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SERIES PREFACE

In the Essentials of Behavioral Science series, our goal is to provide readers with
books that will deliver key practical information in an efficient, accessible style.
The series features books on a variety of topics, such as statistics, psychologi-

cal testing, and research design and methodology, to name just a few. For the ex-
perienced professional, books in the series offer a concise yet thorough review of
a specific area of expertise, including numerous tips for best practices. Students
can turn to series books for a clear and concise overview of the important topics
in which they must become proficient to practice skillfully, efficiently, and ethically
in their chosen fields.

Wherever feasible, visual cues highlighting key points are utilized alongside sys-
tematic, step-by-step guidelines. Chapters are focused and succinct. Topics are or-
ganized for an easy understanding of the essential material related to a particular
topic. Theory and research are continually woven into the fabric of each book, but
always to enhance the practical application of the material, rather than to sidetrack
or overwhelm readers. With this series, we aim to challenge and assist readers in
the behavioral sciences to aspire to the highest level of competency by arming
them with the tools they need for knowledgeable, informed practice.

Essentials of Statistics for the Social and Behavioral Sciences concentrates on drawing
connections among seemingly disparate statistical procedures and providing intu-
itive explanations for how the basic formulas work. The authors weave statistical
concepts together and thus make the different procedures seem less arbitrary and
isolated. The statistical procedures covered here are those considered essential to
researchers in the field. Only univariate statistics are presented; topics in multi-
variate statistics (including multiple regression) deserve a separate volume of their
own. Further, this book assumes that the reader has a working knowledge of ba-
sic statistics or has ready access to an introductory text. Therefore, this book will
not bog down the reader down with computational details. Thus, this book should
be ideal as a supplementary text for students struggling to understand the mater-
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ial in an advanced (or sophisticated) undergraduate statistics course, or an inter-
mediate course at the master’s level. Essentials of Statistics is also ideal for researchers
in the social and behavioral sciences who have forgotten some of their statistical
training and need to brush up on statistics in order to evaluate data, converse
knowledgeably with a statistical consultant, or prepare for licensing exams.

Chapter 1 covers the most often used methods of descriptive statistics, and the
next four chapters cover the basics of null hypothesis testing and interval estima-
tion for the one-, two-, and multigroup cases, as well as the case of two continu-
ous variables. Chapter 6 is devoted to the increasingly essential topics of power
analysis and effect size estimation for the cases covered in Chapters 2 through 5.
Chapters 7 and 8 deal with the complex forms of analysis of variance common in
experimental social science research. As appropriate, these chapters include ma-
terial relevant to the larger topic of research design. Finally, Chapter 9 includes
some of the most popular methods in nonparametric statistics. Regrettably, many
useful topics had to be omitted for lack of space, but the references and annotated
bibliography point the reader toward more comprehensive and more advanced
texts to fill any gaps. Indeed, we hope that this book will help the reader under-
stand those more advanced sources. Additional material to help readers of this
book understand the statistical topics covered in this book, as well as some related
and more advanced topics, are posted on the web and can be accessed by follow-
ing links from www.psych.nyu.edu/people/faculty/cohen/statstext.html.

Alan S. Kaufman, PhD, and Nadeen L. Kaufman, EdD, Founding Editors

Yale University School of Medicine
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Social and behavioral scientists need statistics more than most other scien-
tists, especially the kind of statistics included in this book. For the sake of
contrast, consider the subject matter of physics. The nice thing about pro-

tons and electrons, for instance, is that all protons have the same mass; electrons
are a lot lighter, but they also are all identical to each other in mass. This is not to
imply that physics is easier than any of the social or behavioral sciences, but the
fact that animals and especially humans vary so much from each other along
every conceivable dimension creates a particular need to summarize all this vari-
ability in order to make sense of it.

The purpose of descriptive statistics is to use just a few numbers to capture the
meaning of a much larger collection of observations on many different cases. These
cases could be people, animals, or even cities or colleges; or the same cases on many
different occasions; or some combination of the two. Often, computing descrip-
tive statistics is just your first step in a process that uses more advanced statistical
methods to make estimates about cases that you will never have the opportunity to
measure directly. This chapter will cover only descriptive statistics. The remaining
chapters will be devoted to more advanced methods called inferential statistics.

SAMPLES AND POPULATIONS

Sometimes you have all of the observations in which you are interested, but this
is rare. For instance, a school psychologist may have scores on some standardized
test for every sixth grader in Springfield County and her only concern is studying
and comparing students within the County. These test scores would be thought
of as her population. More often, you have just a subset of the observations in
which you are interested. For instance, a market researcher randomly selects and
calls 100 people in Springfield County and asks all of them about their use of the
Internet. The 100 observations obtained (Springfield residents are very coopera-
tive) do not include all of the individuals in which the researcher is interested. The

One
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100 observations would be thought
of as a sample of a larger population.

If as a researcher you are inter-
ested in the Internet habits of people
in Springfield County, your popula-
tion consists of all the people in that
county. If you are really interested in
the Internet habits of people in the
United States, then that is your popu-
lation. In the latter case your sample
may not be a good representation of
the population. But for the purposes
of descriptive statistics, populations
and samples are dealt with in similar
ways. The distinction between sample

and population will become important
in the next chapter, when we intro-

duce the topic of inferential statistics. For now, we will treat any collection of num-
bers that you have as a population.

The most obvious descriptive statistic is one that summarizes all of the obser-
vations with a single number—one that is the most typical or that best locates the
middle of all the numbers. Such a statistic is called a measure of central tendency. The
best-known measure of central tendency is the arithmetic mean: the statistic you
get if you add up all the scores in your sample (or population) and divide by the
number of different scores you added. When people use the term mean you can
be quite sure that they are referring to the arithmetic mean. There are other sta-
tistics that are called means; these include the geometric and the harmonic mean
(the latter will be discussed in Chapter 5). However, whenever we use the term
mean by itself we will be referring to the arithmetic mean. Although the mean is
calculated the same way for a sample as a population, it is symbolized as X� (pro-
nounced “X bar”) or M when it describes a sample, and � (the lowercase Greek
letter mu; pronounced “myoo”) when it describes a population. In general, num-
bers that summarize the scores in a sample are called statistics (e.g., X� is a statis-
tic), whereas numbers that summarize an entire population are called parameters
(e.g., � is a parameter).

SCALES OF MEASUREMENT

When we calculate the mean for a set of numbers we are assuming that these num-
bers represent a precise scale of measurement. For instance, the average of 61
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DON’T FORGET

When Will I Use the Statistics
in This Chapter?

You have measured the same variable
many times, perhaps on many differ-
ent people, or many different rats, or
many different cities (e.g., the total
budget for each city), and so on, and
now you want to summarize all of
those numbers in a compact and de-
scriptive way. If you want to extrapo-
late from those numbers to cases you
have not measured yet, you will need
the tools that we will begin to de-
scribe in Chapter 2.



inches and 63 inches is 62 inches, and we know that 62 is exactly in the middle of
61 and 63 because an inch is always the same size (the inch that’s between 61 and
62 is precisely the same size as the inch between 62 and 63). In this case we can say
that our measurement scale has the interval property. This property is necessary to
justify and give meaning to calculating means and many other statistics on the
measurements that we have. However, in the social sciences we often use num-
bers to measure a variable in a way that is not as precise as measuring in inches.
For instance, a researcher may ask a student to express his or her agreement with
some political statement (e.g., I think U.S. senators should be limited to two 6-year
terms) on a scale that consists of the following choices: 1 � strongly disagree; 2
� somewhat disagree; 3 � neutral; 4 � somewhat agree; 5 � strongly agree. [This
kind of scale is called a Likert scale, after its inventor, Rensis Likert (1932).]

Ordinal Scales

You might say that a person who strongly agrees and one who is neutral, when av-
eraged together, are equivalent to someone who somewhat agrees, because the
mean of 1 and 3 is 2. But this assumes that “somewhat agree” is just as close to
“strongly agree” as it is to neutral—that is, that the intervals on the scale are all
equal. All we can really be sure of in this case is the order of the responses—that
as the responses progress from 1 to 5 there is more agreement with the statement.
A scale like the one described is therefore classified as an ordinal scale. The more
points such a scale has (e.g., a 1 to 10 rating scale for attractiveness), the more
likely social scientists are to treat the scale as though it were not just an ordinal
scale, but an interval scale, and therefore calculate statistics such as the mean on
the numbers that are reported by participants in the study. In fact, it is even com-
mon to treat the numbers from a 5-point Likert scale in that way, even though sta-
tisticians argue against it. This is one of many areas in which you will see that com-
mon practice among social scientists does not agree with the recommendations
of many statisticians (and measurement experts) as reported in textbooks and
journal articles.

Another way that an ordinal scale arises is through ranking. A researcher ob-
serving 12 children in a playground might order them in terms of aggressiveness,
so that the most aggressive child receives a rank of 1 and the least aggressive gets
a 12. One cannot say that the children ranked 1 and 2 differ by the same amount
as the children ranked 11 and 12; all you know is that the child ranked 5, for in-
stance, has been judged more aggressive than the one ranked 6. Sometimes mea-
surements that come from an interval scale (e.g., time in seconds to solve a
puzzle) are converted to ranks, because of extreme scores and other problems
(e.g., most participants solve the puzzle in about 10 seconds, but a few take sev-
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eral minutes). There is a whole set of procedures for dealing with ranked data,
some of which are described in Chapter 9. Some statisticians would argue that
these rank-order statistics should be applied to Likert-scale data, but this is rarely
done for reasons that will be clearer after reading that chapter.

Nominal Scales

Some of the distinctions that social scientists need to make are just qualitative—
they do not have a quantitative aspect, so the categories that are used to distinguish
people have no order, let alone equal intervals. For instance, psychiatrists diagnose
people with symptoms of mental illness and assign them to a category. The col-
lection of all these categories can be thought of as a categorical or nominal scale (the
latter name indicates that the categories have names rather than numbers) for
mental illness. Even when the categories are given numbers (e.g., the Diagnostic and

Statistical Manual of Mental Disorders used by psychologists and psychiatrists has a
number for each diagnosis), these numbers are not meant to be used mathemat-
ically (e.g., it doesn’t make sense to add the numbers together) and do not even
imply any ordering of the categories (e.g., according to the Diagnostic and Statistical

Manual of Mental Disorders, fourth edition [DSM-IV ], Obsessive-Compulsive Dis-
order is 300.3, and Depressive Disorder is 311; but the diagnostic category for
someone suffering from Obsessive-Compulsive Disorder and Depressive Disor-
der is not 611.3, nor is it 305.65, the sum and mean of the categories, respectively).

Although you cannot calculate statistics such as the mean when dealing with
categorical data, you can compare frequencies and percentages in a useful way.
For instance, the percentages of patients that fall into each DSM-IV diagnosis can
be compared from one country to another to see if symptoms are interpreted dif-
ferently in different cultures, or perhaps to see if people in some countries are
more susceptible to some forms of mental illness than the people of other coun-
tries. Statistical methods for dealing with data from both categorical and ordinal
scales will be described in Chapter 9.

Ratio Scales

The three scales of measurement described so far are the nominal (categories that
have no quantitative order), the ordinal (the values of the scale have an order, but
the intervals may not be equal), and the interval scale (a change of one unit on the
scale represents the same amount of change anywhere along the scale). One scale
we have not yet mentioned is the ratio scale. This is an interval scale that has a true
zero point (i.e., zero on the scale represents a total absence of the variable being
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measured). For instance, neither the Celsius nor Fahrenheit scales for measuring
temperature qualify as ratio scales, because both have arbitrary zero points. The
Kelvin temperature scale is a ratio scale because on that scale zero is absolute
zero, the point at which all molecular motion, and therefore all heat, ceases. The
statistical methods described in this book do not distinguish between the interval
and ratio scales, so it is common to drop the distinction and refer to interval/ra-
tio data. A summary of the different measurement scales is given in Rapid Refer-
ence 1.1.

DISPLAYING YOUR DATA

When describing data there are many options for interval/ratio data, such as the
mean, but relatively few options for nominal or ordinal data. However, regardless
of the scale you are dealing with, the most basic way to look at your data is in
terms of frequencies.

Bar Charts

If you have nominal data, a simple bar chart is a good place to start. Along a hori-
zontal axis you write out the different categories in any order that is convenient.
The height of the bar above each category should be proportional to the number
of your cases that fall into that category. If 20 of the patients you studied were

DESCRIPTIVE STATISTICS 5

Measurement Scales

Nominal: Observations are assigned to categories that differ qualitatively but have
no quantitative order (e.g., depressed, phobic, obsessive, etc.).
Ordinal: The values have an order that can be represented by numbers, but the
numbers cannot be used mathematically, because the intervals may not be equal
(e.g., assigning ranks according to the ability of gymnasts on a team).
Interval: One unit on this scale is the same size anywhere along the scale, so values
can be treated mathematically (e.g., averaged), but zero on the scale does not in-
dicate a total absence of the variable being measured (e.g., IQ scores).
Ratio: This scale has the interval property plus the zero point is not arbitrary; it
represents a true absence of the variable being measured. For instance, weight in
pounds has this property, so that if object A is measured as twice as many pounds
as object B, then object A has twice as much weight. (You cannot say that some-
one with an IQ of 120 is twice as smart as someone with an IQ of 60.)
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phobic and 10 were depressed, the vertical bar rising above “phobic” would be
twice as high as the bar above “depressed.” Of course, the chart can be rotated to
make the bars horizontal, or a pie chart or some other display can be used instead,
but the bar chart is probably the most common form of display for nominal data
in the social sciences.

Because the ordering of the categories in a bar chart of nominal data is arbi-
trary, it doesn’t quite make sense to talk of the central tendency of the data. How-
ever, if you want to talk about the most typical value, it makes some sense to iden-
tify the category that is the most popular (i.e., the one with the highest bar). The
category with the highest frequency of occurrence is called the mode. For instance,
among patients at a psychiatric hospital the modal diagnosis is usually schizo-
phrenia (unless this category is broken into subtypes).

The bar chart is also a good way to display data from an ordinal scale, but be-
cause the values now have an order, we can talk meaningfully about central ten-
dency. You can still determine the mode—the value with the highest bar (i.e., fre-
quency)—but the mode need not be near the middle of your bar chart (although
it usually will be). However, with an ordinal scale you can add up frequencies and
percentages in a way that doesn’t make sense with a nominal scale. First, let us
look at the convenience of dealing with percentages.

Percentile Ranks and the Median

Suppose 44 people in your sample “strongly agree” with a particular statement;
this is more impressive in a sample of 142 participants than in a sample of 245
participants (note: in keeping with recent custom in the field of psychology, we
will usually use the term participant to avoid the connotations of the older term sub-

ject). The easiest way to see that is to note that in the first case the 44 participants
are 31% of the total sample; in the second case, they are only 18%. The percent-
ages make sense without knowing the sample size. Percentages are useful with a
nominal scale (e.g., 45% of the patients were schizophrenic), but with an ordinal
scale there is the added advantage that the percentages can be summed. For ex-
ample, suppose that 100 people respond to a single question on a Likert scale with
the following percentages: 5% strongly disagree; 9% somewhat disagree; 36% are
neutral; 40% agree; and 10% strongly agree. We can then say that 14% (5 � 9) of
the people are on the disagree side, or that 14% are below neutral (it’s arbitrary,
but we are assigning higher values in the agree direction).

We can assign a percentile rank (PR) to a value on the scale such that the PR
equals the percentage of the sample (or population) that is at or below that value.
The PR is 5 for strongly disagree, 14 for somewhat disagree, 50 for neutral, 90 for
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agree, and 100 for strongly agree (it is always 100, of course, for the highest value
represented in your set of scores). A particularly useful value in any set of scores
is called the median. The median is defined as the middle score, such that half the
scores are higher, and half are lower. In other words, the median is the value
whose PR is 50. In this example the median is “neutral.” The median is a useful
measure of central tendency that can be determined with an ordinal, but not a
nominal, scale. According to this definition, the median in the preceding example
would be somewhere between “neutral” and “somewhat agree.” If “neutral” is 3
and “somewhat” agree is 4 on the scale, then some researchers would say that the
median is 3.5. But unless you are dealing with an interval scale you cannot use the
numbers of your scale so precisely. If all your scores are different, it is easy to see
which score is the middle score. If there are only a few different scores (e.g., 1 to
5) but many responses, there will be many scores that are tied, making it less clear
which score is in the middle.

Histograms

A slight modification of the bar chart is traditionally used when dealing with in-
terval/ratio data. On a bar chart for nominal or ordinal data there should be some
space between any two adjacent bars, but for interval/ratio data it is usually ap-
propriate for each bar to touch the bars on either side of it. When the bars touch,
the chart is called a histogram. To understand when it makes sense for the bars to
touch, you need to know a little about continuous and discrete scales, and therefore
something about discrete and continuous variables. A variable is discrete when it
can only take certain values, with none between. Appropriately, it is measured on
a discrete scale (whole numbers—no fractions allowed). For example, family size
is a discrete variable because a family can consist of three or four or five mem-
bers, but it cannot consist of 3.76 members.

Height is a continuous variable because for any two people (no matter how
close in height) it is theoretically possible to find someone between them in
height. So height should be measured on a continuous scale (e.g., number of
inches to as many decimal places as necessary). Of course, no scale is perfectly
continuous (infinitely precise), but measuring height in tiny fractions of inches
can be considered continuous for our purposes. Note that some continuous vari-
ables cannot at present be measured on a continuous scale. A variable like
charisma may vary continuously, but it can only be measured with a rather crude,
discrete scale (e.g., virtually no charisma, a little charisma, moderate charisma,
etc.). Data from a continuous scale are particularly appropriate for a histogram.

Consider what a histogram might look like for the heights of 100 randomly se-
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lected men (for simplicity, we will look at one gender at a time). If the men range
from 62 to 76 inches, the simplest scheme would be to have a total of 15 bars, the
first ranging from 61.5 to 62.5 inches, the second from 62.5 to 63.5 inches, and
so on until the 15th bar, which goes from 75.5 to 76.5 inches. Looking at Figure
1.1, notice how the bars are higher near the middle, as is the case for many vari-
ables (the mode in this case is 69 inches). Now suppose that these men range in
weight from 131 to 218 pounds. One bar per pound would require 88 bars (218
– 131 � 1), and many of the bars (especially near either end) would be empty. The
solution is to group together values into class intervals. For the weight example,
10-pound intervals starting with 130–139 and ending with 210–219 for a total of
nine intervals would be reasonable. A total of eighteen 5-pound intervals (130–
134 to 215–219) would give more detail and would also be reasonable. The com-
mon guidelines are to use between 10 and 20 intervals, and when possible to start
or end the intervals with zeroes or fives (e.g., 160–164 or 161–165).

Note that if you look at what are called the apparent limits of two adjacent class
intervals, they don’t appear to touch—for example, 130–134 and 135–139. How-
ever, measurements are being rounded off to the nearest unit, so the real limits of
the intervals just mentioned are 129.5–134.5 and 134.5–139.5, which obviously
do touch. We don’t worry about anyone who is exactly 134.5 pounds; we just
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Figure 1.1 A histogram of the heights (in inches) of 100 randomly selected
men
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assume that if we measure precisely
enough, that person will fall into one
interval or the other.

Percentiles

Percentages can be added, just as
with the ordinal scale, to create per-
centile ranks. For instance, looking at
Figure 1.1, we can add the percent-
ages of the first five bars (1 � 2 � 2
� 3 � 5) to find that the PR for 66
inches is 13% (actually 13% is the PR for 66.5 inches, because you have to go to
the upper real limit of the interval to ensure that you have surpassed everyone in
that interval). Conversely, one can define a percentile as a score that has a particu-
lar PR. For example, the 22nd percentile is 67 (actually 67.5), because the PR of
67 is 22. The percentiles of greatest interest are the deciles (10%, 20%, etc.), and
the quartiles (25%, 50%, 75%).

Unfortunately, these particular percentiles are not likely to fall right in the
middle of a bar or right between two bars. For instance, for the data in Figure 1.1,
the 1st quartile (25%) is somewhere between 67.5 (PR � 22) and 68.5 (PR � 37).
It is common to interpolate linearly between these two points. Because 25 is one
fifth of the way from 22 to 37, we say that the 25th percentile is about one fifth
of the way from 67.5 to 68.5 or about 67.7. The formula for linear interpolation
is given in most introductory statistics texts. Probably the most important per-
centile of all is the 50th; as we mentioned before, this percentile is called the me-
dian. For Figure 1.1, the median is 69.0—that is, half the men have heights below
69.0 inches, and half are taller than 69.0 inches. The mode is the interval repre-
sented by 69 inches—that is, 68.5 to 69.5 inches.

Distributions

Figure 1.1 shows you that height is a variable; if it were a constant, all people
would have the same height (the number of chambers in the human heart is a
constant—everybody has four). Figure 1.1 shows how the values for height are
distributed in the sample of 100 men that were measured. A set of values from a
variable together with the relative frequency associated with each value is called
a distribution. Except for the last chapter of the book, all of the statistical methods
we will present involve distributions. If all of the heights from 62 to 76 inches
were equally represented, all of the bars would be at the same height, and it would
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If you are dealing with nominal (i.e.,
categorical) or ordinal data, a bar
chart is appropriate (the bars do not
touch). If you are dealing with interval
or ratio data, a histogram is appropri-
ate; the bars extend to the lower and
upper real limits of the interval repre-
sented (even if it is a single unit), and
therefore adjacent bars do touch.



be said that we have a uniform distribution. That form of distribution is not likely
when dealing with the variables usually measured for people. Often, the distribu-
tion of a variable is shaped something like a bell, as in Figure 1.1, and has one
mode somewhere in the middle. Values further from the middle are progressively
less popular.

Shapes of Distributions

Imagine the distribution of 60 students who took a statistics exam. If the class con-
sisted mostly of math majors and English majors the distribution might have two
equally high bars, and therefore two modes—one more to the right for the math
majors and one more to the left for the English majors, with a dip in between. This
distribution would be called bimodal (even if the two modes were not exactly equal
in frequency), whereas the distribution in Figure 1.1 is called unimodal. It is possible
for a distribution to have even more than two modes, but we will be dealing only
with unimodal distributions. Now imagine that the statistics exam was very easy (if
you can). The scores would be bunched up (producing high bars) in the 90s with
relatively few low scores trailing off in the negative direction. The mode would be
decidedly to one side (the right, or positive, side in this case), and the distribution
would appear to have a tail (a series of relatively low bars) on the left. Such a dis-
tribution is said to be negatively skewed, because the tail is in the negative direction.
This kind of distribution often arises when a large portion of the scores are ap-
proaching the highest possible score (i.e., there is a ceiling effect).

Positively skewed distributions are probably more common in the social sci-
ences than those with a negative skew. Annual income is a good example. The
majority of people in the United States, for instance, are much closer to the low-
est possible income (we’ll say it is zero and ignore the possibility of negative in-
come) than to the highest known income. Clearly, there is a floor for income, but
no clearly defined ceiling, so the income distribution has a tail that points in the
positive direction. The annual incomes for a randomly selected group of people
would therefore be very likely to form a positively skewed distribution, as illus-
trated in Figure 1.2.

CHOOSING A MEASURE OF CENTRAL TENDENCY

One of the most important reasons to draw (or have a computer draw) a his-
togram is to look at the shape of the distribution with which you are dealing. With
a very large sample—and especially with a population—the distribution will be
fairly smooth and very likely unimodal with an approximate bell shape. However,
the shape may be symmetrical or skewed (either positively or negatively). The
shape can be important: For example, strong skewing can affect your choice of
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descriptive statistics. In a symmetrical, unimodal distribution the three measures
of central tendency we have described—the mean, the median, and the mode—
will all be in the same spot, so it doesn’t matter which you choose. However, in a
skewed distribution extreme scores have a larger effect on the mean than on the
median, so while both of these measures are pulled away from the mode, the
mean is pulled further. This is illustrated in Figure 1.2.

It is easy to understand why the skewing does not move the median much. Al-
though the long positive tail includes some very high values, the tail represents
only a small percentage of the sample. Moving the median just a little in the hump
of the distribution (where the bars are high) can have a large effect on the per-
centage on each side of the median. Moving the median a little toward the tail can
compensate for the small extra percentage that is contained in the tail. Once a
score is to the right of the median, moving it much further to the right has no ef-
fect on the median, because that wouldn’t change the fact that 50% of the scores
are still on each side of the median. The mean, however, is sensitive to the actual
values of all the scores, and a few very large scores on one side of the distribution
can noticeably pull the mean to that side. That’s why for some purposes the mean
can be considered a misleading measure of central tendency, as we will explain
next.

Suppose that Figure 1.2 displays the incomes of employees for one particular
company. To make the argument that the employees are well paid, the company
president would be happy to report that the mean annual income is $35,000.
However, you can see that the vast majority of employees earn less than this
amount; the mean is being unduly influenced by the incomes of a relatively few
executives at the company. The regular workers of the company would prefer to
use the median as a description of the average salary. Whereas the majority of the
scores in a distribution can be above or below the mean, the median is always near
the middle because 50% of the scores are above and 50% below it.
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Figure 1.2 Distribution of annual income (in dollars) for a large sample of
U.S. citizens
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When a news report refers to an average or mean number, it is usually refer-
ring to the arithmetic mean, but read closely: The author could be referring to a
median or even a mode or other measure in an imprecise way (the measures of
central tendency just described are summarized in Rapid Reference 1.2). How-
ever, regardless of which measure of central tendency is being used, you should
notice that the wider the distribution, the harder it can be to describe it with just
one number: The endpoints of the distribution can be very far from the middle,
no matter how the middle is defined. Measuring the width of the distribution can
be an important complement to locating the middle. This is our next topic.

MEASURES OF VARIABILITY

As a sixth-grade English teacher, which class of 20 students would you rather teach,
one whose average reading score is 6.3 (a bit above grade level) or 5.8 (a bit below)?
Perhaps you like a challenge, but you would probably guess that the 6.3 class would
be easier to teach. But what if we tell you that the students in the “5.8” class range
from 5.6 to 6.0, whereas the “6.3” class ranges from 5.7 to 6.9? Given these ranges,
the more homogeneous (“5.8”) class would likely be the easier to teach.

The Range and Semi-Interquartile Range

The simplest way to measure the width of a distribution is to calculate its range.

The range is just the highest minus the lowest score, plus one unit if you are deal-
ing with a continuous scale (e.g., the range of the 5.8 class is 6.0 – 5.6 � .1 � .4
� .1 � .5, because the upper limit of 6.0 is really 6.05 and the lower real limit of
5.6 is 5.55). The problem with the range is that it can be dramatically influenced
by one extreme score. Add a 7.0 reader to the 5.8 class and the 5.8 class will now
have a larger range than the 6.3 class. However, the range of the 5.8 class would
then be misleading; it is still a very homogeneous class, with just one very ad-
vanced student who needs to be dealt with separately.

One way to modify the range so that it is not affected by extreme scores is to
measure the range of the middle 50% of the scores. This modified range is found
by subtracting the 25th percentile of the distribution from the 75th percentile.
Hence, it is called the interquartile range. If you divide this range by 2, you get a mea-
sure called the semi-interquartile range (SIQ), which is roughly the average of the dis-
tances from the median to the 25th and 75th percentiles. The SIQ gives you a typ-
ical amount by which scores tend to differ from the median (about half are closer
and half are further away than the SIQ), and this is one very useful way to describe
the variability of a distribution. The SIQ range can be very useful for descriptive
purposes, especially when dealing with ordinal data or with a distribution that has
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extreme scores on one or both sides of its median. Measures that make use of all
of the scores at hand are usually more useful for describing the spread of the
scores when you want to extrapolate from your sample to a larger population. We
will describe such a measure shortly.

The Summation Sign

An obvious way to measure the amount of variability in a distribution is to find
the distance of each score from some measure of central tendency, and then av-
erage these differences together to find a typical amount of deviation from the
middle. If your variability measure will use all of your scores it makes sense to an-
chor it to a measure of central tendency that does the same—that is, the mean.
Expressed in words, we can propose a measure of variability that is equal to the
average of all of the scores’ deviations from the mean. At this point, mathemati-
cal notation, which so many students find annoying, can be really helpful in defin-
ing complex statistics in a compact and unambiguous way. The uppercase Greek
letter sigma (Σ ) is often used as a way of telling you to add your scores together;
it is therefore called, in this context, the summation sign. If you follow the summa-
tion sign with a letter representing the variable you are measuring (e.g., ΣX ), this
is a shorthand way of telling you to add all of your scores together. This notation
allows us to write a very simple formula for the mean of a set of scores:

� � �
∑

N

X
i

� (1.1)

The subscript i associated with X is there to remind you that there is more than
just one X; there are a whole series of values to be added up. Statistical purists
would like us to put “i � 1” under the summation sign and N above it (to remind
you to start adding with the first score and not to stop until you have added the
Nth score), but we will always use Σ to mean “add them all up,” so that extra no-
tation won’t be necessary. Note that Formula 1.1 is a very convenient way of say-
ing that if you add up all of your scores, and then divide by the number (N ) of
scores that you added, the result will equal the mean.

The Mean Deviation

Next, we can apply Formula 1.1 to the deviations of scores from the mean rather
than to the scores themselves. This can be expressed symbolically as follows:

�
∑(X

N

i
� �)
�
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The problem with the above expression is that it is always equal to zero. This is
actually an important property of the mean—that it is a balance point in any dis-
tribution, such that the sum of deviations above it equals the sum of deviations
below it. However, if we want to know the average distance of scores from the
mean we are not concerned with the sign of a deviation, just its magnitude. That
idea can be expressed mathematically in the following formula:

MD ��
∑X

N

i
� �
� (1.2)

MD stands for the mean deviation, and the vertical bars around X
i
– � tell us to

take the absolute value of the deviation. Since the deviations are now all positive,
they don’t cancel each other out, and we are left with a number that is literally the
average of the absolute deviations from the mean. The mean deviation gives us a
good description of the variability in a set of scores, and one that makes a good
deal of sense. Unfortunately, it is rarely used, mainly because MD is not useful
when extrapolating from samples to populations. The reason we are describing
MD to you is that the most common measure of variability is just like the MD,
only a little different.

Variance and Standard Deviation

If you were to square the deviations instead of taking their absolute values, and
then average these squared deviations, not only would you get rid of the negative
deviations, but the result would be an important measure of variability called the
variance; it is symbolized by a lowercase sigma being squared, as in the following
formula:

�2 ��
∑(X

N

i
� �)2

� (1.3)

The numerator of this expression, the sum of the squared deviations from the
mean, has its own abbreviation; it is known as the sum of squares, or even more
briefly as SS. The variance is useful in advanced statistics, but it is not helpful as
a descriptive measure of your set of scores, because it is in terms of squared
scores. Taking the square root of the variance produces a good descriptive mea-
sure of variability that can also be useful for advanced statistics. The resulting
measure is called the standard deviation, and it is symbolized by a lowercase sigma
(without being squared), as in Formula 1.4.

� ���
∑(X

N

i
�� �)2

�� (1.4)
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It is important to realize that taking the square root after averaging the squared
deviations does not entirely remove the effect of squaring. Otherwise, the stan-
dard deviation would always be the same as the mean deviation. Although MD
and � can be the same for a set of scores (e.g., when there are only two scores), �
is usually larger and can be quite a bit larger if there are a few extreme scores. In
fact, the sensitivity of � to extreme scores can be seen as a drawback. Just as the
median can be a better descriptive measure than the mean when there are extreme
scores, so too MD (or the SIQ) can be better than � for descriptive purposes. But
as we shall see shortly, � plays a role in a very common distribution that makes it
more useful than MD in advanced statistics. And even though � is usually larger
than MD for the same set of scores, � is usually in the same ballpark, and there-
fore a good descriptive measure. The variability measures just described are sum-
marized in Rapid Reference 1.2.
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Measures of Central Tendency

The mode can be found with any scale of measurement; it is the only measure of
typicality that can be used with a nominal scale.
The median can be used with ordinal, as well as interval/ratio, scales. It can even
be used with scales that have open-ended categories at either end (e.g., 10 or
more). It is not greatly affected by outliers, and it can be a good descriptive statis-
tic for a strongly skewed distribution.
The mean can only be used with interval or ratio scales. It is affected by every
score in the distribution, and it can be strongly affected by outliers. It may not be
a good descriptive statistic for a skewed distribution, but it plays an important role
in advanced statistics.

Measures of Variability

The range tells you the largest difference that you have among your scores. It is
strongly affected by outliers, and being based on only two scores, it can be very
unreliable.
The SIQ range has the same properties as described for the median, and is often
used as a companion measure to the median.
The mean deviation, and the two measures that follow, can only be used with in-
terval/ratio scales. It is a good descriptive measure, which is less affected by out-
liers than the standard deviation, but it is not used in advanced statistics.
The variance is not appropriate for descriptive purposes, but it plays an important
role in advanced statistics.
The standard deviation is a good descriptive measure of variability, although it can
be affected strongly by outliers. It plays an important role in advanced statistics.

Rapid Reference 1.2



THE NORMAL DISTRIBUTION

The best-known mathematical distribution and the one that is the most often ap-
plicable to variables in the social sciences is the one called the normal distribution.

The normal distribution (ND), or normal curve as it is often called, has many con-
venient mathematical properties, but the one that is most relevant to us at this
point is that the ND is completely determined by two of its characteristics (called
parameters): its mean and its standard deviation. In other words, if two NDs have
exactly the same � and �, they will overlap each other perfectly. You can see how
the ND depends on � and � by looking at the mathematical equation for the ND:

f (x) � �
�2

1

��2�
� e�(x��)2/2�2 (1.5)

f (x) is short for “function of ” and it translates into y, the vertical height of the
curve at that value for x; e, like �, is a constant (e � 2.718 . . .). The exponent next
to e has a minus sign, so the smaller the exponent, the higher the curve. The ex-
ponent is smallest when it is zero (e 0 � 1.0), which occurs when X � �, so the
curve has its mode when X is at the mean.

One of the reasons the ND is so important to science (both physical and so-
cial) is that many variables in nature have distributions that look a lot like the ND.
A common way that the ND arises is when many different independent factors
contribute to the value of a variable, and each factor can just as easily contribute
positively or negatively in any given case. If 20 factors contribute to a variable, a
common result is 10 factors contributing positively and 10 negatively, leading to
a middle value. Cases in which all 20 factors pull in the same direction will be rare
and, therefore, so will extreme values on the variable. Something like this is prob-
ably acting to determine the heights of adult humans.

Let’s look at a likely distribution of the heights for an entire population of adult
women (once again, it is simpler to look at one gender at a time; see Figure 1.3).
The height distribution looks a lot like the ND, except for one simple fact: The
height distribution ends on either side—there is no chance of finding an adult
woman less than 2 feet or more than 9 feet tall. The true ND never ends; looking
again at Formula 1.5, we see that the height of the curve does not fall to zero un-
til the negative exponent of e, and therefore the value of X, reaches infinity. More-
over, the actual height distribution may not be perfectly symmetrical, and the
curve may bend in a way that is slightly different from the ND. Still, it is so much
easier to deal with the ND than real population distributions that it is common
just to assume that the ND applies (with the same � and � as the real distribu-
tion) and ignore the relatively small discrepancies that inevitably exist between
the real distribution and the ND.
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Figure 1.3 Distribution of heights (in inches) for an entire population of women
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Let us look at how the ND can help us deal with the distribution of heights for
the female population. Suppose we have measured the heights of enough women
that we have excellent estimates of � and �, and that they are 65 inches and 3
inches, respectively. Now imagine that we want to know the percentile rank of a
woman who is 68 inches. Without using the ND, we would need a histogram of
the entire population so we could add the percentages of all the bars up to 68
inches (and you would want lots of skinny bars—perhaps tenths of inches—for
greater accuracy). If we use the ND instead you don’t need a whole population of
height measurements. You have a smooth curve that follows a mathematical
equation; you can use the calculus to integrate the area of the curve from negative
infinity up to 68 inches. Fortunately, you don’t need to know what calculus is to
use the ND, because the work has already been done for you.

Take a look at Figure 1.3. A woman who is 68 inches tall is one � (3 inches)
above � (65 inches). Note that all NDs have the same shape, so a score that is one
� above � always has about 84% of the distribution below (to the left of ) it and
about 16% above, regardless of the variable being measured. Before computers
could easily figure out the proportion of the ND below any particular score,
tables were calculated to give proportions of the ND in terms of different frac-
tions of �. To understand these tables you need to be introduced to z scores, our
next topic.

STANDARDIZED SCORES

A normal distribution can have any values for its mean and standard deviation,
but once you mark off the x-axis in terms of � and � (as in Figure 1.3), all NDs
look alike (e.g., as you move to the right of the mean the curve falls more and



more sharply until you get to one �, then the rate of the curve’s descent stops in-
creasing and starts decreasing). When a raw score (e.g., 68 inches) is expressed in
terms of � (e.g., one � above the mean), we say it has been transformed to a stan-

dardized score. The common symbol for a standardized score is a lower case z. If a
score is one � above the mean, we say that z � �1. If the score is one � below
the mean, z � –1. Any raw score can be transformed to a z score by using the fol-
lowing simple formula:

z � �
X �

�

�
� (1.6)

For instance, for the height distribution described above, a woman who is
63 inches tall would have a z score of (63–65)/3 � –2/3 � –.67 (approxi-
mately).

The Table for the Standard Normal Distribution

Your variable of interest does not have to follow the ND for z scores to be use-
ful. If a friend tells you that she got a 72 on her last physics exam, this is not as
informative as her telling you that her z score for the exam was –.2 (below the
mean, but only one fifth of � below). But if your variable does follow the ND the
z score can be looked up in a table that will tell you what proportion of the ND
is above or below that score. A common form of the ND table gives proportions
between the mean and every z score from 0 to about 4.00 to two decimal places
(see Table A.1 in Appendix A). You don’t need to have negative z scores in the
table, because the ND is perfectly symmetrical (e.g., the proportion between the
mean and z � �.5 is exactly the same as the proportion between the mean and
z � –.5). The table usually stops at around 4.0 because the proportion of the ND
above z � 4.0 is only .00003. The ND table we included in the appendix gives
not only the proportion between the mean and z , but also the proportion be-
yond z: that is, the proportion from z to infinity (in the direction of the right tail
of the ND).

Note that Table A.1 corresponds to an ND with a mean of zero and an SD of
1.0; this ND is called the standard normal distribution. However, any ND can be
transformed into the standard ND by converting all of the scores into z scores.
Fortunately, to answer common questions about your data, you don’t need to
convert all of your scores to z scores—only the ones you have questions about.

Also note that the equation for the ND can be written in terms of z scores
(compare Formula 1.5� to Formula 1.5).
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f (x) � �
�2

1

��2�
�e�z 2/2 (1.5�)

You can see that the function is largest when z is zero (the exponent of e is at its
least negative), and that it is symmetric. Because z is squared, the function has the
same height whether a particular z is positive or negative.

Properties of z Scores

Because z scores work so well with the ND, some students get the erroneous im-
pression that converting a set of scores to z scores makes them follow the ND.
In reality, converting to z scores does not change the shape of your distribution
at all. However, it does change the � and � of your distribution. The mean for a
set of z scores will always be zero, because subtracting a constant from your
scores subtracts the same constant from your mean. If the constant you’re sub-
tracting is the mean (as in Formula 1.6), then your new mean will be � – �, which
equals zero. The standard deviation for a set of z scores will always be 1.0 because
dividing your scores by a constant results in � being divided by that constant; if
the constant you’re dividing by is � (as in Formula 1.6), then your new � will be
�/�, which equals 1.0.

However, if your distribution is negatively skewed your z scores will be nega-
tively skewed as well, and you will have a few large negative z scores, but no re-
ally large positive z scores (of course, the reverse is true for a positively skewed
distribution). If you know that someone’s z score on a test is large and positive
you won’t know quite what to make of it unless you know something about the
skewness of the distribution. If you know the distribution is normal, you know
exactly where in the distribution that z score falls. It is also important to note that
adding, subtracting, multiplying, or dividing all of your scores by a constant (or
any combination of the above) will not change the z scores associated with any of
your scores. Adding or subtracting a constant changes a score, but it changes the
mean by the same amount, so the difference between the score and the mean
(which is the numerator of the z score) is not changed. Nor is the denominator of
the z score changed, because the standard deviation is not affected by the addi-
tion or subtraction of constants. Multiplying or dividing by a constant will change
the numerator of the z score (e.g., 60 – 40 is greater than 6 – 4), but the denomi-
nator will change proportionally, so again the z score stays the same. Your weight
can be measured in pounds or kilograms, but your z score in a particular group of
people will be the same either way. The mathematical properties of z scores are
summarized along with the properties of the mean and standard deviation in
Rapid Reference 1.3.
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DEALING WITH DEPARTURES FROM THE
NORMAL DISTRIBUTION

For some variables, like height, blood pressure, and IQ scores, we have enough
data that we can be confident that the true population distribution looks so much
like the mathematical normal distribution that the latter can be used as a good ap-
proximation of the former. However, social scientists often study variables about
which there may be very few data, such as the number of close friends people
have, or variables that are measured in a new way (e.g., the recall of a list of words
created for a new study). Unfortunately, the fewer the data you have for a partic-
ular variable, the less confidence you can have about guessing the shape of the
population distribution from which you are sampling. In the next chapter we will
discuss why the shape of your population distribution is not as important as you
might think for advanced statistics. But it certainly can be useful to use whatever
data you have to judge whether the ND is a fairly close approximation of your
population distribution.

The first step is to take a really careful look at your data. One way is to draw a
histogram or frequency polygon. In recent years a whole branch of statistics, ex-

ploratory data analysis (EDA), has been devised to create better ways to display data
and highlight important trends (Behrens, 1997). We will talk about EDA shortly,
but first we want to mention some traditional ways to compare your data to the
ND.
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Properties of the Mean, Standard Deviation, and
Standardized Scores

Mean. Adding or subtracting a constant from the scores changes the mean in the
same way. Multiplying or dividing by a constant also changes the mean in the same
way. The sum of squared deviations is smaller around the mean than any other
point in the distribution.
Standard deviation. Adding or subtracting a constant from the scores does not
change the standard deviation. However, multiplying or dividing by a constant
means that the standard deviation will be multiplied or divided by the same con-
stant. The standard deviation is smaller when calculated around the mean than
any other point in the distribution.
Standardized scores. Adding, subtracting, multiplying or dividing the scores by a
constant does not change the standardized scores. The mean of a set of z scores
is zero, and the standard deviation is 1.0.

Rapid Reference 1.3



Measuring Skewness

Probably the most frequent departure from the ND that is seen in the distribu-
tions with which social scientists work is skewness, often due to floor or ceiling
effects. A common measure of skewness involves finding the average of the
cubed rather than squared (i.e., raising to the 3rd rather than 2nd power) devia-
tions from the mean, and comparing this average to the variance. Cubing a devi-
ation, unlike squaring, preserves its sign (e.g., –23 � –8), so large scores on the left
(negative) side of the distribution, not balanced by similar scores on the right side,
will lead to negative skewness, whereas the reverse situation will produce positive
skewness. A symmetrical distribution like the ND will have zero skewness. A
skewness measure for a set of data can be tested to see if it is unreasonable to use
a symmetrical distribution as an approximation. But these tests are not very help-
ful when they are most needed—when the sample is fairly small—so they are not
often used.

Measuring Kurtosis

Another departure from normality that may be seen in a real distribution is the
percentage of scores that would be considered extreme. A distribution could be
relatively flat, or there could be a concentration of scores in the middle, with a
sharp drop-off at moderate distances from the mean, and a relatively high pro-
portion of extreme scores. This kind of pattern can be assessed by a measure
called kurtosis, which is based on averaging deviations from the mean raised to
the 4th power and comparing that average to the variance. It is said that kurto-
sis is based on the fourth moment of the distribution, skewness on the third, the
variance on the second (and the mean on the first). There are no popular mea-
sures based on any moment higher than the fourth. Raising to the 4th power
gives more weight to extreme scores than squaring. So distributions with thicker
tails (i.e., a higher percentage of extreme scores) than the ND, such as the t dis-
tribution (introduced in Chapter 3), have positive kurtosis (if kurtosis is adjusted
to zero for the ND), and they are called leptokurtic. Relatively flat distributions
have negative kurtosis and are called platykurtic (the ND is defined as being in the
middle, or mesokurtic).

As with skewness, the kurtosis of a data set can be tested to see if the ND is a
reasonable approximation, but for the same reason as the skewness test, it is
rarely done. There are more direct tests of the resemblance to a theoretical distri-
bution; probably the most common is the Kolmogorov-Smirnov test. Although this is
an appropriate test, researchers are more likely to just eyeball their data and be-
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come concerned about their distribution only if it seems as though their data
could not possibly be coming from a distribution that looks like the ND.

Trimming Your Data

What can researchers do if they are concerned that their data do not look normal
(i.e., like the ND)? If the data look fairly consistent with the ND except for a few
extreme scores, it makes sense to try to find a good reason to drop the outliers
(e.g., the respondent didn’t understand the instructions, got drowsy, etc.). If no
independent reason can be found for dropping outliers, sometimes researchers
trim their data, eliminating the highest (or most extreme) 5 or 10% of the scores.
This method is especially acceptable if one can anticipate outliers based on pre-
vious experiments (this is particularly common when measuring reaction times)
and plan the trimming in advance. Trimming your data leads to some complica-
tions in applying more advanced statistical analysis to your results, but in recent
years there has been a good deal of progress in developing methods for dealing
with robust statistics (Wilcox, 1998). When the mean, for instance, is calculated for
trimmed data, it is called a trimmed mean; this is a robust statistic in that outliers do
not affect it.

Data Transformations

If instead of having a few distinct outliers your data have a strong skew to one
side or the other, you can make your distribution more normal by applying a
mathematical transformation to all of the scores in your data set. Suppose that

children from different economic
backgrounds are sketching the same
coin from memory and you are mea-
suring the areas of the circle they are
drawing. The data for five children
could be 4, 9, 9, 16, and 100 squared
centimeters. The strong positive
skew of the data can be reduced by
taking the square root of each num-
ber; the data would be transformed to
2, 3, 3, 4, and 10. In this case you have
switched from measuring the area of
the coins to a measure that is propor-
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C AU T I O N

For more advanced statistics it is often
helpful to be dealing with a normal
distribution. If your distribution con-
tains outliers, or has a skewness or
kurtosis very different from the ND,
you may want to either trim your data
or transform your data. However,
trimmed data require special robust
methods of data analysis, and statisti-
cal results on transformed data can be
difficult to interpret.



tional to the diameter of the coins. Unfortunately, data transformations usually
do not have such a simple interpretation, but they are fairly common and con-
sidered quite legitimate nonetheless. In cases of extreme skewing, a data trans-
formation can allow you to use advanced statistics based on the ND and can pre-
vent you from resorting to the less powerful techniques described in the final
chapter of this text. The value of data transformations will become clearer as we
discuss more advanced statistical methods in later chapters.

EXPLORATORY DATA ANALYSIS

Whether or not you are looking at your data in order to decide if your values could
have come easily from an ND, it is a good idea to look carefully at your data be-
fore rushing to summarize them with a few statistics, such as the mean and stan-
dard deviation. To encourage researchers to explore their data thoroughly before
calculating summary statistics, John Tukey (1969, 1977) devised several tech-
niques, mostly involving visual displays of data, that form the basis of EDA, as
mentioned previously.

Stem-and-Leaf Plots

One of the simplest of the EDA techniques is an alternative to the histogram
called the stem-and-leaf plot, or stemplot, for short. If the IQ scores for 30 students
in a sixth-grade class ranged from 94 to 136, the stems would be the numbers 9
through 13, arranged vertically, and the leaves would be the final digits of each IQ
score (e.g., 4 for the lowest, and 6 for the highest IQ). The entire stemplot is
shown in Figure 1.4. Notice how the stemplot exhibits the shape of the distribu-
tion (unimodal, skewed) while at the same time containing all of the actual values.

DESCRIPTIVE STATISTICS 23

Figure 1.4 Stem-and-leaf plot for 30 IQ scores
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The height of a histogram bar may tell you how many students scored in the 120s,
but not what the actual scores were, whereas in Figure 1.4, you can see that the
three scores in the 120s were 120, 121, and 126. It would be easy to compare last
year’s class to this year’s by using the same stems for both classes and putting the
leaves for last year’s class to the left and those for this year’s class to the right.
There are numerous variations for getting a convenient number of stems de-
pending on how your data range, but this technique is not feasible for really large
data sets. Another popular form of display that is suitable for any size data set is
described next.

Box-and-Whisker Plots

A very convenient and descriptive way to summarize a set of data is with a box-

and-whisker plot, or boxplot, for short. If the values of the dependent variable are
placed along the horizontal axis, the vertical sides of the box (called the hinges),
are placed at the 25th and 75th percentiles. (The exact definition of the hinges,
according to Tukey [1977] is a bit different, but the 1st and 3rd quartiles are a
good approximation.) The distance between the hinges (called the h-spread ) is
therefore the same as the interquartile (IQ) range. The median is also drawn as a
vertical line within the box. In a positively skewed distribution, the median will be
closer to the left than the right side of the box; the reverse pattern holds for a neg-
atively skewed distribution. The whisker on the right side of the box extends hor-
izontally until it hits the highest value in the distribution that isn’t further than 1.5
times the h-spread, and similarly on the left side of the box (the locations that are
1.5 h-spreads from either side of the box are called the inner fences, and the most
extreme values on either side that are not past the inner fences are called the ad-

jacent values). Points that lie beyond the inner fences in either direction are con-
sidered outliers and are drawn individually as points in the boxplot. The features
of a typical boxplot are shown in Figure 1.5.
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Figure 1.5 Complete boxplot
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The boxplot shows at a glance the skewing of the distribution (the position of
the median inside the box, the relative lengths of the whiskers on either side) and
the presence of outliers. At the same time it provides the locations of all the quar-
tiles and the full range of the scores in the data set. There are many possible vari-
ations involving the details of the boxplot. For instance, drawing the boxplots
vertically (the DV is on the y-axis of the graph) can be particularly convenient
when comparing several boxplots from different data sets.

Boxplots and stemplots are only two of many graphic methods that are part of
exploratory data analysis, but they are among the most popular. These methods
are helpful when you have many measurements and need to see how they are dis-
tributed. However, these methods become even more important if you need to
make inferences about the population from which your data have come. The rea-
sons for this will become clear in the next chapter.
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Putting It Into Practice
1. Imagine that you are an anthropologist who has discovered a group of

never-before-seen people who are native to the continent of Antarctica.
You suspect that because they live in such a cold climate, their normal body
temperatures differ from other human beings. To test that hypothesis, you
manage to measure the body temperatures (in degrees Fahrenheit) of 25
Antarcticans. The measurements are listed below: 97.6, 98.7, 96.9, 99.0,
93.2, 97.1, 98.5, 97.8, 94.5, 90.8, 99.7, 96.6, 97.8, 94.3, 91.7, 98.2, 95.3, 97.9,
99.6, 89.5, 93.0, 96.4, 94.8, 95.7, 97.4.

(a) What are the mode, median, and mean for the data above? Which way
does the distribution seem to be skewed?

(b) What are the range, mean deviation, and standard deviation?
2. (a) Create a histogram, stemplot, and boxplot for the data.

(b) What is the percentile rank for a temperature of 95.0°? Of 98.6°?
(c) What temperature is at the 30th percentile? The 65th percentile?

3. (a) What is the z score for a body temperature of 95.0°? For 98.6°?
(b) What body temperature has a z score of �1.5? Of –0.8?

4. For the following questions, assume a normal distribution for Antarcticans,
with a mean and SD equal to the values you found for the sample above.

(a) What percentage of Antarcticans would have body temperatures above
95.0°? Above 98.6°?

(b) What percentage of Antarcticans would have body temperatures below
95.0°? How does this compare to the PR you found for 95.0° in 2b? Explain
the relationship between the two answers.
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TEST  YOURSELF

1. Even if your data consist of numbers, it is not valid to perform arithmetic
operations on those numbers if your data were derived from

(a) a nominal scale.
(b) a discrete scale.
(c) a ratio scale.
(d) an interval scale.

2. If a participant’s attitude toward the death penalty is assessed on a scale
that consists of strongly opposed, somewhat opposed, slightly opposed,
neutral, slightly for, somewhat for, and strongly for, which of the following
types of scales is being used?

(a) A nominal scale
(b) An ordinal scale
(c) An interval scale
(d) A ratio scale

3. If your data have been measured on an ordinal scale, an appropriate way
to display the distribution is by means of

(a) a frequency polygon.
(b) a histogram.
(c) a bar graph.
(d) an ogive.

4. A major advantage of the stem-and-leaf plot as compared to other meth-
ods for displaying data is that

(a) all of the original data are preserved.
(b) any skewing of the distribution will be evident.
(c) it takes up less space.
(d) it displays data horizontally rather than vertically.

5. Which of the following will definitely be affected by taking an extreme
point and making it even more extreme?

(a) The mean
(b) The median
(c) The mode
(d) None of the above will be affected

6. It is not possible for more than half of the scores in a distribution to be
above

(a) the mode.
(b) the median.
(c) the mean.
(d) the mode, median, or mean.

S S
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7. Which of the following is unaffected by extreme scores?

(a) The range
(b) The interquartile range
(c) The mean deviation
(d) The standard deviation

8. If a constant is subtracted from all of the scores in a distribution,

(a) the standard deviation will be negative.
(b) that constant will be subtracted from the standard deviation.
(c) that constant will be added to the standard deviation.
(d) the standard deviation will be unchanged.

9. By inspecting a boxplot of your data, you can see

(a) all of the individual scores.
(b) the skewness of your distribution.
(c) the mean and SD of your distribution.
(d) the mode and mean deviation of your distribution.

10. If a distribution of raw scores is positively skewed, the distribution after
converting to z scores will be

(a) positively skewed.
(b) the standard normal distribution.
(c) negatively skewed.
(d) less skewed than the original distribution.

Answers: 1. a; 2. b; 3. c; 4. a; 5. a; 6. b; 7. b; 8. d; 9. b; 10. a.



In the previous chapter we mentioned several times that some statistics play a
more important role in the area of advanced statistics than others (e.g., the
standard deviation). When we used the term advanced statistics we were referring

to a branch of statistics called inferential statistics, which we introduce in this chap-
ter. Although sometimes you may want to do nothing more than describe the
scores that you have, more often it is not practical to measure everyone in the
population of interest, so you’ll want to use a sample to make a guess (an infer-
ence) about the population. The methods of inferential statistics can help you to
do that as accurately as possible. The type of inferential statistics we will be deal-
ing with in this chapter is called parametric statistics, because it involves estimating
(or drawing inferences about) the parameters of a distribution—in this case, the
normal distribution (whose parameters are the mean and standard deviation).
Parametric statistics requires that your dependent variable be measured on an in-
terval or ratio scale, and that will be one of the assumptions underlying the sta-
tistical methods in all of the following chapters except for the last. The last chap-
ter will cover the topic of nonparametric statistics.

SAMPLES AND POPULATIONS

Probably the simplest example of statistical inference is trying to guess the mean
of a population on a variable that has not been studied very extensively. For in-
stance, as a market researcher you may want to know the average number of
hours per week that Americans spend browsing the web. Obviously you’re not
going to be able to measure everybody! So if you want to estimate that quantity us-
ing the standard methods of inferential statistics as described in this book, the
first step is to decide on a sample size and then to obtain a random sample of the
population in which you are interested (in this case, Americans). Let us say that
you have decided to sample 100 residents of the United States. This is not a triv-
ial matter. To obtain a truly random sample you must strictly obey two rules:

Two
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(1) Everyone in the population must
have an equal chance of getting sam-
pled; and (2) selecting one particular
person must not affect the chances of
any other person’s being selected.
The second rule prevents you from
selecting whole families at a time,
for instance, or setting quotas (e.g.,
saying you have too many men at
one point so you must sample more
women). The resulting sample would
be called a simple or independent ran-

dom sample.

Random Sampling

Let us look at the difficulties involved
in obtaining a “simple” random
sample. You would have to have the name of every U.S. resident (not just those
with web access) in your database. A computer could do a pretty good job of pick-
ing 100 names at random, but you would have to contact every person selected
and get web-browsing information from each one. If anyone refuses to give the
required information, or cannot be contacted, the sample will not be truly ran-
dom (even if you replace those people with other randomly selected people). To
be truly random the sample must include the kinds of people who refuse to par-
ticipate in such surveys (those people might be higher or lower than the average
in their web browsing habits). Compliance is a greater problem in studies that re-
quire even more active participation than answering a few survey questions. Al-
though the accuracy of inferential statistics formulas rely, in part, on the assump-
tion that the samples have been randomly selected, such sampling is rare in the
social sciences—and yet these formulas are often used anyway. We’ll point out
as we go along how the lack of random sampling may impact your statistical
inferences in different types of research, and how researchers try to avoid the
problem.

If you are trying to estimate the mean web-browsing time for the population
from the data from a random sample the next step is to calculate the mean of the
sample. The sample mean (symbolized as X� or M ) provides a good point estimate

of the population mean (you will learn how to suplement your point estimate with
an interval estimate later in this chapter). Let us say that the average for your
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DON’T FORGET

When Will I Use the Statistics
in This Chapter?

You have measured a quantitative
variable on a random sample of cases,
and you want to use the information
you have to estimate the mean or
variance of the population from which
the sample was drawn. Alternatively,
the sample may have been given an
experimental treatment, or sampled
from a subgroup of the population,
and you want to determine if your
sample truly represents the larger
population, or whether it can best be
considered as coming from a popula-
tion with a different mean.



sample is 3.2 hours per week. Our best guess (i.e., point estimate) for the popula-
tion mean, therefore, is 3.2. Suppose, however, that instead of sampling 100
people, you decided to ask only 10 people. Should an estimate based on 10 people
be taken as seriously as an estimate based on one hundred people, or a thousand?
The answer is clearly no. To understand how seriously to take any estimate of a
population mean that is based on a random sample we need to understand how
different random samples from the same population can differ in the estimates
they produce. That is our next topic.

Sampling Distributions

Even though the population mean is a fixed number, different samples from that
population will almost always have different means. To see how much sample
means vary, first imagine that our random samples are the same size and that we
draw very many of them (always replacing the people drawn from one sample be-
fore drawing the next sample) from the same population. When we have enough
sample means they will form a fairly smooth histogram that represents the distri-
bution of the sample means. This distribution is called the sampling distribution of

the mean. If we instead found the median of each sample, these sample medians
would pile up into something called the sampling distribution of the median. However,
the sampling distribution of the mean (SDM) follows some simple statistical laws
that make it particularly easy to deal with.

One of these laws states that if the population follows an ND, then the SDM
will follow the ND as well. Although none of the variables of social science re-
search follow the ND exactly, some, like height, are pretty close, so we can be
sure that if we found the mean heights for equal-sized samples then these
sample means would follow a distribution very similar to the ND. In fact, even
variables whose distributions are far from the ND can have SDMs similar to the
ND, thanks to a very helpful statistical law known as the Central Limit Theorem

(CLT).

The Central Limit Theorem

The CLT states that, regardless of the shape of the population distribution, the
SDM will approach the ND as the size of the samples (not the number of
samples, which is assumed to be infinite, but the size of each of the equal-sized
samples) approaches infinity. For some very strangely shaped population distrib-
utions the sample size may have to be quite large before the SDM begins to re-
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Annual income per U.S. household0

Annual income
(averaged over 40 households at a time)

0

Figure 2.1 A, Distribution of annual income for the U.S. population; B, sam-
pling distribution of the mean for N � 40

semble the ND. But it is fortunate that for roughly bell-shaped, unimodal distri-
butions, even if quite skewed, the SDM begins to look surprisingly similar to the
ND even for modest sample sizes that are no more than 30 or 40.

As an example, let us look at annual income for households in the United
States. The population distribution is very (positively) skewed, as you can see in
panel A of Figure 2.1. However, if you take random samples of 40 households
each, the means of these samples will form a distribution that is much less
skewed, as shown in panel B of Figure 2.1. It may not be unusual to find one
household whose annual income is over $100,000, but if you select 40 households
at random and average their incomes together it is very unlikely that the mean of
this sample will exceed $100,000. Even if one of the 40 households has a very
large income it is likely that the other 39 households will be relatively close to the
population mean, thus limiting the influence of that one wealthy family on the
sample mean. You may notice that the SDM is not only more symmetric than
the population distribution of individuals, it is also less spread out. That is the
next point to be discussed.

A

B



Standard Error of the Mean

The laws of statistics tell us not only that the SDM will be more like the ND
than is the population distribution and that this resemblance increases with
sample size; they also tell us what the mean and standard deviation of the SDM
will be. The mean is easy. Is there any reason that the mean of all the sample
means should be any different from the population mean? (For example, if the
mean annual household income in the United States were $35,000, why would
samples of 40 households each consistently average to some lower or higher
amount?) So it should be easy to remember that the mean of the SDM is �, the
mean of the population. However, sample means won’t vary as much as indi-
vidual scores will. Suppose that you draw random samples of 1,000 men at a
time and calculate the mean height for the men in each sample. Can you imag-
ine these sample means varying much from each other? The larger the samples,
the less their means will vary. There is a simple law that connects the variability
of the sample means to the sample size, and it is expressed in the following for-
mula:

�
x�

� �
�

�

N�
� (2.1)

The symbol �
x�

stands for the standard deviation of the sample means, and
it has its own name; for purely historical reasons, �

x�
is called the standard error

of the mean (but it is literally the standard deviation of all the sample means). If,
for instance, � for the height of men is 2.5 inches, �

x�
for samples of 100 men

each would be a quarter of an inch (2.5/�100� � 2.5/10 � .25). Therefore, it
would be very unusual for a random sample of 100 men to have a mean that is
more than, say, one inch from the population mean. In fact, we can estimate

just how unusual that sample would
be using methods we will describe
next.

The z Score for Groups

To determine how unusual a particu-
lar sample is in terms of its mean on
some variable, we can calculate its z
score just as we would for individu-
als. The z score, modified for groups,
is as follows:
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DON’T FORGET
Compared to the distribution of indi-
viduals in the population, the sampling
distribution of the mean (i.e., the dis-
tribution of the means of random
groups from the population) is (1) less
skewed (unless, of course, the popula-
tion distribution is not skewed at all);
and (2) less spread out (i.e., its stan-
dard deviation, called the standard er-
ror of the mean, is less).



z � �
X�

�

�

x�

�
� (2.2)

Substituting Formula 2.1 into 2.2 yields Formula 2.2�:

z � (2.2�)

For instance, if the mean height of all men (�) is 69 inches with a standard de-
viation (�) of 2.5 inches, and a random sample of 100 men has a mean height of
70 inches, the z score for the random sample, according to Formula 2.2� is

z � � � �
.2
1
5
� � 4.0

Translating that z score into a statement about probability is easy because the
distribution of sample means for groups of 100 men (randomly sampled) mea-
sured on height will be so close to the ND that we can use the table of the stan-
dard ND without worry. Looking up z � 4.0 in Table A.1 shows us that only
.00003 (three out of one hundred thousand) or .003% of all such random samples
will be taller than the one we are testing. Therefore, the probability of selecting a
random sample that is taller than the one we are testing is .00003—a very unlikely
occurrence. It is safe to say that the sample we are looking at is unusual.

