is clearly a lot of what

happens. We did encounter early words learned from this experiencer per-

spective in chapter 10. For example, children often learn “up” in connec-

tion with someone lifting them up.

Evidence for Mental Simulation

The general idea of understanding as imagination or simulation seems

plausible enough, but is it right? Is there evidence for this kind of mech-

anism in people? Are there alternative models of comprehension that
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Table 17.1
Seven sentences on the adventures of Harry

a. Harry walked to the café.

b. Harry walked into the café.

c. Harry walked into the café wall.

d. Harry came into the café.

e. Harry waltzed into the café.

f. Harry stumbled into the café.

g. Harry escorted Josh into the café.



might be better? There isn’t space for complete answers to these questions,

but I will outline the reasons for postulating that language understanding

is best seen as simulation.

There is considerable evidence that much of the circuitry used in carry-

ing out an action is also involved when people simulate their own actions

or those of others. Some of this evidence comes from reaction time exper-

iments, like those described in chapter 7. For example, if subjects are asked

to imagine walking to targets at various distances, the elapsed times to 

the imagined goal are similar to those for actually walking. Another experi-

ment exploited the fact that the right hand is controlled by the left side

of the brain. Subjects were asked whether they would use an overhand or

underhand grip to grasp a cylindrical object, presented briefly to either the

left or right visual field. Although no motion was involved, the choice of

a righthanded posture was much faster when the left side of the brain saw

the picture. There are also various clinical reports that patients with spe-

cific motor deficits show similar problems in imagination tasks.

There are several reasons why this ability to simulate our actions is eco-

logically valuable. An obvious use of mental simulation is in planning—

imagining how to do something before doing it, for example, gives us a

better chance of getting the right tools. At a finer level of detail, much of

our perception requires neural copies of current motor commands. For

example, the vision system receives signals regarding ongoing eye move-

ments, which it takes into account in processing image changes. It seems

quite likely that these signals about planned actions could be used in 

simulating those actions. Simulation is also useful as a form of practice;

some studies suggest that athletes can improve by imagining the desired

performance.

Recent findings in brain imaging provide additional support for the plau-

sibility of mental simulation. I talked earlier about mirror systems in

monkeys and humans. These are neural networks that show essentially the

same activity when the agent perceives an action as when she carries it out

herself. The discovery of such circuitry provides a plausible neural mech-

anism for the machinery needed for mapping from observing an action to

executing that same action yourself. There is also direct evidence of similar

brain imaging patterns when subjects carry out real and imagined move-

ments such as touching a finger to the thumb. More generally, a number

of studies report increases in heart rate and other indicators of metabolism
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for simulated action. Mirror circuitry could be used for linguistic as well as

visual input and preliminary experimental results suggest that this does,

indeed, happen.

There is very solid evidence that language tasks make heavy use of 

brain areas that support the appropriate activities. Consider the brain activ-

ity images in figure 17.1. This figure shows the pattern of blood flow, and

thus neural activations, during four language-related tasks. In the upper

left, the subject is reading words (e.g., bike) silently, and the greatest activ-

ity (dark areas) is in the posterior brain regions concerned with vision. On

the upper right, the subject is speaking the word aloud. The figure shows
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Blood flow changes while
SEEING WORDS

Blood flow changes while
SPEAKING WORDS
(read aloud BIKE: “Bike,” subtracting off
response to reading silently)

Blood flow changes while
HEARING WORDS

Blood flow changes while
GENERATING WORDS
(“Ride” for BIKE, subtracting off response
to “Bike” above)

Figure 17.1
Blood flow while executing language tasks. (Source: Posner, M.I. and Raichle, M.E.

Images of Mind. Scientific American Books, New York, 1994, p. 115)



the additional active brain regions, including those traditionally associated

with speech. On the bottom left, we see which additional areas are 

operating when the subject is hearing the words. Finally, the image in the

bottom right shows additional processing areas activated when the subject

is asked to name an activity that would be appropriate for the printed word

(e.g., ride for bike). These additional areas of high blood flow include pre-

frontal brain regions associated with planning and also parts of the brain

that are used in carrying out the actions themselves.

So there is at least suggestive evidence that language understanding

involves activation of neural mechanisms that would carry out the appro-

priate activities—that is, simulations. But this evidence is all very new;

people have been studying language for thousands of years and have devel-

oped theories of understanding that are quite different from the simula-

tion theory used in this book.

Understanding as Logical Inference

The conventional way to model language comprehension is to view it as

a form of logical deduction. Sentences in language are mapped (using

grammar) to propositions in mathematical logic, and then the rules of logic

are used to draw inferences. The classical case, which really goes back to

the Greeks, is

Socrates is a man. All men are mortal.

From this we should conclude that Socrates is mortal. The vast majority 

of scientists studying the semantics of language still pursue this approach,

and they have made many important discoveries in both logic and 

linguistics.

But from what we have seen about how the brain and conceptual

systems work, we should not expect classical logic to explain all the phe-

nomena. It is hard to believe that we get frightened or excited in reading

a story because of the logical deductions it gives rise to.

In fact, no one now claims that the formal approach is sufficient. A great

deal of current work is focused on inference methods based on more quan-

titative and probabilistic reasoning. We obviously need more than formal

logic to understand sentences like

Harry stumbled into the café.
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Stumbling suggests some kind of physical problem, and we need to learn

or imagine whether Harry was sick, or drunk, or just tripped on some obsta-

cle. As we will see in chapters 19 and 20, this kind of probabilistic rea-

soning plays a central role in the simulation model.

Active Simulations

An adequate theory of understanding requires more than just describing

in general how simulation can support comprehension and suggesting

how it might arise in the brain. Our methodology is based on building

detailed computational models that test whether the hypothesized neural

mechanisms could produce the required behavior. In chapter 20, I describe

Narayanan’s program that uses simulation semantics to model the under-

standing of news stories. To build such models, we need to work out the

details of how language gets mapped to simulation and how simulation

yields understanding. The first part, mapping language input to a form

suitable for simulation, is the role of grammar and will be discussed in detail

in chapters 21 through 24. For now, we assume that this mapping can 

be done and concentrate on how appropriate simulations can yield 

understanding.

We saw the beginnings of the simulation story in figure 14.1, in con-

nection with Bailey’s model of learning words for hand actions. Recall that

the middle of that figure depicted a large collection of features that were

used in mapping from language (above) to action (below). For example, a

word like “shove” activates the slide action schema along with features like

force∼high and duration∼short. These feature connections were used in

chapter 14 in the model of the child learning to carry out the actions

named by words the child has learned. We then noted briefly that the same

mechanism could be used to imagine carrying out the action.

This is the most basic notion in simulation semantics—the language pro-

cessing and motor circuitry needed for carrying out a requested action is

also employed in understanding that action through simulation. Recall

that our computational model of an action is an executing schema, as

depicted in figure 13.2. It is computationally quite straightforward to use

these schemas for simulation. Rather than directly controlling the robot’s

effectors, we use the schema to make changes in an internal model. This
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is the computer equivalent of the mind’s eye or imagination. In fact, we

know that animal brains do a kind of simulation in dreaming.

The simulation of action schemas is the heart of the computational

model, but we also need to represent the entities involved in a story and

their relationships. We have already seen almost all the required machin-

ery. Objects and situations are represented as frames (chapter 11). For

example, you supplied a café frame to your interpretations of sentences a

through g at the beginning of this chapter. Many of the inferences required

for simulation semantics are present in the frames themselves. One par-

ticularly important class of semantic frames is the image schemas discussed

in chapter 11. We also require fairly elaborate models of actions, as

described in chapters 13 and 14 and further discussed in the chapter to

follow. As I mentioned earlier, this ability to imagine our own and others’

actions is the core of understanding.

When we envision Harry going to the café, we simulate the café as a des-

tination, filling a role of a source-path-goal (SPG) image schema. In the

cases in which he enters the café, we also envision the café as a container—

with an interior, exterior, portal, and so forth. As we will see later, one

main function of grammar is to link up the appropriate frames, image

schemas, and active schemas for simulation. For example, when Harry

walks into the café wall, the café is not being imagined as a container, but

as a large solid object. This helps the grammar system realize that the

required meaning of “into” is not the one that fits with containers, but the

one involving contact, another primary image schema.

We now have some basic idea of the computational simulation of simple

concrete language like the examples of this chapter. A grammar system (to

be described in chapter 23) analyzes the utterance in context and produces

a linked collection of frames and schemas that specify what actions took

place and which actors and other entities were involved. We have seen

simple examples of active schemas linked to agents and objects in earlier

chapters.

The action schemas are carried out using a model instead of the real

world; that is, they are simulated. For example, the hearer of our first

example sentence (sentence a in table 17.1) would simulate (imagine)

Harry walking. Finally, the results of the simulated execution are the infer-

ences that result from the input sentence. The input sentence provides
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only part of the information for the simulation. The background, context,

and goals of the understander determine exactly what will be simulated

and at what level of detail, as we saw with the initial examples from 

table 17.1.

Our examples so far have been artificial; let’s consider a sentence that

has exactly the same form as sentence b (in table 17.1):

Osama bin Laden walked into the United Nations.

Anyone reading this in a news story in early 2006 would immediately want

to know more. Was it really the head of al Quaeda? How did he get there?

What was he planning to do? If no more information were immediately

forthcoming, you would start to imagine possible scenarios, using your rich

knowledge of the international situation. As you learned more, your sim-

ulation would be updated to reflect the additional information. It would

be hard not to imagine possible outcomes; we naturally understand things

by predicting their consequences.

Understanding This Book

As a reality check, we can attempt to imagine Harry trying to understand

this book. It is easy enough to picture him sitting and reading in the cafe

and also to empathize with his frustration. But suppose we want to simu-

late this situation in much greater detail and imagine what Harry’s brain

is doing as he reads. Several perspectives are available for this simulation.

Using the world brain metaphor from chapter 5, you could imagine the

billions of worker neurons collaborating to learn new connection weights

that capture the ideas in each section of this book. You might want to sim-

ulate at a deeper level, and think about neural firings and chemical

changes. Or you might choose to adopt the information processing per-

spective and consider what concepts, relations, and rules Harry is trying

to learn. Ideally, you will be able to simulate at any of these levels and map

from one to another.

Of course it’s not Harry’s brain, but your own, that you should simulate.

The purpose of the first nine chapters was to provide ways of thinking sci-

entifically about how your brain thinks. If you can imagine in detail how

your brain is understanding this book, then you “get it.” The rest of 

the discussion will be just filling in the details and suggesting some of the
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consequences. If not, I suggest that you bookmark this section and come

back to it from time to time. Grasping the overall story does not require

remembering all the details of the various discussions. I certainly could not

reproduce them without looking back.

Understanding Metaphorical Language

The idea of understanding as simulation can also be carried over 

to metaphorical language (chapter 16) in general. Consider what happens

when we take the seven examples from table 17.1 and examine how they

look with the event structure metaphor, in which economic progress is

mapped onto physical progress toward a goal. The sentences marked with

# are of questionable acceptability.

All of these examples are based on the event structure metaphor, dis-

cussed in detail in the previous chapter, where goals (here economic ones)

are thought of in terms of physical destinations. Not all of the sentences

about Harry moving toward the café make sense with this metaphor, 

and it is interesting to see why not. The crucial insight is that a recession

is a metaphorical hole (a subtype of container) in the event structure

metaphor. Example a doesn’t make sense because to requires its object to

be a location. Similarly, example c fails because the café wall is a barrier

and not a container, although there are also barrier economic metaphors

such as “the economy is backed into a corner,” or “ran into resistance.”

Example d seems odd for a different reason; it assumes a person who is

already in the container is talking, which makes no sense here. We pro-

bably would accept a sentence such as: Germany encouraged France to
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Table 17.2
Metaphorical counterparts of the examples from table 17.1

a. #France walked to recession.

b. France walked into recession.

c. #France walked into recession. ∼ barrier

d. #France came into recession.

e. France waltzed into recession.

f. France stumbled into recession.

g. France escorted Belgium into recession.



come into recession. The general point is that metaphorical language 

is accepted and understood when the mappings preserve the appropriate

conceptual types.

Now let’s look at the examples that do make sense in the metaphori-

cal version. Examples b, e, and f all convey similar meanings—France

(metaphorically a person) encountered an obstacle (recession ∼ hole) 

in its economic progress. The difference lies in the concrete verb:

walked/waltzed/stumbled convey the writer’s view of the attitude of 

France while this was happening. Try substituting other verbs of human

locomotion and see what each suggests about France’s economic policies.

The simulation theory suggests that in each case, you (subconsciously)

imagine a person physically moving as described by each particular 

verb and then metaphorically map the features of the physical motion

experience to economics. For example, if France slid into recession, it had

no control over a relatively slow economic decline.

Finally, example g is probably entirely new to you. This is not a common

usage in writing about economics. But you almost certainly came up with

a natural interpretation, without conscious effort. We assume that France,

as a larger country, would be able to bring Belgium along into recession.

It would be much less natural in the other direction. Again, this can be

seen as extension of the direct experience that an adult can escort a child,

but not vice versa.

Of course all of these examples are quite simple, but the idea of infer-

ence as simulation carries over to much more complex cases. In the next

chapter, we discuss simulations with multiple interacting events. Another

classical problem in semantics involves scenarios with multiple times,

places, and people.

Multiple Simulations—Mental Spaces

Simulation is a fine means of understanding discourse, but a single simu-

lation will not always suffice. Let’s consider a few more variations on 

our little scenario (table 17.3). In each of these cases, more than one 

simulation is required. In the first example, we are being invited to think

about what happened last week in addition to the current discourse.

Example b requires us to separate out what Josh believed from what actu-

ally happened. We can reason about Josh’s inferences without confusing
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them with Harry’s actions. All of these sentences require what are called

mental spaces, following Gilles Fauconnier (Fauconnier & Turner 2003). 

In understanding a discourse, we (again unconsciously) build up and 

simulate different scenarios involving various people, places, times, and

other factors mentioned in the story.

Example c requires us to think about at least three spaces: what really

happened, what Harry told Josh, and what Josh believed. Example d is

complicated in another way; we are asked to reason about two 

alternatives—one in which Harry walked and one in which he drove.

Example e is typical of an additional rich class of mental space phenom-

ena—depiction. We routinely understand quite complex discourses 

involving different media, people, times, places, and possibilities all mixed

together.

People can do even more than this. We talked earlier about conceptual

blends, combinations of concepts that derive special meaning from being

united. Simple examples included red hair, which isn’t anything like the

prototypical red. Conceptual blending also occurs across mental spaces,

often giving rise to very rich inferences. One famous example is the 1990

quote from then Texas Governor Ann Richards:

George Bush was born on third base and thinks he hit a triple.

This goes well beyond such standard baseball metaphors as “struck out”

or “hit a home run.” We are invited to think about the elder Bush’s priv-

ileged upbringing and also about his mental attitude. It is hard to imagine

any better way to convey this complex of ideas to an American audience.

More generally, complex scenarios involving several mental spaces can be

evoked even by quite simple statements such as “He lied.” This entails that

one person said to a second person something that the first person knew

to be untrue.
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Table 17.3
Some mental space examples

a. Harry walked to the café last week.

b. Josh believed that Harry walked to the café.

c. Harry told Josh that he walked to the café.

d. If Harry walked to the café, he will need a ride home.

e. In the movie, Harry walked to the café.



It will come as no surprise that no one knows how mental spaces are

realized in the brain. We do know that the hippocampal area is involved

in spatial memory and therefore has some mechanisms for separating out

scenarios by spatial location; this could be part of the mental space mech-

anism. There are also some intriguing recent results on different patterns

of brain activity when imitating the actions of others versus seeing oneself

imitated.

In chapter 20, we look in detail at how a computational model is able

to understand news stories involving economic events like France slipping

into recession. This obviously goes beyond the concrete sentences dis-

cussed in this chapter in that it requires the metaphorical mappings pre-

sented in chapter 16. It also requires the system to deal with richer action

simulations involving ongoing actions such as “Harry is walking into the

café,” as described in the next chapter.
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18 The Structure of Action and Events

The seven sample sentences discussed in the last chapter differed in many

ways, but to simplify the discussion of simulation, they all used exactly

the same grammatical form for the verb—walked, came, waltzed, stumbled,

and escorted are all in the simple past tense. This suggests that the action

involved was already complete and we need not simulate it in detail. Con-

sider the different message conveyed if the verb in each example is changed

to what is called the progressive (table 18.1, overleaf ). Again, please reflect

on what each example conveys.

Now we are placed into the middle of any ongoing action and expect 

to hear more about what happened in the process. For the most part, all

the other semantic cues remain unchanged from the previous example.

The one exception is sentence c′ in which the grammatical form requires

us also to reconstrue an event (collision) usually envisioned as instanta-

neous and expand it into an ongoing process. You probably imagined

example c′ as describing the time just before Harry made contact with 

the wall.

So, the grammatical form used in expressing a sentence tells the reader

how to imagine or simulate the situation being described. The manner in

which language specifies the fine structure of action, technically called lin-

guistic aspect, plays a crucial role in our target task of understanding news

stories. In this chapter, we explore how the active schemas (X-schemas)

discussed earlier can provide the link that allows a program (and presum-

ably our brains) to simulate what is expressed in language.

Linguistic aspect is expressed quite differently in various languages and

covers a wide range of issues. For us, the most important distinction is

between ongoing and completed actions. There is obviously a big differ-

ence between “France is falling into recession” and “France fell into 



recession.” For people, or a computer program, to simulate a story with

ongoing action, there must be some way of imagining the action unfold-

ing. The active schemas of chapter 13 are perfectly suited to model ongoing

behavior and the fine-grained differences in linguistic descriptions of

action needed for comprehension.

As always, we begin with the embodied reality—how does the brain

control the fine structure of actions? Much of the answer has already been

provided in earlier chapters. We know from the discussion of the knee-jerk

reflex in chapter 5 that all of our motor activities have hierarchies of neural

feedback networks. We saw how high-level control of these systems could

be represented by executing schemas (X-schemas), starting with the gaits

of the cat in figure 13.1. From figure 13.2 we then learned how human

actions, such as push and step, could be described by executing schemas,

with choices for parameters such as speed and duration. We know that

children, well before they learn language, have the conceptual schemas for

starting actions, continuing them, stopping actions, and so on. In chapter

14, we found out how these executing schemas were used to model chil-

dren learning the action words of their language.

Figure 18.1 depicts an action schema for walking to the café/store. Fol-

lowing the general neural principle of hierarchical control, it uses the step

schema of figure 13.2 as a component. Looking at figure 18.1, we see it is

a cycle that uses the step schema as the (hexagonal) core of an ongoing

process. This is just a way of capturing the idea that walking consists of

the ongoing process of taking one step after another. Recall that the step

schema itself will make use of more basic neural circuits, like the one

involved in the knee-jerk reflex. The parameters in the lower left are just

228 VII. Understanding Stories

Table 18.1
Progressive variations on the examples of table 17.1

a′. Harry was walking to the café.

b′. Harry was walking into the café.

c′. Harry was walking into the café wall.

d′. Harry was coming into the café.

e′. Harry was waltzing into the café.

f′. Harry was stumbling into the café.

g′. Harry was escorting Josh into the café.



like the ones we have seen before for X-schemas. They code the limited

range of variability that we can sense and talk about.

Figure 18.1 uses a more detailed description of executing schemas, which

is necessary for fine-grained simulation and language understanding. The

circles represent possible states of neural activity and the small vertical

boxes depict transitions, representing neural connections. In this notation,

a black dot inside a circle models activity of the named neural state. So at

the upper left of figure 18.1, the two dotted circles model the situation in

which the agent is upright and sees that the path ahead looks OK.

When the model is simulated, activity would then spread to the circle

labeled ready. The other dotted circle in the figure is the one labeled

ongoing. This encodes the idea that we should simulate the walking as an

ongoing activity, as specified by the example sentences a’ through g’. For

sentences a through g of the previous chapter, which were in the simple

past, the simulation would have the done circle marked, meaning that

understanding does not require imagining the action in progress.

The test (at the top of figure 18.1) determines if the process is finished

depends on external factors, here reaching the goal. If no ending condi-

tion is detected, the simulation will continue indefinitely. This is not real-

istic, and the full model includes the fact that you deplete your energy

while walking. With a more fully elaborated rendition, X-schemas as in

figure 18.1 can describe actions well enough to control robots and are used

this way in some commercial systems.

18. The Structure of Action and Events 229

ok (vision)

ready
start

w

energy = high

Parameters

rate goal

at (store)slow step (slow, foot1) step (slow, foot2)

p = .9

iterate

done
finish

goal = at (store)

ongoing

walk

upright

Figure 18.1
Simulation of walking to the store.



Another property of figure 18.1 that is much more interesting is its gen-

erality. We could replace the step schema (the hexagon on the bottom of

the figure) with almost any other basic physical action and the resulting

schema would describe a human motor activity. This is obvious for other

repetitive behaviors such as typing or chewing. But the idea applies equally

well to actions such as pushing—the ongoing process in pushing involves

the continuous application of force.

Srinivas Narayanan, working with David Bailey on characterizing motor

control schemas, made an interesting discovery that, in retrospect, should

have been obvious (Narayanan 1997). He suggested that all higher-level

motor schemas have the same basic control system structure:

� getting into a state of readiness
� the initial state
� the starting process
� the main process (either instantaneous or prolonged)
� an option to stop
� an option to resume
� an option to iterate or continue the main process
� a check to see if a goal has been met
� the finishing process
� the final state

First, you have to reach a state of readiness (e.g., you may have to reori-

ent your body, stop doing something else, rest for a moment, etc.). Next,

you have to do whatever is involved in starting the process (e.g., to lift a

cup, you first have to reach for and grasp it). Then you begin the main

process, and while you doing it, you have an option to stop; and if you

do so, you may or may not resume. This general controller is pictured in

figure 18.2.

The generalized controller X-schema discussed previously captures

important insights about actions. The key thing is the process. Essentially

any physical activity (including static ones like sleep) can be described by

an X-schema and embedded as the process node in figure 18.2. There are

notions of being ready, canceling, starting, being ongoing, iterating or

interrupting, suspending, resuming, and being done. Once we grasp this

idea, it is easy to see that the general control also applies to abstract
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actions—bidding, boycotting, and so on. This led to an even more remark-

able finding: the dynamic neural control structure of figure 18.2 has exactly

the organization needed for much of the semantics of linguistic aspect, the

structure of events in general.

Some verbs (e.g., tap) are inherently repetitive and some (e.g., sneeze)

are normally seen as happening only once. The inherent aspect of a verb

can be captured by marking the appropriate node of the controller schema

for the action denoted by the verb. Another dimension of linguistic aspect

structure indicates granularity of control—encapsulated as a whole, spread

over time, or broken down into various levels of detail. We saw this in 

the difference between imperfective (walking) and perfective (walked). All

languages have words and grammatical aspect markings that label how we

should simulate an action. Another distinction is between processes that

specify completion (He read the book) and those that are neutral 

about completion (He was reading the book).

In English, we have phrases for all of the states and transitions in 

figure 18.2—the very words in the diagram. You can see how easy and

natural it is to apply all of these to a sample sentence like our standbys.

We say “Harry resumed his walk to the café,” and so on. There are also

some more subtle encodings. For example, the word stumbling from

example f’ conveys the complex idea of the interruption of an ongoing

walking process—all in one word. We say that the word stumbling evokes
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Figure 18.2
The generalized controller X-schema.



an ongoing walk X-schema with the interrupted state of its controller

marked for simulation. If a more detailed simulation is required by the

user’s goals, the word stumble also encodes the manner in which a walk

can be interrupted, compared with other interruptions such as slip, slide,

and trip.

