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AGUSTÍN RAYO
and

GABRIEL UZQUIANO

CLARENDON PRESS ·OXFORD



1
Great Clarendon Street, Oxford  

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi

New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

 the several contributors 2006

The moral rights of the authors have been asserted
Database right Oxford University Press (maker)

First published 2006

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,

without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate

reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,

Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose the same condition on any acquirer

British Library Cataloguing in Publication Data

Data available

Library of Congress Cataloging in Publication Data

Data available

Typeset by Laserwords Private Limited, Chennai, India
Printed in Great Britain

on acid-free paper by
Biddles Ltd., King’s Lynn, Norfolk

ISBN 0–19–927642–0 978–0–19–927642–4
ISBN 0–19–927643–9 (Pbk.) 978–0–19–927643–1 (Pbk.)

1 3 5 7 9 10 8 6 4 2



Acknowledgements

We are grateful to a number of people for the help they have given us in editing
this collection. We would like to thank Peter Momtchiloff for conceiving the pro-
ject, and for his tireless enthusiasm throughout the process. Thanks are also due to
Susan Beer, Catherine Berry, and Sarah Nattrass for their friendly, efficient, and for-
giving work during the final stages of publication. We are grateful to an anonymous
reader for critiquing the entire typescript, and to Matti Eklund and John MacFar-
lane for their thoughtful comments on our own contributions. We are also grateful
to our authors, who went far beyond the call of duty by reading through the intro-
duction and each other’s chapters and sending detailed comments. This substantially
improved the volume by smoothing out rough-edges and encouraging a healthy debate
amongst contributions (special thanks in this regard are due to Kit Fine). Finally, we
would like to thank Salvatore Florio and Alejandro Pérez Carballo for their excep-
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1
Introduction

Agustín Rayo and Gabriel Uzquiano

1.1 THE PROBLEM OF ABSOLUTE GENERALITY

Absolutely general inquiry is inquiry concerning absolutely everything there is. A
cursory look at philosophical practice reveals numerous instances of claims that strive
for absolute generality. When a philosopher asserts (1), for example, we generally take
the domain of her inquiry to comprise absolutely everything there is:

(1) There are no abstract objects.

When presented with a purported counterexample, we do not regard it as open to the
philosopher to reply that certain abstract objects are not relevant to her claim because,
despite the fact they exist, they lie outside of her domain of inquiry.

Whether or not we achieve absolute generality in philosophical inquiry, most
philosophers would agree that ordinary inquiry is rarely, if ever, absolutely general.
Even if the quantifiers involved in an ordinary assertion are not explicitly restricted,
we generally take the assertion’s domain of discourse to be implicitly restricted by
context.¹ Suppose someone asserts (2) while waiting for a plane to take off:

(2) Everyone is on board.

We would not wish to attribute her the claim that absolutely everyone in the universe
is on board, only the claim that everyone in a group of contextually relevant people is
on board.

The topic of this volume is the question whether we are able to engage in absolutely
general inquiry, and, more importantly, whether we do as a matter of fact engage
in absolutely general inquiry in philosophical and non-philosophical practice. This
question breaks down into two related but distinct subquestions:

¹ The question of how this restriction takes place is a delicate and hotly contested issue.
According to the standard approach, the phenomenon of quantifier domain restriction is a semantic
phenomenon. But Bach (2000) has argued that it is best understood as a pragmatic phenomenon. In
what follows, we shall assume the semantic approach for expository purposes. For a characterization
of the standard view, and a discussion of the various forms it might take, see Stanley and Szabó
(2000).



2 Agustín Rayo and Gabriel Uzquiano

  

Is there an all-inclusive domain of discourse?

  

Could an all-inclusive domain be available to us as a domain of inquiry?

In the special case of linguistic inquiry, it is natural to suppose that the availab-
ility question comes down to the question of whether our utterances could ever
involve genuinely unrestricted quantifiers—quantifiers unburdened by any (non-
trivial) restriction whatever, contextual or otherwise.

It may be of interest to note that the possibility of unrestricted quantification does
not immediately presuppose the existence of an all-inclusive domain. One could deny
that there is an all-inclusive domain and nevertheless grant that some of our quantifi-
ers are sometimes unrestricted.² One could claim, for example, that although there is
no all-inclusive domain, there are utterances of (1) in which no linguistic or contex-
tual mechanisms impose any restrictions whatever on the quantifier. Such utterances
would not be absolutely general since the quantifiers would not range over an all-
inclusive domain, but they would nonetheless be unrestricted.³ (It is an interesting
question, however, what the truth-conditions of an unrestricted but non-absolutely
general utterance would consist in.)⁴ If, on the other hand, one believed both that
there is an all-inclusive domain and that our quantifiers are sometimes genuinely
unrestricted, then one should presumably believe that our discourse is sometimes
absolutely general.

A word on our use of the term ‘domain’. We shall be careful not to assume that the
existence of an all-inclusive domain requires the existence of a set (or set-like object)
of which all objects are members. More generally, when we speak of a domain con-
sisting of certain objects, we shall not assume that there must be a set (or set-like
object) of which all and only the objects in question are members; the only require-
ment we take for granted is that there be such objects. We will return to this point in
Section 1.2.2.

1.1.1 A Disclaimer

It would be disingenuous to suggest that we have taken a neutral stance in our char-
acterization of the debate. Notice, for example, that our very statement of the topic

² As far as we know this point was first emphasized by Kit Fine. For further discussion, see Fine,
Hellman and Parsons’ contributions below.

³ Someone who combines the view that there is no all-inclusive domain with the view that our
quantifiers are sometimes absolutely unrestricted might give an affirmative answer to the availability
question in the special case of linguistic inquiry. It might be claimed, in particular, that since
there are no linguistic or contextual mechanisms restricting the relevant quantifiers, the all-inclusive
domain would be available to us as a domain of inquiry, if only it existed. Were the world to
cooperate, absolute generality would be achievable.

⁴ For relevant discussion, see Lavine’s contribution to the volume.
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of the volume—‘whether there is (or could be) inquiry concerned with absolutely
everything’—itself purports to be concerned with absolutely everything.

Notice, moreover, that in characterizing an ‘absolutist’ as a proponent of (3):

(3) There is (or could be) inquiry concerned with absolutely everything,

one tacitly presupposes that the debate has been settled in favor of the absolutist,
since (3) is concerned with absolutely everything on its intended interpretation. Sim-
ilarly, in characterizing a ‘non-absolutist’ as a proponent of the negation of (3):

(4) There isn’t (or couldn’t be) inquiry concerned with absolutely everything.

one tacitly presupposes that the debate has again been settled in favor of the absolutist,
since (4), like (3), is concerned with absolutely everything on its intended interpreta-
tion.

Of course one might insist that domains of (3) and (4) should be regarded as some-
how restricted. But then (3) and (4) would be beside the point. Each of the two claims
prejudges the debate in favor of the absolutist when taken at face value and is irrelev-
ant to the debate when not taken at face value. Absolutists might take this to be a
point in their favor. They might suggest that whereas they are in a position to give
an adequate statement of the debate from their point of view, it dubious whether
it is possible to state the view under consideration from the point of view of a non-
absolutist.⁵

Even if one is convinced by the absolutist, one should remember that the mere fact
that one is not able to characterize a certain state of affairs need not imply that the
state of affairs in question fails to obtain. Moreover, non-absolutists might be in a
position to gain philosophical ground even if they are not in a position to produce
a statement of their view. Conspicuously, they can attempt to derive a reductio from
the absolutist view, as characterized by the absolutist.⁶

In order to facilitate our exposition in the remainder of this introduction, we will
continue to describe the debate from an absolutist perspective, while doing our best
to ensure that it does not affect the justice with which non-absolutist arguments are
presented.

⁵ Non-absolutists might try to articulate their position with the help of a conditional:

(∗) If D is a domain, then there is some individual not in D.

But here it is crucial that (∗) not be read as a universally quantified sentence ranging over all domains.
It is to be regarded as ‘typically ambiguous’ (or ‘systematically ambiguous’). But ambiguous between
what and what? The obvious response: ‘ambiguous between all domains’, will presumably not do.
This has led some philosophers to doubt whether the required kind of ambiguity may be adequately
elucidated. For discussion, see Parsons (1974), Parsons (1977), Glanzberg (2004) and Williamson
(2003). See also Hellman, Lavine and Parsons’ contributions below.

⁶ As Williamson emphasizes in his contribution to this volume, the possibility of a reductio
would appear to be incompatible with the idea that one could find a less-than-all-inclusive domain
D such that each of the absolutist’s purportedly absolutely general assertions would be true when
restricted to D. For further discussion of this sort of idea, see Section 1.2.3 below.
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1.2 SKEPTICAL ARGUMENTS

In this section we will discuss some influential arguments against the possibility of
absolutely general inquiry. The arguments support a negative answer to the meta-
physical question or to the availability question or to both.

1.2.1 Indefinite Extensibility

An influential strategy for casting doubt on the prospects of absolute generality derives
from the work of Michael Dummett.⁷ It is based on the thought that certain concepts
are indefinitely extensible. Indefinitely extensible concepts are usually taken to be ones
lacking definite extensions. They are instead said to be subject to principles of extend-
ibility which yield a hierarchy of ever more inclusive extensions. The concepts set and
ordinal are often taken to be paradigm cases of indefinite extensibility. Accordingly,
should one attempt to specify an extension for set or ordinal, proponents of indefinite
extensibility would claim to be able to find a more inclusive extension by identifying
a set or an ordinal that is not in the extension one had specified.⁸

Indefinite extensibility considerations are motivated by a certain view of the set-
theoretic antinomies. To appreciate this, it may be helpful to begin by considering
and contrasting two different attitudes one might take towards Russell’s Paradox.⁹
The Paradox arises from the observation that the schema of Naïve Comprehension:

(5) ∃y∀x(x ∈ y ↔ φ(x)), where φ(x) is any formula not containing ‘y’ free,

has as an instance:

(6) ∃y∀x(x ∈ y ↔ x /∈ x).

But (6) entails each of the following in classical first-order logic:

(7) ∀x(x ∈ r ↔ x /∈ x),

(8) r ∈ r ↔ r /∈ r.

And (8) is a contradiction.
A common line of response to the Paradox concedes that the argument from Naïve

Comprehension to (8) is valid but insists that Naïve Comprehension—and, in par-
ticular, its instance (6)—should be rejected: there is no set of all non-self membered
sets.

⁷ For example, Dummett (1963) and Dummett (1991), pp. 316–19.
⁸ Bertrand Russell had identified what appears to be the same pattern in his Russell (1906). See

Shapiro and Wright’s contribution for a discussion of Russell’s thought and for an independent
characterization of indefinite extensibility generally. For further discussion of indefinite extensibility,
see Fine and Hellman’s contributions below. It is worth noting that considerations of indefinite
extensibility have played a positive role in the foundations of set theory; see chapter 2 of Hellman
(1989).

⁹ Our discussion of the paradox closely follows Cartwright (1994).
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In contrast, friends of indefinite extensibility would contend that Naïve Compre-
hension is true, once properly interpreted, on the grounds that the lesson of the para-
dox is that r should be taken to lie outside the range of ‘x’. The inference from (7) to
(8) is therefore invalid, and (5)–(7) can all be true even if (8) is false.¹⁰

This latter attitude towards the paradox plays an important role in a standard argu-
ment for the indefinite extensibility of the concept set. The argument is based on a
challenge: to supply an extension for the concept set. Should one respond to the chal-
lenge by offering some candidate extension E , one will be asked to consider the set r
of all and only sets in E that are not members of themselves:

(9) ∀x(x ∈ r ↔ x /∈ x), where ‘x’ ranges over sets in E .

The next step is to notice that if E contained all sets, r would have to lie within E
and (9) would entail:

(10) r ∈ r ↔ r /∈ r,

which is a contradiction. Thus a contradiction has been reached from the assumption
that E contains all sets. Most proponents of indefinite extensibility take the lesson to
be that supplying a definite extension for the concept set is impossible, and that set is
indefinitely extensible.¹¹

Of course, one might protest that the lesson of Russell’s Paradox is that there is
no such set as r and that it was therefore illegitimate for proponents of indefinite
extensibility to insist upon (9). But it is precisely at this point that the attitude that
proponents of indefinite extensibility take towards the Paradox comes into play. They
will insist instead that when we take the range of ‘x’ in Naïve Comprehension to range
over all and only members of E , a proper interpretation of Naïve Comprehension will
still deliver the existence of r as an immediate consequence. But r will lie outside the
range of ‘x’ and will therefore fail to be a member of E . The moral of the Paradox is
not, we are invited to suppose, that there is no such set as r, but rather that r is not a
member of E .

A variant of this argument, based on the Burali–Forti Paradox, is sometimes used
to motivate the conclusion that the concept ordinal is indefinitely extensible. And it
might be suggested that it follows from either of these arguments that the concept self-
identical is indefinitely extensible.¹² Admittedly, there is room for doubting whether
the concept self-identical exemplifies the reproductive pattern illustrated by, e.g. set,
since it is not obvious that there is an extensibility principle for self-identical paral-
leling the extensibility principle for set (i.e. Naïve Comprehension). But perhaps one
could argue for the indefinite extensibility of self-identical by making use of the obser-
vation that all sets are self-identical. From the assumption that a domain D contains
all self-identical objects, one might reason that, since all sets are self-identical, D must

¹⁰ See, for example, the discussion of indefinite extensibility in Fine and Lavine’s contributions.
¹¹ Not all, however. Shaughan Lavine suggests, in his contribution, a different route to the view

that the concept set is indefinitely extensible.
¹² It may be of interest to note that Williamson (1998) supplies an account of indefinite

extensibility whereby set is indefinitely extensible, but self-identical is not.
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have the domain E of all sets as a subdomain.¹³ One might then use Naïve Com-
prehension to argue that there must be a set r outside the domain E , and hence a
self-identical object outside D, contradicting one’s original assumption.

The claim that there are indefinitely extensible concepts is not quite the claim
that absolute generality is unattainable. But proponents of indefinite extensibility are
typically well-disposed to go from the one to the other. Considerations of indefin-
ite extensibility have been used to question the prospects of absolute generality in at
least two different ways. One route is to question the metaphysical presumption that
there is an all-inclusive domain of all objects. If the concept self-identical lacks a def-
inite extension, what reason could there be for thinking that there is an all-inclusive
domain? Of course, absolutists will insist that it is incumbent on proponents of this
position to provide some sort of account of what the world is like if there is to be no
all-inclusive domain. One kind of answer is inspired by Ernst Zermelo’s picture of
the universe of set theory as an open-ended but well-ordered sequence of universes,
where each universe is strictly more inclusive than its predecessor.¹⁴

A more modest approach would draw linguistic conclusions but refrain from set-
ting forth any metaphysical theses. The claim would then be simply that considera-
tions of indefinite extensibility show that our quantifiers are systematically restricted
to less-than-all-inclusive domains. But, of course, this sort of position must be sup-
plemented with some account of the mechanisms by which the relevant restrictions
are supposed to take place.¹⁵

1.2.2 The All-in-One Principle

A related argument against absolute generality is based on a principle first identi-
fied—but never endorsed—by Richard Cartwright:

All-in-One Principle The objects in a domain of discourse make up a set or
some set-like object.

With the All-in-One Principle on board, one might argue as follows. Suppose for
reductio that there is an absolutely general discourse. By the All-in-One Principle,
there is a set (or set-like object) with all objects as members. But the lesson of Rus-
sell’s Paradox is that there is no set (or set-like object) with all objects as members.
Contradiction.

There are two main lines of response to this argument. The first is to object that the
argument presupposes that Russell’s Paradox entails that there is no universal set (or
set-like object). But this is only the case in the presence of the Principle of Separation:

¹³ While this reasoning may seem plausible, it is not beyond doubt. For one could presumably
combine the assumption that D is the domain of all self-identical objects with the further thesis that
no subdomain of D is, as a matter of fact, the domain of all self-identical objects that are sets.

¹⁴ This picture of the universe of set theory is developed in Zermelo (1930). For a discussion of
the open-endedness of mathematics generally, see Hellman’s contribution below.

¹⁵ For suggestions, see Parsons (1974), Parsons (1977), Glanzberg (2004), and Glanzberg and
Parsons’s contributions below.
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(11) ∀z∃y∀x(x ∈ y ↔ φ(x) ∧ x ∈ z), where φ(x) is any formula of the language not
containing ‘y’ free

And there are set theories that countenance exceptions to the Principle of Separa-
tion in exchange for a universal set. (There are also theories of set-like objects that
countenance exceptions to an analogue of Separation in exchange for an all-inclusive
set-like object.)¹⁶ A problem for this line of response is that the Principle of Separ-
ation seems to fall out of what are arguably the two best understood conceptions of
set—the Iterative Conception and the Limitation of Size Conception. No set theory
motivated by these conceptions allows for a universal set (or set-like object).

The second line of response is to object to the All-in-One Principle. Different
motivations for the principle must be undercut by different lines of objection. One
might be led to the All-in-One Principle by considerations of indefinite extensibility
of the sort discussed in the last section. The obvious objection in that case would be
to eschew the Principle of Naïve Comprehension and respond to Russell’s Paradox
by denying that there is a set of all and only nonselfmembered sets.

There is, however, an alternative motivation for the All-in-One Principle that does
not immediately depend on considerations of indefinite extensibility. It begins with
the observation that model theory—and, in particular, the model-theoretic charac-
terization of logical consequence—requires quantification over all domains. But on
the assumption that (singular) first-order quantification over objects is the only intel-
ligible sort of quantification there is, model theory requires the truth of the All-in-
One Principle.¹⁷

One response at this point, originally due to Richard Cartwright, grants for the sake
of argument the claims that model theory requires quantification over domains and
that first-order quantification over objects is the only intelligible sort of quantification
there is. Instead, it questions the claim that model theory requires quantification
over all domains. Cartwright’s strategy relies on George Kreisel’s observation that
the material adequacy of the standard model-theoretic characterization of logical
truth and logical consequence requires only quantification over set-sized domains of
discourse.¹⁸ So one might argue that as far as the model-theoretic characterization
of first-order logical truth and logical consequence is concerned, the needs of model

¹⁶ For an overview, see Forster (1995). Linnebo and Weir’s contributions below both propose
mixed theories of sets and properties that allow for properties applying to absolutely all there
is. While Linnebo’s contribution countenances exceptions to a principle of comprehension for
properties, Weir’s contribution countenances a revision of classical logic as the underlying logic.

¹⁷ Timothy Williamson has recently articulated the motivation and confronted the argument
against absolute generality that ensues in Williamson (2003). For additional discussions of the
motivation and its role in arguments against absolute generality, see Linnebo and Parsons’
contributions below.

¹⁸ Kreisel’s argument is remarkably simple. Suppose that the first-order sentence φ is a logical
consequence of the set of first-order sentences Ŵ. Then since every set-sized model corresponds to a
legitimate interpretation of the language, φ must be true in every set-sized model of Ŵ. Conversely,
suppose that φ is true in every set-sized model of Ŵ. Then, by completeness, φ must be a deductive
consequence of Ŵ. But since the axioms of the first-order predicate calculus are valid and its rules are
validity-preserving, this means that φ must be a logical consequence of Ŵ. The argument is given in
Kreisel (1967).
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theory will be met even if the All-in-One Principle fails. Unfortunately, this reply
is relatively unstable. It will break down, for instance, if one enriches a first-order
language with a quantifier ‘Qx’ such that ‘Qx Fx’ is true just in case there are more F s
than there are sets.¹⁹ More generally, Kreisel’s argument depends on the existence of
a sound and complete deductive system for the language in question, so Cartwright’s
reply is not guaranteed to be available when one is concerned with languages for which
there is no sound and complete deductive system, such as higher-order languages.²⁰

An alternative to Cartwright’s response is to deny the assumption that first-order
quantification is the only intelligible sort of quantification there is.²¹ One might con-
tend, in particular, that second-order quantification (and higher-order quantification
in general) is just as intelligible as standard first-order quantification, and propose a
second-order regimentation of domain-talk.²²

If one thought of second-order quantification as quantification over first-level Fre-
gean concepts, talk of domains might be regimented as talk of first-level concepts,
which are not objects.²³ But, of course, a Fregean interpretation of higher-order
quantification is not compulsory. One could instead read higher-order quantifica-
tion in terms of plural quantification, as in Boolos (1984). Apparently singular talk
of domains could then be regimented as plural talk of the objects the domain con-
sists of. For instance, the claim that the domain of Fs exists could be regimented
as the claim that the Fs themselves exist. Plural quantifiers can be used to produce
an adequate model-theory for first-order languages equipped with absolutely unres-
tricted quantifiers (and, when conjoined with plural predicates, an adequate model-
theory for second-order languages).²⁴ A feature of this general line of response is that
one finds oneself invoking in one’s model theory logical resources that go well bey-
ond the logical resources used in one’s object language. So one faces a choice between
doing without a model-theory for one’s metalanguage or embracing an open-ended
hierarchy of languages of ever-increasing strengths. Those who embrace a Fregean
interpretation of higher-order quantification will presumably embrace such a hier-
archy. But an open-ended hierarchy would seem to pose a special challenge for those
who prefer a plural interpretation of second-order quantification, since it is doubtful

¹⁹ Vann McGee made this point in McGee (1992).
²⁰ Kreisel’s result can be extended to the case of higher-order languages by assuming suitable

reflection principles. But the principles in question are provably independent of the standard axioms
of set-theory (if consistent with them). For further discussion, see Rayo and Uzquiano (1999).

²¹ This type of response was first explicitly articulated in Williamson (2003).
²² The intelligibility of higher-order quantification is a hotly contested issue. Proponents of

intelligibility include Boolos (1984), Boolos (1985a), Boolos (1985b), Oliver and Smiley (2001),
Rayo and Yablo (2001), Rayo (2002) and Rayo’s contribution below; skeptical texts include Quine
(1986) ch. 5, Resnik (1988), Parsons (1990) and Linnebo (2003). For a different sort of proposal,
see Linnebo’s contribution below.

²³ By a first-level Fregean concept, we mean a Fregean concept under which only objects
fall. Correspondingly, a second-level Fregean concept is one under which only first-level Fregean
concepts fall, and, in general, an n+ 1-th level Fregean concept is one under which only n-level
Fregean concepts fall.

²⁴ The details are developed in Rayo and Uzquiano (1999). Rayo and Williamson (2003)
employs a similar model theory for the purpose of proving a completeness theorem for first-order
logic with absolutely unrestricted quantifiers.
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that there is a English reading, e.g. for third-order quantifiers corresponding to the
plural reading for second-order quantifiers.²⁵

1.2.3 The Argument from Reconceptualization

There is a tradition in philosophy according to which ontological questions are rel-
ative to a conceptual scheme, or to a language. It goes back to Rudolf Carnap and
includes such recent philosophers as Hilary Putnam and Eli Hirsch.²⁶ Here is a sug-
gestive example, due to Putnam.²⁷ We are asked to consider—as a Carnapian might
put it—‘a world with three individuals’: x1, x2 and x3. We are then asked to compare
this description of the world with that of a ‘Polish logician’ who, bound by the prin-
ciples of classical mereology, believes that the world contains seven individuals: x1,
x2, x3, x1 + x2, x1 + x3, x2 + x3 and x1 + x2 + x3.²⁸ Putnam suggests that it is non-
sensical to ask which of the rival descriptions is correct. Each of them is correct relative
to a particular conceptual scheme, but there is no conceptual-scheme-independent
fact of the matter as to what individuals there are in the world. And if there is no
conceptual-scheme-independent fact of the matter as to what there is, then it is non-
sensical to speak of a domain that is objectively all-inclusive. The most one should
hope for is a domain which is all-inclusive by the lights of some conceptual scheme or
other.²⁹

One response to this argument is to note that nothing in Putnam’s argument rules
out the possibility that the apparent lack of objectivity is merely a matter of linguistic
equivocation. For all that has been said, the interlocutors in Putnam’s example might
have different concepts of existence and objecthood, and therefore mean different
things by their quantifiers. On this view, Putnam’s scenario poses no obstacle to the
metaphysical thesis that there is an all-inclusive domain. At most, it would pose an
obstacle to the linguistic thesis that our use of the quantifiers is univocal.³⁰ Issues of
semantic indeterminacy will be the focus of the next section.

1.2.4 The Argument from Semantic Indeterminacy

Even if one takes for granted that there is such a thing as an all-inclusive domain, one
might worry about access. One might worry, in particular, that any use of a quantifier
that is compatible with the all-inclusive domain is also compatible with some less-
than-all-inclusive domain, and therefore that one could never determinately quantify
over absolutely everything.

²⁵ For an attempt to address the issue, see Rayo’s contribution below.
²⁶ A canonical statement of the view is given in Carnap (1950). Hilary Putnam discusses the

view in Putnam (1987). A more recent discussion of a similar view occurs in Hirsch (1993).
²⁷ The example is used in Putnam (1987), pp. 18–19.
²⁸ The example presupposes that the Polish logician takes each of x1, x2 and x3 to be mereological

atoms.
²⁹ See Hellman and Parsons’ contributions for discussions of this general strategy against absolute

generality.
³⁰ Even the argument for equivocation might be resisted. See, for instance, Sider (2006).
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W.V. Quine and Hilary Putnam have famously set forth arguments that can be
taken to support this sort of indeterminacy.³¹ One of the most influential is based on
the following technical result:

Let L be a countable first-order language, and assume that each closed term in L has an inten-
ded referent and that each predicate in L has an intended extension. Call an interpretation I
of L apt if it assigns to each term in L its intended referent and to each predicate in L the
restriction of its intended extension to I ’s domain.³²

If the intended domain is uncountable, then it is provable that if every sentence of L in a
set S is true according to some apt interpretation with an all-inclusive domain, then every
sentence in S is also true according to an apt interpretation with a less-than-all-inclusive
domain.³³

The lesson of this result, it might be claimed, is that any use of a first-order quanti-
fier compatible with an all-inclusive (uncountable) domain is also compatible with a
less-than-all-inclusive domain, and therefore that first-order quantifiers never determ-
inately range over an all-inclusive domain. But as with most philosophical morals
extracted from technical results, the conclusion only follows in the presence of sub-
stantive philosophical assumptions. One such assumption might be the thesis that
only domains of discourse that are incompatible with the truth of an utterance can
be ruled out as unintended.

Even though the formal result is unassailable, there are various ways in which the
auxiliary philosophical assumptions might be questioned. One might, in particular,
claim that factors other than truth might help determine the domain of quantifica-
tion of our utterances. One strategy, developed by David Lewis in a broader context,
is based on the view that certain collections of individuals are objectively more ‘nat-
ural’ than others: to a larger extent, they ‘carve nature at the joints’. The objective
naturalness of collections of individuals might be used to argue that some candidate
semantic values for an expression are objectively more natural than others. One could
then argue that—other things being equal—an assignment of semantic value is to be
preferred to the extent that it is objectively more natural than its rivals. This allows
one to resist the indeterminacy argument on the grounds that it neglects to take into
account the constraint that a semantic interpretation be objectively natural.³⁴ Ted
Sider has explicitly deployed this sort of argument in the context of discussions of
absolute generality by claiming that an all-inclusive interpretation of the quantifiers
is especially natural.³⁵

³¹ The arguments are developed in Quine (1968) and Putnam (1980). Field (1998) contains a
more recent discussion of the argument.

³² Since there is no set of all objects, it will not do for present purposes to think of interpretations
as set-sized models. For a more appropriate account of interpretation, see the discussion of the
All-in-One principle at the end of the last section. The technical result that concerns us carries over
without incident on the revised account.

³³ As first noted by Putnam (1980), this result is provable on the basis of a strong version of the
Löwenheim–Skolem Theorem.

³⁴ Lewis outlines the view in Lewis (1983) and Lewis (1984). The second paper is a response to
a skeptical argument based on a formal result like the one quoted above.

³⁵ The suggestion occurs for example in pp. xx–xxiv of Sider (2003).
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A different line of resistance has been proposed by Vann McGee. By taking
absolutely general quantification for granted in the metalanguage, McGee argues that
one’s object-language quantifiers are guaranteed to range over absolutely everything
on the assumption that they satisfy an open-ended version of the standard introduc-
tion and elimination rules—that is, a version of the rules that is to remain in place
even if the language is enriched with additional vocabulary. As McGee is at pains
to insist, it is far from clear that simple standard introduction and elimination rules
could exhaust the meaning of the English quantifiers. However, he suggests that
open-endedness is a distinctive feature of our quantificational practice, and that this
fact alone suffices to cast doubt on the indeterminacy argument, which fails to take
considerations of open-endedness into account.³⁶

A third strategy for resisting the indeterminacy argument is based on pragmatic
considerations. Suppose a resourceful and fully cooperative speaker asserts ‘I am
speaking of absolutely everything there is’ (and nothing else) in a conspicuous effort
to clarify what her domain of discourse consists in. Since the sentence asserted can
be true relative to any domain of discourse, the speaker was inarticulate. But the
speaker is fully cooperative, so if she was inarticulate (and if there is nothing else to
explain the inarticulacy), it must have been because she couldn’t do any better. And
since the speaker is resourceful, it is only plausible that she couldn’t do any better if
she intended her domain to be absolutely all-inclusive. (Otherwise she would be in a
position to say at least that it was not incompatible with her intentions that the ori-
ginal domain was less-than-all-inclusive.) So there is some reason for thinking that the
speaker intended her domain to be absolutely all-inclusive. By failing to take prag-
matic considerations into account, the argument for indeterminacy is insensitive to
this sort of phenomenon.³⁷

It is worth emphasizing that the lines of objection we have considered in this
section are not aimed at a skeptic of absolute generality. They are best understood
as defensive maneuvers, intended to reassure absolutists of the coherence of their own
position by explaining why it is that the indeterminacy argument fails, given that it
does fail.

1.2.5 The Argument from Sortal Restriction

According to an influential account of quantification discussed by Michael Dummett
‘each domain for the individual variables will constitute the extension of some sub-
stantival general term (or at least the union of the extensions of a number of such
substantival terms)’.³⁸ By a substantival term, Dummett means a term that supplies

³⁶ See McGee (2000) and McGee’s contribution to this volume. For criticism of McGee, see
the postscript to Field (1998) in Field (2001) and Lavine and Williamson’s contributions to this
volume. For additional discussion of open-endedness, see Parsons (1990), Feferman (1991) and
Lavine (1994).

³⁷ This idea is developed in Rayo (2003).
³⁸ See Dummett (1981), pp. 569 and 570, respectively.
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a criterion of identity, and (following Frege) a criterion of identity is taken to be ‘a
means for recognizing an object as the same again’.³⁹

This account of quantification is one step away from the thesis that absolutely
general quantification is somehow illicit. All one needs to take the further step is
the thesis that purportedly all-inclusive general terms—terms like ‘thing’, ‘object’,
or ‘individual’—do not supply criteria of identity, and are therefore not ‘substant-
ival’. This further thesis might perhaps be motivated by appeal to the claim that it is
only sensible to ask a question of the form, for example, ‘how many F s does the room
contain’ when F is a substantival general term. It is nonsense, the suggestion would
continue, to ask, without tacit restriction to one substantival term or another, ‘how
many things does the room contain?’ (and similarly for other purportedly all-inclusive
general terms).⁴⁰

A proper assessment of the thesis that a domain of quantification must be restric-
ted by a substantival general term—and that purportedly all-inclusive general terms
are non-substantival—would require discussion of broad issues in the philosophy of
language which are beyond the scope of this chapter.⁴¹

1.3 CONFLICTS

We have considered a number of arguments designed to cast doubt on the prospects
of absolutely general inquiry. Absolutists have developed responses, and optimistic
absolutists might think that their view has emerged more or less unscathed. But even
the optimists must acknowledge that engaging in absolutely general inquiry requires a
great deal of caution. For absolutely general theories sometimes place non-trivial con-
straints on the size of the universe, and different theories might call for inconsistent
constraints. Conflicts might also arise among absolutely general theories with differ-
ent and in fact disjoint vocabularies, as in the case of certain standard formulations
of applied set theory and a certain extension of classical extensional mereology. Cer-
tain plausible versions of these theories cannot both be true and absolutely general,
for whereas the former requires that the universe be of a strongly inaccessible size, the
latter requires that the universe be of a successor size.⁴²

1.4 SUMMARIES

We conclude with summaries of each of the contributions to the volume in the hope
they may allow some readers to identify those most likely to be of interest to them.

³⁹ See Frege (1884), § 64.
⁴⁰ See, for instance, Geach (1962), pp. 38, 153.
⁴¹ Relevant texts in the more recent literature include Lowe (1989), Wiggins (2001) and Linnebo

(2002).
⁴² The conflict has been discussed in Uzquiano (2006) with a view to questioning the alleged

absolute generality of mereology. For a general assessment of the difficulty, see Uzquiano’s
contribution below.
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Kit Fine

In ‘Relatively Unrestricted Quantification’, Kit Fine reviews the classic argument
from indefinite extensibility and suggests that it is unsatisfactory as it stands. While
traditional indefinite extensibility considerations challenge the absolutist interpreta-
tion of the quantifiers, they have no force in the absence of an absolutist opponent.
Fine’s contribution develops a modal formulation of indefinite extensibility designed
to overcome this defect. On the modal interpretation of indefinite extensibility, the
concept of, e.g. set is said to be indefinitely extensible on the grounds that whatever
interpretation of a quantifier ranging over sets one might come up with, it will be pos-
sible to find a more inclusive interpretation. This modal understanding of indefinite
extensibility calls for the use of distinctive postulational modalities. What is special
about postulational modalities is that they concern variation in interpretation rather
than variation in circumstances. Since postulational necessities and possibilities are
forms of interpretational necessities and possibilities, they are germane to the issue of
unrestricted quantification.

Michael Glanzberg

In ‘Context and Unrestricted Quantification’, Michael Glanzberg offers a develop-
ment of the view that because of the semantic and set-theoretic paradoxes, seemingly
unrestricted quantification is in fact restricted. Glanzberg’s focus is not, however,
on defending the argument from paradox. The main objective of the chapter is to
acquire a better understanding of what the quantificational restrictions required by
the argument from paradox consist in. Glanzberg suggests that the argument from
paradox results in a shift to a ‘reflective context’, which in turn leads to an enriched
background domain of discourse. He goes on to argue that it is possible to specify a
list of general principles governing the construction of the new domain. The process
involves the setting of a context-dependent parameter in a sentence, and is said to
be fundamentally related to the pragmatic processes governing non-paradoxical con-
texts. Glanzberg rounds off the proposal by offering some formal models of what the
enriched domain might look like.

Geoffrey Hellman

In ‘Against ‘‘Absolutely Everything’’ ’, Geoffrey Hellman distinguishes two general
kinds of arguments against absolute generality. One kind of argument is based on
considerations of indefinite extensibility and the open-ended character of mathemat-
ical concepts and structures; the other is based on the relativity of ontology to a con-
ceptual framework. While the first kind of argument springs from specifically math-
ematical concerns and relies on a platonist view of mathematical ontology, the second
is much more general and threatens the prospects of absolute generality even for the-
orists with a nominalist view of mathematical ontology. This raises the question of
what to make of seemingly absolutely unrestricted generalizations such as ‘No donkey
talks’. Hellman suggests a contextualist interpretation of such generalizations, accord-
ing to which they are taken to contain a schematic element.
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Shaughan Lavine

In ‘Something about Everything: Universal Quantification in the Universal Sense of
Universal Quantification’, Shaughan Lavine elucidates and defends the notion of a
‘full scheme’: a scheme whose instances are open-ended and automatically expand
as the language in use expands. The notion is then used in support of two main
theses. The first is that efforts to counter Putnam-style arguments for the indeterm-
inacy of quantification and the non-existence of an all-inclusive domain through the
use of open-endedness are ultimately unsuccessful. Lavine argues that the essential use
of open-endedness in these arguments is best understood in terms of full schemes, and
that full schemes would not give a proponent of these arguments what she needs. The
second thesis is that opponents of absolutely unrestricted quantification do not suffer
from crippling expressive limitations: full schemas give them all the expressive power
they need. Lavine concludes that we have no positive reason for thinking that either
the notion of absolutely unrestricted quantification or the notion of an all-inclusive
domain of discourse is a coherent notion.

Øystein Linnebo

In ‘Sets, Properties and Unrestricted Quantification’, Øystein Linnebo addresses the
challenge of embracing absolutely general quantification while avoiding semantic
pessimism: the view that there are legitimate languages for which an explicit semantics
cannot be given. Linnebo argues that efforts to address the challenge that proceed by
postulating an open-ended hierarchy of logical types suffer from important express-
ive limitations, and lays the foundations for developing a type-free alternative. The
alternative supplements standard ZFC set theory with a (first-order) notion of prop-
erty with the following two features: on the one hand, there are enough properties to
do interesting theoretical work; on the other, there are principled reasons for rejecting
instances of a comprehension schema for properties that would lead to paradox. Lin-
nebo’s philosophical defense of the project is accompanied by a technical discussion
of the resulting systems.

Vann McGee

In ‘There’s a Rule for Everything’, Vann McGee is engaged in a defensive project. He
aims to explain—from the point of view of a generality absolutist—how it is that the
meaning of an absolutely general quantifier might be fixed. The proposal is based on
the idea that a rule of inference can be read open-endedly: it can be seen as continu-
ing to hold even if the language expands. By working within a metalanguage in which
absolutely general quantification is allowed, McGee uses a Tarski-style model-theoretic
semantics to give a rigorous characterization of open-endedness, and argues that only
an absolutely general quantifier could satisfy versions of the standard quantifier intro-
duction and elimination rules that are open-ended in the regimented sense. McGee
does not claim that English quantifiers should be seen as obeying the rules in question,
but he takes his argument to show that considerations of open-endedness can help us
understand how English speakers succeed in quantifying over absolutely everything.
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Charles Parsons

In ‘The Problem of Absolute Universality’, Charles Parsons raises the question of
whether apparently absolutely unrestricted generalizations such as ‘Everything is
self-identical’ should be taken at face value and argues that they should not. He sug-
gests that the acknowledgment of absolutely unrestricted quantification would com-
mit one to metaphysical realism, understood as the thesis that there is some final
answer to the question of what objects there are and how they are to be individuated.
This is contrasted with the acknowledgment of merely unrestricted quantification,
from which no grand metaphysical conclusion seems to follow. Parsons then presents
what he takes to be some of the most important logical obstacles for the viability
of absolutely unrestricted quantification. These obstacles emerge when we quantify
over interpretations and look at what are now familiar Russellian paradoxes for inter-
pretations. The paper concludes with a discussion of the suggestion that absolutely
unrestricted generalizations such as ‘Everything is self-identical’ should be taken to
be systematically ambiguous.