The z score for groups is not used very often in the social sciences, but more
complex variations of it are used very often as part of a system known as null hy-

pothesis testing (NHT). In this chapter we will introduce the concepts of NHT in
the context of the z score for groups. In subsequent chapters the z score formula
will grow in complexity (and change its name), but the concepts of NHT will re-
main essentially the same. To explain the need for NHT we first have to describe
a simple social science experiment.

NULL HYPOTHESIS TESTING

Suppose that you have invented a new method for teaching children how to read.
How would you go about testing its effectiveness? You would probably teach a
few students individually to perfect the technique, but ultimately you would want
to test the method on a randomly selected class of students. In fact, most exper-
iments in the social sciences are performed on groups of people rather than on a
few individuals. Researchers prefer groups in part because often they are looking

1
�
�
2
1
.
0
5
�

70 � 69
�
�
�

2
1
.5
00�
�

X� � �
�
�
�

�

N�
�
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for small or variable changes that are easier to see in a group than in a few indi-
viduals. For example, if you’re testing a drug that turns out to have an effect on
most but not all people, you might miss the effect if you looked at just a few in-
dividuals who happened to be part of the minority that does not respond to the
drug.

So now imagine that you have used your method to teach a class of 25 ran-
domly selected students and, at the end of the year, you gave them a standard
reading test. Of course, your first step would be to calculate the mean of the 25
scores. Let’s say the mean is 3.2. If the national average is 3.0 (these are students
in the third grade), you might find these results encouraging. However, many crit-
icisms of your experiment could be raised, and some of these would involve the
randomness of your sample. It is hard to obtain a truly random sample of the pop-
ulation of interest, but even if you had, there’s a surprisingly simple objection that
can be raised if you try to conclude that your class scored above the national av-
erage because of your new method. The fact is that, as we have mentioned before,
the means of random samples will not all be exactly the same as the population
mean. Even among random classes taught by the standard method, some will
score below and some above the 3.0 average. Some may even score above the 3.2
attained by the class taught by the new method. How can you know that the class
scoring 3.2 would not have scored just as highly if taught by the traditional
method? (The hypothesis that there is no difference between the new and the tra-
ditional method is called the null hypothesis.)

Unfortunately, you can never know the answer to that question with certainty.
However, it is rather easy to use the methods we have already discussed to deter-
mine the probability of a random sample taught by the traditional method scoring
a mean of 3.2 or higher. The lower that probability, the more confident you can feel
that your result is not an accident due to sampling. To find that probability you
must first find the z score for your class. If the national average on the test is 3.0
and � equals .6, and a class of 25 (N ) has a mean (X�) of 3.2, the z for that class is:

z � � � �
.1
.2
2
� � 1.67

If we assume that the sample means will follow a normal distribution (a fairly
safe assumption for N � 25), we can use the standard normal table to look for
the proportion of the ND beyond z � 1.67. That proportion, as can be seen in
Table A.1, is .0475. Therefore, if we select at random one sample of 25 students
and teach them by the traditional method, the probability is .0475 (a little less than
1 in 20) that that sample will score 3.2 or higher and thus tie or beat our experi-
mental group.

.2
�
�
.
5
6
�

3.2 � 3.0
�

�
�

.6
25�
�
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Alpha Levels and Type I Errors

We call this probability the p value for our experiment, and we hope that p will be
so low that we can ignore the possibility that our experimental results could be
produced by an unusually good class taught by the traditional method. How low
is low enough? This is a fairly arbitrary decision, but the widely held convention
in the social sciences is to use a probability of .05 as the cutoff. This probability
is called an alpha level. If the p for your experiment is lower than the alpha level you
are using, you can declare your results statistically significant, which basically means
that you are willing to ignore the objection that your results are really just a lucky
accident. To state that your results are statistically significant is to reject the null hy-

pothesis (in this case, the hypothesis that the new method would make no differ-
ence if you could test everyone in the population); it is always possible that the
null is true for your experiment, and that your significant results are really just a
lucky accident, but we have to draw a line and decide to take that risk at some
point.

If it turns out that you were wrong in dismissing the lucky-accident (i.e., null)
hypothesis, you have made what is commonly called a Type I error. In most cases
you never get to know for sure whether or not you have committed a Type I er-
ror, but to understand why social scientists are so concerned about deciding
whether their results can be called statistically significant or not it helps to un-
derstand statistical significance within the context of the scientific research com-
munity.

The Logic of Null Hypothesis Testing

Imagine that out of the thousands of social science experiments performed each
year some unknown percentage consists of null experiments. By a null experi-
ment we mean that the method or treatment being used is completely ineffective—
that is, it is no better than a placebo or whatever control condition it is being com-
pared to. The problem is that in many of these experiments it will look like the
experiment worked a bit just from luck (e.g., in the new reading method experi-
ment it could be that half the population actually performs better with the stan-
dard method, but the selected sample accidentally has an unusually high number
of students who prefer the new method). If the experiment produced positive re-
sults purely by accident, it would be misleading if the results were published,
which would suggest that the treatment does work. It would be a good idea to
screen out as large a percentage of these null experiments as possible in order to
prevent them from being published in a way that suggests the treatment is effec-
tive. This is where NHT comes in.
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It is generally easier to find the distribution of null experiments than a distri-
bution of experiments in which the treatments work. For a one-group experi-
ment involving a variable whose population mean and standard deviation are
known, the distribution of null experiments, known as the null hypothesis distribu-

tion (NHD) is simply the distribution of (random) sample means from the popu-
lation (i.e., the sampling distribution of the mean). If we allow only the top 5% of
the NHD to be called statistically significant, we are screening out 95% of the null
experiments. The 5% of null experiments that pass the test and get called statis-
tically significant are Type I errors because they are really null experiments. Set-
ting alpha at .05 means that we are setting the Type I error rate at 5%—that we
have decided to let the best 5% of null experiments be called statistically signifi-
cant, implying that their treatments do work at least a bit, even though they really
don’t.

Type II Errors

At this point you might well be thinking, “Why allow any null experiments to be
called statistically significant? Why not screen them all out?” The problem is that
we almost never know for sure when we are dealing with a null experiment. No
matter how good a result looks, there is always some chance (even if it is very tiny)
that it comes from a null experiment. So we cannot screen out all null experi-
ments without screening out all experiments. Perhaps you are thinking instead:
“Okay, but why allow a 5% rate of Type I errors? Why not reduce the rate to 1%
or even less?” To understand the consequences of making alpha smaller you must
keep in mind that it isn’t only null experiments that are being subjected to NHT;
experiments performed on treatments that really do work are subjected to the
same test. If a treatment works only slightly, it can easily produce results that do
not pass the test (i.e., the null hypothesis is not rejected), because the results look
like those often obtained by accident from null experiments. When a non-null ex-
periment does not get called statistically significant, another type of error has been
made: the Type II error.

Reducing alpha would require results to be stronger to pass the test, so a larger
percentage of weak but non-null experiments would fail the test, increasing the
rate of Type II errors (that rate is symbolized by the Greek letter beta, 	). The .05
alpha level is widely considered a reasonable compromise that keeps the Type I
error rate fairly low without letting the Type II error rate get too high. The Type
II error rate depends, in part, on just how “non-null” an experiment is (i.e., how
effective the treatment is). Because that is something we can only guess about in
a given case, we can only estimate Type II error rates roughly. Such estimations
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will be postponed until Chapter 6, when the topic of power will be discussed. The
probabilities involved in null hypothesis testing are summarized in Rapid Refer-
ence 2.1.

Critical Values

In our example, in which the effectiveness of a new reading method was tested,
the z score we calculated was looked up in Table A.1 to find the p value. This step
can be skipped if we find the z score that falls exactly on the borderline for our al-
pha level. If we look for .0500 in the “beyond z” column of Table A.1 we find that
it falls between z � 1.64 (.0505) and z � 1.65 (.0495), so we can say that a z score
of 1.645 falls on the borderline. Any z score larger than 1.645 (e.g., 1.65) will be
associated with a p less than .05 and will therefore be significant at the .05 level.
Any z score less than 1.645 (e.g., 1.64) will have a p greater than .05, and will fail
to reach significance at the .05 level. This borderline z score is called a critical z

score; for example, z � 1.645 is the critical z for a .05 test (symbolized z .05) that is
one-tailed (one- and two-tailed tests will be explained in the next paragraph).

Knowing the critical z for your alpha level saves you the trouble of looking up
the p value that corresponds to the z score for your experimental group. If your cal-
culated z is greater than the critical z , you know that your p value will be less than
alpha, and you can therefore reject the null hypothesis. Looking up critical values
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The Probabilities Involved in Null Hypothesis Testing

Null Hypothesis Null Hypothesis
Is Really True Is Really False

Results declared not significant Correct decision Type II error
(1 – alpha) (beta)

Results declared significant Type I error Correct decision
(alpha) (1 � beta 5 power of test)

Note: Alpha is set by the experimenter (usually the widely accepted .05 level). Beta is determined by
several factors, including the degree to which the null hypothesis is false (which is generally not known),
and can only be estimated roughly (this estimation will be covered in Chapter 6). The probabilities can
be meaningfully added down each column, but not across the rows. Each probability can be thought of
as the proportion of events in that column that will fall under that decision. For instance, 1 – alpha is the
proportion of null experiments that will be declared not significant.

Rapid Reference 2.1



is not necessary when you perform a statistical test by computer because your sta-
tistical program will give you the exact p value that corresponds to your z score.
However, occasionally you may need to calculate a statistical test by hand, and if
you need to compare your result to a distribution other than the normal, a table of
critical values can be very convenient, as you will see in subsequent chapters.

One- versus Two-Tailed Tests

There is one complication of the z test that we haven’t yet addressed. What if the
class taught by your new method obtained a mean of only 2.5? Would you want
to test it to see if this mean is significantly less than what is expected from the tra-
ditional method? Probably not. You would probably just work on figuring out
what went wrong. But if you were testing some controversial method that could
be counterproductive, you might be interested in testing both good (i.e., above
3.0) and bad results (it would be important to know that the new method is mak-
ing learning significantly worse than the traditional method). In this case, 5% of
the null hypothesis distribution reaches significance on the positive side, and an-
other 5% reaches significance on the negative side (see panel A of Figure 2.2).
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.05.05

Reject null
z = –1.645

Reject null
z = +1.645

Figure 2.2 A, A one-tailed .05 test in both directions leads to a total alpha of
.10; B, in a two-tailed .05 test, .025 (half of alpha) is placed in each tail

.025.025

Reject null
z = –1.96

Reject null
z = +1.96

A

B



The Type I error rate and, therefore, your alpha, would be .10 instead of .05 be-
cause you are performing a two-tailed test.

To keep alpha down to .05 when performing a two-tailed test you have to di-
vide alpha in half and put .025 area in each tail (as in panel B of Figure 2.2). The
critical zs for the two-tailed .05 test are �1.96 and –1.96 (you can see in Table A.1
that the area beyond z � 1.96 is .0250). The price you pay for being able to test a
result in both directions is that you need a stronger result to reach significance.

The one- and two-tailed distinction affects p values as well as the critical values.
When we looked up the area beyond z � 1.67 and found that our p value was .0475
we were finding a one-tailed p value. The two-tailed p value would be twice as
much (we are allowing for results as extreme as ours on both sides of the distribu-
tion): the two-tailed p equals 2 
 .0475 � .095. Notice that a z of 1.67 is significant
if a one-tailed test is performed ( p � .0475 � .05), but not for a two-tailed test ( p

� .095 � .05). Thus, it is understandable that statistics texts often tell students that
a two-tailed test should only be performed when you have no hypothesis about
which way the results will go, and that a one-tailed test should be used when you
have a clear prediction about the direction of the results. However, this is another
one of those cases where common practice tends not to match the textbooks.

It is rare that a researcher compares two experimental conditions without hy-
pothesizing about which condition will have the higher mean on some dependent
variable. However, it is also true that paradoxical results are common in the social
sciences. The publication of one-tailed tests implies a trust that the researcher
would not have tested results in the unpredicted direction no matter how inter-
esting. If, for instance, researchers routinely performed one-tailed .05 tests for re-
sults in the predicted direction, and then turned around and performed two-tailed
tests whenever the results turned out opposite to prediction, the overall Type I
error rate would really be .05 � .025 � .075, more than the generally agreed-upon
alpha of .05.

To be conservative (in statistics, this means being especially cautious about Type
I errors), the more prestigious jour-
nals usually require the two-tailed test
to be used as the default and allow
one-tailed tests only in special cir-
cumstances (e.g., results in the op-
posite direction would not only be
unpredicted, but they would be ri-
diculous or entirely uninteresting). If
you did plan to use a one-tailed test
but the results came out significant in
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C AU T I O N

To find a critical value for a two-tailed
test, first divide alpha by two, and then
find the z score with half of alpha in
the “beyond z” column of Table A.1.
To find a two-tailed p value, first find
the area “beyond” your z score, and
then multiply that area by two.



the other direction, you must repeat the experiment and replicate the results if
you want to publish them.

Problems with One-Sample Tests

Tests involving the comparison of the mean of a single sample to the population
mean offer a simple way to introduce NHT because the null hypothesis distribu-
tion is simply the sampling distribution of the mean. However, such experiments
are rarely performed. The biggest problem is finding a truly random sample. If the
group getting the new reading method is not a random sample of the population
it is not fair to compare its mean with the mean of the population. The group with
the new method may be from a geographical area that is more affluent or that dif-
fers in other ways from the population as a whole. This argument also applies to
nonexperimental cases. If you want to prove that left-handed students read bet-
ter than the national average you have to be sure that your sample of lefties is truly
representative of all lefties in the population and is not more affluent, better ed-
ucated, and the like.

Another problem that involves one-group experiments in particular is the lack
of a control group. Is it the specifics of the new teaching method that has in-
creased reading scores, or would any experimental treatment make the students
feel special and increase their motivation to learn? With a carefully designed con-
trol condition this question would not arise. Finally, it was easy to find the NHD
because our example was dealing with a variable (reading scores) so well studied
in the population that we can assume we know its mean and standard deviation.
More often, researchers are dealing with a variable for which � and � are not
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DON’T FORGET
The procedure of finding a z score for groups for your experimental sample, and
then determining whether it is statistically significant, requires the following as-
sumptions to be true:
1. The sample must have been obtained by independent, random sampling of the

population to which you are comparing it.
2. The variable you are measuring should have a normal distribution in the popu-

lation, but (thanks to the Central Limit Theorem) little accuracy is lost if the
distribution is not extremely different from the ND and the sample size is at
least about 30.

3. The standard deviation of the new population, represented by the sample, is
not different from the standard deviation of the population to which you are
comparing it. Of course, the mean of the new population may be different—
that is what you are testing.



known. However, If the goal is to estimate the population mean, the z score for
groups can be used in a backward way to provide an answer. This will be described
next.

INTERVAL ESTIMATION

Earlier we mentioned that the mean of a random sample can be used as a point
estimate of the population mean but that the drawback of this is that no distinc-
tion is made between estimates from small samples and estimates from large
samples. The solution is to supplement your point estimate with an interval estimate

that does account for sample size. The larger the interval that we use for estima-
tion, the surer we can be that the population mean is in that interval, but, of
course, smaller intervals are more useful, so some compromise must be made. If,
for instance, the probability is .95 that the population mean is in the stated inter-
val (over many intervals), then we say that our confidence level is 95%. The in-
terval is therefore called a 95% confidence interval (CI). This implies that 5% of our
CIs will be wrong: They will not contain the population mean. You will recall that
5% is the rate commonly tolerated for Type I errors, so it should not be surpris-
ing that the 95% CI is the most common one. Once a CI percentage is chosen,
the width of the CI depends in part on the sample size, as we will see next.

Creating Confidence Intervals

The first step in constructing a CI is to put the sample mean in the middle. We can
then imagine that the possible values for the population mean form a normal dis-
tribution around that point, as in Figure 2.3. To create a 95% CI we want to cap-
ture the middle 95% of this distribution, which means that .025 area will be in
each tail. The z scores that fall on these boundaries are –1.96 and �1.96. You
should recognize these as the critical zs for a .05, two-tailed significance test. The
final step is to convert these z scores back into raw scores. Because we are deal-
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Figure 2.3 The 95% confidence interval

Middle
95%

2.5%2.5%

z = –1.96 z = +1.96X
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ing with sample means instead of individual scores it is the z score for groups that
must be used. If we solve Formula 2.2 for �, which is what we are trying to find,
we get:

� � X�  z crit �
x�

(2.3)

The plus-and-minus sign reminds you to solve the formula twice: With the minus
sign you get the lower boundary of the CI (�lower ), and with the plus sign the up-
per boundary (�upper ).

Let’s calculate an example. Suppose that 100 people are sampled at random and
their average web browsing time per week is 3.2 hours (X�) with a standard devia-
tion of 2.5 hours (�). Because we don’t know � for the population, we have to use
� from our sample as an estimate. Thus, the estimated standard error is �

x�
� 2.5/

�100� � 2.5/10 � .25. According to Formula 2.3, the limits of the 95% CI are

�lower � 3.2 � 1.96(.25) � 3.2 � .49 � 2.71

�upper � 3.2 � 1.96(.25) � 3.2 � .49 � 3.69

The Size of Confidence Intervals

We can now say with 95% confidence that the mean of the population we sam-
pled is somewhere between 2.71 and 3.69. Put another way, if we constructed

95% CIs for a living, 95% of them
would contain the population mean
and 5% would not. If we want to
make fewer mistakes, say, only 1%,
we would have to construct 99% CIs,
which would entail using z .01, two-
tailed (2.575), instead of z .05, two-
tailed. For the example above, the
99% CI would be 2.56 to 3.84.

One way to make your CI nar-
rower is to decrease the confidence
level (e.g., 90%), but this can produce
an unacceptably high rate of errors. A
better way to narrow your CI, if it is
economically feasible, is to increase
your sample size. In the above ex-
ample if your sample size were 400
with the same X� and �, the estimated
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Factors Affecting the Size of
a Confidence Interval

• You can make your CI smaller by
decreasing your confidence (e.g.,
from 95% to 90%), but this will in-
crease errors (CIs that don’t con-
tain the population mean).

• You can make your CI smaller by in-
creasing your sample size (which
decreases the standard error), but
this can be too expensive.

• Your CI will be smaller when you
are dealing with a variable that has a
smaller standard deviation, but that
is not a factor that you can control.

Rapid Reference 2.2



standard error would be reduced to .125, so the 95% CI would then range from
2.955 to 3.445 (multiplying your sample size by a constant C divides the width of
your CI by the square root of C, so in this case, multiplying N by 4 resulted in a
CI half as wide). The factors affecting the size of a CI are summarized in Rapid
Reference 2.2.

ESTIMATING THE POPULATION VARIANCE

In the preceding example we used � from a sample to estimate the population �.
If your sample is very large, the amount of error involved in this estimation may
be small enough to ignore. This would be the case in most marketing research
aimed at estimating a population mean (sample sizes typically are in the hundreds
if not the thousands). However, social scientists are sometimes stuck with small
samples (e.g., patients with a rare disease; fossilized jawbones from a particular
prehistoric animal) and yet they would still like to estimate a population param-
eter. In such cases the error involved in estimating a population � from a sample
can be too great to ignore. In the next chapter, you will learn how to compensate
for estimates made from small samples. In the meantime, we need to point out
that � from a sample tends, on average, to underestimate the � of the correspond-
ing population (the problem gets worse as the sample gets smaller). This problem
is easily corrected for, as we show next.

The Unbiased Sample Variance

Mathematically, it is often easier to work with variances than SDs, so we begin by
pointing out that �2 from a sample tends to underestimate the �2 of the corre-
sponding population. This makes �2 from a sample a biased estimator of the popu-
lation �2. This is not a desirable property of an estimator, but fortunately the bias
in this case is easily corrected. It turns out that the mean of all the possible sample
�2s is (N – 1)/N times the population �2. Therefore, if we multiply each �2 by N/
(N – 1), we can compensate for this bias, and the average of our sample variances
will be exactly equal to the population variance. Let’s see what that does to our
formula for the sample variance. Multiplying Formula 1.3 by the compensating
factor we get

Unbiased sample variance � ��NN

� 1
���∑(X

N

i
� �)2

���
∑(X

i

N

� �)2

�

Because this new formula gives us a different (slightly larger) value for the variance
of a sample, it should have a different symbol. In keeping with a general trend to
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use Greek letters for population parameters and corresponding Roman letters for
the sample statistics that estimate them, the unbiased estimator of sample variance
will be symbolized by s 2. This gives us the following new formula:

s 2 ��
∑(

N

X
i

�

�

1
X� )2

� (2.4)

Note that X� is substituted for � because when we don’t know the variance of the
population we usually don’t know � either, but when we have a sample we can al-
ways calculate the X� for that sample and then calculate s 2 around X�. Some texts
use two versions of s 2 (e.g., one with a “hat” and one without; one capitalized, and
one not; etc.) to represent the two ways of calculating the variance of a sample—
that is, biased (Formula 1.3 with X� instead of �) or unbiased (Formula 2.4). How-
ever, we see so little use for the biased sample variance that we will not bother in-
troducing a separate symbol for it. When you see �2 in this text you’ll know that
the set of numbers it is based on is being viewed as a population, and just N is in
the denominator. When you see s 2 you’ll know that it represents the SD of a
sample, and that N – 1 is being used in the denominator, as in Formula 2.4.

The Unbiased Standard Deviation

The correction factor for sample variance can be applied just as easily to the stan-
dard deviation of a sample. In particular, the result of the following formula is
commonly referred to as the unbiased estimate of the standard deviation or the unbiased

standard deviation.

s ��� (2.5)

Although s is not a perfectly unbiased estimate of the population �, it is close
enough for practical purposes and is much better than using Formula 1.4 with X�
for �. (The reason that s is not perfectly unbiased when s 2 is involves the fact that
the square root of an average is not the same as averaging the square roots. For
example, if you start with 16, 25, and 36, the average of the square roots is exactly
5, but the square root of the average of these three numbers is 5.0666.) Bear in
mind that � is fine for descriptive purposes, but when drawing inferences about
the population, especially from small samples, using s is more accurate.

The Concept of Degrees of Freedom

The use of N – 1 as a substitute for N to correct the bias problem is usually ex-
plained in terms of an important concept known as degrees of freedom, or df for short.

∑(X
i
� X�)2

��
N � 1
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You can see from the formulas that s and s 2 are based on deviations from the mean
of a sample. However, if you have 10 scores in a sample and you have calculated
X�, only nine deviations from the mean (df � N – 1) are free to vary. Once you
know the mean and nine of the deviations, the 10th deviation will be whatever
must be added to the other nine to make zero. This also works in terms of the
scores themselves. If I tell you that the mean of five scores is 6 and that four of
the scores are 4, 4, 5, and 9, you should be able to tell me that the fifth score is an
8 (the sum is N X� � 5 
 6 � 30, so 4 � 4 � 5 � 9 � X � 30, so X must equal 8).

If we define the sum of squares (SS) for a sample as Σ(X – X�)2, the unbiased
variance can be expressed as s 2 � SS/df, and the unbiased SD as s � �SS/df�. An-
other way to understand the concept of df is that it is the number of pieces of in-
formation you get about the population � from a sample when you don’t know
the population mean. Recall the exercise at the end of the previous chapter and
imagine that you discover just one Antarctican, and you measure his or her body
temperature. If you know the population mean for Antarcticans (perhaps it is
98.6°F), then you have one piece of information about variability. However, if
you have no idea what the population mean might be, one Antarctican gives you
no information about variability at all (but you do have one piece of information
about what the population mean might be). It is when you have two Antarcticans
that you have one piece of information about population variance, namely the
difference in temperature between the two of them (df � N – 1 � 2 – 1 � 1).
Only if you knew the population mean would two Antarcticans provide two
pieces of information about �.
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Putting It Into Practice
1. In the previous chapter you were given body temperatures for 25 Antarcticans

and asked to calculate descriptive statistics. Now you can test whether the
Antarcticans differ from the known human population.
(a) Using the mean and the unbiased standard deviation of the 25 scores, cal-

culate a z score comparing the sample to a population that has a mean of
98.6 degrees, and then test that z score for statistical significance at the
.05 level with a two-tailed test (in the next chapter, you will learn a more
accurate way to test for significance when you don’t know the population
standard deviation and your sample size is fairly small, as in this exercise).

(b) If the sample were 100 instead of 25, but with the same sample mean and
unbiased SD, what would be its z score? Would the results be significant
at the .01 level with a two-tailed test? With a .01 one-tailed test in the cor-
rect direction? (Optional: What shortcut could you have used to find the
new z score without using the whole z score formula?)

(continued )
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(c) Based on the 25 scores, find the 95% CI for the mean body temperature
of all Antarcticans. How can you tell from this CI whether the results in
part a would be significant at the .05 level?

(d) For the example in 1b—N � 100—find the 99% CI.
2. Suppose that the movie industry wants to know how often college students go

to the movies. Sixteen college students are selected at random from the United
States and asked how many movies they have seen in a theater in the previous
year. The data are as follows: 7, 13, 0, 10, 2, 8, 4, 11, 0, 5, 16, 6, 2, 12, 9, 0.
(a) What is your point estimate for the mean number of movie theater visits

by all college students in a year?
(b) Find the 95% confidence interval for the mean of all college students.
(c) Suppose that the U.S. national average for movie visits in a year is 9.0. If al-

pha is set to .05, can you reject the null hypothesis that the population
mean for college students is the same as the mean for the general popula-
tion, using a two-tailed test? Show how you can use the CI you found in
2b to answer this part.

TEST  YOURSELF

1. A sampling distribution is

(a) the distribution within any one sample from a population.
(b) one distribution randomly selected from many possible distributions.
(c) a distribution in which each of the individuals has been sampled from the

same population.
(d) a distribution of sample statistics, each from a different random sample of

the same population.
2. The standard error of the mean will be approximately equal to

(a) the standard deviation of many sample means.
(b) the mean of many sample standard deviations.
(c) the mean of many sample means.
(d) the standard deviation of many sample standard deviations.

3. The Central Limit Theorem applies only when

(a) the size of the samples is infinite.
(b) the variance of the population distribution is infinite.
(c) the shape of the population distribution is normal.
(d) each selection in a sample is independent of all other selections.

4. Which of the following conditions requires that rather large sample sizes
must be used before the sampling distribution resembles the normal dis-
tribution?

(a) A strongly skewed population distribution
(b) A very large population variance
(c) A small, finite population
(d) All of the above

S S
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5. If the population distribution is positively skewed, which of the following
will be true about the shape of the sampling distribution of the mean for
a sample size of 10?

(a) It will be the same as the population distribution.
(b) It will be less positively skewed than the population distribution.
(c) It will be negatively skewed.
(d) It will be the same as the normal distribution.

6. Heart rates for a group of 25 joggers were measured, and the mean of
the group was found to be 65 beats per minute (bpm). If the mean of the
population is 72 bpm with a standard deviation of 10, what is the z score
for this group compared to other groups of the same size?

(a) –.7
(b) –3.5
(c) –7.0
(d) –17.5

7. The main advantage of a one-tailed test over a two-tailed test is that

(a) only half the calculation is required.
(b) only half of the calculated t value is required.
(c) there is only half the risk of a Type I error.
(d) a smaller critical value must be exceeded.

8. As the calculated z score for a one-sample test gets larger,

(a) p gets larger.
(b) p gets smaller.
(c) p remains the same, but alpha gets larger.
(d) p remains the same, but alpha gets smaller.

9. Compared to Type II errors, Type I errors

(a) are more directly controlled by null hypothesis testing.
(b) are more difficult to detect.
(c) are more likely to lead to the abandonment of a line of research.
(d) are far more common in psychological research.

10. Of all the 95% confidence intervals for the population mean that you con-
struct, about what percent will contain the sample mean?

(a) About 5%
(b) About 95%
(c) 100%
(d) It depends on the sample sizes that were used.

Answers: 1. d; 2. a; 3. d; 4. a; 5. b; 6. b; 7. d; 8. b; 9. a; 10. c.



Three

THE TWO-GROUP t TEST

THE INDEPENDENT-GROUPS t TEST

In the previous chapter, we described one-group hypothesis tests and ex-
plained why they are rarely performed. Indeed, the value of knowing about
one-group tests has less to do with applying them to data sets than it has to do
with the basis they provide for understanding more advanced hypothesis tests.
Fortunately, the NHT concepts explained in the previous chapter will apply,
with very little modification, to the two-group case, which is frequently used.
In fact, when participants are matched in a two-group test, the procedure re-
duces to a one-group test, as will be described later in this chapter. We will be-
gin this chapter by describing a possible one-group experiment, and then we
will show you how to create and analyze a two-group experiment, as a better al-
ternative.

Many drugs are now available for lowering blood pressure, but suppose that
you have been asked to develop a drug for those suffering from low blood pres-
sure. That is, you want a drug that raises blood pressure. As an initial test of your
new drug, you could give it to a random sample of people, measure their blood
pressure after the drug has taken effect, and perform a one-sample significance
test against the average blood pressure for the population to see if the null hy-
pothesis (that the drug doesn’t work at all) can be rejected. We can perform a one-
group test because blood pressure has been measured so extensively that we have
a very good estimate of the mean and standard deviation in the population. But a
significant result for our test would hardly be conclusive. Did the blood pressure
in your sample rise because the drug worked or because the participants were re-
acting fearfully to being given a dose of some new drug? You can’t say for sure. Is
your sample truly a random one from the population? Practical considerations
make that very unlikely. It is possible that you accidentally drew your sample from
a segment of the population that is particularly responsive with respect to blood
pressure.

48
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DON’T FORGET

When Will I Use the Statistics in This Chapter?

You are measuring one outcome (i.e., dependent) variable on a quantitative scale,
and
• You are comparing the means of two groups that represent existing popula-

tions (e.g., cholesterol levels of vegetarians and people who eat meat).
• You have randomly assigned participants to one or the other of two experi-

mental treatments or conditions (e.g., drug group and placebo group). The par-
ticipants may be matched in pairs before being randomly assigned to the two
groups, or the two groups may be completely independent.

• You are measuring the same participants under two different conditions (e.g.,
each participant performs a task while listening to music and also performs the
same task in silence), or before and after some treatment (e.g., the intensity of
a phobia is measured before a new type of therapy, and then again after the
patient has been in that therapy for six months).

The Two-Group Experiment

A much better way to do the blood pressure experiment is with two groups. One
random sample gets the drug, while the other random sample is given a pill that
looks and tastes the same but has no active ingredients (i.e., a placebo). Now if
the drug group ends up with higher blood pressure on average it can’t be due to
the situation of taking a new drug. (The ideal way of doing this experiment is
called double-blind—neither the participants nor the experimenters know who is
getting the drug and who is getting the placebo [code numbers are used to keep
track] until the experiment is completely finished.) The problem of truly random
samples is solved by selecting one large sample of convenience (in this case, per-
haps people seeking treatment for low blood pressure) and then randomly as-
signing participants to the two conditions (e.g., drug or placebo). This method
isn’t perfect (as we will point out later, in our discussion of assumptions), but it
does ensure that the groups will almost always be very similar and that, over many
experiments, there will not be a systematic bias favoring either the drug or the
placebo group. A two-group experiment could be comparing two experimental
treatments (e.g., a new form of therapy and a traditional form of therapy) or one
experimental treatment with a control group, as in our blood pressure example.

The Two-Group z Score

Suppose that your drug group ends up, on the average, with higher blood pres-
sure than the placebo group. You still have to answer the criticism that your re-



sults could be due entirely to chance (e.g., it may be that the blood pressure in-
creases you observed in the participants of both groups are due to fear reactions,
and that by accident the drug control group wound up with more fearful partici-
pants than the placebo group). In order to dismiss the possibility that you got
your good-looking results by accident (i.e., the null hypothesis), you first have to
figure out the distribution of null experiments (i.e., experiments just like yours ex-
cept neither group gets any treatment).

In the two-group case, you could find this distribution (i.e., the NHD) by tak-
ing two samples from the same distribution, subtracting their means, and doing
this over and over. Fortunately, you don’t have to. We know that these differences
of means usually will pile up into an approximate normal distribution, and if the
two samples are coming from the same population (or two populations with the
same mean—we will point out the distinction later), this distribution will be cen-
tered at zero. So all we need to know for our hypothesis test is the standard devi-
ation of this NHD, which is called the standard error of the difference (�

x1–x2
).

Then we can create a z score for our experimental results as follows:

z � (3.1)

Compared to the one-group test (Formula 2.2, Chapter 2), it’s like seeing double.
In the one-group case, the numerator of the z score is the difference between

your specially treated (or selected) group and the mean you would expect to get
if the null hypothesis were true. The denominator (i.e., the standard error of the
mean) is a typical difference you would get for the numerator when the null hy-
pothesis is true (according to the normal distribution, about two thirds of the nu-
merator differences will be smaller than the typical difference in the denomina-
tor, and one third will be larger). In the two-group case, the numerator is the
difference between the difference of groups you observed (X�1 – X�2 ) and the dif-
ference you expected (�1 – �2 ). Because the expected difference (i.e., the null hy-
pothesis) is almost always zero for the two-group case (H0: �1 � �2, so �1 – �2

� 0), we will leave that term out of the numerator in the future. The denomina-
tor is a typical difference of two sample means when H0 is true.

The Standard Error of the Difference

To find �
X� (the standard error of the mean) in Chapter 2 we used a simple law,

�
X� � �/�N�. There is a similar law that applies to the two-group case. But to

make sure you see the similarity, let us change the formula for the standard error
of the mean to this equivalent form:

(X�1 � X�2 ) � (�1 � �2)
���

�
X�1�X�2
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�
X� � ��

�

N

2

��
(the square root of a ratio equals the ratio of the two square roots).

The formula for the standard error of the difference is

�
X�1�X�2

���
�

n1

2
1� � ���

n2

2
2�� (3.2)

The notation n1 and n2 represents the sample sizes for the two groups and allows
for the fact that your drug and placebo groups could have different numbers of
participants. The subscripts on �2 allow for the case in which you are sampling
from two different populations with the same mean but different variances. This
is a situation that will be explained later under the topic of homogeneity of vari-
ance.

Calculating a Test Comparing Two Groups

In the case of blood pressure, we can use the variance in the general population
for both �2

1 and �2
2 . Let’s say we are measuring systolic blood pressure (the peak

pressure in each heart beat cycle) in mm Hg (millimeters of mercury), and we
know the standard deviation in the population to be 20, so �2 � 400. If after tak-
ing the drug, 15 participants average 143 mm Hg, and after taking placebos, a sep-
arate set of 10 participants averages 125, the z score would be

z � � � �
8
1
.1
8
7

� � 2.2.

With an 18-point difference between the two means we can reject the null hy-
pothesis (2.20 > 1.96) and conclude that the drug led to significantly higher blood
pressure.

The problem with Formula 3.2 is that it requires that you know the population
variance. There are very few variables that meet this criterion, other than well-
studied aspects of human physiology. If two groups of participants memorize a
list of words created for your study—one group while listening to happy music,
and the other while listening to sad music—you cannot use Formula 3.2 to find
the standard error for comparing their means for recall of those words: No one
knows what �2 is in this case! However, if your groups are very large (e.g., if both
are in the hundreds), the variances of the recall scores within the groups are good

18
��
�26.7 �� 40�

143 � 125
��

��
4

1

0

5

0
� ���

4

1

0

0

0
��



estimates of their respective population variances, so you can use a slight modifi-
cation of Formula 3.2. Inserting the modified version of Formula 3.2 into For-
mula 3.1 yields

z � (3.3)

where s2
1 and s2

2 are the unbiased variances of the scores within each group.
On the other hand, if your groups are small (as in the blood pressure example),

the sample variances cannot be trusted very well as estimates of the population
variance, and this introduces some additional error into your z scores. Occasion-
ally, your z score will be accidentally very large (or very small) because the sample
variances are accidentally very large (or very small), and not because of a very
large (or very small) difference in the means. Because z scores calculated by For-
mula 3.3 do not follow the normal distribution very well when the samples are
small, you cannot use the critical values for the normal distribution to make your
statistical decisions. Fortunately, there is a well-understood distribution, similar
to the normal distribution, which can be used in this case. To explain this new dis-
tribution, it will help to go back to the one-group case.

The t Distribution

If you are drawing random samples from the population, one sample at a time,
and you calculate your group z scores using s from the sample instead of � from
the population—z � ( X� – �)/s/�N�—these z scores will follow a distribution
that has more values that are extreme than the normal distribution (thicker tails
of the distribution, because some z’s are large due to accidentally small s’s), and
more tiny values (sharper peak in the middle caused by accidentally large s’s), and
fewer moderate values. This distribution is called the t distribution; it is sometimes
called Student’s t distribution, because William Gossett, who first described the ap-
plication of this distribution to null hypothesis testing, published his paper under
the pseudonym “Student” (the beer company he worked for in the early 1900s
wouldn’t allow him to publish under his own name). Actually, there is a whole
family of t distributions; as the samples get smaller, the s’s become more unreli-
able as estimates of � and the tails of the t distribution get thicker.

Mathematically, the t distributions are described in terms of a single param-
eter—not the size of the samples exactly, but the degrees of freedom that divides
the SS to create s 2. Fortunately, the degrees of freedom are just N – 1 in the one-

X�1 � X�2
��

��
n

s 2
1

1

� � �
n

s�2
2

2

��
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sample case. Before it became routine to calculate t tests by computer, researchers
relied on a table of critical values for the t distribution to make their decisions. Such
a table is included in Appendix A. Looking at Table A.2, you can see that as df gets
larger (because N is getting larger), the critical values get smaller (because the tails
of the distribution are getting thinner) until they are very similar to the critical val-
ues of the normal distribution. In fact, when df becomes infinitely large (indicated
by the infinity symbol, �), the t distribution becomes identical to the normal dis-
tribution; the bottom row of the t table contains the critical values for the normal
distribution. Notice that as alpha gets smaller, the critical values get larger—you
have to go further out on the tail to reduce the area beyond the critical value. Also
notice that the critical value for a .025 one-tailed test is the same as for a .05 two-
tailed test (except that for the two-tailed test you actually have two critical values:
the value in the table preceded by either a negative or a positive sign).

The Separate-Variances t Test Formula

Strictly speaking, Formula 3.3 follows a normal distribution only for infinitely
large samples, but it always follows a t distribution. So a more general formula
would change the z to t:

t � (3.4)

The only question is which t distribution is appropriate for this formula—that
is, what are the df in this case? You might think that for two groups, df � n1 � n2

– 2, and sometimes that is true, but that value for df is usually not appropriate
when using Formula 3.4. This formula produces what is called the separate-

variances (s-v) t test, and unfortunately, finding the df for this test can be tricky.
Generally, the df must be reduced below n1 � n2 – 2 for the s-v test (the df can get
as low as n1 – 1 or n2 – 1, whichever is smaller). The logic of exactly why this cor-
rection is necessary and the details of its calculation are beyond the scope of this
book, but these areas are covered well in other texts (e.g., Howell, 2002). Al-
though computers can now easily find an approximate value for df to test the t
from Formula 3.4, the more traditional solution is to calculate the t test a differ-
ent way, so that the df come out to a simple n1 � n2 – 2. This solution requires that
we assume that the two populations from which we are sampling have the same
variance. This assumption is called homogeneity of variance, and we will have a good
deal to say about it shortly.

X�1 � X�2
��

��
n

s 2
1

1

� � �
n

s�2
2

2

��
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The Pooled-Variances t Test Formula

If you assume that both populations have the same variance (�2 ), you can assume
that s2

1 and s2
2 are estimating the same thing (i.e., �2 ). It follows then that an aver-

age of the two sample variances is a better estimate of �2 than either alone. How-
ever, if one sample is larger than the other, it makes sense that the larger sample
be weighted more heavily in the average. The weighted average of the two sample
variances is called the pooled variance and is calculated according to Formula 3.5:

s
p

2 � (3.5)

Because s 2/(n – 1) � SS, you are really adding the SSs of the two groups and then
dividing by their total df. If you substitute the pooled variance (s

p

2 ) for each of the
variances in Formula 3.4, you get the formula for the pooled-variances (p-v) t
test:

t �

Because mathematical people love to factor out common terms, the formula
is more frequently written in this form:

t � (3.6)

The nice thing about this formula is that it follows the t distribution with df �
n1 � n2 – 2 when the two populations have the same variance. The procedures for

both the p-v and s-v t tests are sum-
marized in Rapid Reference 3.1.

Testing for Homogeneity
of Variance

If both of your samples are the same
size, you will get the same t value
whether you use the p-v or s-v for-
mula, and it is well agreed that you
can use 2n – 2 as your df (where n is
the size of each of your groups). How-

(X�1 � X�2 )
��

�s
p

2��
n

1

1

� �� �
n

1

2

���

X�1 � X�2
��

��
n

s
p

2

1

� � �
n

s�p

2

2

��

(n1 � 1) s2
1 � (n2 � 1) s2

2
���

n1 � n2 � 2

To calculate a pooled-variance t
test: Use Formulas 3.5 and 3.6, and
df � n1 � n2 – 2. You can look up a
critical value in Table A.2.
To calculate a separate-
variances t test: You can use For-
mula 3.4, but it is best to let a com-
puter calculate the adjusted df and
corresponding p value.

Rapid Reference 3.1
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ever, if your sample sizes are not the same, the two procedures will give different
t values, so you have to decide which to use. If it is reasonable to assume that the
two populations have the same variance, the p-v test is more powerful (i.e., more
likely to yield significance when appropriate); if that assumption is not reason-
able, the p-v test may be too liberal (i.e., loose about Type I errors), making the 
s-v test the safer bet. (Although your two groups of participants may literally
come from the same population, it is possible that one treatment affects variance
more than the other, even if there is no difference in population means.) When
the n’s are not equal, it is important to compare the two sample variances to see if
they could both reasonably represent the same population variance.

If one variance is less than two times the other, you should probably use the p-
v test, but fortunately statistical software can perform a significance test for you
to determine whether homogeneity of variance is a reasonable assumption given
your sample variances and sample sizes. For example, the Statistical Package for
the Social Sciences (SPSS) automatically tests your variances for equality when-
ever you do a t test: You don’t even have to ask for it! The test that SPSS uses is
called Levene’s test, and it tests the null hypothesis that your variances are equal. If
Levene’s test produces a significant result ( p � .05), you should proceed as
though the population variances are not equal, and perform the s-v t test. It is also
fortunate that most statistical packages can find the df and p value for an s-v test,
in case Levene’s test is significant. (SPSS automatically computes both the p-v t
test [ labeled equal variances assumed ] and the s-v t test [ labeled equal variances not as-

sumed ] whenever a t test is requested.) However, the results of only one of these
tests should be reported in a research article; a simple rule for when to report the
results of a p-v or s-v t test is given in Rapid Reference 3.2.

Interpreting the Results of a
Homogeneity of Variance Test

It makes sense to compare your vari-
ances with a homogeneity test not
just to help you decide which type of
t test to use, but, more interestingly,
to see if your treatment may be push-
ing your participant’s scores further
apart, or even homogenizing the
scores (moving participants at either
extreme closer to the middle). For
instance, it has been found that just
taking a depression test can make

When to Use the Pooled- or
Separate-Variances t Test

Report the pooled-variance t test if your
sample sizes are equal or your sample
sizes are not equal, but your sample
variances do not differ significantly.
Report the separate-variance t test if
your sample sizes are not equal and
your sample variances differ signifi-
cantly.

Rapid Reference 3.2
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slightly depressed participants more depressed and happy participants even hap-
pier, thus increasing variance. Giving amphetamines to young boys can reduce ac-
tivity in the hyperactive ones and raise the activity in the quiet ones, possibly re-
ducing variance. A homogeneity of variance (HOV) test like Levene’s test can
indicate that something like this is happening, even when there is little difference
in the means of the two groups.

On the other hand, a significant difference in the two variances does not al-
ways signify an interesting result. Variances are very susceptible to outliers (ex-
treme scores), and having a skewed distribution or just a few outliers in one group
but not the other can cause a significant difference in variances. The outliers may
or may not reflect some interesting result (e.g., the instructions may be more
complicated in one condition than another, leading to some extreme mistakes in
that condition). Whereas it is always a good idea to look at the distribution of
scores in each of your samples to see if anything strange is going on, a significant
HOV test is a strong signal that you must take such a look. Sometimes a data trans-
formation that minimizes extreme scores, or a justified elimination of outliers,
will render the two variances homogeneous and suitable for a p-v test. Other
times it is appropriate to sort the participants in your study according to their re-
sponses to your treatment and try to account for these differences with whatever
information you have about your participants. This can lead to the design of a fol-
low-up study.

Reporting Your Calculated t Value

Let us say that you have calculated a t value of 2.4 for an experiment comparing
a group of 20 participants with a group of 30 participants, and you want to report
it. The format used by the style manual of the American Psychological Associa-
tion (2001) is the following: t (48) � 2.4, p � .05. The “48” represents the df for
the p-v test, n1 � n2 – 2. If you were reporting an s-v test, you would include in-
stead the df reported by your statistical package, which will be somewhere be-
tween 19 (the df for the smaller group alone) and 48 (the df for the pooled test)
and is likely to involve a fractional value (e.g., 37.6). Reporting that your p is � .05
makes it clear that your results are statistically significant at the .05 level; other-
wise, you might state “p > .05” or “n.s.” (short for “not significant”). Note, how-
ever, that two trends are becoming increasingly common due to the use of statis-
tical software: (1) reporting p exactly as given in your computer output (e.g., p �

.003), or (2) reporting p in terms of the lowest possible alpha at which it would be
significant (e.g., p � .005 or p � .0001). Exact p’s are rarely reported for p > .05,
unless p is close to the borderline of significance and the author wants you to no-
tice this (e.g., p � .055 or, perhaps, p � .07).
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The Assumptions of the Two-Group t Test

1. The DV is measured on an interval or ratio scale. As mentioned in the pre-
vious chapter, this level of measurement is required to validly calculate
means and standard deviations, and therefore to perform parametric sta-
tistics. If you can place your participants in order on your DV (e.g., rank
them for creativity shown in writing a story) but cannot quantify the DV
more precisely than that, you can use a nonparametric version of the t test
(e.g., the Mann-Whitney test), as described in Chapter 9.

2. The DV has a normal distribution in both populations. If the DV is normally
distributed in both populations (e.g., drug and placebo), the differences of
the sample means will also follow a normal distribution, and when divided
by the appropriate estimate of the standard error of the difference will fol-
low a t distribution. Fortunately, just as in the one-sample case, the CLT im-
plies that with large enough sample sizes we can use the t distribution for
our critical values even though our DVs are not very normal. This is fortu-
nate because social scientists often deal with DVs that have skewed distri-
butions, like annual income. Even with extremely skewed distributions,
samples of at least 30 or 40 participants each lead to t statistics that follow
the t distribution quite well. However, if the distribution of your DV is very
far from normal and you are using small sample sizes, you should consider
using either a data transformation that normalizes your distribution or a
nonparametric version of the t test, as mentioned under assumption 1
(once you ignore the actual scores and just place your participants in rank
order, the original distribution becomes irrelevant).

3. Your samples were selected at random from their respective populations. The im-
portance of this assumption should be obvious when you are sampling
from preexisting populations. If you want to determine whether men or
women, in general, have greater manual dexterity on a particular type of
task, you would need to select truly random samples from each population.
In practice, this is extremely difficult, so an attempt is made to ensure that
the two samples are similar on various relevant characteristics (such as age,
in this example).

In the case of a true experiment, social scientists expect to make valid
causal conclusions despite the fact that they usually know that their samples
were not selected at random from the entire population. The validity of the
experiment is ensured by selecting one sample and then randomly assign-
ing participants to one condition or the other (the validity of your conclu-
sions would be threatened, for example, if you used a sample of participants
who signed up for a morning session under one condition, while using a
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sample of afternoon participants under the other condition). If the one
sample that you are dividing is not very representative of the entire popu-
lation (e.g., college sophomores who volunteer for a psychology experi-
ment), you must be cautious about generalizing your results to very dif-
ferent participants (e.g., migrant farm workers), especially if your DV
measures social attitudes rather than a more basic human function, like vi-
sual perception. Nonetheless, the random division of your sample allows
you to make valid conclusions about your variables, at least for participants
similar to those in your sample.

There is a technical problem involved, however, in applying the t for-
mulas to samples created by random assignment. Strictly speaking, the t
formulas apply to the case of two truly random samples each assigned to a
different condition. However, it turns out that random assignment from
one larger sample does not generally produce more Type I errors than us-
ing two separate random samples, so you needn’t be concerned about this
distinction (Reichardt & Gollob, 1999).

4. The p-v t test requires the assumption of homogeneity of variance. We have al-
ready discussed this assumption in some detail.

Interpreting a Significant t Test

Let us say you are satisfied that the assumptions of the t test apply to your situa-
tion, and your t statistic is statistically significant. What can you conclude? You are
entitled to say (at the risk of a Type I error) that the means of the two populations,
represented by your two samples, are different. The practical meaning of that
statement depends on the situation. First, we need to consider whether you were
sampling from two already existing populations or randomly assigning your par-
ticipants to different conditions.

For instance, if you take a random sample of people who regularly exercise and
compare their cholesterol levels (CL) to a random sample of people who don’t
exercise, a significant t allows you to conclude that the average CL of all exercis-
ers in the population (from which you are sampling) is different from the average
for the population of nonexercisers. However, you cannot conclude that exercise
directly affects CL. It is quite possible, for example, that exercisers tend to eat dif-
ferent foods and that the different diet accounts for any difference in CL. Ob-
servational or correlational studies (or quasi-experiments) like the one just de-
scribed are relatively easy to perform, and they can indicate useful avenues for
future research, but they are not conclusive with respect to causality.

To prove that exercise affects CL, you would take one sample (as representa-
tive of the population as possible, but more commonly a sample that is conve-
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nient), divide it randomly into two groups, enforce an exercise regimen on one
group, while disallowing exercise in the other, and then measure CL after an ap-
propriate amount of time. A significant t for a real experiment, such as the one
just described, allows you to conclude that the difference in treatments caused the
difference in the dependent variable (to be sure it is the actual exercise producing
the difference, your nonexercise group should receive some control treatment,
with similar expectations being raised; this is easier to say than to do). Now, let us
say that your t is significant for the experiment just described, and that exercise
lowers CL. Can you recommend that people who don’t exercise should adopt
your regimen to reduce their cholesterol levels?

The Confidence Interval for the Two-Group Case

It seems harmless enough to recommend exercise, but what if, instead of exer-
cise, your experiment showed decreased CL for a group assigned to a moderate
level of alcohol ingestion as compared to a nondrinking group? What is missing
from a statement that your t statistic is significant is any mention of how large the
difference is between the two groups. Asking people who don’t drink to begin to
drink moderately may make sense if the reduction in cholesterol is large, but it is
questionable if the difference is tiny. Can a tiny difference between samples pro-
duce significant results? Yes. Even if a difference of the means is a tiny fraction
of the standard deviation in either sample, t can be large if the samples are large.
It is usually meaningless to report the size of your t statistic without also giving
the means of the two samples. The reader can then calculate the difference and
decide if this difference is large enough to be practical.

Of course, the difference of your two sample means is only an estimate of the
difference in the population means. This estimate becomes more reliable as the
samples increase in size. Just as a CI can be used to estimate the mean of a popu-
lation, as in the previous chapter, it can also be used to estimate the difference be-
tween two population means. Let us take another look at Formula 2.3. This for-
mula is appropriate for very large sample sizes, but if one were forced to estimate
a population mean from a small sample (e.g., a small collection of skulls found in
an archaeological site), the z crit would have to be replaced with tcrit based on df �
N – 1, as in Formula 3.7:

� � X�  tcrit sX� (3.7)

The formula for the difference in the population means is very similar:

�1 � �2 � X�1 � X�2  tcritsX�1�X�2
(3.8)

(This is just the generic two-group t test formula twisted around.)



The difference of your two sample
means is always at the center of the
CI. For a 95% CI with a not very tiny
sample, you would add and subtract
about 2 standard errors of the differ-
ence (the denominator of the t test)
from the difference of the sample
means to find the upper and lower
boundaries of the interval. For the
exercise experiment, your CI might
allow you to say that you are 95% cer-

tain that the cholesterol reduction due to your exercise regimen is somewhere be-
tween 12 and 24 points. This is much more informative than just saying that ex-
ercise makes some difference, and even more informative than just saying the
difference is probably about 18 points.

Note that if zero is in the 95% CI (one boundary is positive and the other is
negative), a t test of the usual null hypothesis (�1 – �2 � 0) will not reach signifi-
cance at the .05 level (two tailed); if zero is not in the interval, the test will be sig-
nificant. In this way, constructing a CI gives you null hypothesis testing for free.
Because a CI is so much more informative than just a significance test, many re-
searchers are arguing that CIs should be reported whenever possible and that sig-
nificance tests are not even necessary.

The Effect Size in a Two-Group Experiment

Confidence intervals are particularly helpful when the units of the dependent
variable are well known. For instance, we know how many pounds must be lost
for a new weight loss method to be of practical use. Confidence intervals are less
helpful when the DV is specific to a particular experiment. It may be of theoret-
ical interest that participants recall more words from a list that had once been
played to them while asleep than a similar list that had not, but if the 95% CI
ranges from a two- to a six-word difference, are you impressed? Standardizing
this difference by dividing it by the average standard deviation of the two lists
(more exactly by the square root of the pooled variance) yields a more universally
meaningful measure known as the effect size. The effect size seen in the sample
is often called g, and the simplest formula is as follows:

g � �
X�1 �

s
p

X�2
� (3.9)
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C AU T I O N

An experiment may result in a very
large t value and a very tiny p value,
even though there is little difference
between the two groups (this can
happen when the samples are very
large). A CI can give a more accurate
picture, but if the units of the DV are
not meaningful or familiar, a measure
of effect size can be helpful.



This measure, g , can be used as a point estimate of the effect size in the entire
population, usually called d (and usually written in bold to indicate that it applies
to a population, and not just your own data). The formula for the t test can be
written in terms of g; the formula is particularly simple when the sample sizes are
equal:

t � g��
2

n
�� (3.10)

Note that even when g is very tiny, t can be large if n is very large. When n1 � n2

and t has already been calculated, g can be found from the following formula:

g � t��
2
n

�� (3.11)

When g equals 1.0, it means that the mean of one sample is a whole standard
deviation above or below the other sample, and that tells us that the two samples
are rather well separated on the DV, no matter what the DV is or what units are
used to measure it. Creating a CI around g to estimate that d is, for example, be-
tween .7 and 1.3, is very informative and in this case assures us that we are likely
dealing with an impressive difference between the two populations. Creating CIs
for g was difficult until quite recently. We will have a good deal to say about the
meaning of effect size and its utility in power analysis when we get to Chapter 6.

REPEATED-MEASURES OR
MATCHED t TEST

Formula 3.10 shows us that when g is
on the small side you need rather
large samples to obtain a t value large
enough to be significant. However,
social science researchers often deal
with small effects that are likely to
lead to small g’s, and yet using large
samples can be prohibitively expen-
sive and time-consuming. Fortu-
nately, there are ways to increase your
t value without using large samples,
so that you have a good chance of
showing that an effect is not zero,
even when it is fairly small. The most
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When comparing a statistically signifi-
cant t test with one that is not, don’t
assume that the two tests are telling
you very different things. For example,
if a test of exercisers versus nonexer-
cisers on cholesterol levels yields t(48)
� 2.1, p � .05 for male participants,
and t(44) � 1.8, p > .05 (not signifi-
cant) for female participants, this does
not mean exercise affects cholesterol
significantly more for men than for
women. In fact, the two p’s (about .04
and .06 respectively) are similar, as are
the g’s. To test whether the results for
men differ significantly from those for
women you can use a two-way anal-
ysis of variance, as described in Chap-
ter 7.



powerful of these ways is the repeated-measures (RM) design. There are many ex-
periments for which this design would not be convenient, or even possible, but
when it can be reasonably applied it is often very effective. Let us look at an ex-
ample of how this design can lead to a larger t value than you would expect.

One Type of Repeated-Measures Design: The Before-After Design

Suppose that you are conducting a weight loss experiment with 10 participants
whose average weight is about 200 pounds, and who vary such that their standard
deviation is about 45 pounds. After 6 months, every participant has lost about 2
pounds (the weight loss method might be to spend an hour a day vividly imagin-
ing that you are exercising). Assuming that the variance at the end of 6 months is
the same as at the beginning—about 2,000 (we are squaring 45 and then round-
ing off)—we can use Formula 3.6 to see how large our t value would be. The de-
nominator of the formula is the square root of 2,000 times 0.2, which equals the
square root of 400, which equals 20. If the numerator is 2 (an average of 2 pounds
lost), t would be 2 over 20, which is only .1. This is nowhere near statistical sig-
nificance.

In fact, with a denominator of 20 you would need to find a weight loss of more
than 40 pounds to attain a significant t statistic. If you are stuck with a g of 2/45
� .044, as in this example, you would need a sample of about 4,000 participants
to attain a significant t. The person-to-person variability is large in this example,
but it would be large in any realistic weight loss experiment and in many other ex-
periments in the social sciences. The advantage of the RM design (in this ex-
ample, every participant would be measured twice: before and after the 6-month
weight loss program) is that it allows you to avoid the person-to-person variabil-
ity, as we will show next.

The null hypothesis for the weight loss experiment is that the weight loss pro-
gram is totally ineffective. The two group t test we just performed suggests that
it is easy to get a 2-pound difference by chance with so few participants and so
much variability among participants. However, something happened in our hy-
pothetical experiment that is not likely to happen by chance, but was missed by
the two-group t test. All of the participants lost weight. If the null hypothesis were
true you might expect about half of the participants to gain rather than lose weight
over a 6-month period (actually, for this experiment you would need a control
group, but for many other RM designs, the null hypothesis would dictate a fifty-
fifty split in the results).

If you expect only half of the participants to lose weight by chance, the odds
against all 10 of them losing weight by chance is about 1,000 to 1. Moreover, all
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of the participants lost about the same amount of weight: 2 pounds. The more
similar the participants are to each other in the amount of weight loss, the less
likely it is that this can happen by accident. What is needed is a t test that can cap-
ture these consistencies when they occur in an RM design and determine how
likely they are to occur by chance. Such a t test exists, and it is actually simpler
than you would expect, as you will see next.

The Formula for the Repeated-Measures t Test

The way you look for and capture the consistencies in an RM design is to look at
the difference scores—that is, the differences between the two measurements
(for this example, the before-after differences, which are the amounts of weight
lost for each participant). By doing this, you are changing two groups of scores
into just one group. The null hypothesis is still the same: that the differences are
as likely to be negative as positive, and that their mean across the entire popula-
tion would be zero. To test the null hypothesis you will need to determine
whether the mean of your difference scores is so far from zero that there is little
chance of getting this value by accident. This calls for a one-sample t test, where
your difference scores are the one sample. Therefore, you can use Formula 2.2.
We will repeat that formula below, but we modify the notation to reflect the fact
that your scores are actually difference scores.

t � �
D� �

s
D�

�
D

�

The mean of the difference scores according to the null hypothesis, �
D

, does
not have to be zero—but it so often is that we can leave that term out of the for-
mula. Expressing the standard error in terms of the standard deviation and
sample size leads to the following practical formula for calculating the RM t test.

t � (3.12)

Because this is a one-sample t test, we don’t have to worry about homogene-
ity of variance. We can simply look up the critical t by noting that the degrees of
freedom equal N – 1, where N is the number of difference scores. Note that by
looking only at the difference scores rather than the before and after scores we
are actually reducing our df. For the two-group t test we performed on the before
and after scores, df � n1 � n2 – 2 � 10 � 10 – 2 � 18, so t.05 � 2.19. For the RM
t test, df � 10 – 1 � 9, so t.05 is 2.26. The RM t test reduces your df by half, so un-

D�
�
�
�

s
D

N�
�
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less you are dealing with hundreds of participants, the critical t for the RM test will
be noticeably higher than for the corresponding two-group test. A higher critical
t is not good, but the calculated RM t value is usually so much higher than the cal-
culated two-group t value that the difference in critical values becomes unimpor-
tant. That is certainly the case in our weight loss example, as you will see next.

Calculating the Repeated-Measures t Test

Let us apply Formula 3.12 to the weight loss example. The numerator of the test
is the mean of the difference scores, which is 2 (pounds). Note that the RM t test
always has the same numerator as the corresponding two-group test because the
difference of the two means is always the same as the mean of the differences (i.e.,
if you subtract the mean of the after scores from the mean of the before scores,
you get the same result as subtracting the after score from the before score sepa-
rately for each participant and then averaging these difference scores). The ad-
vantage of the RM test is in the denominator. The two-group t test is based on the
variability from person to person under each condition; for our example, the SD
was about 45 pounds. The RM t test is based instead on the variability of the dif-
ference scores. We have been saying that everyone lost “about” 2 pounds. To be
more specific, let’s say that the SD for the difference scores is 1.0 pounds (so most
participants lost between 1 and 3 pounds). Using Formula 3.12,

t � � �
.3

2
16
� � 6.33

The RM t value is more than 60 times greater than the corresponding two-
group t value because the RM test avoids the large amount of person-to-person
variability and benefits from the consistency of the difference scores. Adding one
500-pound person who loses 2 pounds would make the two-group t statistic even
smaller but would have very little effect on the RM test (in this case the effect
would be positive because adding a difference score of –2 would only make the
SD smaller; plus you’d gain a degree of freedom). Of course, the difference scores
are not usually as consistent as in our example, but when it makes sense to create
an RM design, the RM t statistic is almost always considerably larger than the cor-
responding independent-group t.

Other Repeated-Measures Designs

The before-after design is not the best example of the RM t test because a control
group usually is required, which means that two groups are being measured at two

2
�
�
�

1
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points in time, and this adds some complication (this will be dealt with in Chap-
ter 8). A more typical use for the RM design is to compare the means for two ex-
perimental conditions both of which are given to all of the participants—for in-
stance, comparing the recall for happy and sad words. Happy and sad words can
be mixed in a single list that participants memorize (the simultaneous RM design).
For each participant the number of sad words recalled can be subtracted from the
number of happy words recalled, and then an RM t test can be calculated on these
difference scores.

A somewhat more problematic design is needed if each participant is tested on
two lists—one studied while listening to happy music and one during sad music.
You can’t mix the happy and sad music together, so one condition will have to be
presented before the other (the successive RM design), which can give that condition
(e.g., type of music) an advantage or disadvantage due to an order effect (e.g., prac-
tice or fatigue). This problem is dealt with by counterbalancing: Half of the partici-
pants get the happy music condition first, whereas the other half of the partici-
pants get the sad condition first.