The inherent aspectual marking of a verb can be overridden depending

on the surrounding linguistic context. For example, a verb like jump, which

is normally interpreted as a single action, becomes iterative in a phrase such

as kept jumping. We also saw this in example c’, in which “Harry was walking

into the café wall” caused us to override the inherent punctuate (point like)

aspect of walk into. These meanings can be represented by various markings

of the controller schema and by the simulation framework that results from

hooking up different event controllers in various ways.

We have been discussing the controller schema and the related linguis-

tic expressions as they apply to a person’s own actions. By combining this

idea with the simulation semantics story from the previous chapter, we

can see how to model the understanding of action details. In accordance

with our general theory of simulation, we assume that the controller

schema (like any schema) can be used in both directing action and mod-

eling the actions of others. This notion was already implicit in the example

sentences at the beginning of the chapter. On hearing that Harry was

walking into the café, we imagine an ongoing process and await further

details concerning its unfolding.

Exactly the same reasoning carries over to the metaphorical actions that

are needed in understanding news stories. When we hear that France was

falling into recession, we imagine an ongoing process and await further

details concerning its unfolding. Cognitive linguists have long noted that

aspectual structure is preserved in metaphorical mappings. If the sentence

says falling into recession, we are being told that the country is not yet in

recession, but is heading toward it. This is a remarkable economy of lan-

guage. All of the modeling, simulation, and inference capabilities we have

for directly embodied stories get reused, through metaphor, in countless

abstract and technical domains.

For Narayanan, it was no coincidence that motor control and linguistic

aspect had the same computational structure. He hypothesized that con-

ceptual aspect, which structures events of any kind, is neurally the same
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control system that governs bodily movements and perceptual recognition

of those movements. This would be an instance of the historical property

of unfolding neural systems at work: a system that evolved earlier for motor

control is recruited to reason about events. Thus, we have an embodied

neural explanation for the existence of aspect of the kind seen in all 

languages.

We now have almost all the mechanisms we need to model the under-

standing of news stories. Metaphorical mappings (chapter 17) take us from

abstract domains like economics to embodied knowledge of health,

walking, and other activities.

A phrase like “France stumbled” evokes a simulation of a metaphorical

person encountering difficulty while moving along a path. The conse-

quences of this embodied simulation are then projected back to the eco-

nomic domain where they are treated as economic difficulties.

We have seen how some elements of an input sentence specify which

actions need to be simulated and which parameters are needed for each.

Other facets of the input sentence tell us which perspective to take on each

action and whether its internal details are relevant for the current simula-

tion. All of these factors taken together provide enough information for a

person to imagine or a computer to simulate the story being told and to

draw the appropriate inferences.

We are lacking just one major mechanism for the full understanding of

news stories and other language input—implicit inferencing. When you

hear a story or process other language input, your mind does a lot more

than just comprehend what was said. Without conscious effort, you auto-

matically encode the consequences of this new knowledge for other things

that you believe.

From our earlier discussions of neural architecture and spreading acti-

vation in the mind, we know why we make these inferences—the brain is

organized to adapt to new information. So, we need a biologically plau-

sible way to add to our model of language understanding, this capability

for implicit inferencing. The next chapter describes a computational 

mechanism, called probabilistic belief networks, that is the best current

means of modeling human implicit inference.
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19 Belief and Inference

Language understanding never occurs in a vacuum; in making sense of an

utterance, we use both our general experience of the world and our beliefs

about the current situation. The previous two chapters described how we

can use our general knowledge of action and processes in comprehending

language. This was the most complex and novel part of the embodied

theory of understanding, but the programs that interpret news stories must

also make inferences from descriptive (frame) knowledge, described in

chapter 15.

As I discussed in the chapter on simulation (17), traditional theories of

meaning have focused almost entirely on logical deduction as a model of

understanding. Although much has been learned from this approach, it

covers only a small fraction of the kinds of inferences people draw when

understanding language. From our neural perspective, inference is better

seen as a process of quantitatively combining evidence in context to derive

the most likely conclusions. When you hear or read something new, your

brain’s spreading activation mechanisms automatically connect it to

related information.

In this chapter, I describe a computational technique, belief networks,

which models the best-fit character of neural inference and allows us to

model a much wider range of language behavior. As before, I have chosen

a computational formalism that is the best available approximation to the

related neural mechanisms, here spreading activation. In the next chapter,

I will combine these belief networks with the active schemas of chapters

17 and 18 in a computational model of how people understand the

meaning of news stories about economics. That computer program also

relies heavily on the metaphorical mappings described in chapter 16 and

serves as a major milestone on our path from molecule to metaphor.



For our purposes, descriptive knowledge can be packaged in coherent

frames (chapter 15) and represented computationally as feature structures

(chapter 11), which correspond to the computational neural circuitry. 

As a first example, recall that figure 13.2 showed four different feature 

structures, including one that describes the color and taste of various 

foods. Let’s look more closely at descriptive knowledge, using the food

example.

In all of our representations, entities are described by a collection of

attributes, each of which can have various possible values. For example, the

attribute taste of foods might take on values including salty, sweet, sour,

bitter, and rotten. Our knowledge of a fruit, say apples, includes the fact

that apples sometimes taste sweet, sometimes sour, and sometimes rotten.

Similarly, we know that apples come in several colors including green,

yellow, brown, and red. There is compelling evidence that human knowl-

edge goes beyond just listing the possible values for each attribute, also

including estimates of the probability or likelihood for each value. Fol-

lowing the standard convention that the sum of probabilities for a set of

choices adds up to 1.0, the beliefs about the likely colors of apples might

be red (0.6), green (0.2), yellow (0.1), and brown (0.1). Similarly, a person’s

beliefs about the likely tastes of apples might be sweet (0.6), sour (0.3), and

rotten (0.1).

But we know a lot more than this. We not only have estimates about

both the color and taste of apples, we realize that these attributes are not

independent. If we know the color of a particular apple, our guess about

its likely taste is altered. This is what is known in the trade as a conditional

dependence link and is the basis for the belief networks that we, and myriad

others, use in computational models. People’s beliefs are such that the

probability of one property (say, ripeness) depends on the current value of

some other property, here color. A belief network is a collection of such

relations among the beliefs of some agent.

Computational methods for solving these large probabilistic networks

are relatively new, having been introduced in the 1980s by Judea Pearl

(Pearl 1993). If the probability of one feature value in the network is

changed, a solution involves computing the most likely new value for all

of the other beliefs. These solutions are important in many applications,

and they also model how people can subconsciously work out the conse-

quences of some new piece of information.
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Applied belief networks are used in medical, financial, and engineering

applications and can involve thousands of attributes and links. Various

programs from the software monopoly employ belief networks to help

guess what a user is trying to do and act accordingly. The main effort in

such applications is often in developing programs that attempt to learn

these giant belief networks from many, many examples. For example,

numerous companies are attempting to find useful correlations in their

accumulated business data using what is called data mining. In human

brains, we assume that the neural connections capturing relations among

features are modified based on experience in a somewhat similar way.

We will use belief networks to model how people reason about uncer-

tain events, such as those encountered in economics and politics. We know

that people do reason probabilistically, but they also do not always act in

accord with the formal laws of probability. Daniel Kahneman won the 

2002 Nobel Prize largely for his work with Amos Tversky explaining many

of the limitations of human probabilistic reasoning. Some of the limita-

tions are obvious, for example, the calculations might just be too complex.

But some are much deeper, involving the way a question is stated, a pre-

ference for avoiding loss, and some basic misperceptions about large and

small probabilities. So, belief networks only approximate the underlying

evidential neural computation, but they are by far the best available model.

It is interesting that so much of the theory of uncertainty was developed

by Israelis—Pearl, Kahneman, and Tversky.

Belief Network Examples

Although I will not be presenting any detailed belief network calculations,

it is worth seeing how they work in a simple case. Let’s reduce our apple

description to two colors: red, which occurs seven-tenths of the time, and

green, which has 0.3 probability of occurring. We suppose that there are

also just two tastes, sweet and sour, which occur with probabilities 0.6 and

of 0.4, respectively. So 0.6 is just the chance of an apple being sweet, given

no other information. But a smarter agent would have estimates on how

color and taste are related for apples. The agent’s beliefs about the condi-

tional dependence of apple taste on color could be as shown in table 19.1.

For example, the top left entry encodes the belief that a red apple is very

likely (0.8) to taste sweet.
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Here is how this information could be used in practice. An agent with

the beliefs described above, when offered a totally unknown apple, would

estimate there was a probability of 0.6 that it would be sweet. But if the

agent knew that the available apple was green, he or she would guess that

the probability of it tasting sweet was only 0.3, because of the beliefs

recorded in table 19.1. The agent’s belief about the taste of the apple can

thus be updated using the additional information about its color. This

process of probability updating is the fundamental operation in belief net-

works and is the basis for our model of story understanding. In processing

a news story, the model will update its beliefs about the likely economic

situation being described.

A full belief network discussion would be much more complex. Even for

this tiny example, we know that the likely taste of a green apple depends

on which variety of apple it is—a green Granny Smith is much more likely

to be sweet than a green Macintosh. As is often the case, therefore, the

likelihood of different apple tastes depends on two separate pieces of

information, either or both of which may be known. The belief network

formalism includes rules for making the best current estimate based on

whatever information is available. In table 19.2, the combined informa-

tion about color and variety allows the agent to make better estimates on

the likely taste of an apple. But belief networks also support a much more

difficult kind of inference—reasoning from observations to their most

likely precursors, and this ability accounts for much of the attractiveness

of the formalism. Staying with our example of apples, we can imagine

someone tasting a sweet green apple and concluding that it probably is of

some green variety such as Granny Smith.

This is boring, but here is an equivalent example that is probably of more

personal interest. Suppose you come home and detect that your spouse

(parent, roommate) is really upset. It might matter a lot to make a good
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Table 19.1
Conditional dependence of apple taste on color

Sweet Sour

Red 0.8 0.2

Green 0.3 0.7



estimate of whether this was the result of some action or inaction on your

part or was due to forces beyond your control. Such cases with multiple

causes also introduce the important notion of explaining away. If you know

that your spouse had a bad day, that helps explain why he or she is dis-

tressed. If there is another reason for your spouse to be upset, you can be

less worried about whether it was caused by something that you did or

failed to do. In economic news stories, there are many examples where

readers make inferences about likely causes of, for example, inflation, and

assume that a known or highly probable cause makes it less likely that

other possible causal events were responsible.

For belief networks with many elements, it becomes impractical to

display all the conditional probability tables, and I will not use these tables

directly in this book. What people do instead is to display, in various graph-

ical forms, which elements depend on which others. The crucial assump-

tion in these diagrams is that any elements not explicitly linked are

assumed to not depend directly on one another and interact only in spe-

cific ways, such as the explaining away just discussed.

For example, suppose some other property of apples, say size, was

believed to be independent of color and taste, but not of variety. Then the

conditional dependence graph could be drawn as shown in figure 19.1.

This shows that the values for size and color depend directly only on

variety and the values of taste depend on color and variety, but not on

size. The variety of apple depends on nothing in this belief set; it has no

incoming arrows. Such graphical presentations are always shorthand for

the detailed probability tables.

This kind of dependence diagram is used in all manner of applications

of probabilistic reasoning and seems to be the clearest way to describe how

different factors interact.
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Table 19.2
Conditional dependence of apple taste on color and variety

Sweet Sour

Red Mac 0.8 0.2

Green Mac 0.1 0.9

Green Granny 0.5 0.5



The preceding examples about fruits were just an introduction to the

general ideas. We now look more carefully at the economic knowledge,

encoded as belief networks, that is used in the models for understanding

news stories about economics.

Some of the required background for the stories consists of facts that are

not expected to change, such as that the United States is a market

economy. A more interesting kind of information concerns the different

kinds of economic systems that might be mentioned in the stories. The

model has a four-level scale of increasingly outgoing trade policy: autarky,

import substitution, free trade, and export push. It also characterizes eco-

nomic policy in terms of trying to move along this scale. The two relevant

policies are liberalization and protectionism.

The stories whose meaning we will model involve countries using

various policies to attempt to achieve economic goals and also some

unplanned economic events. Some typical examples are

France fell into a recession. Germany pulled it out.

The Indian government is taking bold new steps. It loosens its strangle hold on

business, slashes tariffs, and removes roadblocks to international trade.

The U.S. economy is on the verge of falling back into recession after lurching

forward on an anemic recovery.

Belief networks will be used to capture the story understanding agent’s

beliefs about the economics domain as well as some more general infer-

ences about the aspectual structure of actions, as discussed in chapter 18.

Figure 19.2 shows the elements used in the economics domain and their
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Conditional dependence among apple features depicted by arrows.



dependency relationships, following the same format as figure 19.1 did for

the features of apples.

Figure 19.2 shows six elements in the agent’s beliefs about economic

policy and progress, namely:

Economic state Recession; low, medium, or high growth

Policy A nation’s planned policy, for example, liberalization or 

protectionism

Goal Autarchy, import substitution, free trade, or export push

Outcome Success/failure

Difficulty Absent/present

In control Yes/no, is the agent in control of events

Recall that the model involves computing probability estimates for the

various possible feature values based on the content of news stories. So the

description of an economic situation will include the agent’s estimates of

how likely the country is to be in each possible economic state, which

policy it is probably pursuing, and so on. Understanding a news story

involves computing new values for some of these probabilities, based on

the news.

Figure 19.2 also depicts the five dependency relationships (the arrows)

that will be used. The goal of a policy depends on which policy it is. The

probable outcome (success or failure) of a policy depends on the current

economic state and the goal being sought. The outcome also depends on

whether difficulties are present and whether or not a country is in control

of events. This is obviously a simplified model, but it will suffice for a large

number of news stories, as we will see in the next chapter.
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Conditional dependence among news story features depicted by arrows.



Temporal Belief Networks

So far, our discussion of beliefs and inference has been limited to a single

point in time. But beliefs do change over time. In particular, the whole

point of reading a news story is to update your beliefs, and any model must

capture that fact. For this purpose, we need one final addition to our tech-

nical machinery—temporal belief networks.

The basic idea is simple, but has turned out to be quite powerful. We

simply make a copy of a belief diagram (e.g., figure 19.1 or 19.2) for each

point in time considered; usually three time steps are used. Figure 19.3

depicts two time steps for the belief system defined in figure 19.2. What

gives this network its power are the links from elements in the first column

(first time step) to elements in the second column. Each of these arrows

specifies that the feature value at the head of the arrow (second time step)

depends on the values at the tail of that arrow (at the first time step). In

this case, the goal at time 1 impacts the economic state at time 2. The eco-

nomic state at time 2 is also influenced by the success or failure outcome

at time 1. And the outcome at time step 2 depends on difficulty at time 1

as well as whether the agent has control. I have omitted some dependency

links from figure 19.3 to make it more readable. All of the links within

each time step, shown in figure 19.2, are still present in the temporally

extended belief networks. The full diagram would also include “persis-

tence” links connecting each box at time step 1 to the box of the same

name at time step 2; these encode the fact that probability values persist
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over time unless they are explicitly changed. The flow of inference uses

links within each time step, as well as those across time steps, to compute

the belief updates for each sentence in a news story.

As I mentioned earlier, the belief network mechanisms can use the infor-

mation represented by these diagrams either to predict likely outcomes or

to reason backwards to estimate the probable origin of a current economic

situation. This capability will be needed to understand some of the

example news stories considered in the next chapter. The details of this

aren’t important for us, but the general idea of making best estimates is 

at the core of neural computation, and we shouldn’t be surprised that it

plays a central role in understanding stories, even in a domain as abstract

as economics.

This completes our discussion of knowledge representation and infer-

ence in probabilistic belief networks. In the next chapter, we bring this

computational technique together with several other ideas from linguis-

tics and from modeling in a demonstration system for understanding news

stories in the domain of economics.
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20 Understanding News Stories

It is now time to redeem many of the promises made throughout this book.

This chapter looks at how all of the ideas about embodied language devel-

oped so far can be brought together in a computer model that understands

the meaning of news stories about economics and draws appropriate infer-

ences. This task is a paradigm instance of adult language comprehension

in a complex abstract domain. Here are some examples of the story frag-

ments, all taken from the media, that were successfully processed by the

model system:

France fell into a recession. It was pulled out by Germany.

The economy is moving at the pace of a Clinton jog.

The World Bank prescribed a structural adjustment program, bleeding develop-

ing countries.

The Indian government is taking bold new steps. It loosens its strangle-hold on

business, slashes tariffs, and removes roadblocks to international trade.

Japan continues its long, painful slide into recession.

The U.S. economy is on the verge of falling back into recession after lurching

forward on an anemic recovery.

A protectionist policy is the mistaken therapy of prescribing palliatives to the

economy in response to painful change and perception of injury.

All of these stories involve metaphors described in chapter 16, and each

uses the active schemas of chapter 17 to convey its meaning. Of course,

understanding any of the stories also requires some knowledge of basic

economics. The program I will now describe uses belief networks (as dis-

cussed in the previous chapter) to capture the required economics infor-

mation and make appropriate inferences.



I will first describe how the computer model, developed by Srinivas

Narayanan (Narayanan 1997), understands the meaning of these stories

and then point out the significance of this result for our quest. All of the

discussion in this chapter, like the rest of the book so far, sets aside the

problem of grammatical analysis—how sentences like the examples above

get analyzed into their structural components and relations. Grammar is

discussed in detail in section VIII, after we learn more about what jobs

grammar needs to do.

Consider what meanings you might derive from reading the first sen-

tence of a news story that starts with the sentence:

France fell into a recession.

We will see what the program concluded from its preanalyzed version of

the sentence, and you can then compare this with your understanding of

the same story. Most people are surprised to learn how much goes into

processing even a simple five-word sentence.

In building his story understanding program, Narayanan used the stan-

dard scientific technique of focusing on only a part of the overall task.

Since he was not studying or modeling grammatical analysis, he built the

system to use preanalyzed sentences, rather than raw text, as input. By

using preanalyzed input, he eliminated the need for grammatical analysis,

which is treated in a later chapter. From our earlier discussions, it will come

as no surprise that the input format is a collection of feature∼value pairs,

like those described in chapter 11 and used in various ways thereafter. For

example, the input features and values corresponding to the sentence

France fell into a recession.

would be as shown below:

Agent ∼ France

Economic state ∼ recession

Event ∼ fall into

Aspect (event shape) ∼ completed

The main outcome of running Narayanan’s program is to add two asser-

tions about the presumed situation after the simulation. These encode the

state of the model’s understanding after processing the features from the

input sentence:

Economic state ∼ recession

InControl (France, economic state) ∼ false (0.9)

246 VII. Understanding Stories



The first line indicates that, after the simulation, the program believes that

France is in a recession. If the input had been Event ∼ escape, we would

expect a quite different conclusion and the program produces such a 

result. More interestingly, the second line adds new information, namely

that the system believes with probability 0.9 that the agent (France) had

very little control over the descent into recession. Recall our initial example

about France waltzing into recession. The word “fell” used in the input

sentence here has connotations of being accidental in the embodied

domain, and these are mapped to the assertion that France’s leaders had

no control. This probably is close to your own conclusions from reading

the sentence.

System Overview

An overview of Narayanan’s model (figure 20.1) goes as follows: the pre-

analyzed (parsed) sentence fills in some parameters and then appropriate

metaphorical maps are activated. Using the features from the input and

the mappings, the appropriate embodied X-schemas execute and, as a

result, fill in other parameters. Those parameters are passed back to the

economics domain via the metaphor maps. The belief net is then updated

to accord with these transmitted values. Additional input information

causes the system to repeat the cycle, and then the effects of that 

new information and the resulting inferences are represented in the 

belief net. So the process continues as long as new text keeps coming 

in. This models how we understand the meaning of a story as we are

reading it.

We will examine some other examples of how Narayanan’s program

interprets the meaning of news stories, but it is also important to get a

clearer picture of how the model carries out its task and what its architec-

ture can tell us about language processing in our brains. Let’s begin with

an informal discussion of how it all works for the first example, and then

look into the details.

Each of the four input features conveys something important. The

program has some economic knowledge of different countries, so a story

about France would be processed differently from one on India. The other

explicitly economic fact is that the economic state under discussion is

recession. The economic knowledge is conveyed to the temporal belief

network (chapter 19), shown on the upper right in figure 20.1.
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The other two input features are not directly about economics at all. The

event is fall into, a physical occurrence. And, as we saw in chapter 18, the

simple past form “fell” (as opposed to “was falling”) conveys the idea that

the event can be viewed as completed and not worth simulating in detail.

That is, this story is about the consequences of France falling, not about

the process itself.

Using these four feature values, the program proceeds as follows. Since

the input contains a physical action and an agent, which is a country, it

tries to make these two fit together using the metaphor Country as agent.

The program associates the word “recession” with a hole on the path of

economic advancement, as specified by the event structure metaphor

(chapter 16), which maps progress in any domain to physical motion

toward a goal. This suggests to the program that the story should be sim-

ulated as a metaphorical agent (France) falling into a hole while on a path

toward some unspecified physical goal. The program uses its metaphor

maps to inform the embodied simulation at the bottom of figure 20.1 that

a completed falling action needs to be simulated. Finally, since the event

shape is marked completed, the system focuses on the consequences of the

fall, ignoring any details of how or why it happened.

Purely at the level of human actions, we know that a fall causes 

someone to interrupt their progress toward their goal and possibly injures

them as well. We don’t know if the person was able to get out of the hole
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and haven’t been told yet in the story. The system has similar inferences

in its schema model, and the simulation of our sample story will trigger

them.

The next step is the crucial one—the system maps the conclusions from

its simulation back to the domain of economics. Since the traveler is

assumed to still be in the hole, the Country is agent and Recession is hole

metaphors, combined, yield the belief that economic state ∼ recession, as

discussed earlier. This is shown as the two upward-pointing arrows in the

middle of figure 20.1. The metaphorical person (France) is assumed to still

be in the metaphorical hole (recession). The system can also draw the

somewhat more subtle conclusion that France was not in a recession before

the time of the story. This comes from the fact that “fall” suggests a change

of physical state and therefore, metaphorically, a change in economic state.

Now, back in the belief network, additional inferences can be drawn. 

Since a physical fall suggests lack of agent control, the Country is agent

metaphor suggests that (the government of) France probably had no

control over the onset of recession.

Viewing all this at a more technical level, Narayanan’s system has three

interacting modules, each of which uses techniques that have been dis-

cussed in earlier chapters. Its knowledge of economics is represented by a

temporal belief network, as described in the previous chapter. Its simula-

tion model of embodied domains such as health and progress along a phys-

ical path uses executing schemas and the controller-based simulation

framework, as were defined in chapter 13 and used in chapters 17 and 18.

For modeling the detailed event shape of actions (aspect), the model uses

the ideas of chapter 18 on encapsulated and ongoing views of events. We

will now look at how all this mechanism works in understanding our

example story.

The key to linking the abstract domain of economics with embodied sim-

ulations is, of course, metaphor. For this example, we need two specific

metaphors: Country is agent and Recession is hole. These, as we have seen

in chapter 16, are part of a large system of interacting metaphors.

How the System Processes the Example

We are now in a position to trace the flow of information as the model

tries to understand the meaning of the example sentence. The first step is

to establish initial values for the temporal belief net representing the 
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economic situation. Then two things happen in parallel. The links in the

economics model specify that some feature values should be projected

forward in time; in this case, the economic state may change. At the same

time, the system looks for metaphors that might be applicable, using the

metaphor-matching algorithms discussed in chapter 16.

The easy metaphor map to recognize is Recession is hole. This is a con-

ventional metaphor in economics and the system, like people, knows this.

It is not as simple to decide that the Country as agent metaphor should

apply, even if it is also conventional. The problem is that there are other

metaphors, such as Country as patient, that are also common in news

stories. Within its limited scope, the system knows that the verb “fell”

applies to agents in the embodied physical motion domain and thus

chooses the correct mapping. Once the metaphor mappings are chosen,

these mappings establish the bidirectional link between the news domain

(economics) and the embodied simulation, here of a person falling into a

hole.