Agustín Rayo

In ‘Beyond Plurals’, Agustín Rayo has two main objectives. The first is to get a better
understanding of what is at issue between friends and foes of higher-order quantific-
ation, and of what it would mean to extend a Boolos-style treatment of second-order
quantification to third- and higher-order quantification. The second objective is to
argue that in the presence of absolutely general quantification, proper semantic the-
orizing is essentially unstable: it is impossible to provide a suitably general semantics
for a given language in a language of the same logical type. Rayo thinks that this
leads to a trilemma: one must choose between giving up absolutely general quantific-
ation, settling for the view that adequate semantic theorizing about certain languages
is essentially beyond our reach, and countenancing an open-ended hierarchy of lan-
guages of ever ascending logical type. Rayo concludes by suggesting that the hierarchy
may be the least unattractive of the options on the table.

Stewart Shapiro and Crispin Wright

In ‘All Things Indefinitely Extensible’, Stewart Shapiro and Crispin Wright are primar-
ily concerned with indefinite extensibility. Their departure point is a conjecture they
attribute to Bertrand Russell to the effect that a concept is indefinitely extensible only
if there is an injection from the concept ordinal into it. After dispensing with apparent
exceptions to Russell’s conjecture, Shapiro and Wright argue for a more informative
characterization of indefinite extendibility from which Russell’s conjecture falls out as
a consequence. Their characterization promises to cast new light upon the paradoxes
of indefinite extensibility and have important ramifications for a variety of issues in
the philosophy of mathematics. They suggest, for example, that indefinite extensibil-
ity is the key to a proper understanding of the Aristotelian notion of potential infinity.
They also consider a restriction of Basic Law V based on indefinite extensibility and
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its potential for improvement on extant neo-logicist attempts to ground set theory on
abstraction principles. Finally, they discuss the question of whether it is ever legitim-
ate to quantify over all of the members of indefinitely extensible totalities, and suggest
that no completely satisfactory answer seems to be available.

Gabriel Uzquiano

In ‘Unrestricted Unrestricted Quantification: The Cardinal Problem of Absolute
Generality’, Gabriel Uzquiano raises an internal problem for absolutism. The prob-
lem arises when one notices the possibility of conflicts amongst absolutely general
theories with different and, in fact, disjoint vocabularies. Uzquiano presents two dif-
ferent examples of such potential conflicts for consideration and casts doubts upon
the prospects of a unified and systematic solution for them. Instead, Uzquiano sug-
gests conflicts amongst absolutely general theories should generally be addressed on
a case by case basis. Uzquiano argues that in at least some cases such conflicts are
best solved by abandoning the claim to absolute generality for some of the theories
involved. The paper concludes with a call for caution for the absolutist and a brief
discussion of the prospects of an argument against absolute generality based on the
possibility of conflicts amongst absolutely general theories with different vocabularies.

Alan Weir

In ‘Is it too much to Ask, to Ask for Everything?’, Alan Weir argues for a view
based on the following three theses: (1) one can quantify over absolutely everything,
(2) the domain of discourse of an interpreted language is an individual, and (3) one
can characterize a notion of truth-in-an-interpretation for one’s object language in
one’s object language. He proceeds by using a Kripke-style fixed-point construction
to characterize a notion of property that satisfies naïve comprehension axioms, and
a notion of truth-in-an-interpretation that takes domains to be properties. (Such
notions would ordinarily lead to paradox, but Weir addresses the problem by pro-
posing a revision of classical logic.) Weir concludes by arguing that, even though his
proposal doesn’t deliver everything one might have hoped for, it is nonetheless to
be preferred over theories that allow for absolutely general quantification but appeal
to an ascending hierarchy of logical types to characterize the notion of truth-in-an-
interpretation.

Timothy Williamson

In ‘Absolute Identity and Absolute Generality’, Timothy Williamson develops an
analogy between identity and absolutely general quantification. He argues that just
like an open-ended reading of the usual axioms of identity can be used to uniquely
characterize the notion of identity, an open-ended reading of the usual introduc-
tion and elimination rules for the first-order quantifiers can be used to characterize
uniquely the notion of absolutely general quantification. Williamson uses the ana-
logy to to show that certain objections against absolutely general quantification can
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only succeed if corresponding objections succeed in the case of identity. He concludes
by noting that foes of absolutely general quantification cannot coherently maintain
both that everything the generality absolutist says can be reinterpreted as something
the non-absolutist would accept and that the generality absolutist’s position leads to
paradox.
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2
Relatively Unrestricted Quantification

Kit Fine

There are four broad grounds upon which the intelligibility of quantification
over absolutely everything has been questioned—one based upon the existence of
semantic indeterminacy, another on the relativity of ontology to a conceptual scheme,
a third upon the necessity of sortal restriction, and the last upon the possibility of
indefinite extendibility. The argument from semantic indeterminacy derives from
general philosophical considerations concerning our understanding of language. For
the Skolem–Löwenheim Theorem appears to show that an understanding of quanti-
fication over absolutely everything (assuming a suitably infinite domain) is semantic-
ally indistinguishable from the understanding of quantification over something less
than absolutely everything; the same first-order sentences are true and even the same
first-order conditions will be satisfied by objects from the narrower domain. From
this it is then argued that the two kinds of understanding are indistinguishable tout
court and that nothing could count as having the one kind of understanding as
opposed to the other.

The second two arguments reject the bare idea of an object as unintelligible, one
taking it to require supplementation by reference to a conceptual scheme and the
other taking it to require supplementation by reference to a sort. Thus we cannot
properly make sense of quantification over mere objects, but only over objects of such
and such a conceptual scheme or of such and such a sort. The final argument, from
indefinite extendibility, rejects the idea of a completed totality. For if we take ourselves
to be quantifying over all objects, or even over all sets, then the reasoning of Russell’s
paradox can be exploited to demonstrate the possibility of quantifying over a more
inclusive domain. The intelligibility of absolutely unrestricted quantification, which
should be free from such incompleteness, must therefore be rejected.

The ways in which these arguments attempt to undermine the intelligibility of
absolutely unrestricted quantification are very different; and each calls for extensive
discussion in its own right. However, my primary concern in the present paper is with
the issue of indefinite extendibility; and I shall only touch upon the other arguments
in so far as they bear upon this particular issue. I myself am not persuaded by the

The material of the paper was previously presented at a seminar at Harvard in the Spring of 2003,
at a colloquium at Cornell in the Fall of 2004, and at a workshop at UCLA in the Fall of 2004.
I am very grateful for the comments I received on these occasions; and I am also very grateful to
Agustín Rayo, Gabriel Uzquiano, and Alan Weir for their comments on the paper itself.
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other arguments and I suspect that, at the end of day, it is only the final argument
that will be seen to carry any real force. If there is a case to be made against abso-
lutely unrestricted quantification, then it will rest here, upon logical considerations
of extendibility, rather than upon the nature of understanding or the metaphysics of
identity.

2 .1 THE EXTENDIBILITY ARGUMENT

Let us begin by reviewing the classic argument from indefinite extendibility. I am
inclined to think that the argument is cogent and that the intelligibility of absolutely
unrestricted quantification should therefore be rejected. However, there are enormous
difficulties in coming up with a cogent formulation of the argument; and it is only by
going through various more or less defective formulations that we will be in a position
to see how a more satisfactory formulation might be given. I shall call the proponent
of the intelligibility of absolute quantification a ‘universalist’ and his opponent a
‘limitavist’ (my reason for using these unfamiliar labels will later become clear).

The extendibility argument, in the first instance, is best regarded as an ad hominem
argument against the universalist. However, I should note that if the argument works
at all, then it should also work against someone who claims to have an understand-
ing of the quantifier that is compatible with its being absolutely unrestricted. Thus
someone who accepted the semantic argument against there being an interpretation
of the quantifier that was determinately absolutely unrestricted might feel compelled,
on the basis of this further argument, to reject the possibility of there even being an
interpretation of the quantifier that was indeterminately absolutely unrestricted.

Let us use ‘∃’ and ‘∀’ for those uses of the quantifier that the universalist takes to be
absolutely unrestricted. The critical step in the argument against him is that, on the
basis of his understanding of the quantifier, we can then come to another understand-
ing of the quantifier according to which there will be an object (indeed, a set) whose
members will be all those objects, in his sense of the quantifier, that are not members
of themselves. Let us use ∃+ and ∀+ for the new use of the quantifier. Then the point
is that we can so understand the new quantifiers that the claim:

(R) ∃+y[∀x(x ∈ y ≡ ∼(x ∈ x))]

is true (using ∃+y with wide scope and ∀x with narrow scope).
The argument to (R) can, if we like, be divided into two steps. First, it is claimed

that on the basis of our opponent’s understanding of the quantifier ∃, we can come to
an understanding of the quantifier ∃′ according to which there is an object (indeed, a
set) of which every object, in his sense of the quantifier, is a member:

(U) ∃′z∀x(x ∈ z).

It is then claimed that, on the basis of our understanding of the quantifier ∃′, we can
come to an understanding of the quantifier ∃+ according to which there is an object
whose members, in the sense of ∀, are all those objects that belong to some selected
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object, in the sense of ∀′, and that satisfy the condition of not being self-membered:

(S) ∀′z∃+y∀x [(x ∈ y ≡ (x ∈ z &∼(x ∈ x))].

From (U) and (S), (R) can then be derived by standard quantificational reasoning.
(S) is an instance of ‘Separation’, though the quantifier ∃+ cannot necessarily be

identified with ∃′ since the latter quantifier may not be closed under definable subsets.
(S) is relatively unproblematic, at least under the iterative conception of set, since we
can simply take ∃+ to range over all subsets of objects in the range of ∃′. Thus granted
the relevant instance of Separation, the existence of a Russell set, as given by (R), will
turn upon the existence of a universal set, as given by (U).

There is also no need to assume that the membership-predicate to the left of (R) is
the same as the membership-predicate to its right. Thus we may suppose that with
the new understanding ∃+ of the quantifier comes a new understanding ∈+ of the
membership predicate, so that (R) now takes the form:

(R′) ∃+y[∀x(x ∈+ y ≡ ∼(x ∈ x))].

It is plausible to suppose that ∈+ ‘conservatively’ extends ∈:

(CE) ∀x∀y(x ∈+ y ≡ x ∈ y)).¹

But we may then derive:

(R+) ∃+y[∀x(x ∈+ y ≡ ∼(x ∈+ x))],

which is merely a ‘notational variant’ of (R), with ∈+ replacing ∈.
The rest of the argument is now straightforward. From (R) (or (R+) ), we can

derive the ‘extendibility’ claim:

(E) ∃+y∀x(x 
= y).

For suppose, for purposes of reductio, that ∀+ y∃x(x = y). Then (R) yields:

(R∗) ∃y[∀x(x ∈ y ≡ ∼(x ∈ x))],

which, by the reasoning of Russell’s paradox, leads to a contradiction.
But the truth of (E) then shows that the original use of the quantifiers ∃ and ∀ was

not absolutely unrestricted after all.
Even though we have stated the argument for the particular case of sets, a similar

line of argument will go through for a wide range of other cases—for ordinal and
cardinal numbers, for example, or for properties and propositions. In each of these
cases, a variant of the paradoxical reasoning may be used to show that the original
quantifier was not absolutely unrestricted. Thus in order to resist this conclusion, it
is not sufficient to meet the argument in any particular case; it must be shown how in
general it is to be met.

¹ (CE) might be doubted on the grounds that ∈+ may have the effect of converting urelements
according to ∈ into sets. But even this is not on the cards, if it is insisted that the initial quantifier ∀
should only range over sets.
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Indeed, even this is not enough. For there are cases in which objects of two kinds
give rise to paradox (and hence to a paradoxically induced extension) even though
each kind of object, when considered on its own, is paradox-free. For example, there
would appear to be nothing to prevent the arbitrary formation of singletons or the
arbitrary formation of mereological sums, but the arbitrary formation of both gives
rise to a form of Russell’s paradox (given certain modest assumptions about the mere-
ological structure of singletons).² These cases create a special difficulty for the pro-
ponent of absolutely unrestricted quantification, even if he is content to block the
automatic formation of new objects in those cases in which a single kind of object
gives rise to paradox. For it might appear to be unduly restrictive to block the arbit-
rary formation of both kinds of objects in those cases where two kinds of object are
involved and yet invidious to block the formation of one kind in preference to the
other. Thus we do not want to block the arbitrary formation of both singletons and
mereological sums. And yet why block the formation of one in preference to the
other? Rather than have to face this awkward choice, it might be thought preferable to
‘give in’ to the extendibility argument and allow the arbitrary extension of the domain
by objects of either kind.

There are various standard set-theoretic grounds upon which the transition to (R)
might be questioned, but none is truly convincing. It has been suggested, for example,
that no set can be ‘too big’, of the same size as the universe, and that it is this that pre-
vents the formation of the universal or the Russell set. Now it may well be that no
understanding of the quantifier that is subject to reasonable set-theoretical principles
will include sets that are too big within its range. But this has no bearing on the ques-
tion of whether, given such an understanding of the quantifier, we may come to an
understanding of the quantifier that ranges over sets that would have been too big rel-
ative to the original understanding of the quantifier. For surely, given any condition
whatever, we can so understand the quantifier that it ranges over a set whose mem-
bers are all those objects (according to the original understanding of the quantifier)
that satisfy the condition; and the question of how many objects satisfy the condition
is entirely irrelevant to our ability to arrive at such an understanding of the quantifier.

Or again, it has been suggested that we should think of sets as being constructed
in stages and that what prevents the formation of the universal or the Russell set is
there being no stage at which its members are all constructed. We may grant that we
should think of sets as being constructed at stages and that, under any reasonable pro-
cess by which we might take them to be constructed, there will be no stage at which
either the universal or the Russell set is constructed. But what is to prevent us from
so understanding the quantifier over stages that it includes a stage that lies after all of
the stages according to the original understanding of the quantifier (∃+α∀β(α > β) )?

² The matter is discussed in Lewis (1991), Rosen (1995) and Fine (2005a) and in Uzquiano’s
paper in the present volume. A similar problem arises within an ontology of properties that allows
for the formation both of arbitrary disjunctions (properties of the form: P ∨ Q ∨ . . .) and of
arbitrary identity properties (properties of the form: identical to P); and a related problem arises
within the context of Parsons’ theory of objects (Parsons, 1980), in which properties help determine
objects and objects help determine properties.
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And given such a stage, what is to prevent us from coming to a correlative understand-
ing of a quantifier over sets that will include the ‘old’ universal or Russell set within
its range? The existence of sets and stages may be linked; and in this case, the question
of their extendibility will also be linked. But it will then be of no help to presuppose
the inextendibility of the quantifier over stages in arguing for the inextendibility of
the quantifier over sets.

Or again, it has been supposed that what we get is not a universal or a Russell set
but a universal or Russell class. But I have stated the argument without presuppos-
ing that the universal or Russell object is either a set or a class. What then can be
the objection to saying that we can so understand the quantifier that there is some-
thing that has all of the objects previously quantified over as members? Perhaps this
something is not a class, if the given objects already includes classes. But surely we can
intelligibly suppose that there is something, be what it may, that has all of the previ-
ously given objects as its members (in a sense that conservatively extends our previous
understanding of membership).

Thus the standard considerations in support of ZF or the like do nothing to
undermine the argument from extendibility. Their value lies not in showing how the
argument might be resisted but in showing how one might develop a consistent and
powerful set theory within a given domain, without regard for whether that domain
might reasonably be taken to be unrestricted.

But does not the extendibility argument take the so-called ‘all-in-one’ principle for
granted? And has not Cartwright (1994) shown this principle to be in error? Cart-
wright states the principle in the following way (p. 7):

to quantify over certain objects is to presuppose that those objects constitute a ‘collection’ or
a ‘completed collection’—some one thing of which those objects are members.

Now one might indeed argue for extendibility on the basis of the all-in-one principle.
But this is not how our own argument went. We did not argue that our understand-
ing of the quantifier ∀ presupposes that there is some one thing of which the objects
in the range of ∀ are members (∃+ y∀x(x ∈ y)). For this would mean that the quan-
tifier ∀ was to be understood in terms of the quantifier ∀+. But for us, it is the other
way round; the quantifier ∀+ is to be understood in terms of the quantifier ∀. It is
through a prior understanding of the quantifier ∀ that we come to appreciate that
there is a sense of the quantifier ∀+ in which it is correct to suppose that some one
thing has the objects in the range of ∀ as members. Thus far from presupposing that
the all-in-one principle is true, we presuppose that it is false!

Of course, there is some mystery as to how we arrive at this new understanding
of the quantifier. What is the extraordinary mental feat by which we generate a new
object, as it were, merely from an understanding of the quantifier that does not
already presuppose that there is such an object? I shall later have something to say
on this question. But it seems undeniable that we can achieve such an understanding
even if there is some difficulty in saying how we bring it off. Indeed, it may plausibly
be argued that the way in which we achieve an understanding of the quantifier
∀+ is the same as the way in which we achieve a more ordinary understanding of
the set-theoretic quantifier. Why, for example, do we take there to be a set of all
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natural numbers? Why not simply assume that the relevant portion of the ‘universe’
is exhausted by the finite sets of natural numbers? The obvious response is that we can
intelligibly quantify over all the natural numbers and so there is nothing to prevent us
from so understanding the set-theoretic quantifier that there is a set whose members
are all the natural numbers (∃x∀n(n ∈ x)). But then, by parity of reasoning, such
an extension in our understanding of the quantifier should always be possible. The
great stumbling block for the universalist, from this point of view, is that there would
appear to be nothing short of a prejudice against large infinitudes that might prevent
us from asserting the existence of a comprehensive set in the one case yet not in the
other.³

2.2 GENERALIZING THE EXTENDIBILITY ARGUMENT

The extendibility argument is not satisfactory as it stands. If our opponent claims
that we may intelligibly understand the quantifier as absolutely unrestricted, then he
is under some obligation to specify a particular understanding of the quantifier for
which this is so. And once he does this, we may then use the extendibility argument
to prove him wrong. But what if no opponent is at hand? Clearly, it will not do to
apply the extendibility argument to our own interpretation of the quantifier. For what
guarantee will we have that our opponent would have regarded it as absolutely unres-
tricted?

Clearly, what is required is a generalization of the argument. It should not be direc-
ted at this or that interpretation of the quantifier but at any interpretation whatever.
Now normally there would be no difficulty in generalizing an argument of this sort.
We have a particular instance of the argument; and, since nothing special is assumed
about the instance, we may generalize the reasoning to an arbitrary instance and
thereby infer that the conclusion generally holds. However, since our concern is with
the very nature of generality, the attempt to generalize the present argument gives rise
to some peculiar difficulties.

The general form of the argument presumably concerns an arbitrary interpreta-
tion (or understanding) of the quantifier; and so let us use I, J, . . . as variables for
interpretations, and I0 and J0 and the like as constants for particular interpretations. I
make no particular assumptions about what interpretations are and there is no need,
in particular, to suppose that an interpretation of a quantifier will require the specific-
ation of some ‘object’ that might figure as its domain. We shall use ∃Ixϕ(x), with I as
a subscript to the quantifier, to indicate that there is some x under the interpretation
I for which ϕ(x). Some readers may baulk at this notation. They might think that one
should use a meta-linguistic form of expression and say that the sentence ‘∃xϕ(x)’ is
true under the interpretation I rather than that ∃Ixϕ(x). However, nothing in what
follows will turn on such niceties of use-mention and, in the interests of presentation,
I have adopted the more straightforward notation.

³ A somewhat similar line of argument is given by Dummett (1991), pp. 315–16.
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Let us begin by reformulating the original argument, making reference to the inter-
pretations explicit. Presumably, our opponent’s intended use of the quantifier will
conform to a particular interpretation I0 of the quantifier. We may therefore assume:

(1) ∀x∃I0y(y = x)&∀I0 y∃x(x = y).

We now produce an ‘extension’ J0 of I0 subject to the following condition:

(2) ∃J0y∀I0x(x ∈ y ≡ ∼x ∈ x).

From (2) we may derive:

(3) ∃J0y∀I0x(x 
= y).

Defining I⊆J as ∀Ix∃Jy(x = y), we may write (3) as:

(3)′ ∼(J0 ⊆ I0).

Let us use UR(I) for: I is absolutely unrestricted. There is a difficulty for the lim-
itavist in explaining how this predicate is to be understood since, intuitively, an abso-
lutely unrestricted quantifier is one that ranges over absolutely everything. But let us
put this difficulty on one side since the present problem will arise even if the predicate
is taken to be primitive. Under the intended understanding of the predicate UR, it is
clear that:

(4) UR(I0) ⊃ J0 ⊆ I0.

And so, from (3) and (4), we obtain:

(5) ∼ UR(I0).

From this more explicit version of the original argument, it is now evident how it
is to be generalized. (2) should now assume the following more general form:

(2G) ∀I ∃J∃Jy∀Ix(x ∈ y ≡∼ x ∈ x).

This is the general ‘Russell jump’, taking us from an arbitrary interpretation I to its
extension J. (We could also let the interpretation of ∈ vary with the interpretation of
the quantifier; but this is a nicety which we may ignore.) By using the reasoning of
Russell’s paradox, we can then derive:

(3G) ∀I ∃J[∼(J ⊆ I)].

Define an interpretation I to be maximal, Max(I), if ∀J ( J ⊆ I). Then (3G) may be
rewritten as:

(3G)′ ∀I∼Max(I).

Step (4), when generalized, becomes:

(4G) ∀I[UR(I) ⊃ Max(I)].

And so from (3G)′ and (4G), we obtain:

(5G) ∀I ∼ UR(I),
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i.e. no interpretation of the quantifier is absolutely unrestricted, which would appear
to be the desired general conclusion.

But unfortunately, things are not so straightforward. For in something like the
manner in which our opponent’s first-order quantifier over objects was shown not
to be absolutely unrestricted, it may also be shown that our own second-order quan-
tifier over interpretations is not absolutely unrestricted; and so (5G) cannot be the
conclusion we are after. For we may suppose, in analogy with (1) above, that there is
an interpretation M0 to which the current interpretation of the quantifiers over inter-
pretations conforms:

(6) ∀I∃M0 J(J = I) & ∀M0J∃I(I = J).⁴

Now associated with any ‘second-order’ interpretation M is a first-order inter-
pretation I, what we may call the ‘sum’ interpretation, where our understanding of
∃Ixϕ(x) is given by ∃MJ∃Jxϕ(x). In other words, something is taken to ϕ (according
to the sum of M) if it ϕ’s under some interpretation of the quantifier (according to
M). The sum interpretation I is maximal with respect to the interpretations accord-
ing to M, i.e.∀MJ( J⊆ I); and so there will be such an interpretation according to M0

if M0 is absolutely unrestricted:

(7) UR(M0)⊃∃M0I∀MJ(J ⊆ I).

Given (6), (7) implies:

(8) UR(M0) ⊃ ∃I[Max(I)].

And so (3G)′ above yields:

(9) ∼ UR(M0).

The second-order interpretation of the first-order quantifier is not absolutely unres-
tricted.⁵

In this proof, we have helped ourselves to the reasoning by which we showed the
universalist’s first-order quantifier not to be absolutely unrestricted. But it may be
shown, quite regardless of how (5G) might have been established, that its truth is not
compatible with its quantifier being absolutely unrestricted. For it may plausibly be
maintained that if a second-order interpretation M is absolutely unrestricted then so
is any first-order interpretation that is maximal with respect to M (or, at least, if the
notion is taken in a purely extensional sense). Thus in the special case of M0, we have:

(10) UR(M0) ⊃ ∀M0I[∀M0 J(J ⊆ I) ⊃ UR(I)].

So from (7) and (10), we obtain:

(11) UR(M0) ⊃ ∃M0 I[UR(I)].

⁴ Instead of appealing to the notion of identity between interpretations in stating this assumption,
we could say ∀I∃M0 J[∀Ix∃Jy(x = y)&∀Jy∃Ix(y = x)]; and similarly for the second conjunct.

⁵ An argument along these lines is also to be found in Lewis (1991), p. 20, McGee (2000), p. 48,
and Williamson (2003), and also in Weir’s contribution to the present volume.
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But given (6), we may drop the subscript M0. And contraposition then yields:

(12) ∀I∼UR(I)⊃∼UR(M0).

In other words, if it is true that no interpretation of the quantifier is absolutely unres-
tricted, then the interpretation of the quantifier ‘no interpretation’ is itself not abso-
lutely unrestricted.⁶

Of course, it should have been evident from the start that the limitavist has a diffi-
culty in maintaining that all interpretations of the quantifier are not absolutely unres-
tricted, since it would follow from the truth of the claim that the interpretation of
the quantifier in the claim itself was not absolutely unrestricted and hence that it
could not have its intended import. What the preceding proof further demonstrates
is the impossibility of maintaining a mixed position, one which grants the intelligibil-
ity of the absolutely unrestricted ‘second-order’ quantifier over all interpretations but
rejects the intelligibility of the absolutely unrestricted ‘first-order’ quantifier over all
objects. If we have the one then we must have the other.⁷

The resulting dialectical situation is hardly satisfactory. The universalist seems
obliged to say something false in defense of his position. For he should say what the
absolutely unrestricted interpretation of the quantifier is—or, at least say that there is
such an interpretation; and once he does either, then we may show him to be in error.
The limitavist, on the other hand, can say nothing to distinguish his position from
his opponent’s—at least if his opponent does not speak. For his position (at least if
true) will be stated by means of a restricted quantifier and hence will be acceptable, in
principle, to his opponent. Both the universalist and the limitavist would like to say
something true but, where the one ends up saying something indefensible, the other
ends up saying nothing at all.

The situation mirrors, in miniature, what some have thought to hold of philo-
sophy at large. There are some propositions that are of interest to assert if true but
of no interest to deny if false. Examples are the proposition that there is no external
world or the proposition that I alone exist. Thus it is of interest to be told that there
is no external world, if that indeed is the case, but not that there is an external world.
Now some philosophers of a Wittgensteinian persuasion have thought that philo-
sophy consists entirely of potentially interesting propositions of this sort and that
none of them is true. There is therefore nothing for the enlightened philosopher to
assert that is both true and of interest. All he can sensibly do is to wait for a less
enlightened colleague to say something false, though potentially of interest, and then
show him to be wrong. And similarly, it seems, in the present case. The proposition
that some particular interpretation of the quantifier is absolutely unrestricted is of
interest only if true; and given that it is false, all we can sensibly do, as enlightened
limitavists, is to hope that our opponent will claim to be in possession of an absolutely

⁶ We should note that, for the purpose of meeting these arguments, it is of no help to draw a
grammatical distinction between the quantifiers ∀I and ∀x.

⁷ It is perhaps worth remarking that there are not the same compelling arguments against a
position that tolerates the intelligibility of unrestricted first-order quantification but rejects the
intelligibility of unrestricted second-order quantification (see Shapiro, 2003).
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unrestricted interpretation of the quantifier and then use the Russell argument to
prove him wrong!

2 .3 GOING MODAL

The previous difficulties arise from our not being able to articulate what exactly is
at issue between the limitavist and the universalist. There seems to be a well-defined
issue out there in logical space. But the universalist can only articulate his position
on the issue by saying something too strong to be true, while the limitavist can only
articulate his position by saying something too weak to be of interest. One gets at his
position from above, as it were, the other from below. But what we want to be able
to do is to get at the precise position to which each is unsuccessfully attempting to
approximate.

Some philosophers have suggested that we get round this difficulty by adopting a
schematic approach. Let us use r(I) for the interpretation obtained by applying the
Russell device to a given interpretation I. Then what the limitavist wishes to commit
himself to, on this view, is the scheme:

(ES) ∃r(I)y∀Ix ∼ (x = y) (something under the Russell interpretation is not an
object under the given interpretation).

Here ‘I’ is a schematic variable for interpretations; and in committing oneself to the
scheme, one is committing oneself to the truth of each of its instances though not to
the claim that each of them is true.⁸

The difficulty with this view is to see how it might be coherently maintained. We
have an understanding of what it is to be committed to a scheme; it is to be committed
to the truth of each of its instances. But how can one understand what it is to be com-
mitted to the truth of each of its instances without being able to understand what it is
for an arbitrary one of them to be true? And given that one understands what it is for
an arbitrary one of them to be true, how can one be willing to commit oneself to the
truth of each of them without also being willing to commit oneself to the claim that
each of them is true? But once one has committed oneself to this general claim, then
the same old difficulties reappear. For we can use the quantifier ‘every instance’ ( just
as we used the quantifier ‘every interpretation’) to construct an instance that does not
fall within its range.

The schematist attempts to drive a wedge between a general commitment to par-
ticular claims and a particular commitment to a general claim. But he provides no
plausible reason for why one might be willing to make the one commitment and
yet not both able and willing to make the other. Indeed, he appears to be as guilty
as the universalist in not being willing to face up to the facts of intelligibility. The
universalist thinks that there is something special about the generality implicit in our

⁸ Lavine and Parsons advocate an approach along these lines in the present volume; and it appears
to be implicit in the doctrine of ‘systematic ambiguity’ that has sometimes been advocated—by
Parsons (1974, p. 11) and Putnam (2000, p. 24), for example—as a solution to the paradoxes.
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understanding of a certain form of quantification that prevents it from being exten-
ded to a broader domain, while the schematist thinks that there is something special
about the generality implicit in a certain form of schematic commitment that pre-
vents it from being explicitly rendered in the form of a quantifier. But in neither case
can either side provide a plausible explanation of our inability to reach the further
stage in understanding and it seems especially difficult to see why one might baulk at
the transition in the one case and yet not in the other.

I want in the rest of the chapter to develop an alternative strategy for dealing with
the issue. Although my sympathies are with the limitavist, it is not my principal con-
cern to argue for that position but to show that there is indeed a position to argue for.
The basic idea behind the strategy is to adopt a modal formulation of the theses under
consideration. But this idea is merely a starting-point. It is only once the modality is
properly understood that we will be able to see how a modal formulation might be of
any help; and to achieve this understanding is no small task. It must first be appreci-
ated that the relevant modality is ‘interpretational’ rather than ‘circumstantial’; and it
must then be appreciated that the relevant interpretations are not to be understood, in
the usual way, as some kind of restriction on the domain but as constituting a genuine
form of extension. It has been the failure to appreciate these two points, I believe, that
has prevented the modal approach from receiving the recognition that it deserves.⁹

Under the modal formulation of the limitavist position, we take seriously the
thought that any given interpretation can be extended, i.e. that we can, in principle,
come up with an extension. Thus in coming up with an extension we are not confined
to the interpretations that fall under the current interpretation of the quantifier over
interpretations. Let us use I ⊂ J for ‘J (properly) extends I’ (which may be defined
as: I ⊆ J & ∼( J ⊆ I) ). Let us say that I is extendible—in symbols, E(I)—if possibly
some interpretation extends it, i.e.♦∃ J(I⊂ J). Then one formulation of the limitavist
position is:

(L) ∀IE(I).

But as thorough-going limitavists, we are likely to think that, whatever interpretation
our opponent might come up with, it will be possible to come up with an interpreta-
tion that extends it. Thus a stronger formulation of the limitavist’s position is:

(L)+ �∀IE(I)(i.e. �∀I♦∃J(I ⊂ J)).

It should be noted that there is now no longer any need to use a primitive notion of
being absolutely unrestricted (UR) in the formulation of the limitavist’s position.

The theses (L) and (L)+ are intended to apply when different delimitations on the
range of the quantifier may be in force. Thus the quantifier might be understood,
in a generic way, as ranging over sets, say, or ordinals, but without it being determ-
ined which sets or, which ordinals, it ranges over. Thesis (L) must then be construed
as saying that any interpretation of the quantifier over sets or over ordinals can be

⁹ The approach is briefly, and critically, discussed in §5 of Williamson (2003); and it might be
thought to be implicit in the modal approach to set theory and number theory, though it is rarely
advocated in its own right.
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extended to another interpretation of the quantifier over sets or over ordinals. Thus
the extension is understood to be possible within the specified range of the quanti-
fier. We might say that the concept by which the quantifier is delimited is extendible
if (L) holds and that it is indefinitely extendible if (L)+ holds. We thereby give precise
expression to these familiar ideas.

It is essential to a proper understanding of the two theses that the interpretations
be taken to be modally ‘rigid’. Whatever objects an interpretation picks out or fails
to pick out, it must necessarily pick out or fail to pick out; its range, in other words,
must be constant from world to world.¹⁰ Without this requirement, an interpreta-
tion could be extendible through its range contracting or inextendible through its
range expanding, which is not what we have in mind. We should therefore distinguish
between the concept, such as set or ordinal, by which the range of the quantifier might
be delimited and an interpretation of the quantifier, by which its range is fixed. The
latter is constant in the objects it picks out from world to world, even if the former
is not.

It will also be helpful to suppose that (necessarily) each interpretation picks out an
object within the current range of the first-order quantifier (�∀I∀Ix∃y(y = x) ). This
is a relatively harmless assumption to make, since it can always be guaranteed by
taking the interpretations within the range of ‘∀I’ to include the ‘sum’ interpretation
and then identifying the current interpretation with the sum interpretation. It fol-
lows on this approach that there is (necessarily) a maximal interpretation (�∃I∀J( J
⊆ I) ) but there is no reason to suppose, of course, that it is necessarily maximal
(�∃I�∀J( J ⊆ I) ). Given this simplifying supposition, the question of whether the
current interpretation I0 is extendible (i.e. of whether ♦∃J(I0 ⊂ J) ) is simply the
question of whether it is possible that there is an object that it does not pick
out (something we might formalize as ∀I(∀x∃Iy(y = x) ⊃ ♦∃x∼∃Iy(y = x) ) ),
where the condition ∀x∃Iy(y = x) serves to single out the current interpreta-
tion I0).

However, the critical question in the formulation of the theses concerns the use
of the modalities. Let us call the notions of possibility and necessity relevant to the
formulation ‘postulational’. How then are the postulational modalities to be under-
stood? The familiar kinds of modality do not appear to be useful in this regard. Sup-
pose, for example, that ‘�’ is understood as metaphysical necessity. As limitavists, we
would like to say that the domain of pure sets is extendible. This would mean, under
the present proposal, that it is a metaphysical possibility that some pure set is not
actual. But necessarily, if a pure set exists, then it exists of necessity; and so it is not
possible that some pure set is not actual. Thus we fail to get a case of being extendible
that we want. We also get cases of being extendible that we do not want. For it is pre-
sumably metaphysically possible that there should be more atoms than there actually
are. But we do not want to take the domain of atoms to be extendible—or, at least,
not for this reason.

¹⁰ I might add that all we care about is which objects are in the range, not how the range is
determined, and so, for present purposes, we might as well take ‘∀I’ to be a second-order extensional
quantifier.
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Suppose, on the other hand, that ‘�’ is understood as logical necessity (or perhaps
as some form of conceptual necessity). There are, of course, familiar Quinean dif-
ficulties in making sense of first-order quantification into modal contexts when the
modality is logical. Let me here just dogmatically assume that these difficulties may
be overcome by allowing the logical modalities to ‘recognize’ when two objects are or
are not the same.¹¹ Thus �∀x �(x = y ⊃ � x = y) and �∀x �(x 
= y ⊃ � x 
= y)
will both be true though, given that the modalities are logical, it will be assumed that
they are blind to any features of the objects besides their being the same or distinct.

There is also another, less familiar, difficulty in making sense of second -order quan-
tification into modal contexts when the modality is logical. There are perhaps two
main accounts of the quantifier ‘∀I’ that might reasonably be adopted in this case.
One is substitutional and takes the variable ‘I’ to range over appropriate substituends
(predicates or the like); the other is ‘extensional’ and takes ‘I’, in effect, to range over
enumerations of objects of the domain.

Under the first of these accounts, it is hard to see why any domain should be
extendible, for in the formalization ∀I(∀Ix∃y(y = x) ⊃ ♦∃x∼∃Iy(y = x) ) we may
let I be the predicate of self-identity. The antecedent ∀Ix∃y(y = x) will then be true
while the consequent ♦∃x∼∃Iy(y = x), which is equivalent to ♦∃x∼∃y(y = x), will
be false.

The second of the two accounts does not suffer from this difficulty since the inter-
pretation I will be confined to the objects that it enumerates. But it is now hard to
see why any domain should be inextendible. For let a1, a2, a3, . . . be an enumeration
of all of the objects in the domain. Then it is logically possible that these are not all
of the objects (♦∃x∼(x = a1 v x = a2 v x = a3 v . . .) ), since there can be no logical
guarantee that any particular objects are all of the objects that there are. This is espe-
cially clear if there are infinitely many objects a1, a2, a3, . . . . For if it were logically
impossible that some object was not one of a1, a2, a3, . . . , then it would be logically
impossible that some object was not one of a2, a3, . . . , since the logical form of the
existential proposition in the two cases is the same. But there is an object that is not
one of a2, a3, . . . , viz. a1! Thus just as considerations of empirical vicissitude are irrel-
evant to the question of extendibility, so are considerations of logical form.

It should also be fairly clear that it will not be possible to define the relevant notion
of necessity by somehow relativizing the notion of logical necessity. The question is
whether we can find some condition ϕ such that the necessity of ψ in the relevant
sense can be understood as the logical necessity of ϕ ⊃ ψ . But when, intuitively,
a domain of quantification is inextendible, we will want ϕ to include the condition
∀x(x = a1 v x = a2 v x = a3 v . . .), where a1, a2, a3, . . . is an enumeration of all the
objects in the domain; and when the domain is extendible, we will want ϕ to exclude
any such condition. Thus we must already presuppose whether or not the domain
is extendible in determining what the antecedent condition ϕ should be (and nor are
things better with metaphysical necessity, since the condition may then hold of neces-
sity whether we want it to or not).