Dealing with Order Effects

If you have collected data from a counterbalanced design you should look to see
if your order effects are symmetrical. Suppose half the participants receive a
happy condition first followed by a sad condition, whereas the other half get the
reverse order. If you average all the happy scores separately for those getting
happy first and for those getting happy second, you can see the order effect for
the happy condition. If you do this again for sad, you can compare the order ef-
fects for the two conditions. If they are very different, it seems you have differen-

tial carryover effects (e.g., sadness may dribble into the following happy condition
more than the other way around), which can bias your results (we will discuss how
to test this for significance in Chapter 8). You may need to look only at the con-
dition each participant had first. This changes your design from RM to one based
on independent groups, and it can greatly lower your calculated t, but it eliminates
the bias in the results that can be produced by asymmetrical carryover effects and
that can threaten the validity of your results. Even if the two order effects are the
same, if they are large they can increase the denominator of your RM t test quite
a bit. We will discuss how to remove this effect when we describe the Latin Square
design in Chapter 8.

The Matched-Pairs Design

There are many cases when counterbalancing is obviously inappropriate from the
outset. Imagine that you want to compare two methods for teaching long division
to children to see which works more quickly. If both methods are fairly effective,
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it doesn’t make sense to try to teach
the children a second time. However,
one can still get much of the benefit
of the RM t test in this situation. The
trick is to match the children in pairs
based on similar performance on pre-
vious math tests; then, for each pair,
one member is assigned to each
method, in a random way. After per-
formance is measured, difference
scores are created by subtracting the
two scores for each pair (as though
the two scores were from the very
same participant), always in the same
direction, of course (e.g., Method 1
minus Method 2). The t test per-
formed on these difference scores is
called a matched-pairs t test (or just a

matched t test ), but it is calculated exactly the same way as the RM t test, so either
name can be used to refer to Formula 3.12.

It doesn’t matter if some pairs are much better at math than others, as long as
one method is fairly consistent in being better within each pair. The better the
matching of the pairs, the more this design resembles the RM design. Sometimes
you can’t measure the same participant twice and you don’t have any basis for
matching the participants. Then you are stuck with the independent-groups design,
and you will need large samples if the effect size you are exploring is fairly small.

The Assumptions of the Repeated-Measures t Test

You should also inspect the distribution of your difference scores for severe
skewing and for outliers. If your sample size is small, such problems can render
the matched t test inappropriate for your data (the chief assumption of the
matched t test is that the difference scores are normally distributed, and the CLT
won’t help you with this if your sample is very small). An alternative is to rank-
order your difference scores and perform Wilcoxon’s matched-pairs signed ranks
test, as described in Chapter 9. A cruder alternative is to simply count the num-
ber of differences favoring one condition or the other and perform a binomial (or
sign) test, also described in Chapter 9. Underlying the RM design is the assump-
tion that the pairs of scores will exhibit a fairly high linear correlation. In fact, an
alternative way of calculating the RM t test is in terms of that correlation (see

DON’T FORGET
There are a variety of situations in
which the appropriate result is an RM
t value:
1. The before-after design (but it is

usually important to include a con-
trol group).

2. The RM simultaneous design (two
different conditions are mixed to-
gether).

3. The RM successive design (it is usu-
ally important to counterbalance
the conditions).

4. The matched-pairs design (the
scores from the two matched par-
ticipants are treated as though they
were both from one participant).



B. Cohen, 2000). The quantification of linear correlation is the topic of the next
chapter.

Confidence Intervals for the Repeated Measures or Matched Design

Repeated measures and matched designs make it possible to obtain large t statis-
tics without using large samples and without obtaining a large difference between
the means of the two conditions. As we mentioned earlier, a before-after (or well-
matched) design can produce a large and statistically significant t value even if
very little weight is lost. Therefore, it is often important to find a confidence in-
terval for the difference of the means when significant results are obtained. The
CI in this case is centered around D�, and its formula is just the formula for the CI
for the population mean (Formula 2.3) with different notation.

� lower � D� � tcrit sD�

�upper � D� � tcritsD� (3.13)

When the units of the dependent variable are not familiar (e.g., number of
words recalled from a list created for the experiment), it makes sense to look at
effect size measures. The effect size and power associated with the RM t test will
be discussed in Chapter 6.
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Putting It Into Practice
1. The following table is being reprinted from Gist, Rosen, and Schwoerer

(1988).* Participants in this study were trained on a particular computer skill
by one of two methods, and were classified into one of two age groups. Mean
performance (along with SD and n) on the computer task is given for each of
the four subgroups (cells).

Younger Older

Modeling Tutorial Modeling Tutorial

Mean 36.74 32.14 29.63 26.04
SD 6.69 7.19 8.51 7.29
Cell n 52 45 20 30

(a) In the article, the above data were appropriately analyzed as a two-way
analysis of variance (we will return to these data in Chapter 7). However,
as an exercise, calculate the four t tests that make sense (i.e., compare the 

(continued )
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two age levels for each method, and compare the two methods for each age
level). Calculate both the p-v and s-v t test in each case and test the p-v t for
significance. Which seems more appropriate for these t tests? If the method
comparison is significant at the .05 level for one age level but not the other,
can you conclude that age affects the difference between the two methods?
Explain.
(b) Calculate g for each of the pooled-variance t tests in 1a. Comment on the

size of g in each case.
(c) Find the 95% CI for the difference of the two methods just for the

younger participants (using the p-v error term).
2. A cognitive psychologist is investigating the effects of giving imagery instruc-

tions on paired-associates recall. Eight participants are given a recall test for a
list of 20 word pairs, first with no imagery instructions, and then again (with a
different list) after instructions on how to use imagery to link the words to-
gether. The numbers of paired-associates recalled for each participant for each
condition are given in the table below.

Participant No. No Imagery Imagery

1 8 14
2 11 15
3 7 5
4 10 16
5 9 9
6 15 16
7 7 8
8 16 20

(a) Calculate the RM t value for these data. For a two-tailed test, are the re-
sults statistically significant at the .05 level? At the .01 level?

(b) Using the standard error from 2a, find the 99% confidence interval for the
imagery/no imagery difference in the population. Is your CI consistent with
your answers to 2a? Explain.

(c) Assuming the results of the above experiment are significant, can you con-
clude that imagery instructions caused an increase in recall? What alterna-
tive explanations are available?

*Copyright © 1988 by the American Psychological Association. Reprinted by permission of
the APA via the Copyright Clearance Center. 
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TEST  YOURSELF

1. The usual null hypothesis of the two-group t test is that

(a) the two sample means are the same.
(b) the two population means are the same.
(c) the two sample standard deviations are the same.
(d) the two population standard deviations are the same.

2. You need to use the t distribution as your null hypothesis distribution
whenever

(a) the population mean and variance are unknown.
(b) the population mean is unknown and the sample size is small.
(c) the population variance is small and the sample size is unknown.
(d) the population variance is unknown and the sample size is small.

3. Pooling the variances is

(a) not necessary when N1 � N2.
(b) not appropriate unless homogeneity of variance can be assumed.
(c) not optimal unless a weighted average is taken.
(d) all of the above.

4. The denominator of the pooled-variances t test will equal the denomina-
tor of the separate-variances t test when

(a) the sample means are equal.
(b) the population variances are equal.
(c) the sample sizes are equal.
(d) any of the above are true.

5. All else remaining equal, as the sample variances in a two-group t test in-
crease,

(a) the critical t value increases.
(b) the calculated t value decreases.
(c) the estimate of the standard error of the difference (i.e., sX�1–X�2

) decreases.
(d) all of the above.

6. If a homogeneity of variance test is associated with a p value less than al-
pha, which of the following should be performed?

(a) Nothing—it is not valid to proceed with the t test
(b) Nothing—the null hypothesis of the t test can be rejected
(c) The pooled-variances t test
(d) The separate-variances t test

S S

(continued )
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7. Compared to an independent-samples t test on the same data, the
matched t test will always yield

(a) a smaller critical t.
(b) a larger critical t.
(c) a smaller calculated t.
(d) none of the above.

8. The purpose of counterbalancing is

(a) to average out order effects.
(b) to eliminate the need for a control group.
(c) to increase the chance of getting a significant t value.
(d) none of the above.

9. Drawing conclusions from a before-after design can be misleading if

(a) the same participants are measured twice.
(b) there is a large amount of person-to-person variability.
(c) the confidence interval for the difference of means is very small.
(d) there is no control group.

10. Matching participants in pairs is usually preferable to repeated measures
on the same participants, whenever

(a) there are simple order effects.
(b) there are differential carryover effects.
(c) there is a large amount of person-to-person variability.
(d) all of the above.

Answers: 1. b; 2. d; 3. d; 4. c; 5. b; 6. d; 7. b; 8. a; 9. d; 10. b.



CORRELATION

Correlation, like the mean, is a concept that you were probably familiar with be-
fore taking a statistics course. If we tell you that music ability is correlated with
mathematical ability you may be skeptical, but it is very likely that you know what
we mean. If we don’t say that the two variables are negatively correlated, it is rea-
sonable to assume that we are implying that the variables are positively correlated;
that is, when someone has a good deal of musical ability he or she tends to be
good at math (and vice versa), while low musical ability tends to go with low math
ability. And if we say that depression and college grades are negatively correlated,
you probably know that this means low scores on one variable tend to be paired
with high scores on the other. The main purpose of this chapter is to show you
how to quantify the amount of correlation and then use this amount to make pre-
dictions or inferences concerning the population. In this chapter we will be deal-
ing only with bivariate correlation (i.e., two variables at a time). Multiple correlation
(e.g., one variable being predicted by a combination of two or more variables) is
beyond the scope of this book.

Perfect Correlation

To explain how we can measure the degree of correlation between two variables
it will be helpful to begin with describing perfect correlation. Suppose that stu-
dents in a statistics class take both a midterm and a final; both are exams that are
graded from 0 to 100. If every student gets the same score on the final that he or
she got on the midterm, the midterm scores will be perfectly correlated with the
final scores. However, getting the same score is not necessary for perfect correla-
tion. If every student scores five points higher on the final than on the midterm
the correlation will still be perfect; given a student’s midterm score (MT) you
know exactly what that student’s final score is (MT � 5). The relationship be-
tween the two variables could get very complicated, and yet by using some fancy

Four

CORRELATION AND REGRESSION
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DON’T FORGET

When Will I Use the Statistics in This Chapter?

You are measuring one or two variables on a quantitative scale.
One variable: You are measuring the same variable on two different occasions
(test-retest reliability), or comparing one part of the measure with another part
(internal reliability).
Two variables: You are comparing a new measure with a more established
measure (validity), or looking at the relation between two completely different
variables (e.g., you want to see if charisma is related to annual income). Or you
are looking at the relation between a continuous experimental variable (e.g., par-
ticipants are assigned to different amounts of weekly exercise) and an outcome
variable (e.g., resting heart rate; cholesterol level).
Prediction: You want to use the magnitude of one variable to predict the mag-
nitude of another. Or you want to use those predictions to remove the effect of
one variable on another (e.g., age-adjusting memory scores in the elderly by pre-
dicting the memory score from age, and then using only the part of the memory
score not predicted by age).

math you might be able to predict the second score exactly from knowing the first
(and vice versa). Fortunately, we will not be dealing with all kinds of (perfect) cor-
relation in this chapter. This chapter is only about linear correlation and linear regres-

sion, so we need only define perfect linear correlation, which we will do next.
Two variables will have a perfect linear correlation together if each variable is

a linear transformation of the other. Any combination of adding, subtracting, multi-
plying, and dividing a variable by constants will result in a linear transformation
of the variable. Any linear transformation can be summarized by the following
equation: Y � bX � a. (You may recognize this as the equation for a straight line,
which is not a coincidence, as we will explain shortly.) When two variables have a
linear relationship, the increase (or decrease) in one variable is always the same
amount for a one-unit increase in the other variable, no matter what value of the
other variable you are starting out with (this will be clearer when we show graphs
of linear relationships later in this chapter).

The z score is a linear transformation of a score (you subtract a constant, �,
and then divide by a constant, �). Therefore, a score and its z score are always per-
fectly correlated. This may seem obvious, but it leads to a simple and meaningful
definition of perfect linear correlation. If everyone in the population has the same
z score for one variable as they do on the other, the two variables will have a per-
fect positive linear correlation in the population (from now on in this chapter
when we use the term correlation we will mean linear correlation).



It is just as easy to define perfect negative correlation. If everyone has the same
z score for both variables, but the z scores are always opposite in sign, the two
variables will have a perfect negative correlation. If depression and GPA were
perfectly negatively correlated, you would know that someone who is 1 standard
deviation above the mean for depression (i.e., z � �1) is 1 standard deviation be-
low the mean for GPA (i.e., z � –1). Thus, negative correlation can be just as per-
fect (in terms of predictability) as positive correlation.

Height and weight are not perfectly correlated in the human population, but
they could be. Imagine, for instance, that Antarcticans all have the same body
type, differing only in height. If height and weight were perfectly correlated for
these people you would be able to find an equation of the form W � bH � a, so
that you could multiply an Antarctican’s height in inches by a certain constant and
then add a constant (possibly a negative number) to get his or her weight. This
equation is called a linear regression equation, and it is used to make predictions
even when correlation is far from perfect, as you will see later in this chapter. Note
that measuring height in centimeters instead of inches and weight in kilograms in-
stead of pounds won’t change anyone’s z score for height or weight, so it won’t
change the correlation (but it will change the constants in the equation above).
Whatever amount of correlation there is between two variables, linearly trans-
forming one or both of them will not change that amount. Now it is time to de-
scribe how the amount of correlation can be quantified when it is less than per-
fect.

Pearson’s Correlation Coefficient

In the late 1800s Sir Francis Galton was studying heredity in England, and at-
tempted to quantify various correlations, such as the correlation between the
heights of fathers and their sons. He used a lowercase letter r to symbolize his
coefficient of correlation (Cowles, 2001). Karl Pearson improved the mathe-
matical formulation of Galton’s correlation coefficient just before the end of the
nineteenth century. Because it is Pearson’s formula that we now use, the coeffi-
cient for linear correlation is usually referred to as Pearson’s r (it is sometimes
called the product-moment correlation coefficient for reasons too technical to explain
here). In terms of z scores Pearson’s formula is remarkably simple, as shown
below:

r � �
∑

N

z
x
z y

� (4.1)

where the subscripts x and y represent the two variables.
The formula tells us that for each person in the population we take his or her
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z scores on both variables and multiply them together. Then we average these
cross products (i.e., add them up and divide by the number of cross products).
This coefficient reaches its greatest magnitude when everyone has the same z
score on both variables. In that case the formula reduces to Σz 2/N, which always
equals exactly 1.0 (the variance of a set of z scores is Σ(z-z�

2 )/N, which always
equals 1.0, but z� is always zero, so Σz 2/N � 1.0). If everyone has the same z score
on both variables, but with opposite signs, r equals –Σz 2/N � –1.0. For less than
perfect correlation the magnitude of r will be less than 1.0 and can be as small as
zero when the two variables have no correlation at all.

Computational Formulas

Formula 4.1 is easy to understand, but it is not convenient for calculation. Sub-
stituting the corresponding z score formulas for the X and Y variables and rear-
ranging algebraically yields the following convenient formula:

r � (4.2)

Expressed verbally this formula tells us to average the cross products of the
scores and subtract the product of the population averages, and then divide by
the product of the two population standard deviations. This formula is instruc-
tive. The numerator is called the covariance, and it determines the sign of the cor-
relation. When a number that is relatively large for one variable tends to be paired
with a relatively large number for the other variable (and, of course, small with
small), the average of the cross products tends to be higher than the product of
the averages, yielding a positive correlation. When relatively large numbers for
one variable are consistently paired with relatively small numbers for the other;
ΣXY/N will be smaller than �

x
�

y
, producing a negative correlation. When val-

ues for the two variables are paired at random, the two terms in the numerator
tend to be the same size, resulting in a zero or near-zero value for r. The denom-
inator of Formula 4.2, the product of the two standard deviations, tells you just
how large the covariance can get in either the positive or negative direction.
When the covariance reaches its maximum negatively or positively, r will equal
–1 or �1, respectively.

The only aspect of Formula 4.2 that is not convenient is that it assumes that
you are treating your set of scores as a population and have therefore calculated
the standard deviations with N, rather than N – 1, in the denominator (as in For-
mula 1.4). In most research settings, however, you will be treating your scores as
a sample, and it is likely that you will want to calculate s rather than � for each of

�
∑

N

XY
� � �

x
�

y

��
�

x
�

y
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your variables. If you want to use s
x
s
y
in the denominator of Formula 4.2, you will

have to adjust the numerator accordingly, as in the formula below:

r � (4.3)

Note that we changed �
x

and �
y
to X� and Y� in Formula 4.3 to reflect the fact that

we are viewing our data set as a sample, even though the values for the mean will
be the same. Note especially that Formula 4.3 always yields exactly the same value
for r as Formula 4.2, so it doesn’t matter which you use. Formula 4.3 is just more
convenient to use if you have s’s instead of �’s handy. The numerator of Formula
4.2 is the biased covariance, but dividing it by the product of two biased SDs can-
cels out the bias and yields the same r as Formula 4.3. There are several other for-
mulas for Pearson’s r that may be more convenient for calculation without a
computer (and, of course, all produce the same value), but they are not very in-
structive, so we will not bother to show them.

Uses for Correlation: Reliability and Validity

Correlation coefficients are used for many purposes in social science research.
For some of these purposes it is important that r have a large positive value, per-
haps between .7 and 1.0. For instance, suppose children are being rated for ag-
gressiveness as they interact in a playground. No matter how experienced your
rater might be, you would probably want the same children rated by two inde-
pendent raters so that you can then look at the correlation between the two sets
of ratings. Only a high r would reassure you that you have good interrater reliabil-

ity, which is necessary if you expect your experimental findings to be replicated by
other researchers.

A large value for r is also important when measuring the reliability of some
self-report measuring instrument. Suppose that you are interested in measuring
generosity with a new questionnaire. If you assume that a person’s generosity is a
trait that remains relatively stable over time, you will likely want to demonstrate
that your new questionnaire measures generosity in a stable fashion. If you mea-
sure each person in your sample for generosity at time one (G1) and then again,
say 6 months later (G2), and then calculate the correlation between G1 and G2,
the resulting r will be a measure of test-retest reliability. The closer r is to 1.0, the
more stable your measure of generosity is. This does not prove you have a good
measure of generosity, but it is an important first step.

You can also measure the internal reliability of your questionnaire by summing

�
N �

1
1

� �∑ XY � NX�Y��
���

s
x
s
y
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the odd-numbered items to get one score (O), and the even items to get a second
score (E). A large r between O and E shows that your measure has good split-half

reliability, implying that your questionnaire is measuring just one trait (statistical
software now makes it easy to calculate more sophisticated measures of internal
reliability, such as the statistic known as Cronbach’s alpha).

The correlation coefficient for the validity of your generosity questionnaire is
not expected to be as high as it is for the test’s reliability, but it is important that it
be fairly high. One test of validity would be to measure participants with the gen-
erosity questionnaire and then in a seemingly unrelated way tell them that you are
running low on funds for your experiment and ask if they would take less pay-
ment themselves so you can run more participants. If the correlation is high be-
tween their generosity score and the amount of money they are willing to give
back to the experimenter, there is good support for the validity of your question-
naire. Another way to validate your new generosity questionnaire is by demon-
strating that there is a high correlation between it and an older generosity ques-
tionnaire previously shown to be both reliable and behaviorally valid. These and
other uses for Pearson’s r will be summarized in Rapid Reference 4.1.

Testing Pearson’s r for Statistical Significance

When calculating the correlation between two completely different psychologi-
cal variables it can be interesting that they have any correlation more than zero,
or to see whether the correlation is positive or negative. However, if in a sample
of 30 people the correlation between mathematical and musical abilities is �.3
that does not prove that the correlation in the population from which that sample
was drawn is �.3, or even that it is positive (or anything other than zero). In keep-
ing with the use of Greek letters for population parameters, the correlation of a
population is symbolized by �, the lower-case Greek letter r, pronounced “rho.”
It is certainly possible to get a sample r of .3 by accident even when � for the two
variables is zero. As you might guess, the usual null hypothesis is that the two
variables in question have a zero correlation in the population (symbolically, 
H0:� � 0).

To test the null hypothesis you need to know the null hypothesis distribution
(NHD). Fortunately, it is known that if you take many samples of 30 each, for ex-
ample, and H0 is true, the r’s of the samples will form an approximately normal
distribution around a mean of zero. Therefore, all you need is the standard error
of this NHD, and you can create a z score and make a statistical decision. A good
estimate of this standard error is given by the expression
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To test your single sample against your null hypothesis for the population you can
put this expression in the denominator of a ratio to form a z score for groups
(similar to Formula 2.2�). However, the problem with using z scores for such a
formula is that r is different for every sample, so not only does the numerator of
the formula keep changing, but the denominator does as well (we faced a similar
problem when we used the sample SD to estimate � in the last chapter). Fortu-
nately, the solution in the previous chapter applies: We can use the t distribution.
So the formula for testing the significance of a Pearson r is

t � , (4.4)

where �0 is the correlation in the population, according to the null hypothesis.
The denominator of the denominator in Formula 4.4 can be moved to the nu-
merator to create an alternative (but equivalent) version of the formula:

t � (4.4�)

Any t test formula can be rearranged so that the sample size is in the numerator
(�0 was left out of this version, because it is so often zero). This version makes it
clearer that, all else being equal, the larger the sample the larger the t, and the
greater the chance for statistical significance.

An Example of Calculating a Significance Test

Let’s test the r of .3 in our example for significance.

t � � � � �
.1

.3

8
� � 1.66

To compare this result to a critical value of t we need to know the appropriate de-
grees of freedom. For bivariate correlation df � N – 2 (this will be explained in a
later section). In this case, df � 30 – 2 � 28, so tcrit for a .05 test, two-tailed, is
2.048 (from Table A.2). Our calculated t is well below this so we cannot reject the
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null hypothesis. Our results are not strong enough to make us confident that
mathematical and musical abilities definitely have more than a zero correlation in
the population. Our results are almost significant by a one-tailed test, but it would
be hard to justify a one-tailed test in this situation. Our sample r would have to be
about .362 to reach significance with a two-tailed test (you can use Formula 4.4
or 4.4� to verify this for yourself ). You can see from looking at Formula 4.4� that
any r, other than zero, can reach significance with a large enough sample (e.g., it
takes an N of about 400 for r � .1 to become significant at the .05 level, two-
tailed). On the other hand, with a sample size of only four, even an r of .9 is not
significant.

Correlation and Causation

It can be nice to find a significant correlation between two variables that are not
obviously related, especially if r is fairly high (according to the guidelines of J. Co-
hen (1988), .5 is a large r, .3 is moderate, and .1 is small). However, what usually
makes the correlation interesting is the possibility of some causal connection be-
tween the two variables. Although high correlations give us good leads for find-
ing causal connections, we must be very cautious not to leap to unwarranted con-
clusions. Suppose that we find a high negative correlation between the number
of hours a person exercises per week and his or her serum cholesterol level (SCL).
It is tempting to conclude that exercise causes a reduction in SCL, but it is also pos-
sible that people who exercise more also eat less fat, or experience less stress, and
that it is these factors, rather than the exercise itself, that reduces cholesterol.
It is important to know the causal mechanism before recommending lifestyle
changes. If it is the reduced fat intake of exercisers rather than their exercise that
is reducing SCL, you wouldn’t then recommend exercise to people who need to
reduce their SCL without making it clear that exercise alone won’t do the job—
they must reduce their fat intake. The only way to rule out third variables (e.g., fat
intake, stress) as explanations for your correlation is to conduct a controlled ex-
periment by randomly assigning participants to conditions.

Commonly, an experiment would consist of two random groups: one that is
assigned to a certain amount of exercise, and one that is not allowed to exercise.
However, a more informative way of conducting the experiment would be to as-
sign a different amount of exercise (including zero) to each participant, and then
calculate a correlation between the amount of exercise and the reduction in SCL
during the course of the experiment. Because the exercise levels were randomly as-

signed, a significant correlation in this case would imply a causal connection be-
tween exercise and SCL reduction (provided that we keep participants from mak-
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ing other lifestyle changes during the experiment). In this (rather rare) case, exer-
cise is a true independent variable ( IV) and SCL reduction is a dependent variable
(DV).

On the other hand, when the level of exercise is controlled by the participant
rather than the experimenter, both variables are DVs, and causation cannot be in-
ferred from a significant correlation. Similarly, a t test between a group of people
who regularly exercise (by their own choice) and a group of people who don’t
cannot lead to a causal conclusion. Such an experiment is sometimes referred to
as a quasi-experiment, and sometimes it is called correlational to indicate that there is
no random assignment of participants. The latter term is a bit misleading because,
as we just mentioned, a correlation can be the result of a true experiment, just as
a t test can. We prefer to say that research is observational when participants are not
randomly assigned to conditions and experimental when they are. Various uses for
Pearson’s r are summarized in Rapid Reference 4.1.

Graphing Correlations

A high Pearson’s r may not demonstrate causation, but it does tell you that a z
score on one variable is paired with a similar z score on the other variable, and
that the two variables have a fairly linear relation, as will soon be described graph-
ically. However, a low value for r is not very informative; there are a number of
very different circumstances that can lead to a low r. Just as you should look at the
distribution of scores for each of your variables to see if there is marked skewing,
outliers, or other potential problems, you should look at a bivariate distribution
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Some Major Uses for Pearson’s Correlation Coefficient

1. Test-retest reliability
2. Internal reliability (e.g., split-half reliability)
3. Interrater reliability
4. Validity (e.g., correlating a subjective measure of a variable with a behavioral

measure, or a more traditional, well-established subjective measure)
5. Assessing the relation between two different variables observed in the same

group of people (e.g., generosity and self-esteem)
6. Assessing the relation between an experimental variable (IV) and some out-

come variable (DV)

Rapid Reference 4.1



of any two variables whose correlation is of interest to you, especially when the
correlation you have calculated is rather small.

The simplest way to display a bivariate distribution is with a scatterplot (also
called a scatter diagram, or scattergram). The possible values of one variable are
laid out along the horizontal (x) axis, and the other along the vertical (y) axis. If
one variable is thought of as causing the other, it is customary to put the IV (the
cause) on the x-axis and the DV (the effect) on the y-axis. Each person is repre-
sented by a dot on the graph at the intersection of his or her values on the two
variables (if two or more people have the same x, y value, the dot can be replaced
by a number or other symbol indicating how many people have landed at exactly
that spot). The scatterplot for height and weight for a typical group of 30 people
is shown in Figure 4.1 (weight is on the y-axis, because it is somewhat a function
of height). Notice that as you move to the right in the graph, the points tend to
get higher; that is how you can tell the two variables are positively correlated (the
points would tend to get lower as you move to the right for a negative correla-
tion).

It is particularly easy to spot perfect correlation on a scatterplot—all of the
points fall on the same straight line. For instance, if you were to measure the high
temperature of your town every day for a year on both the Fahrenheit and Cel-
sius scales, the two sets of measurements would be perfectly correlated, and
therefore all of the days of the year would fall on a straight line, as shown in Fig-
ure 4.2. The equation for the straight line, given that Fahrenheit is on the y-axis,
is F � 1.8C � 32. The multiplier of C, 1.8, is the slope. When the temperature in-
creases by one degree Celsius it increases by 1.8 degrees Fahrenheit. The number
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Figure 4.1 A scatterplot of height versus weight for a random sample of 30
people
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added, 32, is called the y-intercept; it is the value of the y variable when the x vari-
able is at zero (0° Celsius corresponds to 32° Fahrenheit). The straight-line scat-
terplot tells you that Fahrenheit temperature is just a linear transformation of Cel-
sius temperature. Now you can see why it’s called a linear transformation.

Degrees of Freedom for Correlations

The scatterplot gives us an easy way to explain why the df equals N – 2 for corre-
lation. Think of the df as how many pieces of information a sample gives you
about the magnitude of the population correlation. If your two variables have
been measured for only two people you will have only two dots on your scatter-
plot. Because the two dots will always fall on one straight line you can see that the
sample r you calculate will always be either �1 or –1, regardless of the value for
�. Thus, a sample size of two yields a zero amount of information about the mag-
nitude of �; you need a sample of three just to have one piece of information
about the size of � (df � N – 2 � 3 – 2 � 1).

Curvilinear Correlations

You can get a low r because there is simply no relation between your two vari-
ables; the points will be scattered almost randomly across the scatterplot. How-
ever, the two variables in Figure 4.3 have a very obvious relationship (as age goes
up, running speed goes up until some optimal age is reached, and then it goes
down with increasing age), and yet Pearson’s r would be near zero. The problem
is that the relationship is curvilinear and Pearson’s r captures only linear relation-
ships. If you looked at age only from birth to the optimal age, the correlation
would be high and positive; above the optimal age it would be highly negative.
These two parts average out to yield an r near zero. If your scatterplot shows the
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Figure 4.2 A scatterplot of daily high temperatures: Fahrenheit versus Cel-
sius scales
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kind of pattern in Figure 4.3, you should use some kind of curvilinear correlation
coefficient or limit your range to one side or the other.

Bivariate Outliers

Figure 4.4 depicts a very different way to get a low value for Pearson’s r. In this
example math and music ability are highly correlated, except for the presence of
one person who is very mathematical but has little musical ability. This person is
called a bivariate outlier; he or she needn’t be an outlier on either variable separately
but has an unusual combination of the two variables. Just as one univariate out-
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Figure 4.3 A scatterplot of a curvilinear relation: Age versus running speed
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lier can have a large effect on the mean or SD of a variable, one bivariate outlier
can greatly lower or raise a correlation (raising a correlation will be discussed in
the next section). Further investigation may show that the outlying person mis-
understood the directions for the musical ability test, was wearing faulty head-
phones, or should be disregarded for some other reason. Removing an outlier can
greatly improve a correlation, but outliers should not be removed merely for be-
ing outliers; there must be some independent reason for removing that data point
if your statistical tests on the data are to remain accurate. Legitimate outliers may
cause you to rethink your theory to try to accommodate them.

Restricted or Truncated Range

Figure 4.5 demonstrates yet another way to obtain a surprisingly low r. You might
think that selecting a group of people all of whom scored highly on a math pho-
bia questionnaire, and then giving them a speeded math test, would be a good way
to obtain a high correlation between math fear and number of math errors. You
can see that in Figure 4.5 all of the participants did indeed commit a lot of math
errors, so why is the sample r near zero? The reason is that r is based on z scores
with respect to your sample; the person with the lowest math anxiety in your
sample will get a low (in fact, negative) z score for anxiety even though he or she
is high on the scale in an absolute sense. So the people in your sample will not all
have high z scores for both variables. In fact, if you look at the data points in Fig-
ure 4.5 you will see that they are scattered almost randomly and do not come close
to falling on one straight line. However, if you were to add one score in the lower
left corner of Figure 4.5 (low anxiety, low errors) it could shift the mean on both
variables enough to make the z score positive on both variables for all of the par-
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Figure 4.5 A scatterplot with a restricted range: Math errors versus math
anxiety
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ticipants except the new one. In this
case a bivariate outlier could greatly
increase the magnitude of the corre-
lation.

The problem depicted in Figure
4.5 is called a truncated or restricted

range. If you erect a vertical line three
quarters of the way to the right in Fig-
ure 4.1, the points to the right of that
line will not exhibit a strong trend and
therefore will yield a rather small r. In
general, the trend of the points has to
outweigh the scatter of the points to
attain a decent sample r. Because in
social science research there is usually
a good deal of scattering of points,
you generally want to include a large
range on both variables so the trend,

if any, will be prominent. Of course, you don’t want the range to be so large that
the trend becomes curvilinear as in Figure 4.3. You can often use past research as
your guide in deciding on the optimum range of your variables. Unfortunately,
sometimes a researcher can be stuck with a sample of convenience that has a re-
stricted range on a variable of interest (e.g., all of the available participants are well
educated). In that case you may need to sample a large number of participants:
The larger sample won’t make r any higher, but it can increase your chances of get-
ting statistical significance with a fairly small r.

REGRESSION

When two variables are highly correlated (whether positively or negatively),
knowing a person’s value on one variable allows you to make a fairly accurate pre-
diction concerning his or her value on the other variable. Even with a moderate
degree of correlation, useful predictions can be made. This is the logic behind us-
ing standardized aptitude tests (like the Scholastic Aptitude Test [SAT] or Amer-
ican College Test [ACT]) as one of the criteria for selecting applicants to a college
(such tests yield a moderate r when correlated with a student’s college GPA upon
graduation). Although social scientists rarely make predictions, the most com-
mon method that is used for making them, linear regression, has other uses, as you
will see. In this chapter we will deal only with simple (i.e., bivariate) linear regres-
sion: the prediction of one variable by only one other based on the linear relation
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Some Reasons for a Low
Pearson’s r

1. The true relation between the two
variables may be curvilinear.

2. Most of the sample follows a fairly
linear relationship, but the sample
contains one or more bivariate
outliers.

3. One or both of the variables may
have a restricted (truncated) range
in your sample.

4. There is very little relation be-
tween the two variables; the points
in the scatterplot do not exhibit
any clear trend.



between them. (Multiple regression is an important extension of bivariate re-
gression, but it is beyond the scope of this book.)

The Standardized Regression Equation

If you recall the definition of perfect correlation, it should come as no surprise
that when r � 1.0, the z score that is predicted for one variable is exactly the same
as the z score of the other variable: z

y�
� z

x
(the prime next to the y in the sub-

script indicates that this is a prediction). Similarly, when r � –1.0, z
y�

� –z
x
.

When correlation is less than perfect the prediction rule is almost as simple:

z
y�

� rz
x

(4.5)

Because this formula is presented in terms of z scores, it is called a standard-
ized regression equation. According to this equation, the lower the correlation,
the more cautious you are in your prediction. Assuming the correlation between
height and weight is �.5, if you know that someone is 2 standard deviations
above the mean for height (i.e., z � �2), you would predict that person to be only
1 standard deviation above the mean on weight (z

y�
� rz

x
� .5 
 �2 � �1). No-

tice what happens when the correlation is zero. Regardless of the value of one
variable you would always predict zero for the z score of the other variable. Re-
member that a z score of zero is always at the mean of a variable, so if, for in-
stance, height and weight were not correlated at all, you would predict the aver-
age weight for everyone regardless of his or her height.

You can see then that as the correlation goes from perfect to zero, the predic-
tion of the y variable goes from the same z score as the x variable through smaller
and smaller portions of that z score, until it goes down to the mean of the y vari-
able. The phenomenon, in which predictions involving a moderate correlation
are a compromise between the same z score as the predictor and the mean of the
variable being predicted, is known as regression toward the mean. Galton noticed this
with height. Tall fathers tended to have tall sons, but not quite as tall as them-
selves. This tendency has led to a kind of gambler’s fallacy wherein people think
that nature is moving to even things out by making the son not as tall as his fa-
ther. Actually, it’s just that being tall is rather unlikely, so the odds are somewhat
against the son being tall, even if his father is.

The Raw-Score Regression Formula

The expression “y has been regressed on x” means that y is being predicted from
x. The variable being predicted is often referred to as the criterion, and the other
variable is called the predictor. If it is sensible to think of one variable as causing a
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change in the other, then the causal variable is called the independent variable (x)
and is used to make predictions about the other, the dependent variable ( y). Be-
cause it is not convenient to convert all of one’s data to z scores, it is more com-
mon to make predictions in terms of the scores themselves using a raw-score re-
gression or prediction formula. If we start with Formula 4.5 and insert the
appropriate z score formulas for the X and Y variables and then rearrange the
terms algebraically, we will arrive at the following raw-score formula:

Y� � r ��
s

s

x

y
��X � Y� � �r ��

s

s

x

y
�	X�


This formula can be simplified by creating the following terms:

b
yx

� r ��
s

s

x

y
�� (4.6)

a
yx

� Y� � b
yx

X� (4.7)

Now the raw-score regression formula can be written as

Y� � b
yx

X � a
yx

(4.8)

Note that Formula 4.8 is the equation for a straight line in which b
yx

is the slope
and a

yx
is the Y-intercept. When r � �1 or –1, all of the points in the scatterplot

will fall on this line. When correlation is less than perfect the line represented by
the formula is the best line that can be
drawn through the points in the scat-
terplot—best in terms of the way it
minimizes the distances from the
points to the line (actually, squared
vertical distances, as will be explained
shortly). The procedure for finding
the least-squares regression line is
summarized in Rapid Reference 4.2.

When r equals zero, b
yx

also equals
zero, and a

yx
reduces to Y�. Therefore,

the regression line becomes Y� �

Y�—that is, a horizontal line whose
height is the mean of the Y variable.
For any value of X, the predicted Y is
the point on the regression line di-
rectly above that value of X. If you
want to predict X from Y the regres-
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Steps for Finding the
Regression Line

1. Calculate Pearson’s r for the two
variables.

2. The slope, byx , is r times the ratio of
the SDs for the two variables, with
the SD for the criterion (Y) on
top.

3. The Y intercept (ayx ) is the mean
of the criterion (Y) minus byx times
the mean of the predictor (X)
variable.

4. The final equation is Y� � byxX �
ayx .

Rapid Reference 4.2



sion line will be different—b
xy

� r (s
x
/s

y
) and a

xy
� X� – b

xy
Y�—but it is rare to want

to predict Y from X and X from Y, so it is customary to label the criterion Y and
the predictor X. Note that whereas b

yx
and a

yx
are usually not the same as b

xy
and

a
xy

(unless the means and SDs of two variables are the same), r
yx

is the same as r
xy

,
so if we are dealing only with two variables we can refer to r without subscripts.

Making Predictions

It is time now to discuss using a regression line to make specific predictions. Sup-
pose you have a group of 30 men who have been measured for height (X) and
weight (Y), and r � .4. If X� � 69 inches, s

x
� 2.5 inches, Y� � 160 pounds, and s

y

� 25 pounds, then b
yx

� .4(25/2.5) � .4 
 10 � 4, and a
yx

� 160 – 4(69) � 160 –
276 � –116. So the prediction equation is Y� � 4X – 116 (obviously the Y-
intercept is not interpretable in this case). If in the place of X you put some (rea-
sonable) height in inches, and solve, you will get the best prediction you can make
for weight. For instance, a man who is 75 inches tall would be predicted to weigh
Y� � 4(75) – 116 � 300 – 116 � 184 pounds, whereas a man who is only 60
inches tall would be predicted to weigh Y� � 4(60) – 116 � 240 – 116 � 124
pounds. Note that in simple linear regression the mean of one variable always
leads to a prediction of the mean for the other variable (in our example, Y� �

4(69) – 116 � 276 – 116 � 160).
Of course, you are not just trying to predict values in the sample you already

have. The purpose of creating a prediction equation is to make predictions for
people not in your sample and often for values not yet known (e.g., predicting the
length of someone’s life span from their current health habits). The predictions
can be thought of as point estimates of some true value, and they have the same
problem as point estimates of the population mean. The problem is that predic-
tions are much better when r is high than low, and better when they come from
large rather than small samples. We hope that you remember from Chapter 2 that
the solution to this problem is interval estimation. You can create a 95% confi-
dence interval, for instance, around your prediction. The precise computations
for such intervals are beyond the scope of this book (see B. Cohen, 2000); the im-
portant point is that you know when and why to use them.

Interpreting the Slope and Intercept of the Regression Line

Whereas r is unaffected by a change in measurement units, the slope is not. If
weight is measured in pounds s

y
could be about 30, and if height is measured in

inches s
x

could be about 3. With a height/weight correlation of .5 the slope would
be .5 
 (30/3), which equals 5. This means that if person A is 1 inch taller than
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person B, person A is expected to be
5 pounds heavier than person B.
However, if height is measured in
centimeters and weight in kilograms,
the slope would only be about .9. Al-
though the sign of the slope must
match the sign of r, the magnitude of

the slope tells us nothing by itself about the magnitude of r.
The Y-intercept is, of course, also affected by a change in units, but unlike the

slope it is not always meaningful. We will begin with a case in which it is. Imagine
that you are predicting scores on a statistics exam from the number of hours stud-
ied. Hours of study would be on the x-axis of the scatterplot, and exam scores on
the y-axis. The slope of the regression line tells you how many additional points
you can expect to score on the exam for each hour that you study. The regression
line could pass through the origin (0,0 point) of the graph, but more likely it will
hit the y-axis at some positive value. That value (the value of Y when X � 0) is
the Y-intercept, and it tells you, in this case, what exam score you can expect if
you don’t study at all for the test. However, it doesn’t always make sense to extend
the regression line all the way down to a zero value for X. The height/weight scat-
terplot is an example of this. As another example, consider predicting income or
happiness or any other variable from IQ. It is not meaningful to make predictions
for an IQ of zero because it is not clear what it would mean for a person to have
an IQ of zero. Usually, linear regression makes sense only within a limited range
of the X variable. Beyond that range the relation with other variables may not re-
main linear—if those extreme X values can be interpreted at all.

Variance around the Regression Line

The way error is measured in linear regression is important; in fact, sometimes the
errors are the most important part of the regression, as you will soon see. In Fig-
ure 4.6 we have redrawn Figure 4.1 to illustrate how error is measured. Notice
that the point representing Mr. Y in Figure 4.6 shows that Mr. Y is very tall. He is
also very heavy; indeed, he is considerably heavier than expected for his height.
The difference between his actual weight and his predicted weight (i.e., the verti-
cal distance from the point to the regression line) is considered error. If we were
really trying to predict his weight, this amount is how many pounds we’d be off.
Subtracting his predicted weight from his actual weight yields Mr. Y’s residual

score, which is positive in this case. People whose weights fall below their pre-
dictions have negative residuals. It is an important property of the regression line
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The Y-intercept of a regression line is
not always interpretable. It does not
always make sense to extend the re-
gression line down to X � 0.



that if you add up all of the residuals (i.e., errors from the line), the positives will
exactly cancel out the negatives to yield a sum of zero.

The total amount of error around a regression line is determined by squaring
all of the residuals and adding them up. The resulting sum of squares (SS) is called
variously SSerror , SSresidual , or SSunexplained . Another important property of the re-
gression line is that it minimizes SSerror ; it is the best possible line in the scatter-
plot, because no other line would produce a smaller SSerror . Therefore, the re-
gression line has what is called the least squares property. The regression line may
remind you of the mean; that’s because it is a running mean of sorts. It is approx-
imately the mean of the Y values at each X value (the larger the sample the better
the approximation at each X value). Dividing SSresidual by N (the sample size) gives
you �2

residual , the variance of the residuals, which is also the variance of the data
points from the regression line (in the vertical direction).

As the correlation gets closer to zero, �2
residual gets larger, but until the correla-

tion actually equals zero, �2
residual remains less than the variance of the errors you

would make without using regression at all. How much is the variance of your er-
rors without regression? Recall that when r equals zero your best strategy is to
guess the mean of Y as the Y value, regardless of X. Using Y� as your prediction
for everybody is the same as drawing a horizontal line through the scatterplot and
using it as your regression line. The variance of the Y values around the mean of
Y is just the ordinary variance of Y. In the context of regression it is called the to-

tal variance. To the extent that the points tend to rise or fall as you move to the right
in the graph, a line that is angled to follow the points will get closer to the points,
and the �2

residual around that line will be less than the �2
residual around the horizon-
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Figure 4.6 Measuring error from a regression line

76

190

220

0
Height (inches)

Weight
(pounds)

Mr.Y

Prediction
for Mr.Y

Residual
for Mr.Y



tal line (i.e., �2
total ). The difference between �2

total and �2
residual is the variance that has

been accounted for by the regression—it is the amount by which the error vari-
ance has been reduced by having a predictor (�2

regression � �2
total – �2

residual ).
That amount of variance—let’s call it �2

regression—is not by itself a meaningful
quantity (for instance, it depends on your measurement units), but divided by the
total variance it is the proportion of (the total ) variance accounted for by the regression.
This proportion is directly related to the degree of correlation; the greater the
magnitude of r, the greater the reduction in error variance and the larger the pro-
portion of variance accounted for. In fact, the relationship is simpler than you
might guess, as shown in Formula 4.9:

r 2 � �
�2

�
re

2

g

t

r

o

e

t

s

a

s

l

ion
� (4.9)

The quantity r 2 is sometimes referred to as the coefficient of determination. Notice
that it is the magnitude and not the sign of the correlation that determines the
proportion of variance accounted for; an r of –.5 is just as good as �.5, in
that both allow you to reduce error variance by 25% (i.e., –.52 � .25). Also note
that the squaring of r results in less variance accounted for than you might expect.
A moderate correlation of .3 reduces error variance by only 9%, and a small cor-
relation of .1 reduces it by only 1% (�2

residual is 99% as large as �2
total when r � .1).

The complement of r 2 is the coefficient of nondetermination, sometimes symbolized as
k2, and it is the proportion of the total variance that still needs to be explained.

k2 � �
�

�

2
re

2
t

s

o

id

ta

u

l

al
� (4.10)

Because r 2 � k2 � 1, another way to define k2 is as 1 – r 2, so 1 – r 2 �

�2
residual /�2

total . This leads to a formula whereby the variance around the regression
line does not have to be calculated directly if r has been found.

�2
residual � (1 � r 2 )�2

total (4.11)

The Assumptions of Linear Regression

Ideally, the joint distribution of your two variables in the population will be a bi-

variate normal distribution (e.g., not only will extreme values of height and weight be-
come increasingly unlikely, but extreme combinations of the two variables will drop
off accordingly). Moreover, to make valid CIs for your predictions, the data
points should become scarcer as you move up or down from the regression line;
in fact, the density of the points should follow a normal distribution vertically at
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every value for X. Finally, all of these
NDs should have the same �2 (their
means are on the regression line),
which is �2

residual as defined earlier.
This last condition is called homo-

scedasticity, but you can think of it as
homogeneity of variance around the
regression line. Having much more
scatter around, say, the left half as
compared to the right half of the line
is called heteroscedasticity, and this con-
dition threatens the validity of your
predictions.

Other Uses for Regression

Prediction is not the only common use for linear regression. Regression can be
used in conjunction with an experiment in which the independent variable has
quantifiable levels. For instance, the IV could be dosage of caffeine, and the DV
could be the score on a video game that simulates driving a truck (perhaps the
participants are sleep deprived). Although the IV will usually have just a few dis-
crete values (i.e., dosages), you could still display your data on a scatterplot and
find the best regression line. The slope of that line will tell you how much scores
improve when you increase caffeine dosage by one unit (the Y-intercept would
indicate how well participants perform when deprived of both sleep and caffeine).
If the change in scores with caffeine dosage is not linear (e.g., an optimum dosage
is reached after which scores actually decrease), a more complex form of regres-
sion, like polynomial regression, should be used.

Another even more common use for regression is to focus not on the predic-
tions but on the residuals. Suppose a researcher thinks there’s a connection be-
tween a man’s weight and his cholesterol level (CL). She is surprised to see that
the correlation between weight and CL is rather low. Then she realizes that it is
really obesity that should be related to CL. A man who weighs 200 pounds may
be obese, or slim and just very tall. If she uses height to predict weight, the resid-
ual will be like an obesity score (how many pounds someone is above or below
the average weight for his height). If she is right about the obesity-CL connection
these residuals will correlate more highly with CL than the original weights of the
men. In this way regression can be used to clean up a variable by adjusting it for
some other variable that is not of interest (there is no reason to think that height
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DON’T FORGET

The Assumptions of
Linear Regression

1. Interval/ratio data
2. Independent observations
3. Bivariate normal distribution (bi-

variate outliers threaten this as-
sumption)

4. Homoscedasticity (equal amount
of scatter all along the regression
line)



is related to CL, so to the extent that height affects weight it is a nuisance vari-
able). If you are studying the relation between memory and amount of exercise in
the elderly you would probably want to correct or adjust your memory scores for
age by using linear regression and finding the residual memory score.

The Point-Biserial Correlation

We don’t want to end this chapter without talking about a special case of correla-
tion in which one of the variables has only two possible values, and these values
represent different groups. For instance, it is possible to find the correlation be-
tween height and gender. At first, this may seem impossible, because gender is not
quantifiable, and you need numbers for both variables to calculate r. However,
you can arbitrarily assign two different numbers to the two different groups and
then calculate the correlation. Surprisingly, it doesn’t matter what two numbers
you assign: You will get the same r if you use 1 and 2, or 3 and 17. Perhaps even
more surprising is the fact that the r you get, which is called the point-biserial r
(symbolized rpb ), is meaningful. Suppose you assign 1 to females and 2 to males
and correlate these gender numbers with their heights. In this case, r will measure
the tendency for the heights to get larger as the gender number gets larger (i.e.,
goes from 1 to 2). The more consistently the men are taller than the women, the
closer r will get to �1. Of course, if we assign the larger gender number to fe-
males, the sign of r will reverse, which is why the sign of rpb is usually ignored. But
in either case, the magnitude (i.e., absolute value) of rpb will be the same, and it will
tell us the degree to which one gender is consistently taller than the other.

Like any r, we can test rpb for significance with a t test by employing Formula
4.4. Let us say we have calculated rpb for the gender/height example, and then cal-
culated its t value. We can also calculate a t value directly to compare the males
and females on height using Formula 3.6. It should not be shocking that these
two t values will always be exactly the same, because they are testing the same
thing: the tendency for one gender to have more height than the other. Knowing
that the two t values will be the same, we can take the t from any t test of two in-
dependent groups, plug it into Formula 4.4�, and solve for r to see what we would
have gotten if we had calculated a correlation with arbitrary group numbers in-
stead. Solving Formula 4.4 for r (which we label rpb ), we get

rpb ��� (4.12)

where df equals the combined number of participants from the two groups mi-
nus 2.

t 2

�
t 2 � df
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The Relation between rpb and the t Test

What makes rpb so useful in the two-group case is that the t value, which tells us
only whether we can reject the null hypothesis, tells us nothing about how con-
sistently the two groups differ on the dependent variable. Even a small, inconsis-
tent difference between two groups can produce a very large t value if the samples
are huge. But if a fairly large t, like 4.0, is associated with 240 df (121 people in
each of the two groups) rpb will be only

rpb ���
42 �

42

2�40
�� ���

2

1

5

6

6
�� ���

1

1

6
�� � .25

If the same t is associated with only 16 df, rpb will be

rpb ���
42 �

42

1�6
�� ���

1

3

6

2
�� � �.5� � .707

The larger rpb indicates that there will be less overlap between the two groups, and
that it will be easier to predict the DV from knowing which group someone is in.

Even more useful than rpb, in many ways, is its squared value, r 2
pb ; this value tells

you the proportion of variance in your continuous variable that is accounted for
by group membership. In terms of the gender/height example, r 2

pb tells you how
much height variance is reduced when measured within the two genders, rather
than across all human beings. You may recall from the previous chapter that g also
tells you about how well your two groups are separated. As you would guess, r 2

pb

increases as g increases. As g gets extremely large, r 2
pb approaches 1.0.

If you were dealing with an entire population, r 2
pb would be called omega squared

(not rho squared, as you might expect) and is symbolized as �2 (the last letter of
the Greek alphabet in lowercase). However, r 2

pb from your data is a biased esti-
mate of its corresponding �2. Fortunately, the bias can be corrected fairly well by
the following formula:

est �2 � �
t 2 �

t 2 �

df �

1

1
� (4.13)

Note that without the –1 and �1, this is just the square of Formula 4.12. Ei-
ther r 2

pb or the unbiased estimate of �2 from Formula 4.13 (or in some cases, g)
should usually be reported along with a two-group t value, so that the reader is in-
formed not only of the statistical significance of an experimental effect, but the
actual size of that effect in the data. We will show you how to translate effect size
measures into the probability of getting statistical significance (i.e., power) in
Chapter 6.
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Putting It Into Practice
1. As the correlation between two sets of scores becomes more positive, the RM t

test comparing the means of the two sets gets larger. Reproduced below are the
data from the second “Putting It Into Practice” problem in the previous chapter.

Participant No. No Imagery Imagery

1 8 14
2 11 15
3 7 5
4 10 16
5 9 9
6 15 16
7 7 8
8 16 20

(a) Calculate Pearson’s r between the Imagery and No Imagery conditions. Is
the correlation statistically significant at the level?

(b) The RM t value can be calculated in terms of the Pearson’s r between the
two sets of scores and the means and SDs of the two sets by using the
following formula:

t �

Using this formula, calculate the RM t for the imagery data and compare it
to the RM t you found for the same data in the previous chapter.

(c) Can the correlation be statistically significant if the RM t test is not (and
vice versa)? Explain.

2. Students who have taken courses in both areas are asked to rate on a 10-point
scale how much they like math and how much they like statistics. The ratings
for 10 random students appear below.

Student No. Math Statistics

1 7 5
2 8 4
3 2 0
4 9 3
5 3 1
6 5 6
7 6 7
8 0 1
9 4 3
10 8 2

X�1 � X�2
���

��
s2

1 �

N

s2
2

�� � �
2 r

N� s1s2
��



(a) Is there a tendency for those who like math to like statistics also? Deter-
mine the strength of the linear relationship by calculating the correlation
coefficient between these two sets of ratings.

(b) Test the correlation in 2a for significance at the .05 level. Can you reject
the null hypothesis that the two ratings have a zero correlation in the pop-
ulation?

(c) Draw the scatterplot for the data in this problem with the math ratings on
the horizontal (x) axis. Is Pearson’s r a good way to summarize the relation
between the two variables? Explain.

(d) Find the regression equation for predicting the statistics rating from the
math rating. What statistics rating would you predict for someone who
gives a rating of 6 to math?

3. Calculate the point-biserial r corresponding to each of the p-v t values you found
for the first “Putting It Into Practice” problem (1a) in the previous chapter.
Compare these r’s to the values you calculated for g in part b of that problem.

TEST  YOURSELF

1. If a variable, Y, is created by dividing all the values of another variable, X,
by a constant and subtracting a constant from each value, what will the
Pearson’s r between X and Y be?

(a) 0
(b) 100
(c) �1.0 or – 1

(d) It depends on the means and SD’s of x and y.
2. If Pearson’s r for a sample is found to be –.9, which of the following will be

true of the scatterplot for those data?

(a) All of the points will be fairly close to one straight line.
(b) The points will be almost randomly scattered.
(c) The points will exhibit a strong relation, but not a linear one.
(d) Nothing can be said about the scatterplot from the information given.

3. If taking away one point from a sample causes Pearson’s r to change dra-
matically, you are probably dealing with

(a) a bivariate outlier.
(b) a curvilinear relation
(c) a correlation near zero.
(d) a correlation near 1.0.

4. A truly random sample of the population (as compared to a convenient
sample) will reduce the likelihood of which of the following?

(a) A curvilinear correlation
(b) A near-zero correlation
(c) A truncated range
(d) Statistically significant results

S S

(continued )
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5. If a journal article reports a small Pearson’s r, and yet also reports that
the r differs significantly from zero at the .05 level, which of the following
must be true?

(a) The correlation was not a curvilinear one.
(b) The sample size was not very small.
(c) There must have been at least one bivariate outlier.
(d) A large alpha must have been used.

6. Find Pearson’s r, given the following summary statistics:
N � 10, �XY � 2780, �x � 3.2, �y � 87.5, �x � .4, �y � 7.2.

(a) �.31
(b) –.31
(c) –.69
(d) –.77

7. For a sample, r2 is equal to

(a) the ratio of the explained variance to the unexplained variance.
(b) the coefficient of nondetermination.
(c) the proportion of the variance accounted for.
(d) all of the above.

8. A large positive slope means that

(a) the correlation will be large and positive.
(b) the Y-intercept will be large and positive.
(c) the value of Y will increase by (at least) several units when the X value in-

creases by one unit.
(d) all of the above are true.

9. Suppose that the calculated t value for a two-group experiment with 43
participants per group is 4.0. What is the value of the point-biserial r?

(a) .16
(b) .19
(c) .4
(d) .44

10. Suppose that there is a .45 correlation between IQ (� � 100, � � 15) and
verbal SAT score (� � 500, � � 100). What verbal SAT score would you
predict for someone who has an IQ of 90?

(a) 433
(b) 470
(c) 490
(d) 510

Answers: 1. c; 2. a; 3. a; 4. c; 5. b; 6. c; 7. c; 8. c; 9. c; 10. b.
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ONE-WAY ANOVA

Don’t let the name fool you. The procedure known as analysis of variance, or
ANOVA for short, is really like the t test in that it helps you determine whether
your sample means differ enough to conclude that they do not differ just by
chance—that there is some real difference among the populations they repre-
sent. The advantage of ANOVA is that it can be applied to any number of groups,
rather than just two as in the case of the t test. In fact, because ANOVA can be
applied when there are only two groups there is no need for the t test (we will
show you how to get t from your ANOVA). The reason the procedure in this
chapter is called analysis of variance is related to the description of the t test in
terms of linear regression presented at the end of the previous chapter: The total
variation of the DV is analyzed (i.e., broken into smaller parts) into a proportion
of variance accounted for by the IV, and a proportion representing residual or er-
ror variance (i.e., within the different groups).

In this chapter we will deal only with one-way ANOVA, which means that all of
the groups involved are considered to be different levels of a single factor, which is
the IV. Two- and three-way ANOVAs, for instance, have two or three IVs, re-
spectively. Also, we will be dealing only with one-way ANOVAs, in which each
level involves a different, separate group of participants. If people are matched
from one group to another, or the same participant is involved in more than one
level of the ANOVA, a different type of ANOVA is required, which will be de-
scribed in Chapter 8. ANOVAs with only one DV are called univariate, whereas
ANOVAs that combine two or more DVs into a single analysis are called multi-

variate ANOVAs, or MANOVAs, for short. In this chapter we will discuss only
one-way univariate ANOVAs—that is, ANOVAs with one IV and one DV.

Five

ONE-WAY ANOVA AND
MULTIPLE COMPARISONS



Comparing ANOVA with the t Test

To show you just how similar ANOVA is to the t test, we will start with a t for-
mula, square it so that we are working with variances, and then rearrange it alge-
braically until it looks like an ANOVA. We will start with Formula 3.6, but with
n1 � n2.

t � �

Now we square both sides and rearrange terms.

t 2 � ��
n(X�1

2

�

s
p

2

X�2 )2

�

This leads to

t 2 � (5.1)

Formula 5.1 does not look anything like a t formula, but take its square root and
you will get the same t value as you would using Formula 3.6 (if the n’s are equal).
If you don’t take its square root, you have performed an ANOVA on the two
groups. Unfortunately, the numerator of this formula will not work if you have
more than two groups. The denominator of the formula, however, does not need
to change to accommodate more than two groups. If you look at Formula 3.5 for
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DON’T FORGET

When Will I Use the Statistics in This Chapter?

You are measuring one outcome (i.e., dependent) variable on a quantitative scale
(or looking at one such variable at a time), and
• You are comparing three or more groups that represent existing populations

(e.g., four groups of people such that each group is from a different occupa-
tion), or

• You have randomly assigned participants to one or another of three or more
experimental treatments or conditions (e.g., each participant is assigned to one
of three training methods).



the pooled variance, it is easy to imagine how you could add groups. For instance,
for three groups the formula would be

s2
pooled �

Also, note that the groups can be different sizes. If all of the groups are the same
size, the formula above simplifies to an ordinary average of the group variances:

s
p

2 � �
∑

k

s 2

� (5.2)

where k is the number of different groups. It is not obvious how groups can be
added to the numerator of the squared t test formula, but we will show you how
next.

The ANOVA Formula for Any Number of Equal-Sized Groups

If you want to know how far apart two sample means are, a simple difference
score will suffice. But if you want to know how spread out three or more sample
means are, what measure can you take? The answer is that for any set of numbers,
their standard deviation will tell you how spread out they are. However, for
ANOVA, taking the variance of the sample means will be more convenient. It
may not look like it, but the following term is actually the unbiased variance of the
two sample means (or any two numbers): (X�1 – X�2)2/2 (i.e., you would get the
same result from plugging the two numbers into a formula for s2, such as Formula
2.4). The symbol for the unbiased variance of sample means is s x�

2 . If we exchange
these two terms in the numerator of Formula 5.1, then we can write that numer-
ator as nsx�

2 (the unbiased variance of the sample means multiplied by the size of
any one sample). We can now rewrite Formula 5.1 as [n(sx�

2 )]/s
p

2, which can clearly
accommodate any number of same-sized groups.

Just as Formula 3.6 follows the t distribution when the null hypothesis is true
and the proper assumptions are met, the expression above follows a distribution
referred to as F (in honor of the pioneering work of Sir Ronald Fisher), when the
appropriate null hypothesis and assumptions are true. Plugging Formula 5.2 into
the preceding expression, we get a simple formula for the one-way ANOVA that
works when all of the k groups are the same size, n.

F � (5.3)
nsx�

2

�

�
∑

k

s 2

�

(n1 � 1) s2
1 � (n2 � 1) s2

2 � (n3 � 1) s2
3

����
n1 � n2 � n3 � 3
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Suppose the means and (unbiased) SDs of your three groups are as follows: X�1

� 6, s1 � 4; X�2 � 9, s2 � 3; X�3 � 15; s3 � 5, and that there are only four people
in each group. Given that the (unbiased) variance of 6, 9, and 15 is 21, and squar-
ing the s’s to get the variances for each group, the F ratio for these data would be

F � � � �
16

8

.

4

67
� � 5.04

Whereas the t distribution depends only on the df of the pooled variance, the F
distribution depends on the df for both the numerator and denominator of the F
ratio, as we will explain shortly.

The General Formula for ANOVA

Formula 5.3 is very convenient for calculation in the equal-n case, and for mak-
ing the concept of ANOVA clear (we will return to it for that purpose), but the
df ’s will be easier to see in the more general formula for F. The following formula
is needed when the groups are different sizes:

F � (5.4)

where n
i
, X�i

, and s
i

2 are the size, mean, and variance of any one particular (i.e., the
ith) group, k is the number of groups, and X�G is the grand mean (i.e., the mean of
all the scores—it is the simple average of the group means only when all of the
groups are the same size). Both the numerator and the denominator of the for-
mula are variances; as we will explain shortly, these two variances are expected to
be about the same when the null hypothesis is true.

Any unbiased variance can be written as SS/df, where SS stands for the sum
of squared deviations from the mean, and df is the degrees of freedom; that is the
case for both the numerator and the denominator of Formula 5.4. When an SS is
divided by df it becomes a mean of squares instead of a sum of squares, so any
variance can be symbolized as MS instead of s 2; this is a common notation when
dealing with ANOVA. The numerator of Formula 5.4 is called the between-
groups mean-square or MSbetween, while the denominator is called the within-
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group mean-square or MSwithin. This notation is often shortened even further as
in the following formula:

F � �
M

M

S

S

b

w

et� (5.5)

Let us look more closely at the numerator of Formula 5.4. It has the form of
SS/df, where Σn

i
(X�i

– X�G )2 is SSbetween and k – 1 is dfbetween (the number of groups
minus one). In the expression for SSbet, the grand mean is subtracted from each
mean and the difference squared before being multiplied by the sample size and
summed. The squared deviations from the grand mean are being weighted by the
sample size; hence, this method is called the analysis of weighted means. There is a
variation of this formula that is known as the analysis of unweighted means, but
it is used so rarely in the one-way ANOVA that we will not mention it again in
this chapter. (The analysis of unweighted means is mentioned in “Putting it into
Practice” in Chapter 7, and is described thoroughly in the two-way ANOVA
chapter in B. Cohen [2000].)