The next step is to carry out a simulation of the action underlying this

particular story. As we saw in chapter 17, any simulation requires the spec-

ification of which action schemas, image schemas, parameters, and frames

are involved. In Narayanan’s system, the participants in the simulation

come both directly from the features of the input (fall into, completed)

and from the results of metaphorical maps (agent, hole).

Since the story used “fell,” the simulation is of a completed action and

is not focused on any ongoing falling activity. One result of the simula-

tion at the embodied level is that the agent is still very likely to be in the

hole. Notice that if the story had used “had fallen” instead of “fell,” we

would believe the agent was probably already out of the hole and we would

hear more about that in the next sentence, and the program would do the

same. Anyway, in this case the agent is still in the hole. Here is where the

metaphor maps have there greatest payoff. Because the system has a bi-

directional map, Recession is hole, it concludes that the agent (France) is

still in recession. As we mentioned earlier, only some of the source domain

concepts get mapped back to the economic domain—a person who fell

might feel stupid, but that has no counterpart in economics.

The conclusion, that France had little control over its descent, arises in

a similar fashion. Part of the system’s knowledge of the word “fall” is that

it suggests the agent involved did not take the action voluntarily and may
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even have been surprised by what happened. It also implies a rapid descent,

although this wasn’t brought out in the implementation. Again, the system

exploits the bidirectionality of the metaphor Country is agent by mapping

feature values from the embodied domain back to economics. Since the

agent in the embodied model had no physical control, its metaphorical

projection, France, is deemed to have no economic control. Technically

this involves a submetaphor mapping Economic Control is physical

control. As we saw in chapter 16, all our metaphors have this kind of elab-

orated structure.

Narayanan’s model was able to draw appropriate inferences from a wide

range of news stories in its domain, and we will examine some of these to

get a feeling for the scope of the result. It is worth looking first at one more

detailed example, which illustrates additional properties of the system.

This fragment is from the New York Times, August 1995:

In 1991, India set out on a path of liberalization. The government started to

loosen its strangle-hold on business and removed obstacles to international

trade. Now the government is stumbling in implementing the liberalization

plan.

This example has several interesting features aside from its massive use

of metaphor. The basic metaphor is event structure, mapping an arbitrary

goal to a travel destination. But the term strangle-hold introduces at least

an additional health metaphor and potentially others such as control and

injury. Notice also how the use of the term strangle-hold conveys an enor-

mous amount about the political views of the writer.

But we are most interested in the analysis of the final sentence. Its

mapping to feature structures is given below. The technically most impor-

tant issue is the feature Event shape ∼ ongoing, which means that the sim-

ulation needs to focus on an ongoing process, not one that is already over

and can be viewed as finished, as in the previous example. Before going

into the details, we can notice that the wording “is stumbling” leaves the

reader expecting some further information about how it will all turn out.

The initial feature settings for this example are

Agent ∼ India

Economic plan ∼ liberalization

Event ∼ stumble

Event shape ∼ ongoing
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The main metaphors involved are the usual Country is agent and event

structure. As in the previous example, the program begins by looking 

for the best fitting metaphors and, at the same time, propagating beliefs

that will not change over time. Here the agent and plan will not change.

What the simulation does is add some conclusions about the likely

outcome.

Goal ∼ free trade

Event shape ∼ suspended

Outcome ∼ failure (0.6)

Of these conclusions, one follows directly from the system’s knowledge of

economics, namely, that the goal of a liberalization policy is free trade. The

other two conclusions are the indirect results of a complex simulation in

the embodied domain of progress along a path, as given by the event struc-

ture metaphor. This metaphor becomes active because the lexical items

from both the embodied (“stumble”) and economic (“liberalization plan”)

domain trigger it, as depicted in figure 16.1. The coactivation of the 

economics frame and the traveling frame activates the event structure

metaphor, because Economic progress as travel is a known metaphor, and

this includes “goals are destinations” as a part. As before, the Country is

agent metaphor is conventional in stories about economics and matches

easily.

Much of the richness of this example comes from the use of the word

“stumble” in the discourse. For one thing, stumble indirectly indicates that

the walk executing schema is involved, because stumbling is something

that happens while one moves along a path. In addition, stumble suggests

that the walking has been interrupted, and this has two implications. First,

there must have been some ongoing process before the utterance. This

means that the simulation must start with events that happened before

the situation described by the input. Both the executing schema formal-

ism and belief nets have the ability to reason backwards in time from events

to possible causes, and that is needed here. In this case, the lexical entry

“stumble” directly encodes the instruction to simulate an ongoing walk

that is interrupted. More generally, the exact type of simulation will

depend on the goals of the system—a program that was trying to figure

out the political views of the author would model the same sentence rather

differently.
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Also, the use of the progressive form “is stumbling” means that the sim-

ulation leaves us in a state in which we envision the person still in the

process of stumbling; we don’t know whether he will recover or fall down.

This is exactly what stumbling means, that someone was walking and that

walk was suspended for some reason. In the model, inferences about aspect

(action shape) map directly between the embodied and the abstract

domains.

In the current model, the stumbling is assumed to be caused by an obsta-

cle. Since Difficulties are obstacles is part of the event structure metaphor,

this gets mapped back to the economics domain as the inference that India

probably (0.7) encountered a difficulty in its liberalization effort. As before,

the probabilities are set by the system designer or learned from examples.

The general idea is that metaphors enable the system to take a term like

stumble in a sentence about the economics domain and map it to the 

concrete embodied domain. It then knows that stumble is an interrupted

walk, from which it can infer in the embodied domain that the agent

didn’t reach his destination. When the metaphor that Goals are destina-

tions is active, there is an inference back to the economics domain that

the economic agent quite possibly (0.6) didn’t achieve its economic goal.

That inference may lead to other inferences in the economics domain,

although none is shown in the example.

The next sentence in the story could cause you to revise these values.

For instance, if the next sentence says that the Indian government is recov-

ering, you will revise your prediction of failure. The task for the program

is to have the feature values in the right state, so that new information has

the correct effect on beliefs. If it gets no new information, the final state

describes a 0.6 probability of failure. In general, the context of previous

utterance, world state and discourse state as well as background knowl-

edge, should be combined in a full system.

Notice that the final inferences cannot be drawn with only the event

structure metaphor or only knowledge of economics. The system needs 

to understand what stumble could mean both within the field of eco-

nomics and in the context of the story. So there are two inference 

structures. One is in the embodied domain, where active schema ex-

ecution is used to draw inferences about what it means to stumble. The

other is in the target domain (economics), where belief nets are used 

to model our knowledge about how government policies may affect 
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economic growth. Both kinds of inference are necessary to understand

statements about economics.

Let’s look briefly at some of the other examples that the program

processed successfully. Two of the examples rely on the Economic Health

is physical health metaphor, with the submetaphor Policymaker is doctor:

The World Bank prescribed a structural adjustment program, bleeding

developing countries.

A protectionist policy is the mistaken therapy of prescribing palliatives to the

economy in response to painful change and perception of injury.

Both of these sentences employ the health metaphor more than once, both

are about bad economic situations, and both evidently disagree with the

policy that was “prescribed.” The following two examples use both the

event structure and health metaphors in a single sentence:

Japan continues its long, painful slide into recession.

The U.S. economy is on the verge of falling back into recession after lurching

forward on an anemic recovery.

These are examples of the dreaded mixed metaphors that your grammar

school teacher warned you about. In fact, it is very common and often

effective to combine different metaphors to convey an idea. It is instruc-

tive to understand how the program deals with multiple source domains

like health and a journey. The key is the belief network that yields the

(probabilistic) inferences about the result of reading a story. Belief networks

are explicitly designed to combine evidence from several bases—that is

their raison d’etre. In the first example, both painful (from health) and long

slide (from journey) add to the belief that the recession is a deep one. In

the second example, both lurch and anemic suggest that the U.S. recovery

was a weak one. The system could also deal with conflicting messages, but

those are not common in news stories.

Recapping, the action of Narayanan’s model goes as follows: the parsed

story fills in some parameters and some metaphorical maps are activated.

Using the features from the input and the mappings, the appropriate 

X-schemas execute and, as a result, fill in other parameters. Those para-

meter values are passed back to the economics domain via the metaphor

maps. The belief net is then updated to accord with these transmitted

values. Additional input information causes the system to repeat the cycle
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and the effects of that new information and the resulting inferences are

represented in the belief net. So the process continues as long as new 

text keeps coming in. This models how we understand a story as we are

reading it.

We can also relate the function of this particular program to the under-

lying neural theory of language. The belief networks model the spreading

neural activation that is postulated to be the basis for mental operations.

The metaphor maps embody the hypothesis that we understand abstract

domains by relating them to direct experience. The matching of metaphors

is assumed to follow the triangle node circuit in figure 16.1. And the 

executing schemas are operating models of physical actions that might 

use the circuitry of mirror neurons as discussed in the simulation chapter

(chapter 17). In some ways, this completes the path from molecule to

metaphor, promised in the book’s title.

An obvious limitation of Narayanan’s program is that it could not

analyze input sentences on its own—he had to spoon feed it preanalyzed

structures with the appropriate semantic relations. The rules that relate lin-

guistic form to the underlying semantic relations constitute grammar. The

next two chapters present an overview of grammar theories and some of

the controversy that has arisen over whether human grammar is innate.

Chapter 23 describes a new approach to grammar, embodied construction

grammar (ECG), which is an outgrowth of the neural theory of language.

Then, in chapter 24, we show how ECG can be used to derive the seman-

tic relations needed for deep understanding models, like the one described

in this chapter.
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VIII Combining Form and Meaning





21 Combining Forms—Grammar

The story understanding system of the previous chapter, and in fact every-

thing up to this point in the book, has used the tacit assumption that

semantic relations could be extracted from language input. I will now

describe how these meaning relations are represented at various levels and

across different types of languages, and how such semantic relations are

derived from linguistic forms.

As I have discussed throughout the book, thinking about anything

involves many areas of the brain and billions of active neurons. The fun-

damental problem of language is how to communicate this massively par-

allel mental activity in a serial stream of sound, gesture, or print. As Scott

Delancey (1997) eloquently states it: “In its communicative function, language

is a set of tools with which we attempt to guide another mind to create within

itself a mental representation that approximates one we have.” From our neural

perspective, it would be more accurate to say “evoke” rather than “create

within itself,” but the idea is the same. Such evocation requires, among

other things, that the listener or reader share enough experience with the

author. We have all heard discussions, using words that we know, which

made no sense to us because the subject was outside our experience. I was

raised in a rural Pennsylvania mill town and knew a lot about hunting—

tromping through the winter woods with a shotgun. At a dinner party

many years later, we were several minutes into a discussion before I real-

ized that everyone else’s experience of hunting involved horses, dogs,

horns, and foxes.

Given some shared knowledge and experience, languages provide a

range of mechanisms for helping guide another mind. A key assumption

we have been using all along is that the meaning of language can be

expressed by a discrete set of parameters and by semantic relations among



entities and actions, as discussed in several chapters. The question is how

these relations are encoded in the sequences of letters or sounds that 

constitute language form. Over the next few chapters, we will learn 

about the associations between linguistic form and meaning and how 

these associations can also be seen as manifestations of the basic neural

best-match character of the brain. The discussion is largely at the compu-

tational level, but as always, this is an abstraction of postulated neural 

computation.

We start by focusing on written language, ignoring for now intonation

and gesture, which are potent sources of meaning in spoken interactions.

For all the complexity of written languages, there are only three distinct

mechanisms for conveying a semantic relation, and all grammars use com-

binations of these: a word that conveys some meaning, word order, and

some change in a base word such as an “-ed” ending for the past tense. As

I mentioned, spoken language also involves intonation and gesture, but

we’ll skip these for now.

The most common means of representing a semantic relation in English

is word order. We say “red fire engine” and “fire engine red” and know

that the first phrase describes a vehicle whose color is mentioned and the

second denotes a particular color. A number of semantic relations are

expressed by special words like the spatial prepositions studied by Regier

(chapter 12): in, on, through, and so on. There are also a fair number of

words used to mark grammatical structure rather than any specific content.

For example, the English infinitive is expressed in the form to verb, as in

to walk; other languages express the infinitive as one word. The grammar

school dictum that we should try to not split our infinitives arose because

Latin uses a single-word infinitive, for example, ambulare (to walk). Other

grammatical particles are used to help mark verb tenses such as were, will,

and have been, and in many other functions including the spatial relations

discussed in chapter 12.

Some semantic relations in English are coded by a systematic change in

spelling and pronunciation as in the regular plural (car, cars) or in con-

verting a verb to a noun (evoke, evocation). In chapter 22, we will see that

one particular case, the English past tense, is at the center of a major con-

troversy over the nature of language, its development, and its realization

in the brain. Known as morphology (from the Greek “study of form”), this

class of operations plays a much larger role in many languages than it does
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in English. Most linguists use English as a base language, and this helps

explain why much less attention has been paid to morphology as a source

of meaning than to words and word order.

Other languages routinely convey meaning by assembling and modify-

ing meaning units into a single word. As a first example, consider Hebrew-

based names such as those of my two sons, Benjamin and Michael:

ben yamin mi cha el

son right hand who is like God.

Modern Hebrew carries this idea much further, yielding words like

ve le ke she ti t ragel u → ulixshtitraglu

and to as that you will (refl) used (pl)

“when you(pl) will get accustomed”

where (refl) is a reflexive marker and (pl) is a plural marker. As always, some

forms change pronunciation when they are combined into larger words.

Our discussion of the Eskimo words for snow (chapter 15) left out an

important part of the story. Eskimo languages really do have more explicit

words involving snow, but they also have a very rich morphology system

that greatly extends what might be called a “word.” One can, for example,

tell about one man talking about another man as a single word: tik-

itqaarminaitnigaa, meaning “He(1) said that he(2) would not be able to

arrive first.” So part of the argument about the number of “words” for 

snow in Eskimo languages confused conceptual issues with grammatical

style. The Turkish languages have yet another way, distinct from the

Eskimo or Semitic style, of combining meaning units into large words. It

simply isn’t possible in these languages to list all viable words in a dictio-

nary. In fact, even in English we rely on some systematic morphological

rules such as the one that takes us from the adjective “happy” to the adverb

“happily” and the noun “happiness.” This rule works for new words as well;

if we accept nerdy as an adjective, we know the meaning of nerdily and

nerdiness.

An adequate theory of grammar will need to incorporate all the differ-

ent types of form-meaning mappings, including morphology, intonation,

and gesture. I will sketch the outlines of how an integrated neurally based

grammar might go in chapter 23. For the rest of this chapter and the next,

we focus on the traditional restricted notion of grammar and syntax as

based on function words and word order.
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As we have seen, individual words can each have a wide range of related

and unrelated meanings, and one necessary task for language compre-

hension is disambiguation of the intended meaning of each individual word

in an utterance. But we are more concerned here with how meanings asso-

ciated with different parts of an utterance are combined to yield a best

interpretation of that utterance in the context of a discourse. This, in the

broad sense, it what we mean by the rules of grammar.

Everyone learns rules of grammar in school, but these only talk about

the form of language and supply only part of what is needed for analyzing

sentences. The relation between linguistic form and meaning includes a

lot more than the diagramming of sentences that we learned in elemen-

tary school, itself often called grammar school. Grammar provides the

mechanisms that enable us to take a fixed set of (some 50,000) words and

express an essentially boundless range of thoughts and emotions. Theories

vary widely on how all this works, but anyone who thinks about language

quickly realizes its amazing power of composition.

The nature of grammar rules is at the core of the most heated contro-

versies about brain, mind, and language. We saw some of this in connec-

tion with the Whorf-Sapir hypothesis of linguistic determinism in chapter

11, and we will delve into the wider language wars in the next chapter.

This chapter provides the background and terminology for the various dis-

cussions of linguistic form and meaning that dominate the remainder of

this book. The discussion here is based on explicit formal grammar rules;

the next chapter takes up the question of how these rules, or something

equivalent, might be realized in the brain, or not.

To begin at the beginning, all languages have some form rules that

operate independently of any relation to meaning. Anyone who has strug-

gled to learn a foreign language knows full well that some sounds in

English are simply not acceptable in other languages, and vice versa.

Moving on to pairs of letters, several perfectly pronounceable pairs of

English letters are not used in words. The easiest way to see this is to look

at loan words (from another language) that are common in some English

dialects and use letter combinations not found in native words. For

example, the Yiddish word “shtick” was accepted by my spell-checker

without complaint, but the combination of letters “sht” is just not part of

English. Similarly, the combination “sri” is common in Indian names, but

again is not a standard English sequence. Of course, people can understand
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heavy accents and other violations of the rules of a language, but they are

recognized as such.

Some spelling rules result from pronunciation patterns, again indepen-

dent of meaning. Although we are usually not aware of it, one of the basic

rules of English grammar is that the singular determiner “a” becomes “an”

whenever the following word starts with a vowel. There are also some rules

of pure form in the grammar of combining words. It is not correct English

to say “#Him Xed he,” whatever action X might be. The # is the usual lin-

guists’ way of marking a questionably grammatical sentence.

Most grammar rules, however, do have an effect on meaning as well as

on form. When we write “her novel,” we are not only using the correct

pronoun form but are also expressing a semantic relation between some

female and some book, presumably both known from context. As you

probably noticed, the actual idea conveyed might be that the female owns

the book, wrote the book, or, in different contexts, quite a range of other

things including editing, selling, or being the subject of the novel.

Although grammar rules of a language can be written down in many

ways, we will follow the general practice of using a formal mathematical

description. This has all the standard advantages of formalism in science—

clarity, universality, and the ability to derive the consequences of rules. In

addition, a formal description of grammar opens the possibility that com-

puter programs could use the rules in systems for language understanding

or other tasks. This works well for programming languages; in fact, all pro-

grams for translating computer programs to machine code rely on formal

grammars specifying exactly what is a legal program. The value of formal

grammar for natural languages is more controversial, but let’s first estab-

lish the ground rules.

We start with a review of what many of us learned in grammar school—

diagramming sentences. Figure 21.1 presents a formal grammar for a tiny

fragment of English, using one standard notation called Context Free

Grammar (CFG). The lexicon on the left lists the grammatical type of all

possible words for this tiny fragment. For example, the first rule gives the

four common nouns of the fragment, separated by the | symbol, which

should be read as “or.” The grammar rules on the right specify how to build

larger grammatical constructions from smaller ones. For example, the first

rule can be read as: A sentence (S) can be a noun phrase (NP) followed by

a verb phrase (VP) or it can be a smaller S, followed by a Conjunction 
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followed by a second smaller S. If these rules remind you of the Turing

machine program discussed earlier, they should; they are alternative nota-

tions for essentially the same computations.

Figure 21.2 shows the analysis or parse of the sentence, “Old King 

Cole was a merry old soul,” according to the formal grammar of 

figure 21.1.

There is nothing at all remarkable about this analysis. Starting from the

input text at the bottom, it shows how words should be grouped, follow-

ing the rules of the grammar. Linguists developing such grammars choose

groupings (such as NP) that will be useful for later semantic processing,

but semantics plays no direct role in the analysis. An almost identical

analysis would result for the input string, “Old King Cole was a merry old

fiddlers.” This is equally good according to the grammar of figure 21.1, but

obviously not to us. The basic task of grammar writing is to specify a set

of formal rules that corresponds to what native speakers accept as their

language. The task is analogous to that of a scientist trying to write formal

laws covering all the observations in some domain.

Before delving too deeply into the technicalities of formal grammar, we

should notice that, in an appropriate context, many officially ungram-

matical utterances are perfectly acceptable. A famous (among linguists)

example is
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A Tiny NL CFG

Noun → soul | pipe | fiddlers | bowl

ProperNoun → King Cole

Verb → was | called | play | plays

Adjective → old | merry | three

Article → a | the

Possessive → his

Conjunction → and

Preposition → for

Pronoun → he

S → NP VP

| S Conjunction S

NP → Adjective* ProperNoun

| Possessive Adjective* Noun

| Article Adjective* Noun

| Pronoun

VP → Verb NP | Verb PP

PP → Preposition NP

The complete tiny grammar. It can generate lines from the Old King Cole nursery rhyme.

Lexicon Grammar Rules

Figure 21.1
A tiny grammar for a fragment of English.



Virginia thinks vanilla.

This seems strange in isolation, but is fine following a question like “What

flavor of ice cream does Georgia want?” In languages with stronger 

grammatical markings, which depend less on word order, and also in East

Asian languages, it is sometimes acceptable to omit any elements that can

be determined by context. Japanese children are taught how to determine

meaning from context as part of learning their language. Context plays a

different, but equally crucial, role in Hebrew. Adult Hebrew is written

without vowels, and readers effortlessly pick the right words from context.

Interestingly, most Hebrew poetry is written with explicit vowels, pre-

sumably because there is not enough context to allow a reader to fill 

them in.

The problem of writing formal grammars that approximate real lan-

guages is still unsolved, but quite a lot is being learned about the task. 

Let’s look at one particular issue that is now well understood. Our problem 

sentence, “Old King Cole was a merry old fiddlers,” is acceptable until 

the last word. In fact, it is grammatical until the final letter of the final

word; “fiddler” would be a perfectly appropriate English word in this

context.

The difficulty is one of number agreement. Semantically, we know that

“king” is singular and “fiddlers” is plural, and so they don’t agree on

grammatical number. But from the perspective of formal grammar, the 
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Old          King Cole       was        a      merry           old         soul

Adj          PropNoun     Verb      Art       Adj            Adj        Noun

NP
NP

VP

S

Figure 21.2
An analysis of a simple sentence using the grammar of figure 21.1.



situation is more complex. For example, it is perfectly all right in English

to say, “Old King Cole was one of the merry old fiddlers.” The agreement

rules depend on the structure of the sentence. In addition to singular 

and plural, other languages, including Slovenian and Arabic, have separate

grammatical markings for a pair of something. Russian has quite com-

plex rules of agreement, depending on the number of objects being 

discussed.

Let’s look briefly at how we might modify the tiny grammar of figure

21.1 to require agreement, first just for grammatical number. One rule that

obviously needs to be modified is the one defining NP (noun phrases). As

in our example, if the article is singular, “a,” then the associated noun must

also be singular—this is why “a . . . fiddlers” sounds so strange. We could

try to fix our grammar by further refining the categories, perhaps by adding

SgArticle and PlArticle, along with SgNoun and PlNoun. Then the rule for

NP could also be refined into two rules, one for SgNP and one for PlNP.

But that wouldn’t be enough, because another rule of English is that group-

ing an NP and a VP requires that these constituents also agree in number;

we can’t say “fiddlers plays.” So we would also need to split the categories

verb and VP by grammatical number.

If number agreement were the only problem, splitting up grammatical

categories might be an adequate solution, but it isn’t. English is relatively

simple in its agreement rules, but it still has requirements for number,

person, grammatical case (subject, object, etc.), and gender agreement.

Recall from our discussion of linguistic determinism in chapter 11 that

“apple” is grammatically masculine in German (der Apfel) and feminine

(la manzana) in Spanish. These languages require articles and adjective

forms to agree with the noun they modify:

der rote Apfel

la manzana roja

English makes much less use of grammatical gender than does German or

Spanish, but it is still illegal to say “He called for her bowl” in the context

of the nursery rhyme. We also cannot use third-person singular verb forms

like “plays” with the first-person pronoun “I.”

Grammatical case is much more important in many other languages

than it is in English. But even for us it is ungrammatical to use a pronoun

in nominative case “he” instead of the possessive case in an expression
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such as “he bowl.” In German or Russian, as well as in Latin and other 

languages, case markings capture the essential “who did what to whom” that

relies on word order in English. So the Russian translation of

The good girl loves the poor boy.