¹¹ The issue is discussed in Fine (1990).
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2.4 POSTULATIONAL POSSIBILITY

We have seen that the postulational modalities are not to be understood as, or in
terms of, the metaphysical or logical modalities. How then are they to be understood?
I doubt that one can provide an account of them in essentially different terms—and
in this respect, of course, they may be no different from some of the other modalit-
ies.¹² However, a great deal can be said about how they are to be understood and in
such a way, I believe, as to make clear both how the notion is intelligible and how
it may reasonably be applied. Indeed, in this regard it may be much less problematic
than the more familiar cases of the metaphysical and natural modalities.

It should be emphasized, in the first place, that it is not what one might call a ‘cir-
cumstantial’ modality. Circumstances could have been different; Bush might never
have been President; or many unborn children might have been born. But all such
variation in the circumstances is irrelevant to what is or is not postulationally possible.
Indeed, suppose that D is a complete description of the world in basic terms. It might
state, for example, that there are such and such elementary particles, arranged in such
and such a way. Then it is plausible to suppose that any postulational possibility is
compatible with D. That is:

♦A ⊃ ♦(A & D).

Or, equivalently, D is a postulational necessity (� D); there is not the relevant pos-
sibility of extending the domain of quantification so that D is false. Postulational
possibilities, in this sense, are possibilities for the actual world, and not merely pos-
sible alternatives to the actual world.

Related considerations suggest that postulational necessity is not a genuine mod-
ality at all. For when a proposition is genuinely necessary there will be a broad intu-
itive sense in which the proposition must be the case. Thus epistemic necessity (or
knowledge) is not a genuine modality since there is no reason, in general, to sup-
pose that what is known must be the case. Similarly for postulational necessity. That
there are swans, for example, is a postulational necessity but it is not something that,
intuitively, must be the case. Thus it is entirely compatible with the current ‘modal’
approach that it is not merely considerations of metaphysical modality, but genuine
considerations of modality in general, that are irrelevant to questions of extendibility.

The postulational modalities concern not a possible variation in circumstance but
in interpretation. The possibility that there are more sets, for example, depends upon a
reinterpretation in what it is for there to be a set. In this respect, postulational possibility
is more akin to logical possibility, which may be taken to concern the possibility for
reinterpreting the primitive non-logical notions. However, the kind of reinterpretation
that is in question in the case of postulational possibility is much more circumscribed

¹² Metaphysical modality is often taken to be primitive and Field (1989, p. 32) has suggested
that logical modality is primitive. In Fine (2002), I argued that there are three primitive forms of
modality—the metaphysical, the natural, and the normative. Although postulational modality may
also be primitive, it is not a genuine modality in the sense I had in mind in that paper.
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than in the case of the logical modality, since it primarily concerns possible changes in
the interpretation of the domain of quantification and is only concerned with other
changes in interpretation in so far as they are dependent upon these.

But if postulational possibility is a form of interpretational possibility, then why
does the postulational possibility of a proposition not simply consist in the existence
of an interpretation for which the proposition is true? It is here that considerations of
extendibility force our hand. For from among the interpretations that there are is one
that is maximal. But it is a postulational possibility that there are objects which it does
not pick out; and so this possibility cannot consist in there actually being an interpret-
ation (broader than the maximal interpretation) for which there is such an object.¹³

Nor can we plausibly take the postulational possibility of a proposition to consist
in the metaphysical possibility of our specifying an interpretation under which the
proposition is true. For one thing, there may be all sorts of metaphysical constraints
on which interpretations it is possible for us to specify. More significantly, it is not
metaphysically possible for a quantifier over pure sets, say, to range over more pure
sets than there actually are, since pure sets exist of necessity. So this way of thinking
will not give us the postulational possibility of there being more pure sets than there
actually are.

The relationship between the relevant form of interpretational possibility and the
existence of interpretations is more subtle than either of these proposals lead us to
suppose. What we should say is that the existence of an interpretation of the appro-
priate sort bears witness or realizes the possibility in question.¹⁴ Thus it is the existence
of an interpretation, given by the Russell jump, that bears witness to the possibility
that there are objects not picked out by the given interpretation. However, to say that
a possibility may be realized by an interpretation is not to say that it consists in the
existence of an interpretation or that it cannot obtain without our being able to spe-
cify the interpretation.

But still it may be asked: what bearing do these possibilities have on the
issue of unrestricted quantification? We have here a form of the ‘bad company’
objection. Some kinds of possibility—the metaphysical or the logical ones, for
example—clearly have no bearing on the issue. So what makes this kind of possibility
any better? Admittedly, it differs from the other kinds in various ways—it is inter-
pretational rather than circumstantial and interpretational in a special way. But why
should these differences matter?¹⁵

I do not know if it is possible to answer this question in a principled way, i.e., on the
basis of a clear and convincing criterion of relevance to which it can then be shown that
the modality will conform. But all the same, it seems clear that there is a notion of the
required sort, one which is such that the possible existence of a broader interpretation

¹³ We have here a kind of proof of the impossibility of providing a possible world’s semantics
for the relevant notion of interpretational possibility. Any semantics, to be genuinely adequate to
the truth-conditions, would have to be homophonic.

¹⁴ What is here in question is the legitimacy of the inference from ϕI to ♦ϕ, where ϕI is the
result of relativizing all the quantifiers in ϕ to I. This might be compared to the inference from
ϕ-is-true-in-w to ♦ϕ, with the world w realizing the possibility of ϕ.

¹⁵ I am grateful to Timothy Williamson for pressing this question upon me.



Relatively Unrestricted Quantification 35

is indeed sufficient to show that the given narrower interpretation is not absolutely
unrestricted. For suppose someone proposes an interpretation of the quantifier and I
then attempt to do a ‘Russell’ on him. Everyone can agree that if I succeed in coming
up with a broader interpretation, then this shows the original interpretation not to
have been absolutely unrestricted. Suppose now that no one in fact does do a Russell
on him. Does that mean that his interpretation was unrestricted after all? Clearly not.
All that matters is that the interpretation should be possible. But the relevant notion
of possibility is then the one we were after; it bears directly on the issue of unrestricted
quantification, without regard for the empirical vicissitudes of actual interpretation.

Of course, this still leaves open the question of what it is for such an interpretation
to be possible. My opponent might think it consists in there existing an interpreta-
tion in a suitably abstract sense of term or in my being capable of specifying such an
interpretation. But we have shown these proposals to be misguided. Thus the present
proponent of the modal approach may be regarded as someone who starts out with
a notion of possible interpretation that all may agree is relevant to the issue and who
then finds good reason not to cash it out in other terms. In this case, the relevance of
the notion he has in mind can hardly be doubted.

2 .5 RESTRICTIONISM

To better understand the relevant notion of postulational possibility we must under-
stand the notion of interpretation on which it is predicated. Postulational possibilities
lie in the possibilities for reinterpreting the domain of quantification. But what is
meant here by a reinterpretation, or change in interpretation, of the quantifier?

The only model we currently have of such a change is one in which the interpreta-
tion of the quantifier is given by something like a predicate or property which serves
to restrict its range. To say that a proposition is postulationally necessary, on this
model then, is to say that it is true no matter how the restriction on its quantifiers
might be relaxed; to say that an interpretation of the quantifier is extendible is to say
that the restriction by which it is defined can be relaxed; and to say that a quanti-
fier is indefinitely extendible is to say that no matter how it might be restricted the
restriction can always be relaxed.

Unfortunately, the model, attractive as it may be, is beset with difficulties. Con-
sider the claim that possibly there are more sets than we currently take there to be
(∀I[∀x∃Iy(y = x) ⊃ ♦∃y∀Ix(y 
= x)]). In order for this to be true, the current quanti-
fier ‘∀x’ over sets must not merely be restricted to sets but to sets of a certain sort, since
otherwise there would not be the possibility of the set-quantifier ‘∃y’ having a broader
range. But it is then difficult to see why the current interpretation of the quantifier
‘∀x’ should not simply be restricted to sets.

For surely we are in possession of an unrestricted concept of a set, not set of such
and such a sort but set simpliciter. When we recognize the possibility, via the Russell
jump, of a new set, we do not take ourselves to be forming new concepts of set and
membership. The concepts of set and membership, of which we were already in pos-
session, are seen to be applicable to the new object; and there is no question of these
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concepts embodying some further implicit restriction on the objects to which they
might apply.

But given that we are in possession of an unrestricted concept of set, then why is it
not legitimate simply to restrict the quantifier to sets so conceived? It might of course
be argued that the quantifier should always be restricted to a relevant sort, that we
cannot make sense of quantification over objects as such without some conception of
which kind of objects are in question. But such considerations, whatever their merits
might otherwise be, are irrelevant in the present context. For the quantifier is already
restricted to a sort, viz. set, and so we have as good a conception as we might hope to
have of which kind of objects are in question. To insist upon a further restriction of
the quantifier is like thinking that we cannot properly quantify over swans but only
over black swans, say, or English swans.

There is another difficulty with the model. Any satisfactory view must account for
the act of reinterpretation that is involved in the Russell jump. In making the Russell
jump, we go from one interpretation of the quantifier to another; and we need to
provide a satisfactory account of how this is done. To simplify the discussion, let us
suppose that no set belongs to itself. The Russell set over a given domain is then the
same as the universal set; and so the question of the intelligibility of the Russell jump
can be posed in terms of the universal rather than the Russell set. Let us now suppose
that we have an initial understanding of the quantifier. represented by ‘∀x’ and ‘∃x’.
We then seem capable of achieving a new understanding of the quantifier—which
we may represent by ‘∀+x’ and ‘∃+x’—in which it also ranges over a universal set.
Under this new understanding, it is correct to say that there is a universal set relative
to the old understanding (∃+x∀y(y ∈ x)). The question on which I wish to focus is:
how do we come to this new understanding of the quantifier on the basis of the initial
understanding?

It is clear that the condition ∀y(y ∈ x) plays a critical role; since it is by means
of this condition that the new understanding is given. But how? The only answer
the restrictionist can reasonably give is that the condition is used to relax the con-
dition on the quantifier that is already in play. Thus suppose that the initial quan-
tifier ∀x is implicitly restricted to objects satisfying the condition θ(x), so that to say
∀xϕ(x) is tantamount to saying ∀x[θ(x): ϕ(x)] (every θ-object is a ϕ-object). The effect
of considering the condition ∀y(y ∈ x) is then to weaken the initial restrictive condi-
tion θ(x) to θ(x) ∨ ∀y(y ∈ x), so that to say ∀+xϕ(x) is tantamount to saying ∀x[θ(x)
∨ ∀y(y ∈ x): ϕ(x)].

Unfortunately, this proposal does not deliver the right results. Intuitively, we
wanted the quantifier ∀+x to include one new object in its domain, the set of all those
objects that are in the range of ∀y. But the condition ∀y(y ∈ x) picks out all those sets
that have all of the objects in the range of ∀y as members, and not just the set that
consists solely of these objects. If we had an unrestricted quantifier �x, then we could
pick out the intended set by means of the condition �y(y ∈ x≡ ∃z(z = y)) but under
the present proposal, of course, no such quantifier is at hand.¹⁶

¹⁶ One might think that the new object should be defined by the condition: ∃I[∀x∃Iy(y = x) &
�∀y(y ∈ x ≡ ∃Iz(z = y)]. But since the condition is modal, it is of little help in understanding the
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There is a further difficulty, which is a kind of combination of the other two. As
we have seen, the required restriction on the quantifier is not just to sets but to sets
of such and such a sort. But how are we to specify the supplementary non-sortal con-
dition? It is clear that in general this will require the use of a complex predicates and
not just the use of simple predicates, such as ‘set’. But how are the complex predic-
ates to be specified except by the use of lambda-expressions of the form λxϕ(x)? And
how is the implicit restriction on the lambda-operator λx in such expressions to be
specified except by means of further complex predicates? Thus it is hard to see how
the specification of the relevant class of restrictions might get ‘off the ground’.¹⁷

2.6 EXPANSIONISM

The two obvious ways of understanding the postulational modality—the circum-
stantial and the interpretational—have failed. What remains? I believe that our dif-
ficulties stem from adopting an unduly narrow conception of what might constitute
an interpretation of the quantifier. To understand better what alternative conceptions
there might be, we need to reconsider the Russell jump and how it might be capable
of effecting a change in the interpretation of the quantifier.

As I have remarked, the change in the interpretation of the domain of quantifica-
tion is somehow given by the condition ∀y(y ∈ x). But rather than thinking of that
condition as serving to define a new predicate by which the quantifier is to be restric-
ted, we should think of it as serving to indicate how the range of the quantifier is to
be extended. Associated with the condition ∀y(y ∈ x) will be an instruction or ‘pro-
cedural postulate’, !x∀y(y ∈ x), requiring us to introduce an object x whose members
are the objects y of the given domain. In itself, the notation !x∀y(y ∈ x) is perhaps
neutral as to how the required extension is to be achieved. But the intent is that there
is no more fundamental understanding of what the new domain should be except as
the domain that might be reached from the given domain by adding an object in con-
formity with the condition. Thus !x∀y(y ∈ x) serves as a positive injunction on how
the domain is to be extended rather than as a negative constraint on how it is to be
restricted.

It might be wondered why the present account of how the domain is to be extended
is not subject to a form of the objection that we previously posed against the restric-
tionist account. For what guarantees that we will obtain the desired extension? What
is to prevent the new object from containing members besides those in the range of y?

relevant sense of �. Also, there would appear to be something viciously circular about specifying an
interpretation in this way, since the application of � within such conditions must be understood
by reference to the very interpretations it is being used to specify. At the very least, it is hard to
see how such interpretations could be legitimate unless their application could be grounded in
interpretations of an ordinary, nonmodal kind.

¹⁷ Another possibility, under this approach, is to distinguish between free and bound variables.
Free variables are absolutely unrestricted, bound variables are not; and conditions with free variables
can then be used to specify the relevant restrictions on bound variables. But, as with the schematic
approach, it is hard to see what prevents the free variable from being bound.
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The answer lies in the nature of the postulational method. For not every object can
be postulated into existence. We cannot postulate, for example, that there is to be an
object whom everyone admires (!x∀y(y admires x)). And likewise, we cannot postu-
late an object which stands in the membership relationship to pre-existing objects.
But this means that, once a universal set for a given domain has been introduced, no
further objects that might be introduced can be among its members. Thus the mem-
bership—and hence identity—of the set will be fixed ‘for all time’, once it has been
introduced.

The present account of domain extension should be sharply distinguished from the
restrictionist and universalist accounts.¹⁸ Under the universalist account, the old and
new domains are to be understood as restrictions; and these restrictions, in turn, are to
be understood as restrictions on an absolutely unrestricted domain. Under the restric-
tionist account, the old and new domains are also to be understood as restrictions; but
these restrictions are not themselves to be understood as restrictions of some broader
domain. Under the expansionist account, by contrast, the new domain is not to be
understood as a restriction at all but as an expansion. What we are provided with is
not a new way of seeing how the given domain might have been restricted but with a
way of seeing how it might be expanded. We might say that the new domain is under-
stood from ‘above’ under the universalist and restrictionist accounts, in so far as it is
understood as the restriction of a possibly broader domain, but that it is understood
from ‘below’ under the expansionist account, in that it is understood as the expansion
of a possibly narrower domain.

Another major difference between the accounts concerns the conditions and con-
sequences of successful reinterpretation. Any attempt to reinterpret the quantifier by
means of a restricting predicate will be successful under the universalist account; and
it will also be successful under the restrictionist account as long as the predicate does
not let in ‘too many’ objects. However, belief that there is a new object, that the
domain has in fact been extended, is not automatically justified under either of these
accounts. They do indeed provide us with a new way in which there might be a new
object for, given the new understanding of ∃+y, it may now be true that ∃+ y∀x(x
∈ y) even though it was not before true that ∃y∀x(x ∈ y). But success in the act of
reinterpretation does not in itself guarantee that there is such an object. Under the
expansionist account, by contrast, success in the act of reinterpretation does guaran-
tee that there is such an object. Thus if the attempt to reinterpret the quantifier ∃+y
by means of the injunction !x∀y(y ∈ x) is successful, then the inference to ∃+y∀x(x ∈
y) will be secure.

However, successful reinterpretation, in this case, cannot simply be taken for gran-
ted. We do not need to show that there is an object of the required sort in order to be
sure of success. Indeed, such a demand would be self-defeating since its satisfaction

¹⁸ It should also be distinguished from a view that takes quantification to be relative to a
conceptual scheme. One major difference is this. A procedural postulate presupposes a prior
understanding of the quantifier and so it should be possible, under the postulationalist approach, to
understand the quantifier in the absence of any postulates. However, it is not usually thought to be
possible, under the conceptualist approach, to understand the quantifier apart from any conceptual
scheme.
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would require the very understanding of the quantifier that we are trying to attain.
But in order successfully to postulate an object we do need to demonstrate the legit-
imacy of the postulate, i.e. the postulational possibility of there being an object of the
prescribed sort. Given this possibility, we may then use the condition by which the
object is given to secure an interpretation of the quantifier in which there is such an
object.

It is a remarkable feature of the understanding we achieve through the Russellian
jump that the very act of reinterpretation serves to secure the existence of the object
in question. It is not as if we can think of ourselves as successfully reinterpreting the
quantifier and then go on to ask whether, under this reinterpretation, there is indeed
an object of the required sort. The one guarantees the other; and it is a key point in
favor of the present approach that it is in conformity with what we take ourselves to
be doing in such cases.

There is a third important difference. Both the restrictionist/universalist and
the expansionist accounts allow the interpretation of the quantifier to be relat-
ive—relative to a restricting predicate in the one case and to a procedural postulate
in the other. But the relativity can plausibly regarded as internal to the content in the
first case. If I restrict the interpretation of the quantifier to the predicate θ, then what
I am in effect saying when I say ‘∃xϕ(x)’ is that some θ ϕ’s. But the relativity cannot
plausibly be regarded as internal to the content in the second case. If I expand the
interpretation of the quantifier by means of the postulate α, then what I am in effect
saying when I say ‘∃xϕ(x)’ is simply that something ϕ’s (but in the context of having
postulated α), not that something ϕ’s in the domain as enlarged by α. For to say that
something ϕ’s in the domain as enlarged by α is to say that something suitably related
to α is a ϕ; and I cannot make proper sense of what this ‘something’ might be unless
I have already enlarged the domain by α. We might say that the relativity in the inter-
pretation of the quantifier is understood from the ‘inside’ under the universalist and
restrictionist accounts but from the ‘outside’ under the expansionist account.¹⁹

This feature of the postulationism might be thought to be at odds with our previ-
ous insistence that a postulate should serve to reinterpret the quantifier. For surely, if
I reinterpret the quantifier, then what I say, before laying down a postulate, is differ-
ent from what I say afterwards. Indeed, it might be thought that the postulationist, as
I have characterized him, faces an intolerable dilemma. For a postulate may result in
a statement changing its truth-value. But that can be so only because of a change in
content or of a change in the circumstances (in what it is for the statement to be true
or in what it is that renders the statement true or false). Yet, for different reasons, we
have wanted to reject both of these alternatives.

I think that, in the face of this dilemma, we are forced to recognize a quite distinct-
ive way in which a postulate may result in a change of interpretation—one that is

¹⁹ These various differences are discussed in more detail in Fine (2005b); and other forms of
external relativism are discussed in Fine (2005c) and Fine (2005d). I should note that there are
some similarities between my views on domain expansion and Glanzberg’s (this volume). Thus his
notion of a ‘background domain’ corresponds to my notion of an unrestricted domain, as given by
a postulational context; and his notion of an ‘artifactual object’ corresponds to my notion of an
object of postulation.
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intermediate, as it were, between a change in content and a change in circumstance, as
these are normally conceived. We should bear in mind that, on the present view, there
is no such thing as the ontology, one that is privileged as genuinely being the sum-
total of what there is. There are merely many different ontologies, all of which have
the same right (or perhaps we should say no right) to be regarded as the sum-total
of what there is.²⁰ But this means that there is now a new way in which a statement
may change its truth-value—not through a change in content or circumstance, but
through a change in the ontology under consideration. There is another parameter
in the picture and hence another possibility for determining how a statement may
be true. Postulation then serves to fix the value of this parameter; rather than alter-
ing how things are within a given ontology or imposing a different demand on the
ontology, it induces a shift in the ontology itself.²¹

The postulational conception of domain extension provide us with two distinct
grounds upon which universalism might be challenged. It might be challenged on
the ground that any interpretation of the quantifier must be restricted; and it might
also be challenged on the ground that any interpretation of the quantifier is subject to
expansion. It should be clear that these two grounds are independent of one another.
Thus one might adopt a form of restrictionism that is either friendly or hostile to
expansionism. In the first case, one will allow the expansion of the domain but the
expansion must always be relative to an appropriately restricted domain (to sets, say,
or ordinals); while in the second case, one will not allow an expansion in the domain
and perhaps not even accept the intelligibility of the notion. Similarly, one might
adopt a form of expansionism that is hostile to restrictionism. On this view, there
is nothing to prevent the quantifier from being completely unrestricted; in saying
‘∃xϕ(x)’, one is saying something ϕ’s, period. However, this is not to rule out the pos-
sibility of expanding the unrestricted domain; the resulting quantifier is then unres-
tricted, but relative to a ‘postulate’. Indeed, on this view it is impossible to regard
expansion as a form of de-restriction, since there is no existing restriction on the quan-
tifier to be relaxed.²²

I have taken universalism to be the view that there is absolutely unrestricted quanti-
fication. Usually, the term ‘absolutely’ in the formulation of this view is taken to mean
‘completely’; there is absolutely no restriction, i.e. no restriction whatever. But if I am
right, the view is really a conjunction of two distinct positions, one signified by ‘unres-
tricted’ and the other by ‘absolutely’. The first is the affirmation of unrestricted (i.e.
completely unrestricted) quantification. The second is the rejection of any relativity
in the interpretation of the quantifier beyond a restriction on its range; once the range
of the quantifier has been specified by means of a suitable predicate, or even by the
absence of a predicate, then there is nothing else upon which its interpretation might
depend. It is because the view is essentially conjunctive in this way that we have been

²⁰ Of course, this is not how the postulationist should express himself. What he refuses to
privilege is his current ontology as opposed to the various ontologies that might be realized through
postulation.

²¹ This new form of indexicality is further discussed and developed in Fine (2005c, 2005d).
²² I might note that there are some intermediate positions. Thus one might suppose that there is

an inexpandible domain, but one that can only itself be reached through expansion.
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able to find two distinct grounds—restrictionism and expansionism—upon which
it might be challenged.

I myself am tempted by the view that embraces expansionism but rejects restric-
tionism. I am a believer in what one might call ‘relatively unrestricted’ quantification.
However, opposition to universalism—at least, when the issue of extendibility is at
stake—has not usually been of this form. The critical question of how an extension in
the domain might be achieved has rarely been broached and it has usually been sup-
posed, if only tacitly, that the relevant interpretation of the quantifiers can only be
given by means of a restriction, so that it is only through a change in the restriction
that the desired change in the domain of quantification might be achieved.

We are therefore left with a radical form of restrictionism, one which requires not
only a ‘visible’ restriction to a sort but also an ‘invisible’ restriction to some form of
nonsortal condition (whose exact identity is never made clear). But, as I have argued,
such a form of restrictionism is highly implausible, both in itself and as an account of
extendibility. For the need for a non-sortal restriction lacks any independent motiva-
tion and a change in the non-sortal restriction is not, in any case, capable of account-
ing for the desired extension in the domain. The restrictionists have operated within
an unduly limited model of how domain extension might be achieved; and I believe
that it is only by embracing expansionism that a more adequate account of domain
extension and a more viable form of opposition to universalism can be sustained.

2 .7 EXPRESSIVITY

I wish, in conclusion, to consider one of the most familiar objections to the limitavist
position. It is that it prevents us from saying things that clearly can be said. It seems
evident, for example, that we can say that absolutely everything is self-identical. But
how can such a thing be said, under the limitavist view, if the quantifier by which it is
said is either restricted or subject to expansion? Or again, we may wish to assert that
no donkey talks (cf. Williamson, 2003). Our intent, in making such a claim, is that
it should concern absolutely all donkeys. But then what is to prevent it from being
true simply because the domain has been limited—either through restriction or lack
of expansion—to objects that are not talking donkeys?

These difficulties can be overcome by using the modal operator to strengthen the
universal claims. Instead of saying everything is self-identical (∀x(x = x) ), we say
necessarily, whatever might be postulated, everything is self identical (�∀x(x = x) );
and instead of saying no donkey talks (∀x(Dx ⊃ ∼Tx)), we say necessarily no don-
key talks (�∀x(Dx ⊃ ∼Tx)). The claims, if true, will then exclude the possibility of
counter-example under any extension of the domain.

If we were to read the ‘absolutely’ in ‘absolutely all’ as the postulational box, then
we could even preserve some similarity in form between the natural language ren-
dering of the claim and its formalization. However, in many cases we can rely on
the unqualified non-modal claim and use suitable ‘meaning postulates’ to draw out
the modal implications. Consider no donkey talks (∀x(Dx ⊃∼Tx)), for example. It
is plausibly part of the meaning of ‘donkey’ that donkeys cannot be introduced into
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the domain through postulation (∃I[∀x∃Iy(y = x)&�∀x(Dx ⊃ ∃Iy(y = x))]) and it
is plausibly part of the meaning of ‘talk’ that no non-talking object can be made to talk
through postulation (∀x(∼Tx⊃ � ∼Tx)).²³ But with the help of these meaning pos-
tulates, we can then derive the strengthened modal claim (�∀x(Dx⊃∼Tx)) from the
nonmodal claim (∀x(Dx⊃∼Tx). We therefore see that in these cases the unqualified
nonmodal claims are themselves capable of having the required deductive import.

A similar device can be used, in general, to simulate the effect of absolutely unres-
tricted quantification. Suppose that �x is the absolutely unrestricted quantifier of the
universalist and that ϕ(x) is a condition whose satisfaction is indifferent to postula-
tional context. Then instead of saying �xϕ(x), we may say �∀xϕ(x), where ∀x is the
relatively unrestricted quantifier of the expansionist. In general, ϕ(x) may be a con-
dition whose satisfaction is sensitive to postulational context—as with the condition
∃y(y = x) to the effect that x is in the current range of the quantifier. To take care of
such cases, we must make use of some device to take us back to the current context
(once we are within the scope of �). To this end, we can appeal to the current inter-
pretation of the quantifier. Thus instead of saying �xϕ(x), we may say ∃I(∀x∃Iy(y =
x) & �∀xϕ(x)I), where the embedded condition ϕ(x)I is the result of relativizing the
quantifiers in ϕ(x) to I.²⁴

The locution �x, as understood by the expansionist, behaves like a quantifier:
it conforms to all of the right first-order principles; and the universalist can even
conceive of it as having a quantificational semantics. But it is not a quantifier. Indeed,
contradiction would ensue if the expansionist supposed that there were some genuine
quantifier ∀x for which �xϕ(x) was equivalent to ∀xϕ(x), for he would then be in
no position to perform a Russell jump on ∀x and thereby assert the postulational
possibility of some object not in the current domain (∃I[∀x∃Iy(y = x) & ♦∃x∼
∃Iy(y = x)]).

The curious hybrid status of the quasi-quantifier �x is able to account for what
it right and wrong about Schematism. The schematist takes us to be committed to
the schematic truth of x = x; and he correctly perceives that this is not a matter of
being committed to any particular universal truth, i.e. there is no understanding of
the universal quantifier ∀x for which the commitment to x = x is equivalent to the
commitment to ∀x(x = x). But from this he incorrectly infers that to be committed
to the schematic truth of x = x is not to be committed to any particular truth
(something that we previously saw to be implausible); for to be committed to x =
x is to be committed to �x(x = x) (or �∀x(x = x)). Thus it is by appeal to the
quasi-quantifier �x that we may correctly represent the form of generality implicit in
a schematic commitment.

²³ I might note, incidentally, that it is unclear how such meaning postulates could have any
plausibility under a radical form of restrictionism.

²⁴ Similar definitions of possibilist quantification in terms of actualist quantification have been
proposed in connection with the metaphysical modalities (see Fine (2003) and the accompanying
references). When ϕ(x) contains only the unrestricted quantifiers of the universalist, the more
complicated form of analysis is not required. A related approach to unrestricted quantification in
set theory is discussed at the end of Putnam (1967).
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The hybrid status of �x can also be used to make sense of the obscure distinction
between actual and potential infinity. It has been thought that some infinite domains
are definite or complete while others are ‘always in the making’. But what does this
mean? We can take quantification over an actually infinite domain to be represen-
ted by a genuine quantifier ∀x and quantification over a potentially infinite domain
to be represented by the quasi-quantifier �x. The domain is then potential in that
it is incapable of being exhausted by any actual domain (�∀I(∀x∃Iy(y = x) ⊃ �x∼
∃Iy(y = x)–where � is the dual of II); and we can take the peculiar features of quan-
tification over a potential domain, and its inability to sustain domain expansion, to
rest upon its underlying modal form.²⁵

We see, once the notion of postulational necessity is on the table, that the charge
of expressive inadequacy is without merit. The expansionist can, in his own way, say
everything that the universalist says. The difficulty over expressive inadequacy lies, if
anywhere, in the other direction. For the expansionist can make claims about what is
or is not postulationally possible or necessary. But how is the universalist to express
these claims? Presumably, for a proposition to be postulationally necessary is for it to
be true in all relevant domains. Not all domains whatever, though, since any of the
domains should be capable of expansion. But then which ones? It seems to me that,
in response to this question, the universalist must either make a substantive assump-
tion about the domains in question, such as that they are all of ‘smaller size’ than the
universe as a whole, or he must work with a primitive notion of the relevant domains.
They are ones that in some unexplained sense are ‘definite’ or ‘complete’.

Of course, the universalist will not be happy with the way the expansionist
expresses absolutely unrestricted generality. This notion, he wants to say, is quantific-
ational, not modal. But likewise, the expansionist will not be happy with the way the
universalist expresses postulational necessity. This notion, he wants to say, is modal in
form, not quantificational. It therefore appears as if there is some kind of stale-mate,
with neither side enjoying a decided advantage over the other.

Ibelieve,however, that therearesomegeneral theoreticalconsiderationsthatstrongly
favor the expansionist point of view. For the idea behind expansionism can be used as
the basis for a new approach to the philosophy of mathematics and to the philosophy
of abstract objects in general. This approach is able to provide answers to some of the
most challenging questions concerning the identity of these objects, our understanding
of the language by which they are described, and our knowledge of their existence and
behavior. Its ability to answer these questions and to throw light over such a wide terrain
may well be regarded as a decisive point in favor of the expansionist position.²⁶
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3
Context and Unrestricted Quantification

Michael Glanzberg

Quantification is haunted by the specter of paradoxes. Since Russell, it has been a
persistent idea that the paradoxes show what might have appeared to be absolutely
unrestricted quantification to be somehow restricted. In the contemporary literature,
this theme is taken up by Dummett (1973, 1993) and Parsons (1974a,b). Parsons,
in particular, argues that both the Liar and Russell’s paradoxes are to be resolved by
construing apparently absolutely unrestricted quantifiers as appropriately restricted.

Building on Parsons’ work, I have advocated a contextualist version of the view that
there is no absolutely unrestricted quantification (Glanzberg 2001, 2004a,b). I have
argued that all quantifiers must be construed as ranging over contextually provided
domains, and that for any context, there is a distinct context which provides a wider
domain of quantification. Hence, there is no absolutely unrestricted quantification.
Instead, quantification displays a contextual version of what Dummett calls ‘indefin-
ite extensibility’. With Parsons, I have argued that this helps us to resolve the Liar as
well as Russell’s paradoxes.

There remain a great number of issues surrounding the sort of view Parsons and
I advocate. Just how to understand the argument from paradox against absolutely
unrestricted quantification remains a delicate matter. Questions about how our view
might be coherently stated, and whether it is compatible with certain ideas in meta-
physics, are often raised. (Many such questions are raised forcefully in Williamson,
2004.) I take these sorts of issues seriously (and have tried to address some of them
in my 2004b). In this chapter, however, I shall put them aside, in favor of developing
important positive aspects of the contextualist proposal.

The rejection of absolutely unrestricted quantification is no doubt an unexpected,
if not unwelcome, conclusion. In part, I believe, we have to recognize that any genu-
ine solution to the paradoxes will force some unwelcome conclusion upon us. (We
would hardly see a genuine paradox otherwise.) But I have also suggested that the

Versions of this material were presented at a meeting of the Research Group in Logical Methods
in Epistemology, Semantics, and Philosophy of Mathematics at the University of Bristol, 2005;
at the University of California, Berkeley, Working Group in History and Philosophy of Logic,
Mathematics, and Science, 2005; and the Society for Exact Philosophy Meeting in Toronto, 2005.
Thanks to the participants there, especially Volker Halbach, Phil Kremer, Jason Stanley, and Philip
Welch. Thanks also to Kit Fine, Josh Parsons, Agustín Rayo, and Gabriel Uzquiano for very helpful
comments and discussions.
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contextualist view mitigates the unwelcome effects, and so offers a better-motivated,
less ad hoc approach. It does so by drawing a parallel between the sorts of shifts in
quantifier domains required by the paradoxes and the very familiar phenomenon of
contextual quantifier domain restriction. The more close the parallel, the more we can
see what might have looked like an unexpected and unwelcome restriction on what
we can say as merely an unusual manifestation of a familiar and wide-spread natural-
language phenomenon.

In this chapter, I shall investigate how close this parallel really is. I shall argue for a
limited, but still substantial, conclusion. The kind of quantifier behavior we see with
the paradoxes is not exactly the same as the more ordinary kind we see in everyday
discourse. Even so, I shall argue it is importantly similar. Like ordinary quantifier
domain restriction, we can understand it as the setting of a context-dependent para-
meter in a sentence. The parameters involved in paradoxical and ordinary cases are
distinct, but the pragmatic processes which set them are fundamentally related. Thus,
I shall argue, examining the pragmatics and semantics of quantifier domain restric-
tion does provide us with important insights which may be applied to develop the
contextualist response to the paradoxes in detail.

I should make clear at the outset that I shall not be offering a new argument
against unrestricted quantification, nor am I claiming that we can resolve the para-
doxes simply by observing commonplace linguistic phenomena. Rather, I shall be
developing the contextualist view by supplementing familiar arguments derived from
the paradoxes by examination of ordinary contextual domain restriction in natural
language. Providing these details and establishing where and how they relate to well-
established phenomena in natural language will, I hope, show the contextualist view
to be plausible and well motivated. This will offer indirect support for the view.

This chapter proceeds as follows. The kind of paradoxical reasoning that the con-
textualist proposal takes as its starting point is reviewed in Section 3.1, while the
basic form of the contextualist response is outlined in Section 3.2. Section 3.3 dis-
cusses some ideas about the semantics and pragmatics of quantifier domain restric-
tion, focusing on ordinary cases of contextual domain restriction. Sections 3.4–3.6
apply these ideas towards a systematic development of the contextualist proposal.
Some concluding remarks are offered in Section 3.7.

3 .1 THE PARADOX REVIEWED

To set the stage, let us rehearse the kind of paradoxical reasoning that will be our main
concern. A number of paradoxes will make the point, including forms of the Liar and
Russell’s paradoxes. I shall present a very elegant and highly general version of Rus-
sell’s paradox due to Williamson (2004), which will serve as a good illustration of the
phenomenon at issue.

Williamson invites us to consider the task of building an interpretation I for some
language. As he notes, we need to say little about the formal properties of I , except
that for a given predicate term ‘P’ and collection F , we may build an interpretation
I (F ) which makes ‘P’ hold all and only the F s. We can remain quite neutral on the
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nature of the F s as well. They need not form a set or a class, and it appears we can
simply appeal to Boolos-style plural constructions (e.g. Boolos, 1984) to describe
them.

The crucial observation is that though interpretations need not be sets or classes,
it appears we can talk about them. As Williamson notes, we do so naturally when
we investigate logical consequence, for instance. In talking about interpretations, we
recognize them as objects of some kind. Once we have this, we have the basics of a
Russell-like construction. Let the Rs be all and only the objects o such that o is not an
interpretation under which ‘P’ applies to o. Then there is an interpretation I (R). But
the object I (R) itself cannot be in the domain of the quantifier all and only the objects
just used (nor can it be in the domain of any quantifier as interpreted by I (R)). If it
were, we would have in the case of o = I (R): I (R) is an interpretation under which
‘P’ applies to o iff I (R) is not an interpretation under which ‘P’ applies to o. This is a
contradiction, just as in the usual version of Russell’s paradox.

The response to this and other paradoxes I favor simply says that the object o must
not have been in the range of the apparently unrestricted quantifier all objects. Indeed,
it cannot be, on pain of logical contradiction. Thus, we must see even quantifiers like
all objects as in important ways restricted. Of course, Williamson himself disagrees.
He holds that we cannot really recognize I (R) as an object, as it is fundamentally
predicative or second-order. But as I mentioned above, my goal here is not to engage
in this dispute directly, but rather to investigate some of the details of my favored
response.

One of the very nice features of Williamson’s version of the Russell argument is
that it shows that the object we find outside of the domain of an occurrence of all
objects need not be a set, or class. The argument makes extremely minimal assump-
tions about the kind of object in question. But if we do help ourselves to some of the
basic features of set theory, we can state the problem we face more simply. Relying on
some simple set-theoretic reasoning, we can conclude from Williamson’s construc-
tion that the interpretation of a language in a given stretch of discourse cannot itself
be in the domain of any quantifier as used in that stretch of discourse. Some further
set-theoretic reasoning allows to reduce this to the fact that the domain of the widest
quantifier in a stretch of discourse—the domain of all objects—cannot itself be an
object in the domain of that quantifier. As usual, we turn the Russell paradox into a
proof that there is no universal set.¹

Though Williamson’s argument shows them not to be crucial, I shall make these
set-theoretic assumptions for simplicity’s sake in what follows. With these assump-
tions, we can work with the more familiar ‘no universal set’ form of Russell’s paradox.
We start with a quantifier all objects, recognize its domain as itself an object, and con-
clude on pain of contradiction that this object cannot be in the domain of the quan-
tifier. We thus find, I maintain, that our apparently absolutely unrestricted quantifier
all objects is somehow restricted after all.