The denominator of Formula 5.4 is a way of writing Formula 5.2 when the
groups are different sizes. It too has the form of SS/df, where Σ(n

i
– 1)s

i

2 is
SSwithin or SSW , for short (each group variance is weighted by its sample size), and
Σ(n

i
– 1) is dfw . Note that Σ(n

i
– 1) can be written as Σn

i
– k , which equals NT – k

(the total number of participants minus the number of groups). In the two-group
case dfbet equals one, and dfw � n1 � n2 – 2; the square root of F is just t with df
equal to dfw . Also note that when all the n’s are equal, n (without a subscript) can
be moved in front of the summation sign in the numerator of Formula 5.4, and
the denominator of that formula becomes the ordinary average of the sample var-
iances. Thus, Formula 5.4 becomes the same as Formula 5.3.

There are several computational raw-score formulas for SSbet and SSw that
were needed to reduce computa-
tional effort in the days before statis-
tical software and hand-held statisti-
cal calculators. They are no longer
useful, and because they are not in-
formative to look at we will not
bother to present them here. Now
that we have defined both dfbet and
dfw, we can discuss the F distribution
and how it can be used to determine
statistical significance for ANOVA.
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C AU T I O N

If your IV (i.e., factor) in a one-way
ANOVA has quantitative levels (e.g.,
different dosages of the same drug),
the ordinary ANOVA approach will
very likely not be optimal. You
should consider using trend analysis,
as described at the end of this chap-
ter.



The F Distribution

Just as the t test helps us to make a decision about whether two populations have
the same mean, one-way ANOVA uses an F test to decide about the equality of
any number of population means. In the three-group case, the null hypothesis
can be written as H0: �1 � �2 � �3, but H0 easily can be expanded for any num-
ber of groups. When H0 is true, the F ratio (as in Formula 5.5) should follow an
F distribution, which is therefore the appropriate NHD. But there is a whole fam-
ily of F distributions, which vary in shape whenever the df changes for the nu-
merator (dfbet � k – 1) or the denominator (dfw � NT – k) of the F ratio. Because
F is a ratio of variances and therefore can never be less than zero, F distributions
tend to be positively skewed, like the typical example depicted in Figure 5.1. Only
when the sample sizes are extremely large does the F distribution begin to re-
semble the normal distribution (which it becomes as dfbet and dfw become infi-
nite).

To find a critical value for F, with alpha at .05, go to Table A.3 in Appendix A.
For the example with three groups of 4 participants each, df for the numerator
(i.e., dfbet ) equals k – 1 � 3 – 1 � 2, and df for the denominator (i.e., dfw ) equals
NT – k � 12 – 3 � 9. Fcrit from that table is 4.26, which means that 5% of the area
of the F (2, 9) distribution is beyond 4.26 (see Figure 5.1). Because the F calcu-
lated for our example (5.04) is larger than 4.26 we can reject the null hypothesis
(our result is too large to come up frequently by accident when the experiment
doesn’t work at all).

Note that we only use one tail (the positive, or right, tail) of the F distribution
for ANOVA. The more that the sample means differ from each other, regardless
of the order or the pattern of the means, the greater is the variance of the means
and therefore the calculated F ratio. A very tiny F ratio (i.e., in the smaller, left tail)
can only imply that the sample means are unusually similar to each other (con-
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Figure 5.1 The F distribution with 2 and 9 degrees of freedom

4.260

Reject null
.05

5.04

F(2,9)



sidering the possibilities for accidental variations), which cannot count against
the null hypothesis.

The simplest way to wind up with an F distribution is to draw two samples
from the same population and divide the variance of the first by the variance of
the second. If you do this very many times (ideally, an infinite number of times),
these F ratios will form an F distribution with df’s of n1 – 1 and n2 – 1. An F test
can be used to decide if the two variances are significantly different, but there are
more robust tests for HOV, as mentioned in Chapter 3. The reason that the same
F test works for ANOVA is that both the numerator and denominator of For-
mula 5.5 are estimates of the same population variance. Explaining how this can
be so will give you a deeper understanding of the logic of ANOVA, so we turn to
this task next.

Both Parts of the F Ratio Estimate Population Variance

The denominator of Formula 5.5 rests on the HOV assumption, as did the use of
s 2

pooled in Chapter 3. If HOV can be assumed, then all the sample variances are es-
timates of the same �2, and taking a weighted average of them is the best way to
estimate the population variance (we will discuss what to do when HOV cannot
be assumed in the next section). That the numerator of Formula 5.5 is also an es-
timate of this same �2 is much less obvious. It will be easier to explain in the equal-
n case, when MSbet equals n(sx�

2 ), fortunately the same explanation is valid for the
more general case.

If we square both sides of Formula 2.1 (the standard error of the mean), we get
a formula that tells you what the variance of sample means will be when the
samples are of size n and the population has a variance of �2: �2

X� � �2/n. If we
multiply both sides of the preceding formula by n and reverse the equation, we
get �2 � n�2

X�. This formula tells us that the population variance of individuals is
equal to the variance of sample means (based on those individuals) multiplied by
the size of those samples. Therefore, if you have several samples in your study,
and you calculate nsx�

2 ), that quantity is actually an estimate of �2, the variance of
the population from which you drew your samples. This is only the case when H0

is true, as we will explain shortly. Thus, when the null hypothesis is true, the de-
nominator of Formula 5.5 estimates �2 from the sample variances, and the nu-
merator estimates �2 independently from the variance of the sample means, and
so the F ratios follow an F distribution with an expected value of about 1.0 (ac-
tually, the average F is dfw /(dfw – 2), which becomes very close to 1.0 for large
sample sizes).

In ANOVA the denominator of the F ratio is an estimate of �2, regardless of
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whether the null hypothesis is true. This is the person-to-person variation within
each group of a study—the variation due to individual differences, measurement
error, and minor random variations in experimental conditions—all of which is
unexplained and considered error. That is why the denominator of an F ratio in
an ANOVA is called the error term, and may be symbolized as MSerror (it is also
common to write SSerror and dferror ). The numerator in a one-way ANOVA is
based on differences among the sample means, which may or may not be influ-
enced by the different treatments given to the groups. When the population
means are all the same (i.e., H0 is true), we do not expect the sample means to all
be the same; we expect them to show some variation based on sampling error that
can get larger (as �2 gets larger or n gets smaller), or smaller (as n gets larger or �2

gets smaller). When H0 is not true, we expect the variation of the sample means to
depend on the size of the effects (i.e., population differences), in addition to sam-
pling error. So, in the general case, the F ratio for one-way ANOVA looks like
this: F � (treatment effects � sampling error)/sampling error.

When H0 is true, the treatment effects are zero, so the F ratio consists of one
estimate of sampling error divided by a different estimate of sampling error;
therefore, it can be somewhat smaller or larger than 1.0, but it is usually not far
from 1.0. When H0 is not true, F is usually greater than 1.0 (although by accident
it can still be less than 1.0), but unless it is larger than the critical value we must be
cautious and not reject the H0 (a large F could be due to the estimated sampling
error in the numerator being much larger than in the denominator), even though
we may be committing a Type II error. The assumptions required for the validity
of the F test in ANOVA are the same as for the t test. However, the HOV as-
sumption is a bit more problematic, as described next.

Homogeneity of Variance in ANOVA

When all of the samples in a one-way ANOVA are the same size, the Type I error
rate is not affected much by differences in the variances of the populations rep-
resented. However, the more discrepant the sample sizes become, the more likely
it is that differences in population variances can impact the one-way ANOVA. A
test such as Levene’s test (as introduced in Chapter 3) can evaluate the HOV as-
sumption with any number of groups. If HOV is rejected by such a test, there are
separate-variance versions of ANOVA that can be employed, but none of these
solutions are as simple and universally accepted as in the case of the usual solu-
tion for the separate-variances t test. Consequently, data transformations are of-
ten recommended to bring the variances closer together, especially when the
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sample data are very far from follow-
ing a normal distribution. In extreme
cases, especially if the sample sizes
are small as well as discrepant, a
nonparametric version of the one-
way ANOVA (e.g., the Kruskal-
Wallis test) is recommended (see
Chapter 9). The main assumptions of
ANOVA are listed in Rapid Refer-
ence 5.1.

Describing ANOVA results

Summary Table

The results of the one-way ANOVA are presented in a standard way in psycho-
logical journals (APA, 2001). Returning to the example we used to illustrate the
use of Formula 5.3, the results of the ANOVA could be reported in the follow-
ing way: “The means of the three groups (M’s equal 6, 9, and 15) differed signifi-
cantly, F(2, 9) � 5.04, p � .05.” The numbers in parentheses after F indicate the
df’s used to find the critical F, but the F given is the calculated, not the critical F.
The notation p � .05 tells us that given the F distribution with 2 and 9 df, 5.04 has
a p value (area beyond) less than .05. A practice that was more common in the past
than it is now is to present a full summary table for the ANOVA. For the example
just mentioned the summary table is shown in Table 5.1.

Each SS is divided by its df to yield its MS, except that no one bothers to do
this for the total SS, because the total MS is not used for anything (note that
MSbetween and MSw would not add up to MStotal if it were calculated). If you calcu-
late the two MSs directly, using Formula 5.4 for instance, you can find the SSs by
multiplying each MS by the df to its left. The column of SSs provides important
information to supplement the test of F for significance, as we will explain next.
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Assumptions of ANOVA

• Interval or ratio scale of measure-
ment for the DV

• Independent random sampling
• Normal distribution of the DV in

each population sampled
• Homogeneity of variance—each

population sampled has the same
variance

Rapid Reference 5.1

Table 5.1

Source SS df MS F p

Between groups 168 2 84 5.04 � .05
Within groups 150 9 16.67
Total 318 11



The Effect Size of ANOVA

As is true for the t test, F can be statistically significant even when there is very little
difference among the sample means, whether in an absolute sense or relative to the
variances within groups: All that is needed is very large sample sizes. To supple-
ment a test of significance it can be very helpful to provide an estimate of effect
size. At the end of the previous chapter we explained how r 2

pb or an estimate of its
population value, �2, could serve this purpose for a t test. A very similar statistic
can be used for the one-way ANOVA. Unfortunately, you cannot calculate a
simple correlation coefficient as in the case of rpb for the two-group case, but you
can find the proportion of variance accounted for in the DV by group member-
ship by simply dividing SSbetween by SStotal (of course, this quantity is always equal to
r 2

pb when there are only two groups in your one-way ANOVA). Because SSbet /
SStotal can be calculated with more than two groups (and rpb cannot), it is given a
new symbol in the context of ANOVA; it is called eta squared, and it is symbolized
by the lower-case Greek letter eta being squared (�2 ). (The use of �2 in this con-
text is an unfortunate exception to the usual practice of reserving Greek letters for
population quantities.) The corresponding population value is called omega squared,

just as it is in the context of the t test, and once again �2 is a biased estimator of �2.
The bias can be (nearly) corrected by the following formula:

est. �2 � (5.6)

Fortunately, it is becoming fairly common to report either �2 or �2 as a sup-
plement to reporting an F ratio. However, if you are reading a journal article and
see an F reported along with its df’s, but no effect size measure is given, you do
not need to have the raw data (or even the SS’s) to calculate �2. You can calculate
�2 with the following formula:

�2 ��
dfbe

d

tF

fb

�

etF

dfW

� (5.7)

For instance, if you read F(2, 9) � 5.04, then

�2 � �
2(5

2

.

(

0

5

4

.0

)

4

�

)

9
� � �

1

1

0

9

.

.

0

0

8

8
� � .528

This is the same value that you would obtain from dividing SSbetween by SStotal in
Table 5.1, because that is where we got F and the df’s to put into Formula 5.7. The
value calculated above for �2 represents a very large effect size. Although F is not
extremely large, this F was obtained with very small sample sizes. The same F

SSbet � (k � 1) MSW
���

SStot � MSW
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found for three groups of 100 partic-
ipants each would yield an �2 of only
.033. We will describe an additional
measure of effect size for ANOVA
and demonstrate its use for estimat-
ing power in the next chapter.

MULTIPLE COMPARISONS

Let us say that your three-group
ANOVA results in a significant F ra-
tio. By rejecting H0 you might be
tempted to think that you can say that all three population means differ from each
other, but that is not the case. You can only say that the three are not all the same.
For instance, suppose you had tested two new teaching methods against the tra-
ditional method and rejected H0. This could mean that both of the new methods
are better than the traditional one but that the new methods are identical to each
other; that one of the new methods is better than the traditional one, but the other
is not; or that all three methods are different. Pairwise significance tests (called
pairwise comparisons) are needed to determine which of the above choices is true
(and there are other possibilities if one or both of the new methods are worse

than the traditional one). These pairwise tests can be performed as two-group
ANOVAs, but more commonly they are conducted as t tests. With three groups,
three t tests are possible (each new method compared to the traditional, and the
two new methods compared to each other).

At this point you may be wondering why you should bother performing a one-
way ANOVA at all when you will almost certainly want to follow a significant
ANOVA with a series of t tests. Why not skip the ANOVA and proceed directly
to the t tests? Actually, if you perform specially modified t tests, as described
shortly, you can do just that. There is a problem, however, with performing ordi-
nary t tests in place of ANOVA, as we will explain next.

Protected t Tests

Imagine an experiment with seven groups for which the null hypothesis is likely
to be true. Perhaps you have divided your participants based on the day of the
week on which each was born and measured each person’s IQ. You could pro-
ceed to test every possible pair of days for significance, but that would amount to
a lot of t tests. The formula for the number of different unordered pairs is
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C AU T I O N

Don’t confuse �2 and �2:
�2 refers to the effect size in your
samples;
�2 refers to the effect size in the pop-
ulation.
Because �2 is a biased estimator of �2,
a corrected version of �2 is often used
as a measure of effect size to accom-
pany the report of an F ratio.



# pairs � �
k(k

2

� 1)
� (5.8)

where k is the number of groups. For the days of the week example the number
of possible t tests is (7 
 6)/2 � 42/2 � 21. If each of the possible 21 t tests is per-
formed with an alpha of .05, there is a good chance that at least one of the pair-
wise comparisons will be significant, because an alpha of .05 implies that, on the
average, one out of every 20 tests of a true null will yield significant results, and
we are dealing with 21 such tests (assuming that IQ is not affected by one’s day of
birth).

The probability of making one or more Type I errors in a group of tests that
are all part of the same experiment is called the experiment-wise alpha, symbolized
as �EW . In contrast, the alpha used for each particular test is called the alpha per

comparison, or �pc . For the days/IQ example, �pc was .05, but �EW was larger than
.5. (For c independent comparisons, �EW � 1 – (1 – �pc )c; the 21 t tests are not all
mutually independent, but the formula gives a reasonable approximation in this
case.) Clearly there is a need to control Type I errors, not just for individual t tests,
but for whole experiments; an �EW of .5 or more is just unacceptably large. This
is where the one-way ANOVA comes in. If all multigroup experiments must pro-
duce a significant F before t tests can be performed, then only .05 (or whatever
alpha is used) of null experiments (like the days/IQ example) will reach signifi-
cance and be followed by t tests; 95% of null experiments will fail the ANOVA
test and not be followed up.

The two-step system just described, in which the significance of the ANOVA
determines whether you can perform all the possible t tests, was created by
Fisher. He called the follow-up t tests protected t tests, because the researcher was
protected from testing an entire series of pairwise null hypotheses; a significant
ANOVA virtually guaranteed that there was at least one pair of conditions for
which H0 was not true. Moreover, Fisher reasoned that when HOV could be as-
sumed, the error term from the original ANOVA (i.e., MSW) could be used in
place of s2

pooled for every t test following the ANOVA, thus providing more df and
a lower critical value for each test. (If HOV cannot be assumed for the ANOVA,
each follow-up t test should be a separate-variances t test.) The formula for
Fisher’s protected t tests is

t � (5.9)
X�i

� X�j

��

�MSW���
n

1

i

� � �
n

1�
j

���
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where i and j represent any two different groups in the ANOVA. The df for the
critical t is dfw from the ANOVA.

Fisher’s Least Significant Difference Test

When all of the samples are the same size, Formula 5.9 can be simplified as fol-
lows:

t � (5.10)

Notice that the denominator of the formula above is the same regardless of
which pair of treatments is being compared. Also, the critical t is the same for
every pair. Therefore there must be some difference in the numerator of Formula
5.10 that, when divided by the constant denominator, will produce a value exactly
equal to the critical t for all pairs. Fisher called that difference the Least Signifi-
cant Difference (its abbreviation, LSD, became popular long before the drug
did), because any two groups differing by more than that amount would produce
a t greater than the critical t. This is shown in the following formula:

tcrit �

If the above formula is solved for LSD, a great deal of labor can be saved when
comparing groups that are all the same size. Instead of performing 21 t tests in the
seven-group case, one need only find the 21 numerators of those t tests (i.e., all
of the possible differences between pairs of means) and check to see which of
them are larger than LSD; those differences are significant at whatever alpha is
used to find critical t in the following formula for LSD:

LSD � tcrit��
2M

n

SW
�� (5.11)

When you are dealing with three groups it is highly recommended to begin
with a one-way ANOVA and then follow it with Fisher’s protected t tests. If you
skip the ANOVA and perform the three t tests at the .05 level, your �EW will be
greater than .05 (it’s quite possible one of the t tests will be significant even when

LSD
�

��
2M

n

SW
��

X�i
� X�j

�

��
2M

n

SW
��
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the ANOVA is not). However, when you are dealing with more than three
groups, Fisher’s system does not give you all the protection you need to keep �EW

down to .05. We will present an alternative test next.

Tukey’s Honestly Significant Difference Test

The statistician J. W. Tukey devised a new statistic, called a range statistic, that takes
into account the fact that when you take, say, seven samples from the same pop-
ulation, the chance that the largest and smallest sample means will differ signifi-
cantly by accident will be considerably greater than when you take only two
samples. Like Student’s t distribution, the range statistic also depends on the size
of the samples, so it is called the Studentized range statistic, and it is symbolized by q.
Because Tukey’s test requires that the n’s be equal, it is structured just like the LSD
test with a critical q substituted for critical t. Tukey called his minimum difference
score the “honestly significant difference” (HSD for short), undoubtedly to re-
flect the fact that his test keeps �EW at whatever alpha is used to look up the crit-
ical value of q.

HSD � qcrit��
M

n

SW�� (5.12)

If you look at the table for q (we have included the table for q at the .05 level;
see Table A.4) you will see that q gets larger as the number of groups increases
(moving to the right in any row) because it gets easier to find a large accidental
difference between the two most extreme groups. But q gets smaller as the
sample size increases (moving down in any column), because MSw becomes a bet-
ter estimate of the population variance. You may have noticed that the factor of
2, which was under the square root sign in the LSD formula, is missing from the
HSD formula. This does not represent an actual structural difference between
the formulas; Tukey just multiplied his original q values by �2� so he could sim-
plify his formula a bit.

You may have also noticed that the HSD formula requires that all of your
samples be the same size. If your groups differ only slightly due to random fluc-
tuations (e.g., a few more equipment failures in one group than another), you can
take the harmonic mean of your sample sizes (average the reciprocals of your
sample sizes and then find the reciprocal of that average), and use that mean as n
in Formula 5.12. If your sample sizes are very different (e.g., there are many more
patients with some diagnoses than others), you should not use HSD or any test
based on the studentized range statistic. As an alternative, you can always use the
Bonferroni test, which will be described presently.
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Because the HSD test will not allow �EW to creep above the alpha you set for
q, regardless of the number of groups, HSD is called a conservative test—that is, a
test that is good at controlling Type I errors. In contrast, Fisher’s system is more
liberal in that it is less strict about Type I error control, and with more than three
groups it allows �EW to climb well above the alpha used for critical t. Because
Fisher’s system is more liberal it is also more powerful; allowing more Type I er-
rors means that fewer Type II errors are made. Of course, you can always gain
power by using a larger alpha, but this is not considered acceptable in general
practice. However, HSD is a bit more conservative than necessary, so since this
test was devised statisticians have been looking for alternatives that have a bit
more power without allowing �EW to creep above .05 (it is so rare to shoot for any
value of �EW other than .05 that we will just assume that .05 is the desired level).

Alternatives to LSD and HSD

The Newman-Keuls (N-K) test is a more powerful version of the HSD test; the
means are placed in order, and means closer together are tested with a smaller q
(from Table A.4) than means further apart. Because it was thought that the N-K
test was acceptably conservative, while being more powerful than HSD, it be-
came for many years the most popular pairwise comparisons test. Recently,
statisticians have made it clear that the N-K test gains its extra power by letting
�EW climb above .05, so its popularity is declining (the Duncan test is similar to
N-K in structure, but it is so liberal that you are not likely to encounter it in re-
cent research articles). Dunnett (1964) created a test just for the case when only
one group is being tested against each of the others (e.g., each of six antidepress-
ant drugs is tested against a placebo). In this case, the Dunnett test is more pow-
erful than HSD, while keeping �EW to .05.

Recently, several generally usable tests have been devised that are acceptably
conservative and more powerful than HSD. For example, the REGW test
(named for the initials of the statisticians whose work led to the test: Ryan, Einot,
Gabriel, and Welsch) works well, but would be hard to perform without a com-
puter; because this test is now available from software packages like SPSS its pop-
ularity is likely to increase. Another test that works about as well as REGW, but
does not require a computer, is the modified LSD test devised by Hayter (1986).
This test requires that the ANOVA be significant but follows it not with the LSD
test, but rather the HSD test with q based on k – 1 (one less than the number of
groups in your ANOVA) rather than k.

Some post hoc pairwise tests are called two-stage systems because they require
an initial omnibus ANOVA (e.g., Fisher’s LSD), and some are called simultane-
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ous (e.g., Tukey’s HSD), but they are all post hoc in the sense that you are not
specifying particular pairs of means to test before seeing the data (except for
Dunnett’s test). These tests assume that you are going to test all the pairs, or that
you are going to look for and test the largest difference of means (which has the
same effect on �EW as testing all the means against each other). However, you can
gain extra power by picking only a few pairs to test before you see the results, just
as you could increase power by predicting the direction of a two-group experi-
ment and performing a one-tailed test. Although one-tailed tests are often
frowned upon, planned pairwise comparisons are considered reasonable. They
are fairly rare, because you have to make a strong case for testing just some of the
pairs but not all. If you can select a few specific pairs to test on theoretical
grounds, you still have to increase your critical value compared to ordinary t tests,
but the adjustment can be considerably smaller than an acceptably conservative
post hoc test. The logic of this adjustment is explained next.

Planned Pairwise Comparisons and the Bonferroni Adjustment

In the 1930s, the mathematician Carlo Bonferroni discovered that if you know
the probabilities for each of several independent events, the probability that one
or more will occur cannot be more than the sum of their probabilities. Therefore,
if you’re testing c comparisons, and the probability of a Type I error is set at �pc

for each, then �EW cannot be more than c 
 �pc (i.e., �EW � c�pc ). This means that
if you use �EW/c for each comparison, than �EW will not be more than c 
 �EW/c,
which is �EW—and that is what you want. For instance, if you are studying five
drugs and a placebo, and you are planning to compare each drug to the placebo
but not to any other drugs, you have a total of five planned comparisons. Ac-
cording to the Bonferroni test you would use .05/5 or .01 as the alpha for each t
test (using Formula 5.9 or 5.10 for each test if HOV can be assumed), in order to
keep �EW at or below .05. Assuming very large sample sizes, t.01 is about 2.58. By
comparison, q (from the bottom row of the column for six groups) when divided
by the square root of 2 has a larger value of 2.85. Therefore, the Bonferroni test
is more powerful than Tukey’s HSD in this case, while maintaining good control
over �EW (the Dunnett test is even a bit more powerful in this particular case, but
the Bonferroni test is much more flexible). However, if you planned all 15 pos-
sible tests, your Bonferroni � would be .0033, and the critical t would result in less
power compared to the HSD test.

The Bonferroni test is too conservative to be used routinely for post hoc tests
of all possible pairs, but it may be required if the various sample sizes are very dif-
ferent. The fewer tests that are planned, the greater the power of the Bonferroni
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test. The major drawback of the Bonferroni test when it was first used for social
science research is that it was hard to find a t table with all possible alphas (e.g.,
.0033 in the preceding example). Because Olivia Dunn (1961) created a table that
made it easy to use the Bonferroni test, the test came to be called the Bonferroni-

Dunn test, or just the Dunn test. Of course, statistical software now makes it easy
to run this test without the need for special tables. Aware that the Bonferroni test
tends to be quite conservative—it usually keeps �EW well below the value set for
it—some researchers have recently proposed more powerful alternatives that use
the same basic principle (Hochberg, 1988; Shaffer, 1986) and that are likely to in-
crease in popularity as statistical software packages become more comprehen-
sive.

Planned Complex Comparisons

An even more powerful (i.e., more likely to detect significance when H0 is not
true) way to conduct planned comparisons is to focus not on pairwise tests, but
rather on complex comparisons, which involve the means of more than two groups
at a time. With only two groups, all you can predict about the pattern of the means
is which one will be larger. Beginning with three groups you can predict the rela-
tive spacing of the groups. Given that three conditions are ordered A, B, and C,
the middle condition (B) can be midway between A and C, or it can be much
closer to one than the other. One generally does not get credit for predicting the
order of the means in ANOVA, but if the middle group is much closer to one of
the outer groups than the other, and you predict the pattern correctly by planning
the appropriate complex comparison, you can gain a great deal of power. First we
will use an example to explain what a complex comparison is, and then we will
show how one can be tested.

Suppose you plan to test both a conventional antidepressant drug (D) and an
herbal (H) alternative (e.g., St. John’s Wort) against a placebo (P). The three pos-
sible complex comparisons are (1) the average of P and H compared to D; (2) the
average of H and D compared to P; and (3) the average of P and D compared to
H. Although more than two means are involved, a complex comparison results
in a single difference score, which can serve as the numerator of a t test. More
commonly, the complex comparison is tested by way of an F ratio, but in this case,
that just means a squared t test. We will use the letter L to represent the difference
score created by the complex comparison. Suppose the sample means for the
three conditions are as follows: X�P

� 60, X�H
� 50, X�D

� 20 (these could be based
on a measure of depression at the end of the experiment). L for the first com-
parison listed above would be [(60 � 50)/2] – 20 � 55 – 20 � 35 (i.e., the aver-
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age of P and H minus D). You can verify for yourself that L is 25 for comparison
2, and 10 for comparison 3.

Not surprisingly, the best comparison (i.e., the one with the best chance for
statistical significance) is the one with the largest L (assuming that all of the
groups are the same size and have essentially the same variance). For this ex-
ample, comparison 1 is the best, because comparing the average of P and H to D
makes the most sense when H is much closer to P than it is to D, as in this ex-
ample. If comparison 1 were planned before the data had been seen, because you
expected that H would not be much better than a placebo but D would be, you
would have predicted the pattern well in this example, and therefore your L

would be relatively large. Now we can show you how to test L for significance.

Calculating Linear Contrasts

Complex comparisons can get quite complex, so we will need a notational system
to describe them. Comparison 1 can be rewritten as L� � 1⁄2 X�P

� 1⁄2 X�H
– 1X�D

.
The numbers multiplying the means (� 1⁄2 , � 1⁄2 , – 1), are called coefficients,
symbolized as c1 , c2 , and so on. Note that we get the same answer as before: L �
1⁄2 (60) � 1⁄2 (50) – 1(20) � 30 � 25 – 20 � 35. If the coefficients add up to zero,
it is common to call the comparison a linear contrast (a pairwise comparison is a lin-
ear contrast with coefficients of �1 and –1). To find the SS for a linear contrast
you can use the following formula, but only if all of the groups are the same size
(the corresponding formula for unequal group sizes is given in B. Cohen, 2000).

SScontrast � �∑
nL

c

2

i

2
� (5.13)

If the groups in our example have ten participants each, the SS for comparison 1
is (10 
 352)/(1/22 � 1/22 � 12) � (10 
 1225)/(.25 � .25 � 1) � 12,250/1.5 �

8166.7. Because linear contrasts result in a single number they involve only one
df, so MScontrast always equals SScontrast.

Assuming homogeneity of variance, the error term for MScontrast is MSW based
on all of the groups, regardless of which groups are involved in the particular con-
trast being tested. Therefore, to test the significance of a linear contrast, the fol-
lowing F ratio can be used (if all groups are the same size):

F � �
nL

M

2�
S
∑

W

c
i

2

� (5.14)

Note that when your contrast contains only two groups, L is X�1 – X�2 , Σ c
i

2 is 2 (i.e.,
12 � 12), and MSW can be written as s2

pooled , so Formula 5.14 becomes Formula 5.1.
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Comparing Contrasts to ANOVA

To make clear the advantage of planning the right linear contrast we need to cal-
culate the ordinary ANOVA for our example. First, MSbetween equals n 
 s 2

X�. The
unbiased variance of 60, 50, and 20 is 433.33, and n equals 10, so MSbet � 4333.3.
If MSW equals 1,800, the F ratio equals 4333.3/1800 � 2.41, which is less than the
critical F of 3.35 at the .05 level (the numerator df equals 2 because there are three
groups, and the denominator df equals 27, because the number of groups is sub-
tracted from the total N of 30). However, the MScontrast for comparison 1 divided
by the same error term yields an F ratio of 8166.67/1800 � 4.54.

Unfortunately, we cannot compare this F to the same critical value as the
ANOVA, because the numerator df for the contrast is only one; F.05 (1, 27) is 4.21.
Although the critical value for the contrast is somewhat larger than for the
ANOVA (4.21 rather than 3.35), the calculated F is much larger for the contrast
than the ANOVA (4.54 rather than 2.41); in this example the F for the contrast is
significant, even though the ANOVA is not. Had we planned comparison 2 in-
stead, our F ratio would have been 2.315 (you should verify this for yourself),
even less than the ANOVA, and certainly not significant. As with a one-tailed
test, you get extra power if you predict the pattern of means correctly, but you can
also lose the gamble (it wouldn’t be fair otherwise).

Orthogonal Contrasts

A particularly neat way to plan comparisons is to plan a complete set of orthogonal

comparisons (or contrasts), so that SSbetween from the ANOVA is completely ac-
counted for. If one comparison is orthogonal to another, you can change the size
of either one of them without affecting the other. If you start with comparison 1
(P & H – D), the only comparison that is orthogonal to it is a simple pairwise com-
parison of P and H. (In this context we will refer to comparison 1 as comparison
1a and to the P/H comparison as comparison 1b.) Notice that you can change
comparison 1b (e.g., move P to 70 and H to 40) without affecting comparison 1a
(if P � 70 and H � 40, their average is still 55, so comparison 1a is unaffected).
L for comparison 1b is 10 (i.e., 60 – 50), so SScontrast is 500 in this case (Σc 2 � 2).
Note that 500 � 8166.67 (the SS for comparison 1a) equals 8666.67, which is the
SSbetween for the overall ANOVA (8666.67/2 � 4333.33 � MSbetween ). A set of or-
thogonal comparisons will divide SSbetween into non-overlapping pieces, so the SSs
for these comparisons will always sum to SSbetween. The degrees of freedom must
add up, as well. Because dfbetween equals k – 1, and each of the orthogonal contrasts
has one degree of freedom, there cannot be more than k – 1 contrasts in a mutu-
ally orthogonal set (i.e., each contrast is orthogonal to every other).

Testing a set of orthogonal contrasts, each at the .05 level, is generally consid-
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ered a legitimate and often desirable
alternative to performing a one-way
ANOVA, assuming there is a strong
theoretical justification for your
choice of contrasts. In some cases a
researcher may want to test several
complex (and possibly pairwise)
comparisons that are not mutually
orthogonal. Such testing is consid-
ered reasonable if the desired �EW

(usually .05) is divided by the number
of planned comparisons, and that

fractional probability is used as the alpha for each comparison. If four compar-
isons are planned then the p value for each (as given by statistical software) is
compared to .0125 (i.e., .05/4).

Post Hoc Complex Comparisons: Scheffé’s Test

If a one-way ANOVA is not significant, it is often possible to find a reasonable
complex comparison that will be significant, but if it was not literally planned in
advance the comparison had better be so obvious that it should have been
planned. Otherwise, it will be hard to convince a journal editor (or reviewer) to
accept a test of such a comparison as a planned test. On the other hand, if a one-
way ANOVA is significant, it is considered reasonable to test particular complex
comparisons to specify the effect further, but one is required to use a post hoc test
that is so stringent that no complex comparison will reach significance if the om-
nibus (i.e., overall) ANOVA did not. This test is called the Scheffé test, and it is
remarkably simple and flexible. The critical F for testing a post hoc complex com-
parison is just k – 1 times the critical F for the omnibus ANOVA. According to
Scheffé’s test the critical F for testing any of the comparisons in our preceding ex-
ample at the .05 level would be 6.7 (i.e., 2 
 3.35) if the comparison were not
planned.

The largest F you can get when testing a comparison occurs when all of
SSbetween fits into one contrast. Then SSbetween is divided by 1 instead of k – 1, mak-
ing the F for the contrast k – 1 times the F for the omnibus ANOVA. If the crit-
ical value is also multiplied by k – 1, as in Scheffé’s test, the largest possible con-
trast won’t be significant unless the omnibus ANOVA is significant. That is the
logic behind Scheffé’s test. Because it is so easy to use and stringent about keep-
ing �EW to the value set for it, Scheffé’s test has sometimes been used by re-
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DON’T FORGET
Planned contrasts can be much more
likely to reach significance than an or-
dinary one-way ANOVA (even
though the critical value will be some-
what higher) if the pattern of means
was predicted correctly. However,
your chances of significance can be
much lower if the pattern tested by
your contrast turns out not to match
your data very well.



searchers who are only testing pairwise comparisons. In such cases Scheffé’s test
is not a good choice; it is so conservative about keeping �EW constant for any
type of comparison tested that its power is unnecessarily low when dealing only
with pairwise comparisons. Tukey’s HSD test or one of the newer options would
be a better choice when complex comparisons are not being considered. The
major options for post hoc tests, as well as planned comparisons, are summarized
in Rapid Reference 5.2.

Trend Analysis

When the levels of the independent variable in a one-way ANOVA are quantitative
(e.g., five different dosages of the same drug), you can calculate a linear correlation
coefficient (as described in the previous chapter) between the IV and DV; the test
of Pearson’s r will likely lead to a smaller p value than the one-way ANOVA, as-
suming there is a fair amount of linear trend in the sample means. Consider the fol-
lowing experiment. Fifty participants are randomly assigned to exercise for an hour,
either one, two, three, four, or five times a week (10 participants per level). After 6
months, everyone’s resting heart rate is measured. The means (beats per minute) for
the five groups are given in the following table.
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Which Post Hoc Test or Planned
Comparison Method Should I Use?

Only pairwise comparisons: If you have three groups, use Fisher’s protected t tests
(you can use the LSD version of the test if the three groups are the same size). If
you have more than three groups that are all the same size (or have small ran-
dom differences in size), you can use Tukey’s HSD or the modified LSD test. If
you have more than three groups that are very different in size, you can use ordi-
nary t tests with some form of Bonferroni adjustment (separate-variances t tests
should be used if homogeneity of variance cannot be assumed). If you are testing
any number of groups against one particular group (e.g., a control group), use
Dunnett’s test.
Complex comparisons are included: Use Scheffé’s test for all your comparisons.

Which Planned Comparison Test Should I Use?

If it is convenient to come up with a set of orthogonal contrasts, you can use the
usual alpha of .05 for each test. If your tests are not orthogonal, you can use a
Bonferroni adjustment to determine the alpha for each of your comparisons.

Rapid Reference 5.2



The trend isn’t perfectly linear—it levels off as exercise increases—but it has
a strong linear component. In this case, Pearson’s r has a much better chance of
reaching significance than the ANOVA, as we will explain below. However, an
even more powerful way to analyze these data is to use specialized complex com-
parisons called trend components; the simplest of which is the linear trend. In the
five-group case, the degree of linear trend is assessed by applying the following
coefficients to the sample means: –2, – 1, 0, � 1, � 2. For this example the L
for linear trend equals –2(70) – 1(60) � 0(55) � 1(53) � 2(52) � –140 – 60 �
0 � 53 � 104 � –200 � 157 � –43. The SS for this contrast is found by For-
mula 5.13:

SSlinear � �∑
nL

c

2

i

2
� � � �

10(1
1
,
0
849)
�� 1849 (5.13)

This is a single-df contrast, so MSlinear � 1849. Compare this to MSbetween for
the one-way ANOVA, which equals nsx�

2 � 10 
 54.5 � 545. Most of SSbetween

(dfbet 
 MSbet � 4 
 545 � 2,180) is being captured by SSlinear (1845). If MSw equals
400, the F for the ANOVA (545/400 � 1.36) would not be significant at the .05
level, but the F for the linear trend (1,849/400 � 4.62) would be.

If in our example the mean heart rate actually rose to 54 for the 5 times per
week condition, this reversal in trend would indicate a quadratic component.
Even the leveling off of the linear trend in our example indicates some quadratic
component. In cases such as this you may want to consider using polynomial trend

components to investigate the variance not captured by the linear trend analysis. A
detailed discussion of polynomial trend analysis is beyond the scope of this book,
but we refer you to B. H. Cohen (2000) for a more complete description of this
approach.

10(�43)2

���
�22 � (�1)2 � 02 � 12 � 22
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Table 5.2

One Two Three Four Five

70 60 55 53 52
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Putting It Into Practice
1. Participants are measured on a 10-point depression scale after taking one or

another of the following drugs for six months: a placebo, a natural herb (St.
John’s Wort), a tricyclic antidepressant (Elavil), and an SSRI drug (Prozac). The
mean depression rating for each group is shown in the following table.

Placebo St. John’s Wort Elavil Prozac

Mean 9 8 4 3
SD 6 7 6 6

(a) Given that there are 11 participants in each group, calculate the F ratio to
test the null hypothesis (H0).

(b) What is the critical F for a test at the .05 level? What is your decision with
respect to H0?

(c) Calculate Fisher’s LSD for the data in this problem. Which pairs of condi-
tions are significantly different at the .05 level?

(d) Calculate Tukey’s HSD for the same data. Which pairs of drugs are signifi-
cantly different at the .05 level?

(e) If the results of the HSD test differ from the results of the LSD test, ex-
plain why this discrepancy can occur. Which of these two tests is prefer-
able when dealing with four groups? Why?

(f) If you were to use the Bonferroni adjustment for all the possible t tests in
the drug experiment, what alpha level would you have to use for each t test?

(g) What proportion of the variance in depression is accounted for by the
drug conditions?

2. Suppose that you believe that St. John’s Wort is basically a placebo and that
Prozac and Elavil are both very effective, but about equal to each other. Then
you might plan a complex contrast that tests the average of the first two drug
conditions against the average of the second two. Using the data from prob-
lem 1, calculate the F ratio for this contrast and test it for significance at the .05
level as a planned contrast. How does this result compare to the original
ANOVA? Explain the advantage of this contrast. Would your F ratio for the
contrast be significant at the .05 level with Scheffé’s test? Explain the advantage
of planning contrasts in advance.

3. Twenty-four different depressed patients are randomly assigned to each of five
therapy conditions (a total of 120 patients in all), which differ according to the
number of days per week the patient must attend a psychoanalytic therapy
session. After 6 months of treatment, the patients are rated for positive mood.
The means and standard deviations of the ratings for each condition are
shown in the following table.

One Two Three Four Five

Mean 50 70 82 86 85
SD 40 53 55 45 47

(continued )
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(a) Calculate the one-way ANOVA, and test for significance at the .05 level.
(b) Suppose that you had planned to compare the classical analysis conditions

(three sessions per week or more) to the briefer therapy conditions (one
or two sessions per week). Calculate the contrast just described, and test
for significance at the .05 level, assuming that the comparison was planned.

(c) Test the significance of the linear trend in the foregoing data. Test the
residual for significance (in this case, SSresidual � SSbetween – SSlinear , and
dfresidual � k – 2). Is there evidence that there may be a significant trend in
the data that is of higher order than linear, such as the quadratic?

TEST  YOURSELF

1. In the two-group case, the F ratio for the one-way ANOVA equals

(a) the square root of the t value.
(b) the square of the t value.
(c) one half of the t vale.
(d) twice the t value.

2. Which is the weighted average of all the sample variances?

(a) MSw

(b) MSbet

(c) SStotal

(d) The F ratio
3. If the null hypothesis is true, MSbet is expected to be approximately equal

to

(a) 0
(b) 1
(c) MSw

(d) F
4. Suppose that the F ratio calculated for a particular experiment is equal

to .04. Which of the following can be concluded?

(a) A calculation error must have been made.
(b) The null hypothesis cannot be rejected.
(c) The null hypothesis can be rejected at the .05 level.
(d) Nothing can be concluded without knowing the degrees of freedom.

5. Which of the following will lead to a larger calculated F ratio (all else re-
maining constant)?

(a) Larger variances within each of the samples
(b) Reduced separation of the population means
(c) Larger sample sizes
(d) A larger alpha level

S S
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6. Which of the following is assumed when performing the ordinary one-
way ANOVA?

(a) All of the population means are the same.
(b) All of the population variances are the same.
(c) All of the sample sizes are the same.
(d) All of the sample variances are the same.

7. Tukey’s HSD test assumes that

(a) all of the samples have the same mean.
(b) all of the samples have the same variance.
(c) all of the samples have the same size.
(d) all of the above.

8. If two of the pairwise comparisons following an ANOVA exceed Fisher’s
LSD, how many would exceed Tukey’s HSD?

(a) One or none
(b) Two
(c) At least two
(d) No more than two

9. Compared to Fisher’s protected t tests, Tukey’s HSD test

(a) involves a smaller alpha per comparison.
(b) leads to a lower rate of Type II errors.
(c) maintains less control over experiment-wise alpha.
(d) is more liberal.

10. Which of the following procedures is recommended when you are per-
forming not only pairwise comparisons but complex comparisons as
well?

(a) Scheffé’s test
(b) Dunnett’s test
(c) The Newman-Keuls test
(d) Tukey’s HSD test

Answers: 1. b; 2. a; 3. c; 4. b; 5. c; 6. b; 7. c; 8. d; 9. a; 10. a.
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Up until this point most of this book has been devoted to describing tests
of statistical significance, the purpose of which is to control Type I er-
rors. To remind you, a Type I error occurs when the populations that un-

derlie a study show no effect, but the samples in the study accidentally show an
effect large enough that a statistical test yields a (falsely) significant result. With-
out statistical tests any result in the desired direction might be mistaken as a sign
of a real population effect. Using an alpha of .05, statistical tests are so strict that
95% of experiments in which there is no population effect (what we call null ex-

periments) fail to pass the test, and therefore do not create a misleading false alarm.
However, it has been argued that null experiments are rare in the social sci-
ences—so rare, in fact, that null hypothesis significance testing (NHST) does not
serve an important purpose. Furthermore, it is argued that NHST is so often mis-
understood that the widespread use of this procedure actually does more harm
than good. We will argue that screening out null experiments is not the only func-
tion served by NHST and that NHST is very helpful under some circumstances.
However, we agree that NHST is widely misunderstood and misinterpreted. We
hope this chapter can make a small contribution in the direction of improving the
situation.

Fisher’s original conception of NHST did not include the Type II error. His
position was that if the data do not allow you to reject the null hypothesis, then
you cannot make any conclusion at all, and therefore you cannot make an error.
He was not happy when Jerzy Neyman and Egon Pearson (Karl’s son) reformu-
lated NHST in such a way that not rejecting the null hypothesis was seen to be a
decision to retain the null hypothesis—and could therefore be considered an er-
ror (of the second kind) when the null hypothesis is not true. In spite of Fisher’s
wishes, the Neyman-Pearson version of NHST (Neyman & Pearson, 1928) be-
came widely accepted, and the focus on Type II errors has in fact grown over the
years.

However, unlike the Type I error rate, which is fixed by choosing alpha, the

Six
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Type II error rate is not fixed and is in fact hard to measure, because it depends
on (among other things) how far the experiment deviates from being a null ex-
periment. Nonetheless it is often useful to estimate the probability of making a
Type II error, especially before an experiment is conducted. For reasons that will
soon be made clear, this is called power analysis. An explanation of power analysis
will have the added benefit of giving you a deeper understanding of NHST in its
everyday applications. For instance, failing to reach statistical significance is more
informative when you are using large rather than small samples, for the same rea-
son that a point estimate grows more accurate as your sample size increases. This
will become clearer as we explain the complement of the NHD next.

POWER IN THE TWO-GROUP CASE

It will be easiest to begin our discussion of power analysis in the context of the
two-group t test. If the two populations underlying our two-group study have
the same mean and variance, we know what values to expect from our study. The
NHD in this case is the t distribution with n1 � n2 – 2 degrees of freedom (as-
suming we perform pooled t tests). Although the t values over many studies will
average to zero in this case (because H0 is true), there will be a considerable range
of possible t values. If the populations have the same variances but do not have
the same mean, the variability of possible t values will be similar, but they will not
average to zero. Because, in this case, H0 is not true, the distribution is not the
NHD. Rather, some alternative hypothesis (H1) is true, so this distribution can be
called the alternative hypothesis distribution (AHD). The AHD is related to the t dis-
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DON’T FORGET

When Will I Use the Statistics in This Chapter?

In this chapter you will learn how to estimate your chances of attaining statistically
significant results as a function of the size of the effect you expect, and the num-
ber of participants you plan to use (or you can determine the best number of
participants to use), when
• comparing the means of two groups that are either independent or matched.
• comparing the means of three or more groups.
• measuring the linear correlation of two variables.
You will also gain a deeper understanding of null hypothesis testing, including the
interpretation of negative results and the combining of several studies into a
larger one.



tribution in this case, but because it is not centered on zero it is called a noncen-
tral t distribution.

The Alternative Hypothesis Distribution

The value at the center of the AHD is called the noncentrality parameter and it is usu-
ally symbolized by the Greek letter delta (�). Delta depends, in part, on just which
H1 is true (there are an infinite number of possibilities). The larger delta is, the
more likely it is that your study will lead to a statistically significant result, so it is
important to look at all of the elements that contribute to delta, as we do next.

Delta can be understood in a very concrete way. If you repeat the same two-
group experiment over and over again, using new samples (from the same popu-
lation) each time, and calculating t each time, the average of these t values should
be about equal to delta, which can be defined as the expected t value (the average
of the t values if you repeat the experiment an infinite number of times). Let’s look
at the t formula and see what can be expected in the long run. Our purpose will
be best suited by beginning with a t formula that requires equal sample sizes and
homogeneity of variance, and is based on Formula 3.6:

t ���
2
n

�� 
 �
X�1 �

s
p

X�2� (6.1)

where s
p
is the square root of the pooled-variance. If the t test is repeated infinitely,

X�1 will average out to �1, X�2 will average out to �2, and s
p
will average out to �. So

the average of all the possible t ’s, the expected t (or delta), is given by the follow-
ing formula:

� ���
2
n

�� 
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(�1 �

�

�2)� (6.2)

Population Effect Size

The sample size is not changing, of course, so what Formula 6.2 is really showing
us is that g, the sample effect size, (X�1 – X�2 )/s

p
, averages out to (�1 – �2 )/�,

which is the population effect size and is symbolized by d :

d � �
(�1 �

�

�2)� (6.3)

We would prefer to use a Greek letter to symbolize the effect size in a population,
but the use of d was popularized by Jacob Cohen (1988), who did a great deal to
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make effect size measures and power analysis known and accessible to re-
searchers in the social sciences. Like delta, d can be thought of in very concrete
terms: d tells you how many standard deviations apart two population means are.
Often the populations you are interested in are theoretical ones (e.g., all of the
adults in the world after they have taken some drug), but the example of gender
differences is much more concrete, because the two populations exist right now.
For any dependent variable on which you might want to compare the two gen-
ders, there is some value for d. If the null hypothesis is true (i.e., �1 � �2 ), then
d � �1 – �2 /� � 0/� � 0. By contrast, for height d is rather large. Assuming
average population heights of 69 and 64.5 inches for men and women respec-
tively, and a common � of 3 inches, dheight � (69 – 64.5)/3 � 4.5/3 � 1.5. Al-
though NHST is directed at determining whether d equals zero, it would be far
more informative to determine just how large d is for a particular DV. We will dis-
cuss this approach later in this chapter.

You may have noticed that d looks like a z score; it measures the difference in
populations in standardized units. Therefore, a given value of d has the same
meaning regardless of the DV. A particularly useful way to understand d is in
terms of the overlap of the two population distributions. Assuming that both dis-
tributions are normally distributed, a d of 1.0 can be represented as in panel A of
Figure 6.1. There is a fair amount of overlap, but notice that only about 16% of
the distribution on the left is above the mean of the distribution on the right. A d
of 2.0 involves less overlap (panel B of Figure 6.1); now less than 3% of the left
distribution exceeds the mean of the right one. However, with a d of 0.2 (panel C
of Figure 6.1), there is a great deal of overlap. In the context of social sciences re-
search, J. Cohen (1988) felt that a d of .2 represents a small effect size, .5 repre-
sents a medium effect size, and .8 represents a large effect size. With these popu-
lar guidelines in mind the gender difference in height (d � 1.5) can be thought of
as a very large effect size, which is consistent with how noticeable the difference
is to casual observation. All else being equal, a larger d means a larger delta, which
means greater power. Next we define power and show how it is dependent on
delta.

An Example of a Power Calculation

Suppose for the moment that aliens from outer space really are abducting earth-
lings to study them. They suspect that adult male earthlings are taller than adult
females, but they have only eight people of each gender available for measure-
ment. If we knew the heights of the 16 abductees we could calculate the aliens’ t
test and see if it is significant. Without the data we can nonetheless calculate the
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probability of the aliens’ obtaining a significant t based on what we know about
the height difference between the male and female populations on earth (and as-
suming that the aliens have selected a random sample of each gender). We need
to calculate delta for this hypothetical study. Combining Formulas 6.2 and 6.3, we
can obtain a formula for delta in terms of n and d.

� ���
2
n

�� 
 d (6.4)

Formula 6.4 is convenient for our purposes because we have already calcu-
lated d for the gender difference in height; it is 1.5. If eight females are to be com-
pared to eight males, n equals 8, and delta is given by the following:
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Figure 6.1 The overlap of populations as a function of effect size (d)
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2

�� 1.5 � 2 
 1.5 � 3

So, without knowing which humans the aliens have abducted, we know that given
their sample sizes, their expected t (i.e., delta) is 3.0. Depending on their actual ab-
ductees, they may get a t above 3 or below 3, but it is not likely they will get a t that
is very far from 3. The distribution of the possible t ’s that the aliens could get is
the AHD, and we know that it is a noncentral t distribution centered on 3.0. A
rough approximation of the AHD for this kind of test, which is much easier to
work with, is a normal distribution with a mean of 3.0 and a standard deviation of
1.0. This approximate AHD is shown in Figure 6.2.

Not all the t ’s in the aliens’ AHD will be statistically significant. Only t ’s larger
than the critical t will be significant. A crude approximation of the critical t for the
.05 level (two-tailed test), in keeping with the use of the normal distribution as the
AHD, is 2.0. Therefore, only the proportion of the AHD that is above 2.0 will be
significant (the population below –2.0 would also be significant, but the proba-
bility that the women will come out significantly taller than the men in this study
is too small to worry about). You can see in Figure 6.2 that the critical t (2.0) is 1
standard deviation below the mean of the AHD (3.0), and in the normal distri-
bution, about .16 of the area would be below (i.e., to the left of) the spot where
the critical value falls, in this case. Thus, 16% of the possible alien studies will pro-
duce a t less than 2.0 and therefore fail to achieve significant results. All of these
nonsignificant results will be Type II errors because we know that the AHD is the
true distribution in this case. The symbol for the Type II error rate is 	 (the lower-
case Greek letter beta), so in this example 	 equals .16. The proportion of the
AHD that is significant is 1 – 	, which equals .84 for this example. This propor-
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Figure 6.2 Type II error rate (�) and power when delta (�) � 3.0
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tion, which is the probability of getting a significant result when the null hypoth-
esis is not true (because some AHD is true), is called the power of the statistical
test.

Alpha, Delta, and Power

Figure 6.2 allows you to see graphically what happens if we try to reduce Type I
errors by reducing alpha. The critical value would move to the right (it would be
only about half a standard deviation below the mean for the .01 level), which in-
creases 	 and decreases power. The normal approximation also allows us to pre-
sent the relationship between delta, alpha, and power in a simple table, as we have
done in Table A.5. Note that for any particular delta, power decreases as alpha de-
creases (i.e., moving to the right in any row of the table). The conventional alpha
of .05 can be seen as a compromise between the need to minimize Type I errors
and the desire to maximize power.

You can also see from Table A.5 that as delta gets larger, so does power. If delta
is 2.0, power is about 50% because about half the t values will be larger than 2.0
and therefore larger than the critical value, which is also about 2.0 (actually the
power for a delta equal to 2.0 is .52, because the .05 critical value for the normal
distribution is actually 1.96 rather than 2.0). When delta is as high as 3.6, an alpha
of .05 corresponds to an equally low 	 (	 � 1 – power � 1 – .95 � .05), and when
delta reaches 4.2, power is at .99. If you know delta, it is easy to find the approx-
imate power (Table A.5 becomes less accurate as the sample size decreases).
However, to know delta you would have to know d, and that is almost always
what you would like to know but don’t. Power analysis is usually a matter of trans-
lating guesses about d into guesses about power; it is a system that can help you
decide whether to increase your sample size or, if that is not feasible, whether it is
worth conducting the planned study at all. We will discuss how to guess about d
next.

Estimating Effect Size

For a given type of statistical test (e.g., two-group t test) and a fixed alpha, power
is a function of delta, which means that power is a function of d and the sample
size. Because power is based on multiplying d by a function of the sample size,
increasing either d or n will increase power. Although it is impossible to increase
d when dealing with existing populations (e.g., the gender difference in height),
increasing d is possible in some experimental situations. For instance, if you are
testing the effectiveness of a drug you may be able to increase the dosage; for
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other treatments you may be able to increase the amount of time devoted to the
treatment, or intensify the treatment in some other way. However, there are usu-
ally constraints based on safety and economics that fix the intensity of the treat-
ment and therefore the size of d. If you can estimate d for your study you can de-
termine the power for any possible sample size, and then make an informal
decision about how (and if ) to run the study.

Looking at Formula 6.3 you can see that if you can estimate the means of the
two populations that underlie your study and the common standard deviation
you can estimate d. If you have preliminary data from a pilot study or if you are
dealing in such familiar territory that you can estimate the needed values from the
data of previous studies, you can make a pretty good guess at d and proceed with
the power analysis. Sometimes a previous study is relevant, but it is based on a dif-
ferent DV, or the published report does not contain the means and SDs you need.
In such cases you can still obtain g from the previous study—g � t �(2/n)�—and
the g from a similar study can serve as a reasonable estimate of d for the planned
study. For example, you want to compare self-esteem between science and hu-
manities majors at a college. A previous study compared these groups with a dif-
ferent measure of self-esteem and reported t (18) � 1.7, p � .05. Assuming equal-
sized groups, n equals 10 for that study, and g � 1.7 �(2/10)� � 1.7�.2� � 1.7 


.447 � .76. If you were planning to have 18 participants per group and use g from
the previous study to estimate your d, delta for your study would be as follows: 
� � d�(18/2)� � �9� 
 .76 � 3 
 .76 � 2.28.

Looking in Table A.5, the power for this study is about .62. Is that value for
power high enough to inspire you to conduct the study as planned? (We will as-
sume that alpha is set to .05 in all of our remaining examples.) If your estimate for
d is right, you stand a .38 chance of failing to reach statistical significance and
therefore committing a Type II error. Of course, it depends on how much money,
effort, and time the planned study will consume, but most researchers would like
power to be at least about .7. From Table A.5, you can see that delta must be about
2.48 to attain that power.

In many cases the planned study is
so novel in its design that there are no
previous studies that can provide an
estimate of d (pilot studies that are
large enough to yield useful estimates
are not always feasible). In such cases
it is common to estimate the sample
size for small, medium, and large ef-
fects (.2, .5, and .8, respectively, ac-
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cording to the guidelines of J. Cohen) at the desired level of power (a power of .8
is often considered optimal). Then one looks at the feasibility of the required
sample sizes, judges the likelihood of the true effect size being small, medium, or
large, and makes a decision. Either some reasonable sample size is chosen or the
study is redesigned.

The Power of Replication

One important insight power analysis can give you concerns the power involved
in exactly replicating a previous experiment. If a previous experiment just barely
attained statistical significance—calculated t was just slightly greater than the crit-
ical t—an exact replication would only have about a .5 chance of reaching signif-
icance as well. Without an understanding of power we might have the tendency
to think that any significant result has a good chance of being replicated. How-
ever, just as our best guess for d in a replication is the g from the study being repli-
cated, our best guess for delta for an exact replication (same number of partici-
pants) is the t from the previous study. If t from the previous study is just slightly
larger than the critical t, then our delta is only slightly larger than the critical t,
making power just slightly larger than 50%.

Thinking about power and effect size is the antidote to all-or-none thinking.
The power for exactly replicating an experiment that just barely reached signifi-
cance is only slightly better than the power for replicating one that just missed sta-
tistical significance. In general, a smaller p value means greater power for an ex-
act replication. A very small p like .001 doesn’t tell you that the effect size is large
(you might be dealing with a small effect size coupled with very large sample
sizes), but it does tell you that an exact replication will have a good chance of sig-
nificance at the .05 level (and about a .5 chance of attaining significance at the .001
level). We will have more to say about the insights you can gain from an under-
standing of power toward the end of this chapter.

Determining Sample Size

Once you have an estimate for d and you know the delta you are shooting for, you
can use Formula 6.4 to solve for n. Alternatively, Formula 6.4 can be solved for n
beforehand to create a convenient formula for estimating the needed sample size,
given an estimate of d and a desired level of power (i.e., delta).

n � 2��
�

d
��2

(6.5)
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To attain a power of .7 in our example the size of each sample would have to be

n � 2��
2
.7
.4
6
8

��2

� 2 (3.26)2 � 2 
 10.6 � 21.2

To be safe, the answer is rounded up, so the power analysis suggests that 22 people
need to be sampled in each group to have adequate power. If the answer for n were
to come out higher than the sample size you were willing to deal with, you would
have to decide whether it was feasible to try increasing d (not possible for the self-
esteem study), or it was reasonable to use a smaller n and have less than the desired
power, or it was desirable to just plan a different, more powerful study.

Fixed Sample Sizes

In some cases the sizes of the samples are fixed. Suppose that you are com-
paring two methods for teaching algebra, and students have already been
assigned to two classes (randomly, we hope) of 32 students each. If you plan
to use the classes as your samples you can then determine the power you have
for different possible effect sizes. For this example, � � d�(n/2)� �

d�16� � 4d. For a medium effect size, delta � 4 
 .5 � 2.0, so power would be
only .52. If you do not expect any more than a medium effect size you would
probably not bother to do the study as designed. (You could, however, increase
your power without increasing your sample sizes by matching participants across
groups, as we will demonstrate in the next section.) If you want .8 power, delta has
to be 2.8, so d would have to be .7 (4d � 4 
 .7 � 2.8). The power analysis would
tell you that if the effect size is less than .7 you will have less than the desired level
of power.

Unequal Sample Sizes

So far we have assumed that your two samples will be the same size. This is the
likely case when you are assigning participants randomly to groups. However, if
you are dealing with preexisting groups, you may be stuck with groups of differ-
ent sizes. Suppose that you want to compare patients with injuries to the left side
of their brains with patients that are injured on the right side of the brain. As a re-
searcher at a hospital you may have available 15 right-injured patients and only 10
left-injured patients. You could use only 10 of your 15 right-injured patients in or-
der to make your calculations easier, but you would be reducing your power un-
necessarily. You can use the power formulas of this chapter by taking the harmonic

mean of your two sample sizes and using that value for n. The harmonic mean
(n h ) involves averaging the reciprocals of the two numbers and then taking the
reciprocal of that average. For two numbers the harmonic mean is given by the
following simple formula:
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n h � �
n

2

1

n

�
1n

n

2

2

� (6.6)

The harmonic mean of 10 and 15 is 2 
 10 
 15/(10 � 15) � 300/25 � 12. For a
large effect size of .8, delta ��(12/2)� 
 .8 � 1.96. If you don’t expect the effect

size to be larger than .8 you can either
perform the study knowing that you
have no better than a 50% chance of
obtaining significant results, or try to
find more patients appropriate for
the study, or a more discriminating
dependent variable that would show
a greater effect (combining several
DVs in a multivariate analysis could
produce greater power).

THE POWER OF REPEATED-MEASURES DESIGNS

In Chapter 3 we discussed the main advantage of the repeated measures (RM) or
matched-pairs design, which is an increase in power. Using power formulas we
can now show how to quantify the power advantage of the RM design. Although
Formula 3.12 is much more convenient for calculating a matched t test, the fol-
lowing equivalent formula allows for a simpler comparison with the indepen-
dent-groups t test.

t � (6.7)

Notice that if the scores are not matched at all, then r equals zero, and the second
term in the denominator drops out. Therefore, when r � 0, Formula 6.7 becomes
a convenient formula for the independent-groups t test when the two groups are
the same size. To find the expected t for the RM test we can use the same device
we used at the beginning of this chapter—that is, we can substitute population
values for sample statistics in Formula 6.7. With some algebraic rearranging we
can create the following convenient power formula:

� ���
1 �

1
�

�� 
��
2
n

�� 
 �
�1 �

�

�2� (6.8)

(X�1 � X�2 )
��

��
s 2

1 �

n

s 2
2��� �

2r

n

s1�s2��
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Note that Formula 6.8 is the same as Formula 6.2 except for the additional mul-
tiplying factor of �[1/(1 –� �)]�. Therefore, �RM � �independent �[1/(1 –� �)]�. When
� � 0, there is no power advantage to the RM test, and, in fact, the RM test actu-
ally hurts you because of the loss in degrees of freedom. As � approaches 1.0, the
power of the RM test approaches infinity. For a moderate value, such as � � .5,
the delta for the RM test is about 1.4 times the delta for the independent test:
�[1/(1 –� .5)]� � �(1/.5)� � �2� � 1.414.