Chorosaya devochka liobit bednovo mal’chika.

would mean the same if the order of the words were changed. The case

endings tell us that it was the girl loving and the boy being loved.

Additional rules of English grammatical form arise even in our tiny

example. The grammar of figure 21.1 treats all verbs identically, but this is

wrong. One major distinction is between (transitive) verbs that normally

require an object, for example, “played,” in “He played his pipe,” and

(intransitive) verbs such as “sleep” that do not normally take an NP to be

the object of the action.

So, to get a good approximation to English grammar using rules such as

those in figure 21.1, one would need to add many combinations of dif-

ferent properties to the names of the grammatical categories. Even for our

tiny grammar, we would need to have rules like

3rdSgMaNomPronoun → he

and also accompanying collections of rules for NP, S, and so on. This clearly

gets out of hand, motivating linguists to develop a general clean and

simple way to describe agreement conditions in formal grammar.

First, notice that the person, gender, and number agreement conditions

all require that the components have the same value for each of the 

three features. We can exploit this fact to write a shorthand version of 

the painful explosion of rules just described. For example, we could 

revert to the original rule “S → VP NP” as long as we can also specify that,

in each case, the VP and the NP to be combined must agree in person,

gender, and number. The notation we will use for stating this is the 

following:

VP.person ↔ NP.person

VP.gender ↔ NP.gender

VP.number ↔ NP.number

The double-headed arrow notation is called unification and actually needs

to be a bit more general than we have described so far. In English, and in

other languages as well, a particular word form often agrees with more than
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one combination of features. For example, we use exactly the same form

of a noun such as fiddlers in either the nominative (Fiddlers called . . .) or

objective (. . . called the fiddlers) case. Similarly, a verb in English is not

marked for grammatical gender but does have values for person and

number. The full definition of unification is designed to cope with these

multifaceted characteristics of words. Here’s how it works.

A unification condition denoted by ↔ is satisfied whenever the feature

values of its two constituents are compatible, not just when they are iden-

tical. Let’s examine the case of a simple sentence: “He sleeps.” The lexicon

will contain the information that the verb, “sleeps,” is a third-person sin-

gular verb, but has no restriction on its gender. The pronoun, “he,” will

be listed as having masculine gender, singular number, and third person.

The sentence, “He sleeps,” is grammatically acceptable because there is no

contradiction on any of the feature values. The string, “They sleeps,” is not

acceptable because “they” has plural number and therefore cannot unify

with the singular verb “sleeps.”

As we will see in chapter 23, this idea of specifying grammatical rules

using unification of feature values is used in much more general ways and

is the foundation for most contemporary approaches to formalizing

grammar. It is not important for us whether these unification conditions

are called grammar or meaning, they have aspects of both. For the basic

cases of person, number, and gender agreement, the feature unification

rules are often assumed and not written explicitly in the grammar. This

allows linguists to specify some simple parts of a grammar using rules that

again look more like our original rules in figure 21.1.

The idea of formalizing grammar is convenient for linguists and for com-

puters, but what is the status of formal grammar as a theory of language

in the brain? Before getting into the details of these technical arguments,

it is worth reminding ourselves of how much of meaning is conveyed by

mechanisms other than words and formal grammar.

Even within the realm supposedly treated by formal grammar, a number

of language uses cannot be handled. For one thing, context plays a crucial

role in language understanding. The meaning of the so-called indexicals

such as here and now obviously depend on the situation, as do the refer-

ents of expressions such as they or that question. An ambiguous sentence

like

Harry walked into the café with the singer.
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could be describing either Harry’s companion or a feature of the café, and

grammar cannot tell us which. And the metaphorical use of language is

not described in standard grammars.

Intonation and gesture also play major roles not captured in standard

grammars. For example, think about how many different meanings 

you can get for the following simple sentence by using different intona-

tion patterns:

Harry walked into the cafe.

You can easily get ten distinct meanings by stressing each of the five words

in both question and statement form—try it. If you group “walked into” as

a unit, yet more meanings result. It is also interesting to think about 

negation. How would you interpret

Harry did not walk into the cafe.

As before, there are several quite different possible meanings, depending

on which words are stressed. This example also reminds us that the math-

ematical abstraction of semantic notions such as negation don’t do justice

to the natural phenomena.

In addition, you can imagine saying the sentence in various social 

situations—to a child, parent, judge—and notice more intonational dif-

ferences. In face-to-face conversation a wide range of hand, head, and body

gestures also convey additional elements of meaning and speaker 

attitude. Considerable research is now being done on understanding and

encoding gestures, notably by David McNeill at the University of Chicago.

Ultimately, grammar should encompass all these things, but we will revert

to the standard limited treatment for the next chapter on the language

wars.
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22 The Language Wars

In the last chapter, we saw how linguists can describe some parts of the

syntactic structure of language in terms of rules of grammar. Some such

formal rules are necessary for linguists to do their work, and formal gram-

mars work quite well for them as well as for computers. But do our brains

use formal rules in understanding language? Does our grammatical ability

constitute an autonomous “language faculty,” or is it inextricably linked

to meaning and thought? Is the human language capacity largely geneti-

cally specified or is it learned, based on the same neural structure and adap-

tation techniques as all of our other mental abilities?

These three related questions continue to generate heated arguments in

both the technical and the public press—heated enough that “language

wars” is not an overstatement. The chapter title was inspired by the book

The Linguistics Wars (Harris 1983). That book discusses an earlier contro-

versy, with Noam Chomsky and George Lakoff as central protagonists. Like

any true book about war, it gets nasty in places and is recommended only

if you are considering a career in linguistics. The substance of the argu-

ment has progressively narrowed to the point where most linguists and

cognitive scientists have lost interest, but we can learn a great deal from

looking at the core issues involved.

The basic facts about language acquisition and use are not in question.

Any normal child living in a language community will become fluent in

the local language or languages without formal instruction, independent

of her ancestry. Some other animal species have or can acquire consider-

able communication abilities, but nothing approaching the expressiveness

of human language. In the few known tragic cases where children were

deprived of language interaction throughout childhood, they never

achieved fluency. So, there is something special about human language and



thought, and it depends on both nature and nurture, as you already 

know.

Given the overwhelming evidence, everyone also now agrees that many,

but certainly not all, parts of the brain are active during language pro-

cessing. It is clear that various kinds of language (and vision, planning,

etc.) processing involve different neural circuits, and damage to different

brain areas results in diverse symptoms. And, as Antonio Damasio

(Damasio 2003) states, “Any complex mental function results from con-

certed contributions by many brain regions at various levels of the central

nervous system rather than from the work of a single brain region con-

ceived in a phrenological manner.”

The agreed-upon facts go much further. No one believes that the

meaning of words, say Internet, are innate; they are obviously learned. No

one even suggests that the specific rules of grammar for each language are

genetically specified; they clearly are not. However, linguists have long

noted that all human languages have some structural similarities; there

could be some genetic basis for this. In fact, everyone agrees that there is

some genetic basis for the commonality of human languages—how could

it be otherwise?

But perhaps what the human genes specify is a unique learning ability

that is in no way specific to language. Everyone also accepts that there

must be some uniquely human learning ability since there is a vast range

of activities (calculus, chess, concertos, etc.) that only humans learn to do.

It could be that no special genetic basis exists for language at all, any more

than for chess. Languages would turn out to be structurally similar because

the human condition is shared and our common learning mechanisms

give rise to similar grammars.

The current battles partially continue traditional philosophical argu-

ments over the relative importance of nature and nurture in human devel-

opment. But as we discussed in chapter 6, the intricate interaction of

genetic and environmental factors is now so well understood that the

notion of an “innate,” unmodifiable capacity has disappeared from the

developmental biology literature.

The related old rationalist/empiricist controversy concerned the extent

to which the senses or pure thought was the more reliable source of truth.

Although minor elements of this remain in the present debate, the general

scientific method, involving cycles of reasoning and observation, is uni-
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versally accepted as the preferred methodology for answering the questions

at issue, despite continued controversies over what should be considered

scientific.

The core questions in dispute can thus be expressed succinctly:

(a) Are formal grammar rules expressed in the brain?

(b) Is grammar independent of other brain structures?

(c) Is there some special genetic encoding specifically for grammar?

The language wars are fought between people who strongly argue that the

answer to all three questions is Yes and those who are equally vehement

in asserting that they are all No. We can think of the Yes camp as por-

traying grammar as a special ability and the No camp as suggesting that it

is part of our general intelligence. More nuanced positions, of course, are

available, and I will sketch one of them in the next chapter.

The Autonomy of Syntax

A central issue is the claim that syntax, formal rules like we explored in

the previous chapter, are logically and biologically independent of all other

aspects of language and thought. There must be some interaction, but it

is claimed to be extremely restricted. Before getting into the technical

issues, we should acknowledge that the language wars have a significant

component of personal and institutional power struggles. Research

funding, the careers of individuals, and the standing of departments, jour-

nals, and so on are at stake. There is a widespread belief that the “auton-

omy of syntax” stance is really a cover for the autonomy of linguistics from

the findings of other disciplines. Linguists, understandably enough, want

to believe that language is uniquely important and they own the only

viable way to study it. Everyone pushes his or her beliefs—this book can

be seen as an attempt to establish the centrality of neural computation in

cognitive science.

These “academic” power struggles are ubiquitous and often harmless, but

not always. Doctrinal differences among academic economists frequently

influence major policy decisions. In the case of grammar, how we think

about language has direct effects on teaching, law, therapy, and many other

aspects of public and private life. Some of these are discussed in the final

chapter.
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Certainly part of the energy behind the language wars comes from

people defending the style of work to which they have dedicated their

lives. But there is no inherent reason this requires disparaging other

approaches. Most of what we know about language has come from detailed

analysis of linguistic regularities by professional linguists, and there is no

substitute for this kind of empirical work. It is also true that human learn-

ing is a remarkable and powerful capability and we need to know much

more about how it works and what it is capable of. But, unfortunately, the

human genome does seem to code for a tendency to engage in bitter wars

that are senseless to an outsider.

The Substantive Issues

Leaving motivational issues aside, let’s look at the substance of the argu-

ments. The “grammar is special” position is easy to state—that formal

structures like those described in the previous chapter are represented as

such in specific parts of the brain and function as a separate module of the

language faculty. In this view, learning language has many facets, but much

of the structure of the grammar module has been specified genetically. To

learn the essential core of the local grammar, a child only needs to learn

the values for a couple dozen binary parameters. For example, do modi-

fiers come before or after the word they modify.

The position that language, including grammar, is a genetically undif-

ferentiated part of our general intelligence requires a longer explanation.

Before getting into this, we need to understand one of the central argu-

ments used to defend the stance that some explicit knowledge of grammar

must be specified in the genome—the poverty of the stimulus. The con-

tention is that children learn grammar (which is assumed to be formal and

autonomous) based on such an impoverished set of examples that they

must have some built-in biases that amount to grammatical knowledge.

One positive outcome of the current language wars is that very detailed

studies now exist of what kind of utterances children do hear early in life.

As you would expect, the warring factions differ on how to interpret all

the data, but a more fundamental issue is the theoretical feasibility of learn-

ing grammar from examples at all.

Among the many weapons used in the language wars, mathematical the-

ories of learnability have played a surprisingly large role. The basic argu-
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ments are phrased in terms of general computation, often using Turing

machines as described in chapter 2. One result, called Gold’s theorem

(Gold 1967), shows that, under appropriate assumptions, no computa-

tional device can learn nontrivial formal grammars when given only

examples of correct sentences. Since there is general agreement that babies

get very little direct information on the sentences that are not in their lan-

guage, this is claimed to prove that children must have some built-in

knowledge of grammar. All of this discussion assumes that grammar is rep-

resented as an explicit set of abstract rules; we will question this assump-

tion later, but not yet.

The basic ideas behind Gold’s theorem are simple. We assume that some

computer is presented with a series of sentences and must guess a grammar

that yields exactly those sentences. If the computer is given all examples

of well-formed (positive) sentences in the language and also all (negative)

example strings that are not in the hidden language to be learned, it can

easily guess a correct grammar using the following algorithm. As it sees

more sentences, it makes successive guesses on the source grammar.

We assume that the computer can generate a list of all candidate gram-

mars and can also check if a given example string can be parsed by a can-

didate grammar. Here’s how it can eventually guess a correct grammar.

Suppose the first example the computer sees is labeled positive; the com-

puter tries to parse this example with the first candidate grammar. If that

doesn’t work, the computer continues down the list of candidate gram-

mars until it finds one that does accept the first example. The same pro-

cedure is followed for all subsequent examples—guess the first grammar

on the candidate list that can parse all the inputs seen so far. Although the

list of possible grammars is potentially infinite, the machine only needs to

generate candidates until it finds one that fits the data.

Now suppose a negative string not in the hidden language is presented.

The computer checks if this is accepted by the current candidate grammar;

if so, this candidate grammar is rejected and the next grammar is tried. A

lot of candidate grammars will be rejected, but by our assumptions, some-

where in the list is a grammar that will parse all of the sentences and none

of the nonsentences seen so far. As this process continues, a first grammar,

G*, that happens to yield exactly the hidden language will be found. 

Once this first correct grammar becomes the candidate, the computer will

never need to change its guess. Grammar G* will parse all of the positive
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examples and none of the negative ones, remaining the computer’s correct

guess.

However, children are not given (enough) explicit negative examples for

this to work in real life. If the computer we just described were given only

positive examples, it would almost certainly stop changing its guesses too

soon. As soon as it reached some grammar, G+, that could parse more than

the hidden language, it would continue to guess G+ forever because there

would be no example where G+ fails. This is basically Gold’s theorem.

Mathematical theorems, like experimental results, are subject to inter-

pretation in how they might apply to a contested situation. Several

assumptions are made in Gold’s theorem that can be altered to yield a quite

different result, although this line of argument is not common. For

example, the computer need not guess the first adequate grammar on its

list; some notions of “best” grammar do allow learning from positive data

only (Feldman 1971).

Gold’s result also assumes that the computer needs to guess a correct

grammar for any arbitrary order of presentation. If we assume, instead, that

the sentences are presented in order of increasing length, this is equiva-

lent to presenting all positive and negative examples, which was shown

above to be an easy learning task. If the examples come in order, after you

have the first example of length five, you know that all unseen sentences

of length four are not grammatical. In general, there are enough formal

variations to ensure that computation theory is not the place to look for

a definitive answer to whether or not grammar could be learned from the

input children receive without some specific genetic constraints.

Are Explicit Grammar Rules Encoded in the Brain?

But there is a much more fundamental challenge to the perspective of

Gold’s theorem and treating language learning as a problem of symbolic

computation, like the Turing machines introduced in chapter 2. Given all

that we know about the massively parallel, quantitative, adaptive nature

of neural computation, why should we believe that anything like symbol

processing is actually happening in the brain? The most far-reaching 

opposition to the position that grammar is symbolic, autonomous, and

genetically specified comes from a group of researchers in computational

neural modeling, often called the connectionists. This labeling is somewhat

confusing, because there are various connectionist research programs,
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some of which have quite different approaches to modeling, as described

in chapter 9.

All connectionist research starts from the same assumptions that the

known properties of individual neurons (chapter 4) and of brain circuitry

(chapter 5) demand a computational theory and practice that is quite dis-

tinct from the traditional symbolic rules that have been used, for example,

in writing grammars. Where connectionists differ among themselves is on

the relative emphasis placed on learning versus prior structure in examin-

ing a capability such as language, as was discussed in chapter 9. At one

extreme, the PDP research program pushes the limits on what can be

accomplished by learning alone, with the simplest possible initial struc-

ture. Unsurprisingly, it is this pure-learning style of connectionist research

that directly challenges the hypothesis that grammar is symbolic,

autonomous, and genetically specified.

From the perspective of these PDP connectionists, grammar is one of

many remarkable human skills that are achieved by learning from experi-

ence. There is no need to postulate any special genetic precursor explicitly

for grammar, and it is against the research program to assume any prior

structure before learning. Perhaps more important, grammar rules aren’t

represented explicitly in the brain at all—there are just neural networks

whose weights have been modified to produce results similar to those expe-

rienced before. The long-term research goal is to demonstrate that initially

uniform networks can be trained to capture all the regularities of grammar,

as well as (with different training) all other mental functions.

The basic PDP approach relies on the error backpropagation technique,

described in chapter 9 as one of the standard connectionist modeling

methods. Networks such as the one depicted in figure 9.3 are trained to

capture various aspects of grammar and other language and cognitive func-

tions. Unsurprisingly, none of these models has yet attained a significant

fraction of language learning or understanding. But there have been

enough impressive results to challenge the contention that language learn-

ing from examples alone is simply impossible.

The English Past Tense

One particularly active battlefront in the language wars has revolved

around two competing models for explaining the structure of the past

tense of English verbs. The state of the debate as of 2002 is nicely 
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summarized in an exchange of articles in Trends in Cognitive Science

between Steven Pinker and Michael Ullman (P&U) defending the symbolic

rule method (Pinker et al. 2002) and James (Jay) McClelland and Karalyn

Patterson (M&P) taking the PDP approach (McClelland & Patterson 2002).

I will first quote from the two sides and then try to summarize.

The formalists P&U lay out the problem nicely and fairly:

The past tense is of theoretical interest because it embraces two strikingly different

phenomena. Regular inflection, as in walk-walked and play-played, applies pre-

dictably to thousands of verbs and is productively generalized to neologisms such

as spam-spammed and mosh-moshed, even by preschool children. Irregular inflection,

as in come-came and feel-felt, applies in unpredictable ways to some 180 verbs, and

is seldom generalized; rather, the regular suffix is often overgeneralized by children

to these irregular forms, as in holded and breaked. A simple explanation is that irreg-

ular forms must be stored in memory, whereas regular forms can be generated by a

rule that suffixes –ed to the stem. Rumelhart and McClelland challenged that expla-

nation with a pattern-associator model (RMM) that learned to associate phonolog-

ical features of the stem with phonological features of the past-tense form. It thereby

acquired several hundred regular and irregular forms and overgeneralized –ed to

some of the irregulars.

The past tense has served as one of the main empirical phenomena used to con-

trast the strengths and weaknesses of connectionist and rule-based models of lan-

guage and cognition. More generally, because inflections like the past tense are

simple, frequent, and prevalent across languages, and because the regular and irreg-

ular variants can be equated for complexity and meaning, they have served as a test

case for issues such as the neurocognitive reality of rules and other symbol-

manipulating operations and the interaction between storage and computation in

cognitive processing.

We can see this as a special case of the general controversy around our

points a–c about the nature of language. The arguments back and forth get

rather intense, in their academic way, with each side challenging the asser-

tions made by the other or citing conflicting results. For our purposes, we

present some summary statements that capture the essence of the two 

positions.

P&U focus on the fact that each of the various PDP models to date is

designed to model a particular phenomenon:

At the same time, the post-RMM connectionist models have revealed the pro-

blems in trying to explain all linguistic phenomena with a single pattern-associator

architecture. Each model has been tailored to account for one phenomenon

explained by the WR theory; unlike RMM, few models account for more than one
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phenomenon or predict new ones. And modelers repeatedly build in or presuppose

surrogates for the linguistic phenomena they claim to eschew, such as lexical items,

morphological structures and concatenation operations. We predict that the need

for structured representations and combinatorial operations would assert itself 

even more strongly if modelers included phenomena that are currently ignored in

current simulations, such as syntax and its interaction with inflection, the massively

productive combinatorial inflection of polysynthetic languages, and the psycho-

logical events concealed by providing the models with correct past-tense forms

during training (i.e. children’s ability to recognize an input as a past-tense 

form, retrieve its stem from memory, compute their own form, and compare the

two).

The PDP modelers, M&P, respond by saying that, of course, more work

needs to be done and there are also no implemented symbolic models that

match the full range of experimental findings. Their main point is not

about rules per se, they state, but about absolute symbolic rules:

We do not claim that it would be impossible to construct a rule-based model of

inflection formation that has all of the properties supported by the evidence.

However, such an account would not be an instantiation of Pinker’s symbolic rule

account. In fact, rule-based models with some of the right characteristics are cur-

rently being pursued. If such models use graded rule activations and probabilistic

outcomes, allow rules to strengthen gradually with experience, incorporate seman-

tic and phonological constraints, and use rules within a mechanism that also incor-

porates word-specific information, they could become empirically indistinguishable

from a connectionist account. Such models might be viewed as characterizing an

underlying connectionist processing system at a higher level of analysis, with rules

providing descriptive summaries of the regularities captured in the network’s 

connections.

Neither side in this battle or the broader war worries explicitly about the

details of how language and thought are processed in the brain. The lin-

guists do analysis of language as such, and the PDP connectionists focus

on learning rules. By keeping the issues narrowly focused, both sides are

able to pursue their argument without dealing with questions that would

be compelling from any broader perspective.

For example, consider the knee-jerk reflex, whose circuit was described

in figure 5.1. It implements a simple rule: if one leg is slipping, put more

pressure on the other leg. But this clearly isn’t stored as some symbolic

rule; it is a hard-wired circuit that responds quantitatively and interacts

with other circuits. Neither of the contending formalisms have any way to

treat such circuits, and much more.
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If this example seems too primitive, we can consider walking or, even

better, dancing. Dancing is clearly learned and can be described by rules.

Dancing appears to exist in all cultures and can be learned without formal

instruction. On the other hand, there are obviously genetically specified

limitations on the range of human movements and thus of dances. There

may well be a human proclivity to dance—a dancing instinct. Suppose we

recast issues a–c for dancing:

(a′) Are formal dance rules expressed in the brain?

(b′) Is dancing independent of other brain structures?

(c′) Is there some special genetic encoding specifically for dancing?

These questions don’t seem to make a whole lot of sense, do they? Each

one might be true to some extent, but none tells us much about how

dancing is actually carried out and learned. More generally, it has often

been noted that other cultural artifacts, most notably music, share many

of the structural properties of grammar.

For different reasons, both sides in the language wars reject detailed oper-

ational theories. From the PDP general learning position, the only inter-

esting issue is learning from a blank slate or some other totally neutral

configuration. The fact that the brain has a great deal of elaborate struc-

ture before learning begins is ignored, because any structure built into the

model interferes with the learning claims.

The extreme believers in innate, autonomous, rule-based grammar 

can ignore any conflicting biological evidence because of their conviction

that neuroscience is not nearly developed enough to be taken seriously.

Noam Chomsky (Chomsky 1993, p. 85) made the following statement 

in 1993, and repeatedly restated the same idea in his 2003 Berkeley 

lectures:

In fact, the belief that neurophysiology is even relevant to the functioning of the

mind is just a hypothesis. Who knows if we’re looking at the right aspects of the

brain at all. Maybe there are other aspects of the brain that nobody has dreamt of

looking at yet. That’s happened often in the history of science. When people say

that the mental is the neurophysiological at a higher level, they’re being radically

unscientific. We know a lot about the mental from a scientific point of view. We

have explanatory theories that account for a lot of things. The belief that neuro-

physiology is implicated in these things could be true, but we have very little evi-

dence for it. So, it’s just a kind of hope; look around and you see neurons; maybe

they’re implicated.
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The scientific path to truth described in this passage is formal linguistic

analysis based on positive answers to questions a–c. If neuroscience is

incompatible with this formal analysis, neuroscience must be wrong. The

same belief system provides a rationale for ignoring inconvenient results

from psychological experiments or corpus studies. These are said to reflect

only linguistic performance, which is highly variable and uninteresting. The

deep questions concern linguistic competence and can be addressed only by

the orthodox methodology of formal grammar. This is the extreme form

of the argument; other nativists, including Pinker and Ullman, experiment

themselves and employ empirical results in their arguments.