¹ Of course, the axiom of foundation already tells us no set contains itself. There is a responses to
the Liar developed in non-well-founded set theory by Barwise and Etchemendy (1987), but this is
already a contextualist response. (I discuss the relation of my preferred view to theirs in my 2004a.)
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3.2 A CONTEXTUALIST PROPOSAL

So far, we have observed that, given any quantifier domain, it is possible to build an
object which does not fall under that domain, via directions provided by familiar
paradoxes. With some set-theoretic assumptions, we may say that the quantifier
domain itself is an object that cannot be among its own members.

Call this the argument from paradox. What does this argument really show? Though
the issue is contentious, my starting point for this chapter is that the argument shows
no quantifier can range over ‘absolutely everything’. To fix some terminology, say that
an absolutely unrestricted quantifier is one that ranges over a fixed domain of ‘abso-
lutely everything’. An absolutist holds that there are absolutely unrestricted quantifi-
ers. I shall assume the argument from paradox shows that absolutism is untenable.²

Rejecting absolutism has appeared implausible to a number of authors (e.g.
Cartwright, 1994; McGee, 2000; Williamson, 2004). To many, some form of con-
textualism has seemed to be the best way to address this worry. The basic contextu-
alist idea is to see the reasoning in the argument from paradox as showing that even
quantifiers like all objects range over contextually extensible domains. We start with a
domain for a quantifier like all objects, and via the paradoxes identify an object not in
that domain. This causes the context to change, to a new context in which all objects
ranges over a strictly wider domain including the new object we discovered.

The contextualist holds that this conclusion is not so implausible as it might seem,
because in fact contextual restrictions on quantifier domains are the norm in natural
language. For instance, consider:

(1) a. Most people came to the party.
b. Every bottle is empty.

In each, we interpret the quantifier as contextually restricted. Precisely how will
depend on the context. Roughly, (1a) says that most people in the contextually sali-
ent domain came to the party, e.g. most people among my friends and colleagues.
(1b) does not say that every bottle in the world is empty; rather, it is understood as
saying that every bottle in the contextually salient domain is empty, e.g. the bottles
near the door waiting to be taken outside.

(1a) and (1b) uses the already restricted most people and every bottle, and provide
further contextual restrictions. We see the same thing with syntactically unrestric-
ted quantifiers: quantifiers like everything or nothing which bear no non-trivial overt
restricting predicate. For instance:

(2) a. I took everything with me.
b. Nothing outlasts the energizer.

² I hasten to repeat that the assessment of the argument from the paradox is a delicate matter. I
have discussed it at greater length in my (2004b), and it is pursued with great subtlety by Williamson
(2004), and in the chapters by Fine (this volume) and Parsons (this volume).
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(2a) says that I took everything in the contextually salient domain, e.g. everything I
had brought with me; while (2b) says that nothing of the contextually relevant kind
outlasts the energizer, e.g. batteries.

The contextualist seeks to bolster the anti-absolutist position by noting that we
already have good reason to see most quantifiers in natural language as ranging over
contextually restricted domains, whether they appear overtly restricted or not. The
contextualist then argues it is a small step to conclude that all quantifiers are so con-
textually restricted. There is no way to step outside the normal contextual restrictions
on our quantifiers, the contextualist holds, and assuming we can leads to paradox.

It is the task of this chapter to see how far this idea can be pressed. But some initial
points about how best to formulate the contextualist proposal should be addressed
before we jump into the details of contextually restricted quantifiers. The first is to
clarify what we mean by talking about restricted or contextually restricted quantifi-
ers. To regiment some terminology, let us reserve the term restricted quantifier for one
which contains a syntactic restrictor: a predicate either pronounced or unpronounced
but present in the underlying syntax, which restricts the domain of a quantifier. It
will be convenient to further require that the restrictor be non-vacuous. Restricted
quantifiers are thus syntactically restricted, and the restrictor position is filled with a
non-vacuous predicate. Each quantifier in (1) is clearly restricted.

By this definition, the quantifiers in (2) are not restricted, as predicates like thing
are semantically vacuous. But as they occur in their intended contexts, they range over
subdomains of objects we can talk about in their contexts, and we can assume that
speakers will intend them to range over such restricted domains. Let us say a quan-
tifier is contextually restricted if its contextually fixed domain is a subdomain of the
objects available for quantification in a given context. All the examples in both (1) and
(2) are of contextually restricted quantifiers, though the ones in (2) are unrestricted
but contextually restricted, whereas the ones in (1) are both restricted and contextu-
ally restricted.

The quantifiers that figure into the argument from paradox, like all objects or
everything, are clearly unrestricted according to this terminology. It is also highly
plausible that they are contextually unrestricted. As speakers use them at the begin-
ning of the argument, they do not intend them to range over any proper subdomain
of objects they can talk about. When the speaker says all objects in such a context, she
does not mean ‘all objects that are F ’, or ‘all objects except those in Y ’, or anything
else that would indicate contextual restriction.³

To make clear how there might still be room for a contextualist response to the
argument from paradox, one more definition is needed. Let us say the background
domain of a context is the widest domain of quantification available in a given con-
text. This will be the domain of all objects, according to a given context. It is thus
the domain over which unrestricted and contextually unrestricted quantifiers range.

³ Some interesting idea of Rayo (2003) might be used to explain how some unrestricted
quantifiers wind up contextually unrestricted. Of course, by my lights, Rayo’s ideas will have to be
re-cast in terms of setting quantifiers to range over the background domain of a context, rather than
‘absolutely everything’, but I think they could serve very nicely in that role.



50 Michael Glanzberg

As far as a single context is concerned, the background domain is simply ‘everything’,
and will not be a proper subset of any other quantifier domain or predicate extension
available in that context.

The contextualist response to the paradox is the view that there is contextual
relativity of background domains. Whereas the absolutist holds there is one fixed
background domain, which is simply ‘absolutely everything’, the contextualist holds
that different contexts can have distinct background domains. The argument from
paradox shows us, given a plausible background domain, how to identify an object
not in the domain. The contextualist holds that this leads us to a new context with a
strictly wider background domain.

The contextualist position on the quantifiers in the argument from paradox is thus
that they are both unrestricted and contextually unrestricted. This is just to say that
they range over the background domain of a given context. But they are still contextu-
ally relative unrestricted quantifiers, in that they range over the background domain
of a context, and that is a context-relative domain.⁴

I am distinguishing contextual domain restriction, which carves out a subdomain
within a background domain, from the contextual relativity of background domains
themselves. The contextualist takes the argument from paradox to show that back-
ground domains can expand in certain changes in context. Clearly this cannot be
understood as relaxing some contextual restriction. Indeed, what the paradox does is
show us one specific object that was left out of a background domain, and the shift in
context must expand the domain to take it in.⁵ To understand this, we need to under-
stand how context can re-adjust to take a new object into a background domain, and
how this can affect our uses of unrestricted quantifiers. It is to these matters that we
now turn.

3 .3 THE SEMANTICS AND PRAGMATICS OF RESTRICTED
QUANTIFIERS

In this section, I shall investigate how quantifier domains are context-dependent.
Much of the focus here will be on the ordinary sort of contextual domain restriction
we see in cases like (1) and (2). For cases like these, we may rely on some independ-
ently motivated ideas from philosophy of language and linguistics to explain how
context interacts with the semantics of quantifiers. With this in hand, I shall identify
how context can interact with unrestricted and contextually unrestricted quantifiers

⁴ Fine calls these relatively unrestricted quantifiers. I am changing the terminology slightly to
emphasize the role of context in rejecting absolutism. It is fair enough to say that contextual
relativity is a kind of contextual restriction, but it would be cheating for the contextualist to let the
terminology conflate cases like (1) and (2) with the ones we are confronted with by the paradox.
Thus, I shall apply ‘contextually restricted’ to the former, and ‘contextually relative’ to the latter.

⁵ The contextualism I am proposing here assumes what Fine (this volume) calls expansionism, as
opposed to restrictionism. Fine argues directly against restrictionism, while I am merely noting that
the argument from paradox, and the basic contextualist reply, seem to be naturally expansionist and
not restrictionist.
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as well. I shall also very tentatively explore the pragmatic mechanism by which con-
text sets restricted quantifier domains. Once we have these ideas in hand, I shall go
on to apply them to the case of background domains in subsequent sections.

3.3.1 The Semantics of Quantifier Domains

In this section, I shall begin by reviewing some fairly standard points about how
ordinary contextually restricted quantifiers like we see in (1) and (2) work. I shall
then turn to how the semantics of quantifiers can make room for background domain
relativity.

For reference’s sake, I shall adopt a standard generalized-quantifier treatment of
the semantics of quantification. This is the semantics of determiners: expressions like
every, some, most, few, etc. The standard theory treats these as relations between two
sets, representing the contents of nominals and verb phrases. Fix a domain M for an
interpretation. Assign nominals like bottle and verb phrases like is empty subsets of
M as their semantic values.⁶ For a term α, let �α�c be its semantic value in context
c, so �bottle�c , �is empty�c ⊆ M . Then Every bottle is empty (1b) expresses the rela-
tion �bottle�c ⊆ �is empty�c . The semantic value of the determiner every is thus the
generalized quantifier everyM :⁷

(3) For every A, B ⊆ M , everyM (A, B) ←→ A ⊆ B

Semantically non-trivial nominals, like bottle, give us restricted quantifiers.
One of the virtues of generalized quantifier theory is that it provides definitions for

many other quantifiers as well. For instance, we can define a value for most by:

(4) For every A, B ⊆ M , mostM (A, B) ←→ |A ∩ B| > |A \ B|

The theory of generalized quantifiers, and their application to natural-language
semantics, is well developed. For surveys, see Keenan and Westerståhl (1997) and
Westerståhl (1989).

Definitions like (3) are relative to a fixed M , and give what are called local general-
ized quantifiers. In logic, of course, we can ask about what would happen if we varied
M —varied the universe of discourse. To do this, we need what are called global gen-
eralized quantifiers. These are simply functions from domains M to local generalized
quantifiers on M . So we could set:

(5) Every is the function from M to everyM .

Global generalized quantifiers capture the most general meanings of determiners.
It is tempting to explain the context-dependence of quantifiers we see in (1) and (2)

as the result of context affecting M —the background domain—in a global general-
ized quantifier. As was argued by Westerståhl (1985a), this is not right. Westerståhl
offers two important principles:

⁶ I am assuming an extensional semantic framework. As issues of intensionality are not relevant
to our concerns here, this can be seen as a mere simplifying assumption.

⁷ I am denoting the generalized quantifier which interprets an expression like every by the
corresponding boldface expression everyM .
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WP1: Background domains are large. Contextually restricted domains can be small.
WP2: Background domains are (relatively) stable across stretches of discourse. Con-

textually restricted domains are not.

(Westerståhl makes a stronger claim in place of WP2, but the weaker version will be
the relevant one for our discussion here.)

To see how WP1 works, consider:

(6) At the department meeting today, everyone complained about the Governor.

Everyone ranges over members of the department, and excludes the Governor, even
though we have to have the Governor in our background domain. Hence, the con-
textually specified domain of everyone is not only quite small, but clearly smaller than
the background domain.

To see how WP2 works, consider an example attributed to Peter Ludlow from
Stanley and Williamson (1995):

(7) Nobody cared that nobody came.

Here, on many natural readings, we talk about two distinct domains for distinct
occurrences of the same quantifier. Hence, neither can be the background domain.

The moral of these arguments is that ordinary quantifier context-dependence is not
the result of M being a context-dependent parameter. Rather, we need an additional
contextual restriction on quantifier domains, within whatever background domain
we have set. There are a number of different ways to do this, and the details of exactly
how will not matter here. For argument’s sake, I shall adopt the proposal of Stanley
(2000) and Stanley and Szabó (2000), which holds that there is a contextual para-
meter in the nominal of a quantifier. Simplifying somewhat, we make Every bottle is
empty look like:

(8) everyM (Dc ∩ �bottle�c , �is empty�c)

Dc is a contextually fixed set of elements of M , which restricts the quantifier domain
by intersection.⁸

Making the semantics of ordinary quantifier domain restriction explicit makes clear
that it will not directly explain the context-relativity of background domains which the
paradoxes seem to show us. It cannot, as it is a mechanism for restriction within back-
ground domains. Even so, the semantics of quantification does show us a way to make
room for the context-relativity we need. The semantics of each (local) generalized
quantifier already depends on M , which is playing the role of the background domain.

⁸ I am suppressing some further complications in Stanley and Szabó’s view. (Incidentally, the
specific example (1b) is drawn from their presentation.) Stanley and Szabó (2000) are advancing a
particular claim about logical form: that the contextual parameter appears in the nominal position.
There are other options. For instance, von Fintel (1994) and Westerståhl (1985a) place the
parameter on the determiner, though the resulting semantics is still basically that of (8). A more
significantly different option is to deny there is any such parameter in logical form at all, and
insist that a purely pragmatic process produces quantifier domain restriction. Representatives of
this view include Bach (1994) and Carston (2004). Another option is to deny that there is any
context-dependence. This route is taken by Cappelen and Lepore (2002).
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If, as the argument from paradox seems to show, M can shift with context, then we
may see M as introducing context-relativity into the semantic values of determiners
as given in definitions like (3) and (4).

To make this explicit, consider an occurrence of everything is F , in which everything
is not contextually restricted. In such a context, we will have Dc = �thing�c = M .
Tracing through definition (3), we find the sentence is true iff M ⊆ �F�c. If M is
context-relative, so is the interpretation of the contextually unrestricted everything.

As the considerations of Section 3.2 already suggested, this sort of contextual
relativity is very different from what we see in ordinary cases of contextual domain
restriction. First of all, it is a very different sort of mechanism that introduces depend-
ency upon context. In ordinary domain restriction, it is an independent parameter
Dc in the underlying logical form of a sentence. In the case of background domain
relativity, it is a feature of the semantics of determiners itself that triggers context-
dependence. I shall call this M -dependence, but it must be stressed that M in (3) and
(4) works very differently than Dc in (8). Dc is a parameter which gets an independ-
ent value, and then composes with other semantic values of a sentence, particularly
the semantic value of the nominal. M enters into determining the semantic value of
a determiner directly.⁹

This is to say, in effect, that determiners function like indexicals. As the class
of determiners is rather large, one might object that this conclusion posits massive
or open-ended indexicality. It certainly does posit indexicality, but the objection is
over-stated. First of all, the class of simplex or ‘lexical’ determiners is not really so
large or open-ended, compared to classes like nouns or verbs. (The determiners form
what linguists call a ‘closed class’, whereas nouns and verbs form ‘open classes’.) Per-
haps more importantly, it is known from work of Keenan and Stavi (1986) that the
semantic values of possible human language determiners can be built up from a very
small class of basic determiner values, together with some operations not specific to
determiners. Indeed, we can built them inductively from everyM and someM . So it
may well be that we only have to posit indexicality in a very limited class of expres-
sions to get the results we need.¹⁰

So far, my proposal is that there are two distinct sources of context-dependence in
quantifiers. One—Dc dependence—is familiar and commonplace, and responsible
for ordinary contextual domain restriction. The other—M dependence—is respons-
ible for the context-relativity of unrestricted and contextually unrestricted quantifiers.
If this is right, then the pressing question becomes how context can fix a background
domain: how context fixes M . To try to shed some light on this, I shall begin by look-
ing at how context works to set quantifier domains in the more ordinary cases. In
doing so, I shall isolate a few general principles. Along with Westerståhl’s principles

⁹ A global generalized quantifier thus gives the character of a determiner, in the sense of Kaplan,
(1989). The context-relativity of background domains implies that this character is non-constant.

¹⁰ There are some more ordinary cases where determiners display indexicality. One is the
case of many discussed by Westerståhl (1985b), which appears to have a value sensitive to a
contextual input of ‘normal frequency’ in much the way that I am positing sensitivity to background
domain.
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about background domains, these will help us understand what context must do in
the case of background domains.

3.3.2 The Pragmatics of Quantifier Domains

There are a few general principles about how context sets quantifier domains which
we can identify by looking at discourse. One general caveat needs to be mentioned
first. There is a significant step between asking how the truth conditions of a sen-
tence vary with context, or what features of a sentence makes it context-dependent,
and asking how context itself fixes some context-dependent parameter. By the lights
of Stanley and Szabó (2000), the latter is a matter of foundational rather than descript-
ive semantics (or pragmatics). Regardless of classification, understanding how context
affects content is an important part of our understanding of context-dependence. But
foundational issues in pragmatics do tend to get extremely messy, and run into some
very hard problems in cognitive science. Explaining what speakers will take to be sali-
ent or relevant, for instance, might well involve far-reaching theories of cognition.
(To borrow a phrase from Peter Ludlow, foundational problems in pragmatics tend
to be ‘AI-complete’.)

The best we can do, absent such far-reaching theories, is to stay as close to descript-
ive matters as we can. Wherever possible, I shall try to isolate relatively clear, well-
motivated descriptive constraints, and then try to apply these constraints to shed
some light on the foundational issue of what pragmatic processes are at work in
domain restriction. The conclusions I shall come to will be limited, but they will
be enough, I hope, to further the comparison between ordinary quantifier domain
context-dependence, and background domain context-relativity.

3.3.2.1 Quantifier Domains by Anaphora on Predicates

One way context works to set quantifier domains, in the ordinary case of contextual
domain restriction, is by anaphora-like processes. The domain-restricting parameter
can be mapped to some previous material in a discourse, much like a pronoun can (cf.
Geurts and van der Sandt, 1999; Roberts, 1995). We see this in:

(9) There were some passengers on the airplane. Most passengersDc were killed in the
crash.

The domain of most is contextually restricted by the predicate on the airplane.¹¹
Quantifier domain restrictors prefer to find antecedents in predicative material.

For instance, we see a contrast in:

(10) John came to the party and Sarah came to the party.

a. They had fun.
b. Everyone had fun.

¹¹ The example is modified from one of Geurts and van der Sandt (1999), who develop this
idea in a DRT-based framework. Gawron (1996) and Roberts (1995) pursue related ideas in the
framework of dynamic logic.
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They in (10a) picks up the aggregate of John and Sarah, while everyone in (10b) ranges
over people who came to the party. It picks up its domain from came to the party.

Furthermore, it appears that context can construct complex defining properties out
of stretches of discourse. For instance:

(11) Susan found most books which Bill needs, but few were important.

The domain of few appears to be books which Susan found and Bill needs. Note, this
combines relations and terms to form a defining condition.¹²

So far, we have seen that contextually restricted quantifier domains can be set by
finding appropriate predicative material in previous discourse. When this happens, it
is via predicative material, but that material can be complex, and built out of multiple
predicates and singular terms.

3.3.2.2 Accommodation

In many cases, previous discourse does not provide the needed predicates to restrict
a quantifier domain. This is the way we interpreted the examples in (1) and (2), for
instance. Even when we do have some predicates available in previous discourse, there
is no guarantee we will not need more information from context to tell us how to
further restrict the domain.

In these cases, speakers will seek to recover from the context enough information
to define the right domain restriction. These days, this is often glossed as a process of
accommodation, in that it makes the continuing discourse as if the new information
had been explicitly uttered.¹³ There are some very rough-and-ready rules for accom-
modation we can state for the case of quantifier domain restriction: add information
restricting a quantifier domain to make the current utterance coherent and informat-
ive, relative to what is common knowledge in the discourse at the point of utterance.¹⁴

These rules are rough, and leave the task of accommodation drastically under-
described. I shall not be able to elaborate them much more, but there is
one point that will be important. Whatever determines a quantifier domain in
accommodation cases—what makes the quantifier domain sustain informative and
coherent discourse—is not simply a matter of what objects and properties are salient

¹² This is derived from an example of Kamp and Reyle (1993), who use it in introducing their
abstraction operator for plural anaphora (cf. Saebø, 1999).

¹³ The notion of accommodation stems from Lewis (1979). It is common to think of accom-
modation as a kind of conversational repair strategy. Something happens in a discourse which would
cause it to break down unless some information where present, and we repair the discourse to make
it present.

There are a number of distinct ways of understanding how such a process works. Though Lewis
proposed that there are distinct rules of accommodation, it can be thought of as flowing from general
pragmatic principles, perhaps along Gricean lines. This is the view taken by Stalnaker (1998), and
is in keeping with the discussion in Heim (1983) and Roberts (1995). But in theories like that of
van der Sandt, (1992), accommodation is understood as a particular kind of operation within a
representational theory of discourse like DRT. However, I do not think any of the claims I make
here are affected by these distinctions.

¹⁴ These ideas derive from Grice (1975), Stalnaker (1978), and van der Sandt (1992). I have
discussed the issue of coherence at length in my (2002).
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in the immediate environment. We do not accommodate merely by checking what is
around us. For instance, consider the familiar:

(12) Everything is packed.

Make the context one in which you are about to step out the door to go on a trip.
You have your suitcase, and a bunch of things in your pockets or in hand that you
will want for the ride. As we normally interpret it in a case like this, the utterance of
(12) is true, in spite of the fact that the things in your pocket are not packed. Accom-
modation has not set the domain of everything to be all the items that are salient in
the environment, or even all the salient items that belong to you. Rather, it has made
the domain all the salient items of the kind appropriate for packing for a trip.

What makes something appropriate in this way is part of what happens on trips,
or what normally happens on trips. It is part of what cognitive scientists sometimes
describe in terms of frames or scripts, or more often these days, plans. The plan or
script or frame of trips is needed to fix the domain of everything. Hence, in the accom-
modation process that gives us the natural reading of (12), we will have to look to
some such plan or frame or script. I shall not worry about exactly which of these
notions is right for describing accommodation; rather, I shall highlight one general
point. A plan or script or frame provides highly situation-specific or activity-specific
information, often very complex information. What we need to accommodate in (12)
is access to specific and detailed information about what kind of activity a trip is, and
what happens on one. This tells us what belongs in a suitcase, which is what we use
to set the domain of everything.¹⁵

3.3.2.3 Domains Include Topics

I shall make one more observation about the way contextually restricted quantifier
domains are set. This one relies on a general feature of discourse. Discourses have top-
ics, roughly, what is under discussion at a given point in a discourse. We can think of
discourse topics as given by questions: the topic of a discourse at a given moment is
the question that is under discussion. If the question is something like What did John
do?, we can talk about John being the (current) topic of the discourse. Discourse top-
ics, and how they evolve as discourse progresses, are closely related to the messy issues
we encountered when looking at accommodation. Though the facts are sometimes
murky here, some helpful generalizations can be made.¹⁶

¹⁵ A specific proposal on where something script-like fits into domain restriction comes from the
analysis of telescoping of Poesio and Zucchi (1992) (they appropriate the term ‘script’). Clearly, I
am using the term ‘plan’ very loosely—more loosely than serious work in AI—though I believe this
sort of case highlights the ‘AI-complete’ nature of the problem we face. Some comments relating
accommodation to plan recognition more properly construed may be found in Thomason (1990).
This paper appears in the collection edited by Cohen, Morgan, and Pollack (1990) which contains
a number of other papers discussing the role of plans in discourse.

¹⁶ The literature on the topic is quite large. Some of it is surveyed in my (2002). Important
recent developments of the idea of discourse topic include Büring (2003), Roberts (1996), van
Kuppevelt (1995), and von Fintel (1994).
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Quantifier domains and discourse topics interact in a number of ways.¹⁷ One will
be important for our concerns here: Generally, if something is a topic at a given
moment in a discourse, we will expect contextually set quantifier domains to include
it. Return to the context of (12), and consider:

(13) a. That’s a nice watch you are wearing. Tell me about it.
b. ?Everything is packed.

At best, the domain of everything can no longer be taken to exclude the watch, as it
did in (12). Worse, I am not sure if the pragmatic process of setting a domain even
succeeds here, as the second utterance sounds marginal to my ear.

In contrast, we can readily exclude non-topical elements from a quantifier domain
by contextual restriction. We saw this with (12). To give one more example, consider:

(14) a. John decided to ship all his belongings to England.
b. Everything is small.

Suppose this discourse is taking place as the movers are loading John’s belongings into
a giant shipping container. The domain of everything still does not include the con-
tainer, roughly, as it is not what we are talking about, even though it is salient in the
environment, and figures into the ‘plan’ for moving.

If we did bring the container into the discourse as a topic, we would get a different
result. Consider:

(15) a. John decided to ship all his belongings to England. So, he went out and star-
ted investigating shipping containers. He found some that were about the
right size.

b. Everything is small.

Now everything definitely contains the shipping containers.
I shall rely on the principle that contextually set quantifier domains include topical

items. The principle I need, and think is reasonably well-illustrated by the examples
we have seen, is that if an item is a topic, it must be in contextually restricted quanti-
fier domains. I do not think it is generally true that such domains include all and only
topical elements.¹⁸

3.3.3 Setting Quantifier Domains

We now have a few observations about how contextual quantifier domain restriction
works. We have assumed that there is a contextual parameter in the nominal of a

¹⁷ The idea that topic and quantifier domain interact has been investigated at length for the case
of adverbial quantifiers, by Partee (1991), Roberts (1995), and von Fintel (1994), among others.
A somewhat programmatic suggestion along the lines I am indicating here is also found in Beaver
(1994).

¹⁸ There are a number of complications to this principle. For instance, the dynamics of topics
and subtopics, and interactions with the semantics of nominals, can create apparent violations of
the principle. Space limits preclude investigating this, and I shall have to simply assert that attention
to details can show these violations to be merely apparent.
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quantified noun phrase, which accounts for the ‘ordinary’ cases of domain restric-
tion. Furthermore, we have isolated some principles which govern how this parameter
is set:

(i) When possible, quantifier domains are built out of predicative material. Both
predicates and terms appearing in previous discourse can be used to construct
complex defining predicates for domains.

(ii) When appropriate predicative material is not available in discourse, a process of
accommodation is triggered.

(iii) In constructing domains either anaphorically or by accommodation, domains
are constrained to include all topical material.

(iv) Accommodation often makes reference to situation-specific information.

These rules hardly tell us everything we might want to know about setting quantifier
domains, but they do tell us something.

A couple of morals for application of these principles to the harder case of back-
ground domains are worth highlighting. When possible, contextual domain restric-
tion is a pragmatic way to reproduce what could be done semantically by predicates
in restricted quantifiers. We see this in principle (i). But this is not always the way
domain restriction works. When the process of accommodation of principle (ii) is
triggered, it relies on many other factors than simply finding predicates. Principle
(iii) is a clear example of this. No predicate is needed to introduce a topical item into
a domain. But the same may be said of the kinds of situation-specific information
invoked in principle (iv). The complex information encapsulated in a plan or script
need not correspond to anything that speakers can express in the context in question
with the language they speak; except insofar as they can use a quantifier whose domain
is restricted by that information.

3 .4 REFLECTIVE CONTEXTS

In that last section, we enumerated some important features of how contextually
restricted quantifier domains are set by context. These applied primarily to ordinary
contextual domain restriction, which we identified as setting the parameter Dc in the
nominal of a quantified noun phrase. We also saw in the last section that if there is
to be contextual relativity of contextually unrestricted quantifiers, it must be from a
different source. It flows from the context-dependence of the determiners themselves,
which in turn flows from the context-relativity of the background domain M .

My goal now is to apply the lessons of Section 3.3 to the case of background
domains, to help us to understand how, in some extreme cases like we see in the
paradoxes, background domains vary with context. Indeed, we can now see a little
more clearly why focus on the paradox is so important. As we are reminded by prin-
ciple (iv), any account of the effects of context on quantifier domains will be highly
situation-specific. We need to see with what situation the paradoxical reasoning of
Section 3.1 confronts us.
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3.4.1 Artifacts of Discourse

The argument from paradox of Section 3.1 leads us to identify an object not in the
domain of an unrestricted quantifier. To understand how this marks a shift in con-
text, we should begin by asking what the objects we are led to recognize are like.

An important point that is made vivid by the Williamson version of Russell’s para-
dox of Section 3.1 is that the objects in question are semantic in nature. In that ver-
sion, the object we identify is the interpretation o = I (R); in more typical versions, it is
the background domain of quantification itself. The objects in question are semantic
values, or more complicated objects built from semantic values, like an interpreta-
tion of an entire language relative to some context. Other forms of the paradoxes can
lead us to other related objects, including truth predicates, propositions, contexts, etc.
To give this category a label, let us call them artifacts of discourse. Semantic values of
expressions relative to contexts, including quantifier domains, will be the main arti-
facts of discourse for our discussion here, but the category is somewhat wider. The
characterization of artifacts of discourse is admittedly rough, but at least the main
examples are familiar. Rather than refine the definition, I shall move on to examine
how artifacts of discourse interact with quantifier domains.

The answer is that usually, they do not. Artifacts of current discourse—the quanti-
fier domains of the context of the current point in the discourse, the interpretation of
the language in the context, etc.—are usually not part of any contextually restricted
quantifier domain given by the context of the current point in the discourse. Here is
one example to illustrate the point. At the start of a set theory class, the professor says:

(16) Everything today is finite.

She means, roughly, that everything relevant to the day’s class is a finite set. But
within this category, the semantic values of her own words are excluded. They are
excluded even though they do, in an entirely natural sense, count as relevant to the
class. (Apprehending them is crucial to understanding the class’s content.) They are
also excluded even on the assumption that semantic values are sets. What the pro-
fessor says remains true if the semantic values of her words turn out to be infinite sets.

Though most speakers do not tend to care about semantics (including most set
theory professors), that is not the issue here. Artifacts of current discourse tend to be
excluded from quantifier domains even if we are generally talking about semantic val-
ues, or other artifacts of some discourse or another. Suppose a semantics professor
says:

(17) Every semantic value relevant to today’s class/in sight/at issue is an individual or
a set of individuals.

The domain of the quantifier again does not include the values of her own words, and
the claim is not made false by the value of every being a relation between sets. To take
it as if it did include these objects would not be to stretch the limits of what counts as
relevant; rather, it would be to perversely disregard the normal rules of discourse.

The moral is that it is extremely hard to incorporate artifacts of current discourse
into contextually restricted quantifier domains. Not impossible (at least, not in all
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cases), but strongly discouraged by the normal rules governing discourse. It follows
from this, together with principle (iii) of Section 3.3.3, that artifacts of current dis-
course are extremely difficult to make topics. This is not simply to say we often do not
make them topics, but that it is unusual, and hard, to succeed. At the very least, top-
icalizing an artifact of current discourse—making it a topic—amounts to a violation
of the rules of well-organized and coherent discourse.¹⁹

Artifacts of current discourse thus have a peculiar status. They are usually non-
topical, and cannot even be coherently topicalized in ordinary discourse. But none-
theless, they are clearly active in discourse in another way. They are the semantic
values of the very words we are speaking, the context in which we speak, etc. We
cannot understand a discourse unless we apprehend them. To fix some more termino-
logy, let us say that artifacts of current discourse are implicit in the discourse. They are
not explicit, in that they are not normally available to be topics, but they are clearly
an important part of the discourse.

3.4.2 Reflection

I have pointed out that it is very difficult to topicalize implicit objects like artifacts
of current discourse. The rules of discourse ordinarily tell us not to do it. But in fact,
we can do it, if we really want to. At least, for a given point in a discourse, we can
step back and start talking about the semantic properties of the discourse as it stood
at that point. This introduces what were the current artifacts of discourse as topics.
This will be jarring, and outside the normal rules of discourse, but we have the ability
to do it.²⁰

Doing this will change the context. Generally, what is topical at a given point in
the discourse is part of the context. This again is a fact about the way natural language
works. Again, I hope it is intuitively clear. It deserves more argument, but I shall leave
that to the literature on context.²¹ Forcing something implicit like an artifact of cur-
rent discourse to be a topic is, if anything, a highly marked change of context. It is
not a natural evolution of the context as a discourse progresses, but a discontinuous
jump in context caused by a change in topic violating the normal rules of discourse.

With this in mind, let us turn to the situation which confronts us in the argument
from paradox. The key step in the paradoxical reasoning we rehearsed in Section 3.1
is precisely a step of topicalizing an artifact of current discourse. In the usual forms of
the paradox, we topicalize the background domain of the current context (the domain

¹⁹ I am here appealing to what appears to be a fact about natural language, for which (16) and
(17) provide a little bit of evidence. I have discussed the relation of topic to discourse coherence
extensively in my (2002). Note that in many discussions of the syntax of topic-marking, the term
‘topicalization’ is used for a particular syntactic construction. I mean making something a discourse
topic. It is shorter to say ‘topicalize’ than ‘incorporate as a discourse topic’.

²⁰ I am taking it for granted that we have the intellectual resources to topicalize artifacts of
discourse, even if it is only in unusual contexts where we do so. I suspect this may be the crux of my
disagreement with Williamson (2004). Though linguistically speaking we can, it appears to have a
nominalizing effect, and so is something I believe he would have to reject.

²¹ This is a common theme in most of the pragmatically oriented work on discourse topic, such
as those cited in footnote 16.
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over which the quantifier all objects ranges). In the Williamson version, we topical-
ize an interpretation of the language, as it is used in some context. We do this when
we take the domain or the interpretation and start talking about it, particularly, ask-
ing what properties it has. The previous discussion shows that this step in the argu-
ment from paradox will amount to a change of context, and indeed, a marked and
unusual one.

Paradox also enters the fray here, and tells us something specific about what hap-
pens in this change in context. It introduces an object as topical which could not be
within the background domain of the initial context of the argument from paradox,
upon pain of contradiction. Now, our examination of ordinary cases already gave us
some reason to expect this. Artifacts of current discourse are implicit, and so will not
normally appear in any restricted quantifier domain, as we saw in Section 3.4.1. Why
not? The most natural reason would be that they are not even in the background
domain. Considering ordinary discourse can at best lead us to find this natural, but
the paradox shows us that it has to be right!

Not every artifact of current discourse leads to paradox. Let us call the ones that
do crucial artifacts of discourse. The crucial artifacts of discourse include the back-
ground domain given by the context of the current point in a discourse, or even the
entire interpretation of the language relative to that context. They also include any
objects which contain or encode these, or would allow us to extract them by some
process of accommodation. With the sorts of set-theoretic assumptions I alluded to in
Section 3.1, we can assume that any crucial artifact of discourse will make the back-
ground domain of the context available for topicalization. It is a common idea that
what makes an artifact of discourse crucial is that it is extremely large or comprehens-
ive relative to a given context, as are the background domain of the context, or the
interpretation of the entire language as it is used in that context. A more full account
of what makes certain artifacts of discourse crucial would be very useful, but I shall
for the moment rest with the usual list of objects which lead to paradox.

To summarize what we have seen, fix a context c0 for a discourse. Say a reflective
context for c0 is one in which we have topicalized any crucial artifact of the discourse
at c0. I am assuming that this will at least implicitly introduce the background domain
M0 of context c0 as a topic. Call the reflective context for c0 by cR

0 . A reflective con-
text has the feature of taking something that was only implicit in c0 and making it
topical—making it explicit—in cR

0 .²²
We have noted that we have solid reason, coming from observations about ordin-

ary discourse, to expect that cR
0 is really a new context, and at least some reason to

expect that it should have a strictly wider background domain than c0. Furthermore,
we have seen that the argument from paradox shows that cR

0 must have a strictly wider
background domain, and so must certainly be a distinct context. In particular, the
background domain MR

0 of cR
0 must contain M0. Indeed, as M0 is a topic in cR

0 , we
may expect even contextually restricted domains in cR

0 to contain M0. The paradox

²² The idea of reflection making what was implicit to be explicit appears in other forms as well.
In a proof-theoretic setting, a similar idea is discussed in Kreisel (1970). I tried to apply this to the
Liar in my (2004c). A related point is made in Parsons, (1974a).
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hardens our expectation that cR
0 is a new context with a strictly wider background

domain into a requirement of logic.
We now have one major piece of the contextualist response to the paradoxes in

place. There is, I have argued, a context shift in the course of the argument from
paradox. It is of a particular sort: a step to a reflective context, which makes topical
something which was merely implicit in the initial context.

3 .5 DOMAINS FOR REFLECTIVE CONTEXTS

If we take the step to a reflective context—the step from c0 to cR
0 —we face a problem.

We have topicalized an item which cannot be in the background domain of our initial
context c0, so a new, strictly wider background domain MR

0 for cR
0 is needed.

So far, I have argued that we should have expected this, and that the paradox shows
it must be the case. But that just presses the issue of what MR

0 looks like. If there is
a change in context from c0 to cR

0 , it is not enough to simply say that MR
0 must be

strictly bigger than M0. We want to know how the change in context expands the
domain.

It is here that our investigation of quantifier domains in Section 3.3.2 will pay off.
Building a new background domain is not the same as setting the contextual para-
meter Dc for restricted domains, but it is still setting a domain of quantification. If so,
it should be governed by the principles of Section 3.3.3. In this section, I shall show
how these principles, supplemented by some of the observations about why back-
ground domains are different from Section 3.3.1, help us to see how MR

0 might be
constructed. They will tell us how context can set a new background domain as we
move to a reflective context.

3.5.1 Triggering Accommodation

My first observation is that principles (i)–(iii) from Section 3.3.3 trigger an accom-
modation process. Of course, the paradox already forces cR

0 to have a strictly wider
background domain. But once we take the step to the reflective context cR

0 , this is not
merely a recondite fact of logic. Once we topicalize the domain M0, principle (iii)
requires this object to appear in restricted quantifier domains relative to cR

0 . We will
have to talk about it and quantify over it. Thus, we will really have to make use of the
expanded domain MR

0 . So, the pragmatics of domain-setting will require us to work
out what the new domain is.