Let us return to the example of teaching two classes (n � 32) with different
methods. With d � .5, delta was only 2.0, and power only about .52. However, if
students could be matched in pairs based on previous relevant grades, and then
randomly assigned to the two classes, this matching could result in a � as high as
.5. The delta for the matched t test would be

�matched ���
1 �

1
�

�� �ind � �2�(2) � 2.83

This yields power that is a bit over .8 and, therefore, very likely to be acceptable.
Even when sample sizes are not strictly limited by circumstances, the costs of
large sample sizes make the matching of participants a very desirable alternative
for attaining adequate power. Of course, when it is reasonable for the same per-
son to serve in both conditions the matching is almost always better, resulting in
even greater power. The various fac-
tors that affect power in the two-
group case are summarized in Rapid
Reference 6.1.

THE POWER OF A TEST OF
CORRELATION

Sometimes the result of a study comes
in the form of a correlation coeffi-
cient (e.g., Pearson’s r between tests
of musical and mathematical ability).
As you saw in Chapter 4, a t value can
be used to test r for significance. A
crude approximation of the expected
t when testing a Pearson correlation
coefficient can be obtained from the
following simple formula:
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Factors That Increase Power
in the Two-Group Case

1. Increasing alpha (e.g., from .05 to
.1). However, this increases the
rate of Type I errors.

2. Increasing the size of the sample(s).
3. Increasing the size of the effect in

the population (e.g., d for a two-
group test).

4. Increasing the population correla-
tion between the sets of scores, �,
in a matched or repeated-
measures t test. This principle can
be extended to multigroup designs,
as will be shown in Chapter 8.

Rapid Reference 6.1



� � �N � 1� 
 � (6.9)

where � is the actual correlation in the population. The value for delta can then
be looked up in Table A.5 to find the power, just as in the case of the two-group
t test. Note that �, like d, is considered a measure of effect size in the population,
and r, like g, is a measure of that effect in the data you have collected. If you can
use previous results to estimate �, you can calculate power for any sample size, or
calculate the sample size needed for a particular amount of power. According to
the guidelines of J. Cohen (1988), a value of .1 is a small effect for �; .3 is a medium
effect size, and .5 is considered large. If you are expecting the effect size in the
population to be of medium size and you want power to be at least .7 for a .05
two-tailed significance test, you can calculate the necessary sample size with For-
mula 6.9:

2.48 � �N � 1� (.3)

therefore �N � 1�� 8.27

therefore N � 1 � 68.3

so N � 69.3

Thus, you need to use a sample of at least 70 participants if you want your power
to be at least .7 with � � .3.

THE POWER OF ONE-WAY ANOVA

Power analysis can be easily extended to more complex situations, such as the de-
sign of a multigroup experiment as described in the previous chapter. Just as we
found the expected t for a two-group study, we can find the expected F for a one-
way ANOVA. We start with a variation of Formula 5.3 and then substitute pop-
ulation values, as follows:

F � �
s 2

p

n

o

s

o

x�
2

led

� � �
n

�

�
2

x�
2

� � n �
�

�
x�
2

2

� � n� �2

where n is the size of each sample, � is the standard deviation of each population
(assuming HOV), and �x�

is the standard deviation of the population means from
the grand mean. The ratio, �x�

/�, is a measure of effect size that J. Cohen (1988)
labeled f (in bold to signify it is a population measure). It is similar to d in that it
compares the separation of population means to the standard deviation of indi-
viduals within a population. In fact, in the two-group case, f � .5d (the distance

�x��
�

134 ESSENTIALS OF STATISTICS



of each population mean to the grand mean is half the distance of the two popu-
lation means from each other). If the expected F is symbolized as �2 (phi-
squared), and f is substituted for �

X�/� in the preceding equation, the following
power formula is obtained:

�2 � n f 2 (6.10)

As it turns out, �2 is not literally the average F you would get for a given f—
for large samples the expected F is about 1 � (k�2 )/(k – 1)—but �2 is a conve-
nient quantity on which to base a power table. Actually, � is the more convenient
value (it is similar to �; in the two-group case, � � ��2� ), so it is useful to take
the square root of both sides of Formula 6.10.

� �f �n� (6.10�)

For each value of k (the number of groups), a different table is required to re-
late � to power. However, in each case a normal approximation could be used, as
in Table A.5. Although this approach would lead to a simpler table, it produces a
considerable amount of error when used with small samples. Therefore, we have
presented a table which finds power for a given combination of k, �, and dfw (dfw

is the denominator degrees of freedom for the ANOVA; with equal-sized groups,
dfw � nk – k , so n � [dfw /k] � 1). Table A.6 is easy to use if you are stuck with
particular sample sizes, but first we must consider how f is estimated from a pre-
vious study. Although the sample version of f, which is symbolized as f without
the bold face, equals �(F/n)�, this is a biased estimate of f. To estimate f from a
previous study with k equal-sized groups you can use the following formula:

estimated f ����k �

k

1
����

F �

n

1
�� (6.11)

where n is the number of participants in each group. Recalling that in the two-
group case f � .5 d, it should not be surprising that for f, .1, .25, and .4 are con-
sidered to be small, medium, and large effect sizes, respectively. Now we are ready
to illustrate the use of Table A.6.

Suppose that you are planning a study with four groups, and you are stuck with
16 participants per group. If your estimate of f is .4, � equals �16� • .4 � 4 
 .4 �

1.6; dfw � (4 
 16) – 4 � 64 – 4 � 60. Looking in the section of Table A.6 for k �

4, we see that the power for � � 1.6 and dfw � 60 is .74, which is probably ac-
ceptable. However, an f of .3 would lead to an unacceptably low estimate of
power that equals .47. A sample size of 25 would be required for power to be
about .7 for that f (� ��25� • .3 � 1.5; dfw � 96).
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Revisiting the Two-Group Case

The k � 2 section of Table A.6 allows you to make more accurate power esti-
mates in the two-group case than you can get with Table A.5. Imagine that you
have only eight patients in one group and six in the other. You expect d to be very
large (1.2) for your comparison. To use Formula 6.4 you need the harmonic mean
of 6 and 8, which is 6.857. Therefore, � � �(6.857/�2)� 
 1.2 � 1.85 
 1.2 � 2.22.
Using Table A.5 you would estimate power to be about .61. However, we can in-
crease our accuracy by using Table A.6 (k � 2), noting that � � �/�2�, so � �

2.22/1.414 � 1.57, and dfw � 6 � 8 – 2 � 12. In Table A.6 the power estimate is
only about .53. The Table A.5 estimate is higher because the normal distribution
is being assumed along with a critical value of 1.96, when the critical t value for 12
df is really 2.179 (the expected t of 2.22 is only a little more than that).

Estimating Sample Size for ANOVA

Table A.6 is a bit harder to use when the sample size is not fixed and you are try-
ing to estimate the needed sample size for a particular combination of f and
power. We will begin by solving Formula 6.10 for n.

n � �
�

f 2

2

� � ��
�

f
��2

(6.12)

Now let us say that we think f is small (.1) for a particular five-group (k � 5) ex-
periment, and we want power to be at least .7. The next step is to look up � in
Table A.6 by seeing which column contains a value of .7. The problem is that
more than one value of � is possible depending on the dfw—which you don’t
know because the sample size has not been determined yet. If you expect the
needed sample size to be very large (a good bet with f being only .1), then you
would look along the bottom row of the k � 5 section of the table for a value near
.7; you’ll see that � is about 1.4. Then n is found from Formula 6.12: n � (1.4/.1)2

� 142 � 196. This estimate of n (about 200 participants in each of your five
groups) is consistent with the guess you had to make to choose �. Had you ini-
tially estimated dfw to be about 17 and therefore chose � to be 1.6, your calculated
n—(1.6/.1)2 � 162 � 256—would have told you that your initial estimate was
way off. On the other hand, were a very large f of .8 expected, a � of 1.6 would
be a reasonable choice, as confirmed by the calculated n: n � (1.6/.8)2 �22 � 4;
with n � 4, dfw � nk – k � (4 
 5) 5 � 20 – 5 � 15, which would be consistent
with an initial estimate for dfw of 17, which led to the choice of 1.6 for �. The
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general guidelines established by J. Cohen for effect sizes are summarized in
Rapid Reference 6.2.

GENERAL TOPICS RELATED TO POWER

Increasingly, power analyses are being requested by doctoral committees over-
seeing social science research, as well as the reviewers of research grants. Until re-
cently these power analyses were performed with tables more detailed than Table
A.6 ( J. Cohen, 1988), or power curves that allow one to avoid having to interpo-
late between values in a table (Keppel, 1991). Fortunately, several software pack-
ages have recently been marketed for the purpose of automating the tedious pro-
cess of performing a power analysis.

Confidence Intervals for Effect Size

There is also an increased emphasis on reporting estimates of effect size when
publishing in journals. For instance, the fifth edition of the Publication Manual
of the American Psychological Association (2001) states: “For the reader to fully
understand the importance of your findings it is almost always necessary to in-
clude some index of effect size or strength of relationship” (p. 25). For ANOVA,
eta-squared is often reported, or an adjusted version (i.e., a less biased estimate of
omega-squared, as in Formula 5.6), but f, which is useful for power analysis, is
rarely used for such descriptive purposes. However, as useful as effect size esti-
mates are, they suffer from the same drawback as any other point estimate: An ef-
fect-size estimate based on large samples is much more reliable than one based
on small samples; and yet you cannot tell from looking at the estimate how seri-
ously to take it. We discussed this problem first in the context of estimating the
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J. Cohen Guidelines for Effect Sizes

Small Medium Large

Two-group comparison (d) .2 .5 .8
Multigroup comparison (f ) .1 .25 .4
Linear Correlation (�) .1 .3 .5
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mean of a population. The solution was interval estimation—creating a confi-
dence interval (CI) around our point estimate. In a similar fashion creating a CI
around an effect-size estimate (ESCI) adds a great deal of information.

Admittedly, there are times when the CI for the difference of the population
means is more meaningful than the corresponding ESCI. For instance, if some
herbal supplement claims to shorten the duration of the average cold, we would
want an estimate involving the number of hours or days we could expect to be
spared the symptoms of a cold virus. Having a CI in units of time would be a great
aid in deciding whether to use the product being tested. On the other hand, if
some other supplement claims to improve memory and we test it with a list of
words we just created, the CI will give us a range of how many additional words
we are likely to remember after taking the supplement. But that is hardly mean-
ingful, depending as it does on the number of words on the list, the commonness
of those words, study time, and many other factors. An ESCI would be more
meaningful. If the ESCI demonstrates that the effect size is likely to be large, at
least we would know that few people in the control condition can be expected to
show memory improvements as large as the average person taking the supple-
ment.

Unfortunately, ESCIs are rarely reported in the scientific literature, and this is
undoubtedly due in large part to the fact that they are somewhat difficult to con-
struct. The CIs we described in earlier chapters were based on critical values from
the normal or the ordinary (i.e., central) t distribution. ESCIs, however, require
the use of critical values from a noncentral distribution (e.g., for a given number
of degrees of freedom there are an infinite number of noncentral t distributions
each based on a different value for delta, the noncentrality parameter), and these
values are not available in standard tables. Only in recent years have major statis-
tical packages (e.g., SPSS) included a procedure for obtaining these critical values,
and even at the time of this writing there is no readily available computer program
that will construct such CIs for you. Steiger and Fouladi (1997) and Cumming and
Finch (2001) explain how to construct CIs for effect-size measures, but we don’t
expect to see their widespread use anytime soon.

Meta-Analysis

A common misconception can occur when, say, a dozen researchers perform es-
sentially the same experiment, and half obtain significant results in the expected
direction, while the other half do not. It can look like the various results are con-
tradictory, but it is possible that all 12 researchers are dealing with a situation in
which power equals .5. Then we would expect only half of the results to be sig-
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nificant. If each researcher supplies a measure of effect size, we can quickly see if
they are all similar; if they are, the various results can be viewed as not being con-
tradictory at all. In fact, if all 12 results were not significant but produced similar,
nonzero estimates of effect size, the cumulative evidence of the 12 studies would
not be consistent with the null hypothesis. There is actually a way to combine the
12 results in order to reject the null hypothesis; it is called meta-analysis. The basic
principle behind meta-analysis is simple. The 12 similar studies mentioned above
can all be thought of as pieces of a larger, or meta, study. Assuming that we are
only dealing with two-group studies, the g for the metastudy would be a weighted
average of the g’s of the 12 studies (weighted by the sizes of the studies). The to-
tal N for the meta study would be a sum of the n’s for the 12 smaller studies. The
meta study could be tested for significance with a t test using the following gen-
eral formula:

tmeta ���
N

2
�� 
 g avg (6.13)

where N equals Σn
i
(assuming that each of the 12 studies consists of two equal-

sized groups of size n
i
).

The much larger N, with about the same g as the smaller studies, greatly in-
creases the power of the meta-analysis relative to the smaller studies. There are
also tests of whether the g’s of the smaller studies differ significantly among them-
selves and, perhaps, should not be combined (Rosenthal, 1993). There are de-
bates about how to correct the bias in g and how best to combine these estimates
(Hedges, 1982). But the trickiest part of meta-analysis, most likely, is knowing
when studies are similar enough to be combined. If two studies have compared
the same herbal supplement to a placebo, but used two different memory tests,
whether these studies can be combined hinges on the similarity of these memory
tests. For instance, are they testing the same kind of memory?

Meta-analysis is relatively new, and its methods are still being worked out, but
its potential for improving the quality of social science research is enormous. So-
cial science research often deals with small to moderate effect sizes, and due
largely to economic limitations, large sample sizes are rarely used. Therefore,
most studies do not have much power; estimates in the field of psychology sug-
gest an average power that is no more than 50%. That translates into a large num-
ber of studies that lead to negative results which are really Type II errors. These
negative results are rarely published, leading to what Rosenthal (1979) called the
“file drawer” problem—the results never get out of the file drawer. Meta-analysis
presents the opportunity to combine several negative or inconclusive studies into
one study with clear-cut results, and perhaps a fairly narrow ESCI. Fortunately,
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the World Wide Web can now pro-
vide a convenient place to store and
search for an enormous number of
file-drawer studies that may later be
combined by meta-analysis. A web-
based journal for negative results is
being established at the time of this
writing.

When Null Hypothesis Testing
is Useful

Almost since the use of NHST began
there have been researchers strongly
cautioning against simple signifi-
cance testing without the comple-

mentary inclusion of confidence intervals or effect size estimates (e.g., J. Cohen,
1994; Rozeboom, 1960). More recently there has been a growing movement to
abolish NHST completely in favor of the reporting of CIs and the use of meta-
analysis (e.g., Schmidt, 1996). A common argument against NHST is based on the
following set of premises: (1) The null hypothesis is almost never exactly true for
studies in social science research, so there are very few opportunities to make a
true Type I error; (2) power is usually low in social science research, so there is a
high rate of Type II errors; and (3) because H0 is almost never true, almost any ex-
periment can produce positive results if the sample sizes are made large enough.
The critics further argue that not only is there little to gain by using NHST, but
the procedure leads to various fallacies and confusions. As the weaknesses of
NHST are pointed out more clearly and more often, the critics have wondered
aloud: Why is this procedure still so popular? The answer to this question, we feel,
lies not in theoretical conceptions of science, but in more practical considera-
tions. Let us look at the function NHST actually serves in research.

We agree that if one takes an exact view about it, the null hypothesis is very
rarely true in social science research. Inevitably, any new treatment will work at
least very slightly, or any two treatments will differ slightly, or any two variables
will have at least some very slight and inconsequential relation with each other. It
is rare that social scientists investigate paranormal phenomena, or treatments so
truly irrelevant that they may indeed have absolutely no effect at all. However, the
direction that results will take is not always obvious. When we are comparing two
methods for teaching math, for instance, a statistically significant result favoring
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DON’T FORGET
1. A result for which p � .051 is not

likely to be significantly different
from a result for which p � .049,
even though the latter is significant
at the .05 level and the former is
not.

2. If you perform an exact replication
of a result for which p � .049, the
power for the replication will only
be about .5.

3. A study that uses small samples
and does not produce significant
results provides little evidence in
favor of the null hypothesis, or
even that the effect size is small.



method A gives us some confidence that method B would not be better in the en-
tire population. A lack of significant results would not convince us that the two
methods are identical, but rather that additional research would be needed to
settle the issue.

If the direction the results will take seems obvious (e.g., individual attention
will improve math performance as compared to classroom instruction alone) and
you can safely rule out the possibility that the null hypothesis is true (in the pre-
vious example, can you imagine that adding individual attention to classroom in-
struction will have absolutely no benefit whatsoever?), it can be argued that
NHST is pointless. Use enough participants and the results will be significant;
don’t use enough participants and you will commit a Type II error by failing to re-
ject H0 . However, although it is very rare that the null hypothesis is exactly true,
it is not unusual for the true effect size to be so small that it is of no interest to us
practically. For example, a researcher may want to know if the frequent playing of
music composed by Mozart to an infant will produce a smarter child (the so-
called Mozart effect). If the true effect size involved an increase of one IQ point
(say, from 100 to 101) after much playing of Mozart, a study would be likely to
produce negative results and therefore a Type II error, but we see this as a bene-
fit, not a drawback, of NHST. A significant result in this case, though technically
correct, would be a false alarm in a practical sense, because we are not dealing
with an effect that is large enough to be of interest. NHST is useful in that it usu-
ally does not yield significant results with very small effect sizes that are really triv-
ial in some cases. For instance, in addition to screening out 95% of null hypothe-
ses, NHST will also screen out about 93% of experiments with small effect sizes
when a sample size of 32 participants per group is used (� � .1 
 �32/2� � .4, so
power � .07).

Statistics texts and instructors often caution students not to confuse statistical
significance with practical significance. Certainly, one does not guarantee the
other. However, because social science researchers usually have low power for
small effect sizes due to their use of relatively small samples (using repeated mea-
sures or matched designs tends to raise power, but researchers usually exploit that
tendency by reducing their sample sizes), they know that statistical significance is
unlikely when the effect size is too small to be of any practical significance. There-
fore, knowing intuitively that their power is low for small effect sizes, researchers
are understandably impressed with results that attain statistical significance and
dismissive of those that do not.

If researchers routinely used very large samples, NHST would not be very use-
ful, because even experiments for which d is too small to be interesting would of-
ten yield significant results (e.g., with 1,250 participants per group, power is over
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.7 for d � .1). In this situation, statistical significance would no longer be indica-
tive of a fairly large effect size, and researchers would have to pay more attention
to effect size estimates and think more about how large d must be for a particu-
lar experiment to be of value. We don’t think this would be a bad situation, but
we feel quite certain that the use of large samples is not likely to become wide-
spread any time in the foreseeable future. It should also be noted that, for some
experiments, demonstrating that d is anything but zero can be of great theoreti-
cal interest (e.g., showing that voluntary mental activity can have a tiny but direct
effect on the function of some internal organ, such as the kidney); however, in
most cases with practical implications, tiny effect sizes are just not worth paying
attention to.

Finally, it can be argued that NHST is a haphazard way of screening out small
effect sizes. Although there is widespread agreement on the use of .05 for alpha,
sample sizes, and therefore power for a given effect size, fluctuate a good deal.
This is indeed true; NHST is a crude system. But until researchers can come to-
gether and agree about the meaning and usefulness of various effect sizes in dif-
ferent research areas, you can expect to see a great deal of reliance on NHST in
the literature of the social sciences. In the next chapter, we show how NHST can
be applied to increasingly complex research designs.
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Putting It Into Practice
1. If Antarcticans have a normal body temperature that is 1 degree lower than

the rest of the human population, and the population standard deviation is 0.7
degree (assume homogeneity of variance):
(a) How many participants would you need in each group if you wanted

power to be .8 for a .05, two-tailed test comparing Antarcticans to other
humans? (Answer by using Table A.5, and then Table A.6.)

(b) If you had only four Antarcticans available, and you wanted to compare
them to 8 control participants, how much power would you have? (An-
swer by using Table A.5, and then Table A.6.)

(c) Given the sample sizes in 1b, how large would d have to be to have
power of .9 for a .01, two-tailed test? (Answer by using Table A.5.)

(d) To obtain the d you found in 1c, how much would Antarcticans have to
differ from the rest of the population (the standard deviation still equals
0.7 degree)?

2. Participants study a list of words while listening to either happy music or sad
music. If the mean number of words recalled is half a standard deviation higher
for the happy than the sad condition (use Table A.5 for these exercises):
(a) How many participants are needed in each of two equal-sized groups to

have a power of .74 (.05, two-tailed test)?
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(b) If the two groups are matched such that � equals .4, how many partici-
pants per group would be needed in 2a?

(c) If the groups contained 18 participants each, how high would the correla-
tion in 2b have to be so that power would equal .7?

3. This exercise concerns the correlation between math ability and music ability.
(a) If the correlation is .35 in the population, how large a sample is needed for

power to be .7 with a .01, two-tailed test?
(b) If you are testing this correlation in a class of 26 students, how high would

the population correlation have to be for power to reach .8 in a .05, two-
tailed test?

4. Three drugs are being compared to a placebo in a one-way ANOVA.
(a) If there are 9 participants in each group, and f equals .5, what is the power

of your ANOVA test at the .05 level?
(b) If f equals .2, how many participants would you need in each of the four

groups to have power of .65?
(c) Given the sample size in 4a, how large would f have to be to attain power

of about .82?

TEST  YOURSELF

1. Power is

(a) the probability of accepting the null hypothesis when it is true.
(b) the probability of accepting the null hypothesis when it is false.
(c) the probability of rejecting the null hypothesis when it is true.
(d) the probability of rejecting the null hypothesis when it is false.

2. Increasing the effect size (all else remaining equal) will

(a) increase delta (the expected t value).
(b) increase beta (the Type II error rate).
(c) decrease the critical value.
(d) decrease alpha (the Type I error rate).

3. If you perform a two-sample experiment and obtain a large t value (e.g., t
� 10), which of the following can be concluded?

(a) d (the effect size) is probably large.
(b) Delta (the expected t value) is probably large.
(c) Alpha is probably small.
(d) The sample size is probably large.

4. How can the effect size of a two-sample experiment be increased?

(a) Increase alpha.
(b) Increase power.
(c) Increase the separation of the population means.
(d) Increase the variance of both populations.

S S

(continued )
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5. A sometimes useful side effect of null hypothesis testing with small inde-
pendent groups is that

(a) large effect sizes do not lead to Type I errors.
(b) small effect sizes do not lead to significant results.
(c) the direction of an effect can be reliably determined.
(d) small confidence intervals can be found.

6. Suppose that for a two-group experiment, in which there are 18 partici-
pants per group, the calculated t value is 2.1. How large is g (the sample
estimate of d)?

(a) .5
(b) .7
(c) 1.4
(d) 6.3

7. If the population correlation is expected to be .4, approximately how
many participants are needed to have power equal .7 (� � .05, two-
tailed)?

(a) 7
(b) 14
(c) 20
(d) 40

8. As the correlation between the two sets of scores in a matched t test in-
creases (all else remaining the same),

(a) the denominator of the t test decreases.
(b) the numerator of the t test increases.
(c) the variance within each set of scores decreases.
(d) all of the above.

9. Which of the following would result in an increase in f?

(a) Increasing the separation of the population means
(b) Increasing the sample sizes
(c) Increasing alpha
(d) All of the above

10. For a given F value, which of the following would lead to a larger sample
value for f?

(a) Larger sample sizes
(b) Smaller sample sizes
(c) Larger within-sample variances
(d) Smaller separation among the sample means

Answers: 1. d; 2. a; 3. b; 4. c; 5. b; 6. b; 7. d; 8. a; 9. a; 10. b.
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TWO-WAY ANOVA

Interaction Contrasts

Suppose you are testing a completely new drug for depression. You are happy that
a t test shows the drug group to be significantly lower in depression than the
placebo group at the end of the study. To explore your results further you decide
to rerun your t test just for the men in the study, and then again just for the
women. Although you have equal numbers of men and women in both condi-
tions, you find that the t test for men just misses significance at the .05 level,
whereas the t test for women is easily significant. Does this mean that the female
population is more responsive to the drug than the male population? As we
pointed out in the previous chapter, you cannot conclude this. In fact, the true ef-
fect sizes for men and women could easily be identical with accidental differences
in sampling explaining the difference in results. However, even if the t tests for
both genders were significant (or both not significant), the effect sizes for men
and women could be quite different, and it would be useful to know if this were
the case. There should be a way to test this, and there is. One way is to test the dif-
ference in the male and female results by means of a contrast, as described in
Chapter 5.

First, let us look at some possible means for the drug/placebo experiment
broken down by gender (see Table 7.1). The relevant contrast is to take the female
difference of 18 points (i.e., 40 – 22) and subtract from it the male difference of
8 points (i.e., 36 – 28); the difference of these two differences is 10 points, so L
equals 10 for this contrast. More formally, the contrast can be written as follows
L � �1 
 X�male/placebo – 1 
 X�male/drug – (�1 
 X�female/placebo – 1 
 X�female/drug ). Notice
that all four of the coefficients are �1 or –1, so Σc

i

2 � 4. If there are 20 partici-
pants per group, SScontrast � nL2/ Σc

i

2 � 20 
 100/4 � 500, which also equals
MScontrast. The error term for this contrast is MSw , which in this case would be an
average of the four group variances.

Seven

FACTORIAL ANOVA



The contrast just tested is called an
interaction contrast. If it is significant,
we can say that the drug interacts with
gender, in that the effect of the drug,
relative to a placebo, changes from
one gender to another. Depending on
the nature and the size of the interac-
tion we might recommend that the
drug be used only with females.
Interactions can be very interesting
both practically and theoretically. The
simplest kind of interaction is the two
by two (symbolized as 2 � 2) interac-
tion, as in the example above (two

drug conditions and two genders). Interactions, however, can get more compli-
cated (e.g., three drug conditions by two genders), and when they do, a simple lin-
ear contrast will not be sufficient. To handle these more complex cases you will
need an extension of the ANOVA procedure you learned in Chapter 5. This ex-
tension, called factorial ANOVA (for reasons soon to be made clear) is the subject
of this chapter.

THE FACTORIAL DESIGN

The one-way ANOVA is called one-way because there is only one independent
variable, also called a factor, that distinguishes the groups. If the groups differed
along two factors, a two-way ANOVA could probably be applied to the results.
(The dependent variable should have been measured on an interval or ratio scale.
If more than one dependent variable is to be used in the same analysis you would
need a multivariate analysis of variance [MANOVA]. In this book we will only
deal with univariate ANOVAs—i.e., one DV at a time.) To illustrate how two fac-
tors can be combined in one experiment we offer the following example.

Suppose you are the principal of a large school and you want to improve read-
ing scores. In comparison to the traditional method for teaching reading, you
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DON’T FORGET

When Will I Use the Statistics
in this Chapter?

You are measuring one outcome (i.e.,
dependent) variable on a quantitative
scale (or looking at one such variable
at a time), and you are comparing
groups along two or more dimensions
or factors (any of the factors can rep-
resent existing populations, or experi-
mental treatments or conditions).

Table 7.1 An Example of an Interaction Contrast

Placebo Drug

Males 36 28
Females 40 22



want to test two new methods—we’ll call them visual and phonics. Imagine that
many of your classes in a given grade consist of 20 pupils randomly selected. To
get the power you want, you assign three classes at random to each of the three
teaching methods. Suppose also that there are four reasonably good reading texts
available and you want to decide which is best. Again, your power analysis sug-
gests that you assign three classes to each of the four texts. But if you are already
using 9 classes for the teaching method experiment you may not have 12 more
classes for the text experiment. However, you can run both experiments more ef-
ficiently, using fewer classes, if you combine them in a two-way design.

The simplest way of combining two factors is the completely crossed factorial design,

which is usually called the factorial design for short. In this scheme every level of
one factor is combined with every level of the other factor. For the teaching
method and text experiments the combination would come out as shown in Table
7.2. Each combination of levels in the design is called a cell. There are a total of 12
cells (e.g., the visual method combined with text C). This design is often referred
to as a 3 � 4 (read three by four), or 4 � 3 for reasons that should be obvious
from looking at Table 7.2.

If you actually multiply the two numbers (e.g., 3 times 4), you get the number
of cells. If you assign one 20-student class to each cell you can run both the teach-
ing method and text experiments using a total of only 12 classes, without sacri-
ficing any power. For the text experiment you can see that there are three classes
assigned to each text, and for the teaching method experiment there are four
classes for each method, even more than originally planned. If any of the cells
were left empty (no classes or pupils assigned), this would not be a completely
crossed design, and it would not be easy to analyze (we will not discuss such in-
complete designs, which are uncommon).

If the classes were not all the same size the design would not be balanced. This
would make the analysis a bit trickier, and is best dealt with by statistical software
(fortunately, the necessary adjustment is simple in the 2 � 2 case—see the sec-
ond exercise in “Putting It Into Practice”). However, if the design becomes un-
balanced in a manner that is not due to random accidents, but rather to the nature
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Table 7.2 Layout of 3 � 4 ANOVA with One Class (20 students) per Cell

Text A Text B Text C Text D

Traditional 20 20 20 20
Visual 20 20 20 20
Phonics 20 20 20 20



of the treatments themselves (e.g., poor readers are so challenged by a particular
combination of text and method that they transfer to another school), your re-
sults can become biased in a way that is difficult to compensate for statistically
(B. Cohen, 2000).

At this point, you may be looking for the catch—the downside of running
both experiments simultaneously, and therefore using only 12 instead of a total
of 21 classes. The economy comes, of course, from the fact that each student is
in two experiments at once. The analysis of the two-way design begins with two
one-way ANOVAs, each ignoring the presence of the other factor, except that the
error term for both one-way ANOVAs (i.e., MSw ) is the average of the variances
within each cell. The potential problem is that the interpretation of these two
one-way ANOVAs can be greatly complicated if there is an interaction between
the two factors.

It may have occurred to you that one text might work particularly well for the
traditional method but not for either of the new methods, whereas some other
text works well with the phonics method, and so on. If the relative effectiveness
of the texts changes for different teaching methods (or vice versa), you will have
some interaction between the factors, though it may not be large enough to be
statistically significant or otherwise worrisome. Sometimes an interaction is what
you were expecting (or hoping for) when you designed the study. But even if the
interaction was not expected, if it is there, you should want to know about it.

Comparing the teaching methods with just one text can lead to results that will
not generalize to other texts; another researcher replicating your experiment but
using a different text may reach a different conclusion about the teaching meth-
ods. If you get essentially the same pattern among the teaching methods for all
four texts (assuming these texts are a good representation of all available texts),
you can feel confident about the generality of your conclusions with respect to
the teaching methods. If you obtain a significant interaction this is also valuable
information, leading to more specific recommendations—for example, use text
A with the phonics method, but not with the other methods.

THE NESTED DESIGN

It could be the case that the texts are written so specifically for one method or an-
other that it would not make sense to use, say, a phonics text with a visual teach-
ing method. This situation would rule out a factorial design, but a two-factor de-
sign would still be possible. For each of the three teaching methods a different set
of four appropriate texts could be chosen at random; thus there would be four
different texts for each method for a total of 12 different texts. This design is
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called a nested design; the different texts are nested in the different methods (see
Figure 7.1). Because the design is not crossed you cannot look for an interaction.
However, there are two one-way ANOVAs that can be performed. The first one-
way ANOVA is calculated by first finding the mean for each text. The calculation
proceeds as though the texts were the participants; the numerator of the F ratio
is based on the variability of the means of the teaching methods (multiplied by the
number of texts used for each method), and the error term is based on the vari-
ability from text to text within each method. The logic is that the variability from
method to method should be large in comparison to the variability from text to
text within each method (for more detail, see Myers & Well, 2003).

The second one-way ANOVA tests whether the texts differ significantly from
each other within each method using person-to-person variability within each
text condition as the error term. A significant F for this factor suggests that it re-
ally does matter which text is used. In such a nested design, the text factor is usu-
ally a random-effects factor, because the texts for each method would normally
be picked at random from all available texts. In this chapter and Chapter 5, we
deal only with fixed-effects factors; the levels of your factors (e.g., texts) are cho-
sen specifically because you are interested in testing those particular levels. How-
ever, the main drawback to the nested design is that for the first one-way ANOVA
there are usually not many participants (in this case, texts) for each condition, and
therefore not much power. Generally, if the second ANOVA is not close to sig-
nificance (e.g., choice of text makes little difference within each method), the
nested factor is essentially ignored; in this example the analysis would revert to an
ordinary one-way ANOVA of the teaching methods with person-to-person vari-
ability as the error term.

Technically speaking, a one-way ANOVA with three classes assigned to each
of three teaching methods—all using the same text—is a two-factor nested design,
because the classes are nested within each method. Often, this aspect of the design
is ignored, and all of the participants in one method are considered one large
group, because we don’t expect the participants to differ from one class to an-
other. However, when classes are coming from different schools or patients from
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Figure 7.1 A diagram of a nested design: Texts are nested within methods



different hospitals, ignoring the nesting can increase your chances of making a
Type I error, so more attention should be paid to any clumping of participants
within a single condition of the ANOVA.

Calculating the Main Effects of a Two-Way ANOVA

Deliberately nested designs (as opposed to obtaining your participants haphaz-
ardly in clumps) are quite rare, so we will not discuss them further in this text. We
turn now to the practical matter of obtaining the three F ratios in a two-way fac-
torial ANOVA. Table 7.3 displays possible cell means for the teaching methods/
texts experiment. Each cell mean is the average of 20 scores. Notice that we have
also filled in means for each row and column; these are called marginal means. Be-
cause this is a balanced design the error term for all three F ratios, MS

w
, is just an

ordinary average of the 12 cell variances.
The numerator for the one-way ANOVA for teaching method is given by nsx�

2 ,
where n is the number of participants in each teaching method (4 
 20 � 80) and
sx�

2 is the (unbiased) variance of the row (i.e., teaching method) means. Therefore,
MSmethod � 80 
 s2 (5.725, 6.2, 5.95) � 80 
 .05646 � 4.52. If MSw turns out to be
.5, then Fmethod � 4.52/.5 � 9.04. To find the critical F we must note that the nu-
merator df is one less than the number of levels of the factor; in this case dfnum

equals 2 (3 methods minus 1). The denominator df is dfw , which is the total num-
ber of participants (NT) minus the number of cells.

For this example dfw equals 228 (i.e., 240 – 12), so Fcrit � F.05 (2,228) � 3.0
(from Table A.3). Because Fmethod is greater than its critical F we can say that the
main effect of method is significant (each of the two one-way ANOVAs is referred
to as a main effect). Similarly, we can show that MStext � 60 
 s2(5.77, 6.1, 6.03,
5.93) � 60 
 .0205 � 1.23 (note that in this case, n is 3 
 20 because there are three
cells or classes for each text). Therefore, Ftext � MStext / MSw � 1.23/.5 � 2.46,
which is less than F.05 (3,228) � 2.6, so the main effect of text is not significant
(note that for the text effect, dfnum � 3, because there are four texts).
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Table 7.3 Layout of 3 � 4 ANOVA with One Class (20 students) per Cell

Text A Text B Text C Text D Row Mean

Traditional 5.6 6.0 5.5 5.8 5.725
Visual 5.7 5.8 6.4 5.9 5.95
Phonics 6.0 6.5 6.2 6.1 6.2
Column mean 5.77 6.1 6.03 5.93 5.96



The SS Components of the Two-Way ANOVA

Finally, we want to test the F ratio for the interaction of the two factors. Because
the design is larger than a 2 � 2, the interaction cannot be found from a simple
linear contrast. In fact, the easiest way to find MSinter is to deal with the SS com-
ponents of the two-way ANOVA. We hope you recall that any MS can be ex-
pressed as SS/df. In the case of the one-way ANOVA, we showed (see Chapter
5) that SStotal � SSbetween � SSw (note, however, that the corresponding MS com-
ponents do not add up like that). In the two-way ANOVA the SSs add up as fol-
lows: SStotal � SSrows � SScolumns � SSinteraction � SSw ; in our example SSrows equals
SSmethod , which equals dfmethod 
 MSmethod � 2 
 4.52 � 9.04. Similarly, SScolumns

equals SStext � 3 
 1.23 � 3.69, and SSw � dfw 
 MSw � 228 
 .5 � 114. If you cal-
culate SStotal (find the unbiased variance of all the scores as though they were one
large group and multiply by dftotal , which is NT – 1), SSinter can be found by sub-
tracting SSrows , SScolumns , and SSw from SStotal .

Suppose, however, that you are given a table consisting of the means and stan-
dard deviations of each cell and you don’t have access to the original scores. You
cannot calculate SStotal directly, but you can still calculate the two-way ANOVA.
Here’s how: First you can square all of the SDs to get the cell variances and aver-
age them to get MSw. Then you can treat the cell means like the group means of
a one-way ANOVA and calculate the SSbetween , which in this context we will call
SSbetween-cell . We have a little calculator trick to make this easy: Enter all of the cell
means into your calculator, and then press the key for the biased SD (you have to
have a scientific or statistical calculator that includes the biased as well as the un-
biased SD, and know how to enter numbers in stats mode). Square the biased SD
(of the cell means) and then multiply by the total N. This trick can be summarized
in the following formula:

SSbetween � NT�2 (means) (7.1)

SSrows and SScolumns can be found by using the same formula; just enter either the
row means or the column means, and multiply the biased variance of these means
by the total N. Then, SSinteraction can be found by subtracting both SSrows and SScolumns

from SSbetween-cell . We will illustrate the use of Formula 7.1 on the data in Table 7.3.

SSbetween-cell � 240 
 .08576 � 20.58

SSmethod � 240 
 .03764 � 9.03

SStext � 240 
 .01576 � 3.78

SSinteraction � SSbetween-cell � SSmethod � SStext � 20.58 � 9.03 � 3.78 � 7.77.
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Note that SSmethod and SStext agree with what we found when we obtained MSmethod

and MStext directly and multiplied them by the corresponding df ’s; the slight dis-
crepancy is due to different rounding off in the two calculation sequences. (Due
to rounding, these hand calculations are not extremely accurate. When you need
real precision, retain a large number of digits for intermediate results [including
marginal means] or use a computer. These calculations are useful, however, for
understanding the concepts of the two-way ANOVA.) The df for the interaction
is always equal to dfrow times dfcolumn . For this example, dfinter � 2 
3 � 6; there-
fore, MSinter � 7.77/6 � 1.295, and Finter � MSinter /MSw � 1.295/.5 � 2.59. Be-
cause this F is larger than F.05 (6,228) � 2.1, the null hypothesis for the interaction
can be rejected at the .05 level. We will explain what this implies shortly.

You may be wondering why we explained how to calculate a two-way
ANOVA from just a table of means and SDs, as though you don’t have the orig-
inal data. The fact is that tables of means and SDs are often published in journal
articles, along with statistical tests, but the authors may not present all of the F ra-
tios you would like to see. You can fill in the missing results with the procedure
just described. The procedure is summarized in Rapid Reference 7.1. (For further
details on this procedure see B. Cohen, 2002 or B. Cohen, 2000.) If you don’t
have a calculator that includes the biased standard deviation as a built-in func-
tion, you can obtain one very inexpensively, or you can use the computational
ANOVA formulas presented in most introductory texts. Of course, most of the
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Calculation Procedure for Two-Way ANOVA

SStotal � NT�2 (all scores) optional
SSbetween-cell � NT�2 (cell means)

SSrow � NT�2 (row means)
SScolumn � NT�2 (column means)

SSinteraction is obtained by subtracting SSrow and SScolumn from SSbetween-cell ; SSw can be
obtained by subtracting SSbetween-cell from SStotal ; or MSW can be obtained directly
by averaging the cell variances.
Then SSrow , SScolumn , and SSinteraction are divided by dfrow , dfcolumn , and dfinteraction re-
spectively, to create MSrow , MScolumn , and MSinteraction , each of which is divided by
MSW to create the three F ratios.
If r � number of rows, c � number of columns, and n � size of each cell, dfrow �
r – 1; dfcolumn � c – 1; dfinteraction � (r – 1)(c – 1), and dfW � rc (n – 1).

Rapid Reference 7.1



time you will have access to the original data and will analyze your data with sta-
tistical software.

Varieties of Interactions

When the interaction turns out to be statistically significant, as in the method/
text example, you will probably want to draw a graph of the cell means to see what
is going on. There are many ways that an interaction can combine with the main
effects even in the simplest two-way ANOVA, the 2 � 2 design. Before we show
you a graph of the cell means in Table 7.3, we will illustrate the major patterns that
can occur in a 2 � 2 design. Imagine an experiment in which sleep-deprived par-
ticipants are given two pills and then asked to perform a motor task (e.g., play a
video game that simulates driving a truck). The first pill can be either caffeine or
a placebo. The second pill can be either amphetamine or another placebo. There
are four possible combinations, and therefore four groups of participants.
The (hypothetical) average performance for three of the four groups is shown in
Table 7.4.

The drug example is convenient because there has been a good deal of atten-
tion paid in recent years to the topic of drug interactions, and if, for instance,
there is a drug interaction between caffeine and amphetamine, it is likely to be re-
flected in a statistical interaction in our experiment. The easiest way to under-
stand an interaction is to first look at a case with absolutely no interaction what-
soever. In Table 7.4 you can see that taking caffeine improves performance by 10
points relative to a placebo, and amphetamine adds 20 points. If these two drugs
do not interact, taking both of them will be additive—that is, performance will
improve by 10 � 20 � 30 points, relative to taking two placebos. Imagine that
the empty cell in Table 7.4 contains a 60, and you have the case of zero interac-
tion. This case is graphed in panel A of Figure 7.2. Notice that the two lines (cor-
responding to the rows of Table 7.4) are parallel. This is an easy way to see that
there is no interaction. With no caffeine, the amphetamine line is 20 points above
the “no amphetamine” line, and with caffeine you get the same difference be-
tween the two lines.
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Table 7.4 Hypothetical Cell Means for a Two-Way Interaction

Placebo Caffeine

Placebo 30 40
Amphetamine 50



There are several quite different types of interactions that are possible in the 2
� 2 case. For instance, the two drugs in our example may facilitate each other in
such a way that the score in the empty cell of Table 7.4 comes out to 80. This case
is graphed in panel B of Figure 7.2. The fact that the lines are not parallel tells us
that the F ratio for the interaction will not be zero (whether the F is significant,
or even greater than 1.0, depends on the relative size of the error term, MSW).
That the two lines slant in the same direction tells us that this is an ordinal interac-

tion; the effect of amphetamine may be greater with caffeine than without, but it
is in the same direction (or order). We next illustrate an interaction that involves
a reversal of the order of the means.

Imagine that the combination of caffeine and amphetamine makes the partic-
ipants so jittery that it interferes with performance on the video game and, there-

154 ESSENTIALS OF STATISTICS

Placebo Caffeine

No Amphetamine

Amphetamine
Performance
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No Amphetamine
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0
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No Amphetamine
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0
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Figure 7.2 Different types of interaction. A, zero interaction (lines are paral-
lel); B, ordinal interaction (lines slant in same direction but with different
slopes); C, disordinal interaction (lines cross or slant in opposite directions)

C



fore, leads to a mean score of only 20
(worse than the two placebos) in the
empty cell of Table 7.4. This pattern
of means, graphed in panel C of Fig-
ure 7.2, is indicative of a disordinal in-
teraction; the effect of amphetamine
in the presence of caffeine (i.e., to de-
crease performance) is opposite to its
effect without caffeine. Whenever the interaction is significant (or even very
close) in a two-way ANOVA you should be cautious in interpreting the signifi-
cance or lack of significance of either of the main effects. If the interaction is sig-
nificant and disordinal, it is unlikely that the main effects will be interpretable at
all, so the significance (or lack of significance) of the main effects will usually be
ignored in this case.

The easiest way to see the direction of the main effects is to look at the mar-
ginal means; Table 7.5 shows the table of cell and marginal means for the case that
was graphed in panel C of Figure 7.2. Notice that the two row means are the same,
which implies that MSrow and therefore Frow will be zero. Looking only at the main
effect of amphetamine, therefore, would suggest that taking amphetamines has
no effect on performance, which is certainly not the case in this experiment (two
opposite effects are balancing each other out). The marginal means for placebo/
caffeine suggest a main effect in which caffeine hurts performance, but even if
this effect were significant it would be ignored as misleading.

Simple Main Effects

When the interaction in a 2 � 2 ANOVA is significant, it is not likely that you will
want to stop your analysis with that result. Imagine that your two-way ANOVA
involves two types of boys—hyperactive and average—and two types of
drugs—placebo and Ritalin (a form of amphetamine). The data (based on some
measure of activity) as graphed in panel A of Figure 7.3, could lead to a significant
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Table 7.5 The Cell Means Corresonding to Figure 7.2C

Placebo Caffeine Row Means

Placebo 30 40 35
Amphetamine 50 20 35
Column Means 40 30 35

C AU T I O N

When the interaction in a two-way
ANOVA is disordinal and significant
(or even nearly significant), do not
take the results of the main effects at
face value.



interaction, but you would then want to test the Ritalin-placebo difference sepa-
rately for each type of boy (you could perform a simple t test in each case, or a
one-way ANOVA, whose F would equal the square of the corresponding t value).
Looking at panel A of Figure 7.3, it would not be surprising if the Ritalin group
was significantly higher in activity than placebo for average boys, but not signifi-
cantly lower for hyperactive boys. The significant disordinal interaction is still
theoretically interesting—it demonstrates that the same drug has paradoxically
opposite effects on the two types of boys—but if you are wondering whether to
give Ritalin to hyperactive boys as a form of treatment, the follow-up results
could be discouraging. Results as graphed in panel B of Figure 7.3 would be more
encouraging, especially if the Ritalin-placebo difference turned out to be signifi-
cant for the hyperactive boys alone.

The Ritalin/placebo comparison for each group of boys is called a simple main

effect. You could also look at simple main effects by comparing the two groups of
boys for each drug condition separately, but for this experiment those tests are
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Placebo Ritalin

Average boys

Hyperactive boys

Activity

Placebo Ritalin

Average boys

Hyperactive boys

Activity

A

Figure 7.3 Disordinal interactions with different simple main effects. A, large
simple main effect for average boys, but small simple main effect for hyperac-
tive boys; B, small simple main effect for average boys, but large simple main
effect for hyperactive boys

B



less interesting. A main effect is always the average of the simple main effects that
contribute to it. In this example the main effect of the drug is obtained by aver-
aging the simple main effects of the drug for the two groups of boys. The more
different the simple main effects are, the less sense it makes to average them.
When the simple main effects are significantly different (that is what a significant
interaction tells us), averaging them usually makes little sense, which is why we
tend to ignore the main effects in such cases (especially when the simple main ef-
fects go in opposite directions, producing a disordinal interaction).

Post Hoc Tests When the Interaction Is Not Significant

If the interaction for a 2 � 2 ANOVA is not significant the focus shifts to the
main effects. If a main effect is significant you can look at the direction of the ef-
fect (i.e., which level is higher), and interpret the effect accordingly. Because each
main effect has only two levels, follow-up tests are not possible. However, when-
ever a significant main effect has more than two levels, follow-up tests are not
only possible, but almost always desirable. Let us return to our 3 (methods) � 4
(texts) example and imagine that the interaction was not significant, in order to see
how main effects are followed up. In the 3 � 4 example the main effect of meth-
ods was significant. We can look at the column means of Table 7.3 to see which
method is best, which is worst, and so on, but we cannot tell from looking at the
means, for example, whether the visual method is significantly better than the tra-
ditional method, or whether the phonics method is significantly better than the
visual.

Fortunately, we can test this main effect further with pairwise comparisons,
just as you would for a one-way ANOVA. With three conditions and a balanced
design you can use Fisher’s LSD test; MSw is the error term from the two-way
ANOVA. Just remember that n in Formula 5.11 is the number of participants that
receive each method, not the cell size. For this example four classes are assigned
to each method, so n � 4 
 20 � 80. If the text factor had been significant, Tukey’s
HSD would be recommended (Formula 5.12) because there are more than three
levels. In this case, n would be 3 
 20 � 60.

Post Hoc Tests When the Interaction Is Significant

When the interaction is significant in a 3 � 4 ANOVA (as in the method/text ex-
ample), a test of simple main effects is often appropriate, but there are other op-
tions as well. First, we will look at the simple effects in our example. We can ei-
ther run one-way ANOVAs comparing the four texts for each method, or
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compare the three methods for each text; sometimes it is interesting to look at
both sets of simple main effects. For all of these tests the numerator is based on
the three or four cell means we are comparing (n is the cell size), and the denom-
inator is MSw from the two-way ANOVA (the critical value is the same as the cor-
responding main effect). In our example the text factor is significant only for the
visual method: MSbet � ns

X�
2 � 20 
 s2 (5.7, 5.8, 6.4, 5.9) � 20 
 .0967 � 1.933; F

� 1.933/.5 � 3.867 � F.05(3,228) � 2.6. Next we will want to further clarify this
effect with pairwise comparisons. We can use Tukey’s HSD to compare each pair
of texts for the visual method only:

HSD � qcrit ��
M

n

Sw�� � 3.63��
2
.5
0
�� � 3.63 
 .158 � .574

Therefore, texts A and B both differ significantly from text C.
It is legitimate to skip the analysis of simple main effects and proceed directly

to relevant cell-to-cell comparisons, but given the large number of possible pairs
to test (there are 66 possible pairs in a 3 � 4 design, but 36 involve crossing both
a row and a column, so only 30 pairs are reasonable to test) it is important to con-
trol for Type I errors (Tukey’s test can be modified for this purpose according to
Cicchetti, 1972).

Interaction Contrasts

A second option for looking more closely at a significant interaction is to look at
2 � 2 subsets of the original interaction; these subsets are called interaction con-
trasts, and are calculated exactly the same way as in our 2 � 2 example at the be-
ginning of this chapter. Figure 7.4 is a graph of the cell means (Table 7.3) for the
methods/text example. Looking at Figure 7.4 you can see that there is more in-
teraction in some portions of the graph than others. For instance, looking only at
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Figure 7.4 Graph of cell means from Table 7.3
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texts B and C you can see that there is very little interaction involving just the tra-
ditional and phonics methods, but a good deal of interaction if you focus on the
traditional and visual methods. For traditional/phonics, L � (6 – 5.5) – (6.5 – 6.2)
� .5 – .3 � .2, but for traditional/visual L � (6 – 5.5) – (5.8 – 6.4) � .5 – (–.6) �
1.1. Therefore, MScont in the first case equals nL2/Σc

i

2 � (20 
 .22)/4 � 20(.04)/4
� .2; in the second case, MScont � 6.05. After dividing by MSw, Ftrad/phon � .4,
whereas Ftrad/vis � 12.1. As with any 2 � 2 interaction or contrast the numerator
df is just one, so the critical F for these interaction contrasts is F(1,228) � 3.84.
Not surprisingly, the contrast is significant for traditional/visual, but not for tra-
ditional/phonics for texts B and C.

In a 3 � 4 design there are eighteen possible 2 � 2 subsets. It is not reason-
able to test them all without protecting against the build-up of Type I errors. If a
few of the 2 � 2 contrasts are carefully planned before the data are seen, it is ac-
ceptable to test those contrasts as we did in the preceding section. If, however,
you are looking for the best contrasts to test, these are considered post hoc (com-
plex) comparisons, and Sheffé’s test is recommended. For an interaction, FS �

dfinterF(dfinter , dfw ); in other words, the critical F for Scheffé’s test is just dfinter

times the critical F for the overall interaction. For this example, FS � 6 
 2.1 �

12.6. By this criterion the trad/visual by texts B/C contrast just misses signifi-
cance. The Scheffé test is designed to be so strict that if the omnibus interaction
is not significant, none of the 2 � 2 F’s will be greater than FS .

Partial Interactions

The preceding paragraph points to the advantage of planning comparisons in ad-
vance. One form of comparison that is more likely to be planned than discovered
post hoc is the partial interaction. Typically, a complex comparison is used to reduce
one of the factors to two levels, and then this comparison is crossed with the
other factor. For example, the phonic and visual conditions can be averaged to-
gether to create a nontraditional level. Then a two-way ANOVA is created with
one factor as traditional/nontraditional and the other factor as text. If the partial
interactions you are testing were not planned, you should use an adjusted version
of Scheffé’s test as described by Boik (1979).

Finally, another system for planning interaction comparisons is to create a set
of interaction contrasts that are all mutually orthogonal. For our example, dfinter

equals 6, so there can be six orthogonal contrasts in a set. One possibility is to
cross the traditional/nontraditional comparison just described with the follow-
ing text comparisons: A versus B, B versus C, and C versus D. Then cross visual
versus phonics (a comparison that is orthogonal to the traditional/nontraditional
factor) with the same text comparisons. The resulting six 2 � 2 interactions are

FACTORIAL ANOVA 159



all orthogonal to each other. The possible follow-up tests for a two-way ANOVA
are summarized in Rapid Reference 7.2.

The Two-Way ANOVA with Grouping Factor(s)

Our method/text example involves the combination of two experimental fac-
tors. It should be noted, however, that another important use of the two-way
ANOVA involves combining an experimental factor with an individual differ-
ences (or grouping) factor. Suppose, for instance, that you are studying only the
three teaching methods from our previous example (all students get the same
text). You may notice that the girls have consistently higher reading scores than
the boys in each class, regardless of the method used. This gender difference will
contribute to the size of MSw and therefore serve to reduce the size of your F ra-
tio. If gender were added as a factor to create a two-way (gender � method)
ANOVA, MSw would be calculated separately for each method/gender combi-
nation and then pooled. Gender differences would then contribute to the main ef-
fect of gender, but not to MSw ; this reduces MSw and therefore increases the F ra-
tio for testing the method factor.

Another advantage of adding gender is that you can test whether boys and girls
respond in a similar pattern to the three methods, or whether there is some in-
teraction between gender and method. You pay a price for adding a grouping fac-
tor, in terms of losing degrees of freedom, so factors should not be added unless
they are likely to be related to your dependent variable (as gender is related to
reading scores among children) or to create an interesting interaction with your
experimental factor.

Instead of a categorical factor like gender, you may discover that your DV is
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Follow-Up Tests for the Two-Way ANOVA

If the interaction is not significant: Perform pairwise comparisons for whichever
main effects are significant and have more than two levels (LSD is acceptable for
three levels, HSD for four or more).
If the interaction is significant: (1) Test the simple main effects (i.e., at each level of
one factor, perform a one-way ANOVA on the other factor) for one or both fac-
tors. Perform pairwise (i.e., cell-to-cell) comparisons for whichever simple main
effects are significant and have more than two levels, or (2) conduct (2 � 2) in-
teraction contrasts, or partial interactions for ANOVAs that are larger than 2 � 2.
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affected by a continuous individual-
difference variable, like age. This kind
of variable, often thought of as a nui-
sance variable, also can contribute to
your error term and thus reduce the
power of your one-way ANOVA.
Age can be turned into a second fac-
tor in your ANOVA by dividing your
participants into blocks according to
ranges of age (e.g., 18 to 22, 23 to 27,
etc.). If age affects your DV, your
error term will be reduced by creating
a two-way blocks by treatment
ANOVA. If there is a simple linear
relation between age and your DV, you can gain even more power by performing
an analysis of covariance (ANCOVA). The topic of ANCOVA goes beyond the
scope of this book but is covered thoroughly in B. Cohen (2000).

THREE-WAY ANOVA

As we just mentioned, one way to get a two-way ANOVA is to start with a one-
way ANOVA and add a grouping factor. Similarly, if you take our two-way
method/text example and divide the children by gender, you would get a three-
way ANOVA. Or if you divided the children by those who were above or below
average in school performance before the method/text experiment, and added
that as a factor, you would have a three-way ANOVA. Of course, you can also de-
sign an experiment with three factors—for instance, the method/text experi-
ment could be run with weekly testing for half of the children and only before-
and-after testing for the other half (the resulting three-way ANOVA might use
only the last test as the dependent variable for all of the participating children).

A three-way ANOVA allows the testing of three main effects, and a three-way
interaction—an effect not available in a two-way ANOVA. There are also three
two-way interactions that can be (and usually should be) looked at, for a total of
seven effects (and therefore seven F ratios) that can be tested for statistical sig-
nificance. In general, a factorial ANOVA with N factors has 2N – 1 effects that
can be tested (for a four-way ANOVA, 2N – 1 � 24 – 1 � 16 – 1 � 15), all of which
involve the same error term, MSw (in a balanced design, this is just the simple av-
erage of all of the cell variances). In this chapter we are only discussing experi-
ments in which each cell contains a separate, independent group of participants,
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DON’T FORGET
If your participants fall into different
categories (e.g., ethnic background)
that differ on your DV, you can restrict
your participants to a single category,
but for greater generality you should
consider adding a factor to your
ANOVA. If your participants differ
along some continuous measure that
affects your DV (e.g., IQ), consider
breaking the continuous measure into
categories and adding it as a factor, or
performing an ANCOVA.



so experiments with many factors that have many levels become impractical. For
example, a 2 � 3 � 4 � 5 (four-way) ANOVA requires 120 different groups of
participants, and, if each cell is to have 5 participants, a total of 600 participants.
Such experiments are not common, but 2 � 2 � 2 or 2 � 2 � 3 ANOVAs are
fairly common in the social sciences, so we will consider such an example next.

A Simple Example of Three-Way Interaction

Let us return to our hyperactive/Ritalin example and add gender to create a three-
way ANOVA. The cell means of a three-way design are easy to see if a two-way
graph is created for each level of the third variable and these two-way plots are
placed side by side, as in Figure 7.5. Of course, it is arbitrary which factor is cho-
sen as the third, but choosing the factor with the fewest levels will minimize the
number of plots. We chose gender as the third variable in Figure 7.5 for ease of
interpretation. First, you can see that there is some main effect of gender. The av-
erage of the four means in the boy plot is 8, whereas the average is only 6 for the
girls. You can also see a (not surprising) main effect for hyperactivity, which is the
average of the simple main effect of hyperactivity for the boys and the same ef-
fect (which appears larger) for the girls. However, the main effect for drug is zero;
notice that the two placebo means have the same average as the two Ritalin means
for the boys (M � 8) and this is also true for the girls (M � 6).

You can also see a good deal of two-way interaction in the graph of the boys;
this interaction is clearly less for the girls. The difference in these two-way inter-
actions represents a three-way interaction of gender by drug (Ritalin vs. placebo)
by activity type (hyperactive vs. normal). However, because both interactions are
in the same direction, this is an ordinal three-way interaction. The two-way inter-
action of drug by activity type for the three-way ANOVA will be an average of
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Figure 7.5 Graph of three-factor experiment: Gender X activity level X drug
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the simple interaction effects at each gender, and will therefore be midway between
those two simple effects. The fact that the two-way interaction is fairly similar for
both boys and girls means that in this case the overall two-way interaction will be
interpretable even if the three-way interaction is significant.

The 2 � 2 � 2 Interaction Contrast

Because all of the factors have only two levels, the three-way interaction can be
tested as a contrast. This contrast is the difference of the amount of two-way in-
teraction for the boys and the amount for the girls (you would get the same
amount of three-way interaction no matter which factor is chosen as the third
one). You can see from Figure 7.5 that for the boys, the 2 � 2 contrast is (12 – 4)
– (6 – 10) � 8 – (–4) � 12. For the girls this contrast is (10 – 2) – (8 – 4) � 8 – 4
� 4. Therefore, L for the 2 � 2 � 2 contrast is 12 – 4 � 8, and this value can be
used to obtain SScontrast just as was shown at the beginning of this chapter.

In addition to the effects we have already pointed out, there are possible two-
way interactions of gender by drug and gender by activity type to be tested. These
effects would be easier to see if drug or activity type were selected as the third fac-
tor. In fact, for purposes of hand calculation of the three-way ANOVA you would
have to create a total of three 2 � 2 tables of marginal means—for example, one
of these tables would result from averaging the boys and girls as plotted in Figure
7.5 to create one 2 � 2 table of means. Further details concerning the calculation
of a three-way ANOVA can be found in a pdf file available on the web (see the
Preface).

Varieties of Three-Way Interaction

A significant three-way interaction can be defined as a significant difference
among the simple interaction effects, just as a significant two-way interaction is a
significant difference among the simple main effects of which it is composed.
There are a variety of cell-mean patterns that can result in a significant three-way
ANOVA. For instance, suppose that the girls in Figure 7.5 exhibited a two-way
interaction as strong as the boys, but in the reverse direction (i.e., the hyperactive
line slanting upwards from placebo to Ritalin, and the normal line slanting down-
wards). This would create a large, disordinal three-way interaction, and eliminate
the two-way interaction of drug and activity type. When looking at the results of
a three-way ANOVA, consider the three-way interaction first. If it is significant
you need to be cautious in interpreting any of the three two-way interactions; if it
is disordinal as well, none of the two-way interactions are likely to be inter-
pretable.
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Another way to obtain a three-way
interaction in a 2 � 2 � 2 design is for
one cell mean to be high, while the
seven others are low. For instance, in
a hypnosis study one factor might be
hypnotic susceptibility (high or low),
a second might be induction (hyp-
notic or relaxation control), and the
third factor could be suggestion
(numbness or control). It could occur
that only the participant group (i.e.,
cell) that is highly susceptible, hyp-
notically induced, and given a numb-

ness suggestion shows high pain tolerance. This could easily lead to the signifi-
cance of all seven F ratios, but a significant three-way interaction would signal
you to be cautious about the other effects (which would all be misleading in this
case).

Post Hoc Tests for a Three-Way ANOVA

If the three-way interaction is not significant or nearly so, look next at the three
two-way interactions. As usual, if a two-way interaction is significant be cautious
in interpreting the main effects of the two factors involved. Look again at Figure
7.5, and imagine the drug by activity type interaction averaged for the two panels
(i.e., across the boys and the girls). This interaction will be disordinal, and there-
fore likely to render the main effects of drug and activity as uninterpretable.
However, the gender main effect is not affected by that interaction and appears
to be unambiguous (a generally lower activity level for girls).

If the three-way interaction in a 2 � 2 � 2 ANOVA were significant you
would choose a factor and look at the two simple interaction effects (e.g., the boy
and girl plots in Figure 7.5); there are three ways to do this, and, depending on
your interests, you might look at it from all three perspectives. Significant simple
interaction effects could be followed by cell-to-cell comparisons, as we discussed
for the 2 � 2 ANOVA. If the three-way interaction is not significant, any signif-
icant two-way interaction would be followed up in the usual way (for the example
in Figure 7.5, the boys and girls would be averaged together and if the drug by ac-
tivity type interaction were significant it could be followed up with an analysis of
simple main effects as though the gender factor never existed, except that the er-
ror term MSw , from the three-way ANOVA, would be used).