One reason the war is so heated among participants and meaningless to

most other cognitive scientists is that the two sides come from traditions

that are radically different, as described earlier. And they both ignore

uncomfortable findings. As with any effective belief system, positions 

on both sides are unassailable from within. Each side has an almost im-

pregnable minimal stance to which true believers can remain committed

indefinitely. For the language organ side, any aspect of grammar, however

limited, that satisfies conditions a–c will suffice to establish the validity 

of their position. For the general learning side, there is always the hope

that additional learning techniques will prove their side is right after all

and grammar can be acquired without any precursor structure. The fact

remains that both groups do good work within their methodological 

limitations, and everyone would be better served by a permanent peace.

In fact, the actual beliefs by participants on both sides of the debate 

are much more balanced than you might judge from their fighting 

stances.

Beyond the Battlefield

Of course, no one knows exactly how the brain processes language, but

enough has been discovered to support general answers to questions a–c

that are internally consistent and in harmony with everything that is

known. We know that current scientific knowledge is incompatible 

with either side of the current language wars. The basic theories arising

from such an analysis are not as definitive as one would like, but they are

unlikely to be refuted without major change in our understanding of 

neuroscience.
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As I have discussed, current knowledge in the brain and behavioral sci-

ences makes it clear that language, like all other human mental capacities,

involves an intimate interaction between nature and nurture. We are not

born a blank slate, nor is learning just selecting values for a few parame-

ters. It also makes no biological sense to talk about an autonomous module

for grammar or any other capability. The brain clearly does rely on spe-

cialized neural circuits, but these interact massively with one another and

almost always have overlapping functions, at least partially compensating

for damage to one circuit by other circuits.

We don’t know which aspects of neural language processing involve spe-

cific evolutionary adaptations, but it would be amazing if there were none

at all. We do have detailed knowledge about several physical adaptations

in the throat, tongue, and other body parts that facilitate language, and

we also know that such adaptations are always accompanied by related

neural changes. If language is, as the neural theory suggests, continuous

with other mental activities, it makes no sense to ask if certain evolution-

ary adaptations are specialized only for language. There is no such thing

as language in isolation from thought. In chapter 26, I suggest a specific

evolutionary adaptation that could have triggered our unique human abil-

ities in language and much else.

Even more basically, the energy of much of the current debate is retained

because both sides agree to focus on isolated problems in grammar, uncou-

pled to any effects of meaning or use of language. Though progress con-

tinues to be made within this restricted view, an embodied neural theory

of language starts from the opposite perspective—grammar is inherently

coupled to the form, meaning, and use of language. Many classical prob-

lems are greatly simplified in the framework of constructions that explicitly

link all aspects of language. The remainder of the book explores this stance

and some of its consequences.
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23 Combining Meanings—Embodied Construction

Grammar

For a book about embodied language, the last two chapters have been off

the main track in discussing grammar divorced from meaning. This follows

the traditional treatment of grammar, particularly syntax, as a separate area

of study, if not an autonomous module in the brain. The view put forth

here is the opposite. My contention is that the central role of grammar 

is to help specify how meanings are combined. As part of the process of

connecting form and meaning, some strings can be labeled ungram-

matical because they violate the grammar rules of the language, but that

judgment is only loosely related to whether the utterance is meaningful

in context.

Any theory of language will need some way to express its claims so that

they can be evaluated. Meaning, in an embodied theory of language, must

be grounded in behavior and neural circuitry. Ultimately, the meaning of

any utterance is its effect on the (physical and emotional) well-being of

the person saying or hearing it. Of course, human societies have developed

a vast array of intermediate structures (i.e., culture) that affect meaning,

but everything that matters is represented in each individual person’s brain

mechanisms.

It would not be feasible to write out the neural circuitry underlying the

meaning of words even if we knew it. The brain is massively connected,

and meanings are always linked to other concepts. As we saw in chapter

11, there is a fairly standard means of expressing a symbolic rendition of

embodied meaning—schemas. My attempt to explain how meanings are

combined will thus be stated in terms of rules for combining or linking

schemas. As always in this book, any such symbolic notations should 

be viewed as shorthand for neural operations that link the activity of the

circuits symbolized by the schemas.



Back in chapter 11, we saw how some spatial relation words, such as into

and through, evoke multiple image schemas with explicit links between

them. The meaning of into was shown to involve both a container schema

and a source-path-goal (SPG) schema, with the goal feature of the SPG

linked to the interior of the container, as depicted in figure 11.1. We also

mentioned in passing that the phrase “out of ” had a similar meaning re-

presentation, although it has a different grammatical form—a phrase

instead of a single word.

The representation of meaning as a collection of linked schemas is just

an intermediate step, but a crucial one. We call such a network of inter-

connected schemas a semantic specification (or SemSpec when we are

lazy). The SemSpec doesn’t say how we should actually respond to any par-

ticular utterance, but it does provide the information needed to do so. The

way a person (or computer system) responds to language depends on many

things beyond the utterance itself—the goals of the hearer, the context,

accompanying gestures, and so on. The SemSpec is a hypothesized inter-

mediate structure that captures, in a way that can be used for any appro-

priate response, all the crucial structures and relations specified by an

utterance.

Figure 23.1 depicts how the components of the system work together to

produce the inferences that are implied by a news story. Starting from the
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top left, one crucial requirement is conceptual knowledge, including both

the universal schemas and cultural frames described in chapter 11. In addi-

tion to the input text, the system is assumed to know something about

the general situation. At the upper right are the constructions, which are

our primary concern in this chapter.

The analysis arrow portrays the process that was just loosely described,

fitting together the appropriate constructions and schemas to yield a

semantic specification of the meaning of the utterance. The simulation

arrow represents the process described generally in chapter 18 and applied

to news stories, in particular, in chapter 20. Much of the inference there

resulted from the program simulating the metaphorical progress of an

agent attempting to reach a concrete goal, which was then mapped

metaphorically to economic progress. In that discussion, we had no 

way to describe how the input text was analyzed to yield the informa-

tion needed for simulation. This chapter shows how this analysis can be

done.

The focus here is on how meanings of words are combined in larger lin-

guistic units such as phrases, clauses, and sentences. The basic idea is

unchanged—the meaning of an utterance can best be expressed as a linked

set of (embodied) schemas. We have seen repeatedly that languages differ

widely in the way meanings are expressed. What is a specific word in one

language might be a phrase in another. For example, in English we say my

house, using the special first person possessive pronoun. In Hebrew, one

can say bayit shel lee (house of me), where the pronoun is the same form

(lee) as me and the possession relation is marked by a phrase. But one can

also express the same thing in Hebrew as bayitee, where possession as well

as grammatical person and number are marked by an ending, ee, on the

noun.

This variability across languages is the standard, not the exception. A

semantic theory needs rules for combining meanings that do not depend

on the grammatical form that happens to be used in a given case: words,

endings, phrases, and so on. Before getting into the technical details, let’s

explore some basic phenomena involving the combinations of meanings.

We begin with what seems to be the simplest possible case, an adjective

modifying a noun as in our example red fire engine. Even this first example

has a small puzzle—what is the meaning of red that is somehow combined

with fire engine to name a particular shade?
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For most of us, a very specific shade of red is typical of fire engines.

Unsurprisingly, it is quite close to the focal red that yields the strongest

neural response; the color was chosen to be noticeable. This particular

shade of red is not at all the same as those referred to in, for example, red

hair, red face, or red sky. From our embodied neural perspective, the

context-dependent meaning of “red” is natural; the activation of two

words together causes the brain’s neural best-fit mechanisms to settle on

the most coherent overall pattern involving alternative concepts nameable

by those words in the current context.

So, even in the simplest cases, we have conceptual integration or blending.

The meaning of a combination of words can be a complex relation involv-

ing the surrounding context as well. Sometimes a two-word combination,

like Red Guard, becomes a vocabulary item that evokes a complex frame

only loosely related to the original word meanings. There are some much

trickier cases, such as adjectives that negate essential features of the noun

they modify, such as artificial, fake, imitation, and toy. Some thought is

required to sort out the different meanings among these adjectives, and

the distinctions seem to involve the intentions of the person making 

or using the object. Additional modifiers work this way for some objects,

but not for others. So a stone lion is not a lion, but a stone bridge is still a

bridge.

Our main concern in this chapter is with how meanings are combined.

The simplest and still most widely accepted theory is that each word has

multiple fixed meanings, called word senses. In this theory, all meaning

resides in words; the rules of grammar are devoid of meaning and only

specify which combinations of words are allowed. Referring back to the

language wars, this position is part of the stance of autonomous syntax.

According to this view, the meaning of any combination of words can be

determined by first detecting which sense of each word is involved, and

then using the appropriate rule for each word sense. So, we understand

stone lion as referring to something made of stone that has the shape 

of a lion.

There is a major problem in trying to define word sense meanings for

individual words that will lead to any such simple rules for the meaning

of word pairs. Should each animal name, like lion, have another word sense

covering lion-shaped objects? What about other animal attributes that are

commonly used nonliterally—size (whale of a problem), habitat, aggres-
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siveness, power, and mating habits? Should there also be separate word

senses for toy lions, fake guns, and so on. There are also contextual usages;

the stone lion could refer to the lion sitting on the stone, the one that 

ate a stone, or something else. If we include these contextual uses, there

is literally no limit to the number of word senses that might be needed.

The embodied neural theory of language provides an alternative story

on multiple word meanings that is much simpler and seems intuitively

plausible. Each word can activate alternative meaning subnetworks, as we

saw in the example of the two meanings of rose (flower and stood) in

chapter 7. These subnetworks are themselves linked to other circuits re-

presenting the semantics of words and frames that are active in the current

context. The standard neural best-fit matching mechanism activates addi-

tional related concepts as part of choosing the most appropriate meaning.

The meaning of a word in context is captured by the joint activity of all

of the relevant circuitry: contextual, immediate, and associated.

Computational Modeling of Neural Grammar

Even if we accept the basic validity of meaning as neural activation and

combined meaning as (neural) conceptual integration, a major problem

remains. How can we describe the regularities of any particular language—

its grammar. There is no advantage to exclaiming that it’s all neural 

activation; this won’t help us teach the language, compare it with others,

or build computer programs that allow people to communicate with

systems using the language. Notice that the pure learning theories of 

language have the same problem—a massive neural network that somehow

learned the grammar of a language would not in itself be usable for most

purposes.

All neuroscientists and other scientists working on the brain confront

the same problem: How can we produce understandable descriptions of

what we know or propose? In our case the question becomes, how can we

write down rules of grammar that are understandable by people and com-

puter programs and that also characterize the way our brains actually

process language? Much of the technical terminology and notation I have

developed throughout this book has been directed toward solving this

problem. Let’s review some of the key ideas, and then see how they can

be combined to yield what might be called neural grammar.
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The first seven chapters tried to show how one could effectively model

neural computation in understandable ways. A description of any mental

ability, here grammar, must be reducible to the connectionist level and

thus to the brain, as depicted in table 10.1 and discussed in that chapter.

But the connectionist level is still too messy, so we also need a computa-

tional level, providing a fairly traditional way of describing structures in

terms of feature∼value pairs, as depicted in table 10.2.

A crucial observation came in chapter 13, where I pointed out that

people understand their motor programs only at the feature (or para-

meter) level. We can control the force, direction, grip, and so on of hand

actions, but have no direct access to the details of neural magic that

execute the actions. If, as I hypothesize, languages encode only these

observable features, the task of specifying grammar becomes much easier.

The job of grammar is to specify which semantic schemas are being evoked,

how they are parameterized, and how they are linked together in the

semantic specification (SemSpec). The complete embodied meaning comes

from enacting or imagining the content (chapters 18 and 20) and always

depends on the context in addition to the utterance.

Given all this, we can see that some parts of the grammar specification

methodology have already been outlined. In figure 10.1, we used the

example of “into” to show how the meaning of a single word might involve

multiple schemas with links (depicted as double arrows) connecting the

appropriate features (or roles). This will play a central part in the methodo-

logy. It is no coincidence that the same double-arrow notation was used

in chapter 21 in discussing grammar rules for specifying linguistic agree-

ment in person, number, and so on. The technical term, unification, that I

used there is standard and this idea, along with its double-arrow notation,

is the key operation in our grammar rules, as in many other modern 

grammars.

Our proposed way of writing neurally plausible grammars is called

embodied construction grammar, or ECG (Bergen & Chang 2005). We will 

see examples soon, but some preliminaries are needed. The basic unit of

an ECG grammar is the construction, which is always a pairing of linguis-

tic form and meaning. The idea of grammar as constructions that 

inherently link form and meaning has been important in linguistics at 

least since it was made explicit by Charles Fillmore around 1965 (Fillmore

1989).
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In our formulation, all levels of linguistic form—from prefixes, to words,

phrases, sentences, stories, and so on—can be represented as mapping from

some regularities of form to some semantic relations in the SemSpec. The

term embodied in ECG arises from the fact that the semantic part of a con-

struction is composed of our various kinds of embodied schemas—image,

force dynamic, or action schemas. To illustrate how ECG works, we will

give a simplified, but basically complete, analysis of the sentence, “Harry

strolled to Berkeley.”

A Small Complete Example

The simplest and most basic kind of construction is the individual word,

also called a lexical construction. For example, the construction “to” could

be described as follows:

lexical construction To

subcase of Spatial Preposition

evokes SPG as s

form “to”

meaning Trajector-Landmark

lm ↔ s.goal

traj ↔ s.traj

The crucial starting point is that a semantic specification will consist

entirely of linked schemas; the constructions are needed only to get from

linguistic form to this meaning representation. There are often several

quite different ways of expressing the same content, and such differences

will be invisible in the SemSpec. For the “to” construction, there is some

notation to explain, but the meaning is based on the SPG (source-

path-goal) schema from chapter 11. There are alternative uses of the word

“to” such as in the infinitive “to walk,” but these have different associated

meanings.

The words in boldface are part of the definition system and will always

be used. When one construction is a subcase (or child) of another, it can

be used wherever its parent type is called for (we will see an example soon).

The “evokes” mechanism is an innovation introduced by ECG and is

crucial. It is our way of writing down the fact that a word or concept will

often activate other related concepts. As we have seen, the word “to” gets
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its meaning by linking and activating two primitive image schemas, a 

trajector-landmark and an SPG. An evoked schema also gets a local alias,

here “s.” The form line is very simple in this case; it just gives the spelling

of the word being defined. We will see more complex form rules soon.

As I mentioned, the meaning section specifies the semantic schemas

and relations that are introduced by the construction being defined. Here,

the basic meaning is a trajector-landmark schema. The one extra bit of for-

malism is the dot notation, as in s.goal. The convention here is the stan-

dard one from programming: s.goal refers to the goal role of the particular

schema s. The double arrow (↔) notation is doing the same job as the 

pictorial double-headed arrows in figure 11.1—showing which role pairs

should be unified. For comparison, the lexical construction for the word

“from” would have the alternative line:

lm ↔ s.source,

indicating that the focus is on where motion started.

In addition to constructions for individual words, ECG allows us to

specify the way in which meanings are combined in larger grammatical

constructions. We have already seen the basic idea—grammar specifies

semantic relations, represented by the double arrow notation. The first

example of a grammatical construction is the following one for spatial

prepositional phrases (PP):

construction Spatial PP

subcase of Destination

constituents

r: Spatial Preposition

base: NP

form r < base

meaning

r.lm ↔ base

This looks a bit more like a traditional rule of grammar, such as those about

Old King Cole in figure 21.1. In traditional CFG form, the rule would be

something like

Spatial PP → Spatial Preposition NP

It is also traditional to call the spatial preposition and the NP constituents

of the resulting spatial PP, as we do in ECG. There are two significant 
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differences in the ECG treatment. In the form line, there is the looser

requirement that the spatial preposition (named r) come at any position

before the NP (named base). This doesn’t matter much in this case, but

can be important. The crucial difference is that semantics or meaning plays

an equal role in ECG constructions. When the spatial PP construction is

applied, the meaning condition must be matched in addition to the form

requirement. In our example, the phrase “to Berkeley” would match as a

spatial PP, leading to the bit of SemSpec (on the right side of figure 23.2),

which expresses motion of some sort toward Berkeley.

Figure 23.2 captures all of the semantic schemas and relations needed to

express the meaning of the sample sentence. We will continue to refer back

to it as more of the analysis is explained. The representation for the proper

noun Berkeley is abbreviated; the full treatment would be more like the 

following definition for Harry:

lexical construction Harry

subcase of NP

form “Harry”

meaning Referent Schema

type ↔ person

gender ↔ male

23. Combining Meanings—Embodied Construction Grammar 291

Self Motion Schema
Discourse Element

mover

action

direction landmark = Berkeley

trajector

trajector

goal

source

path

category = human 

gender = male 

count = one 

specificity = known 

resolved = harry2 

modifications

type = statement 

content

speaker

addressee

agent

speed = slow 

tense = past 

aspect = complete 

Referent Schema 

TL Schema

SPG Schema 
WalkX Schema 

Figure 23.2
Simulation specification for “Harry strolled into Berkeley.”



count ↔ one

specificity ↔ known

resolved ↔ harry2

This introduces another kind of basic schema, the Referent Schema (on 

the lower left in figure 23.2), which encodes what has been expressed about

the meaning of a noun phrase. In this example, we assume that the hearer

knows the particular person being referred to. But the same general form

works for many other cases. If the example were either of “The man/he

strolled into Berkeley,” the only difference would be a blank resolved role.

A question about who strolled into Berkeley could be represented with a

value of “questioned” in the specificity role, and so on.

The only other word in our example sentence is strolled; this denotes an

action and its construction is a bit more complex.

lexical construction Strolled

subcase of Motion Verb, Regular Past

form “stroll+ed”

meaning WalkX

speed ↔ slow

tense ↔ past

aspect ↔ completed

As with the other words, the word “strolled” has, as its meaning, a basic

schema—in this case the WalkX executing schema, which was described

in chapter 13. This schema has various parameter roles including speed of

motion, the grammatical tense saying when the action occurred, and gram-

matical aspect stating whether the action should be simulated as ongoing,

completed, and so on. (chapter 18). We see that strolled is a subcase of

motion verb, and this fact is needed for analysis. The form line shows the

word strolled as being made up of a root, stroll, and a suffix, -ed. This is an

instance of the English regular past tense construction, which we will

discuss further in the next chapter.

To understand how all these constructions work together to produce

figure 23.2, we must introduce one additional simplified construction.

Recall that we defined strolled as a subcase of motion verb and spatial PP

as a subcase of direction. In English, a complete thought or predication

is normally expressed as a clause. There are many kinds of clauses, but here

we just need one construction for tying together the constituents that

describe directed motion of one’s self.
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construction Self-Directed Motion

subcase of Motion Clause

constituents

movA: NP

actV: Motion Verb

locPP: Spatial PP

form mover < action < direction

meaning Self-Motion Schema

mover ↔ movA

action ↔ actV

direction ↔ locPP

Here, a self-directed motion clause has three constituents, each of 

which is an instance of a (possibly lexical) construction. The movA

must be an NP, the actV must be a motion verb, and the locPP must be a

Spatial PP. The form line gives the ordering relations. The meaning

section specifies a self-motion schema; as always we assume that people

understand motion in contexts other than language, and this schema

reflects that knowledge. For our purposes, we can envision the self-motion

schema as having the three roles mentioned earlier: mover, action, and

direction.

With all these mechanisms defined, figure 23.2 shows the resulting

semantic specification (SemSpec) arising from our example sentence,

“Harry strolled to Berkeley.” The schema on the upper left describes what

is known about the discourse properties of the example sentence—here

only that it is a statement. The content itself is all based on the self-motion

schema in the top center; it links together the actor (Harry), the action

(strolled), and the direction (to Berkeley). The other links capture what has

been expressed, namely, that the mover, the agent of WalkX and the tra-

jector of the SPG are all the same entity, the referent schema that describes

Harry.

Given a SemSpec like figure 23.2, various enactment processes, such as

those described in chapter 20, could react appropriately to the utterance.

Suppose this sample sentence occurred in the context of a news story; an

understanding system could draw inferences about Harry’s location, his

health, state of agitation, and so on from this SemSpec.

This was a long explanation for a short example, but no one said lan-

guage was simple. In any methodology, no complete description for a
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natural language is currently possible. For one thing, there is no agreement

on exactly what should count as part of each language.

In the following two chapters, we will look at some ways that ECG and,

more generally, an embodied neural theory of language can help us under-

stand human behavior. Chapter 24 will explore how ECG can form the

basis for programs and theories dealing with language and human 

language processing. Chapter 25 will show how the same theory provides

a basis for theories of language acquisition and how this can be demon-

strated in a program that learns ECG constructions from data.

But it is also worth briefly revisiting the previous chapter on the 

language wars with the ECG perspective. Recall that the three central issues

were:

(a) Are there formal grammar rules in the brain?

(b) Is grammar independent of other brain structures?

(c) Is there some special genetic encoding specifically for grammar?

These issues were framed in terms of traditional definitions of grammar as

independent of meaning. From our ECG perspective, grammar inherently

links form and meaning, so questions b and c make little sense. If grammar

includes meaning, then of course it is not independent of meaning. Simi-

larly for question c, if grammar includes meaning, that is intimately linked

to other knowledge, it can’t have completely separate genetics. With

respect to question a, ECG is closer to the positive answer. There is good

evidence that grammar, in the ECG extended sense, is not just another

product of universal learning. But there is equally strong evidence that

what is genetically encoded is not a set of symbolic rules.

On the surface, the ECG notation might look like other formalisms for

describing language. But the crucial point is that the conventional-looking

constructions, like formalized schemas described earlier, are just our way

of writing down hypothesized neural connections and bindings. The sys-

tematic reduction to connectionist, and ultimately neural, realization, as

outlined in chapter 11, is the key to grasping ECG and, for me, is central

to understanding language and thought.
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24 Embodied Language Understanding

It took all of the previous chapter just to introduce embodied construction

grammar (ECG) and present some simple examples of its use. Suppose that

ECG really does capture embodied meaning at the computational level. Is

this of any value in practice? In this chapter, I will discuss the usefulness

of ECG and the neural approach to language in three related domains: lin-

guistic analysis, computer understanding systems, and models of human

language processing.

There is a large and very productive subfield of language studies called

cognitive linguistics. For several decades now, cognitive linguists have been

studying phenomena that are not covered in the traditional formal lin-

guistics of chapters 21 and 22. Many of the key ideas forming the basis for

this book come from cognitive linguistics: schemas, conceptual blending,

unified constructions, and metaphors, to name some of the most impor-

tant. However, until recently, there has been no precise way to specify

exactly what was being stated in a cognitive linguistics analysis. The stan-

dard means of expressing insights has been through pictorial diagrams and

accompanying discussions.

A major goal of ECG development has been to provide a formal nota-

tion for cognitive linguistics. This has turned out to be surprisingly easy.

It appears that only four basic formal structures are needed to express the

results of cognitive linguistics in a precise and tractable notation. We have

made extensive use of two of these—schemas and constructions. The con-

structions of the previous chapter and the semantic schemas used there

are examples of how ECG formalizes cognitive linguistics.

Metaphors, which we have used in several places, provide an example

of the third primitive structure, called maps. The final ECG primitive used

for cognitive linguistics is the mental space, as discussed in chapter 17.



These are needed for analyzing statements about other people’s thoughts,

other times and places, and a variety of other ideas, a few of which I discuss

later in this chapter.

ECG and Construction Grammar in Linguistic Analysis

In addition to its close ties with cognitive linguistics, ECG is part of a larger

effort on construction grammars (Goldberg 1995) whose goal is to simplify

and improve linguistic analysis. Recall from earlier chapters that conven-

tional grammars and theories place all semantics in (various senses of) 

individual words, and then try to derive the meaning of any utterance from

combinations of word senses. Construction grammars explicitly allow

meaning to be added by larger grammar rules, and this improves analyses

for various simple and complex problems in language.