If the same domain-setting processes at work in ordinary cases are at work here,
then we would expect the construction of cR

0 to first try to recover a new domain MR
0

from previous discourse. But of course, this is impossible. By principle (i), it would
have to do so by finding appropriate predicative material. But predicative material
from previous discourse will not be able to describe any domain containing M0 as an
object. At best, it will describe the objects in M0. Hence, by principle (ii), we must
accommodate.



Context and Unrestricted Quantification 63

3.5.2 Towards a ‘Plan’ for Accommodation

How should this accommodation proceed? As we are reminded by principle (iv), we
will need to make use of highly specific information about the particular situation
involved: the situation of shifting to a reflective context. This information should
provide us with guidelines for building the new domain—something like a plan or
script or frame from which we can extract an accommodation process. I shall thus
loosely talk about a ‘plan’ for accommodation. (I shall usually put ‘plan’ in scare
quotes, to remind us how loose the talk of plans is.)

They key feature of a reflective context is the topicalizing of a crucial artifact of
the discourse as it stood at c0. To build any kind of coherent plan in this situation,
we should have at our disposal vocabulary for describing such artifacts and their basic
properties. So as a first step, we should add this if it is not already present:

Step 1: Add vocabulary that describes in cR
0 the semantics of the language as it was

used in c0. (Even if the relevant vocabulary was present, we may need to adjust
extensions for the new context.)

As with any case of accommodation, speakers may have trouble finding words to
make explicit exactly what information they have accommodated. So, when saying
we should add ‘vocabulary’, we should say more fully to add information that could
appear in a fully articulated discourse even if speakers only tacitly grasp this informa-
tion.

Step 1 is really only a set-up move. It puts us in a situation to make some sort of
coherent plan appropriate for a reflective context. So far, we have from the prior con-
text the elements of M0, from the transition to cR

0 we have M0 as an object itself, and
we have vocabulary for describing the semantic properties of the language as it was
used in c0 (for shorthand, let us say the semantics of c0).

To add the next step to the ‘plan’, we need to remember that we are not simply
trying to build any old set containing M0. We need to construct a viable back-
ground domain. One of the crucial roles of background domains is to be the source
of restricted quantifier domains. As principle (i) of Section 3.3.3 tells us, the basic
way restricted quantifier domains subsequent to cR

0 will be built is by forming pos-
sibly complex predicates out of material available in the context. These predicates
then define restricted domains as subsets of the background domain. A viable back-
ground domain must be rich enough to allow for the formation of restricted domains
by this process. In particular, once we have taken step 1, we need to build a domain
which will include any restricted quantifier domain we can define using the extended
vocabulary provided by step 1.

Assuming that the extended vocabulary provided by step 1 is rich enough, this will
require including subsets of M0 as elements of our new domain MR

0 . For instance, if
we have predicates like x is a semantic value of a verb phrase in c0, we will have to make
sure MR

0 contains each subset of M0 definable in the extended vocabulary. Thus, we
should at least take as our next step:

Step 2: Close under definable subsets of M0 in the extended vocabulary.
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This begins to get us a suitable background domain for providing contextually restric-
ted domains of quantification in cR

0 and subsequent contexts.
Actually, we need a little more than step 2. As stated, step 2 only provides subsets of

M0. But if we are thinking of having vocabulary for the semantics of something like
a natural language, we will have higher-type objects as well. Determiners will have
relations between sets as their values, for instance. At the very least, we will have to
iterate step 2 several times. We should re-formulate step 2 as:

Step 2′′′ Close under definable subsets of M0 in the extended vocabulary. Iterate as
many times as needed by the semantics of c0.

As we iterate, the extended vocabulary will get used more and more, to describe the
behavior of more and more complicated artifacts of discourse from c0.

3.5.3 Westerståhl’s Principles Revisited

So far, we have begun to describe a process of accommodating a new background
domain MR

0 for the reflective context cR
0 . Step 2 tries to take into account the fact that

we are not just constructing any old quantifier domain; rather, we are constructing a
background domain. Once we have the extended vocabulary we need to accommod-
ate the new domain, it ensures that we can also provide for additional contextually
restricted domains that we could define using that vocabulary.

But step 2 does not go far enough. It does not, I suggest, precisely because it does
not yet pay attention to the two principles we discussed while considering West-
erståhl’s argument in Section 3.3.1. Westerståhl’s principles show that background
domains behave very differently than contextually restricted quantifier domains. To
build an acceptable background domain, we need to write into our ‘plan’ rules that
ensure we satisfy these principles.

We satisfy both if we do as much as we can to satisfy WP1, which reminds us that
background domains are large. The result of step 2 appears unduly small. It includes
a few new elements from M0, but then just stops. Using step 2′ instead iterated this
process a few times, but then it still just stops. We can certainly iterate much further
than is required by step 2′. To build a large domain, as WP1 requires, we should do
just that. We should iterate step 2 as far as we can.

The more we iterate step 2, the more we satisfy WP2 as well. This principle tells us
that background domains should be stable. Westerståhl had in mind that they never
change. I have rejected that, but I have argued that shifting to a reflective context is
a fairly unusual step. We should still build a domain which minimizes the need for
such transitions. The larger the domain, the less need we will ever have to expand it.

For instance, what happens if we succeed in topicalizing the domain of semantic
values from c0? This object will not be in the domain resulting from step 2, or step
2′. Would topicalizing it amount to a step to a new reflective context? I am inclined
to think not. Topicalizing it is introducing a metasemantic object—a meta-artifact
of discourse—as a topic. But the object is one we get simply by collecting together
the semantic values from the original context c0. It results from the metasemantics
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of the semantics of c0. Topicalizing it does not seem to be a new instance of reflec-
tion, but rather continuing the reflection we had already started. A new reflective
context would be one which reflects on the semantics of cR

0 itself. To avoid count-
ing this kind of continued reflection as leading to a new reflective context, we need
to make sure objects like the domain of semantic values from c0 are already in the back-
ground domain MR

0 provided by cR
0 . To do so, we need to iterate step 2 past what step

2′ itself requires.
The more we iterate step 2, the more we satisfy both Westerståhl’s principles. The

more we iterate, the bigger the background domain of cR
0 is. Likewise, the more we

iterate, the less we see occasions for shifting to a new reflective context with a bigger
background domain. The more we iterate, the more stable background domains are.
Thus, it appears that to satisfy Westerståhl’s principles for background domains, we
need one more step in our ‘plan’:

Step 3: Iterate step 2 as far as possible.

What is as far as possible? Presumably until some appropriate closure condition is
reached, or until the resources for iteration are exhausted. I shall discuss this further
in Section 3.6.

3.5.4 Tarski and Kripke

It is worth pausing to note that the issue of how far to iterate, and where we see new
reflective contexts, essentially reprises the contrast between Tarskian and Kripkean
approaches to the Liar.

If we were to stop at step 2′, we would have an essentially Tarskian view (Tarski,
1935). Though we have replaced talk of languages with talk of what is expressed in
contexts, we would essentially have in cR

0 resources for describing the semantics of a
language as used in c0, but nothing more. Any further metasemantic reflection would
require ascending to a new reflective context, which we can count as for all intents
and purposes ascending one level in a hierarchy.

On the other hand, just as in the Liar case, iteration helps to minimize the num-
ber of distinct levels. Just as with Kripkean iteration of the Tarskian truth predicate
(Kripke, 1975), iterating step 2 allows for some modest amounts of metasemantic dis-
course within cR

0 itself.
I have suggested that Westerståhl’s principles give us reason to pursue this more

Kripkean strategy. Even so, it is still possible to reflect on the semantics of cR
0 itself,

and that will induce a new reflective context. If cR
0 = c1, then we can always move to

cR
1 by topicalizing a crucial artifact of the discourse at c1.²³ Though the proposal I am

making is more Kripkean than Tarskian, it is still in effect a hierarchical proposal.²⁴

²³ Kripke notes something like this in talking about ‘‘the ghost of the Tarski hierarchy’’ (1975,
80).

²⁴ It may be that from cR
1 , the next reflective context up, we might be able to find a predicate

which defines MR
0 as a subdomain of MR

1 . Indeed, the ‘plan’, and the considerations of Section 3.6
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3.6 ITERATION

So far, we have taken a number of steps towards articulating the contextualist
response to the paradox. Semantically, we have identified two different sources of
context-dependence in Section 3.3.1. Contextual domain restriction sets a parameter
Dc, which combines with the semantic values of nominals. The context-relativity of
unrestricted quantifiers flows from the context-relativity of the background domain
M , which affects the semantic values of determiners. In effect, the context-relativity
of M gives determiners an indexical character.

Pragmatically, we saw in Section 3.4 how the step to a reflective context counts as
a genuine change in context, and how it induces a change in the background domain.
Unlike cases of contextual domain restriction, these context shifts are highly unusual,
and violate some general guidelines for keeping discourse orderly and coherent.

When it comes to setting domains of quantification, we isolated some general
principles in Section 3.3.2–3.3.3, by studying ordinary contextual restriction. We
applied these, together with Westerståhl’s principles from Section 3.3.1, to the case
of background domains in Section 3.5. The plan we developed in Section 3.5 differed
from the process of setting restricted quantifier domains in some important ways. But
where it does, it is because of the specific features of reflective contexts and back-
ground domains. The rules for setting quantifier domains already require us to take
into account such specific features of contexts. Thus, it is fair to say that the prag-
matic processes that set background domains and contextually restricted domains are
in fundamental respects the same.

The ‘plan’ I sketched in Section 3.5 instructed us in step 3 to iterate step 2. How
far such iteration will go remains an open question. In this section, I shall examine
this question, by bringing to bear some tools from mathematical logic. This will also
enable me to offer a somewhat idealized mathematical model of what the background
domains described in Section 3.5 might look like. My discussion here will, by neces-
sity, be somewhat more technical than what has come before. For those readers wish-
ing to skip the technicalities, the principal claim of this section can be summarized
as follows: logic provides some plausible stopping points for the iteration required by
step 3.

3.6.1 Reflective Contexts and Constructible Sets

The ‘plan’ I sketched in Section 3.5 will have a very familiar ring to logicians. It is
essentially the instructions for building levels of the constructible hierarchy with ure-
lements. In this section, I shall spell out the basic idea of this connection. I shall give
a more technically precise account in Section 3.6.2.

to follow, make this seem likely. But the process of building MR
0 as part of the step to a reflective

context is not that process at all. Rather, it is the process of from the ‘bottom up’, or as I shall suggest
in a moment, inductively, generating a new domain which can serve as a background domain.
Hence, the basic outlook is still, in the terms of Fine (this volume), expansionist.
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The ‘plan’ of Section 3.5 told us to take our initial background domain M0 and
start a process of adding elements to it. The elements we are to add are those subsets
that are definable in an appropriately extended vocabulary. Adding definable subsets
as members is just the process of building the constructible sets. Starting with M0 in
effect would be to build the constructible sets with urelements from M0. Thus, the
plan tells us to build the constructible sets with urelements up to some appropriate
level in the constructible hierarchy.

Why just the constructible sets? Why not build up all the sets, up to some appro-
priate level in the rank hierarchy? The quick answer is because the plan does not tell
us to. The plan has us expand our initial domain M0 for specific reasons: to make an
acceptable background domain for our reflective context cR

0 . None of those reasons
indicated going beyond the constructible sets, as they do not ask us to include any-
thing beyond the definable. This plan came from considering what happens in the
step to a reflective context, and asking how the general guidelines for fixing quantifier
domains should be applied to it. Thus, what the plan tells us to do really does seem
to be all that we should do. As the plan tells us only to add constructible sets, that is
all that should be added.

There is also good reason to keep the process of building a new context as con-
strained as we can. Establishing a new context is something that speakers do. In
passing to a reflective context cR

0 , speakers will at least implicitly have to carry out
the task of building the new background domain MR

0 . The general principle ‘do no
more than required’ seems to be a good one to invoke for what is already a massive
task. Thus, though speakers may be able to understand what it would be to build a
larger domain than the plan calls for, it is not required, and so they will not build it.

What of the rest of set theory? The most natural proposal, I think, is that an ini-
tial background domain M0 had better include the usual objects of mathematics and
science. Shifting to talk about mathematics or science is not shifting to a reflective
context, and we have no particular reason to think it requires a shift of background
domain of any kind. Hence, if we are concerned about sets, we should think of them
as included in M0.²⁵

If this is right, the question of how far to iterate in step 3 of the plan comes down
to what level of the constructible sets with urelements to stop at. The considerations
we just raised point to a strategy for answering this question as well. The process of
building a new domain for cR

0 must be something speakers can at least implicitly make
sense of. Thus, the iteration should proceed as far as speakers can likewise make sense
of.²⁶

²⁵ Kit Fine suggested to me that the sorts of domain completion found often in mathematics,
like passing from the real numbers to the complex numbers, might count as cases of background
domain expansion. The proposal I am floating here would be to treat them as a cases of passing from
one restricted domain to another, all within M0. This would leave the cases of genuine background
domain expansion limited to passing to reflective contexts. Both options are consistent with the
general outlook of contextualism. If we accept Fine’s option, we no longer need to assume that all,
or even most, of the objects of mathematics are in a given initial background domain.

²⁶ If we really do assume that the initial background domain M0 contains all the sets, we
will encounter some technical complications I shall ignore for current purposes. Rather than
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How far is that? The plan describes a kind of inductive process for generating a new
domain by adding elements in stages. Thus, it is natural to suggest that the right stop-
ping place is the limit of the lengths of inductive processes that are available relative
to the expressive resources of c0. I shall spell this out a little more formally in the next
section.

3.6.2 A Little More Formally

Let us now try to spell out the basic idea of Section 3.6.1. To begin, suppose we
describe c0 by fixing a language L and a structure M0 for L. M0 provides the
semantics of c0, and so interprets L as it is being used in context c0. To facilitate doing
a little logic, let us suppose L is a first-order language. This is certainly an idealization,
but it will prove useful. (I shall use M0 for the universe of M0, which preserves its role
as the background domain of c0.)

As c0 is supposed to be an initial context, where we have not engaged in any reflec-
tion, we could either suppose that L contains no semantic vocabulary, or that all
the semantic vocabulary has empty interpretations in M0. It will simplify matters
slightly, and allow us to invoke some standard notation, to take the former route.
When we move from c0 to cR

0 , step 1 of the ‘plan’ of Section 3.5 instructs us to
add all the vocabulary we might use to describe the semantic properties of the lan-
guage as used in c0. We thus extend L to a language L∗ having the needed semantic
vocabulary.

I shall continue in my practice of treating semantic values as sets, and generally, of
identifying semantic talk with set-theoretic talk. Relative to this simplifying assump-
tion, we should suppose L∗ supplements L by adding set-theoretic vocabulary: a
membership relation ∈, and quantifiers and variables over sets. L∗ is a two-sorted lan-
guage, with one sort of variables ranging over elements of M0, the other ranging over
sets. We will enforce this strictly, by having set variables not range over urelements.

We are thinking of L∗ as being used in context cR
0 . Relative to this context, it must

be interpreted by an appropriate structure. A structure for L∗ is a structure 〈M, A, E〉,
where A is a universe of sets with urelements drawn from M , and E interprets∈. Con-
ventionally, we insist that A contains only sets and no urelements, to keep the two
sorts of quantification in L∗ separate.

As step 1 tells us to move from L to L∗, step 2 tell us to add to our domain the
subsets of M0 definable in L∗. Step 3 tells us to iterate this process. Iterating up to
an ordinal α is essentially building L(M0, α): the constructible sets with urelements
from M0 up to level α. We can then use L(M0, α) to form the L∗-structure L(α)M0 =
〈M0, L(M0, α) ∩ VM0 ,∈〉.²⁷

constructible sets, for instance, we should perhaps be talking about iterated predicative classes. For
thinking about the matter more technically, I shall assume that M0 is a set.

²⁷ VM0 is the universe of sets with urelements from M0. The intersection with VM0 is needed to
make sure the second universe is strictly a universe of sets, and not of both sets and urelements.
Clearly, the details of working with L∗ and urelements here can be somewhat fussy. For a full
exposition, see Barwise (1975), whose notation and conventions I am following. The basic idea is
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Carrying out the ‘plan’ for building a background domain sketched in Section 3.5
can thus be modeled by the process of constructing L(α)M0 for an appropriate α. As
step 3 of the plan leaves open how far to iterate step 2, we have so far left open which
ordinal α will be appropriate. But setting that aside, L(α)M0 provides an interpreta-
tion of L∗, the enriched language being used in the reflective context cR

0 . This in turn
gives us an expanded background domain for cR

0 , which we get by combining M0 with
the domain A of sets we have added. In fact, this simply gives us L(M0, α).

Step 3 tells us to iterate ‘as far as possible’. How far is that? A moment ago I sugges-
ted that we think about ‘as far as possible’ in terms of the limits of processes speakers
could at least implicitly make sense of, given the expressive resources they start with
in c0. The slightly picky definitions we have just given will allow us to flesh this out
formally. As we are assuming speakers can pass to a reflective context, they are able
to reason about the semantics of L as used in c0, which is given by M0. Moreover,
in following the ‘plan’ of Section 3.5, they must be able to make sense of a kind of
‘bootstrapping process’ which uses M0 to build up the new domain in stages. Form-
ally, this is an inductive definitions on M0. Insofar as they understand these inductive
processes, they should be able to make sense of iterating ‘as far as such processes go’.
This suggests the limit of the lengths of inductive definitions on M0 as a way to cap-
ture the amount of iteration needed in the step from c0 to cR

0 .
The formal model of iterating to exactly this limit is the well-studied structure

known as HYPM0 . In the case where M0 = N, the natural numbers, HYPM0 is simply
L(ωCK

1 )N, where ωCK
1 is the first non-recursive ordinal. For N, we build HYPN by

iterating through all the recursive ordinals. More generally, for structures M0 which
share enough properties with the natural numbers, HYPM0 = L(α)M0 for α the limit
of the closure ordinals of (first-order positive) inductive operators on M0.²⁸

One of the very nice features of the HYP construction is that it is iterable. The
problem of building background domains is not restricted to cR

0 . As we observed in
Section 3.5.4, the process of stepping to new reflective contexts continues. From cR

0 =
c1, we can pass to cR

1 , which will need a new background domain. HYP allows for a
uniform account of these steps. From HYPM0 we can form HYP(HYPM0 ), which can
provide the background domain for cR

1 .²⁹
So, one appealing option for how far to iterate is given by HYPM0 . There are

other options as well. For instance, we might take the idea of iterating ‘as far as

still just that of building the constructible sets as is done in any set theory textbook, or more closely,
building Lα[M0] while taking definability in L into account.

²⁸ These results are surveyed in Barwise (1975), among other places. As I mentioned above, we
might have to think of our starting structure M0 as looking different from the natural numbers. We
might encounter contexts in which our background domain already looks like a model of set theory,
for instance. On the other hand, thinking about the issue from the perspective of linguistics or
cognitive scientist, we might see things very differently. From those perspectives, a natural working
hypothesis might be that the background domain we start with is finite.

²⁹ There is also a nice match-up between HYPM and Kripke constructions on M, as has been
thoroughly investigated by McGee (1991), and by my (2004a).
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possible’ to be that of iterating until you get nothing new. Insofar as this might mean
nothing recognizably new, this might mean iterating until L(α)M0 is an elementary
substructure of L(α + 1)M0 . An ever stronger option, taking into account the role
of inductive definitions I just alluded to, would be to iterate until L(α)M0 ≺1

HYP(L(α)M0 ). Ordinals satisfying these properties can be found.³⁰
We thus have a number of viable options for how far iteration must go to build an

appropriate background domain for cR
0 . As a working hypothesis, I am inclined to opt

for HYPM0 . It provides a workable picture of the semantics of L∗ in cR
0 , and a plaus-

ible picture of what background domain this context might give us. Furthermore, it
is fairly well-understood mathematically. All the same, the little exercise in mathem-
atical modeling we have just been through does not conclusively tell us which option
to choose (and as an exercise in mathematical modeling, it builds in some incidental
features of the mathematics used, as well as the features we are trying to capture with
the model). In considering multiple options, I do not want to suggest that there is
nothing to distinguish among them, which would induce rampant indeterminacy in
the notion of background domain. Rather, I think the moral to be drawn is that we
do not yet know enough to be certain just how far iteration really does go.

Let me close this section by briefly mentioning one important feature of the formal
model. It respects the distinction between artifacts of the discourse and other objects
in a thoroughgoing way. Non-artifacts of the discourse correspond to urelements.
These do not change as we move to reflective contexts. Indeed, the predicates x is an
urelement and x is a set are 	, and so are absolute in the logician’s sense of not chan-
ging as models expand. Furthermore, the same holds for any ‘ordinary’ non-semantic
expression. In the model, these will be expressions of L, and their interpretations all
remain constant. For instance, for a predicate P of L, the set {m | P(m)} does not
change at all as we move from c0 to cR

0 , etc. P in M is the same as P in HYPM is the
same as P in HYP(HYPM). The absoluteness of the set/urelement distinction ensures
this, mathematically trivially.

This holds for all formulas of L. Quantification in L is not a problem, as quan-
tification over urelements is bounded quantification in HYPM0 . Nor is negation a
problem, in the formal treatment using a two-sorted language I have offered here.
However, the two-sorted language may appear somewhat artificial. If instead, for
instance, we think of an expression like P as having its extension in M0 ∪ A, the com-
bined domain urelements and sets, we have to a little more careful. ¬P would then
change its extension as A expands. But even so, the absoluteness of the set/urelement
distinction will allow us to form an absolute predicate U (x) ∧ ¬P(x), where U (x) is
x is an urelement. The extension of this predicate will not change as the domain of sets
expands. (As usual, this observation really applies to �-formulas of L∗.)

³⁰ The former is what is known as an α + 1-stable ordinal, the latter an α+-stable ordinal (where
α+ is the next admissible ordinal greater than α). These were extensively investigated by Richter
and Aczel (1974), who show that they are analogs in generalized recursion theory of indescribable
cardinals. They also show that the least α+-stable ordinal is the limit of the closure ordinals of
non-monotone �1

1-inductive operators.
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The moral of this observation is that changing to a reflective context does change
the background domain of quantification, and the interpretation of the language of
artifacts of discourse, but it leaves the interpretations of other aspects of the language
as we speak it in c0 unchanged.³¹

3.7 CONCLUSION

I have now presented the core features of the contextualist approach to the paradoxes,
and so made my basic case. I have argued that quantifiers which are both unrestric-
ted and contextually unrestricted show relativity to a contextually determined back-
ground domain. They do so because of the way the background domain M figures
into the semantics of determiners. I noted that this is a distinct phenomenon from
the usual quantifier context-dependence, as it is relativity to the background domain
M , over and above the context-dependence of the parameter Dc in the nominal of a
noun phrase. But I also argued that the pragmatic mechanisms that set M are fun-
damentally related to those that set contextually restricted quantifier domains. First
of all, I argued that there really is a context shift in the argument from paradox, as it
involves a step to a reflective context. Furthermore, I showed how the same general
principles which govern the setting of contextually restricted domains govern the set-
ting of a new expanded background domain for a reflective context. Where setting
M for a reflective context differs from setting a contextually restricted domain, it is
because setting M relies on the specific nature of reflective contexts. Yet it is a gen-
eral feature of domain-setting to rely on such specific features. Finally, to flesh out
my proposal, I offered some formal models of what an expanded background domain
might look like.

To close, let me mention some issues that remain open (over and above the larger
issues I put aside at the beginning of this chapter). Two seem to me most important.
First, this chapter has concentrated on how domains expand, particularly, how they
expand in the step to a reflective context, which I see as the crucial step in the argu-
ment from paradox. Very little has been said here about how an initial background
domain is set, and understanding this is important for a full account of the context-
relativity of background domains. Second, a great deal of weight has been placed on
the distinction between artifacts of discourse and other objects. I gave a rough-and-
ready version of this distinction, and more needs to be done to understand it in its
full generality.

I hope that developing the positive aspects of the contextualist approach system-
atically, as I have tried to do here, will serve to dispel some the air of mystery which
seems to attach to it. Answering these questions would do so all the more.

³¹ In a longer version of this chapter, I used this moral to counter an objection from Williamson
(2004) that non-absolutist views of quantification, including the contextualist view I have been
pursuing here, cannot even capture restricted quantification properly. However, a full discussion of
this interesting challenge will have to wait for another occasion.
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4
Against ‘Absolutely Everything’!

Geoffrey Hellman

4.1 INTRODUCTION

Please note the quotes. (We are not (absolute) nihilists!)
Does absolutely general quantification, totally unrestricted in domain or by con-

text, even make sense? How could one possibly doubt it? According to Lewis (1991,
68), the skeptical position is undermined in its very voicing (i.e., in saying, ‘You can-
not quantify over absolutely everything’, you are implying there is something you
can’t quantify over!). Even posing the question as we just have seems to presuppose
a positive answer, since, if called upon to explain what is meant by ‘absolutely gen-
eral quantification’, will we not have to say, ‘It is quantification purporting to be over
absolutely everything’ (where here, despite the cautious ‘purporting’, the dreaded
phrase has been used, not mentioned)? Or is this somehow a fatuous play on words?
But even it if is (and that must be argued), don’t we presuppose the sensibility of
absolutely general quantification in denying (at least with overwhelming probabil-
ity), say, the existence of ghosts or gods? Truth of the matter apart, surely atheism is a
meaningful position, and equally surely it does not merely deny deities with respect to
some restricted domain. Indeed, Williamson (2003) has argued that the presupposi-
tion pervades even the most mundane denials of existence, e.g. of talking donkeys or
flying pigs.

Nevertheless, pace Lewis et al., there are powerful arguments against the intelli-
gibility or coherence of absolutely general quantification, and the central Sections,
4.3 and 4.4, of this chapter will be devoted to spelling these out. As will emerge,
platonistic and nominalistic positions vis-à-vis mathematics are affected rather differ-
ently by these arguments; indeed platonism faces the greater liability. Nevertheless,
nominalistic frameworks face problems of their own with regard to absolutely general
quantification. This will leave us squarely confronting the challenges to the skeptic:
how can one meaningfully deny (and non-constructively affirm) existence, and can

Support of the National Science Foundation, Award SES-0349804, is gratefully acknowledged.
I owe thanks also to Stewart Shapiro, Timothy Williamson, and the editors of this volume for
comments on an earlier draft, and to Richard Grandy, Tim McCarthy, and others at the Fifth
Annual Midwest Philosophy of Mathematics Workshop, held at the University of Notre Dame,
10 November 2004.
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one ultimately avoid falling back on absolutely unrestricted quantification? A partial
resolution, at least, will be proposed. Finally, we will touch (lightly) on the (heavy)
question of what lessons there are concerning ‘metaphysics’ and whether it is viable
at all.

But wait, you may already say: how can you proceed to present arguments for a
‘conclusion’ that you cannot even express without implicitly supposing the denial of
that very conclusion? Our first task must be to attempt to dismantle this roadblock.
Then we will take up two main lines of argument against the coherence of ‘absolutely
everything’, the first applicable to platonist mathematical frameworks, the second to
nominalistic frameworks as well. Finally, we will suggest what needs to be done in
order to get by without ‘absolutely everything’.¹

4.2 FRAMING SKEPTICISM

The first point to be made here is that there is, at the least, a minimal fallback position
for the skeptic which avoids self-destruction. As hinted at the outset, one must sharply
distinguish between use and mere mention of suspect quantifier phrases or occurrences
thereof, such as ‘absolutely everything, without any domain or context restrictions’.
One is always free to mention such phrases or particular uses or utterances of them and
claim not to be able to make sense of them. Further, one can present arguments that,
at least given certain background assumptions, they involve hidden contradictions or
incoherence and cannot be made sense of. This avoids the trap of saying, ‘You cannot
quantify over absolutely everything.’ Of course, there is still a burden to be met, that
of showing that various things we regard as perfectly intelligible and which seem to
depend on such unrestricted quantifier phrases are either not really intelligible or else
do not really so depend. But at least incoherence in enunciating a skeptical view will
have been avoided.

Can one do better? Is there a coherent, defensible, positive thesis that the skep-
tic, or ‘generality-relativist’, can articulate? A seemingly promising suggestion begins
by recognizing that quantifiers are always used in contexts, and that contexts matter
to their meaning and truth conditions. Following Williamson, let us speak of con-
texts, C, C ′, etc., in which quantifiers (‘q’s’ for short) are or can be used. Then it is
tempting, at least for a mathematical realist focusing on the open-endedness of math-
ematics, to assert,

(GR1) ∀C∃C ′(‘the range, R′, of q’s in C ′exceeds that, R, of q’s in C ’).

But if we spell out ‘exceeds’ in the standard way, we expose another quantifier: ∃x(‘x
is in R′ & x is not in R (but not vice versa)’). Taking into account that (GR1) has a

¹ One should distinguish ‘absolute generality’ from ‘unrestrictedness’, as Parsons has suggested
(in his contribution to this volume). In this chapter, we argue mainly that the former is not
coherent. While absolutely general quantification is naturally taken as implying lack of restriction,
the converse is questionable. As will emerge, room will be left for a kind of open-ended, unrestricted
quantification, despite the critique of absolute generality.
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context, C*, we infer that a quantifier in C* ranges over something asserted not to be
in its range, i.e. (GR1) is self-defeating. In his (2003), Williamson exposes this prob-
lem and goes on to find similar ones with related strategies that might be pursued,
ultimately finding no suitably general positive thesis that the generality-relativist can
assert. Something more subtle is needed.

It seems that as long as the relativist is confined to extensional, factual claims about
ranges of quantifiers, problems such as this will arise. A better approach is to recognize
intensional aspects of ontological commitments. Instead of futilely saying that there
are (‘in fact’) always more things than can ever be recognized on any given occasion
of use or in any context, one can say that, for any context, there is (or can be) another
in which the objects recognized or countenanced go beyond what are recognized or
countenanced in the former. What are compared are not asserted in the thesis actu-
ally to exist but only to be claimed or taken to exist. (We need not take a stand on just
how one wants to analyze such comparisons; all we need suppose is their meaning-
fulness and freedom from direct ontological commitment in the context of assertion
of the general thesis itself.) As it stands, however, the thesis is clearly inadequate: so
what if more things can always be dreamt up? What must be added is that the more
far-reaching, intended quantifier ranges in the new contexts are well motivated ‘can-
didates for truth’ in relation to the original. One may even come to jettison the notion
of ‘truth’ for certain ontological claims; but what matters is that new, more extensive
contexts are always forthcoming such that it would be arbitrary to stop at any one,
identifying its ontology with ‘Reality’. This, it seems to me, is a good way to meet
Williamson’s challenge. The general form of such a thesis would thus be,

(GR2) ∀C∃C ′ (‘the range, R′, of q’s countenanced in C ′ exceeds that, R, counten-
anced in C & commitments in C ′ are well-motivated relative to those in C ’).

Here ‘exceeds’ means that C ′ countenances things which C does not, but not vice
versa, however this is spelled out precisely. Crucially, ‘existential commitment’ here
is merely attributed to C ′, not actually made in the context in which GR2 is main-
tained. The absolutist can retort that all this is logically compatible with there being
a unique, absolutely maximal ontology, the range (plurally speaking) of totally unres-
tricted quantifiers. Indeed, as will emerge, the skeptic here is aiming for less than strict
logical refutation on premises the absolutist will accept. In fundamental matters of
this sort, that is hardly to be expected. It is sufficient if the skeptic can make the abso-
lutist nervous, and even better if it’s very nervous.²

Essentially the same idea can be got at in the form of a reductio of the absolutist
position: assuming an absolutely maximal range of quantifiers, one appeals to some
principle that leads to recognition of further objects which could not have been in the
given putatively maximal range. The need for such a principle means that the refut-
ation is not purely logical. But the principle may be well-motivated, and the better
motivated it is, the more nervous the absolutist should become. Such principles can

² In Mel Brooks’ film, ‘High Anxiety’, a sign is displayed over the entrance driveway of a mental
institution reading, ‘Institute for the Very, VERY Nervous’.
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indeed be found in the sphere of pure mathematics, the locus of the first line of argu-
ment, to which we now turn.

4 .3 ARGUMENT FROM THE OPEN-ENDEDNESS
OF MATHEMATICS

Modern set theory embodies an iterative conception according to which ‘the (transfin-
ite) ordinals go on and on’, hence levels of ‘the cumulative hierarchy’ go on and on
without end. But the very statement of this illustrates the tension that Zermelo (1930)
highlighted, between two opposing tendencies of human thought, that of ‘creative
progress’ on the one hand, and that of ‘all embracing completeness’ on the other. For
the phrases ‘the ordinals’ and ‘the cumulative hierarchy’ suggest ultimate totalities
after all, contrary to the idea of ‘going on and on without end’. It is not merely that
there are infinitely many ordinals with no maximal one. That is also true of the natural
numbers; and yet there is nothing in the concept of ‘natural number’ that provides
an operation or operations that lead beyond any domain of them to ‘new natural
numbers’, i.e. speaking of all the natural numbers is unproblematic in this way. But
in the case of ordinals, that is precisely what the concept provides: given any totality
of ordinals, if there is a maximal one in the totality, a successor is provided for (simply
by extending the given well-ordering by one item, the totality itself if need be), and if
there is not, one can pass to a new limit by considering the order-type of the totality
itself. Michael Dummett (1978) marked this distinction nicely, calling ‘ordinal’ an
‘indefinitely extensible’ concept. The passage is worth quoting (almost) in full:

A concept is indefinitely extensible if, for any definite characterization of it, there is a nat-
ural extension of this characterisation which yields a more inclusive concept; this extension
will be made according to some general principle for generating such extensions, and, typic-
ally the extended characterisation will be formulated by reference to the previous unextended
characterisation. We are much less tempted to misinterpret a concept possessing this variety of
inherent vagueness as a completely determinate concept which we can descry clearly from afar,
but a complete description of which we can never attain, although we can approach indefin-
itely close, than in the general case. An example is the concept of ‘ordinal number’. Given
any precise specification of a totality of ordinal numbers, we can always form a conception
of an ordinal number which is the upper bound of that totality, and hence of a more extens-
ive totality . . . it remains an essential feature of the intuitive concept of ‘ordinal number’ that
any [such] definite specification can always be extended. This situation we are not tempted to
interpret as if, in thus recognising the possibility of indefinitely extending any characterisation
of the ordinals so as to include new ordinals, we were approaching ever closer to a perfectly
definite (‘completed’) totality of all possible ordinal numbers, which we can never describe but
of which nevertheless we can form a clear intuitive conception. We are content in this case
to acknowledge that part of what it is to have the intuitive concept of ‘ordinal number’ is
just to understand the general principle according to which any precise characterisation of the
ordinals can be extended.’ (p. 196, my emphasis)

Of course, the concept of ‘set’ itself is also indefinitely extensible in this sense: given
any (precisely specified?) totality of sets, that totality itself behaves intuitively like a
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set: it is identified by its members, and it can be subject to further set-theoretic opera-
tions, e.g. forming its singleton, taking its power set, etc. (Similarly, general notions of
‘collection’, ‘totality’, and also of ‘function’, ‘relation’, and, presumably, their inten-
sional counterparts, ‘property’, ‘attribute’, provide further examples. Significantly, we
would argue, the mathematical notion of ‘category’ also qualifies.) Even if we appeal
to plural quantification (recognized by Boolos (1985) well after Dummett wrote this),
the situation is not essentially changed. Even if we begin, ‘given any (precisely spe-
cified?) sets’, rather than ‘totality of sets’, the reasoning will then invoke the possibility
(not the necessity) of intelligibly speaking of a totality of them as built into the intu-
itive concept of ‘collection’, a possibility that leads to set theory in the first place, and
which must be respected if the ‘creative progress’ side of mathematical thought is to
be given its due. We will return to this point below.

But, before going further, the question arises, why is there the restriction in Dum-
mett’s description to ‘precisely specified’ or ‘definitely characterized’ totalities (or to
‘precise specifications’ or ‘definite characterizations’), and what does it mean? First,
it seems odd (and counterintuitive) to impute to ‘the intuitive concept of ordinal’ an
implicit reference to precise specifications. More important, what counts here, and
why does it matter? Does, for instance, the definition von Neumann gave of ‘ordinal’
in set theory qualify as ‘a precise specification’? Whether it does or not, the conclu-
sion should be the same, namely that ‘set ordinal’ is indeed an indefinitely extensible
notion. The indefinite extensibility arises, it seems, not by appeal to a standard of
‘precision’, but rather through our capacity to entertain new totalities, ‘collecting in
thought’ as it were everything already presupposed or given, and then, in the manner
of set theory itself, reifying ‘the result’ of this thought process, speaking in objective
terms of a collection of those things (taking care to avoid paradox, about which more
momentarily). Thus, it seems quite counter to the italicized portion of the quote to
infer that space is being allowed for a ‘totality of all possible ordinals’, or ‘all possible
sets’, as ‘not definite’ and therefore (?) perhaps not extensible. So long as such a total-
ity is recognized at all, whether ‘precisely specified’ or not, ordinal-theoretic opera-
tions can still be applied to obtain yet further ‘ordinals’ according to the intuitive
concept. Thus, I have tended to speak directly of ‘extendability of structures or mod-
els’ of various theories (of sets, functions, categories, etc.), as has Putnam (1967) and,
implicitly, Zermelo (1930). But the essential point is the same: as Mac Lane puts it:

Understanding Mathematical operations leads repeatedly to the formation of totalities . . .