In designs with more levels than 2 �2 � 2, follow-up is a bit more compli-
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C AU T I O N

When the three-way interaction is sig-
nificant (especially if it is disordinal), all
six of the other effects must be inter-
preted with extra care. If the three-
way interaction is not significant but a
two-way interaction is significant, the
main effects for the two factors in-
volved in that interaction should be in-
terpreted cautiously. If more than one
two-way interaction is significant, all
three main effects must be inter-
preted with caution.



cated. If no interactions (two-way or three-way) are significant, any main effect
with more than two levels can be followed with pairwise comparisons as de-
scribed in Chapter 5. A significant 2 � 3 interaction, when the three-way is not
significant, can be analyzed in terms of simple main effects. A significant simple
main effect with three levels, say, would then be subject to pairwise (i.e., cell-to-
cell) comparisons. A significant three-way interaction can be followed with an
analysis of simple interaction effects or a variety of partial interactions (for more
detail, see Keppel, 1991). However, with complex ANOVA designs so many pos-
sible tests can be conducted that it is a good idea to plan your tests carefully when
you are designing your study, before you have collected, or at least before you
have seen, your data. Planned comparisons are more powerful and are easier to
interpret than unexpected results from post hoc comparisons. The latter findings
may require replication before other researchers take them seriously.

Higher-Order ANOVA Designs

Sometimes a three-way ANOVA is designed to test whether a two-way interac-
tion is affected by some third variable (e.g., does gender affect the drug by activ-
ity type interaction?). A three-way factorial is said to be a higher-order design than
a two-way factorial, and a four-way design is of a higher order still. Sometimes a
four-way ANOVA is designed to test whether a three-way interaction is affected
by a fourth variable (e.g., would the three-way interaction in Figure 7.5 be much
larger or smaller if the study were conducted in a very different part of the
world?). Or a grouping variable may be added to a study with three experimental
factors. However, experiments with four or more factors are quite rare, unless
one or more of the factors involves repeated measures on the same participants.
Designs that include repeated measures are the subject of the next chapter.

THE GENERAL LINEAR MODEL

As we discussed at the end of Chapter 4, the results of a two-group experiment
could be expressed as a correlation coefficient (rpb). Therefore, the two-group re-
sults can also be expressed in terms of a regression equation. For instance, the re-
gression equation for the height difference for male and female samples could be
Y � � 2X � 67, where X is –1 for women and �1 for men—that is, the height
prediction is (2 
 –1) � 67 � 65 inches for women and 2 
 �1 � 67 � 69 inches
for men. Using –1 and �1 as the values for X is an example of effect coding and
has the convenient property that the intercept (in this case, 67 inches) is the grand
mean. For this example –2 and �2 are the (height) effects of being female and
male, respectively. Designs with more than two levels, and any number of factors
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can be expressed in terms of a very similar equation known as the General Linear
Model (GLM).

The equation for Y � yields only the predicted value for each woman or man
(the average in each case). If you want to write a general equation to give you each
individual’s actual height, it would have to look like this: Y � bX � X�G � e

i j
,

where b is half the height difference of the two genders, X�G is the average of the
two genders, and e

ij
is an amount of error, the amount by which the “ij ” person (i

for gender group and j for person within that group) differs from the mean of his
or her group (the e’s can be positive or negative and average out to zero for each
group).

For a one-way ANOVA with a quantitative factor (e.g., the IV is caffeine
dosage in milligrams, and the DV is the score on a simulated truck driving task),
a simple regression approach would be reasonable and could be used to represent
the data (X would be the caffeine dosage and b the slope of the regression line pre-
dicting score from caffeine dosage). However, to represent a one-way ANOVA
with three or more qualitative levels, the GLM is appropriate. The usual way of
discussing the GLM is in terms of population parameters (the equation can al-
ways be expressed in terms of sample statistics to represent a particular set of
data). The theoretical GLM for a one-way ANOVA looks like this: Y

ij
� � � �

i

� ε
i j

, where � is the grand mean (across all conditions or levels) in the popula-
tion, �

i
is the effect of the ith treatment in the population (i.e., the difference be-

tween the mean of the ith group and the grand mean), and ε
i j

is the error associ-
ated with a particular participant (i.e., that person’s deviation from his or her
group mean). If the population means are 30 for Prozac, 20 for St. John’s Wort,
and 16 for placebo, the grand mean (�) is 22, and the �

i
’s are �8, –2, and –6, re-

spectively (note that the �
i
’s will always sum to zero for a fixed-effects experi-

ment). A participant in the Prozac group with a score of 26 has an ε of –4 (Y �

22 � 8 – 4 � 26).

Higher-Order General Linear Model

For a two-way ANOVA the GLM looks like this: Y
ijk

� � � �
i
� 	

j
� �

i
	

j
�

ε
ijk

. Any one woman’s score is a sum of the grand mean, the effect of her level on
the first factor, the effect of her level on the second factor, the interaction effect
for her cell, and an error term (her deviation from the mean of her cell). Consider
the text/method example. We don’t know the actual �’s and 	’s, and so on, but
we do know the corresponding values for our data. From Table 7.3 the grand
mean is 5.96. The value for a child in the visual method group using text C can be
expressed as Y � 5.96 – .01 � .07 � .38 � e

ijk
, where –.01 is the effect of the vi-
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sual method (relative to the grand mean), �.07 is the effect of text C, and �.38 is
the amount of interaction that results from combining the visual method with
text C (apparently they go together well).

As you would imagine, the GLM becomes increasingly complex as factors are
added to an ANOVA. For instance, the GLM for the three-way ANOVA is Y

ijkl

� � � �
i
� 	

j
� �

k
� �

i
	

j
� �

i
�

k
� 	

j
�

k
� �

i
	

j
�

k
� ε

ijkl
, where � (the Greek

letter gamma) represents the third variable. The GLM allows you to mix both
qualitative and quantitative IVs in the same design. Among other uses, the GLM
provides a straightforward way to understand how the effects of a quantitative
nuisance variable can be removed from an ANOVA by means of a procedure
mentioned earlier, known as ANCOVA. One way that ANCOVA can increase
the power of your ANOVA is by reducing the error term. Another powerful way
to reduce your error term involves repeated measures, or, alternatively, the match-
ing of participants. These procedures will be discussed in the next chapter.
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Putting It Into Practice
1. As in exercise 1 in chapter 5, participants were measured on a 10-point de-

pression scale after taking one or another of the following drugs for six
months: a placebo, a natural herb (St. John’s Wort), a tricyclic antidepressant
(Elavil), and an SSRI drug (Prozac). All of the participants in the previous exer-
cise were men; an equal number of women participants has been added to
this exercise. The mean depression rating for each group is shown in the fol-
lowing table.

Placebo St. John’s Wort Elavil Prozac

Men 9 8 4 3
Women 8 2 5 1

(a) Given that there are 11 participants in each group and that MSW equals
32, calculate the F ratios to test all three null hypotheses.

(b) Calculate and test the simple main effect of drug for each gender.
(c) Calculate the interaction contrast for gender by St. John’s Wort/Elavil, and

test for significance. If this were a post hoc contrast, would it be significant
by Scheffé’s test?

2. The following table is being reprinted from Gist, Rosen, and Schwoerer
(1988). Participants in this study were trained on a particular computer skill by
one of two methods and were classified into one of two age groups. Mean
performance (along with SD and n) on the computer task is given for each of
the four subgroups (cells).
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Younger Older

Modeling Tutorial Modeling Tutorial

Mean 36.74 32.14 29.63 26.04
SD 6.69 7.19 8.51 7.29
Cell n 52 45 20 30

(a) In Chapter 3, you performed t tests on these data. Now perform a two-
way ANOVA as though the cells were balanced (add the cell sizes to get
the total N, use Formula 7.1, and find MSW as the weighted average of
the squared SDs, as in the denominator of Formula 5.4).

(b) One can compensate for the lack of balance in the cell means by perform-
ing what is called an analysis of unweighted means on these data. You use
Formula 7.1, but NT is found by averaging the reciprocals of the cell means
(e.g., the reciprocal of 52 is 1/52 or .01923), dividing that average by the
number of cell means, and then taking the reciprocal of that result (MSW is
the same as in 2a). Compare these results to the results in 2a.

3. Imagine an experiment in which each participant is required to use his or her
memories to create one emotion: either happiness, sadness, anger, or fear.
Within each emotion group, half of the people participate in a relaxation exer-
cise just before the emotion condition, and half do not. Finally, half the partici-
pants in each emotion/relaxation condition are run in a dark, soundproof cham-
ber, and the other half are run in a normal room. The dependent variable is the
participant’s systolic blood pressure when the participant signals that the emo-
tion is fully present. The design is balanced, with a total of 128 participants. The
results of the three-way ANOVA for this hypothetical experiment are as fol-
lows: SSemotion � 223.1; SSrelax � 64.4; SSdark � 31.6; SSemo�rel � 167.3; SSemo�dark
� 51.5; SSrel�dark � 127.3; SSemo�rel�dark � 77.2. The total sum of squares is 2344.
(a) Calculate all seven F ratios, and test each for significance.
(b) Create a hypothetical graph of cell means that would be generally consis-

tent with the results in 3a (do not try to come up with cell means that
would give the exact F ratios found—just make the effects with large F ra-
tios look large compared to those with small F ratios).

(c) What kinds of post hoc tests would be justified by the results in 3a?
4. Imagine an experiment in which each participant solves one of two types of

problems (spatial or verbal) at one of three levels of difficulty (easy, moderate,
or hard). Half of the 60 participants are given instructions to use visual imagery,
and half are told to use subvocalization. The dependent variable is the number
of eye movements per second that a participant makes while working on a
problem.
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Subvocal Instructions Imagery Instructions

Spatial Verbal Spatial Verbal

Easy 1.5 1.6 1.9 2.2
Moderate 2.6 1.9 3.4 2.5
Hard 2.8 2.1 7.8 2.9

Draw a graph of the cell means for the three-way design. Does a three-way
interaction appear to be present? Explain.

TEST  YOURSELF

1. Under which of the following conditions will the critical F be the same
for testing each of the three F ratios in a two-way ANOVA?

(a) When there is no interaction
(b) When the design is balanced
(c) When there are two levels of each factor
(d) When the two factors have the same number of levels

2. Suppose that you are conducting an experiment in which gender is one
factor, and the other factor involves three degrees of competitiveness in
a simulated industrial task. If the marginal means for the two genders are
the same, this implies that

(a) the main effect of gender will not be significant.
(b) the interaction will not be significant.
(c) the F ratio for the main effect of competitiveness will be zero.
(d) none of the above.

3. When the lines on a graph of cell means are not perfectly parallel, you
know that

(a) the interaction is disordinal.
(b) there must be some interaction among the population means.
(c) the F ratio for the interaction will be greater than 1.0.
(d) the F ratio for the interaction will not be zero.

4. In a balanced two-way independent-groups ANOVA, the error term (i.e.,
the denominator) for each of the three F ratios

(a) is the mean of all the cell variances.
(b) is the variance of the cell means.
(c) tends to get smaller as the sample size increases.
(d) may differ depending on the degrees of freedom associated with each ef-

fect (i.e., all three error terms can be different).

S S

(continued )
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5. In a particular two-way ANOVA, comparing low self-esteem people with
high self-esteem people performing a cognitive task for either a small or
large reward, a significant interaction was found. This implies that

(a) the different levels of reward affected performance in both groups of par-
ticipants.

(b) the different levels of reward affected performance for one group of par-
ticipants but not the other.

(c) the different levels of reward affected performance in opposite directions
for the two groups of participants.

(d) none of the above.
6. If dfw for a 2 � 3 ANOVA is 90, how many participants were in each cell?

(a) 5
(b) 15
(c) 16
(d) 17

7. Averaging simple effects together to form a main effect is likely to be
somewhat misleading when

(a) that main effect has more than two levels.
(b) that main effect is significant.
(c) the other main effect is significant.
(d) the interaction is significant.

8. Suppose that you are following up a significant interaction in a 3 � 4
ANOVA by computing various interaction contrasts. How does the criti-
cal F from Scheffé’s test compare to the critical F that you would have
used to test the entire 3 � 4 interaction?

(a) It is six times larger.
(b) It is eleven times larger.
(c) It is twelve times larger.
(d) It is somewhat smaller.

9. Suppose that a study finds a significant three-way interaction between
gender, economic class, and religion. This implies that

(a) the simple interaction effect (class by religion) for men differs significantly
from the one for women.

(b) the two-way class by religion effect will also be significant.
(c) all of the two-way interactions will be significant.
(d) all of the simple main effects will be significant.
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10. For a 2 � 2 � 2 � 3 � 3 ANOVA, how many effects (i.e., different F ra-
tios) are there to test?

(a) 5
(b) 25
(c) 31
(d) 72

Answers: 1. c; 2. a; 3. d; 4. a; 5. d; 6. c; 7. d; 8. a; 9. a; 10. c.
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In Chapter 6 we showed you how power increases for a repeated-measures (RM)
or matched-pairs design relative to using two independent groups. This advan-
tage also can be gained if you have more than two conditions, and even if you

have several factors in your study, but the analysis does get a bit complicated. This
chapter will explain the analyses of one-way RM designs, as well as two-way de-
signs with repeated measures on one or both factors. We will begin with the sim-
plest case that requires an RM ANOVA: Participants are measured three times—
for instance, before and after being monitored for 3 months on a new diet, and
again 6 months after the experiment has ended (follow-up). You could, of course,
perform three matched t tests, but let us see how you could perform a one-way
ANOVA, while taking into account the fact that the measures are repeated.

THE ONE-WAY REPEATED-MEASURES DESIGN

In Table 8.1 we show hypothetical data for six participants who participated in a
weight-loss study. We deliberately set up Table 8.1 (complete with marginal
means) so that it looks like you are dealing with a two-way ANOVA. The key to
understanding the one-way RM ANOVA is to see this analysis as a special case of
two-way ANOVA. The factor of interest in Table 8.1 could be called time. The
other factor, strange as it may seem, is the participant or subject factor. Each par-
ticipant is a different level of the subject factor (note: Although we are following
the recent custom of using the term participant in place of subject when describing
the design of experiments, the term subject is still so ingrained in statistical nota-
tion that we will use that term when necessary to facilitate comparisons with
other statistical texts). Although everyone’s weight changes during the course of
the experiment, some participants are, in general, at a heavier level than others.
To continue the analogy with the two-way ANOVA we have graphed the values
from the cells of Table 8.1 (see Figure 8.1). If each participant had followed the
same weight loss pattern over the three measurements the lines would have all

Eight
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been parallel, indicating a total lack of
subject by treatment interaction.
Normally, there will be some amount
of interaction, but for the sake of
power you would prefer that it not be
very large. If the diet is to be consid-
ered reliable in its effects, the lines in
Figure 8.1 should be fairly close to
being parallel.

Calculating the One-Way
Repeated-Measures ANOVA

The calculation of the RM ANOVA
begins like a two-way ANOVA of in-
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DON’T FORGET

When Will I Use the Statistics
in This Chapter?

You are measuring one outcome (i.e.,
dependent) variable on a quantitative
scale, and one or more of your factors
(i.e., independent variables) involves
repeated measures (e.g., taking the
same measurement at different points
in time; measuring the same DV under
different conditions on the same or
matched participants).

Table 8.1 Weight in Pounds as a Function of Time

Participant # Before After Follow-Up Row Mean

1 200 185 195 193.33
2 170 160 158 162.67
3 220 195 230 215
4 190 178 192 186.67
5 180 173 170 174.33
6 210 190 187 195.67
Column mean 195 180.167 188.667 187.944

Figure 8.1 Graph of cell means (only one observation per cell) from Table 8.1
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dependent groups, as described in the previous chapter. However, a key differ-
ence is that the entries in Table 8.1 are not cell means: They are single observa-
tions. Therefore, MSw cannot be calculated for this design. That turns out not to
be a problem, and it serves in fact to simplify the procedure. The fact that there
is only one entry per cell in Table 8.1 means that SSbetween-cell is the same as SStotal .
Using Formula 7.1 on the data in Table 8.1, SStotal equals NT 
 �2 (data) � 18 


348.108 � 6265.94. The next step is to calculate SSrow and SScolumn just as in a two-
way ANOVA, except in this context SSrow can be referred to as SSsubject , and 
SScolumn as SSRM , where RM stands for repeated measures. SSsubject � 18 


�2 (193.33, 162.67, 215, 186.67, 174.33, 195.67) � 18 
 274.42 � 4936.6; SSRM �

18 
 �2 (195, 180.167, 188.667) � 18 
 36.932 � 664.78. Finally, SSinter is found by
subtracting SSRM and SSsubject from SSbetween-cell (which is the same as SStotal). To be
more specific, we will refer to the interaction in the one-way RM ANOVA as the
subject by RM treatment interaction, or SSsub�RM for short. For this example, 
SSsub�RM � 6265.94 – 664.78 – 4936.6 � 664.56.

The corresponding df’s also follow the breakdown of the two-way ANOVA:
dfsubject � n – 1 (where n is the number of rows, or different participants, in this
case), dfRM � c – 1 (where c is the number of columns, or conditions) and dfinter �

dfsub�RM � dfsub � dfRM � (n – 1)(c – 1). For this example, dftotal � nc – 1 � 18 –
1 � 17; dfsubject � 6 – 1 � 5; dfRM � 3 – 1 � 2; and dfsub�RM � 5 
 2 � 10. There-
fore, the MSs are as follows: MSsubject � SSsubject /dfsubject � 4936.6/5 � 987.32;
MSRM � SSRM/dfRM � 664.78/2 � 332.39; and MSsub�RM � SSsub�RM/dfsub�RM �

664.56/10 � 66.46.
Because this is a one-way RM ANOVA there is only one F ratio to calculate. We

are interested in testing the dieting factor, not the subject factor (we know that
people differ in general in terms of body weight). However, without MSw as an
error term, what do we divide MSRM by to get our F ratio? We could divide by
MSsubject but MSsub�RM is usually smaller (as it is in this example) and would give a
larger F ratio. Fortunately, dividing by MSsub�RM is easy to justify, so the formula
for the F ratio in this case is: FRM � MSRM/MSsub�RM . For our example F �
332.39/66.46 � 5.0. The calculation steps for the one-way RM ANOVA are
summarized in Rapid Reference 8.1.

Why is it reasonable to divide by MSsub�RM? Actually, a similar trick was used
and explained in the context of the RM t test in Chapter 3. We will draw a con-
nection with the RM t test next.

Comparison to the Repeated-Measures t Test

If you were studying only the before-and-after measurements in Figure 8.1 you
could perform either an RM t test or a one-way RM ANOVA. As in the case of
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the pooled-variance t test versus the one-way independent-groups ANOVA, the
F is just the square of the corresponding t value, and you wind up with the same
p value either way. The denominator of the RM t test is based on the variability of
the difference scores. Looking at Figure 8.1 we can see that because all of the be-
fore-after differences are about the same, there is very little interaction in that part
of the graph, leading to a large F for the before-after RM ANOVA, and a large
RM t (due to a small SD of the difference scores). In fact, the variability of the dif-
ference scores (s 2

D ) will always be exactly twice as large as MSsub�RM in the two-
condition case. Both the RM ANOVA and RM t test depend on the consistency
of changes in scores from person to person, and ignore differences in overall level
from person to person (that is why MSsubject can be ignored). If the changes are
fairly consistent, these RM procedures can yield a much better chance of statisti-
cal significance than their independent-group counterparts.

In the two-condition case you have your choice between working with differ-
ence scores or the interaction, but when you have three or more conditions you
do not have a single difference score for each participant, so it makes sense to
work with the interaction. In Figure 8.1 the amount of interaction in the entire
graph is an average of the amount of interaction for each possible pair of condi-
tions (before-after; after-follow-up; before-follow-up). Whether it is reasonable
to take this average at all can be questioned under some conditions. We will re-
turn to this issue shortly in the “Assumptions” section.

Comparison to the One-Way Independent-Groups ANOVA

To see in dramatic fashion the advantage of the RM ANOVA we will compare
it to an independent ANOVA on the same data set. The first step of the ordinary
one-way ANOVA is to break SStotal into SSbetween and SSwithin . For the data in
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Calculation Procedure for the One-Way RM ANOVA

SStotal � SSbetween-cell � NT �2 (all scores)
SSsubject � NT �2 (subject means)

SSRM � NT �2 (treatment means)
SSsub�RM is obtained by subtracting SSsubject and SSRM from SStotal ; then SSRM and
SSsub�RM are divided by dfRM and dfsub�RM , respectively, to create MSRM and MSsub�RM ,
which are divided to create the F ratio. If n � # of different participants and 
c � # of repeated treatments, dfRM � c – 1 and dfsub�RM � (n – 1)(c – 1).

Rapid Reference 8.1



Table 8.1, SStotal is the same for both types of ANOVA, and SSbetween is the same
as SSRM (just as the numerator of the RM t is always the same as the numerator
of an independent t test on the same data). However, SSwithin is equal to 5601.16,
which is the sum of SSsubject and SSsub�RM . You can think of the RM ANOVA start-
ing with SSw as the basis of its error term, but then reducing that term by sub-
tracting out SSsubject , leaving only SSsub�RM , before creating the MS components
of the F ratio.

To be fair, we must point out that the df for the error term is also reduced in
RM ANOVA, which raises the critical value. For instance, for the independent
one-way ANOVA the critical F is based on dfbet and dfw , so for our example the
critical F is F.05 (2, 15) � 3.68. For the RM ANOVA the critical F is based on dfRM

and dfsub�RM , so for this example F.05 (2, 10) � 4.10, which is higher than it is for
the independent ANOVA. This is a disadvantage of the RM ANOVA, as it was
for the RM t test. However, the F ratio for the independent ANOVA is only
332.39/5601.16/15 � 332.39/373.41 � .89, which is much smaller than the F
for the RM ANOVA (5.0). Whereas the independent groups’ F is nowhere near
significance, the RM of 5.0 is larger than the critical F for this test (4.10), so the
RM ANOVA is significant by the usual standards. With a reasonable consistency
of scores across participants, the reduced error term and therefore larger F of the
RM ANOVA will more than compensate for the larger critical F due to reduced
degrees of freedom.

Assumptions

To be valid the RM ANOVA requires the same basic assumptions as the inde-
pendent ANOVA:

1. The DV is measured on an interval or ratio scale.
2. The DV has a normal distribution under each condition.
3. Although any particular participant is measured under all conditions,

different participants must be chosen randomly and independently
from the population of interest.

In addition, the usual homogeneity of variance assumption is modified for this
design. Because the error term, MSsub�RM , is actually an average of all the possible
pairwise interactions, it must be assumed that all of these pairwise interactions are
equal in the population—this justifies averaging them into a single error term.
This assumption is usually referred to as the sphericity assumption. When spheric-
ity does not apply to the population, the F ratio from the one-way RM ANOVA
can exceed the critical value too easily—the rate of Type I errors can exceed the
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value used for alpha. Understandably, statisticians have been concerned about
this problem, and several reasonable solutions have been proposed.

Dealing with Violations of Sphericity

Like Levene’s test for HOV, there is a test, known as Mauchly’s W, for spheric-
ity. Unfortunately, like Levene’s test, it lacks power when it is needed most—
with small samples. When Mauchly’s W is significant you should correct the crit-
ical value for your RM ANOVA, but even when W falls short of significance
many statisticians suggest a correction to be on the safe side. As with the sepa-
rate-variance t test, the correction involves a reduction in degrees of freedom,
which results in a larger critical value. Both dfRM and dfsub�RM are multiplied by a
coefficient, called epsilon (ε), which equals its largest possible value, 1.0, only
when the data from your sample indicate that sphericity is really true for the
population (i.e., the interaction is the same for every pair of levels of your RM
factor).

The lowest value that ε can attain (i.e., lower-bound epsilon), when your data
exhibit the least amount of sphericity possible, is equal to 1/(c – 1), where c is
the number of conditions. Multiplying your df’s by 1/(c–1) and finding the cor-
responding critical F allows you to check whether your calculated F exceeds the
critical F for the worst-case scenario. If your F beats this conservatively ad-
justed F you can declare your results statistically significant without worrying
about the sphericity assumption. For our example, lower-bound ε is 1/(3 – 1)
� .5, so the conservatively adjusted df would be dfRM � .5 
 2 � 1; dfsub�RM �

.5 
 10 � 5. Therefore, the conservative critical F would be F.05 (1, 5) � 6.61. By
this strict criterion the results in our example would not be statistically signifi-
cant.

Both Greenhouse and Geisser (1959) and Huynh and Feldt (1976) have come
up with more precise procedures to estimate ε for your sample data. It is best to
let your statistical software calculate these. For our example the Greenhouse-
Geisser (G-G) value for ε is .63, leading to a p of .06, whereas the more liberal
Huynh-Feldt (H-F) ε is .74, leading to a smaller and significant p of .049. An in-
spection of Figure 8.1 reveals why ε is so low for these data. You can see that the
amount of interaction for before versus after is much less than it is for after ver-
sus follow-up. The data in our example do not look consistent with having
sphericity in the population. Given how low both the G-G and H-F epsilons are,
the cautious approach would be to use the more conservative G-G correction
and not reject the null hypothesis for these data. The steps for dealing with the
sphericity assumption are summarized in Rapid Reference 8.2.
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The MANOVA Alternative to Repeated-Measures ANOVA

Yet another option for performing an RM ANOVA without worrying about the
sphericity assumption is to perform a MANOVA instead. We are not covering
multivariate tests in this volume, so we will only discuss this option briefly. A
MANOVA treats the three possible sets of difference scores (i.e., before-after, af-
ter-follow-up; before-follow-up) as three different dependent variables to be
combined into one analysis. Just as an RM t test compares the mean of the dif-
ference scores to zero, MANOVA in this case finds the weighted combination of
the three sets of difference scores that differs most from zero. It is not assumed
that the three sets of difference scores have the same variance, so the sphericity
assumption does not apply. However, finding the best combination of the sets of
difference scores costs degrees of freedom. The df for the error term in this form
of MANOVA is (n – c) � 1, which for our example equals (6 – 3) � 1 � 4 (in-
stead of 10 for the RM ANOVA). This MANOVA cannot be performed if there
are more conditions than participants (e.g., 10 participants are measured every
month for a year). However, for fairly large samples, MANOVA often has more
power than an RM ANOVA that has df adjusted to be cautious about sphericity
(Davidson, 1972).

A MANOVA usually has its greatest advantage when one or more of the RM
t tests embedded in an RM ANOVA are much better than some others. If you
look at Figure 8.1, you’ll see that the before-after RM t test will yield a much
larger value than the after-follow-up t test, mainly due to the obviously smaller
error term of the former (less interaction). A MANOVA on this data set capi-
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What to Do about the Sphericity Assumption

1. If your results are not significant by the usual RM ANOVA test there are no
further steps. Do not reject the null hypothesis (in which case there is no
chance of making a Type I error).

2. If your F ratio exceeds the conservative (i.e., worst-case) critical F your results
are significant. There is no need to worry about too easily committing a Type I
error.

3. If your F lands between the usual critical value and the conservatively adjusted
value, use statistical software to calculate Mauchly’s W and the G-G and H-F
epsilons. If Mauchly’s test is not significant and ε is fairly close to 1.0, use the H-
F correction (cautious approach), or the ordinary RM ANOVA. Otherwise, use
the G-G correction.

Rapid Reference 8.2



talizes on this situation and leads to
an F ratio of 15.65. Even with df of
only 2 and 4, the MANOVA yields a
smaller p value than the correspond-
ing RM ANOVA. On the other
hand, when sphericity is true for the
population, the RM ANOVA will
have greater power than the corre-
sponding MANOVA.

Post Hoc Comparisons for the
Repeated-Measures ANOVA

So what can we conclude from our
weight loss example? Although
Mauchly’s test would not be signifi-
cant for the data in Table 8.1, the G-G and H-F epsilons are so low that the cau-
tious approach would be to go by the G-G p value, and therefore fail to reject the
null hypothesis. However, had we performed the MANOVA instead or decided
not to be conservative and use the ordinary, uncorrected RM ANOVA, we would
have rejected the null hypothesis. Our next step, as in the case of an independent-
groups ANOVA, would have been to conduct post hoc comparisons to specify
the source of our significant results. With only three conditions it is reasonable to
use the LSD test with MSsub�RM in the place of MSw . Because LSD comes out to
about 10.5 pounds, the before and after conditions differ significantly, but the
other two pairs do not. However, sphericity is an even greater concern for post hoc
pairwise comparisons than it is for the omnibus RM ANOVA. Note that whereas
using the omnibus error term hurts the before-after comparison (an error term
based only on these two conditions would be smaller), it helps the after-follow-up
comparison relative to an error term based only on those two conditions.

When there is any doubt about the sphericity assumption, the cautious way to
conduct post hoc pairwise comparisons is to perform separate RM t tests for each
pair of conditions (even if your RM ANOVA was not adjusted for sphericity con-
cerns). However, to avoid a buildup of Type I errors from multiple tests it is sug-
gested that the alpha for each t test be reduced by a Bonferroni correction (e.g.,
for three tests the �

pc
would be .05/3 � .0167). You can check for yourself as an

exercise that an RM t test for before versus after yields a t of 5.44 with p � .01, so
that this t test would be significant even with the Bonferroni correction. The
other two t tests do not even approach significance.
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DON’T FORGET

When to Use MANOVA

When your sample is not very small
(the number of different participants is
at least several times the number of
different treatments), and it looks like
you have a lot more interaction for
some pairs of treatments as compared
to other pairs, MANOVA is a good al-
ternative to RM ANOVA. It has been
suggested that you always perform
both tests when possible and report
the better result (Algina & Keselman,
1997). This is legitimate if you use an
alpha of .025 for each test.



Therefore, if we had planned the before-after comparison before seeing the
weight loss data we could have used a Bonferroni adjustment and declared the re-
sults to be statistically significant. Should that give us confidence, then, that our
diet really works? The problem with this experiment is that there is no control
group; it is possible that a fake diet pill (i.e., a placebo), could have produced sim-
ilar results. Adding a control group would convert the experiment into a two-way
design. We will discuss two-way designs involving repeated measures later in this
chapter. For now we will describe other types of one-factor experiments involv-
ing repeated measures.

Simple Order Effects and Counterbalancing

The easiest RM design to interpret is one in which all of the conditions are pre-
sented virtually simultaneously. For instance, three types of words are mixed to-
gether in a single list; the number of words recalled of each type is recorded. It is
somewhat problematic when the three conditions must be presented successively.

For instance, similar lists of words are studied while listening to either classical
music, harsh noise, or silence. It is not reasonable to keep changing the back-
ground sound during a session. For any given participant you would pick an or-
der and present a list to the person first, perhaps during harsh noise, then a simi-
lar list during silence, and finally a third list during classical music. A serious
problem would occur if all of the participants received these conditions in the
same order. In that case the results could be affected by simple order effects, such as
practice and fatigue. Significantly higher recall during classical music could be due
to the fact that participants have had some practice with the recall task by the time
they get to this condition; perhaps any condition given consistently in third place
would have the highest recall.

The way to prevent simple order effects from contributing to one condition
yielding higher scores than another is to counterbalance the conditions. With three
conditions there are six permutations (i.e., orders) in which they can be presented.
If an equal number of participants is assigned to each of these six orders, no one
condition will have an advantage due to order. However, order effects will con-
tribute to the subject by treatment interaction, which increases the error term and
reduces the F ratio for the RM analysis. To remove the order effects from the er-
ror term we can analyze the data with a two-way mixed ANOVA, as will be dis-
cussed later in this chapter.

When there are four conditions to be repeated (e.g., four types of distractions
that can be administered while the participant solves problems), there are a total
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of 24 (i.e., 4 
 3 
 2 
 1) orders in which the conditions can be presented. It is very
impractical to use complete counterbalancing—that is, to assign several participants
to each of the 24 orders, and in the case of five conditions it is not likely that any
researcher has balanced the 120 orders that are possible. Fortunately, complete
counterbalancing is not necessary to neutralize simple order effects. For instance,
using A, B, C, and D to represent the four conditions, assigning equal numbers
of participants at random to the four orders ABCD, DCBA, BDAC, and CADB
is sufficient to balance out order effects (notice that each letter appears once in
each of the four positions). This set of orders is known as a Latin Square (L-S) de-
sign. In fact, the particular L-S design just listed is digram-balanced, as well. Note
that any letter you choose is preceded by a different letter in each order, except
when it appears first.

The aforementioned type of balancing is particularly important when there is
a chance that the effects of one condition will carry over and therefore affect the
next condition. When the number of conditions, k, is even, only k orders are nec-
essary to create a digram-balanced L-S design. When k is odd you can counter-
balance with k orders, but 2k orders are required for digram balancing. This
means 10 orders when k is 5, but this is much less than the 120 orders required
for complete counterbalancing. However, if you have a list of, say, 20 words and
you want to vary the order from participant to participant, it is not likely that you
would attempt to counterbalance the orders. In that case, you would simply pick
an order at random (out of the astronomical number of possible orders) for each
participant, relying on randomness to ensure that a consistent bias will not arise
in your design.

Carryover Effects

We mentioned that digram balancing can help if one condition tends to affect the
next. However, carryover effects can affect conditions beyond the very next one and
can be somewhat unpredictable. It is best to minimize carryover effects as much
as possible. Consider a two-condition experiment in which participants are put in
both happy and sad moods while their performance on a task is measured. One
half of the participants have the happy condition first, and let’s suppose that there
is no carryover into the subsequent sad condition, which is aided by a small prac-
tice effect. However, suppose that when participants have the sad condition first,
the sadness lingers, and the happiness manipulation is therefore not very effec-
tive. If a happy mood actually improves performance, this experiment may fail to
show it because half of the participants are not getting very happy in their happi-

REPEATED-MEASURES ANOVA 181



ness condition. This is an example of differential carryover effects; they can often be
minimized by leaving sufficient time between conditions or by imposing some
neutral distracting task (e.g., counting backwards by threes) between conditions.

It is important to realize, however, that there are circumstances in which car-
ryover cannot be sufficiently reduced. Suppose one of the conditions in a prob-
lem-solving experiment involves giving participants helpful strategy hints. If
hints are given for the first condition they certainly can’t be removed for a subse-
quent condition. Or suppose you are comparing two fairly effective weight loss
methods. After participants have lost considerable weight with one method, the
second method cannot be tested fairly on the same set of participants. We have
already discussed the solution to this problem at the end of Chapter 3. It involves
matching participants, as we will describe next.

The Randomized Blocks Design

When you have two conditions to compare (e.g., diet vs. placebo), you can match
your participants in pairs (based on initial weight, and other relevant characteris-
tics), but if you have three conditions (e.g., two different diets and a placebo), you
need to match your participants into triplets. The more general term for any num-
ber of participants matched together is a block. Because the participants within a
block are randomly assigned to the different conditions, the experimental design
we are describing is called a randomized blocks design (the matched-pairs design is a
special case of this). The number of participants in a block does not have to equal
the number of repeated conditions (c), but it does have to be some multiple of c
to be balanced (e.g., with three conditions you can match participants into blocks
of 6 or 9, etc.). When the number of participants in each block is equal to c, the
randomized block (RB) design is calculated exactly like the RM design we de-
scribed earlier: The scores of the participants in one particular block are treated
as though they were all scores from the same participant measured under each
condition (i.e., each block is treated like a single participant).

You might use larger blocks (i.e., multiples of c) when it is difficult or inconve-
nient to match participants precisely (e.g., you do not have all of your participants
at the beginning of the experiment), but you can at least place your participants
into a series of ordered categories (e.g., slightly phobic, moderately phobic, etc.).
When the blocks are some multiple of c, the RB design is analyzed as an ordinary
two-way ANOVA with the blocks being different levels of a blocking factor.
However, if the blocking factor is measured on an interval or ratio scale (e.g.,
weight, age, etc.), an ANCOVA will often yield more power (if its assumptions
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are met) than an ordinary two-way
ANOVA of the data from an RB de-
sign (Maxwell & Delaney, 2000).

Trend Analysis

Sometimes the independent variable
in an RM ANOVA is itself measured
on an interval or ratio scale. The most
obvious example involves measure-
ments over time (e.g., participants are
measured every month during some
treatment). Or one could present the
same task at several levels of diffi-
culty (e.g., solving anagrams involv-
ing five, six, or seven letters). In such
cases a trend analysis is usually pref-
erable to the ANOVA, as was de-
scribed near the end of Chapter 5. However, instead of applying the trend coeffi-
cients to the means of the conditions, we apply these coefficients to the scores of
each individual. Suppose, for example, that each participant performs the same
task (and the number of errors is recorded) at four different levels of distracting
noise. To test for a linear trend, you would multiply a participant’s number of er-
rors by –2 for the lowest level of noise, –1 for the next higher level, �1 for the
next level, and �3 for the highest level; these four products would then be added
together to create a single linear trend score for that participant. The trend scores
of all the participants would then be treated exactly like the difference scores in
an RM t test. The resulting t value could then be squared to obtain an F value for
the linear trend component. The quadratic trend could be tested in the same
way, except that the coefficients multiplying the scores would be different (see
B. Cohen, 2000).

Although it is sometimes interesting to observe a participant’s performance as
a function, for instance, of the dosage of some drug, or the intensity of some
treatment, a more conclusive experiment often requires the inclusion of a sepa-
rate control group. Such experiments may lend themselves to an analysis by a
two-way ANOVA, with one factor repeated (e.g., dosage, intensity), and one not
(e.g., drug vs. placebo). A two-way ANOVA with one between-subjects factor
and one within-subjects (i.e., RM) factor is usually referred to as a two-way mixed-
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C AU T I O N

If you present repeated treatments
successively in your study, it is impor-
tant to employ some form of counter-
balancing to neutralize order effects.
However, order effects will increase
your error term, so you need to con-
sider a mixed design as described in
the second half of this chapter. If you
have asymmetrical carryover effects,
you may have to match your partici-
pants in blocks instead of using re-
peated measures. If you can’t get rid of
your carryover effects and it is not
convenient to match your participants
(or you have no basis for doing so),
you may have to resort to a study
with independent groups (although an
ANCOVA may still be possible).



design ANOVA (sometimes this arrangement is referred to as a split-plot design, but
this term, which reflects its roots in agriculture work, seems less popular these
days). However, if the RM factor is quantitative and you are focusing on trends,
the analysis can be reduced to a simple independent-groups t test or one-way
ANOVA. For instance, in each group, linear trend scores can be calculated for
each participant. The trend scores can be treated as your new DV, and if there are
only two different groups, these trend scores can be compared by means of an or-
dinary t test; with more than two groups a one-way independent-groups ANOVA
on the trend scores would be required. Of course, quadratic and higher trend
components can be compared in the same way.

In the simplest mixed design, the 2 � 2, you might have two groups of partic-
ipants measured before and after two different diets. In this case you don’t need
to create trend scores; the before-after difference scores (i.e., changes in weight)
can be compared with an independent-groups t test. Squaring this t value would
give you the F ratio for the interaction in the 2 � 2 mixed-design ANOVA. In this
case, the interaction of the ANOVA is all you care about (actually, an ANCOVA
using the before score as the covariate and the after score as the DV would nor-
mally be more powerful). The main effect of diet averages before and after scores
together to create marginal means, and because there shouldn’t be any “before”
difference, this averaging tends to obscure the effects of the diets (Huck &
McLean, 1975). Similarly, the main effect of time (before vs. after) involves aver-
aging the two diets together, which is not likely to be of interest. However, some-
times the main effects of a mixed design are interesting, and sometimes with mul-
tilevel factors the interaction cannot be reduced to simple difference scores or
trend components. In those cases you need to understand the complete mixed-
design ANOVA, as will be described next.

THE TWO-WAY MIXED DESIGN

There are a number of situations in which a mixed design arises as the most ap-
propriate way to conduct an experiment. For instance, it is often convenient to
repeat the levels of one factor within participants, but not the other. Suppose a re-
searcher is studying the impact of different sound environments and attitudes to-
ward the sounds on the performance of routine office tasks. It is convenient to
have the participants perform the same task during three (completely counter-
balanced) sound conditions: classical music, popular music, and random noise.
However, half the participants are told that the sounds piped into the experi-
mental room are expected to affect task performance; the other half are told that
the sound system is being tested for a future experiment, and that they should ig-
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nore the sounds (it would not be reasonable to run the same participants with both
explanations for the sounds). A possible set of data for this experiment (the DV
is the number of errors made per minute) is shown in Table 8.2. The calculation
proceeds with elements of a one-way ANOVA, a two-way ANOVA, and a one-
way RM ANOVA.

Like any two-way ANOVA, the mixed design yields three F ratios: the main
effect of the between-group factor (e.g., instruction), the main effect of the RM
factor (e.g., type of sound), and the interaction of the two factors. The numera-
tors of the three F ratios are calculated exactly as they are for the two-way inde-
pendent-groups ANOVA (see Chapter 7). First, calculate SSbetween-cells , and then
use the appropriate marginal means to calculate SSrow and SScolumn (SSinstruction and
SSsound , in this case). Subtracting SSrow and SScolumn from SSbetween-cells yields
SSinteraction. Each SS is divided by its corresponding df to produce the MSs that
are the numerators of the three F ratios. The SSs can be calculated using For-
mula 7.1, where NT is the total number of observations or measurements, which
equals 36 for this example (there are 12 participants times 3 measurements per
participant).
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Table 8.2 Errors per Minute as a Function of Sound Type and
Instruction Group

Expect sound Classical Popular Noise Subject Means Row Means

1 1 3 3 2.33
2 0 0 1 0.33
3 3 2 4 3.00
4 0 2 2 1.33
5 2 3 2 2.33
6 1 1 0 0.67
Cell means 1.167 1.833 2.000 1.6667

Ignore sound
1 1 1 3 1.67
2 2 4 5 3.67
3 1 2 4 2.33
4 0 3 6 3.00
5 4 4 5 4.33
6 2 1 6 3.00
Cell means 1.667 2.500 4.833 3.0000

Column means 1.4167 2.1667 3.4167



SSbetween-cells � 36 
 �2 (1.167, 1.833, 2.0, 1.667, 2.5, 4.833) � 36 
 1.4075
� 50.667;

SSsound � 36 
 �2 (1.4167, 2.1667, 3.4167) � 24.5;

SSinstruction � 36 
 �2 (1.6667, 3.0) � 16; SSinter � 50.667 � 24.5 � 16 � 10.167;
dfsound � 2; dfinstruction � 1; dfinter � 2.

MSsound � 24.5/2 � 12.25; MSinstruction � 16/1 � 16; MSinter � 10.167/2
� 5.083.

The SSw in a two-way ANOVA can be referred to more accurately as SSwithin-

cells, and we will do that here, because we want to use SSw to represent just part of
that error term, as you will soon see. As in any two-way ANOVA, we can calcu-
late SSwithin-cells by subtracting SSbetween-cells from SStotal or by calculating the SS
within each cell directly and adding these SSs together. Calculating SStotal is par-
ticularly easy because all you do is enter all of your observations (36 for this ex-
ample) and then multiply the biased variance of those observations by how many
you entered. For this example, SStotal � 100, so SSwithin-cells � 100 – 50.667 �
49.333. However, SSwithin-cells must then be divided into two very different error
terms: one for the between-subjects part of the analysis, and one for the within-
subjects (i.e., RM) part. First, we will describe the between-subjects error term,
which we will call SSw, because of its similarity to SSw in the one-way ANOVA of
Chapter 5.

The Between-Subjects Part

The between-subjects error term requires that you first average across the mea-
surements for each participant (e.g., average across the three types of sounds) and
then calculate the SS for these averages. This SS was called SSsubject in the one-way
RM analysis, and after it was subtracted from SStotal it was ignored. However, in
this design some of the person-to-person variability is due to the between-groups
factor, so SSsubject can be broken down into two meaningful pieces: SSgroups and
SSw . For this example, SSsubject can be calculated by applying Formula 7.1 to the
12 subject means from Table 8.2. SSsubject � 36 
 �2 (subject means) � 36 
 1.2778
� 46. We already calculated SSgroups when we calculated SSinstruction above. Sub-
tracting SSgroup from SSsubject yields SSw , so SSw � 46 – 16 � 30. To find MSw we
must first find dfw , which in this design is the number of different participants (or
blocks), not the number of measurements, minus the number of groups. For this
example, dfw equals 12 – 2 � 10, so MSw � 30/10 � 3.0. Finally, we can calculate
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the F ratio for the between-subjects (instruction) main effect: Finstruction �

MSinstruction /MSw � 16/3 � 5.33. We have actually averaged across the three types
of sound and then ignored that factor completely, performing an ordinary one-
way ANOVA (as in Chapter 5) on those averages (subject means). The critical F
for this part is based on dfgroup and dfw ; in this case, F.05 (1, 10) � 4.96, so the main
effect of instruction is significant.

The Within-Subjects Part

If you subtract SSw from SSwithin-cells (49.333 – 30 � 19.333) you get the SS for the
RM error term. We will call this SSsub�RM , because it is the same as the subject by
treatment interaction in the one-way RM ANOVA, except that it is equivalent to
calculating that SS term separately for each group of participants and then adding,
rather than calculating it across all participants from all groups. For some exper-
iments, calculating SSsub�RM separately for each group can bestow a considerable
advantage, as we will see shortly. Finding dfsub�RM is easy because it always equals
dfw times dfRM ; for this example it is 10 
 2 � 20, so MSsub�RM equals 19.333/20
� .967. Now that we have found the error term for the main effect of the RM fac-
tor, we can calculate the main effect of sound type: Fsound � MSsound/MSsub�RM �

12.25/.967 � 12.67. The rationale for this error term is the same as for the one-
way RM ANOVA. The more consistently that participants respond to the several
RM conditions, the smaller is SSsub�RM , regardless of overall differences in the
level of participants (the latter contributes to SSw ). The critical F for this effect is
based on dfRM and dfsub�RM; in this case, F.05 (2, 20) � 3.49, so the main effect of
sound type is significant.

What may be surprising is that MSsub�RM is also used as the error term for the
F ratio testing the interaction of the two factors. However, this arrangement
makes sense when you look at a graph of data from a hypothetical mixed design
(see Figure 8.2). The individual participants are shown, as well as the cell means
(heavy lines). The more that the participants in a particular group are parallel to
each other, the more they will be parallel to the heavy line for that group. The re-
liability of the interaction is a function of the extent to which participants within
a group follow the same pattern, and this is measured by MSsub�RM . Note partic-
ularly that if MSsub�RM were calculated across all participants it would be affected
by the fact that participants in one group exhibit a generally different pattern
from participants in the other group. When MSsub�RM is in effect calculated sepa-
rately for each group, MSinter does not affect the error term.

Now we can calculate the third F ratio; Finter � MSinter/MSsub�RM � 5.083/.967
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� 5.26. Because dfinter equals 2 for this example, the critical F is the same as for
the main RM effect (this won’t be true if you have more than two groups); 5.26
� 3.49, so the interaction is significant, as well. The calculation steps for the
mixed design are summarized in Rapid Reference 8.3.
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Condition 1 Condition 2 Condition 3

Subject in
Group 1

Subject in
Group 2

Means for
Group 1

Means for
Group 2

Figure 8.2 Graph of individual scores and cell means from a hypothetical
mixed-design experiment

Calculation Procedure for the Two-Way 
Mixed-Design ANOVA

SStotal � NT�2 (all scores) NT � total number of observations
SSbetween-cells � NT�2 (cell means) c � number of repeated treat-

ments
SSsubject � NT�2 (subject means) k � number of different groups
SSRM � NT�2 (RM treatment means) dfRM � c – 1
SSgroups � NT�2 (group means) dfgroups � k – 1
SSinter � SSbetween-cells – SSRM – SSgroups dfinte � (c – 1)(k – 1)
SSw � SSsubject – SSgroups dfw � Ns – k, where Ns � total

number of different partici-
pants (NT � c 
 Ns )

SSwithin-cells � SStotal – SSbetween-cells

SSsub�RM � SSwithin-cells – SSw dfsub�RM� (Ns – k)(c – 1)
Fgroup � MSgroup / MSw

FRM � MSRM / MSsub�RM

Finter � MSinter / MSsub�RM

Rapid Reference 8.3



Assumptions

The mixed design follows the same assumptions as the one-way RM ANOVA,
including sphericity with respect to the RM factor, as well as homogeneity of vari-
ance for the between-groups factor (SSw should be the same for all of the popu-
lations represented by groups in the study). There is one additional assumption
unique to the mixed design. The value for SSS�RM should be the same for the pop-
ulations represented by each group. Of course, the actual SSS�RM’s of the differ-
ent groups will differ, but if you can assume that these differences are accidental
and do not represent real differences in the population, you can justify adding the
SSS�RM’s together to form the basis of the RM error term. There are tests for this
assumption (SPSS gives you Box’s M test), but the tests are not very accurate in
some common situations (Huynh & Mandeville, 1979). Having equal numbers of
participants in each group makes this assumption less critical. A more serious
problem is having missing values within a particular participant. Dealing with un-
equal n’s on the RM factor used to be so formidable that researchers would just
replace the missing value with appropriate averages. Now, complex statistics can
handle the problem in several ways with the help of recent statistical software.

As in the one-way RM case, lower-bound ε is 1/(c – 1), and can be used to mul-
tiply the df’s for both the RM main effect and interaction to create a test that makes
no assumption about sphericity. For this example, ε � 1/2, and the conservative
critical F for both effects is F.05 (1, 10) � 4.96. Both effects are still significant with
this adjustment, so there is no need to calculate an exact ε for Table 8.2.

Post Hoc Comparisons

As with any two-way ANOVA, we look at the significance of the interaction first
before deciding about more specific tests. If the interaction is significant, as in our
example, you would be very careful about follow-up tests on the main effects,
knowing that the interaction can render these effects misleading. For the mo-
ment, let’s pretend our interaction is nowhere near significance. Our attention
would turn to the RM main effect, which is significant. If we felt very comfort-
able about sphericity being true in the population, we could perform LSD tests
(HSD for more than three groups) using MSSub�RM in place of MSw . However, as
we mentioned for the one-way RM ANOVA, the more conservative procedure
is to do separate matched t tests, correcting the alpha with a Bonferroni adjust-
ment (for the mixed design a matched t test is performed across all groups, and
you simply pretend that all of your participants are in one big group).

Even if our between-groups factor were significant, there would be no follow-
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up tests to do, because it has only two levels. If the between-groups factor has
more than two levels and proves to be significant, post hoc tests can be per-
formed using MSw from the omnibus ANOVA. However, if the interaction is sig-
nificant this error term is not entirely appropriate. A significant interaction is of-
ten followed by tests of simple effects: one-way RM ANOVAs for each group,
one-way ANOVAs across groups for each repeated condition, or both. The use
of error terms from the omnibus ANOVA for testing simple effects is question-
able in the presence of a significant interaction. A conservative alternative is to
treat the simple effect (or whatever subset of the original ANOVA is being tested)
as a new ANOVA, using its own error term, and not using error terms from the
original mixed-design ANOVA. Follow-up tests for a significant interaction that
involve interaction contrasts or partial interaction should be compared to a criti-
cal F based on Scheffé’s test (multiply the critical F for the omnibus interaction
by the df for the interaction), unless they were planned in advance.

Mixed Designs Involving a Grouping Factor

Two of the most common types of mixed designs have already been discussed:
(1) two or more groups are given different treatments, and measured at several
points in time; and (2) two experimental factors are involved, but for one of them
it is not convenient to employ repeated measures. Next, we discuss two more
types of mixed design: when one of the factors is a grouping variable, and when
one of the factors is the order in which treatments are presented. Imagine an ex-
periment comparing three methods for muscle building (e.g., light weights and
many repetitions, heavy weights and few repetitions, etc.). Participants are
matched into blocks of three based on initial muscle mass and then randomly as-
signed to the three methods; all are measured for muscle mass after 6 months of
practice. A graph of 6 participants (i.e., blocks) in this experiment might look just
like Figure 8.2. Notice that the dashed lines are far from being parallel to the solid
lines, leading to a considerable amount of subject by treatment interaction.

Even though the use of randomized blocks allows us to calculate a one-way
RM ANOVA for these data, we can see that the error term would be fairly large.
Given that the body-building methods do not differ much on average, we would
expect the RM ANOVA to fail to reach significance. However, suppose we tell
you that the dashed lines represent blocks of men and the solid lines blocks of
women. If we add gender as a factor, our one-way RM ANOVA becomes a mixed
design. The subjects by treatment interaction would then be calculated separately
for each gender, and then the two SSs would be added to create SSS�RM. This
greatly reduces the error term for the body-building method comparison, in-
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creasing the chance that this effect will produce a significant F (this is because the
dashed lines are fairly parallel to each other, as is the case for the solid lines as
well). The SSS�RM from the original RM ANOVA is divided into two parts in the
mixed design: the new, smaller SSS�RM and SSinter. Thus, the gender by method in-
teraction is removed from the error term, and it may prove to be significant and
interesting on its own.

Any grouping variable (i.e., a variable based on preexisting individual differ-
ences among your participants) that interacts considerably with your RM factor
can be helpful if added to your ANOVA. (Note that an experimental variable that
interacts with your RM ANOVA can add variance to your error term, but a
grouping variable just separates part of SSS�RM that was already present.) Of
course, exploring the interaction can be reason enough to add a grouping factor.
In the example we gave it is useful to know that men and women respond differ-
entially to different weight-lifting methods; this could lead to practical recom-
mendations in a health club. On the other hand, if a grouping variable is shown
not to interact with an RM factor, the generality of the RM effect has been
demonstrated, at least in one domain. And, of course, a significant main effect of
the grouping factor can be interesting when it is not as obvious as it is in the pre-
ceding example. Certainly, you can reduce error variance by restricting the vari-
ability of your participants (e.g., by using only one gender), but then you sacrifice
the ability to generalize the results of your study to the larger population.

Mixed Designs Involving Order as a Factor

Our final example of the use of the mixed-design ANOVA begins with a one-way
RM design in which the treatments are counterbalanced. If simple order effects
are present (e.g., practice or fatigue), as they often are, they will contribute to the
SSS�RM error term and therefore reduce the power of your analysis. The solution
is the same as in the preceding example, but first we will use the simplest type of
RM design (two conditions) to show you why a counterbalanced design so often
leads to an inflated error term. Suppose half the participants perform a clerical
task for 30 minutes while listening to happy music and then, after a brief break,
perform the same task for another 30 minutes while listening to sad music. The
other half of the participants performs the same task with the music types re-
versed. Let us further suppose that, on average, happy music leads to a 5-point
increase in performance compared to sad music, but that the second task period
is always 10 points higher than the first due to a practice effect. The data could
look something like those in Figure 8.3. Without a practice effect, all of the par-
ticipants could be fairly parallel (we are assuming that all participants react alike,
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for simplicity)—the slant in the lines would be due only to happiness being 5
points higher than sadness. Notice, however, that the practice effect causes the
happy-first participants to slant differently from the sad-first participants, adding
to the subject by treatment interaction.

If we add order as a between-groups factor and create a mixed design, the
simple order effect shows up as a considerable order by music type interaction,
but SSS�RM is greatly reduced because it is now calculated separately for each or-
der group. Of course, this approach can be used just as easily with a four-
treatment experiment using an L-S design for counterbalancing. The larger the
order effects, the greater the advantage of including order as a factor. However, if
the order by treatment interaction is very small (indicating very small order ef-
fects), it can be better to leave order out of the analysis—otherwise, including or-
der can hurt your analysis a bit by reducing degrees of freedom in your error term.

Although an order by treatment interaction is usually not cause for alarm, a
main effect of order is a bad sign. Why should the happy-first participants per-
form better overall (averaging both types of music together), or worse? A likely
cause for a significant main effect of order is a problem involving differential (i.e.,
asymmetrical) carryover effects, as discussed previously. For instance, the mood
induced by the sad music lingers during the break and makes the happy music less
effective, but the effect of the happy music does not linger. A good way to spot
differential carryover is by graphing the data by serial position (e.g., first or sec-
ond) as well as condition. In Figure 8.4 we have depicted the situation in which
sadness lingers, but happiness does not (participants have been averaged to-
gether). Simple order effects would create parallel lines on a position by treatment
graph. The convergence of the lines in Figure 8.4 indicates differential carryover.
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Figure 8.3 Graph of participants exposed to both happy and sad music in a
counterbalanced order
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In this graph a main effect of position is benign (indicating simple order ef-
fects), but a significant position by treatment interaction is worrisome. The real
problem with differential carryover is that it can make it look like there is a dif-
ference between your two conditions when there isn’t one, or it can suppress a
difference that is really there, or even reverse its direction. If you have already run
your study and discover this problem, you have the option of using only the first
condition for each participant and performing an independent-groups ANOVA.
All the power of repeated measures is lost, but you avoid the misleading effects
of differential carryover.
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DON’T FORGET

The Major Uses for the Mixed Design

1. Two or more groups (getting different treatments) are being measured over
time (but if measurements are taken only twice, it can be preferable to deal
with difference scores or ANCOVA).

2. There are two or more repeated treatments, and participants are categorized
into two or more groups based on individual differences.

3. There are two experimental factors of interest, but it is only convenient to re-
peat treatments (or match participants) for one of the factors.

4. There is one factor that involves repeated measures given successively and
counterbalanced over the participants. Adding order of treatment as a second
(between-subjects) factor creates a mixed design.

Figure 8.4 Graph of cell means as a function of type of music and serial posi-
tion
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Happy music
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THE TWO-WAY REPEATED-MEASURES ANOVA

Let us return to a popular form of the mixed design and see how it can be made
even more powerful. Consider an experiment in which the participants in one
group take an experimental drug expected to aid weight loss, whereas those in the
other group take a placebo. The weights of participants in both groups are mea-
sured before the drug or placebo is given, and then at several points during treat-
ment. We have already discussed the power of comparing linear trends. However,
additional power can be attained by matching participants into pairs before ran-
domly assigning them to the treatments. Obviously, participants would be
matched on initial weight, but other factors, like gender and body type, could be
used to attain even better matches. Such matching would create a design with one
RB factor (drug condition) and one RM factor (time). This design is analyzed as
a two-way RM ANOVA. Of course, a design with two RM factors would also be
analyzed as a two-way RM ANOVA.

This design is fairly common in cognitive psychology, where it is easy, for in-
stance, to combine words in a list that are categorized as low, medium, or high in
frequency of usage, and also as happy, sad, or neutral (each participant gets a re-
call score for each of the nine types of words). Or, participants may perform three
different tasks each presented at four levels of difficulty. Two-way RM designs
can get tricky if the counterbalancing of successive conditions is required, so such
designs usually involve only two or three levels per factor. Fortunately, under-
standing the calculation of a two-way RM ANOVA is easier than you might think,
especially if you learned something about calculating a three-way ANOVA in the
previous chapter.

A one-way RM ANOVA is calculated like a two-way ANOVA, in which the
participants are different levels of a “subjects” factor. Similarly, the two-way RM
ANOVA is calculated like a three-way ANOVA with subjects as the third factor.
For instance, if there are three tasks, four difficulty levels, and 10 participants,
then each participant is measured 3 
 4 � 12 times, and there are a total of 120
cells in the three-way matrix (one score per cell ). It is not possible to calculate
SSw , but SStotal , which equals SSbetween-cells , can be broken down into the following
components, in this example: SStask , SSdifficulty , SStask�difficulty , SSsubject�task ,
SSsubject�difficulty , and SSsubject�task�difficulty . After each SS is divided by its df to form
the MSs, Ftask equals MStask /MSsubject�task , Fdifficulty equals MSdifficulty/
MSsubject�difficulty , and Ftask�difficulty equals MStask�difficulty/MSsubject�task�difficulty . In other
words, each of the three effects in the two-way RM ANOVA uses a different er-
ror term; in each case the error term involves the interaction between the subject
factor and the effect being tested. A three-way RM ANOVA is analyzed like a
four-way ANOVA with subjects as the fourth factor, and so on.
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Putting It Into Practice
1. Test the RM simple effects for the data in Table 8.2 by performing separate

one-way RM ANOVAs for each instruction group (take the more conservative
approach and do not use the RM error term from the mixed design ANOVA).
(a) Which of the simple effects is significant at the .05 level?
(b) Will either of your conclusions in 1a change if you make no assumptions

about sphericity?
2. The data from the second exercise of Chapter 3 are reproduced in the follow-

ing table.

Participant # No Imagery Imagery

1 8 14
2 11 15
3 7 5
4 10 16
5 9 9
6 15 16
7 7 8
8 16 20

(a) Perform a one-way RM ANOVA on these data, and compare the F ratio
you obtain with the matched t value you found previously.

(b) Assume that this study was counterbalanced such that participants 1, 2, 4,
and 8 received the “no imagery” condition first, and the remaining partici-
pants received the “imagery” condition first. Perform the mixed-design
ANOVA, using order as the between-groups factor, and test all three F ra-
tios for significance.

(c) What does the interaction in 2b tell you about possible order effects?
What effect does removing the interaction from the error term have on
the main effect of the RM factor (compare the RM F ratio in 2b with the F
ratio in 2a)?

(d) Average the “no imagery” scores separately for participants who had “no
imagery” first and for those who had that condition second. Do the same
for the “imagery” scores, and then graph these averages (in the manner of
Figure 8.4) so that on the horizontal axis you have “had the condition
first” and “had the condition second,” and the two lines are “no imagery”
and “imagery.” What does this graph tell you about the possibility of differ-
ential carryover effects? What can you do about the problem at this point?

3. After being sleep deprived, participants are given either a placebo or a caffeine
pill and required to solve arithmetic problems under four levels of distraction.
The number of errors committed for each condition for each participant is
given in the following table.

(continued )
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Participant # None Mild Moderate Strong

Placebo participants 1 2 5 11 10
2 0 8 4 9
3 7 9 13 12
4 3 12 10 11

Caffeine participants 5 3 7 8 6
6 2 6 6 9
7 5 8 7 7
8 4 9 5 8

(a) Perform the mixed-design ANOVA, and test all three F ratios for signifi-
cance.

(b) Graph the cell means, and explain the results in 3a in terms of the effects
you can see on the graph.

(c) Calculate the F ratio for the interaction of group by linear trend (create a
linear trend score for each participant, and then perform an ordinary one-
way ANOVA on the trend scores of the two groups).

TEST  YOURSELF

1. Imagine a study in which there are two repeated conditions, and both the
matched t and repeated-measures ANOVA are calculated. Which of the
following will be true?

(a) The critical F will be the same as the critical t.
(b) The p values will be the same for both tests.
(c) The RM ANOVA will have a greater chance of statistical significance than

the matched t.
(d) The matched t will have a greater chance of statistical significance than

the RM ANOVA.
2. One disadvantage of a repeated-measures ANOVA (as compared to an

independent-groups ANOVA on the same data) is

(a) the reduction of degrees of freedom in the error term.
(b) the reduction in the numerator of the F ratio.
(c) the reduction in the size of the error term.
(d) the reduction in alpha.

S S
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3. If an independent-groups ANOVA and a repeated-measures ANOVA are
performed on the same data, which of the following will be the same for
both analyses?

(a) The numerator of the F ratio
(b) The denominator of the F ratio
(c) The critical F
(d) None of the above

4. Which of the following is likely to cause a simple order effect?

(a) Carryover from one treatment to the next
(b) Fatigue
(c) The use of randomized blocks
(d) All of the above

5. Differential carryover effects can be eliminated by

(a) counterbalancing.
(b) using a Latin-Square design.
(c) matching participants in blocks.
(d) using only two repeated conditions.