Let’s start with the simple problem of adjective–noun combinations such

as red ball or stone lion. We saw in the previous chapter that even simple

pairs like red ball involve considerable mental simulation and conceptual

integration. When you read the phrase “red ball,” you probably imagined

a round, shiny, resilient ball of human scale. Since the conceptual com-

bination evoked by a phrase will vary from context to context and person

to person, it seems impossible to write down all the rules that determine

form and meaning for a language.

The ECG solution to this class of problems explicitly acknowledges that

language is always interpreted in an active neural context and postulates

a linking semantic specification (SemSpec). The SemSpec is intended to

capture exactly those semantic relations that can be derived from the input

sentence in context. The simulation semantics process, discussed in chap-

ters 18 and 20, uses the SemSpec and other activated knowledge to achieve

conceptual integration and the resulting inferences, as we discussed in the

previous chapter.

Going from linguistic form to meaning can get even trickier when we

look at measure phrase examples such as “bottle of beer.” The traditional

view is that every phrase has a “head,” which is the focus for all modifiers

and actions. Even a complicated phrase such as

the big old red frame house on the corner near the church

is unequivocally about the house. But it isn’t clear whether we should 

view “bottle of beer” as being basically about a bottle that contains beer
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or about beer that happens to be in a bottle. Consider a simple sentence

such as

She opened and drank an expensive large bottle of beer.

We can see that it is the bottle that was large and that was opened, and it

was the beer that was consumed and was expensive. But this depends on

semantic relations among the nouns, adjectives, and verbs involved. There

is no obvious way to handle this kind of construction in conventional

grammar. In ECG, it is natural to introduce a measure phrase construction

and an accompanying containment schema, each of which has two head

roles, a measure of some sort and the substance being measured (Dodge &

Wright 2002).

The ECG semantics-based unification process will work correctly because

the various verbs and modifiers involved are more semantically compati-

ble with one or another head role. In our example above, opened and large

do not apply to the substance, beer. This semantic-based matching can also

work when the sentence is given in the abbreviated form:

She opened and drank an expensive large beer.

assuming that the grammar covers the possibility that beer sometimes

means a container of beer. In the ECG notation of the previous chapter,

the measure phrase construction could be written as

construction Measure NP

subcase of NP

constituents

m: Measure NP

“of”

s : Substance NP

form m < “of” < s

meaning Containment Schema

vessel ↔ m

contents ↔ s

Notice that because constituent m is itself a measure NP, this construction

can describe complex cases such as

truckload of large cases of small bottles of Czech beer.

The meaning of the containment schema depends on the fact that the

measure m is (or can be construed as) a container. It should seem natural,
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after a moment’s thought, that a herd can be construed as a container of

zebras in our sense. There is a special English construction, “–ful,” that is

used when m is not ordinarily thought of as a measure, as in mouthful of

beer.

A somewhat similar class of problems arises with verbs of action when

they are used in nonstandard constructions. Some verbs, like eat, are com-

monly used both with and without a direct object:

I love to eat (Pizza).

In contrast, the similar verb, devour, can be used only with an object, so

I love to devour Pizza, but not *I love to devour.

Now, we know that sneeze is a so-called intransitive verb, which means that

it normally takes no object. But what about a sentence like

She sneezed the tissue off the table.

This seems perfectly grammatical and understandable, but how can it be

analyzed?

The conventional answer is that (as in the case of nouns) there is a 

separate word sense for sneeze as a transitive verb. But unless you are a 

linguist, you probably have never heard sneeze used this way. The con-

struction grammar answer is different in kind and is revealing. It suggests

a caused motion construction, similar to our directed motion construction of

the previous chapter:

construction Caused Motion

subcase of Motion Clause

constituents

causer: Agent

action: Motion

trajector: Movable object

direction: SpatialSpec

form causer < action < trajector < direction

meaning Caused Motion Schema

causer ↔ action. actor

direction ↔ action. location

The important point is that it is the construction that introduces the pos-

sibility of a direct object (the extra role trajector) for a normally intransi-

tive verb. Since this is a general rule and does not need to be learned
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separately for each word, you had no trouble understanding “She sneezed

the tissue off the table,” even if you had never heard sneeze used this way.

Sneeze is usually an intransitive verb, but can be used transitively (with a

direct object) in certain constructions.

Beyond Strings of Printed Words

Language includes a variety of expressive mechanisms in addition to the

strings of words treated by formal grammars. Meaning is also conveyed by

changes in word form, by intonation patterns, and by gestures. ECG has

been designed to allow constructions that permit any combination of form

elements, and this is needed in many cases. We will look at several 

examples.

The ECG approach has proven to be of value in morphology, the study of

how meaning is conveyed by changes in the form of a word. The discus-

sion of the English past tense in chapter 22 was about morphology. If you

know another language, morphology is likely to be much more important

in that language, unless it is Chinese, which has almost no morphology.

Chinese, along with many other languages, uses tones as additional way

of specifying meanings. Mandarin Chinese has four distinct tones and the

meaning of words can differ widely depending on the tone used. In 

addition, the exact same sound can have multiple meanings, as with the

English bank. For example, Mandarin words include

ma1 = mother

ma2 = toad, hemp

ma3 = horse, yard

ma4 = scold

This is parallel to the difference in meaning of different vowel occurrences

in English, for example, ma, me, my, mow, moo. Of course, Mandarin uses

vowel distinctions as well as tones to convey meaning.

Traditional morphology has followed formal syntax in assuming that

each operation has an independent meaning, and these are combined to

yield the overall meaning of the changed form. Morphology was briefly

mentioned in the last chapter when we described strolled as “stroll + ed.”

It would obviously be better to have a single construction for all regular

past tense verb forms, and we do.

24. Embodied Language Understanding 301



construction Regular Past Tense

subcase of Verb

constituents

Root: Verb Stem

“ed”

form Root + “ed”

meaning Root.meaning

tense ↔ past

aspect ↔ encapsulated

This construction specifies that the regular past tense is formed by adding

“ed” to the verb root. More interestingly, it also says that the meaning of

any such construct is found by taking the meaning of the root verb and

changing the value of its tense and aspect roles. So, we don’t need to do

this explicitly for every regular verb, and could simplify the example from

the previous chapter. Defining additional constructions for the other forms

of past tense is straightforward. Some irregular forms such as “go, went” do

need specific lexical constructions, of course.

English has fairly simple morphology, and many approaches will suffice,

but ECG has also proven to be effective for such complex systems as that

of Georgian. Using an approach based on ECG, Olya Gurevich (2003) has

shown how complex morphological systems can be much better under-

stood as involving structured constructions, analogous to the caused

motion construction that we have discussed. As with grammar, morphol-

ogy sometimes requires consideration of complex constructions involving

both form and meaning.

Written declarative language is complex enough, but it is only part of

the story. Let’s think about questions; the discourse type shown in the

upper left of figure 23.1 was a statement; one alternative type is a question.

There are several explicit question constructions in English, but you can

also change a written statement into a question by adding a “?” as in

“Harry strolled to Berkeley?” There are no punctuation marks in spoken

language, and a question like this one is signaled by a rising tone at the

end. There are standard ways of recognizing and labeling such intonation

patterns, and these can be used in ECG constructions. A rising tone is a

form feature just like a word or ending and can be constructionally paired

with a meaning effect.
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Another interesting intonation issue comes up in connection with the

preceding example question. Try reading the question aloud with equal

stress on each word—it will probably seem odd. The reason is that the ques-

tion makes sense only if one or more words are stressed. If you stress each

word in turn, you get different meanings—the stressed word is the one

being questioned.

Also, try reading the statement form with stress on each different word.

In this case, the stressed word suggests a contrast set. For example “Harry

strolled TO Berkeley” emphasizes that he didn’t stroll from, through, or

around it. ECG has mechanisms to represent these contrast sets in the

semantic specification, but no one has yet worked out how to make all the

proper inferences from them.

Discourse features can also be used to analyze more complex sentences

such as “Josh said that Harry strolled to Berkeley.” This statement has an

embedded sentence as the subject of “said.” ECG follows cognitive lin-

guistics practice and expresses such meanings with two mental spaces, one

for Harry’s action and another for Josh’s statement. The discourse mental

space mechanism is also used for language about other times and places,

other people’s thoughts, paintings, movies, and so on (Mok et al. 2004).

When people have visual contact while talking, gesture also plays a large

role in conveying meaning. In fact, children communicate by gesture well

before they can talk. Some gestures, like pointing, are universal, but many

are cultural. Understanding a pointing gesture is inherently situational—

you need to be there to know what is being indicated. One can add nota-

tion for such gestures to ECG, but their meaning goes beyond language,

involving visual perception. The same is true for some linguistic construc-

tions such as the demonstratives “this” and “that”—their meaning is often

situational.

But a number of gestures can also be captured as linguistic form-meaning

pairs and added directly to ECG. For example, raised eyebrows to express

skepticism or a flat rotating hand to suggest uncertainty. These gestural

forms can be combined with structural and intonational forms in con-

structions that describe the full richness of language use. Shweta Narayan

has shown how to extend this idea of multistream ECG constructions to

signed languages and such multimedia forms as cartoons.

Summing up, the embodied neural approach to language and ECG for-

malism have established new methods for working on hard problems at
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all levels of linguistics, and especially on problems that cross traditional

research boundaries.

ECG in Computer Understanding Systems

I have also claimed that ECG and the neural approach to grammar can

directly help in computer systems for understanding natural language. For

this to work out, computer programs that use an ECG grammar to produce

a semantic specification (SemSpec) are needed. Because each ECG con-

struction explicitly links form and meaning, we already know that this is

possible in principle. Any program that could successfully analyze English

input using ECG will automatically produce an equivalent SemSpec.

The problem is that ECG is significantly more complex than traditional

grammars, partly because it includes deep meanings, but also because it

allows more flexible rules of form. It was not obvious that a program for

efficient ECG analysis could be written, but John Bryant has recently done

this (Bryant 2004). Again, the details of this accomplishment are beyond

the scope of this book, but it is useful to understand some of the key ideas.

All parsing programs confront the same basic problem. They have a large

collection of grammar rules that might be useful in analyzing any given

input sentence. An average sentence will require the combination of

several rules in its analysis, as we saw in chapter 23. Even on the fastest

computer, it is totally impractical to just try all possible combinations of

grammar rules. So the problem is to find a method for choosing the right

collection of constructions for analyzing any sentence the system might

be given.

The grammatical analysis problem is made harder by the fact that many

words, phrases, and sentences can have more than a single meaning, as we

saw in the preceding examples. The brain, being massively parallel, is able

to maintain activity patterns for several possible analyses, but it requires

some cleverness to do this on a serial computer. Bryant uses the standard

trick, called a parse chart, for keeping track of potential parses. His program

starts in the obvious way by placing (one or more) meanings in the parse

chart for each word in the input.

Let’s consider how Bryant’s program might produce the SemSpec of

figure 23.1 from the tiny sentence, “Harry strolled to Berkeley.” Suppose

that each of the four words had only one meaning in the lexicon, except
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for to, which could be our spatial relation term, but could also be the infini-

tive marker. The chart must allow for either possibility, and the program

would start looking for constructions that matched some of the informa-

tion in the chart. The only direct match (from chapter 23) would be the

spatial PP construction, which matches the preposition sense of to followed

by the NP, Berkeley. An important innovation in Bryant’s system is using a

measure of semantic coherence to evaluate potential matches in the chart.

After this match has been found, the chart is expanded to note the 

possibility of a spatial PP covering the last two words. Now, the big self-

directed motion construction (from chapter 23) will match the chart,

because

Harry is a person and thus a good agent

strolled is a Motion Verb

“to Berkeley” is grouped in the chart as a spatial PP

As we described in the previous chapter, the process of matching con-

structions like this automatically involves unifying their meanings, so that

the desired SemSpec of figure 23.1 will result.

Of course, this example is very close to the simplest possible case. A

typical sentence might have many possible analyses, and the chart can

grow quite large even if there is only one possible parse at the end. One

significant feature of Bryant’s system is that it can analyze and produce a

SemSpec for input strings that cannot be fully analyzed using the given

grammar. This is important for understanding less-than-perfect sentences,

and also a crucial component of Nancy Chang’s model of how children

learn grammar, the topic of the next chapter. Since a young child is just

starting to learn grammar, the child’s current grammar often does not com-

pletely explain a sentence that she or he hears.

We have now seen how a program can use ECG grammars to derive the

semantic relations that underlie English sentences. This allows us to fulfill

a promise made in the discussion of story understanding in chapter 20.

Recall that Narayanan’s program was able to draw complex and subtle

inferences from news story text, using several NTL ideas such as active sim-

ulation, metaphor mappings, and probabilistic inference. But that system

required a person to analyze the natural language sentences and present

the program with the underlying semantic relations. This is exactly the job

that Bryant’s ECG analyzer can do automatically.
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It is natural to combine these two programs, and Bryant, Narayanan, and

Sinha have recently carried this out. The resulting demonstration system

can take unprocessed English sentences (as in chapter 20), analyze them,

simulate the resulting semantic specification, and draw appropriate infer-

ences. This language understanding system goes well beyond the abilities

of any other program in some ways, but it is still just a prototype. To scale

this program up to a practical system for understanding English would

require solving several hard problems in linguistics, knowledge represen-

tation, inference, and computer science. But we do now have a framework

in which this effort can be undertaken as routine science and engineering

with reasonable prospects for success.

ECG and Human Language Processing

It’s nice that the neural theory of language seems useful for artificial intel-

ligence systems, but what can it tell us about natural intelligence? Various

partial answers to this question have been presented throughout this book,

particularly in chapter 7, which discussed some of the psychological 

experiments that led to the connectionist revolution in cognitive science.

But some findings could not be discussed until we knew about construc-

tion grammar and ECG. In the next chapter, I present Nancy Chang’s

neural theory of grammar learning, which is a major result of the entire

project.

Here, I briefly describe some results on adult language processing that,

as far as I know, can be explained only by a theory that has integrated

form-meaning constructions in a quantitative best-match computational

system. Let’s first consider an example from phonology, how sounds are put

together in language. A well-studied problem is French liaison, in which

the final sound of one word is sometimes joined with the first sound of

the next word. It is common in French for the last sound to be unspoken,

for example, the first word of “Les Miserables” is pronounced “ley” and

not “lez.” But the same word is treated differently in an example such as:

“les enfants” (the children), where the final “z” sound of “les” is usually

pronounced and joined to “enfant” as a single word, yielding roughly

“lezenfan.”

Whether or not a native French speaker will pronounce the final liaison

sound in this fashion is known to depend on many factors, including the
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particular words and sounds involved, the speech context, and the age,

gender, and social class of the speaker. Ben Bergen (Bergen 1999) was able

to use belief networks, of the kind described in chapter 19, to build a com-

putational model that could predict the probability of liaison from values

for such parameters as those described here. This provides a much better

fit to the data than any previous theory, apparently because the belief net-

works model the complex, context-dependent neural computations under-

lying speech.

There are many ways to study human language processing and a 

significant field, psycholinguistics, is dedicated to this pursuit. Most of the

results in chapter 7 would be called psycholinguistic findings. But this is

also a field in which there are quite a few demonstrations, and you can

experience interesting phenomena. Consider the three sentences:

Harry walked into the café with the invoice/fireplace/singer.

In the first case, we naturally assume that the invoice is in Harry’s posses-

sion. In the second case, the phrase “with the fireplace” is clearly a descrip-

tion of the café. But the third case is ambiguous; without more context,

there is no way to know whether the singer is Harry’s companion or a

feature performer at the café. These are called attachment ambiguities

because it is often not clear whether some “with” phrase should be con-

structionally attached to the verb (walked) or to the object (café).

There are even more striking cases. Please read the following sentence

aloud slowly, word by word:

The horse raced past the barn fell.

Sentences like these are called garden-path sentences because, in slow

reading, we often notice that we have followed an analysis path that turned

out to be wrong.

This famous example exploits an attachment ambiguity, and the fact

that English allows reduced relative constructions, omitting the relative

pronoun, which. You would have no problem with the unreduced sentence:

The horse, which raced past the barn, fell.

As you would guess, psycholinguists love this kind of example and have

done many studies of the garden-path phenomenon. As in the preceding

café example, garden-path sentences have differing degrees of difficulty.

Psycholinguists measure difficulty of understanding using the techniques
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we have discussed before—error rates, reaction times, attention, and

others. The difficulty of a garden-path sentence has been shown to depend

on several separate factors in addition to grammatical form. These include

the frequency of the individual words involved, the likelihood that they

occur in certain constructions, and the probability that they appear as

pairs.

Using several of the ideas from ECG and the neural theory of language,

Srinivas Narayanan and Dan Jurafsky (Narayanan et al. 1988) developed a

computer model that gives quite detailed predictions of how these various

factors interact in determining the difficulty of a garden-path situation.

The first step was to explicitly recognize that both form and meaning play

a major role in selecting the best construction match for some text, fol-

lowing the tenets of construction grammar. The second step was to use

numerical values to compute the relative goodness of alternative analyses,

in this case the reduced relative construction versus the standard one in

which the verb (e.g., raced) is the main verb of the sentence. Finally, to

build a testable model, they used Bayesian belief networks, described in

chapter 19.

Recall that belief networks are a computational approximation to the

quantitative neural activity postulated to support language understanding.

To approximate the relative strengths of various words and constructions,

Narayanan and Jurafsky used the relative frequency of their appearances in

corpora of English usage. Thus, they built a model that could give a numeri-

cal score on which construction was more likely in a given situation.

But why are people surprised in garden-path situations? The brain is a

massively parallel information processor and is able to retain multiple

active possibilities for interpreting a sentence, scene, and so on. Well, there

must be a cutoff after which some possible interpretations are deemed so

unlikely as to be not worth keeping active. The final piece of their model

was an assumption that a hypothesis was abandoned if its belief net score

was less than 20% of that of its rival. We experience surprise when the

analysis needed for a full sentence is one that was deactivated earlier as

unlikely. This is a complex computational model, but nothing simpler can

capture all the necessary interactions.

Consider another concrete example:

The witness examined by the lawyer turned out to be unreliable.
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Upon reading the word “examined,” several considerations make it most

likely that examined is the main verb. For one thing, this construction is

much more common than the reduced relative. Witness is a very common

subject for the verb examine and is a good example of an agent. So this

sentence might well lead some people to garden-path at the word by, and

the model predicts this. In contrast, the quite similar sentence,

The evidence examined by the lawyer turned out to be unreliable.

causes no such problem. This is because evidence is not a good agent or

subject of examine, and the model predicts this as well. Computational

models such as this are becoming increasingly important in studying

human language processing.

This is a sample of some of the ways in which an explicitly neural theory

of language can help us understand the relation between brain and mind

in language use. But what about language acquisition? Does the neural

theory provide any explanation of how children everywhere can learn their

native language or languages without formal instruction? The current

answer, outlined in the next chapter, relies on almost every topic discussed

in the book and should be viewed as the acid test for the ideas. If the theory

is good, and its exposition not too bad, you should come away from

chapter 25 with an aha experience.
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25 Learning Constructions

With the previous two chapters on the definition and use of embodied

construction grammar (ECG), we have completed the neural theory of 

language promised at the beginning of this book. I also suggested that 

such a development would form the basis for a theory of child language

learning. As we have seen, the question of how children learn language 

is at the center of much of the discussion about the nature of human 

language.

After the background laid out in the first seven chapters, most of the

material of chapters 8 through 17 was about how children learn individual

words and how this can be simulated using the embodied neural theory.

But the more difficult and controversial issues concern the child’s learning

of grammar. The battleground in the language wars of chapter 22 is largely

focused on the nature of grammar and how it is learned by children. I 

suggested in that discussion that an embodied neural approach to language

can provide novel and promising answers to some of the deepest questions

about grammar learning. This chapter is an attempt to provide these

answers.

A wealth of data on child language and grammar acquisition now exist

in a wide range of languages. Although the grammars of various languages

differ greatly, the general pattern of grammar learning is similar every-

where. As we discussed earlier, children pick up some general information

about the sound patterns of their native language even before birth. They

learn to respond to emotional and interpersonal cues quite early, with

some reactions being present at birth. By the first year, all normal children

have learned to respond to some words, whether spoken or signed. Chap-

ters 10 through 14 talked extensively about how children learn the

meaning of individual words as labeling their direct experience.



By the child’s second birthday, she will be responding to language com-

munication in sophisticated ways and will be producing some language.

The amount and level of production at age 2 varies widely; the girl Naomi

of figure 25.1 is fairly typical. The figure presents examples of language

spoken to Naomi by her parents and some of her responses around the age

of 1 year, 11 months, and 9 days (1;11.9). Like all children, Naomi first

spoke individual words. The next stage is normally two-word combina-

tions, like throw off, throw it, or the equivalent in languages with more

complex word structure. These combinations are not restricted to particu-

lar constructions of the adult grammar.

A fairly recent discovery by Michael Tomasello (Tomasello 1992) suggests

that the child first develops more complex constructions centered on 

individual heads (verbs in English). So Naomi will say “I throw it ice,” but

not the equivalent with other actions like eat or wear. It is only later 

that the child’s grammar will incorporate general rules for combining any

transitive verb with any suitable agent and object. In languages that use

morphology more than word order, children start with simple forms and

learn complex rules at roughly the same rate as English-speaking kids learn

their grammar.
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Transcript data, Naomi 1;11.9

Par:

Par:

Child:

Child:

Par:

Par:

Child:

Child:

Child:

Par:

Child:

they’re throwing this in here.

throwing the thing.

throwing in.

throwing.

throwing the frisbee. . . .

do you throw the frisbee?

do you throw it?

throw it. 

I throw it. . . .

throw frisbee.

she’s throwing the frisbee.

throwing ball.

Sample input prior to 1;11.9:

don’t throw the bear. 

don’t throw them on the ground.

Nomi don’t throw the books down.

what do you throw it into? 

Sample tokens prior to 1;11.9:

throw

throw off

I throw it.

I throw it ice. (= I throw the ice)  

Sachs corpus (CHILDES)

Figure 25.1
Sample data on early instances of “throw.”



Starting with these basic findings and the theory of language described

in this book, Nancy Chang built a model of how children learn their first

rules of grammar and then generalize these to more adultlike rules (Chang

2006). This is the most complex model I will discuss, and one of the more

ambitious cognitive models ever built. But it does provide an answer to

the central question of grammar—How are children able to learn their

native language with so little direct feedback?

As with the other computational models discussed here, Chang’s system

tests her theory of language learning by simulating the child’s behavior. If

the program performs like the child, there is reason to believe that the

underlying theory is at least plausible. If the theory has other independent

support from biology, psychology, and so on, it might be worth taking 

seriously. Let’s explore the theory and see how well its implementation

works. The test will be on a subset of the real data from child language

acquisition studies.

Figure 25.2 presents an overview of the language learning theory. The

top half of this figure is identical to the top of figure 23.1, which charac-

terizes language understanding. Chang’s theory postulates continual

“bootstrapping,” with the child using the constructions that she already

knows in trying to understand what is being said, always in context. Of

course, the child will often not fully understand the utterance, but Chang

observes that the child will often know quite a lot about the situation and

therefore what the utterance might be about.

Referring to the bottom of figure 25.2, we see a two-way link between

situational knowledge and the child’s partial interpretation of the 
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Figure 25.2
Overview of Chang’s grammar learning theory.



utterance. This was already the basis for the models of individual word

learning in chapters 12 and 14. In Regier’s model, the child was assumed

to be looking at a scene and to have the situational knowledge of the

objects and their spatial relations. In that model, the child learned to asso-

ciate a spatial relation term with a visual situation. This is a special case of

figure 25.2; the construction learned in Regier’s system is a lexical con-

struction, or word sense. In a language such as Finnish, in which some

spatial relations are marked as word endings, a morphological construction

would be learned for these situations.