There are no upper limits; it is useful to consider the ‘universe’ of all sets (as a class) or the
category Cat of all small categories as well as CAT, the category of all big categories. After each
careful delimitation, bigger totalities appear. No set theory and no category theory can encom-
pass them all—and they are needed to grasp what Mathematics does. (Mac Lane, 1986, 290)

Of course, in considering new totalities and operations on them, we must avoid
paradox—in the case of ordinals, the Burali-Forti paradox. Thus the order-type of
the putatively all-embracing totality of ‘all ordinals’ cannot qualify as an ordinal
belonging to the totality (e.g. a ‘set ordinal’); but it still qualifies as marking or giving
rise to an ordinal in the intuitive sense (‘type of well-ordering, as a binary relation’),
and formally we could introduce hyper-ordinals ‘going on and on’ beyond it, in just
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the way the ordinary ordinals ‘go on and on’ (i.e. via the same intuitive operations).
(Cf. Shapiro, 2003.) Indeed, set theorists label this ‘it’ with ‘
’ whenever it is con-
venient to do so. (And you know what can then happen: hyper-hyper, . . . , α-hyper,
for ordinary ordinals α, and why not draw from hyper-ordinals to index the order of
‘hypers’, obtaining hyper-α-hyper, . . . , β-hyper-α-hyper, and so on.) This, of course,
while logically consistent in itself, is an embarrassment to set theory conceived as
already a fully general theory of collections. There seems to be, after all, no mathem-
atical substance to speaking of hyper-ordinals and hyper-sets that isn’t captured by
recognizing instead a new inaccessible level of ‘the cumulative hierarchy’ and identi-
fying the hyper-objects as occurring at and beyond that level. Moreover, introducing
talk of hyper-objects merely shifts the focus from the question of intelligibility of
‘absolutely all (or all possible) sets (or ordinals)’ to that of the intelligibility of ‘abso-
lutely all (or all possible) collections (or order types) (of any level whatsoever)’. (And
note that, by hypothesis of a reductio of the absolutist’s position, in which we are cur-
rently engaged, this latter reference to ‘any level whatsoever’ should also make perfect
sense.)

The point should now be clear: however precisely we choose to slice it, we have
general mathematical concepts �, indefinitely extensible in roughly Dummett’s
sense, which we take as spelling out that the notion ‘absolutely all (or all possible)
�’s’ fails to be ‘absolutely maximal’. Whatever such a quantifier phrase is supposed
to encompass can be subject to (informal or formal) mathematical operations lead-
ing to new totalities, in accordance with extensibility, and this conflicts with the
idea—espoused by the believers—that we (they) were really referring to ‘absolutely
all of the �’s’. But—to reconnect us with the over-arching topic—if one recognizes
�’s as genuine objects, ‘part of Reality’, and if ‘absolutely all �’s’ is illegitimate, then
so must be ‘absolutely everything’, i.e. the illegitimacy—failure of purported abso-
lute maximality—is transmitted ‘upward’ to more inclusive (putative) totalities. Put
in the terms of Dummett’s discussion, if the quantifier ‘absolutely every’ were legit-
imate, then we could use it to specify just ‘absolutely all’ those things which are �

(a general form of ‘Separation’), and this could not be regarded as extensible. Let us
consider some objections and ways out.

Looking back, there are essentially only two premises to the argument: (1) the
indefinite extensibility of certain general mathematical concepts (or extendability of
structures of theories utilizing them); and (2) a platonist ontological view of math-
ematical objects as part of a ‘unique Reality’. Included under (2), we assume, are (i)
the view that the very possibility of mathematical objects suffices for their actuality;
and (ii) the general Separation principle just appealed to. The subscriber of (2) is thus
faced with denying (1).

There seem to be only two places to try to break the (sub)argument for indefinite
extensibility of the relevant concepts: first, at the step where a collection or totality of
‘absolutely all the �’s’ is appealed to; and second, at the further step where math-
ematical operations on that collection (or related object, e.g. ordinal) are invoked.
Challenging the first corresponds to the forswearing of proper classes (in the context
of ZF set theory); challenging the second (but not the first) corresponds to allowing
proper classes but treating them in the manner of NBG (von Neumann, Bernays,
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Gödel) set theory, not allowing them to be members. The most promising approach
to mounting the first challenge is to appeal to plural quantification, resisting the move
passing from, say, ‘all the sets’ to a totality them, of any type whatever. As in first-order
ZF set theory, no such totality is recognized First-order languages, however, are lim-
ited in expressive power in well-known ways; moreover they open the challenger to
the charge of imposing arbitrary limitations on what can be said about the inten-
ded (face-value, absolutist, platonist) interpretation of set theory. (Indeed, Boolos’
original motivation in introducing plural quantification (1985) was to take advant-
age of the greater expressive power of second-order languages, in particular the power
to express satisfaction and truth with respect to ‘all sets’, without presupposing any
extravagant ‘new totalities’, proper classes.) While this move does demonstrate that
indeed we (or the platonist) can gain certain advantages of proper classes while avoid-
ing them as objects, this of itself is insufficient as a strategy to counter the implic-
ations of indefinite extensibility in the present context. The point here, as already
broached above, is that the argument from indefinite extensibility appeals not to any
alleged impossibility of avoiding proper classes but rather to a positive possibility of
cogently entertaining higher totalities, as is routinely done (and, it might be said from
the standpoint of ordinary mathematical practice, with utter abandon,) in set theory
itself. It is this possibility, the coherence of introducing (talk of) higher totalities, that a
philosophy of mathematics must make sense of, and to cut it off at a certain stage, say-
ing that it would be inconsistent with the hypothesis that we were speaking already of
‘absolutely all totalities’, appears arbitrary and question-begging. Of course, the abso-
lutist can dig in the heels and consistently impose such a limitation.³ But the price
is high. Since part and parcel of the platonist view is that, for purely mathematical
objects, ‘possibility’ implies ‘actuality’, the stance has to be that the higher totalities
are not even possible, in spite of their relative consistency with ordinary set theory
(+ inaccessibles), and in spite of the fact that we are only continuing processes already
assumed coherent at earlier stages.

These considerations apply even more clearly to the second way of trying to break
the argument, acknowledging the higher totalities but withholding mathematical
operations on them. This, we would submit, simply conflicts with rules implicit
in our ordinary understanding of mathematical operations, such as applying (more
accurately, extending) a function to a newly recognized object, or taking it as the
value of a function, taking its singleton, forming products with the totality, taking

³ It is this appeal to arbitrary restrictions on ‘forming totalities’ and/or applying operations that
blocks a derivation of generalized versions of the paradoxes such as Russell’s or Cantor’s. Suppose
one considers ‘all totalities’ (or ‘totality-like objects’ to emphasize the unrestricted scope) as ‘part
of Reality’. A version of the Russell paradox looms by then applying Separation to infer a totality
of all totalities not belonging to themselves (the ‘Total Russell paradox’, we can call it). But if
the absolutist insists on limiting Separation somehow, e.g. by understanding it as giving only ‘the
non-self-membered totalities’ in the sense of plural logic, refusing to admit a totality of these, then
paradox is blocked. Similar considerations can block a Total-Cantor’s paradox (the sub-totalities
of ‘Reality’ being at once objects in Reality and more numerous than all the objects). Thus, as
announced at the outset, we are not claiming that the absolutist position necessarily leads to
inconsistencies. But the need for arbitrary restrictions on mathematical operations should indeed
make the absolutist nervous.
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functional exponentiation (passing to a class of functions from the totality to a given
value-set, delivering the ‘power-totality’, as a special case), etc. Again, the absolutist
can consistently refuse to recognize these (extended) operations or their results, even
while recognizing the higher totality (e.g. of ‘absolutely all sets’) as an object. But
again this appears as an arbitrary limitation on mathematical thought processes, all the
more arbitrary in that, unlike in the former case, we are not introducing any new lim-
its but merely operating on a single ‘thing’ (like applying ‘successor’ to ω to obtain
ω + 1, in contrast to recognizing ω or the totality of natural numbers in the first
place).

In the context of a debate Lewis (1991) constructed between a ‘singularist’ and
himself, as a proponent of plural quantification, Lewis derided skepticism about
‘absolutely everything’, writing, ‘Maybe the singularist replies that some mystical cen-
sor stops us from quantifying over absolutely everything without restriction’ (p. 68).
The present context is very different: We fully agree with Boolos, Lewis, Yi, et al.’s
view that plurals are intelligible on their own and not to be reduced to singulars. And,
in framing the current challenges to ‘absolutely everything’ we have been careful to
avoid the trap of illicit uses of such phrases. What has emerged is that the skeptic
turns the table: it is the absolutist who seems to invoke a mystical censor that stops
us from applying mathematical operations by fiat, with nothing to fall back on but
the absolutist, platonist view of mathematics and ontology.

But suppose the absolutist grants all this concerning the indefinite extensibility of
the key mathematical concepts we have been discussing. There is yet a further move
that has been suggested on the absolutist’s behalf, namely balking at the inference
from the application of Separation used in the above (reductio) argument, i.e. to infer
from the inextendability of the range of ‘absolutely everything’ that, e.g. ‘absolutely
all sets’ or ‘absolutely all ordinals’ must also be inextendable. It has been suggested
that the absolutist might hold out for the intelligibility of unrestricted quantification
while at the same time conceding the indefinite extensibility of concepts such as ‘set’,
‘ordinal’, ‘set-like entity’, etc., maintaining that these—along with even ‘absolutely
all sets’, ‘absolutely all ordinals’, ‘absolutely all set-like entities’, etc.—subtly shift
their meaning as we consider wider and wider contexts, while ‘absolutely everything’
remains fixed throughout.⁴ On this view, Separation itself is not really being chal-
lenged, for a predicate such as ‘set-like entity’ is being assigned a unique extension,
but it is one that gives way to another more comprehensive one as soon as we reflect
on extensibility and recognize new, higher totalities, etc. This is analyzed as shift-
ing to a new language, with new meanings and extensions assigned to ‘set’, ‘set-like
entity’, etc. (These predicates could be indexed to reflect this language relativity.) But
how it is that ‘entity’ itself manages to remain fixed and maximal throughout all such
changes remains an utter mystery. Surely our common understanding would have it
that, in recognizing new, higher totalities, we are also recognizing new entities, not
merely relabelling some old ones!⁵ In any case, the relativist can argue that all this

⁴ See Shapiro’s helpful discussion (2003).
⁵ Williamson has suggested in correspondence that in ‘recognizing new types’ we may be newly

‘singling them out’ but without newly ‘quantifying over them’. I take it that this is equivalent
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maneuvering is for nought: the mathematical operations appealed to in connection
with pure mathematicalia, as in the argument we have concentrated on above, can
also be applied to mathematicalia-cum-non-mathematicalia: once given ‘absolutely all
entities’, one can entertain a totality of these, and pass to all (absolutely all!) subto-
talities, generating essentially Cantor’s paradox (for such subtotalities count as entit-
ies, by hypothesis that this term is indeed maximal and fixed), or one can generate
a ‘Total–Russell paradox’ (applying Separation to infer a totality of all non-self-
membered totalities, cf. n. 3 above).⁶ Indeed, as already granted, the absolutist can
consistently refuse to recognize the application of such mathematical operations; but
again we will repeat the conclusion above that such restrictions are arbitrary and face-
saving (better: metaphysics-saving) devices, that the tables have indeed been turned
regarding ‘mystical censorship’.

Without claiming to have exhausted absolutely every absolutist manoeuvre, let us
now shift frameworks and consider what becomes of ‘absolutely everything’ when we
move beyond mathematical platonism.

4 .4 ARGUMENT FROM MULTIPLICITY OF ‘FACTUALLY
EQUIVALENT ’ ONTOLOGIES

Although this line of argument affects all known frameworks, it is useful to think of
it in the first instance as applying to nominalistic ones in order to help separate out
the special features of mathematical concepts and structures that have occupied us so
far.⁷

In a nutshell, the argument runs as follows: one begins with the point (adapted
from Kant) that, to think or say practically anything interesting about material real-
ity, a conceptual apparatus must be brought to bear. One then reflects that any such
apparatus involves a ‘parsing’ of experience and of what we take to be the objective
subject matter of our inquiry, involving notions of ‘object’, ‘property’, ‘relation’ or
‘attribute’, correlated with linguistic distinctions, e.g. ‘singular term’, ‘general term’,
etc. Further, one notices that, even with these familiar categories, we can contem-
plate two or more (equally) accurate and adequate ways of describing a situation
or given subject matter, and, in particular, the items recognized as values of our
quantified variables differ under the different parsings. In some sense, the alternative
descriptions are ‘factually equivalent’, despite the fact that when we try to describe
the relevant ‘facts’ of the situation, of course we have to use a language to do so,

to saying that ‘entity’ is remaining fixed throughout. Perhaps our different stances at this point
reflect different linguistic intuitions; but I would be inclined to describe the ‘new recognition’ to an
expanded meaning of ‘all entities’, not to what qualifies as ‘set-like’. If anything, it seems to be the
latter that remains fixed, contra this whole strategy of the absolutist’s.

⁶ As Roy Cook has pointed out to me, this Total–Russell paradox relies on less than the
Total–Cantor paradox with its presupposition of ‘absolutely all subtotalities’. Parsimony has its
virtues, I suppose, even when discussing ‘absolutely everything’!

⁷ For discussion of an interesting case of the argument from multiplicity which turns on
mathematical ontology, see Uzquiano’s contribution to this volume.
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and this will seem to prejudice the case in favor of a particular parsing associated
with that language. But we can reflect on this and discount for it, clinging to our
insight about multiplicity rather than opting for a parochial, unrelativized monism.
The upshot, then is a kind of ‘ontological relativity’ (perhaps closer to Carnap’s or
Goodman’s than Quine’s): multiple universes of discourse are equally ‘correct’; tak-
ing their ‘union’ is ill defined (what are ‘all frameworks’ over which the union is
to be taken?), unwieldy (‘satisfying no one’), and arbitrary. Conclusion: ‘absolutely
everything’ must be relativised to a parsing; it cannot really be ‘absolute’.

As an illustrative example from the sciences, consider standard Newtonian gravit-
ation theory (in differential form, based on Poisson’s equation), with its quantifica-
tion over gravitational forces, as compared with the ‘neo-Newtonian’, geometrized,
curved-spacetime theory (Trautman, et al.), in which such forces are displaced in
favor of spacetime (geodesic) curvature, much as in general relativity.⁸ Now, as such,
these theories are not ‘fully factually equivalent’, at least according to a fairly robust
standard, namely Glymour’s ‘theoretical equivalence’ (1971), which requires trans-
lations (in both directions) built up from explicit definitions of primitives (not just
observational) preserving theoremhood. The problem is that, as Malament (1995)
pointed out, recovery of gravitational forces from the curved spacetime framework
is not unique, but depends on a ‘gauge’ choice of how to divide up the (physically
significant) sum of ‘purely gravitational’ and ‘inertial’ forces, which taken separately
lack physical significance. Uniqueness, however, does obtain if reasonable bound-
ary conditions on curvature or the gravitational potential are imposed. It suffices, for
example, to require asymptotic approach to flatness or zero gravitational potential at
spatial infinity, a reasonable condition if one is dealing with a bounded system (e.g. a
solar system or a cluster of galaxies). Of course, we suppose that our world is not really
Newtonian in any case, but the example is suggestive: many situations we can imagine
and describe fulfill both theories and the boundary conditions. The same underlying
factual situation, we would like to say, is described accurately and adequately in onto-
logically diverse ways. It would be arbitrary and unwarranted to say that just one is
‘really correct’.

Cataloguing and describing such examples from the sciences would be a major
and worthy undertaking, clearly beyond the scope of this chapter.⁹ But the phe-
nomenon of ontological multiplicity can also be illustrated in less esoteric terms.

⁸ I am indebted to Paul Teller for calling my attention to this example, and to David Malament
for helpful correspondence. For details on these theories and discussion of their interrelationship,
including the question of ‘factual equivalence’, see Malament (1995). Cf. also Jones (1991) and
Musgrave (1992) for discussion of related examples.
While these theories and their ontological commitments are, of course, couched in abstract
mathematical terms, this should not be a distraction in the present context for at least two reasons.
First, one can think of the mathematical objects (vector or tensor fields, derivative operators, etc.)
as corresponding to or ‘representing’ various physical phenomena, reasonably taken as within the
purview of nominalism; and second, in any case, the mathematics in question can be nominalized
in various ways (à la Chihara (1990), or Hellman (1989, 1996), and perhaps also Field (1980)).

⁹ Of particular interest in this connection would be a thoroughgoing quantum field theoretic
view of physical reality, and its effect on ‘particle’ concepts, let alone macroscopic ones. (It seems
that we confront even more than Eddington’s famous ‘two tables’.)
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Familiar examples cited long ago by Goodman (1977, 1978) and others come from
geometry (pure or applied), e.g. a framework with points and lines (say, in the two-
dimensional case) vs. a framework with just lines, points being definable as (suitably
selected) pairs of intersecting lines. Or one may consider a system with points and
regions vs. a system with just regions, points defined as (suitable) nested regions.¹⁰
Now one might dismiss such examples as ‘ontologically benign’ by pointing out that,
due to the various ways of introducing ‘points’ by explicit definition, all the systems
agree on the assertion, ‘Points exist’. However, such a facile separation of ontology
from ‘status’ of objects is misguided. All the systems indeed agree on the existence of
points, disagreeing over ‘what they are’. But, the point is, this can be put as a ques-
tion of ontology: Are there sui generis points, i.e. points which are distinct from pairs
of lines or nested volumes, etc., not constructed out of anything else? The absolutist
must claim that there is one correct answer: we may not ever know it, but it shows up
one way or another in the range of ‘absolutely everything’!¹¹ (An analogy from pure
mathematics comes to mind: Dedekind (1872) thought of real numbers as really dis-
tinct from the famous ‘cuts’ in the rationals which he introduced to ‘define them’,
despite the isomorphism (hence ‘structural identity’) between them.¹² This is (‘heavy
duty’) ontology, if anything is!)

Even more problematic are examples of a second sort, where certain objects recog-
nized in one system are completely omitted by another, not being reconstructed by
any mode of composition from other recognized objects at all. Let one system be
our familiar one recognizing ordinary material objects and their material properties
(including relations, if you like). Let an alternative system recognize instead spatio-
temporal regions together with novel ‘occupation’ properties of these which get at
the ordinary material objects. (Occurrences of such properties might be called (pos-
sibly extended) ‘events’. The beginnings of such a system as we are contemplating
are commonly encountered in representing ordinary phenomena in space-time the-
ories. Cf. e.g. Geroch (1978)) Instead of saying ‘there are books over there’, we can
say ‘that region is ‘‘booked’’ ’. Instead of saying, ‘There are more books over there
than over here’, we can say, ‘That region is ‘more booked’ than this one’; instead of,
‘No more books can be fit into that region’, we can say, ‘That region is ‘fully booked’’,
and so forth. Yet one does not identify books in this framework with the space-time
regions they occupy. Apart from the problems of vagueness—problems in saying

¹⁰ It should be noted that plural quantification (over regions, for example) can supplant applied
set theory, which might distract us from our focus on nominalistic frameworks. With some
effort, various of these can recover standard analytic mathematics over spaces (for geometry and
physics), whether or not points of the space are taken as primitive or defined. Cf. Hellman (1989,
1996), Chihara (1990), Burgess and Rosen (1997).

¹¹ Nothing we are saying here should be construed as prejudging the question whether it might
not be better to reconceive physics as dealing with ‘gunky (‘pointless’) spacetime’ rather than
standard, ‘pointy’ spacetime. (This is being explored by Arntzenius MS.) While it is true that
‘points’ could be reintroduced by definition (e.g. as sets or pluralities of suitable nested gunky
regions), the mathematical treatment of pointless spacetime would still differ from that of pointy
spacetime, and such differences could matter physically, as well as mathematically. The theories
would not then be ‘factually equivalent’.

¹² Cf. Shapiro’s discussion (1997), 170–5.
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which region should serve—one can insist that material objects such as books, on the
one hand, and space-time regions, on the other, are categorically different kinds of
things. For limited purposes (e.g. in representing certain structural space-time rela-
tions, e.g. causal accessibility in Minkowski space-time), it may be convenient to
think of a book as just a certain region, but that is only for limited purposes. Radical
differences show up in modal discourse, which we may seek to preserve, as in ‘This
book might have occupied a different space-time region’, which becomes nonsense
under substitution of ‘the region actually occupied by this book’ for ‘this book’. We
can, in a sense, respect such a statement by saying of various individual properties, nor-
mally associated with the book, that they might have been manifested elsewhere. But
we still may resist literally identifying the book with a cluster of properties. For one
thing, the occupation properties recognized in the contemplated framework are liter-
ally of space-time regions, not of ordinary material objects. (Thus, a book may ‘have
450 pp.’ or be ‘of cloth’, but neither of these properties is possessed by the region;
and a haecceity such as ‘being this book’ is not recognized; rather it is the occurrence
or manifestation, the ‘being at’, of such a property that, at best, is recognized.) For
another, what is the ‘clustering’ relation? It shouldn’t be set-membership, as mater-
ial objects are not sets (by ordinary lights), and other modes of composition, e.g.
part/whole only seem to apply by stipulation. For particular purposes, that may be
fine, but do we want to say that various such ‘wholes’ of properties ‘really are’ the
material objects we’re looking for?

Thus, we have various piecemeal strategies for respecting ordinary truths about
books, etc., inside a framework which speaks, intuitively, only of space-time regions
and a sufficiently rich variety of properties that can be instantiated at regions, but
we literally recognize no books, etc., as objects inside that framework. One is treat-
ing ‘book’, etc., contextually, or syncategorematically. But what about ‘Books exist’
itself? Well, that too is respected, but not fully literally. In the envisioned framework
of regions and occupation properties, we certainly can have ‘booked regions exist’,
although the whole point of this example is that—as we would put it from the out-
side—no entity recognized in the ontology of this theory is literally a book.

While it may seem radical to ‘dispense with’ ordinary material objects such as
books, etc., there are many cases of apparent reference to objects, and quantifica-
tion ‘over them’, in ordinary discourse for which we may deem it quite reasonable
to think that a contextual or syncategorematic treatment ought at least to be possible
in principle, even if we are in no position to supply such a treatment in full detail.
Consider an example such as, ‘There is a social convention of handshaking (in many
places, especially between males) on being introduced to someone in public.’ Do we
think that we must take literally quantification over social conventions as objects, or
do we rather envision that, in principle, at least, it ought to be possible to explain this
away by making reference instead to how people are disposed to behave, and feel they
should behave, in the given circumstances? Similarly, could not reference to ‘things’
such as ‘diseases’ be eliminated in principle in favor of particular events and processes
in organisms? Similarly many cases of reference to social and institutional ‘objects’
are candidates for contextual analyses in favor of individual people, their disposi-
tions, states, interrelations, etc. Similarly in many cases on a mundane material level,
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e.g. reference to ‘ripples’ on a pond, to ‘holes’ in swiss cheese, etc.¹³ Rather than trying
to define literally such terms in more basic ones (which, as has been learned from the
record of failed attempts, confronts enormous obstacles and may not even be possible
in principle if the demands on ‘good definition’ are strong enough to include respect
for counterfactuals, and if the language of the definentia is finitary), we may more reas-
onably suppose that, on a case by case basis, the relevant aspects of the underlying
factual situation can be got at in a language which dispenses with quantification into
such higher-order contexts (i.e. ‘over such higher-order entities’).¹⁴ So long as such
analyses or replacements are possible, we will have examples of ontologically diverse
frameworks of the sort we are considering. The absolutist must insist that, in every
such case, at most one of the frameworks is correct, the one (if any) that quantifies
over only those objects in the range of the absolute quantifiers, the objects that ‘really
exist’ (‘REALLY EXIST ’?). A moderate relativist, on the other hand, will make no
sense of this, allowing that a certain degree of multiplicity is unavoidable, that there
simply is no non-arbitrary, absolutely correct choice among such alternatives.

To be sure, unlike the case cited above from spacetime physics, these cases from
everyday discourse are not spelled out in anything like full detail, which is under-
standable given the complexity and scope of ordinary usage. Nevertheless, consider-
ing the resources of specially tailored predicates, such as the occupation predicates
of spacetime regions of the example described, we regard the claim of multiplicity
of frameworks as very plausible, correlatively the contrary claim of uniqueness of the
absolutist as highly implausible. It must also be acknowledged, however, that spelling
out the argument from multiplicity with greater rigor would require saying more than
has yet been said here about ‘factual equivalence’ of alternatives. In cases of contex-
tual or syncategorematic analyses or replacements, we may not be able to fall back
on the sort of translational equivalence cited above in connection with Newtonian
gravitation, for there may be no suitable translations between the languages of the
theoretical alternatives. Instead, one may appeal to a weaker standard, such as ‘co-
determination’ or mutual supervenience: roughly put, fixing the factual situation as
described in the language of one of the frameworks uniquely fixes the situation as
described in the language of the other, and vice-versa.¹⁵ In cases in which an over-
arching theory can be framed, incorporating two or more theories or frameworks
in question, including ‘bridge laws’ among them (which may fall short of term by
term biconditionals as required by definability criteria), such co-determination cor-
responds to ‘implicit definability’ of the predicates of one theory in terms of the other,
over a class of models representing mutually recognized natural possibilities.¹⁶ Thus,
a plurality of frameworks, irreducible by translatability criteria, may still be regarded

¹³ See e.g. Lewis and Lewis (1970).
¹⁴ Here ‘higher-order’ refers to the familiar hierarchical picture of the empirical sciences,

with fundamental microphysics at the bottom, the biological sciences in the middle somewhere,
and perhaps ‘geo-politics’ at the top. This should not be confused with the logician’s sense of
‘higher-order’ entities such as classes and properties.

¹⁵ Such a standard was proposed in Hellman and Thompson (1977).
¹⁶ As pointed out in Hellman and Thompson (1975, 1977), when such a class of models is not

so broad as to include all the models of a first-order theory, the ‘implicit definability’ standard does



88 Geoffrey Hellman

as ‘factually equivalent’, without our having to presuppose some entirely theory-free
vantage point from which to judge this, something we regard as quite impossible.

A final point in this section is in order: having just invoked, in effect, (extensions
of) unions of theories, it might be suggested, on behalf of ‘absolutely everything’,
that this can be understood—even by the critic—in terms of one grand union. But
what is this union to be? One might say, over ‘(absolutely) all true theories’, or at
least ‘theories true in existential commitments’. But, even setting to one side the ter-
rible indefiniteness of this—presumably it must encompass ‘possible theories in pos-
sible languages’—surely the critic will regard this as question-begging, even if ‘true
in existential commitments’ is taken as primitive, rather than introduced in Tarskian
fashion with reference to . . . well, ‘absolutely everything’. Alternatively, it may be sug-
gested that the grand union be over all ‘acceptable theories’, where this refers to some
standards that we lay down. While this avoids the circularity just noted, it does so,
however, at the price of having ‘absolutely everything’ refer to what exists relative
to our own standards, which surely contravenes the spirit, and presumably the let-
ter, of absolutism. Why should what exists absolutely, ‘in Reality’, depend on any
subjects’ standards? Furthermore, while (extensions of) unions of particular theories
may be a useful tool for spelling out standards of ‘factual equivalence’, that does not
mean that any particular such union, much less some huge, vaguely specified grand
union, would itself meet suitable standards of acceptability. For one thing, its onto-
logy is apt to seem excessively bloated (satisfying no one), since, by hypothesis, it
would be encompassing multiple, individually adequate bases. And it may be oth-
erwise unwieldy, poorly systematized, and so forth. In any case, the critic is not com-
mitted to letting in ‘absolutely everything’ through the back door, as it were, merely
by invoking some (limited) unions as a logical tool, as above.

4 .5 MAKING DO WITH ‘LESS’

If I cannot make sense of ‘absolutely everything’, then how can I get across the inten-
ded force of even so simple a denial of existence as that of ‘no donkey talks’, ‘no cocker
spaniel runs for US president’, etc? If this must be understood relative to a restricted
domain, how do we insure that we haven’t left out of account a counterinstance to
our intended denial? Williamson (2003) discusses this problem at length, examining a
number of approaches, finding in every case that unwanted restrictions can find their
way back in . . . unless, he suggests, we simply appeal to ‘absolutely everything’ in a
completely unrestricted, unrelativized sense. Clearly, if the above arguments against
the cogency of this have merit, as I think they have, then we have a problem.

Here is a partial solution. One of the options Williamson considers is the ‘sortal
approach’. Avoiding the absolutist’s assumption of a fixed, ‘all-embracing’ real-world
domain from which sequences of objects come in the usual Tarski semantics for sat-
isfaction and truth, quantification is understood as contextually bound with a sortal

not necessarily collapse to ‘explicit definability’ of the vocabulary of one theory in terms of that of
the other, as the well-known Beth definability theorem for first-order theories need not apply.
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term carrying a non-trivial principle of individuation that defeats attempts at absolute
generality. In his mundane example, the sortal would be ‘donkey’, and one then just
says that what this sortal applies to, or what complies with the sortal, fails to talk. The
problem, Williamson suggests, comes in trying to provide a fully general semantics
for such constructions. For example, he considers a truth-conditional clause for the
determiner ‘every’ given in the metalanguage:

[Every] ‘Every F , x, is ϕ’ is true under assignment A iff any compliant of F under
A, d, is such that ϕ is true under A [x/d ].

Here, ‘F ’ is a variable over sortal terms and ‘ϕ’ a variable over grammatically suitable
predicates (e.g. verb phrases). (Reference to contexts is also allowed, but suppressed
for simplicity.) However, Williamson points out, ‘compliant of F ’ itself is in sortal
position, but it is not associated with any non-trivial principle of individuation in the
context of this general, semantical principle, which is supposed to govern all sortal
constructions of this general form available in the language. As he puts it, ‘compliant’
must be applicable in the context of [Every] to the compliants of all [available] noun
[phrases]. If a single non-trivial principle of individuation individuated them all, the
supposed obstacle to absolute generality would dissolve, for sortalism is not intended
to imply any restriction on what can be a compliant of some noun or other in the
language (2003). Thus, there seems to be no good general sortalist semantics which
doesn’t collapse to absolutism. But such a semantics is needed, for we grasp uses of
‘every’ in new contexts without having to master instances of the above clause, one by
one (which themselves can use the relevant sortal noun itself or a translation of such
in the metalanguage, i.e. avoiding the semantic term, ‘compliant’).

Now we have no wish to defend ‘sortalism’ as a general semantical doctrine;
indeed, Williamson is quite correct when he points out that many general terms in
our own language lack anything that could be called a ‘non-trivial principle of indi-
viduation’, terms such as ‘entity’, ‘object’, ‘instance’, ‘compliant’, etc., as well as com-
plements such as ‘non-donkey’, ‘non-stone’, etc., but which enter quite meaningfully
into quantifier phrases. However, in light of the special problems that we have seen
with indefinitely extensible predicates, we may reasonably resist the demand that a
single semantical principle govern all constructions (even in our own language) of the
same overt syntactic form at once. Indeed, the skeptic or generality-relativist will balk
at the suggestion that we really do understand absolutely general uses of ‘every’ in
cases of problematic, indefinitely extensible predicates such as ‘ordinal’, ‘collection’,
etc. The fact that we reason logically perfectly well with such terms must indeed be
explained, but that does not require the intelligibility of phrases such as ‘absolutely all
ordinals’, ‘absolutely all collections’, etc. Moreover, the explanation need not involve
the same principles that enter into an account of our understanding of ‘no donkey
talks’, ‘no broomstick flies’, etc. Without our taking a stand on whether ultimately
a sortalist approach is viable even in these mundane cases, it does seem to contain a
kernel of truth and is instructively pursued just a bit further in the present context.

Let us acknowledge, then, a marked difference between the ‘indefinitely extens-
ible’ predicates on which the argument of Section 4.3 turned and the more ‘concrete’,
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ordinary ones relevant in the argument of Section 4.4. The latter we may call ‘limited ’
predicates. ‘Unlimited’ predicates F can be described inductively by the conditions:

(i) F is indefinitely extensible;
(ii) If E is unlimited and ‘All E are F ’ is taken as true (or analytic), then F is

unlimited.

That is, the unlimited predicates are ‘closed upwards’ in the sense of inclusion: intu-
itively, any condition at least as encompassing (by standards of usage, not necessarily
‘in fact’) as an unlimited predicate is itself unlimited. ‘Limited ’ is then defined as ‘not
unlimited’.

Now, if F is limited, and if we set problems of borderline vagueness to one side, the
notion ‘compliant of F ’ is relatively unproblematic. Any dog is a compliant of ‘dog’;
the compliants of ‘dog’ are just the dogs, to invoke this plural usage (thereby avoiding
postulating new objects in our metalanguage, extensions of predicates, associated with
unlimited concepts). What the sortalist clause [Every] comes to in such a particular
case is,

‘No dog talks’ is true under A iff among the dogs, d ,
‘x doesn’t talk’ is true under A[x/d ].

If this is generalized as a scheme for limited predicates, we even eliminate the need for
the semantic relation ‘compliant of ’:

‘Every F , x, is ϕ’ is true under A iff among the F ′s, d , ϕ[x] is true under A[x/d ].

While this provides a recipe for finding truth conditions of sentences of the relev-
ant form on a case by case basis, it would not serve as a clause in a proper inductive
definition of truth (under an assignment). But even if we stick with Williamson’s for-
mulation (that could serve), notice that the condition or sortal term, ‘compliant of
some sortal or other’ is itself not a limited predicate, at least not on the usual platon-
ist conception of mathematics, according to which terms like ‘set’, ‘ordinal’, etc. are
sortals that accompany quantifiers, together with truisms such as that any set is a com-
pliant of ‘set’, etc. Thus, we do not expect the principle [Every] to apply to ‘compliant’
itself in an unrestricted sense, and the collapse to absolutism is blocked.

Closer to home, how can the above help with ‘flat-out’ or ‘categorical’ denials of
existence, such as ‘There are no such things as ghosts’, or an atheistic position? We
cannot work these into the above scheme by a reformulation such as, ‘No thing is a
ghost’, for ‘thing’, like ‘object’, ‘entity’, ‘existent’, etc. is an unlimited term par excel-
lence, in light of condition (ii) above (assuming that here we are not confined to nom-
inalistic frameworks). A better strategy is to find some limited term to replace ‘thing’
or ‘entity’, i.e. a term that, while limited, is not too limited. For example, the predic-
ate ‘occurs in space-time’, while broad, is still limited. So we can assert, ‘Everything
occurring (anywhere) in space-time fails to be a ghost’, or ‘Nothing in space-time is a
ghost’. If ghosts are conceived as (ever) occurring in space-time, this intuitively rules
out such things. Similarly, if deities are conceived as causes (at least on occasion),
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then the limited term ‘cause’ can serve to express, ‘Every cause fails to be a deity’.
This effectively rules them out too. (Perhaps completely inert ‘deities’ (under some
novel usage of ‘deity’) can be ruled out by other means.) Thus ordinary denials of
existence—asserting emptiness of sortal predicates extended by limited ones—are
well-handled by this ‘modest sortalist’ approach, which explicitly limits itself to lim-
ited concepts.¹⁷ Here are some remarks concerning the ‘limited/unlimited’ distinc-
tion:

Remark 1 Basic Boolean relations of limited and unlimited predicates should cor-
respond to those of sets and proper classes in set theory:

If F and G are both limited, so is F ∨ G as well as F ∧ G. If F is unlimited, so is F ∨
G, for any G. If F is unlimited and G is limited, then F−G is unlimited. But if F is
limited, unrestricted ¬F is unlimited. And if F and G are unlimited, F∧ G may be
either unlimited or limited (even empty).

Remark 2 If one has domain relativity (as in model theory), then all predicates are
in effect treated as limited, and a uniform semantical treatment is straightforward
(along Tarskian lines, although it need not be carried out in set theory; a background
logic of plurals would also suffice).

Remark 3 If an unlimited predicate G is employed such that ‘Set’ ∧ G is
empty—e.g. if G is ‘Property’ or ‘Proposition’ or ‘sui generis World’, etc.—then
we have a counterexample to the ‘Urelement-Set Axiom’, that the non-sets are in
one–one correspondence with a set, invoked by McGee (1997) for purposes of a kind
of categoricity for full set theory. (Cf. Shapiro (2003).)

Remark 4 Taking indefinitely extensible predicates as actually having ranges of
application is essentially platonistic, i.e. nominalism is marked by treating such pre-
dicates as not actually applying. (The nominalist can still say that, in a platonist
framework, various predicates are treated as unlimited.)

This is clear for notions such as ‘set’, ‘ordinal’, ‘function’, and ‘category’. What about
‘property’? Here caution is necessary: only in a very general sense involving math-
ematics and/or higher-order logic is this unlimited. ‘Physical property’ for example is
limited, leading to no unending hierarchy. Similarly for sensory qualia or other men-
talist properties, if such things are countenanced. It seems to us that more attention
should be given to this contrast between platonism and nominalism, which is sharper
than the traditional one between ‘abstract’ and ‘concrete’. Indeed,

¹⁷ Another suggestion, due to Tim McCarthy, is to apply the sortalist scheme directly to a limited
predicate such as ‘ghost’ as the sortal, and assert, e.g. that ‘Among ghosts, none is self-identical’.
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Remark 5 General ‘ontological terms’ such as ‘object’, ‘entity’, etc. count as unlim-
ited in a framework employing indefinitely extensible predicates, but in a nominal-
istic framework they count as limited. Thus the boundary of the distinction is relative
to framework.

Remark 6 (Historical) There is a connection between unlimited predicates and
Carnap’s ‘Allwörter’ (1937), but it is complex. Many of our unlimited predicates,
especially ‘thing’, ‘entity’, etc. (in the context of mathematical platonism) are
‘Allwörter’ for Carnap, but he also included many notions associated with large-scale
theoretical frameworks, notions such as ‘process’, ‘event’, ‘action’, ‘spatial relation’,
etc., which count as limited for us.

While the modest sortalist approach seems promising in the sorts of cases considered,
it needs to be supplemented in at least two respects. First, even in the case of lim-
ited predicates, the relativity to ‘parsings’ encountered in Section 4.4 above needs
somehow to be taken into account. And, second, of course, we still need an account
of (especially, negative) existential claims pertaining to unlimited predicates. A full
examination of either of these topics cannot be undertaken here. But let us conclude
with some indications of the direction in which reasonable answers may lie.