6. If you have seven different conditions to present successively in a re-
peated-measures design, how many orders would be required for a di-
gram-balanced Latin Square Design?

(a) 7
(b) 14
(c) 28
(d) 56

7. When the within-subjects factor in a mixed design has only two levels,
the F ratio for the interaction of the two factors is equal to

(a) the main effect of the between-groups factor.
(b) the main effect of the within-subjects factor.
(c) a one-way ANOVA on the difference scores.
(d) zero.

8. An increase in person-to-person variability in a mixed design (all else re-
maining equal) will cause a reduction in the F ratio associated with

(a) the main effect of the between-groups factor.
(b) the main effect of the within-subjects factor.
(c) the interaction of the two factors.
(d) both b and c.

(continued )
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9. Even when an experiment is fully counterbalanced, simple order effects
can reduce the power of the ANOVA by

(a) increasing the size of the error term.
(b) decreasing the separation of the means for the different conditions.
(c) leading to a violation of sphericity.
(d) all of the above.

10. Consider a mixed design in which the order of treatments is the be-
tween-groups factor. If you have only simple order effects in your data
(e.g., a practice effect) and they are large, this is likely to produce

(a) a significant main effect of your treatment.
(b) a significant main effect of the order factor.
(c) a significant order by treatment interaction.
(d) all of the above.

Answers: 1. b, 2. a; 3. a; 4. b; 5. c; 6. b; 7. c; 8. a; 9. a; 10. c.
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Much of this book is concerned with the argument that even when the re-
sults of your experiment look impressive those results may be due en-
tirely to lucky accidents while sampling from the population, and that

such results would not be obtained were the experiment performed on the entire
population. You have seen that the way to counter that argument is to conduct an
NHT and demonstrate that the null hypothesis can be rejected with a good deal
of confidence (e.g., at the .05 level). The tests we have presented in this book so
far have all been based on dependent variables that can be measured rather pre-
cisely, and that can be assumed to follow a (roughly) normal distribution in the
population. However, there are plenty of possible experiments for which you
would like to conduct on NHT, but there is no precisely measured variable.

TESTS FOR CATEGORICAL DATA

For instance, imagine that babies are tested to see if they have color preferences
at the age of 6 months. Pairs of identical toys are colored so that one member of
each pair is colored red and its twin is colored yellow. Each baby is then classified
as preferring either red or yellow toys, according to the amount of time spent
looking at or touching the various toys. Let’s say that after 10 babies are tested it
is shown that 8 babies prefer red and 2 babies prefer yellow. It looks like 6-month-
old babies, in general, may prefer red toys, but it can be argued that this result is
just an accident and that a replication is just as likely to show a preference for yel-
low. An NHT would be useful in this case, but the variable being measured has
only two values: red and yellow (we can say it is dichotomous). The variable is cate-
gorical and cannot be said to have any distribution, let alone a normal distribu-
tion. Nonetheless, it is easy to see that 9 out of 10 babies preferring red is even
less likely by chance than 8 out of 10 and 10 out of 10 is less likely still. It seems
like we should be able to find a p value from the laws of chance and compare it to
alpha—and indeed we can. A series of independent, dichotomous events repre-

Nine
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sents the simplest situation calling for
nonparametric statistics, so we will
describe this case first and then pro-
ceed to more complicated cases.

The Binomial Distribution

Even when our DV is dichotomous
(e.g., preferring red or yellow toys),
there will still be a null hypothesis dis-
tribution—it just won’t be very
smooth unless we are dealing with a
very large sample size (e.g., hundreds
of babies). With a sample of 10 babies
(i.e., N � 10), there are 11 possible
outcomes to our experiment: Any-

where from 0 to 10 babies can prefer red. Each possible outcome has a different
probability, and if we make a few simple assumptions we can easily find each of
these 11 probabilities and draw the distribution. First, we need to state H0 ; if the
null hypothesis is that the babies will have no preference we can say that the prob-
ability (P ) of preferring red is .5 for each baby. This means that the probability of
preferring yellow ( Q, or 1 – P, because there are no other possibilities) is also .5
(we arbitrarily chose to focus on red; everything would come out the same if we
focused instead on yellow). Let’s say that X stands for the number of babies who
prefer red. To find the probability for each possible value of X will require a few
very basic rules of probability, which we describe next.

We have been dealing with probability throughout this book, but always in
terms of a smooth, continuous distribution. For instance, if you select one man
at random from a population, the probability that he will be taller than 71 inches
is equal to the proportion of the male height distribution above that value. We can
use areas of the ND to find this proportion because height can be measured so
precisely that, with a large population, the distribution is quite smooth. However,
when we are dealing with dichotomous events and ordinary sample sizes our dis-
tribution will not be smooth. We will need to base our probabilities instead on dis-

crete mathematics. For the most part this involves sophisticated ways to count up
events. This can get complicated because the same event can often occur in many
different ways.

For example, in the color preferences experiment one possible event is that
five babies prefer red and five prefer yellow. However, this event can occur be-
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DON’T FORGET

When Will I Use the Statistics
in This Chapter?

None of your variables have been
measured in a precise, quantitative
way, but
• You can assign your participants or

cases to different categories (per-
haps along more than one dimen-
sion), or

• You can assign your participants or
cases to levels of an ordinal scale,
or you can rank them in order on
one or more variables.



cause the first five babies tested prefer red, or the last five, or because the babies
alternate, and so on. There are actually 252 different patterns in which five of the
babies prefer red. In the classical approach to probability, the probability of some
event A, symbolized as p(A), is the number of outcomes that result in event A di-
vided by the total number of possible outcomes. In our example the total num-
ber of outcomes is found by noting that for each baby there are two outcomes,
and that these are multiplied together: two times two times two . . . a total of 10
times (i.e., 210). Therefore, the total number of outcomes is 1,024. The probabil-
ity that 5 of the 10 babies will prefer red, therefore, is 252/1,024 � .246. Note
that the lowest p can ever get is zero (e.g., the probability that 11 out of the 10 ba-
bies will prefer red is zero because there is no way that this can happen), and the
highest p can get is 1.0 (the probability that the number of babies preferring red
will be between 0 and 10 is 1.0).

We didn’t show you how to calculate that there are 252 patterns in which five
babies prefer red. This involves the use of combinations and permutations. We
will not take the space for that topic here, but virtually any introductory text on
probability will cover that topic in great detail. We will simply show you the NHD
for the color preference experiment (see Figure 9.1). This distribution is called
the binomial distribution for P � .5 and N � 10. It applies to a wide range of cir-
cumstances, including the flipping of a fair coin 10 times, after which you count
the number of heads (or tails).

Let’s return to the question we posed when we introduced the toy color ex-
periment: Would eight babies preferring red allow us to reject the null hypothe-
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Figure 9.1 The binomial distribution for N � 10; P � .5
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sis? The one-tailed p value for this experiment is the sum of the probabilities for
8, 9, and 10 babies preferring red from the distribution in Figure 9.1. If you don’t
want to do the combinatoric calculations needed to find these probabilities you
can look in a book that has tables for the binomial distribution. In this case the
calculations are so easy we’ll show them. The easiest probability for this problem
is all 10 babies preferring red; there is only one way this can happen, so p equals
1/1,024, or .0009766. For 9 babies there are 10 ways this can happen—any one
of the babies can prefer yellow—so p equals 10/1,024 or .009766.

For eight babies preferring red we need to know how many different pairs of ba-
bies can prefer yellow. The number of possible pairs is given by Formula 5.8 (10

 9/2 � 45), so p equals 45/1,024, or .0439. Adding these three probabilities
yields about .055. As this p is not less than .05, the null hypothesis cannot be re-
jected. Note that the two-tailed p, which is more appropriate in this case, is about
.11—not even on the borderline of significance. However, if 80 out of 100 babies
preferred red, the results would have reached significance easily. We’ll discuss the
effect of sample size in the context of more complex tests later in this chapter.

The Rules of Probability

Adding the probabilities for 8, 9, and 10 babies to get our (one-tailed) p value il-
lustrates an important rule of probability: the addition rule. When two or more
events are all mutually exclusive the probability that any one of them will occur is
equal to the sum of their probabilities. For two events, this is stated as P(A or B)
� P(A) � P(B). For instance, the probability of drawing either an ace or a picture
card from an ordinary deck of 52 playing cards (there are four aces and 12 picture
cards) is 4/52 (i.e., .0769) plus 12/52 (.2308), which equals 16/52 or .3077. How-
ever, if two events are not mutually exclusive (e.g., drawing a playing card that is
a club or a picture card), the addition rule must be modified. You would have to
add the probabilities, and then subtract the overlap (the probability that both
events will occur simultaneously). This is stated symbolically as

P(A or B) � P(A) � P(B) � P(A and B)

The probability of drawing a club is 13/52 and the probability of drawing a pic-
ture card is 12/52, but there are three picture cards that are also clubs. So the
probability of drawing a club or a picture card is 13/52 plus 12/52 minus 3/52,
which equals 22/52 or .423.

Another important rule of probability is the multiplication rule. If two events are
independent (i.e., the occurrence of one of the events does not affect the proba-
bility for the other event), the probability that both will occur is the product of
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the two probabilities—that is, P(A
and B) � P(A) 
 P(B). This rule can be
easily extended to any number of mu-
tually independent events. The prob-
ability that 10 babies in a row will pre-
fer red is .5 
 .5 
 .5 . . . or .510, which
equals .0009766. This is the same re-
sult we found by counting, earlier in
this chapter (i.e., 1/1,024). The rules
of probability are summarized in
Rapid Reference 9.1.

The multiplication rule must be
modified when events are not inde-
pendent. The modified rule involves
conditional probability, but we will not cover that topic in this book. An example
of nonindependent events occurs in the context of sampling. When sampling
from a population you must replace each selection before making another one (so
that a given individual could be selected twice for the same sample) or your se-
lections will not be truly independent. Fortunately, when your sample is much
smaller than the population, sampling without replacement is essentially the same as
sampling with replacement (the probability of randomly selecting the same individ-
ual twice for the same sample is so tiny), so no one actually samples with replace-
ment.

The Normal Distribution Approximation

If you look again at Figure 9.1 you can see that the shape of this distribution is
similar to the ND. As N gets larger the bars get thinner, and the binomial distri-
bution gets smoother. As N approaches infinity the binomial distribution be-
comes the ND. Even with N as small as 20, the ND is a good appropriation for
the binomial distribution, especially if P � .5. If the events were X, the baby
grows up to be left-handed, and Y, the baby grows up to be right-handed, P would
be less than .2, and the distribution would be rather skewed (e.g., the bar for 0
would be much higher than the bar for 10). A larger N is needed before the ND
becomes a reasonable approximation. For small values of P, the product of N and
P should be at least about 10 before the ND is used.

Using the ND to approximate the binomial distribution obviates the need to
find and add various probabilities, but you need to know the mean and SD of the
corresponding ND. These can be found easily. The mean of the ND is NP and
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Probability Rules

1. Probability ranges from 0 (cannot
occur) to 1.0 (certain to occur).

2. Addition rule for mutually exclusive
events: P(A or B) � P(A) � P(B).

3. Addition rule for overlapping
events: P(A or B) � P(A) � P(B) –
P(A and B).

4. Multiplication rule for independent
events: P(A and B) � P(A) 
 P(B).

Rapid Reference 9.1



the SD is �(NPQ)�. Any value for X can be converted to a z score with the fol-
lowing formula:

z � �
X

�
�

NP

N

Q�
P

� (9.1)

(For small N—say, less than 40—a correction to the above formula is recom-
mended, because the binomial distribution is not smooth and continuous. The
continuity correction involves reducing the absolute value of the numerator of For-
mula 9.1 by .5.) Applying Formula 9.1 (with continuity correction) to our babies
example, we get

z � � � � �
1
2
.5
.5
8

� � 1.58

From Table A.1 we can see that the area beyond 1.58 is .0571, which is very close
to the probability we found earlier by counting (.055). Even with N as small as 10
the ND can serve as a pretty good approximation.

The Sign Test

The binomial test, whether used in its exact form (adding up the appropriate
probabilities of the binomial distribution) or in terms of the ND approximation,
has many applications in the social sciences involving dichotomous events (e.g.,
does the gender balance among chief executive officers reflect a selection bias?).
A particularly useful application of the binomial test is to evaluate the significance
of an RM or matched-pairs experiment in which the DV cannot be measured pre-
cisely. Imagine that you have some treatment for enhancing creativity in children.
Children are matched in pairs based on the creativity of drawings they have al-
ready produced in an art class. Then, one member of each pair is selected at ran-
dom to get the new treatment, and the other member gets a control condition.
Each child produces a drawing after the treatment or control condition is fin-
ished. It may not be possible to measure the creativity of each drawing in any pre-
cise way, but it is reasonable to suppose that a panel of artists could decide for
each matched pair of children which drawing expressed the greater creativity
(without knowing, of course, which child received the new treatment in each
case).

For, say, 20 pairs of children the data from the experiment would boil down to
the number of pairs (X ) for which the treated child produced the more creative
drawing. Say in this case that X equals 16. We can test the significance of this re-

8 � 5 � .5
��

�2.5�
8 � 10(.5) � .5
��

�10(.5)(�.5)�
X � NP � .5
��

�NPQ�
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sult with Formula 9.1 (and the continuity correction). Assuming that the null hy-
pothesis is that the treatment and control children are equally likely to produce
the more creative drawing, P � .5.

z ��
16

�
�

2
2
0
0
(
(
.5
.5
)
)
(�

.5)�

� .5
�� �

6

�
�

5�
.5

� � �
2
5
.2
.5
36
� � 2.46

The one-tailed p for this z is .0069, and the two-tailed p is .0138. The result is eas-
ily significant at the .05 level with a two-tailed test.

In addition to dealing with situations in which precise measurement is not pos-
sible, nonparametric tests, including the binomial test, can be used when the DV
has been measured precisely (i.e., on an interval or ratio scale) but its distribution
is very far from the ND, and N is too small for you to rely on the CLT. Suppose
you are looking at the effects of certain kinds of hints on problem solving. Each
participant solves one problem with a hint and one without (assume that the ex-
periment is properly counterbalanced and that the hint for one problem is not rel-
evant to the other problem). For 16 participants the hint decreases solution time
slightly, but for 4 participants the hint is confusing and greatly increases solution
time. It is not likely that these 20 scores come from any distribution that looks like
the ND, nor would the results be likely to attain significance were they submitted
to an RM t test, anyway. However, you already know from the creativity experi-
ment that 16 outcomes in one direction and 4 in the other will lead to a significant
binomial test. In the kind of situation just described, the binomial test is usually
called the sign test, because the magnitudes of the difference scores are being ig-
nored, and only their signs (i.e., negative or positive) are being used for the sig-
nificance test.

The One-Way Chi-Square Test

What if you wanted to test the babies with red, yellow, and blue toys? Or you
want to test four magazine covers to see which, if any, would be preferred by a
sample of potential consumers. A binomial distribution won’t help you. With
more than two categories you would need a multinomial distribution, and the
determination of the probabilities becomes much more complicated. Fortu-
nately, with any number of categories the various frequencies can be reduced to
a single statistic that follows, approximately, a well-known distribution. That sta-
tistic is called the chi-square statistic (symbolized by the Greek letter chi—pro-
nounced kie to rhyme with eye in English—being squared, like this: �2), because
it follows the chi-square distribution. The chi-square statistic simply measures
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the (squared) discrepancies between the frequencies actually obtained in each cat-
egory (symbolized by fo , where the subscript “O” stands for “obtained”), and
the frequencies expected by the null hypothesis (symbolized by fe ). The entire
formula is as follows:

�2 � ∑�
( fo �

fe

fe )2

� (9.2)

The summation sign indicates that the formula is calculated separately for each
category, and then these amounts are added up. We will illustrate the use of this
formula for an experiment in which each of 40 babies is categorized as preferring
either red, yellow, blue, or green toys. The observed frequencies are given in the
following table (see table 9.1).

The expected frequencies have also been filled in based on the null hypothe-
sis that the 40 babies would be equally divided among the four colors (note that
both the fo’s and the fe’s must sum to the same number, the total N). Applying For-
mula 9.2 to the data in Table 9.1, we get

�2 � �
(16 �

10
10)2

� � �
(6 �

10
10)2

� � �
(11 �

10
10)2

� � �
(7 �

10
10)2

�

� �
3
1
6
0
� � �

1
1
6
0
� � �

1
1
0
� � �

1
9
0
� � �

6
1
2
0
� � 6.2

In order to decide whether to reject the null hypothesis (i.e., no color preference),
we must compare our calculated �2 to the appropriate critical value. Like the t dis-
tribution, the �2 distribution varies according to one parameter, the number of
degrees of freedom (symbolized as df by social scientists, and the Greek letter nu,
�, by mathematicians). Unlike the t distribution, df for �2 depends only on the
number of categories (often symbolized as k), and not at all on the number of par-
ticipants (N ). Actually, df equals k – 1, so for this example, df � 4 – 1 � 3. The
critical value of �2 for the .05 level and df � 3 can be found in Table A.7; �2

.05(3)
� 7.82. Because �2

calc � �2
crit (i.e., 6.2 � 7.82), Ho cannot be rejected for this ex-

ample.
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Table 9.1 Observed and Expected Frequencies for a One-Way Chi-
Square Test

Red Yellow Blue Green

fo 16 6 11 7
fe 10 10 10 10



The Tails of the Chi-Square Distribution

Figure 9.2 depicts the �2 distribution with 3 df. As df gets larger, the mean of the
distribution shifts to the right and the amount of positive skewing reduces. As
the number of df approaches infinity, the �2 distribution becomes identical to the
ND. Note that, as in the case of ANOVA, the chi-square test usually uses only the
positive tail of its distribution. A very small value for the chi-square statistic (in
the left tail) indicates that the observed frequencies are unusually close to the ex-
pected frequencies given the possibilities for sampling error. However, this close-
ness between the fe’s and fo’s only serves to support the null hypothesis in the kind
of chi-square applications we have been describing.

On the other hand, there are cases for which researchers use the left tail of the
�2 distribution exclusively. For example, let’s say a logic problem has four pos-
sible answers, and a psychologist might devise an elaborate, theoretical model
that predicts what percentage of participants will choose each of the four an-
swers. In this case, the fe’s, which would be determined by multiplying each pre-
dicted percentage by the N of the sample, represent not Ho , but rather HA, the
alternative hypothesis. A very small �2 value would indicate good agreement with
the theoretical model and offer support for the HA. Unfortunately, it is rarely pos-
sible for social scientists to create such quantitative models, though a greater ef-
fort in this direction could prove beneficial to the behavioral sciences. Although
in most cases the fe’s represent the null hypothesis, they need not involve an equal
division of N among the categories, as in this next example.

Finding the Expected Frequencies

Imagine that a major newspaper in the city of Springfield wants to check to see if
its subscribers are the same politically as the population of the city. The political
affiliations of 3,000 randomly selected subscribers are determined, and the results
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Figure 9.2 The chi-square distribution for df � 3

7.810
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are 2,000 Democrats, 700 Republicans, and 300 Independents. The expected fre-
quencies would not be, however, 1000 in each category. If the Ho is that the news-
paper’s readers are the same politically as the city population, the fe’s should re-
flect voter registration in that city. If 60% of the voters are Democrats, 20%
Republicans, and 20% Independents, the fe’s would be 1,800, 600, and 600, re-
spectively. Of course, with such large frequencies, the results will easily attain sig-
nificance. This points out the need for an effect size measure to accompany your
chi-square statistic. Indeed, if you multiply all of your frequencies by some con-
stant C, the value of �2 will be multiplied by C as well. An effect size measure that
does not change when multiplied by C will be discussed in the context of a more
complex categorical design that will be described shortly.

Comparison to the Binomial Test

So far we have been discussing what is often called the one-way chi-square test,
also known as the goodness of fit test. All of the k categories fall along a single di-
mension (e.g., colors, political parties). In general, the two-way chi-square test
can answer more interesting questions, as you will see in the next section. In the
meantime, it is useful to point out that in the two-category case the one-way chi-
square test produces the same p value as the ND approximation to the binomial
test. In fact, squaring the z from the binomial test gives you the value of your chi-
square test in the two-category case (the �2 distribution with one df is just the
normal distribution after being squared). In cases where you would apply the con-
tinuity correction to Formula 9.1 you can apply the same correction to Formula
9.2 (just reduce the magnitude of each fo – fe difference by .5 before squaring).

The one-way chi-square test requires the same assumptions as the ND ap-
proximation to the binomial test: The expected frequencies should not be too
small (they should average out to at least 5), and all of the observations should be
mutually independent (if each baby sees two toys in each color, the baby should
not be counted twice—that is, once for each type of toy). Categories should be
chosen carefully so that every participant falls into a category but no participant
falls into two categories at the same time.

The Two-Way Chi-Square Test

A psychologist suspects that boys whose parents are divorced (DBs) will start more
fights with peers than boys from families with no divorce (NDBs). Ten DBs and
20 NDBs are monitored in playground settings for 1 month, at the end of which
the data are as follows for DBs: 0, 0, 0, 0, 0, 0, 1, 3, 4, 8. For NDBs there are 18 ze-
roes and two ones. Although a t test may have been planned, the data are very far
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from being consistent with the distributional assumptions of a t test. A reasonable
alternative would be to categorize each boy as having started at least one fight, or
having not started any fights. Next, a two-way contingency table can be formed by cross-
classifying the boys by both divorce background and fight-starting, as in Table 9.2.

These data are now in a form that can be analyzed by a two-way chi-square test, but
first we have to find the expected frequencies. A naive approach would be to di-
vide the total number of boys (N � 30) by the number of cells in the table, so that
all the fe’s would be 7.5. This does not conform to any reasonable null hypothe-
sis. First, we don’t expect equal numbers of DBs and NDBs because we deliber-
ately sampled more of the latter (reflecting their greater proportion in the popu-
lation). Second, we don’t expect half of the boys to start fights; even in the DB
group less than half of the boys start fights. The appropriate null hypothesis for
this kind of design is that the two variables are independent of each other. For this
example, that would mean that DB and NDB boys would have the same propor-
tion of fight-starters. What proportion would that be? It will help to look at a table
in which the sums for both rows and both columns have been filled in.

Finding the Expected Frequencies

If you look at the row sums in Table 9.3, you’ll see that, overall, four times as many
boys did not start fights (24) as did (6). If the two variables are independent we
would expect the same 4 to 1 ratio to occur for both DBs and NDBs. At the same
time, there are twice as many NDBs as DBs (you can see this in the column sums),
so the fe’s should also follow a 2 to 1 ratio across each row. We have already in-
cluded in Table 9.3 fe’s (in parentheses) that meet these requirements. Notice that
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Table 9.2 Observed Frequencies for a Two-Way Chi-Square Test

NDB DB

No fights 18 6
Started fights 2 4

Table 9.3 Observed and Expected Frequencies for a Two-Way Chi-Square
Test

NDB DB Row Sum

No fights 18(16) 6(8) 24
Started fights 2(4) 4(2) 6
Column sum 20 10 30



the fe’s exhibit a lack of association between the two variables. Therefore, the two-
way chi-square test is often referred to as a test of association as well as a test of inde-

pendence of the two variables. The further the fo’s are from the fe’s, the more likely
you are to reject the null hypothesis and suggest that there is indeed a relationship
between the two variables. Finding fe’s that have a 4 to 1 ratio going down each
column and a 2 to 1 ratio going across each row and add up to the same column
and row totals as the fo’s may not seem easy, but fortunately there’s a very simple
formula that does the trick. For any cell in the table, fe is found by multiplying the
sum of that cell’s row by the sum of that cell’s column and dividing by N (i.e.,
fe � SR 
 SC /N ). For instance, fe for the lower right cell (DBs who start fights) is
6 
 10/30 � 60/30 � 2.

Calculating an Example

Once you have found the fe’s, the discrepancy between the fe’s and fo’s can be
quantified by the same chi-square formula you used for the one-way test (For-
mula 9.2). In the two-way case the summation sign indicates that the calculation
is performed for each cell of the table, and then these results are summed. This
formula was originally devised by Karl Pearson (whose correlation coefficient
was described in Chapter 4), so the test is often called Pearson’s chi-square test.
We will apply this test to the data in Table 9.3:

�2 � �
(18 �

16
16)2

� � �
(6 �

8
10)2

� � �
(2 �

4
4)2

� � �
(4 �

2
2)2

�

� �
1
4
6
� � �

4
8

� � �
4
4

� � �
4
2

� � 3.75

In order to look up the appropriate critical value for our example we need to
know the df for our contingency table. For a two-way table the df equals the
number of rows minus one (r – 1) times the number of columns minus one (c –

1). For this example, df � (r – 1)(c –
1) � (2 – 1)(2 – 1) � 1. Therefore,
the .05 critical value is 3.84. Because
our calculated (or observed) chi-
square value is less than this we can-
not reject the null hypothesis. Per-
haps divorce has no association with
the starting of fights by boys, and the
results in Table 9.3 look as promis-
ing as they do because of sampling
error.
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DON’T FORGET
In the two-way chi-square test, the
expected frequency for a cell is found
by multiplying the sum for the row
that the cell is in by the sum for the
column that the cell is in, and then di-
viding by the total N. The expected
frequencies must add up to the same
row and column sums (and total N )
as the observed frequencies.



Fisher’s Exact Test

If you divide all of the entries in Table 9.3 by two, the fe’s become so small that the
accuracy of using the chi-square distribution is questionable. An alternative is to
perform an “exact” test by adding up probabilities of the multinomial distribu-
tion. This test, originally designed by Fisher (for whom the F distribution was
named), is called Fisher’s Exact test, and it was quite tedious to perform before the
advent of modern statistical software. Technically, this test is only appropriate
when both the row and column sums are fixed in advance (in our last example the
column but not the row sums were determined by the experimenter), but you are
likely to see this test performed whenever the fe’s are quite small.

The Phi Coefficient

If you double all of the entries in Table 9.3, the value for �2 will also double (it will
become 7.5) and become significant at the .05—even the .01—level. But the pro-
portions will not have changed. There ought to be a measure that reflects the rel-
ative proportions and is not affected by the total sample size, and there is. For a
2 � 2 table the appropriate strength of association (i.e., correlational) measure is
called the phi coefficient (symbolized by the Greek letter �). The square of this co-
efficient follows the simple formula below:

�2 � �
�

N

2

� (9.3)

Because multiplying all entries in a 2 � 2 table by the same constant (C) re-
sults in both �2 and N being multiplied by C, �2 remains the same. Like r pb

2 (see
Chapter 4), �2 gives you a sense of the proportion of variance accounted for
and is unrelated to the total N. Like rpb , � is a Pearson correlation coefficient,
which can be calculated if you assign arbitrary numbers to the categories of
both variables (e.g., 0 for NDB, 1 for DB; 0 for no fights, 1 for start fights). For
Table 9.3, �2 is

�2 � �
�

N

2

� � �
3
3
.7
0
5

� � .125

Therefore, � equals �.125�, which equals .354. This amount of correlation is
considered moderately large, which is why the results in Table 9.3 were very
nearly significant even with an N of only 30.

Larger Contingency Tables

The preceding example illustrated the use of a chi-square test when one’s data are
not well suited for a parametric test. However, the two-way chi-square test is also
used quite often to examine the relation between two measures that are already
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categorical. Returning to our example
of the political affiliations for newspa-
per readers in Springfield, suppose
that the city has four major newspa-
pers and the question is not whether
the readers of each newspaper are
representative of the city’s electorate,
but whether the political makeup of
the four newspapers readerships are
the same. In other words, are the rela-
tive proportions of Democrats, Re-
publicans, and Independents the
same among the subscribers for all
four newspapers? The contingency
table would have either three rows
and four columns, or the reverse. The
df for this table would be (3 – 1)(4 – 1)
� 2 
 3 � 6. It is important to note
that a chi-square test on the data from

the 3 � 4 table just described would only be valid if no one in the study was a sub-
scriber to more than one newspaper; otherwise, one person would be counted
more than once and the observations would not be completely independent. Al-
though � as described above cannot be calculated for a 3 � 4 table, a modified ver-
sion, Cramer’s � can be found instead (see B. Cohen, 2000).

A Categorical Test for Agreement

We have illustrated two major ways that categorical data can arise. First, precise
measurements from an interval/ratio scale can be assigned to a few categories
(e.g., low, medium, and high) to avoid making any assumptions about the distri-
bution of the DV. For this reason, the tests described in this chapter are often
called distribution-free tests. Second, the data may already be categorized for you, as
when people register with a particular political party, or affiliate with a particular
religion. There is a third case, in which clear categories may exist, but the re-
searcher must decide into which category each participant falls. Because the
choice of category could depend to some extent on the subjective judgment of
the researcher, there may be a need to check to see whether two different judges
would agree on their choices of categories for the different participants. For in-
stance, based on their responses to a projective psychological test, female execu-
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DON’T FORGET

The Assumptions for
Categorical Tests

1. The categories are mutually exclu-
sive and exhaustive—all observa-
tions should fall into a category, but
not more than one category.

2. All cases should be independent of
all others. A participant could be
measured twice, as in the sign test,
but each participant should be
sampled independently of the oth-
ers.

3. To use the normal or chi-square
distributions as approximations, it is
best if the expected frequency for
each category is at least about 5.



tives can be categorized as to their major psychological need: affiliation, achieve-
ment, or power. However, before we trust the categorizations of one researcher
it is important to demonstrate that, given the guidelines of the study, two differ-
ent judges will agree nearly all of the time on their choices. The amount of agree-
ment can be assessed with the aid of a two-way contingency table, as shown in
Table 9.4.

Cohen’s Kappa

The columns represent the judgments of the first rater, and the rows represent the
judgments of the second rater. For example, looking at the row and column sums
you can see that the first rater placed eight women in the Affiliation group; the
second rater placed nine in that group. Seven women were categorized as mainly
needing affiliation by both raters, 13 as needing achievement, and 10 as needing
power. In all, the two judges agreed on 30 of the 40 women, or 75%, which is a
reasonable amount of agreement. However, this percentage is inflated by the fact
that the two raters would be expected to have some agreement by chance, even if
both were categorizing the women at random. The chance amount of agreement
can be found by first finding the fe’s just for the cells on the diagonal that repre-
sent agreement of the two raters. These fe’s are found by multiplying row and sum
totals and dividing by N just as we did for the two-way chi-square test. The rele-
vant fe’s were put in parentheses in Table 9.4. J. Cohen (1960), who later did pio-
neering work on power, created a measure called kappa (symbolized as κ, the
lower-case Greek letter k) to correct the sum of fo’s on the diagonal for the
amount of agreement expected by chance (as measured by the sum of fe’s on
the diagonal). Cohen’s κ is found by the following formula:

κ � (9.4)

The corrected amount of agreement is only about 66%, which is somewhat
low if you want to proceed with confidence based on the categorizations of just

∑ fo � ∑ fe��

N � ∑ fe
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Table 9.4 Observed and Expected Frequencies for Interrater Agreement

Affiliation Achievement Power Row Sum

Affiliation 7(1.8) 2 0 9
Achievement 1 13(4.05) 4 18
Power 0 3 10(4.55) 13
Column sums 8 18 14 40



one rater (you might use two raters and eliminate participants for whom the raters
disagree). An even smaller κ would suggest that you should make your rating
guidelines clearer, give your raters more training or practice, or abandon your var-
iable as not being reliably measurable. With a higher κ you might confidently
proceed with a two-way classification in which the “needs” categories are crossed
with a categorization of how successful these women are in their organization.

TESTS FOR ORDINAL DATA

There are many attributes of people that cannot be measured precisely, but differ
in terms of amount (i.e., quantitatively) rather than category (i.e., qualitatively).
For instance, it is clear that some people have greater leadership potential or more
charisma, even though these attributes cannot be measured precisely. If we assign
people to levels as having a great deal of charisma, a moderate amount of
charisma, and very little charisma, we are using what is called an ordinal scale (as de-
scribed in Chapter 1). If a coach ranks her athletes in terms of their value to the
team, she is also using an ordinal scale. Although ordinal scales do not provide
the precise measurements required for parametric statistics (like the t test), they
contain more information than categorical scales; in fact, significance tests based
on ordinal scales often have nearly as much power (i.e., probability of yielding sig-
nificant results when there is some effect to be found) as their parametric coun-
terparts (see Rapid Reference 9.2 at the end of this chapter for a list of ordinal
tests discussed herein and the parametric tests they can replace). We will begin
our description of ordinal tests with the ordinal counterpart to the two-group
t test.

The Mann-Whitney Test

Let’s return to the example concerning the impact of divorce on the aggressive-
ness of young boys. This time, instead of counting fights we will suppose that af-
ter observing the boys daily in the playground for a month the psychologist ranks
the boys for aggressiveness, so that the boy ranked 1 is the most aggressive, and
the boy ranked 30 is the least. Note that the DB and NDB boys are being ranked
together, ideally by an observer who does not know which boys have divorced
parents. The best possible result for the researcher is that the 10 DB boys occupy
the top 10 ranks for aggressiveness followed by the 20 NDB boys. This is ex-
tremely unlikely to happen by accident when the null hypothesis is true (Ho: there
is no difference in aggressiveness between DB and NDB boys). One way to quan-
tify the difference in ranks between the two groups is to compare the sum of
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ranks for the smaller group (in this case, the DBs) to what we would expect to get
on the average for that group when the null hypothesis is true. In order to under-
stand what to expect for a sum of ranks for a subgroup, let’s first take a look at the
sum of ranks for all the boys combined. If there are a total of N boys, the sum of
the N ranks will be

S
N

� �
N(N

2
� 1)
� (9.5)

For a total of 30 boys, S
N

� (30 
 31)/2 � 930/2 � 465. Now let’s look at the
sum of ranks for the DBs in the best case (best with respect to finding the pre-
dicted effect); the DBs will be ranked 1 to 10, so SDB will be (10 
 11)/2 � 110/2
� 55. In the worst case the DBs will be ranked 21 to 30, and SDB will be 255 (we
got this by subtracting the sum of 1 to 20 from the sum of 1 to 30). According to
Ho what we would expect for SS (the sum of ranks for the smaller group) is mid-
way between the best and worst cases. For this example the expected S�S is (55 �
255)/2 � 310/2 � 155. The general formula for the average sum of ranks for the
smaller group is S�S � .5nS (N � 1), where nS is the size of the smaller group, and
N is the size of both groups combined. For our example SS � .5 
 10(31) � .5 


310 � 155, just as we had found by averaging the best and worst cases. The dif-
ference between the actual SS and the average SS can be divided by the standard
deviation of SS to create a z score, as in the following formula:

z � (9.6)

where nL is the size of the larger group (if the two subgroups are the same size, n,
then nS � nL � n, and the sum of ranks for either group can be used as SS).

Dealing with Ties

Sometimes it will be impossible to distinguish between two or more boys. If you
are careful with your ranking such ties can be accounted for without changing the
sum of the ranks. Suppose that the 10 DBs occupy the first 10 ranks (i.e., no NDB
is more aggressive than any of the DBs), but the middle four are indistinguish-
able. The first step is to assign ranks to all 10 anyway, even though these ranks
must be assigned arbitrarily to the middle four: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (the
middle four have been italicized). The next step is to replace all of the italicized
(i.e., tied) ranks by their average, which in this case is 5.5[i.e., (4 � 5 � 6 � 7)/
4 � 22/4]. The ranks will be 1, 2, 3, 5.5, 5.5, 5.5, 5.5, 8, 9, 10; the sum of these
ranks will be the same as the sum of the ranks numbered 1 to 10 without ties.

SS � .5(nS )(N � 1)
��

��
nSnL(N

12�� 1)
��
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Suppose that DB and NDB boys alternate in the first 20 ranks, so that DB
boys occupy all the odd ranks from 1 to 20, leaving the even ranks from 1 to 20
and all of the ranks from 21 to 30 to the NDBs. In that case, Ss will be 100, and
the z score for testing this sum will be

z � � � �
2
�

2.
5
7
5
3

� � � 2.42

This z score is easily significant at the .05 level (the sign of the z score is not
helpful—you have to look at your data to see if the ranking is going in the direc-
tion you predicted).

Assumptions of the Mann-Whitney Test

The use of the normal distribution for Formula 9.6 is reasonable when the total
N is at least about 20. For smaller samples Mann and Whitney worked out exact
probabilities (based on combinations and permutations of the possible rankings)
for a statistic they called U (Mann & Whitney, 1947), which is based on SS. This
version of the test is called the Mann-Whitney U test. Wilcoxon (1949) created
tables of critical values for SS , so his name is associated with this test as well (a
table for Wilcoxon’s rank-sum test can be found in B. Cohen, 2000). When the nor-
mal approximation is used, as in Formula 9.6, the test is often referred to simply
as the Mann-Whitney (M-W) test. Any version of this test assumes that the cases
being ranked are independent (e.g., if five schizophrenic patients and five art
students each produce two paintings for an experiment, the 20 paintings could be
ranked together, but they would not all be mutually independent).

It is also assumed that the variable that forms the basis of the ranking (e.g., ag-
gressiveness, creativity, charisma) is continuous; ties may occur due to a lack of
precision in measurement, but not because two cases are exactly the same for that
variable. A high percentage of ties will decrease the accuracy of the test. This is
why it can be problematic to use a 5-point ordinal scale (e.g., very aggressive,
somewhat aggressive, average, somewhat passive, very passive) to measure all of
your participants; it is likely that there will be too many ties (see Siegel & Castel-
lan, 1988, about how to correct for ties). Probably the most common use of the
M-W test does not involve directly ranking participants, but rather taking data
that were meant for a two-group t test and ranking them (this is very easy to do
with interval/ratio data and not likely to involve many ties). Converting your data
to ranks is recommended as an alternative to a data transformation when your
data are extremely skewed, or otherwise nonnormal, and your groups are quite
small.

100 � 155
��

��
62
1
0
2
0

��
100 � .5(10)(31)
��

��
(10)(2

1
0
2�)(31)
��
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Finally, the null hypothesis for the
M-W test is not that the two groups
have the same population means, but
that the population distributions rep-
resented by the two groups are identi-

cal. Therefore, a significant M-W test
could occur because the two popula-
tion distributions differ in shape or
spread, rather than mean. Because a
finding that your two groups differ in
any way is usually interesting, this lack of specificity is generally not considered a
drawback of the M-W test. The other ordinal tests described below also test the
null hypothesis that all population distributions involved are identical.

The Kruskal-Wallis Test

A test very similar to the M-W test can be used when you are ranking cases from
three or more groups, or converting the data from a one-way ANOVA to ranks.
The test begins with ranking all of the participants together and dealing with ties
as in the M-W test. Kruskal and Wallis (1952) devised a statistic called H that is
based on the sums of ranks for each group. Hence, the test is called the Kruskal-

Wallis H test, or just the Kruskal-Wallis (K-W) test for short. The formula for H
is as follows:

H � �
N(N

12
� 1)
�∑

k

i�1
��

S

n

i

i

2

��� 3(N � 1), (9.7)

where N is the total number of participants, n
i
is the number of participants in the

ith group, S
i
is the sum of ranks for the ith group, and k is the number of differ-

ent groups. When all of the subgroups contain at least five cases, H follows a �2

distribution quite well, with k – 1 degrees of freedom. For tables needed to per-
form an exact test when your samples are too small or for a formula that corrects
for excessive ties, see Siegel and Castellan (1988).

As you might guess, the K-W test involves the same assumptions as the M-W
test. In fact, if you apply H to a two-group case it will be equal to the square of the
z score from the M-W test (we invite you to try this on our DB/NDB example).
As in the case of the one-way ANOVA, it often makes sense to follow a signifi-
cant K-W test with M-W (or K-W) tests for each pair of groups, with some ad-
justment to the alpha for each comparison if there are more than three groups.
Finally, it is good to know that when data meant for a t test or one-way ANOVA
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C AU T I O N

When ranking cases, some of which
are tied, begin by giving preliminary
ranks by numbering all cases consecu-
tively, ignoring ties. Then average the
ranks for a set of cases that are tied,
and give the average rank to each of
the tied cases in that set.



are converted to ranks, the M-W and K-W tests usually have nearly as much
power as their parametric counterparts, without the possible risk of an inflated
Type I error rate if the distributional assumptions of the parametric tests are se-
verely violated.

Wilcoxon’s Test for Matched Pairs

One of the best ways to improve power is by employing repeated measures or
matching, and such designs can certainly be analyzed with nonparametric meth-
ods. Earlier in this chapter we showed you how the sign test could be used for a
matched design. However, in some cases an ordinal statistic can have consider-
ably more power than the sign test and still avoid the distributional assumptions
of the matched t test. Let’s return to the example in which children were matched
in pairs, after which one random member of each pair was given a creativity treat-
ment, and then the paintings for each pair of children were compared. The sign
test is appropriate if all you can determine is which of the two paintings is more
creative. Suppose, however, that in addition to determining the direction (i.e.,
sign) of each creativity discrepancy you could compare the sizes of the discrep-
ancies well enough to put them in order (perhaps with occasional ties). The next
step would be to rank order all of the discrepancies (regardless of direction),
handling ties as you would in the M-W test. For instance, the largest discrepancy
would be ranked 1; let’s say that its sign is positive because it favors the creative
member of the pair (which direction is considered positive is an arbitrary decision
and won’t affect the outcome of the test). Imagine that the next two discrepan-
cies are tied, and that one is positive and the other negative; both are given the
rank of 2.5.

After all of the ranks have been assigned, the ranks are summed separately for
the negative and positive differences (this is just like in the M-W test—you rank
all the cases together but keep track of which group each case belongs to so ranks
can be summed separately for each group). Whichever sum is smaller (negative
or positive) is the T statistic for the matched-pairs signed-ranks test, often called
Wilcoxon’s T test, after the statistician who first created tables for this test. When
you are dealing with at least 15 to 20 pairs of participants, T has a fairly normal
distribution and can therefore be converted to a z score with the following for-
mula:

z � (9.8)
T � .25N(N � 1)

���

��N(N �� 1
2
)
4
(2N�� 1)
��
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where N is the number of pairs (i.e., the number of discrepancies that are being
ranked).

Dealing with Ties

If you are dealing with fewer than 15 pairs, many introductory statistics texts have
tables for Wilcoxon’s T that you can use to perform an exact test. If you have
more than a few ties and therefore need a correction factor, see Spiegel and
Castellan (1988). There is one kind of tie that is particularly problematic with this
kind of test. If for a specific pair it is impossible to say which painting is more cre-
ative, that pair must be given a zero. If there is just one zero, that pair should be
eliminated from the analysis. If there are several zeroes they can all be elimi-
nated—as is usually recommended for the sign test—but for the Wilcoxon T test
a more conservative solution is recommended. If there is an odd number of ze-
roes, delete one of them. Half of an even number of zeroes should be arbitrarily
assigned to be positive and the other half negative, and all should be included in
the ranking (of course, all of the zeroes will be tied with each other).

Comparisons to Other Tests

Ranking discrepancies that can’t be quantified precisely is difficult, which prob-
ably accounts for why Wilcoxon’s T is rarely used in that way. The more common
use for this test is as an alternative to the matched t test. Suppose each participant
solves two similar puzzles under different conditions, and solution times differ
wildly (sometimes the participant gets it right away, sometimes not). If there are
only 10 participants, the matched t test may not be appropriate. However, there
is no need to throw away quantitative information and merely determine which
condition had the shorter time. The differences between the conditions can be
rank-ordered easily (ties are unlikely) and the sum of ranks found for each direc-
tion (i.e., condition 1 has the longer time, or condition 2 has the longer time).
Wilcoxon’s T test can then be applied (an exact table is suggested for this
example because N � 10). The
Wilcoxon test will usually have as
much as 90% of the power of the
matched t test; the sign test will have
considerably less power.

The Friedman Test

What if each participant solves three
problems, each under a different con-
dition? If the data are not appropriate
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C AU T I O N

An assumption of ordinal tests is that
the variable being measured ordinally
is actually continuous, so that ties
should be rare. Although there are
correction factors for ordinal tests
when ties do occur, a large percentage
of ties will diminish the accuracy of the
p values associated with those tests.



for a one-way RM test, they can be converted to ranks and submitted to a simple
nonparametric test. The test we will describe is called the Friedman test, having
been invented by Milton Friedman, who later won the Nobel Prize for econom-
ics. The key element is that scores are not ranked among participants, but rather
separately for each participant across conditions. For instance, suppose that par-
ticipants solve a puzzle with a reward for quick solution, or with no reward and
distracting noise, or both a reward and distraction. For each participant the three
conditions are ranked in order of solution time. Then these ranks are summed
across participants for each condition. If participants are consistent with each
other (which would lead to a small interaction in an RM ANOVA), the sum of
ranks should be considerably lower for some conditions (e.g., “distraction” gets
mostly ones and a few twos—assuming the longest time gets ranked “1”) and
higher for others (e.g., “reward” gets mostly threes and a few twos). The more the
sums differ for the different conditions, the larger will be Friedman’s test statis-
tic, which we call Fr. The formula for Fr is as follows:

Fr � �
Nc(

1
c

2
� 1)
�∑

c

i�1

S
i

2 � 3N(c � 1), (9.9)

where N is the number of different participants or blocks (not the total number
of observations), c is the number of conditions (3 in our example), and S

i
is the

sum of ranks for the ith condition (add up the squared sums, multiply by the fac-
tor in front of the summation sign, and then subtract the factor beginning with
3N ). If N is at least about 8, Fr will follow the chi-square distribution fairly well,
with degrees of freedom equal to c – 1. For smaller samples, you can use a table
to perform an exact test (see Spiegel & Castellan, 1988).

The Friedman test is often thought of as an expansion of Wilcoxon’s matched-
pairs test, but if you were to try to perform a Friedman test with just two condi-
tions, you would see that in that case, the Friedman test is equivalent to the sign
test (without the continuity correction, the square of the z score for the sign test
will equal Fr ). Ranking two conditions as “1” and “2” for each participant is no
more (or less) precise than assigning a plus or minus to each participant accord-
ing to which condition the participant is better on. Therefore, a significant Fried-
man test with more than two conditions can be followed by Friedman or sign
tests for each pair, adjusting alpha if there are more than three conditions.

The Spearman Correlation Coefficient

We described the use of Cohen’s κ to quantify the amount of agreement between
two judges who are assigning cases to categories. But what about the psycholo-
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gist who was ranking boys for aggressiveness? How can we quantify his or her
agreement with a second psychologist ranking the same set of boys? Actually, this
is easy. We need only calculate the ordinary Pearson correlation coefficient for the
two sets of ranks. When the two variables consist of ordinal data, the correlation
coefficient that results from applying Pearson’s formula is often called the Spear-

man correlation (rS ) or the rank correlation coefficient. As with the point-biserial r (rpb )
and the phi coefficient (�), the special symbol, rS , reminds us that although this
is a Pearson correlation coefficient, it is calculated for data involving at least one
variable that was not measured on an interval or ratio scale. Although there is a
shortcut formula for calculating rS , based on the differences of ranks, the use of
modern calculators and statistical tables make this shortcut less important, so we
will not bother to present it here.

When to Use Ranks for Correlation

The Spearman correlation is appropriate whenever both variables consist of
ranks (e.g., boys are ranked for aggressiveness and for leadership potential), or
even when just one of the variables is ordinal (e.g., you want to correlate aggres-
siveness rank with grade average). In the latter case, you would convert the inter-
val/ratio data (e.g., grade averages) to ranks before finding the correlation. Even
when both variables are measured on interval/ratio scales, it can be preferable to
rank order both variables and find rS , rather than calculating r directly. For in-
stance, a few extreme outliers can have a devastating effect on r, but their impact
can be reduced by converting the data to ranks. When you do this, the highest
score on one variable can be very far from the next highest, but in terms of rank-
ing it is just one rank higher.

Also, recall that Pearson’s r measures only the degree of linear relationship. If
the relationship between two variables follows a curve, even a curve that keeps
rising, Pearson’s r can be deceptively low. A curvilinear correlation coefficient can
be calculated if that is what you are interested in, or the data can be transformed
to create a fairly linear relationship. However, ranking the scores may lead to the
answer you want. The correlation of the ranks will give the relationship credit for
being monotonic (whenever X goes up, Y goes up, and vice versa), even if it’s far
from linear. In fact, if the relationship is perfectly monotonic, rS will equal 1.0.
Therefore, if it is the degree of monotonicity rather than the linearity of the rela-
tionship that you wish to measure, rS will serve you better than Pearson’s r.

Determining Statistical Significance for Spearman’s r

Although rS can be found by applying the ordinary Pearson correlation formula
to ranked data, the distribution of rS is not the same as the distribution of r that
is calculated for interval/ratio data, unless the sample size is extremely large (the-
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oretically, infinite). You cannot use the t value from Formula 4.4 (or 4.4' ). Special
tables or approximating formulas must be used to determine the significance of
Spearman’s r for small sample sizes (see Siegel & Castellan, 1988). In general, it
is easier to obtain a high correlation with ranks than it is with interval/ratio data,
so the critical values for rS are higher than the corresponding critical values for r.
Perfect Spearman correlation requires only that ordinal positions match across
two variables, but perfect Pearson correlation requires, in addition, that the vari-
ables have a perfect linear relationship (see Rapid References 9.2).
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Parametric and Corresponding Ordinal Tests

Parametric Test Corresponding Ordinal Test

Independent-groups t test Mann-Whitney test
RM or matched t test Wilcoxon T (signed-ranks) test
Independent-groups ANOVA Kruskal-Wallis (H ) test
RM or randomized-blocks ANOVA Friedman test
Pearson correlation Spearman (rank) correlation

Rapid Reference 9.2

Putting It Into Practice
1. The data below come from the second exercise in Chapter 3, in which you

were asked to calculate an RM t test.

Participant # No Imagery Imagery

1 8 14
2 11 15
3 7 5
4 10 16
5 9 9
6 15 16
7 7 8
8 16 20
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(a) Perform the sign test using the exact probabilities of the binomial distribu-
tion (follow the example in which 8 of 10 babies prefer red). Is the proba-
bility less than .05 for a one-tailed test? For a two-tailed test? Compare
your results to the RM t test you calculated in Chapter 3. Which test
seems to have more power given that these data are not inconsistent with
the assumptions of the RM t test?

(b) Perform the sign test using the normal approximation and the correction
for continuity (even though N is too small for a good approximation in this
case). Is the test significant at the .05 level, one-tailed? Two-tailed?

(c) Perform the Wilcoxon test using the normal approximation (even though
N is too small for a good approximation in this case). Is the test significant
at the .05 level, one-tailed? Two-tailed?

(d) Calculate the Spearman correlation for the data above. Does the magnitude
of the correlation suggest good matching between the two sets of scores?

2 One hundred low self-esteem students participated in an experiment, in which
the independent variable was whether the person running the experiment ap-
peared to be rude, needy, friendly, or just normal (i.e., neutral). Each student
was asked to return for a follow-up experiment “to help the research,” without
additional compensation. The number of students who agreed or didn’t agree
to return in each condition are shown in the table below.

Rude Needy Friendly Neutral

Agree to return 18 16 10 16
Do not agree 7 9 15 9

(a) Perform separate one-way chi-square tests for the students who agreed
to return and for those who did not. Did the type of experimenter make a
significant difference in each case?

(b) Perform a two-way chi-square test to determine whether type of experi-
menter affects the proportion of students who agree to return. Are the
results significant at the .05 level? What would the chi-square statistic
equal if every entry in the above table were doubled? Would the results
be significant in that case?

(c) Perform a 2 � 2 chi-square test deleting the “needy” and “neutral” condi-
tions. Are the results significant? Calculate the phi coefficient. Does the as-
sociation between the two variables appear to be small, medium, or large?

3. Boys are classified as having experienced parental divorce (DB) or not (NDB).
The number of fights initiated by each boy during school recess is recorded for
a period of 3 months. The data are as follows: DB: 3, 5, 0, 9, 1, 7, 4; NDB: 0, 2,
1, 0, 2, 0, 3, 1, 0.
(a) Perform the Mann-Whitney test for these data, using the normal approxi-

mation. Are the results significant with a .05, two-tailed test?
(b) Perform the Kruskal-Wallis test on these data. Explain the relation be-

tween H and the z you found in 3a.
4. Perform Friedman tests on the two RM simple effects referred to in the first

exercise of the previous chapter. Did you reach the same statistical conclusion
in each case as in the previous exercise?
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TEST  YOURSELF

1. A series of dichotomous events will follow the binomial distribution only
if

(a) the events are normally distributed.
(b) the two outcomes are equally likely.
(c) the number of events is large.
(d) the events are independent of each other.

2. Compared to the matched t test, a sign test on the same data

(a) usually has less power.
(b) usually leads to more Type I errors.
(c) requires more stringent assumptions.
(d) is easier to calculate, but always leads to the same statistical decision.

3. A friend of yours is at a carnival and betting on a wheel that stops in 1 of
10 places, numbered 1 to 10. Imagine that your friend will lose if the
number comes up either odd or higher than 8 on the next spin. What is
your friend’s probability of winning?

(a) .2
(b) .4
(c) .5
(d) .6

4. The critical value of the chi-square statistic for a one-way test increases
as

(a) the number of categories increases.
(b) N increases.
(c) alpha increases.
(d) all of the above.

5. Suppose you have read about a one-way chi-square test with four cate-
gories, in which the chi-square statistic turned out to be .03. Without fur-
ther information, which of the following could you conclude?

(a) A calculation error has been made.
(b) N must have been small.
(c) The null hypothesis could be rejected at the .05 level.
(d) The observed frequencies are similar to the expected frequencies.

S S
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6. In a two-way chi-square test of independence involving 96 participants
classified into six religious categories and four political preferences, how
many degrees of freedom will be associated with the test?

(a) 4
(b) 15
(c) 18
(d) 24

7. To perform the Mann-Whitney test,

(a) the scores are ranked separately for each group.
(b) the scores are combined into one large group before ranking.
(c) the two groups must be the same size.
(d) the ranks for one group are added to the ranks for the other group.

8. To perform the Wilcoxon signed-rank test you must first

(a) rank-order the difference scores separately for positive and negative dif-
ferences.

(b) rank-order the difference scores while ignoring their signs.
(c) rank-order the scores before finding the differences.
(d) delete any nonzero difference scores that are tied.

9. The size of the Kruskal-Wallis test statistic, H, increases as the sums of
ranks for each group

(a) increase.
(b) decrease.
(c) become more alike.
(d) become more different.

10. Suppose that 10 participants are each measured under four conditions.
Before you apply the formula for the Friedman test,

(a) all 40 scores are ranked together.
(b) the 10 scores in each condition are ranked separately.
(c) the four scores for each participant are ranked separately.
(d) the ranks are summed separately for each participant.