Essentially the same story can be told relating figure 25.2 to Bailey’s

system for learning the meaning of verbs of hand action in different lan-

guages. Bailey modeled a child carrying out a hand action and having it

labeled by a parent. In that case, the situational knowledge is the child’s

(again subconscious) familiarity with the X-schema and parameters

involved in the particular action. The construction that is learned is again

lexical, but it will tend to be more complex because verbs have more elab-

orate parameters and argument structure.

Learning Complex Constructions

Now, our current concern is how a neural theory can explain the acquisi-

tion of more complex constructions such as those for the phrases and

clauses, that we know to be part of adult grammar. I will illustrate the basic

ideas using an extended example, based on the corpus of figure 25.1. Let’s

suppose that we are modeling the situation in which Naomi hears the sen-

tence, “You throw the ball.” We suppose that Naomi has learned lexical

constructions for the individual words throw and ball, but does not yet

have a construction for the phrase throw ball. Following chapter 23, her

known constructions might be represented in ECG as follows:

construction Throw

subcase of Verb

roles

thrower: Self

thrown: Small Object

evokes Hurl-X as h

form “throw”
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meaning

agent ↔ h.thrower

trajectory ↔ h.thrown

construction Ball

subcase of Small Object

form “ball”

meaning <my lovely red ball>

Of course, the ECG description is just our way of writing down what the

neural circuitry in Naomi’s brain might embody, but let’s examine it. The

ball construction is simple; Naomi believes that “ball” refers to her par-

ticular toy ball and knows it is a small object. The throw construction

involves two roles and a more complex meaning. We assume that she has

learned (ala chapter 14) that the sound “throw” is identified with a motor

routine (X-schema) that she can carry out, which we have written as 

Hurl-X. In the meaning part, we assume that she knows throwing is a kind

of action and how the general verb roles fit the specifics of throwing. So

the agent mentioned verbally is identified with (↔) the thrower in the

embodied Hurl-X schema.

So, the knowledge of the individual words tells Naomi quite a lot about

the utterance. In addition, she knows full well what is going on in the 

situation—she just threw the ball and the utterance is quite likely about

that, especially if some of the words fit perfectly. What she doesn’t know

yet is how English grammar marks which words fill the various roles, here

for the verb throw. Let’s assume for now that she believes that English uses

word order rather than special endings to label the agent and object of an

action like throw.

This is all portrayed graphically in figure 25.3. On the right side of the

figure is Naomi’s situational knowledge—her mother is talking to her and,

also, she herself has just thrown her favorite ball. She has no doubt about

what the thrower (herself) or thrown (the ball) of the action are in the sit-

uation. For Chang’s model, the situational knowledge is assumed to have

a form similar to that of the semantic specification produced by analysis.

If an utterance is completely understood, there should be a close corre-

spondence between the meaning of the sentence and the current situation,

for this direct kind of language.
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On the left side of the figure, Naomi knows the order in which the words

appeared, and we assume she views this as important for English grammar.

The crucial step, according to the theory, is when the child (subcon-

sciously) compares what she knows to be true with what she understands

to have been said. In Chang’s model, Bryant’s best-fit construction ana-

lyzer tries to analyze the input sentence using the currently known con-

structions. If it can’t find a complete analysis, it returns the partial analysis

that is the best semantic fit.

So, in this case, Naomi’s current grammar allows her to connect the

words throw and ball with the corresponding concepts, as shown with thin

arrows. The boxes in the middle of the figure depict the lexical construc-

tions presented just above. The figure also assumes that Naomi knows a

lexical construction that links “you” to herself. The right side of the figure

represents her knowledge of the situation. We are interested in how she

might postulate the throw-ball construction and its links, shown as thick

black arrows and border in figure 25.3.
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Figure 25.3
Matching form relations to meaning relations. The arrows labeled “before” denote

the order in which the child heard the words.



The crucial insight is that a grammatical construction is based on a 

correspondence between some form relation and a matching meaning 

relation—a relation of relations. In this case, Naomi knows the ball is the

thrown of the action (meaning relation) and also the word “throw” came

before the word “ball” (form relation). She might well guess (subcon-

sciously, of course) that the thing being thrown is specified in English by

coming after the word “throw.” According to the findings of Tomasello and

others, it would be rather later that this rule might be applied more gen-

erally. Before getting into broader questions of learning, let’s review what

we have in this particular case. In terms of our ECG notation, Naomi’s new

grammar rule might be written:

construction Throw-ball

constituents

action: Throw

trajector: Ball

form action < trajector

meaning

trajectory ↔ Throw.thrown

This is a grammatical construction with multiple constituents, and could

have been Naomi’s first such. It could be that all her previous construc-

tions were just one word or a fixed phrase. The significance of this is that,

in this construction, she would have learned that a particular form rela-

tion (action < trajector) specifies that the second word (which we call the

trajector) determines which object fills the thrown role of a throw action.

Only later does the child learn the generalization of this construction that

works for any transitive verb.

The process of learning an early grammar rule was a bit complicated to

describe, but it does not require any magic on the learner’s part. The fun-

damental operation is to map a relation in one domain (here, speech or

sign) to a relation in another domain, here embodied meaning. The child

can learn grammar rules because they mark relations that the child already

knows and cares about from experience. Grammar learning seems myste-

rious only if syntax is viewed as separate from meaning—how would kids

learn these arbitrary rules?

The key to understanding grammar acquisition is not the famous poverty

of the stimulus (chapter 22), but rather the opulence of the substrate. The child
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comes to language learning with a rich base of conceptual and embodied

experience as well as a supportive social environment. Words and rules

that describe this experience can be learned without formal training,

although not without years of focused effort on the child’s part. As the

child expands his or her scope and deals with abstract concepts and others

that are not directly experienced, language coevolves, always maintaining

the grounding in direct experience. It makes a simple, lovely story and

most likely captures much of the truth about language acquisition.

We have only introduced Nancy Chang’s theory and computer model of

grammar learning and have not yet discussed several important issues the

model addresses. The example we considered was as simple as possible, but

the same basic ideas carry over to learning more complex constructions,

such as the directed motion construction of chapter 24. Sometime after

Naomi learned the throw-ball construction, she might try to build a single

construction that captured all the relations in the scenario of figure 25.3.

This would produce a construction with three constituents: agent, action,

and trajector, with the form rule agent < action < trajector, and the related

meaning connections. There is no barrier in principle to the child learn-

ing arbitrarily complex constructions. We will shortly discuss the question

of why children seem to all learn pretty much the same constructions for

the local language.

The story so far on grammar learning has assumed that the child already

knows the meaning of all the individual content words when learning a

new construction. Children also use the grammar they already know in

learning about novel words. Some of this was discussed in connection with

figure 10.2, where information about the part of speech of an unknown

word can be inferred from its grammatical setting. And, of course, as 

children learn more language, they are directly told about words and 

concepts.

A concern about the theory might be that the only form relation used

in our examples was word order; what about languages that mark meaning

relations differently? It is true that the theory needs to be extended to

incorporate other kinds of form relation, but there appear to be only four

ways that languages mark these. In addition to word order, meaning rela-

tions are often marked by changes in form (morphology); an example is

the English possessive, as in “Naomi’s ball.” The English possessive can also
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be expressed using the third kind of form marking, a specific word, as in

“the ball of Naomi.” The fourth general kind of marking a semantic rela-

tion is through intonation. In English, this is used mainly for discourse

marking, as we have seen in earlier examples.

Construction grammar in general, and Chang’s theory of acquisition in

particular, explicitly includes the notion that constructions can have form

relations of any of the four basic types. Many constructions, including

English questions, have form markings of more than one basic type. For

example, the question

Did you throw the ball?

is marked by a function word “did,” a morphological change (threw →
throw), a word order change that puts did first, and a rising intonation at

the end of the question when spoken. There are a number of question con-

structions for English, involving varying combinations of form markings.

For language situations involving direct human interaction, constructions

can also include gestures that carry meaning as form conditions, as we dis-

cussed in the previous chapter.

The computer model based on Chang’s theory does not support full into-

nation marking because it is technically too difficult to do the required

analysis of the speech signal. The other three types of form marking

(words, word order, and morphology) are included to some degree. Imple-

mentation aside, the theory says that a child learning grammar needs to

attend to all four kinds of form cues and to postulate constructions using

them. Of course, languages tend to be systematic about the use of form

markings, and children are known to learn to exploit these regularities.

The entire discussion so far has focused on language understanding, but

the theory suggests that very similar operations underlie the child’s pro-

duction of language. We again assume that the child understands the situ-

ation and that his or her knowledge of it has the form of linked schemas,

which we write as a semantic specification, as on the right side of figure

25.3. When children want to express something, they (like adults) attempt

to find constructions that will map their intentions into language. Nor-

mally, they will do the best they can with the constructions they know,

but sometimes children will want to express more than this permits.

Chang’s theory proposes that a child will then guess a new way of linking

meaning and form—a possible new construction.

25. Learning Constructions 319



According to the theory, the constructions proposed for speaking look

exactly the same as those used in understanding. In this case, the child

proposes and tests new constructions in both production and compre-

hension. The reason that understanding is ahead of speaking is that the

child can (partially) understand complex sentences by matching con-

structions to only parts of the utterance.

Of course, some of the child’s early guesses at grammatical constructions

will turn out to be wrong and those that do match adult grammar will

need to be generalized. But these are the standard questions that arise in

learning anything from experience. Chang’s computer program makes use

of some current technical advances in computational learning theory, as

did the Regier and Bailey programs described in early chapters. No one

knows the neural details of how people’s brains do learn, but existing com-

putational and cognitive theory tells us a lot about how brainlike systems

could realistically learn language. I will briefly summarize some of the key

issues and how they are addressed in the model and the theory.

As I have stated several times, a key fact is that children receive very little

direct feedback on any language errors they might make. So how could

they learn to abandon a proposed construction that isn’t consistent with

the adult language? The computational solution in the model uses a 

standard technique, decay of unused knowledge. As we saw in chapter 24,

people always need to choose the set of constructions that best fits an input

utterance. Suppose the program (and people’s brains) kept track of which

constructions were used in the best match for the input each and every

time. In addition, imagine a learning rule that increases the potential value

of successful constructions and decreases probability of trying construc-

tions that had not proved useful. Then, any construction that did not

match the adult grammar would eventually wither away because there

would always be a better choice.

In general, an adaptive best-match system can learn without negative

evidence because good choices will continue to get better. Notice that such

a system can also adapt to the changes in grammar we encounter as adults.

When a new language fad becomes popular, we learn constructions for it

and they become active in our understanding and speaking for a time.

They then usually fade away from lack of use, like the child’s early guesses

at grammar.
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How Chang’s Program Generalizes

We also need to consider how a child goes from a very specific construc-

tion, like the throw-ball construction, to quite general ones like the

directed motion construction from chapter 24. Again, generalization from

instances to parameterized rules is required for any nontrivial learning by

people or machines, not just for grammar. In chapter 11, we saw that it

was essential for a child to learn superordinate concepts like tool or animal,

rather than try to deal only with knowledge about basic categories. The

required information processing operation is called lifting, and involves

taking a collection of relations of similar form and replacing the common

element with a parameter, which can stand for any of the particular

instances. So, after learning that cows, dogs, horses, and pigs, all move and

eat and make noises, a good learning system will postulate a category

(known to us as “animal”) and just remember what goes in the category

and what relations apply to anything in that category.

The theory (and all other theories) assumes that a similar generalization

process happens for grammatical categories. Even very early, children tend

to generalize a construction such as throw-ball to encompass other small

objects. They obviously do not have a name for the category “noun,” but

many adults don’t either. Moving from verb-specific constructions to more

general ones is more complicated and occurs later. The theory assumes that

this happens for the same two reasons as other generalizations: it allows

for a much more compact encoding of (grammatical) knowledge and yields

rules that can then apply to novel examples. There are many computa-

tional realizations of parameter lifting, and something like this must be

happening in people.

At this point, we have a story (and Nancy Chang has a model) for how

children might learn early constructions, extend them in both speech and

hearing, reject those that aren’t appropriate, and generalize those that do

fit adult language. But why do all children in a language community learn

essentially the same grammar? One possibility is that the input data are so

exhaustive and complete there is only one grammar that works. Most

workers in the field reject the idea that children receive such compelling

input data, and linguists also cannot agree among themselves what the

grammar of English or any other language should be. So there must 

be some mechanism that leads children to converge on very similar 

grammars.
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How the Program Chooses the Best Grammar for Sample Data

This brings us perilously close to the language wars of chapter 22. Even if

we agree that grammar is inherently embodied and individual construc-

tions are naturally learned, a question remains about which set of con-

structions becomes the grammar. According to Gold’s theorem, the child

will not be able to choose among all the potential construction grammars,

given only positive examples. Do we still need to postulate that construc-

tion grammar is innate so the child’s choice is limited in advance?

Chang’s theory and her model incorporate yet another bit of computa-

tional technology that solves the problem of choosing the best grammar.

Recall that people and programs both always need to choose the best set

of constructions for analyzing each sentence. This is done using weights

on the various constructions, indicating how useful each is likely to be.

Using the ideas of probability theory, one can treat these weights as prob-

abilities and formalize this best match process as follows:

@ Given a sentence S and a grammar G, the best analysis is the one that

maximizes the probability of sentence S being generated by grammar G.

So far, this is just a mathematical way of expressing what the model does

in choosing the best analysis. But there is an elegant computational trick

that can be applied to any such system for choosing a best analysis for

each example (sentence, picture, etc.). We can turn such a system inside

out and use it as a way of choosing the best grammar for analyzing a 

collection of data. Let’s see how this works.

Suppose we have a collection, C, of sentences that we know to be gram-

matical and two competing grammars, G1 and G2. We want to know

which grammar does a better job of analyzing the whole set C of exam-

ples. Using our rule @ above, we can get a probability score for any indi-

vidual sentence as analyzed by a particular grammar. Now we can compute

the probability of the whole collection C, assuming that G1 is the best

grammar, and then do the same assuming that G2 is the winner. If the

total probability of C is higher using G1, then it should be chosen—it does

a better job of explaining why the sentences in C are all grammatical. To

really make this work right, we need to penalize more complex grammars,

but that doesn’t change the basic idea.

Now we have a principled way for the program, and presumably for the

child, to select the best construction grammar for the data she or he
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remembers. There is also a way to update this choice of grammar as new

data are encountered. Technically, this procedure is one that overcomes

the limitations of Gold’s theorem by choosing the best grammar, rather

than the first one that fits the data. We discussed this kind of procedure in

chapter 22 as part of the background to the language wars. This completes

the catalog of technical concerns about the adequacy of Chang’s theory as

a plausible model for how children learn language.

Our story covered a wide range of considerations, but the basic ideas are

simple. Language, including grammar, inherently links form to meaning.

People, including children, are always trying to find the best fit between

what they observe and what they know. In learning language, children fit

linguistic input to the grammar they already know and to their knowledge

of the situation. They can tentatively add new constructions and test them

for usefulness. Straightforward ideas from learning theory explain how

such processes can lead to learning adult language under realistic assump-

tions. In the final two chapters I suggest some implications of these results

and touch on some fundamental questions that remain open.

25. Learning Constructions 323





26 Remaining Mysteries

We are now near the end of the story. Whether you worked through all

the details at the various levels or just skimmed for conclusions, it should

be clear that the neural basis of language is no mystery. Taken together,

advances in our understanding of many subjects provide a compelling

outline of the embodied nature of human language, although certainly not

all of the details. This might be a good point at which to conclude the

book. But two basic questions remain somewhat mysterious, one lesser and

one greater.

The Origins of Language

The lesser mystery concerns the origins of human language: How did we

come to develop a communication system so much richer than that of

other animals? This hotly debated topic is related to the “language gene”

controversy and is also popular in the media. Every few months, we get

another story about how some new finding has solved the mystery of lan-

guage origins. A recent example is the discovery that two unrelated lan-

guages from Africa and Australia use somewhat similar click sounds. This

was claimed to show that clicks were the key to language origins. Of course,

even if clicks were the first sounds, it tell us very little about the basic ques-

tions of how language got its start.

Language was spoken long before it was ever written down, so there is

no record of what languages might have been like tens of thousands of

years ago. We do know that all contemporary languages have essentially

the same level of complexity and expressiveness—there are no fossil lan-

guages to give us clues on their origins. We also now have a rich and

detailed literature on how languages can change rather rapidly. We can’t



work backward from current languages and preserved texts to some

common precursor; language change is much too fast and varied.

Some relevant information can be gathered from paleontology, particu-

larly from the shape of discovered skulls, jaws, and related skeletal remains.

Producing the full range of human language sounds apparently requires

some anatomical adaptations that are not present in early hominids and

certainly not in contemporary apes. But, at best, this kind of finding can

provide us only with some crude estimates of when human languages

might have started evolving, not how.

As you would expect, such a compelling question with no serious con-

straints on possible answers has given rise to no end of speculations on

how human language evolved. As early as 1866, the Linguistic Society of

Paris issued a general statement that the society would accept no more arti-

cles on the origins of language. All the new results in various related fields,

many discussed in this book, were bound to engender a new round of spec-

ulation about language origins. There is some commonality between the

language wars of chapter 22 and the various theories of language origins,

but the link is far from simple.

As usual, Noam Chomsky’s position is the touchstone for most of the

discussions within linguistics. His current stance is that there is a core 

linguistic competence that is unique to humans and disjoint from other

neural systems; this is completely consistent with the modularist stance

that we discussed in chapter 22. In a 2002 article in Science, written with

Hauser and Fitch, Chomsky makes the reasonable argument that no animal

rule systems approach the complexity of human grammar. The conclu-

sion is that human language (core grammar) is the result of a single large 

mutation.

Other modularists, notably Steven Pinker, argue that continuous evolu-

tion produced the innate, autonomous, formal grammar module. The very

detailed critique in Pinker and Jackendoff (2005) of Chomsky’s current

positions on the essence of grammar and the origin of language is com-

pletely consistent with the biological continuity stance of this book. But

neither side in this latest argument says much about how language came

to be the organizing force of human culture. Of course, if you believe that

language is just one manifestation of a bigger brain with superior learning

ability, there is nothing much to explain. Language got started somehow,

and, because it is so adaptive, people learned to be better and better at it.
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People also developed many other intellectual skills, some related to lan-

guage and some not.

Among the many other theories of the origins of language, Derek 

Bickerton produced the most complete and widely regarded (Bickerton

1981). He started by looking at Creoles, languages that develop ad hoc when

people without a common language are forced to communicate. He sug-

gested that all Creoles start from the same simple grammatical structure,

which might well be the prototype for the original human grammar. 

There are also claims that this same primitive grammar structure is uni-

versally found in small children and in great apes that are taught human

language.

The proposed proto-grammar lacks grammatical function words and

endings and relies only on word order to structure meaning. This is an

attractive hypothesis and could even be right, but the evidence for it is

lacking. English-speaking children do start like this, but children from 

cultures with morphologically complex languages such as Turkish and

Eskimo use grammatical markings very early. There is also good evidence

that bilingual children learn quite early to obey the different word orders

used in their two languages, such as French and German. And the results

from Michael Tomasello and his colleagues suggest that children’s early

grammar rules are not generalized at all, but are focused on individual 

constructions.

The evidence from the development of Creoles is also more complex

than originally thought. It is true that the first generation to be native

speakers of a Creole are much more fluent than their parents, and this is

additional strong evidence for the special nature of first-language learning.

But it does not seem to be the case that these children develop a totally

new grammar. The elements of the Creole grammar can be seen in the base

grammars of the languages from which it arises.

The most famous case of children building a language community con-

cerns Nicaraguan sign language. Before the 1980s there were no schools

for the deaf in Nicaragua and no common sign language. The first school

cohort (around 1978–83) struggled to find ways to communicate in a 

partially systematized way. It was the children of the second cohort, being

first-language learners, who developed and became fluent in a systematic

language. This is good evidence that people tend to produce system-

atic grammars, but people also favor systematic explanations of other 
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experience. The results on Creole languages do not provide insight into

the possible special character of grammar or on how it may have evolved.

So, the mystery of the origins of human language is not likely to be

solved any time soon. But it is not a profound mystery. Everyone agrees

that expressive language conveys very significant evolutionary advantages

on groups that can use it. Biological evolution moves too slowly to explain

the rise of language (and modern civilization) in just some thousands of

years, but cultural evolution is easily fast enough. In a general way, it must

be true that the genesis of language was neither a biological event nor 

individual learning, but a social phenomenon. The biological precursors,

whether specific to language or more general, were almost certainly evolv-

ing well before the rapid rise of language. The mathematics of this kind of

rapid change from a slowly evolving base is well understood as part of

dynamical systems theory.

Our neural theory of language suggests that simulation might well be a

cornerstone in the evolution of human language and thought. As we have

seen, converging evidence indicates that people understand language and

other behaviors at least in part by simulation (or imagination). This ability

to think about situations not bound to the here and now (displacement) is

also obviously necessary for evaluating alternatives, for planning, and for

understanding other minds. We have discussed this ability earlier, in terms

of mental spaces.

I believe there is a plausible story about how a discreet evolutionary

change could have given early hominids a simulation capability that

helped start the process leading to our current linguistic abilities. Mammals

in general exhibit at least two kinds of involuntary simulation behavior—

dreams and play. While a cat is dreaming, a center in the brainstem (the

locus coeruleus) blocks the motor nerves so that the cat’s dream thoughts

are not translated into action. If this brainstem center is destroyed, the

sleeping cat may walk around the room, lick itself, catch imaginary mice,

and otherwise appear to be acting out its dreams. There is a general belief

that dreaming is important for memory consolidation in people, and this

would also be valuable for other mammals. Similarly, it is obvious that play

behaviors in cats and other animals have significant adaptive value.

Given that mammals do exhibit involuntary displacement in dreams, 

it seems that only one evolutionary adaptation is needed to achieve our

ability to imagine situations of our choosing. Suppose that the mammalian
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involuntary simulation mechanisms were augmented by brain circuits 

that could explicitly control what was being imagined, as we routinely do.

This kind of overlaying a less flexible brain system with one that is more

amenable to control is the hallmark of brain evolution, and no one would

be surprised to find another instance of this mechanism. Now, hominids

who could do detached simulations could relive the past, plan for the

future, and be well on their way to simulating other minds. Understand-

ing other minds would then provide a substrate for richer communication

and all the benefits that accrue from the use of mental spaces.

One crucial component of mental space reasoning is the ability to map

ideas from one mental space to another. This is how we draw lessons from

the past or change our plans after thinking about their consequences.

People can predict what someone is likely to do based on what she says.

So, our general simulation facility must include the ability to maintain and

exploit relational mappings. We saw in chapter 25 that the learning of

grammar could be very nicely modeled as learning relational mappings

between regularities of linguistic form and the underlying meaning 

they convey, and some such mapping ability seems to be required 

under any theory of grammar. Even more speculatively, the combined

ability to imagine separate scenarios and to map them together is perhaps

one of the foundations of many human capabilities, including grammar.

This is close to the proposal of cognitive scientists Gilles Fauconnier and

Mark Turner in a recent book, The Way We Think (Fauconnier & Turner

2003).

Whatever combination of biological and cultural evolution gave rise to

early human language, it is no mystery that it developed rapidly and, in

all cultures, has a vast array of uses in human communication and thought.

We would love to know more about how language evolved, but it is

unlikely that any theory of language origins would change our basic ideas

of who we are and how the world works. The second unsolved mystery

concerning language is that fundamental.