Concerning the first topic, taking account of relativity to ‘parsings’ of a domain of
facts, two types of cases should be distinguished. The first concerns ontological cat-
egories, such as ‘location property’, ‘(ordinary) material thing’, etc.—the very source
of relativity encountered in Section 4.4. In such cases, relativity is indeed called for,
its counterintuitive consequences mitigated by contextual translation. (Recall, e.g.,
‘There’s a book on the desk’ can be respected without recognition of books or desks as
objects.) But what of the second type of problematic cases in which a denial of exist-
ence (of ghosts or gods, etc.) is intended to be ‘absolute’? Here a possible solution
lies in the observation that certain general notions or sortals are common to many,
perhaps all acceptable, frameworks. Examples may include: ‘cause’ or ‘causal factor’;
‘spatio-temporal entity’; ‘agent’ or ‘agency’; and so forth. While limited in our sense,
we expect these notions to make sense in multiple frameworks or ‘parsings’. Thus,
instances of (negative) existential claims with such terms occurring as the sortal tied
to the initial quantifier already go beyond any single framework, as desired: in effect,
we can express, e.g., ‘In any framework recognizing causal factors, the causal factors
include no ghosts’, or ‘In any framework recognizing agents, none created the cos-
mos’; and so forth. What about ‘any framework’? Well, that must be suitably circum-
scribed so that it too is clearly limited, although it may have to be left rather vague, as
in ‘any humanly intelligible framework’, or ‘any rationally acceptable framework by
such-and such standards’, etc.

When it comes to unlimited predicates, either of two contrasting approaches can
be pursued, one Quinean, the other Carnapian. The Quinean approach takes meta-
physics seriously, or, at any rate, insists on a blurring of the distinction between
metaphysical and ordinary/scientific existence questions. ‘Do sets (really) exist?’ is not
different in kind from ‘Do ghosts (really) exist?’, or ‘Do gravity waves (really) exist?’,
and so forth. Of course, the absolutist view that we’ve been challenging is Quinean
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in this sense, and agrees with Quine’s own (eventual, reluctant, ‘Ah, if only it were
not so’) version of mathematical platonism.¹⁸ But now we are considering options
available to the generality relativist who takes seriously the critique of mathemat-
ical platonism based on indefinite extensibility. This suggests pursuing a nominalist
or nominalist-structuralist reconstruction of mathematics and simply denying that
indefinitely extensible predicates actually apply. For example, one may treat them as
only applying in a hypothetical or possible structure, recognizing their indefinitely
extensible character in the possibility of further, more extensive structures. Indeed,
modal-structuralist interpretations of mathematical theories were designed to handle
indefinitely extensible mathematical concepts: general extendability principles are
explicitly adopted as axioms to the effect that, for example, any possible model, or
ordinal sequence of models, of ZF set theory can be embedded in a more extens-
ive model, while the second-order modal logical comprehension axioms are restric-
ted so as not to allow the possibility of any ‘grand union’ of all possible models.¹⁹
But now notice, as announced in Remark 5 above, that on this or other nominal-
istic reconstructions of mathematics, universal predicates, such as ‘(actual) entity’,
‘(actual) existent’, etc., no longer need be regarded as unlimited, for they may be
regarded as coextensive with ‘(actual) spatio-temporal entity’, which we have already
classed as limited. Indeed, if it weren’t for the implied uniqueness of ontology that,
as we have argued, even the nominalist must renounce, there would be no objec-
tion from nominalist quarters to ‘absolutely everything’ in the first place. Still, the
nominalist can say, e.g., ‘Among actual existents, none are sets, or higher-order prop-
erties, or propositions, etc.’, i.e. the modest sortalist approach is adequate here after
all. Of course, there is a built in limitation to a framework in the background lan-
guage (or metalanguage, if truth conditions are being offered) in which such things
are expressed; but, if we are right, there is nothing to be done about that.

The Carnapian position (1950), in contrast, tries to draw a sharp line between
‘internal questions’ of existence, such as ‘Is there really telepathic communication?’,
‘Is there really a life force, over and above known physical forces?’, ‘Are there really
gravitons?’, etc., and ‘external questions’, such as ‘Are there (really) sets, or (higher-
order) properties, propositions, etc.?’, ‘Are there (really) material objects?’, ‘Are there
(really) mental objects, e.g. thoughts, percepts, after-images, etc.?’, questions which,
according to Carnap, make no sense except as misleadingly worded questions about
the utility of adopting the framework in question, which typically takes for gran-
ted the corresponding objects and provides standards and rules for discourse ‘about
them’. (These ‘external questions’ can also be construed as internal to the respective
framework, in which case they receive a trivial, affirmative answer.) Now the prob-
lems with this effort to dispose of metaphysics are well known. Even more serious,

¹⁸ Cf. Burgess’ entertaining discussion (2004), which takes issue with Boolos’ pronouncement
that Carnap’s line of argument against ontological absolutism is ‘rubbish’ and attempts to rehabilitate
that line.

¹⁹ See Hellman (1989), (1996). Note that the phrasing in terms of ‘models’ and ‘elements’
just given is informal; officially, such talk is eliminated in favor of direct, modal-mathematical
language (in the preferred (1996) version, combining plural quantification, mereology, and ordinary
predication).
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in our estimation, than the appeals to an empirical verifiability criterion of meaning-
fulness that are commonly associated with Carnap’s argument (cf. Burgess, 2004),
is the failure to mark a principled distinction between what counts as a ‘framework’
and what counts as simply a theory or classification ‘within a framework’. (Quine’s
critique (1966) in effect makes this point.) Presumably, Carnap would not recognize
Nordic mythology, for example, as a ‘framework’, and would regard the claim that,
really, there are no such things as Nordic gods, as ‘factual’ and not merely a mislead-
ingly worded claim about the disutility of a framework. Presumably this would not
change even if Nordic mythology were embedded in something qualifying as a ‘global
system of the world’. But no satisfactory general criterion for the distinction has, to
our knowledge, ever been put forward.

Short of that, one may pursue Carnap’s idea in connection with the specific, indef-
initely extensible concepts that have occupied us in this paper. For, it may be argued,
it is precisely their indefinitely extensible character that undermines meaningfulness
of phrases such as, ‘All the sets’, ‘All the ordinals’, ‘All the categories’, ‘All the prop-
erties’, ‘All the propositions’, and so forth. This, however, does not at all prevent one
from doing set theory or general category theory (or from trying to do property the-
ory or proposition theory, cf. e.g. Rouilhan, 2004). Such theories take for granted a
‘world’ or ‘universe’ of sets, ordinals, categories, etc. (which may, of course, include
Urelemente, hence various applications), and all kinds of advantages can be claimed
for them. As for semantical and logical principles internal to such theories or frame-
works, the background assumption of a ‘world’ or ‘universe’ functions as a domain
restriction (a ‘universe of discourse’), so that the usual Tarskian semantics can be car-
ried out—relative to such a universe. If one then complains that the ‘universe’ can
itself be treated as a member of a more extensive one, one can accommodate this and
then relativize discourse to a proper extension. But there is no pretense to treat ‘abso-
lutely all’ ordinals, sets, etc., in a fixed, ultimate universe. Thus, the Carnapian can
recognize indefinite extensibility in a fairly straightforward way. This is of a piece with
the Carnapian view that a question such as, ‘Do sets exist?’, stripped of all context and
relativity to framework, is deviant. (Contrast this with the child’s question, ‘Do fairies
really exist?’) From within set theory or category theory, one says, ‘Of course, we’re
presupposing such things’, but no sense is attached to the question beyond this ‘Let us
assume . . .’ mode.²⁰ What can our erstwhile nominalist say? Not ‘There are no sets,
ordinals, abstract categories’, etc., stripped of any relativity to framework, for that is
just as deviant as as the blanket, context-free (pseudo) assertions of existence. Rather
one can say (and try to defend) that no such things need be recognized, except as a
convenience, and that that is a good thing for various reasons, e.g. permitting a thor-
oughgoing structuralist treatment of set theory while blocking bad questions about
‘them’ and ‘how we come to know them’, etc.

But didn’t we come to essentially the same conclusion about books, etc., above?
Their status as objects was also found to be framework relative. Moreover, although

²⁰ That is the normal mode of mathematical discourse. By way of contrast: Paul Ehrlich recounts
somewhere a fishing trip with a theoretical economist who, unable to find a can opener for their
lunch, quipped, ‘Assume a can opener!’
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we slid by this, alternative frameworks, say, based on fundamental physical objects
(fields or fields + particles, along with combinations or wholes of these), could also
be said to have certain advantages, including blocking bad questions, quite different
from those confronting mathematical abstracta but still worth blocking, e.g. pertain-
ing to vagueness: ‘just which whole of fundamental physical objects is this book?’²¹
Many choices are equally good so that no single one can be claimed ‘correct’; but then
how can we claim that this book is (=) in fact a whole of basic physical parts? And if
it isn’t that, what is it? Such considerations suggest that the Carnapian approach may
well extend beyond the mathematical and other abstract examples cited. Although we
lack a suitably general criterion for what counts as a ‘framework’, that approach seems
still to have life left in it and should not yet be taken out to the alley.

Finally, while we have concentrated on a multifaceted critique of absoluteness and
the need for some relativity to frameworks, nothing we have said rules out a kind of
unrestricted quantification in the sense of ‘indefinite, schematic, and open-ended’ (as
foretold in n. 1). Our most general ontological terms, ‘object’, ‘entity’, and ‘thing’ as
in ‘everything’, provide examples, especially in connection with the law of identity,
‘Everything is self-identical’, or other logical laws. It is not necessary to insist that, all
appearances to the contrary notwithstanding, there is really some hidden restriction
in such cases. Instead, we can take such a law as saying, in a Carnapian spirit, ‘Any-
thing that we ever recognize as an entity at all will be assumed to obey this’, i.e. as
stipulative of how ‘thing’, ‘entity’, etc., and ‘=’ are to be understood in our language.
While there is no sense in speaking of ‘absolutely all objects’, or even ‘absolutely all
the objects in this room’,²² we still allow, ‘Whatever may be recognized as an object
(in this room or otherwise) will count as self-identical’. In this way, relativity and
unrestrictedness actually go hand in hand.

REFERENCES

Boolos, G. (1985) ‘Nominalist Platonism’, Philosophical Review 94: 327–44.
Burgess, J. P. (2004) ‘Mathematics and Bleak House’, Philosophia Mathematica (3) 12: 18–36.

and Rosen, G. (1997) A Subject with No Object (Oxford: Oxford University Press).
Byeong-UK, Y. (2005) ‘The Logic and Meaning of Plurals. Part I’, Journal of Philosophical

Logic 34(5–6): 459–506.
(2006) ‘The Logic and Meaning of Plurals. Part II’, Journal of Philosophical Logic 35(3):

239–88.
Carnap, R. (1937) The Logical Syntax of Language (London: Routledge and Kegan Paul).

(1950) ‘Empiricism, Semantics, and Ontology’, Revue Internationale de Philosophie
4: 20–40 (reprinted as Supplement A in Meaning and Necessity (Chicago: University of
Chicago Press, 1956), pp. 205–21).

Chihara, C. (1990) Constructibility and Mathematical Existence (New York: Oxford University
Press).

²¹ Cf. McGee and McLaughlin’s nice discussion (2000) of an example involving Mt. Kiliminjaro
+ a pebble near its base. See also McGee (2004).

²² We thus arrive at the same place as Hilpenen (1996) on this. Cf. Musgrave (2001), 41–43.



96 Geoffrey Hellman

Dummett, M. (1963, 1978) ‘The Philosophical Significance of Gödel’s Theorem’, in Truth
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5
Something About Everything: Universal
Quantification in the Universal Sense of

Universal Quantification

Shaughan Lavine

Some simple metaphysical truths apparently cannot be expressed without the notion
of everything, a notion that therefore seems indispensable. It is often argued that the
notion inevitably leads to paradox and must therefore be avoided. McGee has high-
lighted arguments by Quine and Putnam that are fruitfully understood as arguments
that there is no coherent notion of everything, arguments not based on the claim
of paradoxicality, a claim he does not take to be central. He argues against Quine
and Putnam and affirmatively in favor of everything. I shall try to up the ante by
showing that Putnam’s argument withstands McGee’s criticism so that the notion of
everything faces serious problems even if it avoids outright paradox. I then demon-
strate that we can live comfortably without everything by making use of full schem-
atic generality, a form of generality not reducible to quantification, and showing that
full schematic generality is not subject to the criticisms by Williamson of the use of
schemes in the absence of quantification over everything.

5 .1 EVERYTHING AND UNRESTRICTED QUANTIFICATION

‘All’ is usually used with an explicit or, often, implicit limitation. When a waitress
informs me that ‘All the oysters are gone’, she is not announcing an ecological cata-
strophe. The quantification is implicitly limited to the restaurant for the evening.

Philosophers, in contrast, often attempt to make perfectly general claims. Consider
a simple, widely accepted, example: ‘everything is self-identical’. Were I to say that to
the waitress, the intended domain would not be the restaurant, Earth, or even just the
physical world.

The preparation of this chapter was supported in part by a Research Professorship of the School of
Social and Behavioral Sciences at the University of Arizona, and by a Sabbatical Fellowship from
the American Philosophical Society. The present version has benefited greatly from correspondence
with Vann McGee and from comments by the editors of this volume.
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Everything is apparently the domain of the quantifiers (if it can be called a domain)
when they are used without contextual restrictions, and we seem to need, if not
everything, such unrestricted quantifiers for metaphysical and other philosophical
purposes. Frege and Russell endorsed everything, and Quine expressed an allied view
when he opined that there is only one notion of existence (1960, 131; 1969a, 100)
and that there is a single identity relation (1976, 860n).

How did I get from everything to unrestricted quantifiers? I shall assimilate the
complexities of natural language, my real target, to the comparative simplicity of
formal logic because formal logic shares enough features with natural language to
make the resulting analyses suggestive and often reasonably certain to extend to at
least a significant part of natural language. The use of formal logic is nothing more
than taking the simplest case first. As McGee (2000, 56) puts it, formal logic is the
philosopher’s equivalent of a frictionless plane.

5 .2 OBJECTIONS TO UNRESTRICTED QUANTIFICATION

My main purpose here is to object to everything. I shall argue that, first, whether
or not there is a consistent notion of unrestricted quantification, we could never,
even in principle, know whether the quantifiers we use are in fact unrestric-
ted—commitment to unrestricted quantification saddles us with an irreducible mys-
tery; and, second, that taking all of our quantifiers to be, if not explicitly, then
implicitly restricted has no disadvantages and some advantages—we can live com-
fortably without postulating unrestricted quantification. I distinguish between unres-
tricted quantification, which may be unrestricted only with respect to something like
a Carnapian linguistic framework, and absolutely unrestricted quantification, which
ranges over absolutely everything, in some final, assumption-free sense. That will be
discussed below. I shall motivate my view primarily by defending certain objections
to everything against McGee’s ingenious attempts to defeat them.¹

I begin with a sketch of the four most substantial and influential objections to
everything of which I am aware.²

¹ McGee’s contribution to this volume may be taken to be primarily devoted to arguing that
there is an internally coherent notion of absolutely unrestricted quantification. The only form
of skepticism McGee discusses here is skepticism about whether usage suffices to establish that
absolutely unrestricted quantification is absolutely unrestricted, given the presumption that we do
employ absolutely unrestricted quantification. I deny the presumption. The position that there is an
internally coherent notion of absolutely unrestricted quantification is not my target, though it will
follow, if I am correct, that, even if there is an internally coherent notion of absolutely unrestricted
quantification, there can be no good reason to adopt it. McGee (2000, 59, 62) suggested that
one can ‘fend off ’ or ‘forestall’ certain ‘antirealist’ or ‘skeptical’ arguments due to Skolem (1923)
and Putnam (1980) against the possibility of determining whether quantification is unrestricted by
making use of techniques based on arguments of Harris (1982). I have argued elsewhere that related
techniques do successfully block closely related arguments. Such techniques do not succeed in the
present case. In this case, the arguments of Skolem and Putnam go through. I do not take that
conclusion to have skeptical or antirealist consequences.

² The objections, while they are familiar arguments, are not usually framed as objections
to everything. In presenting the objections, I have by no means followed McGee, though my
presentation has certainly been influenced by his in important respects.
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5.2.1 Head-on Objections

5.2.1.1 Paradox

First, there is the objection on which Frege and Russell foundered: given any class,
including everything, there is a class not in it. In the case of the class of everything,
that is impossible: there can be nothing that is not a part of everything. The proof that
there is a class not in any given class is a well-known modification of the argument
that yields Russell’s paradox: Given a class C , let R be the class of all members of C
that are not members of themselves. The assumption that R is in C yields the familiar
contradiction: R is in itself if and only if R is not in itself. Thus, R is not in C , and we
have shown that for every class C there is a class R not in it—there is no C that can
serve as everything. Informally, the upshot is that ‘for any discussion, there are things
that lie outside the universe of discourse of that discussion’ (McGee, 2000, 55). (That
formulation is self-defeating (Lewis, 1991, 68), and it is not obvious how to repair it,
as Williamson (2003, 427–35) has noted in some detail, but for now I am discussing
problems for unrestricted quantification, not for alternatives to it. I shall return to the
point below.) I shall call this objection to everything the objection from paradox.

There are many variant forms of the objection from paradox. If there is a class of
everything, there will be a class of all ordinals, and the order type of that class would
have to be the largest ordinal, contradicting that there is no largest ordinal—a mod-
ified form of the argument that leads to the Burali–Forti paradox. Shapiro (2003,
471) takes this form of the objection to be the most basic. If there is a class of
everything, it has the largest possible cardinality, which contradicts that the class of all
sub-classes of everything has a larger cardinality—a modified form of the argument
that leads to Cantor’s paradox. Dummett (1963, 195–7; 1991, 316–19; 1993, 441),
following Russell (1905b), assimilates all such arguments to a common phenomenon:
indefinitely extensible concepts, Russell’s self-reproductive classes. Finally, if one can
quantify over everything, one can quantify over a universe of discourse³ that includes
among its members all interpretations of formal languages (including those that have
everything as the range of their quantifiers) and hence that includes, for any property
P, an interpretation I such that I(A) = P, where A is an arbitrarily fixed symbol of a
formal language. But there cannot be such an interpretation when P is the property
that an interpretation I has just if I does not have the property I(A). That final vari-
ant, which is due to Williamson (2003, 426), avoids any special assumptions about
classes or properties, assuming instead that it is possible to give a semantic theory of a
certain sort.

I view all the variant forms as essentially a single objection to everything, a head-on
objection: The objection is supposed to show that quantification must always be rel-
ative to a restricted domain since the very idea of an absolutely unrestricted domain,

³ Extending the terminology of Cartwright (1994, 3), I shall take the term ‘universe of discourse’
to be absolutely neutral, free of the implications that the members of the universe of discourse are
entities in any full-blooded sense and that there is any class, property, or anything else that may be
taken to be in any sense comprised of or characteristic of what is in the universe of discourse.
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or even an unrestricted domain within a suitably powerful framework, leads to con-
tradictions. The objection from paradox is generally regarded as the most important
objection to unrestricted quantification. Cartwright (1994, 2), though he acknow-
ledges that there are a variety of objections to unrestricted quantification, concerns
himself with responding only to the objection from paradox. Shapiro (2003, 469)
takes it that it is agreed that the objection from paradox provides the basic motivation
for holding that it is not possible for a quantifier to have everything in its domain.⁴
Williamson (2003, 424), a supporter of absolute generality, says of absolute general-
ity that ‘by far the strongest grounds for scepticism are associated with the paradoxes
of set theory’. He expresses a similar sentiment in this volume. In addition, in this
volume, Linnebo, Rayo, and Weir, all supporters of some form or other of unres-
tricted quantification, also take the objection from paradox to be, in varying senses,
primary, as do Fine, Glanzberg, and Parsons, all opponents in one sense or another
of unrestricted quantification. In sharp contrast, McGee (2000) does not even dir-
ectly mention the objection from paradox, and in his contribution to this volume he
outlines a version of it and says that it ‘strikes [him] as a bit naive’. The reason that I
have concentrated in this piece on McGee’s defense of unrestricted quantification is
that he and I agree on what the important arguments against unrestricted quantifica-
tion are, though my reasons do not seem to be the same as his—I would certainly not
characterize the argument from paradox as naive, and I am not sure I have understood
his reasons.

There are a number of standard responses to the argument from paradox. One is
to try to block it by denying that there is a class of all members of C that are not
members of themselves by restricting class-formation principles in some way or other,
at least for problematic C , in particular, for C the class of things over which one is
quantifying. Russell’s vicious-circle principle is one example. Another response is to
deny that there is anything like a class of things over which one is quantifying, and
hence remove any reason to suspect that one can form problematic sub-classes. That
is Cartwright’s (1994) strategy. Nothing I say directly argues against such moves, but
they become much less attractive when one sees that there are alternatives available.

The reason I do not take the objection from paradox to be central to our question
is not that the paradoxes raise no important issues. They do. Rather, it is that the con-
siderations that arise from the paradoxes cannot be of any use in settling the dispute
at hand.

Attempts to rescue unrestricted quantification from the paradoxes all involve impo-
sing limitations on what seem to be intuitively evident principles, or at least extremely
plausible ones, in itself a substantial cost, and, worse, the limitations typically are such
that they make it impossible to give a semantic theory of the language used to talk
about everything save by introducing quantifiers with a universe of discourse over and
above that of the quantifiers that are supposed to have ranged over everything. Weir,

⁴ Shapiro and Wright’s contribution to this volume discusses, not quantification over everything,
but whether it is coherent to quantify over all ‘pure set-like totalities’. As the title, ‘All things
indefinitely extensible’, suggests, they focus entirely on considerations that I would characterize as
related to the objection from paradox.
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in his contribution to this volume, gives the beginnings of a theory that allows unres-
tricted quantification and permits giving the semantics of the theory within the the-
ory, but, as he acknowledges, the attempt is not completely successful, and it comes at
the price of abandoning two-valued logic and of introducing non-extensional attrib-
utes into the domain of discourse.

The prices paid for the maneuvers employed to avoid paradox, while they do not
rule out the proposed theories, are substantial. Indeed, it seems to me that a theory of
unrestricted quantification loses its point when it allows quantification over a universe
of discourse outside the universe of discourse that was supposed to include everything.
Moreover, such maneuvers do nothing to protect the theories against the objections
discussed below.

On the other side, the claim that no universe of discourse is unrestricted seems
to lead inevitably to the self-defeating claim that in an unrestricted sense absolutely
every universe of discourse has something outside of it. Avoiding that result, it would
seem, will also require abandoning apparently intuitively evident principles, and, in
any case, absent unrestricted quantification, it will apparently again be impossible to
provide a semantic theory for the language in use.

There is a stand-off between the two sides: each finds the other paradoxical, and
the question which theory retains the most important intuitively evident principles
winds up resting on nothing more than one’s personal intuitions, a matter of nothing
more than taste. Weir, in his contribution to this volume, goes so far as to term the
stand-off a Kantian antinomy. While I would be the last one to deny the importance
of intuitions and taste in good philosophy, if we are to settle the issue of the possibil-
ity of unrestricted quantification, it will have to be on grounds other than those that
arise from the objection from paradox, which is not to deny that any finally accept-
able theory will have to find some way to exist within the constraints imposed by the
paradoxes and allied issues.

5.2.1.2 Frameworks

The second objection, call it the frameworks objection, arises because differing meta-
physical frameworks differ on what there is. Is the physical world made up of con-
tinuant physical objects, or point events, or congeries of sense data? Are there mental
entities (sensations, ideas) or third-realm entities (meanings, propositions) over and
above physical objects? Is the empty physical space between physical objects itself a
thing, or nothing, or composed, say, of points? Are there any mathematical entities?
If so, are there any other than sets? Is there a single, univocal notion of identity, or is
identity only with respect to a sort?

If the answers to any of the above or similar questions are not matters of fact, but
of choice of framework or the like, or if identity is only with respect to a sort, then
there cannot be a well-defined notion of absolutely everything, since there would,
in such a case, be no framework-independent or sort-independent fact of the mat-
ter about what there is. Within each framework (or sort), one can still raise the
question whether there is unrestricted quantification, quantification over everything
there is according to the framework, and so the objection is not against unrestricted
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quantification, only absolutely unrestricted quantification. Since I shall conclude that
(at least for sufficiently comprehensive frameworks) there is no unrestricted quanti-
fication, it will follow a fortiori that there is no absolutely unrestricted quantification.
Thus, the view defended here handles, but does not presume, the objection.

Hellman, in his contribution to this volume, makes the nice point that some of
the apparent problems with unrestricted quantification may go away in nominalistic
frameworks. To give a quick example, mine, not Hellman’s, the set of all sets would
pose no special problem in a framework in which there are no sets. He discusses the
objection in detail, especially in Section 4.4 of his contribution to this volume. Like
the objection from paradox, the frameworks objection attacks its target, in this case
absolutely unrestricted quantificational generality, head-on, by arguing that no abso-
lutely universal universe of discourse is possible.

5.2.2 Inexpressibility

The remaining two objections are of a more subtle type. The idea is that what the
universe of discourse is, when we attempt quantification that is unrestricted—that
is, for brevity, everything—turns out to be hopelessly ambiguous. So far, that is not a
difficulty for unrestricted quantification per se, but an epistemological difficulty about
the universe of discourse when unrestricted quantification is employed. However, the
epistemological difficulty is not that further work would need to be done to determ-
ine the universe of discourse when quantification is unrestricted, it is a difficulty in
principle: no one could ever be in a position to know what the universe of discourse
of unrestricted quantification is. It follows that there is no way to communicate what
is meant by everything. If the notion of everything cannot be communicated, it can-
not be instituted or learned. As a result, there simply is no such thing as unrestricted
quantification.⁵ The final claim here may be taken to be self-defeating in much the

⁵ I have heard it remarked that objections of this type are weaker than the ones above, because
even if they succeed, it could still turn out to be the case that, for example, there is a domain
comprising absolutely everything even though we could not determinately quantify over it. In fact,
McGee (2000) can plausibly be taken to assume that there is a universe of discourse comprising
absolutely everything and argue that we can determinately quantify over it—the assumption is
certainly employed at some points, but it is not completely clear whether it is just intended as
a mathematical convenience or as a central assumption of the paper. But the objections are not
compatible with the existence of an unrestricted universe of discourse: if an objection of the present
type succeeds, then whatever universes of discourse there may in fact be, there cannot be one
answering to the description ‘comprising absolutely everything’ in the sense of that phrase intended
by the remark—contrary to appearances, there simply is no such sense, for that is what follows from
our inability to establish one. According to the objection from paradox, the putatively referring term
‘the domain comprising absolutely everything’ can be proved not to refer—it is no better than ‘the
largest number’. According to the frameworks objection, the putatively referring term ‘the domain
comprising absolutely everything’ cannot refer because it is incomplete—to fix a reference, one
would need something more like ‘the domain comprising absolutely everything there is according
to framework F ’. According to the objections that follow, the putatively referring term ‘the domain
comprising absolutely everything’ simply does not, indeed cannot, mean what the advocate of
unrestricted quantification has apparently taken it to mean. What it should be taken to mean does
not follow from the objections, but I shall take it to be just one more restricted term: the domain
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manner discussed earlier for the claim that every domain of quantification has some-
thing outside. Bear with me. I shall address that complaint below.

5.2.2.1 Substitutional Quantification

The third objection to everything is technical and a bit difficult to state, and in addi-
tion it is relatively easily countered, and so I shall be brief and perhaps not absolutely
clear to anyone without sufficient background. The objection is due to Quine (1968,
63–7). I shall call it the objection from substitutional quantification.

There will be, in plausible attempts to formalize everything, subject areas⁶ in which,
for every true existential sentence (∃x)φ(x) about that subject area,⁷ there is a name,
say c, such that φ(c). The most straightforward case to describe is one in which we
take the subject area to be concerned with objects and to be such that every object has
a name—for example, that is true of the natural numbers or the class of people over
the age of one month. (Neither example is above criticism, but they serve to illustrate
the point, which only requires that such a subject area could exist.) In such a subject
area, quantification can be understood either referentially:

(∃x)φ(x) is true if and only if there is an object of which φ holds

(no name for the object is invoked) or substitutionally:

(∃x)φ(x) is true if and only if there is a name c such that φ(c) is true.

Since there are enough names, the same sentences come out true either way. Since,
Quine argues, the only way to determine the meaning or use of words (and, in partic-
ular, the quantifiers) is to see what sentences they make true, there simply is no fact
of the matter about whether the quantifiers concerning such a subject area are used
referentially or substitutionally. But, if they are used referentially, the subject area
concerns things that exist, while, if used substitutionally, no such things are claimed
to exist, since no reference to the world, but only to words, is made in the truths
concerning the subject area. Thus, even given all the relevant facts, there is no way
to determine whether or not the subject area concerns things that exist. The uni-
verse of discourse of the quantifiers, the supposed everything, is therefore inherently

of absolutely everything countenanced in the present context (compare Williamson’s (2003, 416)
example, ‘Of course I’m late—you left me to pack  !’), and I shall then
read the theories of the advocates of ‘‘unrestricted quantification’’ as just more contextualism. I am
not sure which is really the stronger objection to a view—that it is logically impossible, or that it
cannot even be formulated—but the latter sort of objection, the sort discussed below in the text, is
certainly not weak in the sense suggested by the remarks mentioned at the beginning of this note.

One can make largely parallel remarks about ‘the maximal universe of discourse’. I have chosen
‘the domain comprising absolutely everything’ because it can be used to get the central point across
in a grammatically simpler fashion—nominalization, whatever else one may think about it, is
certainly a grammatical convenience!

⁶ I have adopted the unfamiliar term ‘subject area’ in an attempt to be neutral between referential
and substitutional quantification.

⁷ When I say that a sentence is ‘about’ a subject area, what I mean is that all of its quantifiers are
restricted to a predicate characterizing that subject area. I have not made the quantifier restrictions
explicit in the text.
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ill defined, and this time, no additional parameter—no framework—can be of any
help, since the ambiguity concerning what is claimed to be in the universe of dis-
course is inherent in the entire language and framework in use.

In giving the above argument, I assumed only simple names. If one allows other
resources—definite descriptions or the like—variant forms of the argument arise. I
omit discussion, since the objection is, in any event, easily answered, but I should
note that such other resources and, in particular, Hilbert’s ǫ-operator, do obviate one
objection to the argument: one might argue that quantification over the subject area
is referential, not substitutional, on the grounds that quantification is referential else-
where, where there are not enough names, and the use of quantification must be uni-
form throughout: the substitutional interpretation is ad hoc, and therefore does not
come into use. That counter to the objection from substitutional quantification is
reasonable so far as it goes, but it is not of much use, because the general mechan-
ism of reference provided by the ǫ-operator guarantees that there are enough names.
Quantification can be interpreted as either referential or substitutional.

5.2.2.2 Special Effects

I shall argue below that the objection to everything from substitutional quantification
can be defeated, but, first, I introduce the fourth and final objection to everything. I
shall call it the Hollywood objection, for reasons that will become clear shortly. The
objection was first raised, not for quantification over everything, but for quantifica-
tion over the mathematical universe of all sets by Skolem (1923), and it was applied
to everything, in essentially the same sense employed here, by Putnam (1980). It is
pretty much Skolem’s argument for skepticism about axiomatic mathematics or the
version of Putnam’s so-called model-theoretic argument that relies on Skolem’s work.

Here is how the objection goes, though neither Putnam nor Skolem put it this
way. Hollywood routinely produces the appearance of large cities, huge crowds, entire
alien worlds, and so forth, in movies, but, of course, they don’t actually build large
cities and entire alien worlds or necessarily employ huge crowds—the trick is to only
produce exactly those portions of the cities, crowds, and worlds at which the camera
points, and even to produce only those parts the camera can see—not barns, but barn
façades (Goldman, 1976, 772–4). One can produce appearances indistinguishable
from those of cities, crowds, and worlds using only a miniscule part of those cities,
crowds, and worlds.

Skolem (1920, 259), using pretty much the Hollywood technique, essentially
showed that for every structure for a formal language—that is, for every interpreted
formal language—with an infinite domain, there is a small (countable) infinite sub-
structure in which exactly the same sentences are true.⁸ Here, instead of just produ-
cing what the camera sees, one just keeps what the language ‘sees’, or asserts to exist:
one takes out of the original structure one witness to every true existential sentence,
however many witnesses there may have been in the original, and proceeds in like

⁸ The result as stated in the text only applies to countable languages, but, since for present
purposes formal languages are a proxy for natural languages, that condition can be silently assumed.
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manner from that point in the construction. Löwenheim had obtained a similar res-
ult by a different method (and indeed Skolem gave at least one other proof as well)
and so the result is known as the Löwenheim–Skolem theorem.

Skolem (1923, 296) applied his result to the language of set theory, and used it to
argue that the axiomatic specification of set theory is hopelessly inadequate: nothing
in the theory, including all of its assertions concerning the existence of large infinite
sizes, prevents the theory from having a small model in which all of the supposedly
large infinite sizes are in fact small.⁹

Putnam (1980, 423) employed the Löwenheim–Skolem theorem for a purpose
directly related to present concerns: he applied the theorem not to the language of
set theory, but to our total language. The result is a countable subset of our universe
of discourse, call it S, such that if we bound all of the quantifiers in all we say to
S, exactly the same sentences will come out true as if we let them range over what
they did before. The set S is the Hollywood, façade-only, version of everything. It is
not everything, since there are uncountably many things—uncountably many sets,
uncountably many space-time points. The point is not—and here, though I believe
I am following Putnam, that may not be absolutely uncontroversial¹⁰—the point
is not that nothing in our language (and hence nothing in our language and beha-
vior, since the behavior would be describable in language) determines exactly which
of everything and S is intended, but rather that, since there isn’t anything beyond our
language and behavior that determines which of everything and S is intended,¹¹ there
simply cannot be any fact of the matter concerning which is intended. The universe
of discourse of quantification is intrinsically and essentially ambiguous when there is
an attempt to quantify in an unrestricted fashion. Thus, according to the Hollywood
objection, it is not merely impossible to communicate the intention to quantify over
everything, it is impossible to form such an intention.

We have four objections to the possibility of quantifying over everything: the objec-
tion from paradox, the frameworks objection, the objection from substitutional quan-
tification, and the Hollywood objection. The first two, I have argued, will be of no use
in resolving the question whether there can be unrestricted quantification.

5 .3 REPLIES

I shall now run through how one staunch advocate of everything, Vann McGee,
attempts to deflect the last two objections. I choose him because he is the one who

⁹ I believe Skolem’s argument can in that case be thwarted by using an axiomatization of a
suitable type, and I am at present engaged in writing a book in which I discuss that extensively,
but it is not our present topic. The view is sketched in Lavine (1994, 235–9). Note, however,
that I do not take the Skolem argument against set theory or related arguments against other parts
of mathematics to, in the end, succeed, but I am arguing here that the related argument against
unrestricted quantification does in fact succeed. My main interest in the topic of unrestricted
quantification is in bringing out the difference between the two kinds of cases.

¹⁰ I am following McGee (2000, 58–9).
¹¹ Adding intensions to languages and behavior won’t help because we could add mentalese to

the language to which the Löwenheim–Skolem theorem is applied.
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has most clearly framed the objections at issue, and because I think his attempts have
the form of the best attempts to deflect them.¹²

The objection from substitutional quantification is based on the thesis that there
is no way to distinguish substitutional from referential quantification when enough
objects have names. The two forms of quantification are supposed to be indistin-
guishable since the same sentences come out true using either one.

The argument apparently works if the only data that can be used to distinguish
substitutional from referential quantification are the truth values of sentences about
the subject matter at issue. But, as McGee (2000, 57–8) points out, that is not the
only data: The existential quantifier over a subject area is referential if, were there to
be an object in the universe of discourse that is in the subject area at issue (note that
there is no consideration of any names here) with a property P, (∃x)P(x) would be
true and it would not be true were there no such object. The existential quantifier
over a subject area is substitutional if, were there to be a name c in the language we
use to speak of the subject area such that P(c) is true, (∃x)P(x) would be true and it
would not be true were there no such name. Those counterfactual conditions go bey-
ond a consideration of what is true of the subject area, and yet they are clearly decisive.
Quine, who proposed the objection from substitutional quantification, ignored such
considerations because he had independent doubts about counterfactuals, but the use
of counterfactuals here seems unexceptionable.

I think McGee’s refutation of the objection from substitutional quantification is
decisive, but there is a variant of the argument that requires separate discussion:
I mentioned above that one can argue that all quantification is referential on the
grounds that it is sometimes used referentially and that it is used univocally, but that
the argument fails in the case in which there are enough names in every part of the lan-
guage, since then quantification can be taken to be entirely substitutional. But now
we are in the case in which the universe of discourse under discussion is supposed
to be everything, and we, to keep the argument going, have allowed a mechanism of
naming so powerful that there are enough names. It is now at least not clear that the
above counterargument will make sense, because the counterfactual envisions objects
outside the unrestricted universe of discourse, everything. But the argument is, in this
context, moot in any event, since the only way to get into the situation was to allow a
mechanism of naming so powerful as to make our putative substitutional quantifica-
tion in fact merely a notational variant of referential quantification—the distinction
rests on the possibility that a sentence could have different truth values when read ref-
erentially and substitutionally, a possibility we have just ruled out of consideration.

The Hollywood objection depends upon the existence of two universes of dis-
course, E (everything) and S, in which exactly the same sentences are true. That
sounds like the situation in the case of the objection from substitutional quanti-
fication, but introducing counterfactuals doesn’t counter the Hollywood objection.
Since the objection depends on the Löwenheim–Skolem theorem, it depends upon
using formalized languages with their associated structures as a proxy for ordinary

¹² I say ‘form of the best attempts’ because I have made what I take to be improvements in the
details.
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language. We therefore discuss how the objection confronts a formal counterpart of
the introduction of counterfactuals, namely, the introduction of possible worlds and
an associated semantics for modal operators. ‘Were it that φ, then ψ ’ is formalized,
following Lewis (1973), roughly as ‘ψ is true in every world in which φ is true that
is otherwise as much like the actual world as can be’. Once we have the new formal
model, we can get up to our old tricks—an application of the Löwenheim–Skolem
theorem yields a countable subset of the set of possible worlds and countable subdo-
mains of the domains of those possible worlds in which the same sentences are true as
in the originally envisioned counterfactual situation. The counterfactuals are now of
no help in determining whether the universe of discourse of the quantifiers is S or E ,
for the new choice of S.