Answers: 1. d; 2. a; 3. b; 4. a; 5. d; 6. b; 7. b; 8. b; 9. d; 10. c.
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.00 .0000 .5000

.01 .0040 .4960

.02 .0080 .4920

.03 .0120 .4880

.04 .0160 .4840

.05 .0199 .4801

.06 .0239 .4761

.07 .0279 .4721

.08 .0319 .4681

.09 .0359 .4641

.10 .0398 .4602

.11 .0438 .4562

.12 .0478 .4522

.13 .0517 .4483

.14 .0557 .4443

.15 .0596 .4404

.16 .0636 .4364

.17 .0675 .4325

.18 .0714 .4286

.19 .0753 .4247

.20 .0793 .4207

.21 .0832 .4168

.22 .0871 .4129

.23 .0910 .4090

.24 .0948 .4052

.25 .0987 .4013

.26 .1026 .3974

.27 .1064 .3936

.28 .1103 .3897

.29 .1141 .3859

.30 .1179 .3821

.31 .1217 .3783

.32 .1255 .3745

.33 .1293 .3707

.34 .1331 .3669

.35 .1368 .3632

.36 .1406 .3594

.37 .1443 .3557

.38 .1480 .3520

.39 .1517 .3483

.40 .1554 .3446

.41 .1591 .3409

.42 .1628 .3372

.43 .1664 .3336

Appendix A
Statistical Tables

Table A.1 Areas under the Standard Normal Distribution

z Mean to z Beyond z z Mean to z Beyond z

Mean z

Mean to z

Beyond z
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.44 .1700 .3300

.45 .1736 .3264

.46 .1772 .3228

.47 .1808 .3192

.48 .1844 .3156

.49 .1879 .3121

.50 .1915 .3085

.51 .1950 .3050

.52 .1985 .3015

.53 .2019 .2981

.54 .2054 .2946

.55 .2088 .2912

.56 .2123 .2877

.57 .2157 .2843

.58 .2190 .2810

.59 .2224 .2776

.60 .2257 .2743

.61 .2291 .2709

.62 .2324 .2676

.63 .2357 .2643

.64 .2389 .2611

.65 .2422 .2578

.66 .2454 .2546

.67 .2486 .2514

.68 .2517 .2483

.69 .2549 .2451

.70 .2580 .2420

.71 .2611 .2389

.72 .2642 .2358

.73 .2673 .2327

.74 .2704 .2296

.75 .2734 .2266

.76 .2764 .2236

.77 .2794 .2206

.78 .2823 .2177

.79 .2852 .2148

.80 .2881 .2119

.81 .2910 .2090

.82 .2939 .2061

.83 .2967 .2033

.84 .2995 .2005

.85 .3023 .1977

.86 .3051 .1949

.87 .3078 .1922

.88 .3106 .1894

.89 .3133 .1867

.90 .3159 .1841

.91 .3186 .1814

.92 .3212 .1788

.93 .3238 .1762

.94 .3264 .1736

.95 .3289 .1711

.96 .3315 .1685

.97 .3340 .1660

.98 .3365 .1635

.99 .3389 .1611
1.00 .3413 .1587
1.01 .3438 .1562
1.02 .3461 .1539
1.03 .3485 .1515
1.04 .3508 .1492
1.05 .3531 .1469
1.06 .3554 .1446
1.07 .3577 .1423
1.08 .3599 .1401
1.09 .3621 .1379
1.10 .3643 .1357
1.11 .3665 .1335
1.12 .3686 .1314
1.13 .3708 .1292

Table A.1 Continued

z Mean to z Beyond z z Mean to z Beyond z

(continued )
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1.14 .3729 .1271
1.15 .3749 .1251
1.16 .3770 .1230
1.17 .3790 .1210
1.18 .3810 .1190
1.19 .3830 .1170
1.20 .3849 .1151
1.21 .3869 .1131
1.22 .3888 .1112
1.23 .3907 .1093
1.24 .3925 .1075
1.25 .3944 .1056
1.26 .3962 .1038
1.27 .3980 .1020
1.28 .3997 .1003
1.29 .4015 .0985
1.30 .4032 .0968
1.31 .4049 .0951
1.32 .4066 .0934
1.33 .4082 .0918
1.34 .4099 .0901
1.35 .4115 .0885
1.36 .4131 .0869
1.37 .4147 .0853
1.38 .4162 .0838
1.39 .4177 .0823
1.40 .4192 .0808
1.41 .4207 .0793
1.42 .4222 .0778
1.43 .4236 .0764
1.44 .4251 .0749
1.45 .4265 .0735
1.46 .4279 .0721
1.47 .4292 .0708
1.48 .4306 .0694
1.49 .4319 .0681

1.50 .4332 .0668
1.51 .4345 .0655
1.52 .4357 .0643
1.53 .4370 .0630
1.54 .4382 .0618
1.55 .4394 .0606
1.56 .4406 .0594
1.57 .4418 .0582
1.58 .4429 .0571
1.59 .4441 .0559
1.60 .4452 .0548
1.61 .4463 .0537
1.62 .4474 .0526
1.63 .4484 .0516
1.64 .4495 .0505
1.65 .4505 .0495
1.66 .4515 .0485
1.67 .4525 .0475
1.68 .4535 .0465
1.69 .4545 .0455
1.70 .4554 .0446
1.71 .4564 .0436
1.72 .4573 .0427
1.73 .4582 .0418
1.74 .4591 .0409
1.75 .4599 .0401
1.76 .4608 .0392
1.77 .4616 .0384
1.78 .4625 .0375
1.79 .4633 .0367
1.80 .4641 .0359
1.81 .4649 .0351
1.82 .4656 .0344
1.83 .4664 .0336
1.84 .4671 .0329
1.85 .4678 .0322

Table A.1 Continued

z Mean to z Beyond z z Mean to z Beyond z
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1.86 .4686 .0314
1.87 .4693 .0307
1.88 .4699 .0301
1.89 .4706 .0294
1.90 .4713 .0287
1.91 .4719 .0281
1.92 .4726 .0274
1.93 .4732 .0268
1.94 .4738 .0262
1.95 .4744 .0256
1.96 .4750 .0250
1.97 .4756 .0244
1.98 .4761 .0239
1.99 .4767 .0233
2.00 .4772 .0228
2.01 .4778 .0222
2.02 .4783 .0217
2.03 .4788 .0212
2.04 .4793 .0207
2.05 .4798 .0202
2.06 .4803 .0197
2.07 .4808 .0192
2.08 .4812 .0188
2.09 .4817 .0183
2.10 .4821 .0179
2.11 .4826 .0174
2.12 .4830 .0170
2.13 .4834 .0166
2.14 .4838 .0162
2.15 .4842 .0158
2.16 .4846 .0154
2.17 .4850 .0150
2.18 .4854 .0146
2.19 .4857 .0143
2.20 .4861 .0139
2.21 .4864 .0136

2.22 .4868 .0132
2.23 .4871 .0129
2.24 .4875 .0125
2.25 .4878 .0122
2.26 .4881 .0119
2.27 .4884 .0116
2.28 .4887 .0113
2.29 .4890 .0110
2.30 .4893 .0107
2.31 .4896 .0104
2.32 .4898 .0102
2.33 .4901 .0099
2.34 .4904 .0096
2.35 .4906 .0094
2.36 .4909 .0091
2.37 .4911 .0089
2.38 .4913 .0087
2.39 .4916 .0084
2.40 .4918 .0082
2.41 .4920 .0080
2.42 .4922 .0078
2.43 .4925 .0075
2.44 .4927 .0073
2.45 .4929 .0071
2.46 .4931 .0069
2.47 .4932 .0068
2.48 .4934 .0066
2.49 .4936 .0064
2.50 .4938 .0062
2.51 .4940 .0060
2.52 .4941 .0059
2.53 .4943 .0057
2.54 .4945 .0055
2.55 .4946 .0054
2.56 .4948 .0052
2.57 .4949 .0051

Table A.1 Continued
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2.58 .4951 .0049
2.59 .4952 .0048
2.60 .4953 .0047
2.61 .4955 .0045
2.62 .4956 .0044
2.63 .4957 .0043
2.64 .4959 .0041
2.65 .4960 .0040
2.66 .4961 .0039
2.67 .4962 .0038
2.68 .4963 .0037
2.69 .4964 .0036
2.70 .4965 .0035
2.71 .4966 .0034
2.72 .4967 .0033
2.73 .4968 .0032
2.74 .4969 .0031
2.75 .4970 .0030
2.76 .4971 .0029
2.77 .4972 .0028
2.78 .4973 .0027
2.79 .4974 .0026
2.80 .4974 .0026
2.81 .4975 .0025
2.82 .4976 .0024

2.83 .4977 .0023
2.84 .4977 .0023
2.85 .4978 .0022
2.86 .4979 .0021
2.87 .4979 .0021
2.88 .4980 .0020
2.89 .4981 .0019
2.90 .4981 .0019
2.91 .4982 .0018
2.92 .4982 .0018
2.93 .4983 .0017
2.94 .4984 .0016
2.95 .4984 .0016
2.96 .4985 .0015
2.97 .4985 .0015
2.98 .4986 .0014
2.99 .4986 .0014
3.00 .4987 .0013
3.20 .4993 .0007

3.40 .4997 .0003

3.60 .4998 .0002

3.80 .4999 .0001

4.00 .49997 .00003

Table A.1 Continued
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Table A.2 Critical Values of the t Distribution

Level of Significance for One-Tailed Test

.10 .05 .025 .01 .005 .0005

Level of Significance for Two-Tailed Test

df .20 .10 .05 .02 .01 .001

1 3.078 6.314 12.706 31.821 63.657 636.620
2 1.886 2.920 4.303 6.965 9.925 31.599
3 1.638 2.353 3.182 4.541 5.841 12.924
4 1.533 2.132 2.776 3.747 4.604 8.610
5 1.476 2.015 2.571 3.365 4.032 6.869
6 1.440 1.943 2.447 3.143 3.707 5.959
7 1.415 1.895 2.365 2.998 3.499 5.408
8 1.397 1.860 2.306 2.896 3.355 5.041
9 1.383 1.833 2.262 2.821 3.250 4.781

10 1.372 1.812 2.228 2.764 3.169 4.587
11 1.363 1.796 2.201 2.718 3.106 4.437
12 1.356 1.782 2.179 2.681 3.055 4.318
13 1.350 1.771 2.160 2.650 3.012 4.221
14 1.345 1.761 2.145 2.624 2.977 4.140
15 1.341 1.753 2.131 2.602 2.947 4.073
16 1.337 1.746 2.120 2.583 2.921 4.015
17 1.333 1.740 2.110 2.567 2.898 3.965
18 1.330 1.734 2.101 2.552 2.878 3.922
19 1.328 1.729 2.093 2.539 2.861 3.883
20 1.325 1.725 2.086 2.528 2.845 3.850
21 1.323 1.721 2.080 2.518 2.831 3.819
22 1.321 1.717 2.074 2.508 2.819 3.792
23 1.319 1.714 2.069 2.500 2.807 3.768
24 1.318 1.711 2.064 2.492 2.797 3.745
25 1.316 1.708 2.060 2.485 2.787 3.725
26 1.315 1.706 2.056 2.479 2.779 3.707
27 1.314 1.703 2.052 2.473 2.771 3.690
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Table A.2 Continued

Level of Significance for One-Tailed Test

.10 .05 .025 .01 .005 .0005

Level of Significance for Two-Tailed Test

df .20 .10 .05 .02 .01 .001

28 1.313 1.701 2.048 2.467 2.753 3.674
29 1.311 1.699 2.045 2.462 2.756 3.659
30 1.310 1.697 2.042 2.457 2.750 3.646
40 1.303 1.684 2.021 2.423 2.704 3.551
60 1.296 1.671 2.000 2.390 2.660 3.460
120 1.289 1.658 1.980 2.358 2.617 3.373
� 1.282 1.645 1.960 2.326 2.576 3.291
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Table A.5 Power as a Function of 	 and Significance Criterion (�)

One-Tailed Test (�)

.05 .025 .01 .005

Two-Tailed Test (�)

� .10 .05 .02 .01

0.5 .14 .08 .03 .02
0.6 .16 .09 .04 .02
0.7 .18 .11 .05 .03
0.8 .21 .13 .06 .04
0.9 .23 .15 .08 .05
1.0 .26 .17 .09 .06
1.1 .29 .20 .11 .07
1.2 .33 .22 .13 .08
1.3 .37 .26 .15 .10
1.4 .40 .29 .18 .12
1.5 .44 .32 .20 .14
1.6 .48 .36 .23 .16
1.7 .52 .40 .27 .19
1.8 .56 .44 .30 .22
1.9 .60 .48 .33 .25
2.0 .64 .52 .37 .28
2.1 .68 .56 .41 .32
2.2 .71 .60 .45 .35
2.3 .74 .63 .49 .39
2.4 .77 .67 .53 .43
2.5 .80 .71 .57 .47
2.6 .83 .74 .61 .51
2.7 .85 .77 .65 .55
2.8 .88 .80 .68 .59
2.9 .90 .83 .72 .63
3.0 .91 .85 .75 .66
3.1 .93 .87 .78 .70
3.2 .94 .89 .81 .73
3.3 .95 .91 .84 .77
3.4 .96 .93 .86 .80
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Table A.5 Continued

One-Tailed Test (�)

.05 .025 .01 .005

Two-Tailed Test (�)

� .10 .05 .02 .01

3.5 .97 .94 .88 .82
3.6 .97 .95 .90 .85
3.7 .98 .96 .92 .87
3.8 .98 .97 .93 .89
3.9 .99 .97 .94 .91
4.0 .99 .97 .94 .92
4.1 .99 .98 .96 .94
4.2 .99 .99 .97 .95
4.3 a .99 .98 .96
4.4 .99 .98 .97
4.5 .99 .99 .97
4.6 a .99 .98
4.7 .99 .98
4.8 .99 .99
4.9 a .99
5.0 .99

aThe power at and below this point is greater than .995.
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Table A.6 Power of ANOVA (� � .05)

(�)

dfw 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.6 3.0

k � 2
4 .20 .26 .33 .41 .49 .57 .65 .78 .88
8 .24 .32 .41 .51 .61 .70 .78 .89 .96

12 .26 .35 .44 .55 .65 .74 .81 .92 .97
16 .26 .36 .46 .57 .67 .76 .83 .93 .98
20 .27 .37 .47 .58 .68 .77 .84 .94 .98
30 .28 .38 .48 .59 .69 .78 .85 .94 .98
60 .29 .39 .50 .61 .71 .79 .86 .95 .99
� .29 .40 .51 .62 .72 .81 .88 .96 .99

k � 3
4 .18 .23 .30 .38 .46 .54 .62 .76 .86
8 .23 .32 .42 .52 .63 .72 .80 .92 .97

12 .26 .36 .47 .58 .69 .78 .86 .95 .99
16 .27 .38 .49 .61 .72 .81 .88 .96 .99
20 .28 .39 .51 .63 .74 .83 .89 .97 .99
30 .29 .41 .53 .65 .76 .85 .91 .98 *
60 .31 .43 .55 .68 .78 .87 .92 .98 *
� .32 .44 .57 .70 .80 .88 .94 .99 *

k � 4
4 .17 .23 .29 .37 .45 .53 .61 .75 .86
8 .24 .33 .43 .54 .65 .75 .83 .94 .98

12 .27 .38 .50 .62 .73 .82 .89 .97 .99
16 .29 .40 .53 .66 .77 .86 .92 .98 *
20 .30 .42 .55 .68 .79 .87 .93 .99 *
30 .32 .45 .58 .71 .82 .90 .95 .99 *
60 .34 .47 .61 .74 .84 .92 .96 .99 *
� .36 .50 .64 .77 .87 .93 .97 * *

(continued )



Table A.6 Continued

(�)

dfw 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.6 3.0

k � 5
4 .17 .22 .29 .36 .45 .53 .61 .75 .86
8 .24 .34 .45 .56 .67 .77 .85 .96 .99

12 .28 .39 .52 .65 .76 .85 .92 .98 *
16 .30 .43 .56 .69 .81 .89 .94 .99 *
20 .32 .45 .59 .72 .83 .91 .96 .99 *
30 .34 .48 .63 .76 .86 .93 .97 * *
60 .37 .52 .67 .80 .89 .95 .98 * *
� .40 .55 .71 .83 .92 .96 .99 * *

*Power � .995. Reprinted with permission from The Journal of the American Statistical Associ-

ation. Copyright © 1967 by the American Statistical Association. All rights reserved.
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Table A.7 Critical Values of the 
2 Distribution

Alpha (area in the upper tail)

df .10 .05 .025 .01 .005

1 2.71 3.84 5.02 6.63 7.88
2 4.61 5.99 7.38 9.21 10.60
3 6.25 7.81 9.35 11.35 12.84
4 7.78 9.49 11.14 13.28 14.86
5 9.24 11.07 12.83 15.09 16.75
6 10.64 12.59 14.45 16.81 18.55
7 12.02 14.07 16.01 18.48 20.28
8 13.36 15.51 17.54 20.09 21.96
9 14.68 16.92 19.02 21.67 23.59

10 15.99 18.31 20.48 23.21 25.19
11 17.28 19.68 21.92 24.72 26.75
12 18.55 21.03 23.34 26.22 28.30
13 19.81 22.36 24.74 27.69 29.82
14 21.06 23.69 26.12 29.14 31.32
15 22.31 25.00 27.49 30.58 32.80
16 23.54 26.30 28.85 32.00 34.27
17 24.77 27.59 30.19 33.41 35.72
18 25.99 28.87 31.53 34.81 37.15
19 27.20 30.14 32.85 36.19 38.58
20 28.41 31.41 34.17 37.56 40.00
21 29.62 32.67 35.48 38.93 41.40
22 30.81 33.92 36.78 40.29 42.80
23 32.01 35.17 38.08 41.64 44.18
24 33.20 36.42 39.37 42.98 45.56
25 34.38 37.65 40.65 44.31 46.93
26 35.56 38.89 41.92 45.64 48.29
27 36.74 40.11 43.19 46.96 49.64
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Table A.7 Continued

Alpha (area in the upper tail)

df .10 .05 .025 .01 .005

28 37.92 41.34 44.46 48.28 50.99
29 39.09 42.56 45.72 49.59 52.34
30 40.26 43.77 46.98 50.89 53.67
40 51.80 55.76 59.34 63.69 66.78
50 63.16 67.50 71.42 76.16 79.50
60 74.40 79.08 83.30 88.39 91.96
70 85.53 90.53 95.03 100.43 104.23
80 96.58 101.88 106.63 112.34 116.33
90 107.56 113.14 118.14 124.12 128.31

100 118.50 124.34 129.56 135.81 140.18
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Appendix B: Answers to Putting It Into 
Practice Exercises

Chapter 1

1. (a) mode � 97.8; median � 96.9; mean � 96.08; negatively skewed

(b) range � 99.7 – 89.5 � .1 � 10.2 � .1 � 10.3

mean deviation (MD) ��
∑X

N

i
– �
�� �

5
2
6
5
� � 2.24

� ���
∑(X

N

1�– �)2

�� ���
18

2
2
5
.8

�� � 2.70

2. (a) Histogram:

Stemplot:
89 5
90 8
91 7
92

93 0 2
94 3 5 8

Temps

90.0
0

91.0
92.0

93.0
94.0

95.0
96.0

97.0
98.0

99.0
100.0

1

2

3

4

5

6

Std. Dev. = 2.76
Mean = 96.1
N = 25.00

F
re

qu
en

cy

95 3 7
96 4 6 9
97 1 4 6 8 8 9
98 2 5 7
99 0 6 7
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Boxplot:

(b) PR for 95.0 � 32; PR for 98.6 � 84

(c) 30th percentile � 94.7; 65th � 97.8

3. (a) z ��
95.0

2
–
.7
96.08
�� –.40 z ��

98.6
2
–
.7
96.08
�� �.933

(b) � 1.5 � �
X –

2

9

.7

6.08
� ; X � �1.5 (2.7) � 96.08 � 4.05 � 96.08 � 100.13

–.8 � �
X –

2

9

.7

6.08
� ; X � –.8 (2.7) � 96.08 � –2.16 � 96.08 � 93.92

4. (a) area above z � –.4 is .1544 � .5 � .6544, so 65.44%

area above z � .93 is .1762, so 17.62%

(b) area beyond z � .4 is .1554, so 15.54%

(c) The actual PR of 32 is larger than what you get from assuming a nor-
mal distribution (about 15.5) because the distribution is negatively
skewed. The normal distribution is not a very good approximation in
this case.

N = 25
88

90

94

98

100

102
T

em
ps

92

96
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Chapter 2

1. (a) X�� 96.08, � � 2.70

z � � �
–

.
2
5
.
4
52
� � –4.67

This z is larger in magnitude than the critical value (1.96), so the result is
significant at the .05 level (two-tailed).

(b) z � � –9.33

For � � .01, z crit � 2.33 (one-tailed), or 2.58 (two-tailed). In either case
these results are significant at the .01 level. (Optional: Because the
sample size was 4 times larger for part b than part a, the z-score was
multiplied by 2 [i.e., the square root of 4].)

(c) �
x�

� �
�
2.

2
7
5�

� ; � � X� z crit�x�
� 96.08  1.96 (.54); so � � 96.08  1.06

Therefore, the 95% CI goes from 95.02 to 97.14 (note that the sum of
these two limits is 192.16, which is exactly twice as large as the sample
mean, as will always be the case). Because the population mean tested in
part a (98.6) is not in this 95% CI, we know that the sample mean differs
significantly from this population mean at the .05 level.

(d) �
x�

� �
�

2
1
.7
00�
�; � � X� z crit�x�

� 96.08  2.58 (.27); so � � 96.08  .7

Therefore, the 99% CI goes from 95.38 to 96.78.

2. (a) X�� 6.5625

(b) � � 4.873; �
x�

� �
4

�
.8

1
7
6�
3

� � 1.22

� � X� z crit�x�
� 6.56  1.96 (1.22); so � � 6.56  2.39

Therefore, the 95% CI goes from 4.17 to 8.95.

(c) Yes, you can reject the null hypothesis at the.05 level (two-tailed) because
9 is not contained in the 95% CI in part b.

–2.52
�

�
�

2

1

.7

00�
�

96.08 – 98.6
��

�
�
2.

2

7

5�
�
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Chapter 3

1. (a) Younger: Modeling vs. Tutorial

n1 � 52; n2 � 45; s1 � 6.69; s2 � 7.19; s 2
1 � 44.76; s 2

2 � 51.70

Pooled-variances t test:

s
p

2 � �

� �
455

9
7
5
.56
� � 47.97

t � � � �
�

4
1
.
.
6
988�
�

� �
1
4
.4
.6
1

� � 3.26

df � 95, � � .05, two-tailed tcrit � 1.99 � 3.26; therefore, the difference
is significant.

Separate-variances t test:

t � � � �
�

4
2
.6
.01�
� � �

1
4
.4
.6
18
� � 3.24

Older: Modeling vs. Tutorial

n1 � 20; n2 � 30; s1 � 8.51; s2 � 7.29; s 2
1 � 72.42; s 2

2 � 53.14

Pooled-variances t test:

t � � �
�

3
5
.
.
5
0
9
642�
� � �

3
2
.
.
5
2
9
5

� � 1.60

df � 48, � � .05, two-tailed tcrit � 2.01 � 1.60; therefore, the difference
is not significant.

(29.63 – 26.04)
���

�60.77���
2
1
0
� � ��3

1
0
���

4.6
��

��
44

5
.
2
76
��� �

51
4
.
5
7�0
��

X�1 – X�2��

��
n

s 2
1

1

� � �
n

s�
2
2

2

��

36.74 – 32.14
���

�47.97 ���
5
1
2
� � ��4

1
5
���

X�1 – X�2��

�s
p

2��
n

1

1

� �� �
n

1

2

���

(52–1)44.76 � (45–1)51.70
���

52 � 45 –2
(n1 – 1)s 2

1 � (n2 – 1)s 2
2���

n1 � n2 – 2
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Separate-variances t test:

t � � �
�

3
5
.5
.3
9
92�

� � �
3
2
.
.
5
3
9
2

� � 1.55

Modeling: Younger vs. Older

n1 � 52; n2 � 20; s1 � 6.69; s2 � 8.51; s 2
1 � 44.76; s 2

2 � 72.42

Pooled-variances t test:

t � � �
�

7
3
.
.
1
6
1
187�
� � �

1
7
.9
.1
0
1
23
� � 3.74

df � 70, � � .05, two-tailed tcrit � 2.0 � 3.74; therefore, the difference
is significant.

Separate-variances t test:

t � � �
�

7
4
.
.
1
4
1
818�
� � �

1
7
.9
.1
0
1
23
� � 3.32

Tutorial: Younger vs. Older

n1 � 45; n2 � 30; s1 � 7.19; s2 � 7.29; s 2
1 � 51.70; s 2

2 � 53.14

Pooled-variances t test:

t � � �
�

6
2
.
.
1
9
0
038�
� � �

1
6
.7
.1
0
0
4

� � 3.58

df � 73, � � .05, two-tailed tcrit � 2.0 � 3.58; therefore, the difference
is significant.

Separate-variances t test:

t � � �
�

6.
2
1
.
0
92�

� � �
6
1
.
.
1
7
0
1

� � 3.57
32.14 – 26.04

��

��
51

4
.
5
70
��� �

53
3
.
0
1�4
��

(32.14 – 26.04)
���

�52.27���
4
1
5
� � ��3

1
0
���

36.74 – 29.63
��

��
44

5
.
2
76
��� �

72
2
.
0
4�2
��

(36.74 – 29.63)
���

�52.27���
5
1
2
� � ��2

1
0
���

29.63 – 26.04
��

��
72

2
.
0
42
��� �

53
3
.
0
1�4
��
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Because the variances are very similar for the four groups, the pooled-
variances t test seems more appropriate. Based on the results above,
method makes a significant difference for younger but not older partici-
pants. However, this does not imply that the method effect is signifi-
cantly greater for the younger group than the older group. A two-way
ANOVA is needed to test that difference, as shown in Chapter 7.

(b) g � �
(X�1 –

s
p

X�2 )
�

Younger: Modeling vs. Tutorial: g � �
�

4
4
.
7
6
.97�
� � �

6
4
.9
.6
26
� � 0.66; between

moderate and large

Older: Modeling vs. Tutorial: g � �
�

3
6
.5
0
9
.77�
� � �

7
3
.7
.5
9
9
6

� � 0.46; moderate

Modeling: Younger vs. Older: g � �
�

7
5
.1
2
1
.27�
� � �

7
7
.2
.1
2
1
9

� � 0.98; quite large

Tutorial: Younger vs. Older: g � �
�

6
5
.1
2
0
.27�
� � �

7
6
.2
.1
2
0
9

� � 0.84; large

(c) �1 – �2 � X�1 – X�2  tcrits X�1–X�1
� 4.6  1.99 (1.41); so � � 4.6  2.8

Therefore, the 95% CI goes from 1.8 to 7.4.

2. (a) 

Participant No Imagery Imagery D

1 8 14 6
2 11 15 4
3 7 5 –2
4 10 16 6
5 9 9 0
6 15 16 1
7 7 8 1
8 16 20 4

ΣD � 20; n � 8, sD � 2.93, D� � �
2
8
0
� � 2.5
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t � � � �
1
2
.0
.5
36
� � 2.41

t.05(7 ) � 2.365; t.01(7 ) � 3.499; 2.365 � 2.41 � 3.499; therefore, the re-
sults are significant at the .05 level (two-tailed), but not the .01 level.

(b) �lower � D� – t.01s D� � 2.5 – 3.499(1.036) � 2.5 – 3.62 � –1.12

�upper � D� � t.01s D� � 2.5 � 3.499(1.036) � 2.5 � 3.62 � �6.12

Because zero is contained in the 99% CI (–1.12 to �6.12), we know that
the null hypothesis cannot be rejected at the .01 level, two-tailed—
consistent with the result in part a.

(c) No, you cannot say that imagery instructions caused an increase in recall,
because the results could easily be due to a practice effect (participants
perform better the second time they do the task, because of the experi-
ence they gained from the first time).

Chapter 4

1. (a) 

No Image Image XY

8 14 112
11 15 165
7 5 35
10 16 160
9 9 81
15 16 240
7 8 56
16 20 320

ΣX � 83; ΣY �103; ΣXY � 1169; X�� 10.375; Y�� 12.875; s
x

� 3.462;
s

y
� 5.027; s 2

x
� 11.98; s

y

2 � 25.27

r � �

� �
1
1
4
7
.3
.4
4

� � .824

�
8 –

1
1

� [1169 – (8 
 10.375 
 12.875)]
����

17.4

�
N

1
– 1
� �∑XY – NX�Y��

���
s
x
s

y

2.5
�

�
2

�
.9

8�
3

�

D�
�

�
�
SD

N�
�
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t � � �
.

�
82

1
4�

– .
8
82�

–
4
2�
2�

� � �
�
2.0

.3
1
2
8
1�

� � 3.56

t.05(6) � 2.447 � 3.56; therefore, the results are significant at the .05
level.

t.01(6) � 3.707; the results are not significant at the .01 level.

(b) X�� 10.375; Y�� 12.875; s
x

� 3.462; s
y
� 5.027; s 2

x
� 11.98; s

y

2 � 25.27

t �

(10.375 – 12.875)

t � ��11.98 �

8
25.27
� – �2

t � � �
�

–
1
2
.
.
0
5
72�

� � 2.41

This formula yields exactly the same answer as the direct-difference
method presented in the previous chapter (unless you rounded off too
much during intermediate steps).

(c) Yes, the correlation can be significant, but the RM t test can fail to reach
significance because the numerator (the difference of the two means) is
too small. On the other hand, the correlation can be fairly low and not
significant, but the RM t test can reach significance because its numerator
is quite large.

2. (a) 

r � � � �
6.7

3
5
.4
28
� � .503

(b) t � � � � �
1
.8
.4
6
2
4
3
3

� � 1.646

t.05(8) � 2.306 � 1.646; therefore, the results are not significant at the .05
level.

.503�8�
��
�1 – .25�3�

.503�10 – 2�
��
�1 – .50�32�

r�N – 2�
�
�1 – r 2�

�
1
9

�(30.6)
�
6.7528

�
10

1
– 1
�[197 – (10 
 5.2 
 3.2)]

���
2.936 
 2.3

–2.5
���
�4.6562�5 – 3.5�84125�

2 
 .824 
 3.462 
 5.027
���

8

(X�1 – X�2)��

��
s2

1 �

N

s2
2�� – �

2r

N

s1s�2��

r�N – 2�
�
�1 – r 2�
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(c)

No. Pearson’s r is not a very good way to summarize the relation
between the two variables, because the relationship has a curvilinear
component.

(d) b
yx

� �
s

s

x

y
� r � �

2
2
.9
.3
36
� .503 � .7834 
 .503 � .394

a
yx

� Y�– b
yx

Y�� 3.2 – .394 (5.2) � 3.2 – 2.05 � 1.15

Y� � .394X � 1.15

Y� � .394(6) � 1.15 � 2.36 � 1.15 � 3.51

3. Younger: Modeling vs. Tutorial:

rpb ���
t 2 �

t 2

d�f
�� ���

3.2
3
6
.
2

2
�

6�2

95
�� ���

1
1
0
0
5
.6
.6
3
3

��� �.1006�� .317; g � .67

Older: Modeling vs. Tutorial: rpb ���
1.6

1
2

.
�

62� 48
�� � .225; g � .46

Modeling: Younger vs. Older: rpb ���
3.7

3
4
.
2

7
�

4�2

70
�� � .408; g � .98

-2
-2

0 2 4 6 8 10

0

2

4

6

8

Math

St
at

s
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Tutorial: Younger vs. Older: rpb ���
3.5

3
8
.
2

5
�

8�2

73
�� � .386; g � .84

Notice that as g gets larger, rpb gets larger ( however, although there is no
limit to how large g can get, rpb cannot be more than 1.0). The square of
rpb is approximately equal to the square of g divided by g-squared plus 4
(the approximation improves with larger sample sizes).

Chapter 5

1. N
T

� 44; n � 11; k � 4

(a) F � � � �
9
3
5
9
.
.
3
2
7
5

� � 2.43 dfbet � k – 1; dfw � N
T

– k

(b) F.05 (3, 40) � 2.84 � 2.43, so cannot reject null hypothesis.

(c) LSD � t.05 ��
2M

n

Sw��� 2.021��
2 


1
3
1
9.�25
��

� 2.021�7.136� � 2.021 
 2.67 � 5.4

Only placebo and Prozac differ by more than 5.4 points.

(d) HSD � q.05��
M

n

Sw��� 3.79��
39

1
.
1
25
��� 3.79 �3.568�� 3.79 
 1.89 � 7.16

None of the pairs differ by more than 7.16 points.

(e) HSD and LSD can produce different results because HSD is more con-
servative (i.e., it raises the critical value and does a better job of keeping
the experiment-wise alpha down to .05). With three groups, HSD is un-
necessarily conservative, but with four or more groups, LSD is consid-
ered too liberal, so HSD is preferred. Of course, in this example, it
wouldn’t be legitimate to use LSD anyway because the ANOVA was not
significant.

(f ) With four groups, there are six different pairs to test (i.e., 4 
 3/2 �
12/2), so c � 6.

11 
 8.67
�

�
15

4

7
�

ns
x�
2

�

�
∑

k

s 2

�
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�
pc

� �
�E

c

W� � �
.0
6
5
� � .0083

(g) �2 ��
dfbe

d

tF

fb

�
etF

dfw

���
3 


3
2.




4
2
3
.4
�

3
40

�� �
4
7
7
.2
.2
9
9

� � .154

so 15.4% of the variance in depression is accounted for by the drug con-
ditions.

2. L � .5 (9) � .5 (8) – .5 (4) – .5 (3) � 4.5 � 4 – 2 – 1.5 � 5

SScontrast � �∑
nL

c

2

2
� ��

.52 � .5
1

2

1
�


 5
.5

2

2 � .52
�� �

27
1
5

� � 275 � MScontrast

F � �
M

M
Sco

S
n

w

trast� � �
3
2
9
7
.2
5
5

� � 7.0.

If planned, Fcrit � F.05 (1, 40) � 4.08. Because 7.0 � 4.08, the contrast is sig-
nificant at the .05 level. The planned contrast was significant, even
though the omnibus ANOVA was not. This contrast takes advantage of
the fact that the means being averaged together are relatively close to-
gether. The contrast F is much higher than the ANOVA F, because much
of the SSbet from the ANOVA is included in the contrast, which has only
one df in its numerator.

If not planned, F
S
� dfbet 
 F.05 (3, 40) � 3 
 2.84 � 8.52. Because 7.0 �

8.52, this contrast is not significant by Scheffé’s test (which will always be
the case when the omnibus ANOVA is not significant, as in this ex-
ample). The advantage of planning a contrast in advance is that your cal-
culated F can be considerably higher than the ANOVA F, while the
critical value for the contrast is not very much higher than the critical F
for the ANOVA (4.08 vs. 2.84, in this example). If a contrast was not
planned, you are supposed to use Scheffé’s test, which greatly increases
your critical value (8.52 vs. 4.08, in this example).

3. (a) F � � � �
5
2
5
3
1
3
5
3
.
.
2
6

� � 2.36

dfbetween � k – 1 � 4

dfwithin � N
T

– k � 120 – 5 � 115

24 
 183.84
��

�
11

.
6
5
68
�

ns
x�
2

�

�
∑

k

s 2

�
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F.05 (4, 115) � 2.45 � 2.36, so cannot reject null hypothesis.

(b) L � – �
1
2

�(50) – �
1
2

�(70) � �
1
3

�(82) � �
1
3

�(86) � �
1
3

�(85)

� –25 – 35 � 27.33 � 28.67 � 28.33 � –60 � 84.33 � 24.33

SScontrast � � �
14,

.
2
8
1
3
0
3
.67

�

� 17,052.8 � MScontrast

F � �
M

M
Sco

S
n

w

trast� � �
1
2
7
3
,0
3
5
3
2
.6
.8

� � 7.31.

F.05(1, 115) � 3.92. Because 7.31 � 3.92, the contrast is significant at the
.05 level.

(c) L � –2 (50) � –1 (70) � 0 (82) � 1 (86) � 2 (85) 

� –100 – 70 � 86 � 170 � 86

SSlinear � � �
177

1
,
0
504
� � 17,750.4 � MSlinear

Flinear � �
M

M
Sl

S
in

w

ear� � �
1
2
7
3
,7
3
5
3
0
.6
.4

� � 7.61.

F.05(1, 115) � 3.92. Because 7.61 � 3.92, the linear trend is significant at
the .05 level.

SSbet � dfbet 
 MSbet � 4 
 5515.2 � 22,060.8.

SSresidual � SSbet – SSlinear � 22,060.8 – 17,750.4 � 4,310.4

dfresidual � dfbet – dflinear � 4 – 1 � 3, so MSresidual � �
431

3
0.4
� � 1436.8

Fresidual � �
M

M
Sre

S
si

w

dual� � �
1
2
4
3
3
3
6
3
.
.
8
6

� � .62

There is no evidence of significant higher-order trends.

24(862 )
���
–22 � –12 � 02 � 12 � 22

24 
 24.332

���
.52 � .52 � .332 � .332 � .332
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Chapter 6

1. (a) From Table A.5, � � 2.8; d � �
.
1
7
� � 1.43.

n � 2��
�

d
��2

� 2��
1
2
.4
.8
3

��2

� 2 
 1.962 � 2 
 3.84 � 7.7

Therefore, eight subjects would be needed in each group to have suffi-
cient power.

Based on the n found above, we would look under dfw � 12 (as our first
guess) in the k � 2 section of Table A.6, and estimate � � 2.18 to corre-
spond with .8 power; f � d/2 � 1.43/2 � .715.

n � ��
�

f
��2

� ��
2
.7
.1
1
8
5

��2

� 3.052 � 9.3

This estimate implies that dfw would be closer to 16, and therefore that
� would be closer to 2.11. This revised � leads to a sample size of 8.7,
which is consistent with dfw � 16. Thus, the sample size estimate from
Table A.6 is about 9. This estimate is higher than the one from Table
A.5, because Table A.6 takes into consideration that the critical value for
dfw � 16 is 2.12, rather than 1.96.

(b) n
h
� �

n

2

1

n

�
1n

n

2

2

� � �
2
4



�

4 


8
8

� � �
6
1
4
2
� � 5.33

� ���
5.

2
33
�� 1.43 � 1.633 
 1.43 � 2.34

From Table A.5, power is about .65 for a .05, two-tailed test.

� � f �n� � .714 �5.33� � 1.65

Looking in the k � 2 section of Table A.6 between dfw � 8 and dfw �

12, a � of 1.65 corresponds to about .56 power, a somewhat lower esti-
mate than the one given by the normal approximation in Table A.5.

(c) From Table A.5, � � 3.85.

3.85 � d��
5.

2
33
�� � d 
 1.633
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Therefore, d � 3.85/1.633 � 2.36. You can see that d would have to be
extremely large to have that much power with a .01 alpha and small
sample sizes.

(d) mean difference/.7 � 2.36, so the difference must be .7 
 2.36 � 1.65
degrees.

2. (a) From Table A.5, � � 2.6; you are given that d � .5 (i.e., means differ by
half of an SD).

n � 2��
�

d
��2

� 2��
2
.5
.6
��2

� 2 
 5.22 � 2 
 27.04 � 54.08

Therefore, about 54 participants would be needed in each group to have
a reasonable amount of power with a medium effect size.

(b) 2.6 ���
1 –

1
.4

����
2
n

�� 
 .5 � .5 �1.67���
2
n

�� � .645��
2
n

�� ;

so ��
2
n

�� � �
.6
2
4
.6
5

� � 4.03

Therefore, n � 2 
 4.032 � 2 
 16.224 � 32.45. The matching of subjects
allowed the size of each sample to be reduced from 54 to about 33 with-
out reducing power.

(c) From Table A.5, � � 2.48.

2.48 ���
1 –

1
�

����
1
2
8
�� 
 .5 � .5 
 3��

1 –
1

�
�� � 1.5��

1 –
1

�
��

so ��
1 –

1
�

�� � �
2
1
.4
.5
8

� � 1.653

Therefore, � � 1 – (1/1.6532) � 1 – .366 � .634. To have adequate
power with relatively small samples and a medium effect size, a rather
high degree of matching is needed.

3. (a) 3.1 � .35�N – 1�; so �N – 1� � �
3
.3
.1
5
� � 8.86

Therefore, N � 8.862 � 1 � 78.45 � 1 � 79.45; about 80 cases would
be needed to achieve the stated level of power, with � � .35.
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(b) From Table A.5, � � 2.8.

2.8 � ��26 – 1� � 5�; so � � �
2
5
.8
� � .56

The effect size has to be large to have .8 power with a fairly small
sample.

4. (a) Given k � 4; n � 9; f � .5. dfw � (4 
 9) – 4 � 36 – 4 � 32, � � f �n� �

.5�9� � 1.5.

Looking in the k � 4 section of Table A.6 with dfw about 30, a � of 1.5
corresponds to about .65 power (about midway between the entries for
1.4 and 1.6, which are .58 and .71, respectively).

(b) With an f of .2 and k � 4, it is a good guess to use the bottom (i.e., infi-
nite) row of the k � 4 section of Table A.6. A � of 1.4 corresponds to
.64 power, so we will use 1.42 for .65 power.

1.42 � .2�n�; so, �n� � �
1.
.
4
2
2

� � 7.1

Therefore, n � 7.12 � 50.4. About 51 subjects are needed in each of the
four groups, which corresponds to a dfw of 200, which is consistent with
assuming an infinite dfw to look up our value for �.

(c) Given k � 4 and n � 9, so dfw � 32. Looking in the k � 4 section of
Table A.6 along the dfw � 30 row, we see that a � of 1.8 corresponds to
the desired power of .82.

1.8 � f �9� � 3f; so f � �
1
3
.8
� � .6

To obtain power as high as .82 with only 9 participants per group, f has
to be quite large (i.e., 6).
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Chapter 7

1. (a)

Placebo St. John’s Wort Elavil Prozac Row Means

Men 9 8 4 3 6
Women 8 2 5 1 4
Column means 8.5 5 4.5 2 Grand mean: 5

n � 11; N
T

� 88; c � 4; r � 2; dfw � rc (n – 1) � 4 
 2 (11 – 1) � 80

SSbetween-cell� N
T

�2 (cell means) � 88 
 8 � 704

SSdrug � N
T

�2 (8.5, 5, 4.5, 2) � 88 
 5.375 � 473

SSgender � N
T

�2 (6, 4) � 88 
 2 � 176

SSinter � SSbetween-cell – SSrow – SScolumn � 704 – 176 – 473 � 55

MSgender � � �
17
1
6

� � 176; MSdrug � � �
47
3
3

� � 157.67

dfinter � (r – 1)(c – 1) � (2 – 1)(4 – 1) � 3; MSinter � �
S
d
S
fi

i

n

n

t

t

e

e

r

r�

� �
5
3
5
� � 18.33

Fgender � � �
1
3
7
2
6

� � 5.5; Fdrug � � �
15

3
7
2
.67
� � 4.93;

Finter � �
M
M

S
S
in

w

ter� � �
18

3
.
2
33
� � .57

F.05(1, 80) � 3.96 � 5.5, so the main effect of gender is significant at the
.05 level. F.05 (3, 80) � 2.72 � 4.93, so the main effect of drug is also sig-
nificant at the .05 level. However, Finter is less than 1.0, so it cannot be
significant.

(b) Men:

F � �
M
ns

S
x�
2

w

� � �
11 


32
8.67
� � �

95
3
.
2
37
� � 2.98

F.05(3, 40) � 2.84 � 2.98, so the simple main effect of drug is significant
for the men.

MSdrug
�

MSw

MSgender
�

MSw

SSdrug
�
dfdrug

SSgender
�
dfgender
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Women:

F � �
11

3



2
10

� � �
1
3
1
2
0

� � 3.44

3.44 � 2.84, so the simple main effect of drug is also significant for the
women.

(c) L � (8 – 2) – (4 – 5) � 6 – (–1) � 6 � 1 � 7

SScontrast ��
12 � 1

1
2

1
�


 7
1

2

2 � 12
�� �

53
4
9

� � 134.75 � MScontrast

F � �
M

M
Sco

S
n

w

trast� � �
13

3
4
2
.75
� � 4.21; F.05 (1, 80) � 3.96.

Because 4.21 � 3.96, this interaction contrast would be significant if
planned.

F
S
� dfinter 
 F.05(3, 80) � 3 
 2.72 � 8.16 � 4.21, so this contrast would

not be significant by Scheffé’s test (consistent with the fact that the inter-
action in the entire ANOVA was not significant).

2. (a) N
T

� 147

Marginal means: Younger � 34.44; Older � 27.835; Modeling � 33.185;
Tutorial � 29.09

SSbetween-cell � N
T

�2 (cell means) � 147 
 15.1625 � 2228.9

SSage � N
T

�2(34.44, 27.835) � 147 
 10.906 � 1603.2

SSmethod � N
T

�2(33.185, 29.09) � 147 
 4.192 � 616.3

SSinter � SSbetween-cell – SSrow – SScolumn � 2228.9 – 1603.2 – 616.3 � 9.4

Because the df for all of the above effects is 1,

MSage � 1603.2; MSmethod 616.3; MSinter � 9.4

MSw �

� �
74

1
7
4
4
3
.35
� � 52.27

Fage � �
1
5
6
2
0
.2
3
7
.2

� � 30.67; Fmethod � �
6
5
1
2
6
.2
.3
7

� � 11.79; Finter � �
5
9
2
.
.
4
27
� � .18

(52 – 1)6.692 � (45 – 1)7.192 � (20 – 1)8.512 � (30 – 1)7.292

������
52 � 45 � 20 � 30 – 4
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F.05(1, 143) � 3.90. The two main effects are easily significant at the .05
level, but the interaction is obviously not close to significance.

(b) � �
.12

4
48
� � .0312;

therefore, the harmonic mean of the cell sizes � 1/.0312 � 32.055.
There are four cells, so NH (the adjusted total N ) � 4 
 32.055 �

128.22. Recalculating the SSs with 128.22 in place of 147 yields the fol-
lowing results:

SSage � 1398.4; SSmethod � 537.5; SSinter � 8.2, which leads to the follow-
ing adjusted F ratios:

Fage � �
1
5
3
2
9
.2
8
7
.4

� � 26.75; Fmethod � �
5
5
3
2
7
.2
.5
7

� � 10.28; Finter � �
5
8
2
.
.
2
27
� � .16

All of the F ratios are somewhat smaller, as is generally the case with an
unbalanced factorial ANOVA (the analysis of unweighted means effec-
tively subtracts the overlapping of the different effects).

3. (a) This is a 4 � 2 � 2 ANOVA, so there are a total of 16 cells. Assuming a
balanced design, n � 128/16 � 8, and dfw � 128 – 16 � 112. The nu-
merator MSs are created by dividing each given SS by its corresponding
df, as shown below:

MSrelax � �
64

1
.4
� � 64.4; MSdark � �

31
1
.6
� � 31.6; MSemotion � �

22
3
3.1
�

� 74.367

MSemo�relax � �
16

3
7.3
� � 55.77; MSemo�dark � �

51
3
.5
� � 17.17; MSrel�dark

� �
12

1
7.3
� � 127.3

MSemo�rel�dark � �
77

3
.2
� � 25.73

SSw is found by subtracting SSbetween-cells from SStotal, which was given
(2,344). SSbetween-cells is found by summing the seven numerator SSs that
were given. SSbetween-cells � 64.4 � 31.6 � 223.1 � 167.3 � 51.5 � 127.3

�
5
1
2
� � �

4
1
5
� � �

2
1
0
� � �

3
1
0
�

���
4
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� 77.2 � 742.4. Therefore, SSw � 2344 – 742.4 � 1,601.6, and MSw �

1,601.6/112 � 14.3. The F ratios are

Frelax � �
6
1
4
4
.
.
4
3

� 4.5; Fdark � �
3
1
1
4
.
.
6
3

� � 2.21; Femotion � �
74
1
.
4
3
.
6
3
7

� � 5.2;

Femo�relax � �
5
1
5
4
.7
.3
7

� � 3.9

Femo�dark � �
1
1
7
4
.1
.3
7

� � 1.2; Frel�dark � �
1
1
2
4
7
.3
.3

� � 8.9;

Femo�rel�dark � �
2
1
5
4
.7
.3
3

� � 1.8

F.05 (1, 112) � 3.92, so the main effect of relax and its interaction with
dark are significant, but the main effect of dark is not. F.05(3, 112) �
2.68, so the main effect of emotion and its interaction with relax is sig-
nificant, but the interaction of emotion and dark is not significant, nor is
the three-way interaction.

(b) Hypothetical Means for Blood Pressure
At room type � normal

Happy
100

Sad Angry Fearful

110

120

130

140

150

Emotion Condition

relaxed

not relaxed

Relaxation Exercise
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Hypothetical Means for Blood Pressure
At room type � dark

(c) The significant relax by dark interaction could be followed up by compar-
ing the relax condition for the normal and dark rooms, and the no relax
condition for the two rooms. In addition (or alternatively), the two rooms
can be compared separately for the relax and no relax conditions. The sig-
nificant main effect of emotion can be followed by comparing pairs of
emotion means, but the significant emotion by relax interaction suggests
that it may be preferable to test the simple main effect of emotion sepa-
rately for the relax and no relax conditions. Depending on which of these
simple main effects reaches significance, the emotion means can be com-
pared separately for the relax and/or the no relax condition.

Happy
100

Sad Angry Fearful

110

120

130

140

150

Emotion Condition

relaxed

not relaxed

Relaxation Exercise
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4. Cell Means for Eye Movements
At instructions � subvocal

Cell Means for Eye Movements
At instructions � imagery

Yes, there appears to be a three-way interaction, because the problem
type by difficult interaction is much larger for the group given imagery
instructions than it is for the group given subvocalization instructions.

easy
0

hard

1

2

4

7

8

moderate

Difficulty Level

spatial

verbal

Problem Type

6

5

3

easy
0

hard

1

2

4

7

8

moderate

Difficulty Level

spatial

verbal

Problem Type

6

5

3
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Chapter 8

1. (a) Expect Sound (N
T

� 18, n � 6, c � 3)

SStotal � N
T

�2 (all scores) � 18 
 1.444 � 26

SSsubject � N
T

�2 (subject means) � 18 
 .926 � 16.67

SSRM � N
T

�2 (1.167, 1.833, 2.0) � 18 
 .13 � 2.33

SSsub�RM � SStotal – SSsub – SSRM � 26 – 16.67 – 2.33 � 7

MSRM � �
S
d
S
fR

R

M

M� � �
2.

2
33
� � 1.167

dfsub�RM � (c – 1)(n – 1) � 2 
 5 � 10

MSsub�RM � �
1
7
0
� � .7

F � �
M

M
Ss

S

ub

R

�

M

RM

� � �
1.1

7
67
� � 1.667

F.05(2, 10) � 4.10

1.667 � 4.1, so this effect is not significant.

Source SS df MS F p

Subject 16.67 5
Treatment 2.33 2 1.167 1.667 �.05
Interaction 7 10 .7
Total 26 17

Ignore Sound (N
T

� 18, n � 6, c � 3)

Source SS df MS F p

Subject 13.33 5
Treatment 32.33 2 16.165 13.10 �.01
Interaction 12.34 10 1.234
Total 58 17

Reject null hypothesis; this effect is significant.
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(b) No. Ignore Sound is not significant, not assuming sphericity can only
make it further from reaching significance. For Expect Sound, the con-
servatively adjusted critical value (based on ε � .5) is F.05(1, 5) � 6.61.
Because 13.1 � 6.61, this effect is significant without making any as-
sumption about sphericity in the population.

2. (a)

Source SS df MS F p

Subject 230.75 7
Treatment 25 1 25 5.83 .046
Interaction 30 7 4.286
Total 285.75 15

The matched t was 2.41 for these data; 2.412 � 5.81. The slight discrep-
ancy with the F found above is due to rounding off.

(b)

Participant No Subject Order
# Imagery Imagery Means Means

No image 1 8 14 11 13.75
first 2 11 15 13

4 10 16 13
8 16 20 18

X�� 11.25 X�� 16.25
Imagery 3 7 5 6 9.5
first 5 9 9 9

6 15 16 15.5
7 7 8 7.5

X�� 9.5 X�� 9.5
Column
means 10.375 12.875 11.625

From part a, we know that SStotal � 285.75, SSRM � 25, and SSsub �

230.75.

SSorder � N
T

�2(13.75, 9.5) � 16 
 4.5156 � 72.25

SSw � SSsub – SSorder � 230.75 – 72.25 � 158.5

SSbetween-cells � N
T

�2(11.25, 9.5, 16.25, 9.5) � 16 
 7.641 � 122.25
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SSinter � SSbetween-cells – SSRM – SSgroups � 122.25 – 25 – 72.25 � 25

SSwithin-cells � SStotal – SSbetween-cells � 285.75 – 122.25 � 163.5

SSsub�RM � SSwithin-cells – SSw � 163.5 – 158.5 � 5

MSRM � �
2
1
5
� � 25 MSorder � �

72
1
.25
� � 72.25 MSinter � �

2
1
5
� � 25

dfw � N
S
– k � 8 – 2 � 6; MSw � �

15
6
8.5
� � 26.417

dfsub�RM � (N
S
– k)(c – 1) � 6 
 1 � 6; MSsub�RM � �

5
6

� � .833

Forder � �
M
M
S
S
or

w

der� � �
2
7
6
2
.4
.2
1
5
7

� � 2.735 FRM � �
M

M
Ss

S

ub

R

�

M

RM

� � �
.8
2
3
5
3

� � 30.0

Finter � �
M

M
Ss

S

ub

in

�

te

R

r

M

� � �
.8
2
3
5
3

� � 30.0 F.05(1, 6) � 5.99

The main effect of the RM factor (imagery vs. no imagery) is significant,
and so is the order by treatment interaction. The main effect of order,
however, is not significant. For the next problem, we will show how the
results of a mixed design look in a summary table.

(c) The significant order by treatment interaction tells you that order effects
influenced your data. Fortunately, the lack of a main effect of order sug-
gests that you have only simple order effects, rather than differential
carry-over effects. Removing the interaction from the error term resulted
in an increase in the F ratio for the main effect of treatment—from a
barely significant 5.83 to 30.
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(d) Cell Means by Type of Instructions and Order

The interaction in the graph suggests differential carry-over effects (be-
ing in the second position has a very different effect on the Imagery con-
dition as compared to the No Imagery condition). In this case, the
interaction falls short of significance, but that is not surprising given the
very small sample sizes. You could use the data only from each partici-
pant’s first condition, but in this case you would lose your imagery effect.
It would be best to redesign the experiment based on matching pairs of
subjects to avoid carry-over effects (once given imagery instructions, it
would be difficult to not use those instructions, even when asked not to).

3. (a)

Participant # None Mild Moderate Strong X�subj X�group

Placebo 1 2 5 11 10 7.00
2 0 8 4 9 5.25
3 7 9 13 12 10.25 7.875
4 3 12 10 11 9.00

X�cell 3 8.5 9.5 10.5

Had condition first
8

Had condition second

10

12

14

16

18

Order

imagery

no imagery

Instructions

R
ec

al
l S

co
re

s
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Participant # None Mild Moderate Strong X�subj X�group

Caffeine 5 3 7 8 6 6.00
6 2 6 6 9 5.75
7 5 8 7 7 6.75 6.25
8 4 9 5 8 6.50

X�cell 3.5 7.5 6.5 7.5
X�RM 3.25 8.0 8.0 9.0 X�G � 7.0625

Source SS df MS F p

Between-cells 198.875
Subject 81.875

RM 160.375 3 53.458 15.971 �.05
Group 21.125 1 21.125 2.086 �.05 (n.s.)
Interaction 17.375 3 5.792 1.73 �.05 (n.s.)
Within-group 60.75 6 10.125
Sub � RM 60.25 18 3.347
Total 319.875 31

F.05(1, 6) � 5.99 F.05(3, 18) � 3.16

(b) Cell Means for Number of Errors

1
2

2 3 4

4

6

8

10

12

Distraction Level

placebo

caffeine

Drug Group
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You can see some interaction in the graph, but it is not dramatic, so it is
not surprising that the interaction is not near significance. You can see
some main effect of drug group, but with small sample sizes and a be-
tween-group comparison (i.e., no repeated measures on this factor), it is
again not surprising that this effect falls short of significance. However,
the main effect of distraction level is rather strong, especially between
none and mild. Given the extra power of repeated measures, this effect is
easily significant.

(c)

Participant # None Mild Moderate Strong Linear

Placebo 1 2 5 11 10 30
2 0 8 4 9 23
3 7 9 13 12 19
4 3 12 10 11 22

Caffeine 5 3 7 8 6 10
6 2 6 6 9 21
7 5 8 7 7 5
8 4 9 5 8 8

Source SS df MS F p

Linear trend 312.5 1 312.5 8.89 .025
Within-group 211.0 6 35.167
Total 523.5 7

Chapter 9

1. (a) 

No Imagery Imagery Imagery–No Imagery (Sign)

8 14 �

11 15 �

7 5 –
10 16 �

9 9 (0)
15 16 �

7 8 �

16 20 �
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The zero difference is deleted, so there are only seven events that could
be either plus or minus. The total number of possibilities, therefore, is 27

� 128. For these data there is only one minus sign. There are seven ways
that that can happen, so the probability of getting one minus sign is
7/128 � .0547. However, we must add the more extreme result of get-
ting no minus signs, which can happen only one way, so its probability is
1/128 � .0078. The total one-tailed p � .0547 � .0078 � .0625. This p is
not less than .05, so the results are not significant with a one-tailed test,
and certainly not with a two-tailed test ( p � 2 
 .0625 � .125). The RM t
was equal to 2.41, which has a p just a little less than .05. The sign test
throws away all the quantitative information concerning the differences,
and generally has less power, which is why it failed to reach significance,
even though the RM t test was significant.

(b) z ��
X

�
– N

N

P

P


Q�

– .5
���

1

�

–

7

7







.

.

5

5

 .�

–

5�

.5
���

1 –

�
3
1
.5
.7

5�
– .5

�� �
1.3

2
23
� � 1.51

z .05, 1-tailed � 1.645 � 1.51, so cannot reject null hypothesis; a result
that is not significant with a one-tailed test will not be significant with a
two-tailed test.

(c)

Imagery–No Imagery Positive Ranks Negative Ranks

6 1.5
4 3.5

–2 5
6 1.5
0
1 6.5
1 6.5
4 3.5

Sum of ranks 23 5

The smaller sum is 5, so T � 5.

z � � � �
5

�
–

3
1
5�
4

�

� �
5.

–
9
9
16
� � –1.52

5 – .25 
 7(7 � 1)
���

��7(7 ��1
2
)(
4
14 �� 1)
��

T – .25N(N � 1)
���

��N(N �� 1
2
)
4
(2N�� 1)
��
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Notes that the z from Wilcoxon’s test happens to be very similar to the z
from the sign test on the same data, although often it will be consider-
ably larger. The Wilcoxon test also fails to reach significance at the .05
level for either a one-tailed or two-tailed test.

(d) For Spearman’s correlation, each set of scores is ranked separately:

Ranks for No Imagery Ranks for Imagery

6 5
3 4
7.5 8
4 2.5
5 6
2 2.5
7.5 7
1 1

Pearson’s r calculated for these two sets of ranks is .928, so r
s
� .928.

The Pearson’s r for the original scores (i.e., not ranked) is .82, somewhat
lower.

2. (a) Agree to Return:

�2 � ∑�
( f0 –

fe

fe )2

� � �
(18

1
–
5
15)2

� � �
(16

1
–
5
15)2

� � �
(10

1
–
5
15)2

� � �
(16

1
–
5
15)2

�

� �
3
1
6
5
� � 2.4

�2
.05(3) � 7.81; �2

obs � �2
crit; therefore, do not reject null hypothesis.

Do Not Agree:

�2 � ∑�
( f0 –

fe

fe )2

� � �
(7 –

10
10)2

� � �
(9 –

10
10)2

� � �
(15

1
–
0
10)2

� � �
(9 –

10
10)2

�

� �
3
1
6
0
� � 3.6

�2
.05(3) � 7.81; �2

obs � �2
crit ; therefore, do not reject null hypothesis.

No, the type of experimenter did not make a significant difference in ei-
ther case.
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(b) �
(18

1
–
5
15)2

� � �
(16

1
–
5
15)2

� � �
(10

1
–
5
15)2

� � �
(16

1
–
5
15)2

� � �
(7 –

10
10)2

�

� �
(9 –

10
10)2

� � �
(15

1
–
0
10)2

� � �
(9 –

10
10)2

� � 6.0

�2
.05(3) � 7.81; �2

obs � �2
crit ; therefore, do not reject null hypothesis.

If all of the entries were doubled, �2 would become 2 
 6.0 � 12
� �2

.05(3) � 7.81, so in this case you could reject the null hypothesis.

(c) �2 � ∑�
( f0 –

fe

fe )2

� � �
(18

1
–
4
14)2

� � �
(7 –

11
11)2

� � �
(10

1
–
4
14)2

� � �
(15

1
–
1
11)2

�

� �
3
1
2
4
� � �

3
1
2
1
� � 5.2

�2
.05(1) � 3.84 � 5.2, so the results are significant at the .05 level.

�2 � �2/N � 5.2/50 � .104, so � � �.104� � .32. As a correlation co-
efficient, .32 is a medium-sized effect.

3. (a) For the Mann-Whitney test, all of the scores (16 for this problem) are
ranked with respect to each other as one big group, and then the ranks
are separated according to which subgroup the score comes from, as
shown below.

DB Rank NDB Rank

3 5.5 0 14
5 3 2 7.5
0 14 1 10
9 1 0 14
1 10 2 7.5
7 2 0 14
4 4 3 5.5

1 10
0 14

Sum 39.5 96.5

n
s
� 7; n

L
� 9; S

s
� 39.5; S

L
� 96.5; N � 16
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z � � � �
�

–
8
2
9
0
.25�
� � –2.12

2.12 � 1.96 (z .05, 2-tailed); therefore, reject the null hypothesis.

(b) Kruskal-Wallis test:

H � �
N(N

12
� 1)
�∑

K

i�1
��

S

n

i

2

i

�� – 3(N � 1) ∑
K

i–1

� �
39

7
.52

� � �
96

9
.52

� � 1257.58

so H � �
16(1

1
6
2
� 1)
� 
 1257.58 – 3(16 � 1) � 55.46 – 51 � 4.46

If you square the z from 3a, you get –2.122 � 4.49, which differs from H
only because of rounding error.

4. For the Friedman test, scores are ranked among the several conditions
separately for each subject, as shown for Table 8.2:

Expect Classic Popular Noise

1 2 2.5 2.5
2 1.5 1.5 3
3 2 1 3
4 1 2.5 2.5
5 1.5 3 1.5
6 2.5 2.5 1
Sum 9.5 13 13.5

Ignore Classic Popular Noise

1 1.5 1.5 3
2 1 2 3
3 1 2 3
4 1 2 3
5 1.5 1.5 3
6 2 1 3
Sum 8 10 18

39.5 – .5(7)(16 � 1)
��

��
7 
 9(1

1�6
2

� 1)
��

S
s
– .5(n

s
)(N � 1)

��

��
n

s
n

L
(N
12�� 1)
��
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Expect (N � 6, c � 3):

F
r
� �

Nc (
1
c

2
� 1)
�∑

c

i�1

S
i

2 – 3N(c � 1)

� �
6 
 3(

1

3

2

� 1)
� [(9.52 ) � (132 ) � (13.52 )] – 3 
 6(3 � 1)

� �
1
7
2
2
�(441.5) – 72 � 73.583 – 72 � 1.583

Because 1.583 � �2
.05(2) � 5.99, the results are not significant for this

group.

Ignore (N � 6, c � 3):

F
r
� �

1
7
2
2
�[(82 ) � (102 ) � (182 )] – 72 � �

1
6

�(488) – 72 � 81.33 – 72 � 9.33

Because 9.33 � �2
.05(2) � 5.99, the results are significant for this group.

These statistical conclusions agree with those in the first exercise of
Chapter 8: significant for Ignore, but not significant for Expect.
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This book covers all of the common nonparametric statistical procedures in detail, explaining, for in-

stance, what to do when some cases are tied. It also supplies significance tables for small samples.
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Index

Addition rule, 202
Adjacent value, 24
Alpha level, 35

experiment-wise, 108
per comparison, 108

Alternative hypothesis distribution
(AHD). See Power analysis, two-
group cases

American College Test (ACT), 84
American Psychological Association,

Publication Manual of the, 56, 137
Analysis of weighted means, 101
Analysis of unweighted means, 101, 

168
ANCOVA, 161, 184
ANOVA:

one-way
complex comparisons (see Multiple

comparisons)
effect size, 106–107
equal-sized groups and, 99–100
factorial design and, 146–148
F distributions, 102–103
formula, 100–102
F ratio, 100, 103–104
general linear model and, 165–167
homogeneity of variance, 104–

105
overview, 97–98
summary table, 105
trend analysis, 117–118
t test and, 97, 98–99
See also Power analysis

repeated-measures
one-way RM design, 172–173

assumptions, 176–177
calculating, 173–174
carryover effects, 181–182
comparisons, 174–176
MANOVA alternative, 178–179
post hoc comparisons, 179–180
simple order effects, counter-

balancing and, 180–181
sphericity

test of (Mauchly’s W), 177
violations of, 177–178

trend analysis, 183–184
overview, 172
two-way mixed design, 184–186

assumptions, 189
between-subjects part, 186–187
grouping factors and, 190–191
order as a factor and, 191–193
post hoc comparisons, 189–190
within-subjects part, 187–188

two-way RM design, 194
three-way

example, 162–163
general linear model and, 165–167
higher-order designs, 165
overview, 161–162
post hoc tests, 164–165
varieties, 163–164

two-way
balanced, 147, 150
factorial design, 146–148
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nested design, 148–150
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Goodness of fit test, 208
Gossett, William, 52–53

Heteroscedasticity, 91
Histograms, 7–9

distribution and
normal, 17
shape of, 10–11

vs. stem-and-leaf plot, 24
Homogeneity of variance:

and one-way ANOVA, 104–105
and RM ANOVA, 176–177
and the two-group t test, 54–56

Homoscedasticity, 91
Honestly Significant Difference (HSD)

test, 110–111, 112, 189
H-spread, 24

Independent events, 202–203
Independent-groups t test:

assumptions, 57–58
comparison, calculating a test for, 51–

52
confidence interval, 59–60
effect size, 60–61
homogeneity of variance

interpreting results, 55–56
testing, 54–55

overview, 48–49
pooled-variances t test, 54
reporting calculated t value, 56
separate-variances t test, 53
significant t test, interpreting, 58–59

284 INDEX



standard error of the difference, 50–51
t distribution, 52–53

Inferential statistics, 1, 2, 28
Inner fences, 24
Interaction:

disordinal, 155
ordinal, 154
partial, 159–160

Interaction contrasts, 145–146
Internal reliability, 75–76, 79
Interrater agreement, 212–214
Interrater reliability, 75, 79
Interval estimation. See Confidence In-

tervals
Interval scale. See Scale, interval

Kappa. See Cohen’s kappa
Kelvin temperature scale. See Scale,

Kelvin temperature
Kolmogorov-Smirnov test, 21–22
Kruskal-Wallis test, 217–218
Kurtosis, measuring, 21–22

Latin Square (L-S) design, 181
digram-balanced, 181 

Least Significant Difference (LSD) test,
109–110, 179, 189

modified, 111
Least squares property, 89
Leptokurtic, 21
Levene’s test, 55, 104
Likert, Rensis, 3
Likert scale. See Scale, Likert
Limits:

apparent, 8
real, 8

Linear contrasts, 114–115
Linear correlation. See Correlation
Linear transformation. SeeTransformations

Mann-Whitney test, 57, 214–215
assumptions of, 216–217
ties, dealing with, 215–216
U statistic, 216

MANOVA, 146, 178–179
Matched-pairs design, 65 
Matched (pairs) t test. See Repeated-

measures t test
Mauchly’s W. See ANOVA, repeated-

measures
Mean, 15

arithmetic, 2
cell, 150
geometric, 2
grand, 100, 101
harmonic, 2, 131
marginal, 150
sampling distribution of (SDM), 30–

31, 32
standard error of, 32
trimmed, 22
weighted. See Average, weighted

Mean deviation, 13–14
vs. standard deviation, 15

Mean of Squares or mean-square (MS),
100–101

Median, 7, 15
Mesokurtic, 21
Meta-analysis. See Power analysis, meta-

analysis
Mode, 6, 15
Multinomial distribution, 205
Multiple comparisons:

Bonferroni test, 112–113
Complex comparisons

planned, 113–116
post hoc, 116–117

Dunn test, 113
Dunnett test, 111, 112

INDEX 285



HSD test, 110–111, 112
LSD test, 109–110

modified, 111
Newman-Keuls (N-K) test, 111
Pairwise comparisons, 107
Protected t tests, 107–109
REGW test, 111
Scheffé’s test, 116–117, 159

Multiplication rule, 202–203
Mutually exclusive, 202

Nested design. See ANOVA, two-way
Newman-Keuls (N-K) test. See Multiple

comparisons
Neyman, Jerzy, 122
Nominal scale. See Scale, nominal
Nonparametric statistics:

categorical data, tests for, 199–214
ordinal data, tests for, 214–222
overview, 199

Normal distribution:
equation for, 16, 19
standard, 18–19

table for, 226–230
See also Distribution

Null hypothesis distribution (NHD), 
36

one-group experiments and, 40
one-way ANOVA and, 102
Pearson’s r and, 76–78

Null hypothesis testing (NHT or
NHST):

alpha levels, 35
critical values, 37–38
debate over (when NHST is useful),

140–142
logic of, 35–36

one-sample tests, problems with, 40–
41

one- vs. two-tailed tests, 38–40
overview, 33–34
two-group case and, 60, 62, 63
Type I errors, 35, 36, 37
Type II errors, 36–37

Omega squared, 93, 106
One-tailed test:

ANOVA as a, 102–103 
the chi-square test as a, 207 
and the two-group t test, 38–40

Order effects. See Effect
Ordinal scale. See Scale, ordinal
Origin, 88
Orthogonal contrasts, 115–116
Outliers, 22

bivariate, 82–83
boxplot and, 24, 25

Parameters, 2, 16
noncentrality, 124

Participant, vs. subject, 6
p value, 35
Pearson, Egon, 122
Pearson, Karl, 73, 210
Pearson’s r. See Correlation, Pearson’s r
Percentile, 9
Percentile rank (PR), 6–7, 9
Phi coefficient, 211
Platykurtic, 21
Point estimate, 29
Polynomial trend components, 118
Population, 1–2, 28–29
Power analysis, 37

ANOVA, one-way, 134–137
confidence intervals, 137–138

286 INDEX

Multiple comparisons (continued )



correlation tests, 133–134
meta-analysis, 138–140
NHST and, 122–123, 125, 140–142
overview, 122–123
repeated-measures designs, 132–133
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