The Nature of Subjective Experience

The remaining unresolved issue, the nature of personal experience, is the

most profound question about the mind and arguably the deepest issue in

all of science. Why do we experience everything in the way we do? This
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issue is so central to our thinking that there isn’t even agreement on how

to talk about it. Almost everyone believes their own personal experience

has a quality that goes beyond what this book, and science in general, can

describe. The pleasure of beauty, the pain of disappointment, and even the

feeling of being alive do not seem to us like they are reducible to neural

firings and chemical reactions. There is good reason to believe that higher

animals have some similar experiences.

We saw in chapter 16 that children learn quite early to use metaphors

based on physical sensation in talking about subjective experiences—hot

for angry, for example. But how do we talk about that extra part of ex-

perience we believe to be beyond current science? People use terms such

as personal experience, subjective experience, and phenomenology to label this

idea. Philosophers have coined a technical term, “qualia,” to refer to

exactly this currently unexplained residual, whatever it may be. When the

focus is on self-awareness, the term “consciousness” is often used. I find this

usage confusing and not helpful, because the same word is used to label

the waking state in general. There are quite good scientific theories of sleep,

attention, and so on that explain many things, but tell us nothing directly

about qualia.

The nature of subjective experience has engaged some of the most illus-

trious thinkers throughout history. In our time, the rise of new method-

ologies, like those described in this book, has led to a wide range of books

trying to “solve” the qualia problem by many of our leading scientists and

intellectuals.

My personal favorite among the recent books is Looking for Spinoza by

Antonio Damasio (2003). Damasio tries to relate the latest biological and

clinical findings to subjective experience with impressive results. As with

all current explanations, even if every detail in the book were exactly right,

it wouldn’t resolve the big question. We simply don’t yet have a way to

pose the question of subjective experience in a way that could yield a 

scientific answer.

A fundamental problem for any scientific approach to explaining 

subjective experience is the ineffability of qualia. Pretty much by the 

definition of the question, anything scientifically measurable can also be

explained without evoking subjective experience. This is a huge philo-

sophical issue that poses a central problem for a neural theory of language

like the one described in this book:
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If meaning is based on experience and we don’t fully understand

experience, how can we have a scientific theory of meaning?

The neural theory of language, along with much of contemporary 

cognitive science, is based on the physiological correlates of experience. We

absolutely do not understand the nature of subjective experience, but there

is overwhelming evidence that experience correlates with measurable brain

events. Distinctive patterns of neural activity are correlated with seeing,

speaking, emotions, dreaming, grasping, and increasingly detailed knowl-

edge about the circuitry and activity underlying various experiences is now

available. Until a conflict between the measurable and the subjective is

found, theories of mental function will continue to use measurable activ-

ity and responses as indicative of experience. This is not completely satis-

fying, but it is productive in its own right, and is one of the most promising

ways to address the deep problem of subjective experience.

The possibility still remains that scientists will be able to reformulate the

question of subjective experience in a way that does lead to answers that

are both scientifically and experientially satisfying. There seem to be three

possibilities for the eventual outcome of the search for a scientific expla-

nation of personal experience and currently no compelling evidence on

which is more likely:

(a) Personal experience is not describable by science—it’s just the way we

are.

(b) There is a scientific explanation, but humans can’t ever find it.

(c) The explanation will eventually be routine science.

As scientists, we have no choice but to pursue option c, but we should be

aware that possibilities a and b are just as likely. If option b seems pre-

cluded to you, imagine that gorillas were trying to understand the brain;

there is good reason to believe they simply don’t have the mental capac-

ity to grasp what we humans can. There is no inherent reason to believe

that our brains can understand everything that some more advanced

species could.

There are a number of other classical philosophical mysteries such as the

nature of causality, free will, and so on. Patricia Churchland does a great

job of examining them from a modern neuroscience perspective in her

book, Brain-Wise (2002). None of them bear as directly on the concerns of

this book as the qualia question.

26. Remaining Mysteries 331



It should not disturb us that some mystery remains in our theories of

the mind; science is only one way of understanding the world. For any-

thing that can be measured, even indirectly, science is the path to under-

standing. But for some (currently) immeasurable questions like what it

would be like to be someone else, other approaches—introspection, inter-

action with others, the arts, and arguably philosophical arguments—can

yield superior insights. It is profoundly unscientific to assume that our

current science is able to provide the best understanding of all of human

experience.
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27 All Together Now

Cognitive science can not yet address all the mysteries of the mind, but

an enormous amount has been achieved and the outlook for continuing

progress is excellent. By exploiting many discoveries and insights obtained

by various fields, I have been able to assemble a picture of language and

thought that must be right in its essentials. In this final chapter, I briefly

review the argument, discuss some applications of a neural theory of lan-

guage, and assess the prospects for the unified cognitive science that seems

necessary for further progress.

The first few chapters focused on three things: the richness of language,

the astonishing complexity of the human brain, and the idea of com-

putational models that help explain how language is realized in our brains.

We saw at the outset that language is such a flexible vehicle for com-

munication and thought because it maps new ideas to existing ideas and 

experience. It is essential to study language as an integral component of

our bodies and their functioning, not just as an abstract formal system.

One fundamental fact is that our brains, though incredibly intricate,

depend on many properties, including their underlying biochemistry,

shared with all animals. Language and thought are crucially shaped by the

kind of parallel, evidential, best-fit information processing that animal

brains all do. Even the simplest animals evolved to have rapid adaptive

responses to changing goals and environmental conditions. Neurons, the

information-processing foundation of our minds, develop, compute, and

modify their behavior much like those of primitive animals. This has

enabled neuroscientists to learn an enormous amount of details of neural

functioning, particularly for behaviors that we share with other mammals.

A major barrier to any neural theory of language is the conceptual gap

between the components of language (grammar, metaphor, etc.) and the



concepts and terminology of neuroscience, such as synapses and trans-

mitters. Only recently has cognitive science developed computational the-

ories and techniques that support the construction and testing of adequate

models—ones that demonstrate the required behavior while remaining

consistent with all anatomical and experimental findings.

Our language and conceptual systems are obviously acquired, and the

adaptive processes of neural development largely determine how that

comes about. Scientists now know a great deal about the intricate inter-

play between genetic and environmental factors at all stages of develop-

ment. Learning language might well involve some specific genetic

precursors, but it has the same basic interactive character as other learn-

ing by mammals.

With our basic understanding of language, the brain, and neural com-

putation, we were able to look at detailed theories and models of how chil-

dren learn their native language or languages. Everything depends on the

intimate connection between form and meaning: children learn to associ-

ate sounds and gestures with their own experience. They bring a rich

understanding of their physical and social environment to the language

learning task, the opulence of the substrate.

Even so, it requires major effort to convert general insights about embod-

ied language into an adequate model of how children’s brains adapt to

learn language. Our first detailed example, Terry Regier’s model of acquir-

ing spatial relation terms, involved an approximation of the human visual

system, the idea of image schemas from cognitive linguistics, and a

program incorporating innovations in the computational theory of neural

learning. It did well at learning spatial words and concepts from widely

varying languages, but had a number of limitations that were addressed in

follow-up efforts.

To study the acquisition of verbs, we had to introduce a novel compu-

tational mechanism, X-schemas, which represented actions in a way 

that supports recognition, execution, or reasoning. Independently, the 

discovery of neural mirror circuitry in monkeys and humans suggests 

such a multimodal representation. With the X-schema representation,

David Bailey was able to build a computational model of how children

learn words describing motions of their own hands, again cross-

linguistically. There appears to be no barrier to using similar ideas to

develop detailed models of how children learn words and concepts that
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directly describe other aspects of their experiences, including social and

emotional ones.

As the cognitive linguists have known for decades, people develop

abstract and theoretical thought and language from the base of our embod-

ied concepts and experiences—how else? There is a well-developed theory

of metaphor that can be exploited to model how we understand abstract

and figurative language, which is ubiquitous in all discourse, including

news stories. The next section of the book explained Srinivas Narayanan’s

computational model that understands news stories about international

economics, relying heavily on metaphor. The program required two addi-

tional technical developments, both of which are important for an appre-

ciation of embodied language.

One requirement for understanding language is a proper treatment of

the detailed shape of events and actions—what linguists call “aspect.”

Narayanan’s program captures the difference between “is slipping” and

“slipped,” using the same X-schema mechanism that was postulated as 

the semantic basis of actions. Any adequate model must also reflect the

fact that the world, and our reasoning about it, is uncertain. A modest

extension of current computer science ideas on belief networks provides 

a reasonable model of the quantitative best-fit operations of neural

systems.

The final section of this book focuses on grammar—the way individual

words, phrases, and gestures combine to yield the marvelous expressive-

ness of human language. The hypothesis that grammar is innate contin-

ues to attract wide media attention. Certainly people have mental abilities,

including language, that go beyond those of other animals, but there is no

scientific support for the notion that language (or even some core

grammar) is an abstract symbolic system unlike any other human capac-

ity. The grammars of languages inherently relate linguistic form to

meaning—what else could they do? It is possible to write down constraints

on what is an allowable sentence in English, but these constraints are not

absolute and could not function in isolation from the rest of language pro-

cessing. It is equally clear that there is some genetic basis for the univer-

sal drive in children to learn their native language or languages. Language

is not just the product of a universal learning machine.

The central idea of embodied language fits best with one particular class

of grammar theories, called construction grammar, which posits that every
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element of language pairs form with meaning. If we assume that the

meaning component is directly or metaphorically linked to direct experi-

ence, we get embodied construction grammar (ECG). I discussed some early

results that suggest ECG can help solve problems in linguistics that seem

otherwise intractable.

Most important, ECG is a form of grammar that is manifestly learnable

by children in the course of their daily activities. Nancy Chang has built

a complex computer program that models how this comes about. As with

the early models of word learning, the key is the pairing of linguistic form

with embodied meaning. After an English-speaking child has grasped the

meaning of “push,” she or he still needs to learn the difference between

“I pushed Josh” and “Josh pushed me.” Chang’s model suggests that this

comes about by the child noticing the correlation between a real-world

relation in the current environment and a linguistic relation in parental

speech. The fact that this program seems to learn much the way that chil-

dren do is evidence that we are approaching an adequate neurally based

theory of embodied language.

Any embodied theory of language rests on two fundamental principles

and a related scientific stance:

Thought is structured neural activity.

Language is inseparable from thought and experience.

The study of language should be explicitly based on these principles.

The purpose of this book is to show how these insights can be combined to

produce neural theories of language that are both scientifically adequate

and highly productive. That is, we can build theories of language that 

are consistent with all experimental findings from relevant disciplines 

and that provide computationally plausible bridges between the various

levels. Within these general constraints many open questions remain as to

exactly how language works at the behavioral, computational, and biolo-

gical levels. Importantly, these scientific questions can be posed with pre-

cision, separately or in combination, using an integrated neural theory of

language.

Every human language is rich and changing. There are principles that

appear to underlie all human languages and provide important cues on the

nature of human thought. Even if everything in this book were exactly
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right, it wouldn’t make linguistics simple any more than physics makes

chemistry simple.

In fact, my (outsider’s) vision for a future linguistics is modeled on

organic chemistry. Like chemistry, the science of language involves the

study of complex and elaborate structures and how they interact, develop,

and change. With a sound scientific basis and some fundamental agree-

ment on terminology, the field could become much more cumulative and

productive. The study of language could occupy a central role in the

unified cognitive science, which we all know is needed.

Even in its current nascent state, the embodied neural theory of language

has applications in many domains. We have talked about major improve-

ments in computer systems that communicate in language and will return

to that. But several important applications of the idea of embodied language

precede any detailed neural analyses or computer implementations.

Some Applications of a Neural Theory of Language

Many of the key ideas in this book were originally developed as part of

cognitive linguistics. Long before there was an explicitly neural model for

their ideas, cognitive linguists were making fundamental contributions to

the cognitive sciences in general and linguistics in particular, some of

which have been reviewed in earlier chapters. Because it explicitly links

language to other mental activities, cognitive linguistics has given rise to

lively interdisciplinary fields in areas such as literary criticism.

In addition, some cognitive linguists have made special efforts to show

the important impact their results can have on fields as disparate as law,

poetry, politics, and mathematics. The best known popularization of

embodied language is the book Metaphors We Live By, by George Lakoff and

Mark Johnson. Originally printed in 1977, it was republished in 2003 and

is still in active use. It is an informal presentation of how metaphors, such

as the ones discussed here, pervade ordinary language.

George Lakoff has written several additional books suggesting how

embodied metaphorical language plays a central role in politics, poetry

(with Mark Turner), and mathematics (with Rafael Nunez). Mathematics is

often seen as a purely abstract discipline, but we now know that people

use their same mental apparatus for all thinking. Much of higher 
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mathematics is based on finding mappings, like metaphors, from a more

complex domain to one that is understood. The importance of the 

cognitive basis of political metaphors and framing is now widely accepted

by politicians as well as scientists and one can hope that it will also become

public knowledge.

More recently, Mark Turner and Gilles Fauconnier (2002) have made a

bold attempt to explain much of mental life in terms of the cognitive lin-

guistic notion of conceptual integration (or blending) we discussed in

chapter 24. Even more ambitious efforts have been made to use the ideas

of embodiment and neural computation to address core questions of our

existence.

We should expect a neural theory of thought and language to be used

to confront the eternal questions of philosophy. The previous chapter dis-

cussed the most relevant one—the nature of subjective experience. In 

addition, two complementary books, between them, recently provide 

an embodied view of all the traditional philosophical issues. Patricia

Churchland’s Brain-Wise (2002) uses contemporary neuroscience as a base

and shows how this provides partial answers to many of the standard deep

questions such as free will and the existence of God. She does not get as

far as language and thought, but Lakoff and Johnson’s book Philosophy in

the Flesh (1999) historically reexamines mainstream Western philosophy

from the perspective of cognitive science. We have traditionally been

taught to view philosophical reasoning as quite distinct from ordinary

thought. But even the greatest philosophers used ordinary (embodied) lan-

guage tools for developing and presenting their ideas. Using our current

understanding of cognition and metaphor, Lakoff and Johnson provide

new insights into past philosophical positions and discussions.

So, the embodied neural view of language can provide a systematic

approach to answering many traditional questions about language and

may also offer insights into how language shapes thought. It allows the

findings of cognitive linguistics to be merged with the profound develop-

ments in cognitive neuroscience that are changing the way we understand

and treat the brain. A powerful computational theory of language should

lead to much better programs for human-computer interaction, and 

we saw examples of this in chapter 20. This leads us to consider what 

the ultimate limit might be on natural language communication with 

computers.
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Will We Talk with Our Robots?

Given the impasse on the basic issue of subjective experience, we can still

try to answer two related questions that come up in this context: Will there

ever be robots that have the same subjective experiences as people? And,

more practically, will there be artificial systems that can communicate fully

in natural language with people?

Two basic lines of reasoning are used to support the notion that com-

puters or robots might eventually fully achieve human language and expe-

rience. The more common, and less interesting, argument is based on ever

more detailed simulation. To take this to the extreme, suppose a computer

system simulated every molecule of your brain and predicted your every

measurable behavior and physiological response. Would you accept this as

capturing the essence of your experience? When we ask this question in

class, almost half the students say, “yes, the simulation would get it all.” I

haven’t been able to determine why they say this; for me, there would still

be a huge gap. The philosopher John Searle loves to point out that no 

simulation of water, however detailed, is actually wet. If you are thirsty,

simulated water will not help.

But it doesn’t much matter whether this idealized simulation would

work, because there are plain and fancy reasons why such a computation

is impossible. There is no way to get the information on the current state

of your brain and the amount of computation involved is not possible with

any envisioned computer. We can’t even simulate well enough to do

weather forecasting. Since the biochemistry of drugs, hormones and neu-

rotransmitters play a central role in human information processing, it is

unlikely that a coarser simulation will automatically capture human per-

sonal experience.

The other way by which computers might have experience like those of

humans is less direct and requires a longer story. As I have stated too 

often, much of human thought and language concerns the human body,

its experience, and its interactions with the world. So we assume our aspir-

ing fluent computer will need interior and exterior senses and an ability

to interact with the world, that is, that it is a robot. We could (even now)

endow a robot with programs that can interpret internal sense readings

(low battery, wheel slippage, etc.) as being good or bad for the robot along

various dimensions. Such a robot could come to correlate wet pavements
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with slippery wheels and legitimately issue the statement, “I hate to go out

when it’s wet.” This would be a statement about the robot’s personal expe-

rience and might well not be meaningful to a robot with a rather differ-

ent design.

A robot with a (programmed) sense of itself, goals, desires, and so on

would certainly be better able to operate autonomously in the world. But

we have no reason to believe it would share human subjective experience.

There is a fierce ongoing debate about whether any animals have full

humanlike subjective experience, but there is no scientific basis for either

side, and we will not worry further about this issue. However, an answer

to the following question is central to our goals:

If the meaning of language is based in bodily experience and if computers

cannot share our subjective experience, will we ever be able to communicate

naturally with computers?

The answer is—partially. We all acknowledge that there are strong 

limitations on the extent to which we can convey understanding across

barriers such as gender, age, race, culture, and many others. There are

understandings that we share with our colleagues and not with our family

and vice versa. If we built an expert computer system that cared how often

and successfully it performed, it could well turn out that this system and

an expert person could share deeper understanding (and beliefs and

desires) within this domain than the person would with most other people.

Professional programmers currently come to react that way to their code—

a complicated program is treated as a living entity with its own mind. 

An analogous situation would be a champion horse and rider team, who

share understanding and communicate in a way not available to anyone

else.

Nevertheless, there is a basic sense in which understanding does involve

our shared human experience. And human experience is based in the

human body and brain and biochemistry. It seems quite possible (to me,

almost certain) that robots that are physically very different from people

will, in general, have experience quite different from ours. This does not

depend only on particularly animal subjectivity; two robots with radically

different sensors and mechanisms would find it hard to communicate

about many things.

340 IX. Embodied Language



If understanding depends on shared experience, then this is critically

important if one also accepts (as this book obviously does) the bodily

grounding of semantics of language. The strong form of the bodily ground-

ing hypothesis is that much of our abstract and theoretical language is

interpreted by mappings to this experiential core. To the extent that this

is true, robots will find it very hard to communicate with people. People

routinely invent new language usage and are usually understood without

elaboration. Meaning based on embodied experience provides an expla-

nation. Conceptual extensions that occur automatically in humans would

be a mystery to robots with radically different bodies.

The practical take-home lesson for me is the following: A presumption

of shared experience is the basis for communication. If we want computer

systems to understand or learn natural language well enough to meet AI

goals, we need to explicitly account for the human experience that under-

lies much of language and thought. We could try to do this by building

robots and pushing their experience to be as much as possible like ours.

We could endow the robots with human image schemas, but they would

not connect to the same embodied experiences. While interesting and fun,

building robots is not likely to be a realizable solution to human-machine

communication.

The alternative is to explicitly view the problem as one of communicat-

ing among alien species. Our programs should try to incorporate as much

knowledge of humans as needed for the tasks involved. The common way

of attempting this is to include lots of rules about human knowledge and

experience. The story of embodied cognition in this book suggests that this

will never be adequate and we must work on simulations of human under-

standing. For example, one should not try to list all the conditions that

might cause dizziness, but rather include a vestibular model that is good

enough for prediction. Neural computation methods appear to be required

because they make it possible to capture the evidential, situational, multi-

faceted character of human thought and to propose explicit mappings to

brain structures. Even so, there are some aspects of human experience that

we are unlikely to ever be able to convey to machines. This suggests great

caution in using automated systems for teaching certain subjects, for

therapy, or for making judgments about people.
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Unified Cognitive Science

There are already a large number of intellectual and practical applications

of the embodied neural approach to language and thought. Surely addi-

tional applications will arise as our field advances, but how should we

proceed? I suggest that progress on understanding language, thought, and

other aspects of our minds depends on a unified cognitive science. Every

chapter in this book depends on insights that cross traditional subdis-

ciplinary lines, and the enterprise would be inconceivable within any one

field.

There might seem to already be a unified cognitive science; after all, there

is a society that meets annually and publishes a journal. But the cognitive

linguists have distinct meetings as do cognitive neuroscientists, neural

computationists, and others. And the core of each subdiscipline tends to

ignore relevant results expressed in different paradigms. Linguists, even

cognitive linguists, pay little attention to behavioral or neural findings on

language; there are also psycholinguists and language development spe-

cialists who have their own cultures. The journal Brain and Language is

mainly about clinical studies, and a number of journals now focus on

brain-imaging experiments and little else. The ever increasing complexity

of each subdiscipline makes it harder and harder for people to keep up

with work that is not directly relevant to their own. In self-defense, sci-

entists develop a sophisticated technique of one-line dismissal—What is a

simple reason I can ignore this result?

This push toward greater specialization does not arise from some failing

of the scientists involved. Developing and maintaining expertise in a par-

ticular area of biology, linguistics, computer science, or other field is more

challenging than ever, and no one fully grasps the insights of more than

a few subareas. The criteria for sound experimental and theoretical work

differ widely and must be maintained within a discipline. In my own

attempts at synthesis, it was not hard to read the various literatures—the

question was what to believe. But this necessary disciplinary rigor does

skew all the reward structures toward inward-looking specialization.

The theory of neural computation, which I have argued is necessary for

any bridge between brain and language, has evolved in a number of ways

that abdicate this unifying role. Like other disciplines, the field is largely

focused on internal technical concerns. There are good unified efforts at
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lower levels of neural organization, and computational models are routine

in neuroscience. But the models of higher level behavior are almost all

explicitly suggestive, with no claim that they could even in principle

describe the actual neural circuits and their information processing. This

seems to fit a general pattern in which the various subdisciplines prefer

articulating theories that provide no external constraints on their internal

theorizing.

I have no ready solution to achieving the unified cognitive science

needed. To be fair, there has been an outstanding tradition of multidis-

ciplinary work for decades in some subdomains, particularly in vision and

motor control. But this has been achieved by largely ignoring the more

cognitive aspects of these behaviors. Much of the mechanism needed to

understand a story is also required to follow a film of that story, but 

there is currently virtually no modeling work on embodied image 

understanding.

One might hope that degree programs at various levels in cognitive

science will yield a new generation of more broadly based scientists. This

might happen, but many degree programs, including ours at Berkeley,

consist mainly of standard classes in traditional disciplines with no explicit

unification. Another hope is our greatly increased ability to collaborate

through the Internet. This is already leading to online journals and other

new means of scientific communication. There are, of course, a large

number of news and discussion groups concerned with understanding the

brain and mind, but the discourse is highly uneven.

Perhaps the best way to build a unified cognitive science is through

intensive and extended workshops. When the current ideas on neural com-

putation were being developed in the 1980s, there were many multidisci-

plinary workshops and meetings. Not all of these were successful, but some

were among my most exciting scientific experiences and demonstrably led

to many of the advances discussed here. Workshops of various kinds con-

tinue to be held, but apparently not with the same intensity.

What I believe is likely to be most effective is multidisciplinary post-

doctoral collaboration. Many postdoctoral programs already exist at indi-

vidual labs, as well as sabbatical year collaborative groups for more senior

scientists at institutes such as the Center for Advanced Study in the Behav-

ioral Sciences. What we don’t have is a mechanism for bringing together

six to ten recent doctoral graduates across the cognitive sciences for a year
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of cooperative effort on a topic of shared interest. In my experience, many

breakthrough ideas have come from people at about this stage unifying

alternative perspectives. Whether through this mechanism or another one,

scientists who are driven to really understand how it all works will per-

force build a unified science of the mind.

Science has been making amazing progress at revealing how things,

including us people, actually work. Many philosophical issues and mys-

teries of previous eras have become technical subjects of study and appli-

cation. I hope that you now agree the nature of human language is one of

the questions that has made this transition from mystery to scientific dis-

cipline. As the unified cognitive science extends our understanding of lan-

guage and thought, there are unprecedented opportunities for developing

intelligent computer systems and for deeper insights into the intelligent

systems that we all are.
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