The point about counterfactuals is actually far broader: the Löwenheim–Skolem
theorem can be given an extremely general form that applies, so far as I know, to every
formal language that has ever been proposed as an analysis of an ordinary language,
including all the formal languages discussed in this collection, with a single exception:
languages that employ full schemes, discussed below. The Löwenheim–Skolem res-
ult does not apply to such languages, but another theorem can be employed to the
same ends, as is also discussed below, and so the Hollywood objection applies even to
them. No strengthening of the language will help to overcome the Hollywood objec-
tion. In particular, note that moving to second-order logic is of no help: only ‘‘full’’ or
‘‘standard’’ second-order logic blocks the Hollywood objection, and it does so only by
building in as an assumption that the second-order quantifiers range over every sub-
collection of the first-order universe of discourse, that is, that the second-order quan-
tifiers are unrestricted. That may, for some purposes, be a reasonable assumption, but
when the possibility of unrestricted first-order quantification is what is at issue, the
assumption of unrestricted second-order quantification clearly begs the question.

5 .4 LEARNABILITY

McGee runs an objection from learnability against the Hollywood objection: he
attempts to show that quantification over S is not learnable, while quantification
over E is. If he succeeded, that would serve to distinguish E from S and to rule
out S, showing that the two are distinguishable despite the Löwenheim–Skolem
theorem. Learnability considerations move beyond the formal languages here dis-
cussed as mathematical structures to the rules and practices that constitute natural
languages, and so it is certainly not implausible that they could defeat the type of
indistinguishability that results from the Löwenheim–Skolem theorem. I shall, how-
ever, argue that neither leg of the argument stands. The techniques of the second part
of the argument will show how we can live without everything.

To discuss the first part of the argument, I shall quote the relevant passage from
McGee in full, since I am not sure that I have completely understood it.

. . . S-quantification is not learnable. To quantify over S, we would have to be able to dis-
tinguish the Ss from the non-Ss. Either the rule of universal specification would have to be



Something About Everything 109

restricted so that we could only infer φ(τ ) from (∀x)φ(x) in the special case in which τ denotes
a member of S or the grammatical rules would have to include a special provision that forbade
closed terms that designated non-Ss. In either case, it would be necessary to distinguish the Ss
from the non-Ss before we could learn and employ the rules.

(2000, 59)

It seems clear from the ‘in either case’ in the final sentence that McGee thinks the
reason we would have to be able to distinguish the Ss from the non-Ss is to intro-
duce one of the rules. The formal rules of a formal language are intended to be the
formalized, simplified counterparts of the actually relevant rules of a natural language.
McGee makes a closely related argument in this volume. He adds that there is no
comparable problem for unrestricted quantification. In that case, we can trivially dis-
tinguish what is in the domain from what is outside, since there isn’t anything outside.

McGee is wrong about the need for special rules: in the first case, S has carefully
been chosen so that the inference from (∀x)φ(x) to φ(τ ) is valid for every τ of the
original language. That is a direct consequence of the fact that the same sentences are
true whether the domain is E or S. It was S that had to be carefully chosen, not the
rule that had to be carefully restricted.

In the second case (‘the grammatical rules would have to include a special provision
that forbade closed terms that designated non-Ss’), once again, it isn’t so: the domain
S is to be chosen only after the original interpreted language has been fixed. Since it
is known when choosing S what the closed terms are, it is just part of the proof of the
existence of S that every object denoted by a closed term will be put in S.

If the issue were learning S-quantification as a form of restricted quantification
within the larger universe of discourse of unrestricted quantification, so that the uni-
versal S-quantification over φ that binds the variable x was, essentially by definition,
(∀x)(S(x) → φ), where I have somewhat sloppily used ‘S’ in the formula as a pre-
dicate symbol with extension S, then McGee would be perfectly correct, save for
some necessary minor adjustments in terminology. The actual challenge is, however,
rather different. We are to envision twin users of two languages who differ in only
one respect: One takes the quantifiers to range over universe of discourse S, the other
takes them to range over universe of discourse T . We may suppose that one of S and
T is everything, and that the other is not, but it is better for present purposes not
to specify which is which, to ensure that no external information is smuggled into
the discussion. The twins take ‘the same’ sentences to be true, and they have had the
same experiences—in particular, they acquired their current linguistic usage in virtue
of those experiences. We can’t even tell which of the twins has the larger universe of
discourse, since neither has encountered, or will encounter, or could encounter, any-
thing that the other has not. Even supposing, as I have, that we could make sense of
the claim that one of the twins has a larger universe of discourse than the other—how
could one possibly tell?—and further supposing we knew which of the two had the
larger universe of discourse, we still could not determine which twin was quantifying
over everything: there are two possibilities. First, the twin with the smaller universe of
discourse has left some things out, and the one with the larger universe of discourse
is the one quantifying over everything. Second, the twin with the smaller universe of
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discourse is quantifying over everything, and the one with the larger universe of dis-
course has mistakenly taken the universe of discourse to include at least one thing that
does not, in fact, exist—I do not see how that possibility can be excluded so long as
one grants that people have sometimes taken things to exist that in fact do not.

The claim that it is somehow easier, or more natural, to get from our experiences
and language to everything, E , than it is to get from that same starting point to
some comparatively accessible proper subset S of everything seems to require assum-
ing some mysterious faculty of directly grasping existents. Let me emphasize once
again that the moral is not that we cannot tell when quantification is unrestricted, but
that we do not have a concept of such metaphysically unrestricted quantification and
hence that the claim that we sometimes employ it is vacuous. I need not deny that
there are perfectly good distinctions between grammatically or contextually restric-
ted quantification—syntactically restricted quantification—and quantification that
is not so restricted, that is, for example, between quantification over everyone and
everything and between ‘everything is packed’ and ‘everything is self-identical’. In
addition, I need not deny that the word ‘everything’ can be used to declare that a
given use of a quantifier is grammatically or contextually unrestricted. What I do deny
is that any such syntactically unrestricted quantification is metaphysically unrestric-
ted, since I deny that the claim of metaphysical unrestrictedness is meaningful. I shall
continue to refer to metaphysically unrestricted quantification simply as unrestricted
quantification; I shall always refer to syntactically unrestricted quantification using
that term.

My counterargument seems too easy, and so I wonder whether I am missing some-
thing. Going beyond McGee’s argument, I don’t know of any additional reason for
which it would be necessary to distinguish the Ss from the non-Ss, and I don’t even
know what it would mean to distinguish Ss from non-Ss—the ability to, given an
object, tell whether or not it is in S won’t do, since any object that we can in any sense
be given will be in S just because that is part of how we choose S. I suppose what
McGee’s talk of learnability suggests is that the language is changing, and so there
might be a problem about adding new closed terms τ that denote things not in S. But
that won’t work any more than the move to counterfactuals did, and it won’t work
for the same reason: we can move to a language that includes all the closed terms that
will be added, or even all the terms that could be added, in any possible modal sense
of could, and produce an S tailored for it. Even the maximalist demand that the lan-
guage include terms for everything in the domain of quantification, a demand that
would be hard to justify in the context of natural languages or of formal languages
going proxy for them, can easily be met using the Hollywood technique.¹³ It is not
quite clear how to combine the modal and the maximalist demands, since it is not
quite clear how to handle constant symbols for objects that could exist but do not,
but whatever formalism is proposed to handle that will be subject to a form of the
Löwenheim–Skolem theorem. The upshot will be a domain S that includes every

¹³ One proof of the Löwenheim–Skolem theorem proceeds by iterating the operation of closing
a set under a set of Skolem functions ω times. To prove the result mentioned in the text, one just
modifies the proof by adding constant symbols for every object added at each stage of the iteration.
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object for which a term can be added, in any suitable modal sense of ‘can’. Putnam
offers arguments along these kinds of lines. In sum, the rules and practices governing
quantification over S are exactly the same as those governing quantification over E ,
and so the rules and practices concerning quantification over S are exactly as learn-
able as those concerning quantification over E —there is no difference between the
two systems of rules and practices. The first leg of McGee’s argument fails.

Now for the second leg: quantification over E is learnable. The question is one of
principle, not of how quantification is actually learned. That pretty much goes with
the territory once we have agreed to consider quantification instead of the complex
systems of reference of natural language.

The rules governing formal inference are certainly learnable if any syntactic rules
at all are, since they are more straightforward than most. McGee, pretty much along
lines laid out by Harris (1982), argues that the formal rules of inference alone jointly
completely determine what all the logical constants mean, and hence, in particular,
the nature of quantification. McGee then claims that since the rules place no restric-
tion on quantification, the quantification so determined is, for that very reason, over
everything, and, thus, that quantification over E is learnable.

5 .5 CHARACTERIZING THE LOGICAL CONSTANTS

To make the argument, one must first know what it would be to have completely
determined the meanings of the logical constants. Here, I agree completely with
McGee, who extends a criterion devised by Belnap (1962) to the present case: Belnap
proposed that the addition of a new connective is acceptable if it is conservative (a suf-
ficient but not necessary condition) in the sense that adding it to the language adds no
new truths that can be expressed without its use—it doesn’t add any new logical prin-
ciples concerning the original portion of the language—and unique in the following,
slightly complicated sense: if one adds two copies of the new connective with paral-
lel rules (say, connectives ◦1 and ◦2) then any formula φ1 involving only ◦1 should
be interderivable with the analogous formula φ2 obtained by replacing each occur-
rence of ◦1 by ◦2. That is, φ2 should be a consequence of φ1 in the joint system, and
conversely. If two such formulas are always interderivable, then the two connectives
always play the same logical role—the rules of usage allow no alternative interpreta-
tions.

Belnap essentially extended the usual conditions of existence and uniqueness requi-
red for introducing a new symbol via a definite description, the conditions discussed
by Russell in ‘On Denoting’ (1905a) and analyzed formally by Hilbert in his text-
books, to the introduction of logical symbols. Conservativeness is just the require-
ment that the introduction of the new connective be compatible with earlier work,
which suffices to guarantee existence, and uniqueness guarantees that the connective
is well defined, that is, that there are no variant interpretations that lead to differing
truth values.

The Belnap criterion raises many questions of principle concerning, for example,
what constitutes a notion of logical consequence and how to put connectives from
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different languages together, but the answers will seem hopelessly abstract until they
have an application. Thus, I shall first prove conservativeness and give essentially the
proof of uniqueness proposed by Harris, and then discuss what principles have actu-
ally been employed.

Fix a formal language L1 with logical symbols ∀1, ∧1, ¬1, =1 and a formal lan-
guage L2 with logical symbols ∀2, ∧2, ¬2,=2.

Theorem 1 (Conservativeness). The logic L1 ∪ L2 is a conservative extension of L1.

Proof. Suppose Ŵ1⊢φ1 by a proof P in L1 ∪ L2. Let P1 be the sequence of formulas
obtained from P by replacing each subscript 2 by a subscript 1. Then it is routine to
check that P1 is a proof of φ1 from Ŵ1 in L1, as required.

Theorem 2 (Uniqueness—Harris (1982)). For any sentence φ of L1 or L2, φ1⊢φ2

and φ2⊢φ1in the logic L1 ∪ L2, if L1 and L2 have the same set of predicate symbols,
function symbols, and of infinitely many constant symbols.

Proof. By symmetry, it suffices to prove for any sentence φ1 of L1 that φ1⊢φ2 and
φ2⊢φ1 by induction on the formation of φ1. Again by symmetry, it is enough to show
that φ1⊢φ2.

Nonlogical atomic: P(τ1, . . . , τn)⊢P(τ1, . . . , τn), where τ1, . . . ,τn are closed
terms.

=: τ =1 τ ′, τ =2 τ⊢τ =2 τ ′ and τ =2 τ , so τ =1 τ ′⊢τ =2 τ ′,
where τ and τ ′ are closed terms.

∧: φ1 ∧1 ψ1⊢φ1, φ1⊢φ2, (inductive hypothesis) so φ1 ∧1 ψ1⊢φ2.
Similarly, φ1 ∧1 ψ1⊢ψ2.
But φ2, ψ2⊢φ2 ∧2 ψ2, and so φ1 ∧1 ψ1⊢φ2 ∧2 ψ2.

¬: φ2⊢φ1, (inductive hypothesis) so ¬1φ1, φ2⊢φ1.
But ¬1φ1, φ2⊢¬1φ1 and φ1,¬1φ1⊢¬2φ2, so ¬1φ1, φ2⊢¬2φ2.
Thus, ¬1φ1⊢¬2φ2.

∀: (∀1x)φ1(x)⊢φ1(c), where c is a constant symbol that does not appear in
(∀1x)φ1(x).

φ1(c)⊢φ2(c), (inductive hypothesis) so (∀1x)φ1(x)⊢φ2(c).
Thus, (∀1x)φ1(x)⊢(∀2x)φ2(x), since c does not occur on the left-hand side.

A similar proof would go through for second-order logic. The added step for the
second-order quantifier is ‘‘the same’’ as the one for the first-order quantifier. The
proof is intuitionistically valid. No mixed formulas are used.

Now to a discussion of the theorems. First, the assumption that there are infin-
itely many constant symbols may seem implausible for a use of formal logic that is
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intended to stand in for natural language, but what is in fact used is that for any
sentence there is a constant symbol not in it, and that seems a quite natural
assumption.

The consequence relation ⊢ is taken to be a part of the shared background of L1

and L2, but that is not a substantial assumption.¹⁴ All that Ŵ⊢φ means is that one can
obtain the formula φ from the formulas in Ŵ by following the rules, and so accept-
ance, truth, or commitment to the formulas in Ŵ leads, if one accepts that the rules
preserve acceptance, truth, or commitment, to acceptance, truth, or commitment to
φ. If I am looking to see if my logical commitments unambiguously determine a
notion of unrestricted quantification, it will be enough to see that they do based on
an antecedently assumed notion of a truth and commitment preserving rule. Such a
notion is part and parcel of my having commitments to holding sentences true at all.
But that is just part of speaking a language.

5 .6 OPEN-ENDEDNESS

The truly novel feature of the Harris proof is the way in which the rules of two
logics are combined: for example, from the rule φ1,¬1φ1⊢ψ of L1, we concluded
φ1,¬1φ1⊢¬2φ2 —the ψ of an L1 rule is taken to be a formula of L2. Note for future
reference that the Harris proof uses only a conventional universal instantiation rule,
not an open-ended one.¹⁵

Harris—and, following him, McGee—says that the rules of logic must be taken to
be open ended—to apply not just in the present logical language but in any extension
of it, whether that extension has been envisioned or not. Such open-endedness does
what the proof requires, and we surely do take our logical rules to be open ended in
some such sense: Consider, for example, the rule φ,¬φ⊢ψ mentioned above. We do
not stop to reevaluate it when moving to an expanded vocabulary, or from first- to
second-order logic, or even when moving to modal logic—all the new formulas are
automatically to be allowed into the rule. As McGee puts it for the case of reductio ad
absurdum,

We do not accept reductio ad absurdum because we have surveyed the forms of expression
found in English and found that its expressive power is circumscribed in such a way as as to
validate the rule.

(2000, 66)

¹⁴ McGee (2000, 65) takes the common consequence relation to be full model-theoretic logical
consequence, which is a substantial assumption, as he duly notes. In this volume, he does something
similar, but restricts consideration to ‘models’ with ‘domain’ absolutely everything, which, for
example, has the strange result that ‘there are at least seven things’ is a logical truth if and only if
there are at least seven things.

¹⁵ The open-ended rules employed in the proof of the Harris theorem given here are substitution,
cut, thinning, reiteration, ex falso quodlibet, negation introduction, and universal generalization. It
is interesting to note that no open-ended rule is required for conjunction.
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Thus, the rule φ,¬φ⊢ψ of L is not

if φ, ¬φ, and ψ are formulas of L, then from φ and ¬φ infer ψ ,

but rather,

if φ, ¬φ, and ψ are any formulas whatsoever, then from φ and ¬φ infer ψ .¹⁶

The notion of ‘any formula whatsoever’ is hopelessly vague. One important way
in which my presentation differs from that of McGee (2000, 62, 66–8, 69–71 and
in his contribution to this volume), is that he commits himself to a model-theoretic
account of consequence and formulahood in order to be able to provide a precise
definition of ‘any formula whatsoever’: he (2000) assimilates each sentence of a lan-
guage to the class of structures in which it is true.¹⁷ The notion ‘any sentence whatso-
ever’ now becomes that of ‘any (isomorphism-closed) class of models whatsoever’. Let
E be a class of models, or, equivalently in the present setting, a sentence φ, and let F

be a class of models or sentence, ψ , disjoint from E. Then the intersection of E and F

is empty, or, to put that another way, every member of both E and F is a member of
⊥, which, in accordance with the ‘open-ended’ rule ⊥ ⊢φ, must be the empty class
of structures, at least if we assume there is no model in which every sentence is true.
Thus, φ, ψ⊢ ⊥ and so, by our ‘open-ended’ rules, ψ⊢¬φ, that is, F is contained in
¬φ. We have shown that the negation of a sentence considered as a class of models is
its complement, and the open-ended rule above now becomes,

For any classes of models E, or φ, and F, or ψ , the models in both E (φ) and its
complement (¬φ) are in F (ψ).

McGee’s rigorous characterization of open-endedness, while it is mathematically
useful and permits him to derive suggestive results that are of interest in their own
right,¹⁸ builds in a lot of assumptions that, for the purpose of assessing objections to
unrestricted quantification, would best be avoided when possible and made explicit
when used. For example, the use of arbitrary classes of structures commits McGee
(2000) to the class of all structures, and hence, presumably, to the class of their
domains and its union, the class of absolutely everything, and in this volume McGee
outright assumes a domain of absolutely everything. But then, it would seem, the
spirit of open-endedness would also require a commitment to the class of all classes
that are not members of themselves, or at least some argument that whatever prin-
ciple was used to exclude that class did not also omit some classes, and hence some
sentences, required in order that the proposed definition capture the spirit of open-
endedness.

¹⁶ I have included ¬φ in the antecedent to duck the subtle but irrelevant question whether ¬φ
is a formula when φ is not in L—we have no present need for mixed formulas, and so I intend to
avoid them.

¹⁷ Since one can employ a formalism in which no open formulas appear, it is enough to consider
only sentences. In the present volume, he gives analogous model-theoretic counterparts of formulas.
Nothing turns on that but technical convenience.

¹⁸ For example, McGee (2000 and in his contribution to this volume), derives Tarski’s definition
of truth from essentially the assumptions I have outlined in the previous paragraph of the text, using
the techniques illustrated there.
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McGee’s (2000, 73) own way of avoiding commitment to the class of all classes
that are not members of themselves is to presume that second-order logic is truly
logic, which I take to mean taking the classes to be the universe of discourse of the
second-order quantifiers without thereby being committed to classes as first-order
objects. In this volume, he uses plural quantification in place of second-order logic.
Such moves in themselves raise difficulties for the claim that the first-order universe
of discourse includes everything. Parsons discusses that issue in some detail in his con-
tribution to this volume. McGee remarks that the semantics of his theory appears
to require introducing third-order logic, a step he is reluctant to endorse, saying
only that what to do is a difficult question. Williamson (2003, 458–9) proposes an
account of unrestricted quantification along related lines that does endorse a hier-
archy of quantifiers of increasing order. Rayo works out another proposal of that
type in his contribution to this volume. I have doubts whether any such account can
be given in an internally coherent form, since that would require introducing infin-
itely many orders of quantification in a framework that must block generalization
across all the orders in order to maintain that the second-order classes are not part
of everything. Linnebo’s contribution to this volume discusses the issue in detail in
Sections 3 and 4, coming to a similar conclusion. Rayo acknowledges the problem
and bites the bullet.

McGee (2000, 62) certainly does not disagree with the conclusion that he has built
in a lot of assumptions. He notes explicitly that he is making nontrivial assumptions
that subsequent investigation could undermine. His contribution to this volume
assumes outright that there is a domain of absolutely everything and that English
includes quantification over it. Insofar as McGee’s project is not to argue for the
existence of such a domain or such quantification, the assumptions might not be
inappropriate. Since I am interested in assessing the possibility of unrestricted quanti-
fication, I reinterpret McGee’s arguments as applying to a notion of open-endedness
more suitable for that purpose than his model-theoretic one.

I see no reason to provide a precise account of open-endedness here, and indeed
some reason not to: since our formalism is going proxy for natural language, we
should surely avoid unnecessary commitment to a particular semantics. That is all
very well, but how can we live with rules as vague as ‘if φ, ¬φ, and ψ are any formu-
las whatsoever, then from φ and ¬φ infer ψ ’? Well, even vague rules have clear cases
of application, and we only need the rules in clear cases: the envisioned addition of
L2 to the logic L1 looks ‘‘just like’’ L1 and so surely constitutes an acceptable addi-
tion if anything does—what is in doubt is not the coherence of L2 but whether L1

is ambiguous. A symmetric remark applies to the addition of sentences of L1 to L2.
Given that we are only interested in a clear case, we have no present reason to worry
about the ambiguity of the formulation.

The ‘open ended’ rules of logic are clearly in a certain sense very general, but what
is the nature of that generality? We surely do not, if at all possible, wish to understand
φ,¬φ⊢ψ along the lines of

(∀φ)(∀ψ)(φ,¬φ⊢ψ).
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It is not even clear that the ‘‘formula’’ is well formed: the turnstile ‘⊢’ is not a part of
the language, but a symbol that is used to specify a rule—from the antecedent, infer
the consequent. If it is not well formed, it is surely not an appropriate way in which
to understand the relevant generality. But even if we brush such niceties aside, using
such a formalism to introduce the rule would be to employ the formalism of logic in
introducing that very formalism—a circularity that is best avoided if we wish to take
account of issues of learnability. To make the circularity more stark, consider how we
would apply the rule universal universal specification¹⁹

(∀φ)(∀x)(∀τ )((∀x)φ⊢φ(τ )) (UUS)

to show that

(∀x)P(x)⊢P(c)

is a valid inference. We would first apply UUS to UUS (circularity!) with φ =
(∀x)(∀τ )((∀x)φ⊢φ(τ )), x = φ, and τ = P(x) to obtain

(∀φ)(∀x)(∀τ )((∀x)φ⊢φ(τ ))⊢(∀x)(∀τ )((∀x)P(x)⊢P(τ )).

We would then apply MP²⁰ to UUS and the formula immediately above to yield

(∀x)(∀τ ) (∀x)φ⊢φ(τ ),

knocking off the first quantifier ((∀φ)), and then apply UUS twice more. This accom-
plishes nothing toward establishing learnability: we would have to understand UUS
to use UUS. The point is entirely parallel to one made by Quine in ‘Truth by Con-
vention’ (1936, 351–2). McGee’s (2000) account of how we learn unrestricted uni-
versal first-order quantification is faced with a similar problem, though the circle is
considerably larger: His account of the rules of inference that play the central role in
his rational reconstruction of how we learn such quantification takes them to employ
unrestricted second-order quantification over classes of structures. That is a part of
why he (2000, 60, 70) takes his scenario to be a preliminary starting point for devel-
oping an internally coherent account of the acquisition of the logical terms of classical
mathematics.

If I have understood McGee’s article in this volume correctly, he here argues for
the much less qualified claim that ‘the semantic values of the quantifiers [and the

¹⁹ The first three quantifiers are substitutional, the last may be either referential or substitutional.
If you think the two possibilities should not be combined into a single rule, fine. I have combined
them only for brevity of exposition. The variable ‘x’ is of the sort bound by the leftmost ‘(∀x)’. It has
a substitution class consisting of the variables suitable to be bound by the quantifier of the second
‘(∀x)’ Thus, for example, if the variables bound by the quantifier of the second ‘(∀x)’ include ‘u’
and ‘v’, then both will be in the substitution class of the leftmost ‘(∀x)’ and the rightmost one will
instantiate to ‘(∀u)’, ‘(∀v)’, and the like. If you don’t think that is coherent, so much the worse for
expressing the generality of (US) using quantification. I have put the problem into the category of
niceties to be passed over.

²⁰ Actually, MMP—meta-modus ponens, since ‘⊢’ is not in the language. But we have already
agreed to put such considerations aside.
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other logical constants] are fixed by the rules of inference’. That claim is supposed
to be argued for without assuming any particular semantic theory. The idea is, at
least roughly, that once one has fixed a semantic theory of the nonlogical parts of a
language, that plus the rules of inference will determine the semantic values of the
logical constants. I think, by and large, that the claim is correct,²¹ subject to some
disagreements about what constitutes a semantic theory. The one aspect about which
we clearly disagree is that I do not think that the universes of discourse of the quanti-
fiers are fixed by the rules of inference.²² If, as McGee claims here, the semantic values
of the logical constants are fixed by the rules of inference, it is a natural step to con-
clude once more that the way in which we learn the logical constants is in some sense
through learning the rules of inference.

There is no reason why learning has to be neat and tidy, and it seems entirely likely
that there are circles of things that depend each on the next that we somehow manage
to pick up. Nonetheless, the circle itself does not show how we manage to pick them
up. We learn more about a concept or practice when we see how it could be acquired
on the basis of something independent of it, and, all else being equal, such founda-
tional explanations are to be preferred. One use for foundational explanations that has
often been emphasized is that of defeating skepticism, but foundational explanations
have advantages and employments quite independent of allaying skeptical worries. In
general, foundational explanations are, when we can get them, to be preferred even
by those, like myself, who are not foundationalists, and the fact that a view facilitates
providing them is a powerful argument for that view.

5 .7 FULL SCHEMES

5.7.1 Full Schemes Defined

It would be desirable to have an account of how the open-ended rules of inference
are to be understood that does not depend on the use of logic, especially on the use
of controversial putative portions of logic like unrestricted quantification, because
that will make it possible to give a foundational explanation of how the logical con-
stants might be learned. Fortunately, there is another form of generality more primit-
ive than quantificational generality that will do the job: we can take the logical rules,
for example, φ,¬φ⊢ψ , to be schemes used to declare that any instance is valid, where
‘any’ is to be sharply distinguished from ‘every’: the statement of a rule, though it
does involve generality, does not involve quantification. In our example, φ and ψ are
schematic letters, and to say that the scheme is open ended is to declare that the letters
are what I (1994, 230–2) have elsewhere called full schematic variables:

²¹ I argue for the allied claim that the rules of inference can be used to determine what we take
to be the logical terms of a foreign language in some detail in a not-yet-completed manuscript.

²² Given certain sorts of semantic theories, including the ones favored by McGee, the universe
of discourse of the quantifiers does end up getting fixed. But it is not the rules of inference that do
the fixing: it is the metalinguistic specification of the permissible instances of open-ended rules, a
specification made using unrestricted quantification.
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‘full’ is added to indicate that what counts as an acceptable substitution instance is
open ended and automatically expands as the language in use expands. There will, of
course, generally be some restrictions on what can replace a full schematic letter in any
given scheme. The restrictions will be different for different schemes. In our example,
φ and ψ may be replaced by arbitrary truth-bearing sentences. The restriction is two-
fold: it has a syntactic component (‘sentence’) and a semantic one (‘truth-bearing’).
That is typical. The need for semantic restrictions will bar certain kinds of skeptics
about semantics from making use of full schemes.²³ The position for which I am
arguing has nothing to do with semantic skepticism, and is therefore unaffected by
that point.

The free schematic letter in a schematic formula, like an ordinary free variable,
prevents the formula from being a truth bearer. To assert that a formula involving a
schematic letter is an axiom scheme does not commit us to any true axioms involving
a schematic letter or a free variable: it commits us to accepting any sentence that we
recognize to be a closed instance of the scheme as an axiom. A parallel remark applies
to schematic rules. Acceptance of a full scheme is certainly not neutral with respect to
truth: it commits us to truths, namely its instances, and it blocks us from taking to be
true sentences inconsistent with its instances and from commitment to full schemes
that have instances inconsistent with its instances. I therefore take full schemes to be,
in an extended sense, assertible.

The way I have just proposed to construe schemes is very different from the usual
one, and the proposed construal is critical for what follows. Schemes are usually intro-
duced in terms of an antecedently given notion of quantificational generality: the
commitment to a scheme is taken to be commitment to all of its instances. That
understanding requires that there be a universe of discourse already given to which the
instances of the scheme belong²⁴ or, if the universal quantifier is taken to be substitu-
tional, that there be a substitution class to which all the items that can be substituted
into the scheme belong.

For a scheme interpreted according a standard quantificational reading to yield the
same consequences as a full scheme as the term is used here, it would be necessary that
its universe of discourse or substitution class include not only all appropriate items
(that is, instances or substituends) from the present language, but also, as the language
expands, those from the expansion. Since a scheme can hardly have instances that are
not a part of the actual language, the universe of discourse or substitution class would,
on the standard quantificational readings of schemes, have to change as the language
changed, which is hardly standard. Thus, the standard quantificational readings of
schemes are not adequate for full schemes,²⁵ and a full schematic letter has neither an

²³ My remarks about semantic skepticism are prompted by McGee’s remarks in a draft of his
contribution to this volume.

²⁴ Fine, in his contribution to this volume, takes me to understand commitment to a scheme as
commitment to all of its instances, and he criticizes the resulting position as incoherent. I pretty
much agree with his criticisms. But the position is not mine. Because of his comments, I now
emphasize that much more clearly than I did in the draft he read.

²⁵ If one is determined to describe full schemes in terms of other logical devices, the considerations
just noted in the text suggest a modal account in which the possible worlds do not represent possible
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associated universe of discourse nor an associated substitution class—it is not relative
to any domain, universe, or context.²⁶ Full schematic letters cannot be regarded as
referential or substitutional variables that have not been quantified.

I have not defined schematic generality, merely described it in its own terms.
There is little alternative, since full schematic generality cannot be defined in famil-
iar quantificational, or even modal, terms. One can, of course, formally specify the
semantics of full schemes in a suitable metalanguage, but that isn’t terribly helpful,
since the metalanguage will also employ full schemes. Since the usual semantics for
the quantifiers makes use of quantifiers in the metalanguage, I do not view the—fully
parallel—situation for full schemes as in any way problematic. The addition of
full schemes to our conceptual framework for introducing formalisms is worthwhile
because it will permit us to give a foundational explanation of the familiar logical con-
stants. Perhaps the single most characteristic use of full schemes is their use to express
the intention to uphold certain principles however the language is refined and expan-
ded—the rules of logic are an important example.²⁷

Full schemes, though they are not a familiar part of our formal apparatus, are in
fact familiar in other contexts. When, early on in an introductory logic course, before
a formal language has been introduced, one says that (P   P) is valid, and
gives natural language examples, the letter ‘P’ is being used as a full schematic letter:
The students are not supposed to take it as having any particular domain—there has
as yet been no discussion of what the appropriate domain might be—and it is, in
the setting described, usually the case that it is not ‘(P   P)’ that is being
described as valid, but the natural-language examples that are instances of it.

Even Quine (1945, 1961), who was so chary of admitting logical devices other
than those of first-order predicate logic with equality, granted that schemes are a
mechanism for expressing generality distinct from quantification, one with some
pedagogical and ontological advantages, though he never, to the best of my know-
ledge, mentioned considerations relevant to full schemes as opposed to ordinary
ones. Schemes are arguably employed by Russell (his typical ambiguity—see Lav-
ine (1994, 74–6) for a discussion) and Hilbert (in finitary mathematics—see

states of affairs, but possible languages. If it is always possible to expand a language by a new term
that denotes an object not in the universe of discourse of the original language, then the relevant
modality will not be explicatable in the familiar terms of possible-world semantics. One will wind
up having to take the modality, or at least something closely allied to it, as basic. It seems to me
that it is considerably simpler and more direct to take full schematic generality to be basic than it is
to take such an unusual type of modality to be basic, but Fine, in his contribution to this volume,
develops just such a modality—his ‘postulational possibility’.

²⁶ Anyone who denies that a quantifier needs a domain of quantification (following Cartwright,
1994, 1), will be hard pressed for grounds on which to maintain that a scheme must have a universe
of discourse or a substitution class.

²⁷ Parsons, in his contribution to this volume, argues, though on grounds related to the indefinite
extensibility of the notion of set, that there is a non-quantificational type of generality associated with
statements of schematic type that is at least in part concerned with the ways our conceptions could
develop. Hellmann, in his contribution to this volume, notes that there is a kind of unrestricted,
indefinite, schematic, open-ended generality that is stipulative of how certain terms in our language
are to be used.
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Lavine (1994, 192–3) for a discussion). Full schemes are used by Feferman (who
introduced them as early as 1977, see Feferman (1991)) in discussing Gödel-type
independence phenomena, by Burge (1984) in his theory of truth, by McGee (1997)
in his theory of ‘How we learn mathematical language’, and by Field (1994, 406),
Parsons (1990, 324), and me (1994, 231n)—we have all taken mathematical induc-
tion to be a full schematic principle.

5.7.2 Schemes Are Not Reducible to Quantification

There is nothing inconsistent about denying that schemes are in any sense assert-
ible and concluding that schematic generality must collapse into quantificational
generality,²⁸ but it is ad hoc for at least two reasons. First, it denies the existence of
a non-quantificational mechanism for expressing generality that has commonly been
thought to exist and to play a genuine role in our reasoning without motivation for
doing so. Second, it blocks the introduction of full schemes without providing an
alternative mechanism for expressing generalizations that survive expansions of our
language. The position amounts to little more than a dogmatic denial of the possibil-
ity of any mechanism for expressing generality other than quantification.

A schematic letter, full or not, cannot be viewed as a free variable, substitutional or
referential, one that could be bound by a quantifier, for reasons besides the one given
above for full schematic letters.

Schematic letters and quantifiable variables have different inferential roles. If n is a
schematic letter, one can infer S0 
= 0 from Sn 
= 0, but that is not so if n is a quanti-
fiable variable—in that case the inference is valid only if n did not occur free in any of
the premises of the argument. No such proviso is required in the case of the schematic
letter. Full schemes do not obey an analog of universal generalization: Just because
everything in the present universe of discourse demonstrably shares a property need
not guarantee that that will remain true as the language changes. For example, if we
introduce a predicate letter ‘D’ for the present universe of discourse, then we will
accept (∀x)D(x) and hence D(c) for a ‘new’ constant symbol c, but D(s) does not fol-
low for a full schematic letter s.

There are schemes other than full schemes that cannot be represented using quan-
tification. One can, of course, infer S0 
= 0 from (∀n)Sn 
= 0, and so perhaps one
might wish to argue that the schematic version of Sn 
= 0 is really just an alternat-
ive notation for the more familiar universally quantified sentence. But the analogous
argument does not go through for the following example: The scheme Sn 
= 0 with n
a schematic letter ranging over some standard set of numerals for the natural numbers
is not a full scheme and, it is straightforward to see, is not equivalent to the cor-
responding universally quantified formula, since it yields claims only about objects
denoted by numerals, without giving any reason to presume that everything in the
universe of discourse is denoted by a numeral, or that every member of the substitu-
tion class appears in a provable identity statement with a numeral, or that either the

²⁸ As Weir, in his contribution to this volume, seems to do.
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class of objects denoted by a numeral or of terms that appear in a provable identity
statement with a numeral is definable. Because there is a syntactic restriction on what
may replace the schematic letter, the scheme does not obey the straightforward analog
of universal instantiation,²⁹ and it is clear that the scheme is quite distinct from any
quantificational generalization.

Schemes provide a general method of obtaining particular assertions without any
need to have a clear notion in advance of all the suitable instances. One can directly
infer (∀x)φ(x) from φ(0) and the universally quantified formula (∀x)(φ(x) → φ(Sx)),
but not from φ(0) and the scheme φ(n) → φ(Sn), since the latter, rather than mak-
ing an assertion about all numbers, which is what would be required to reach the
conclusion, provides a mechanism for making assertions about particular numbers.
That is not to deny that in certain cases, indeed, the cases that will be of primary
interest to us here, the reasons for endorsing the instances of the scheme may not
also be reasons for endorsing the single universally quantified statement that all of
the instances are true. Indeed, in the present case, in a suitable formalism one can
infer the open formula φ(x) → φ(Sx), with quantifiable variable x, from the scheme
φ(n) → φ(Sn), and then form the universal closure, which is exactly the universally
quantified formula we need to conclude (∀x)φ(x). As Fine puts it in his contribu-
tion to this volume, the particular commitment to a general claim follows from the
general commitment to particular claims. But, pace Fine, that need not always be the
case: one who doubts that the natural numbers form an actually infinite class will not
take the scheme φ(n) → φ(Sn) to have a well-circumscribed class of instances, and
hence will not be willing to infer φ(x) → φ(Sx) from it: the latter formula involves
a quantifiable variable with the actually infinite class of all numbers as its domain
or the actually infinite class of all numerals included in its substitution class. Given
such a doubt, while the scheme φ(n), with its potentially infinite class of instances,
will follow from φ(0) and φ(n) → φ(Sn), the universally quantified (∀x)φ(x), with
its commitment to an actually infinite class of numbers, will not.³⁰

Whether or not one has doubts about the actually infinite class of numbers, the
example of the previous paragraph shows that the general commitment to particu-
lar claims represented by φ(n) → φ(Sn) does not by itself entail the particular com-
mitment to a general claim expressed by (∀x)(φ(x) → φ(Sx)) and, in general, that a
scheme does not entail the formula obtained from it by replacing the schematic letters
in it by quantifiable variables, whether referential or substitutional, and then univer-
sally quantifying them (Lavine, 1994, 193, 196, 208, 259). In that respect, a scheme
is weaker than any universally quantified counterpart even when there is no restriction
on the closed terms that may replace the schematic letters.

²⁹ ‘Straightforward’ because it does obey an analog with a suitable restriction on what may be
substituted.

³⁰ I (1994) use the schematic methodology described in the text to avoid commitment to the
actual infinite in the finitist portions of my work. Fine, in his contribution to this volume, proposes
handling potential infinity in a very similar way. Indefinitely extensible properties can also be
handled. I sketch that for sets below. That is relevant to the problems raised by general claims
about indefinitely extensible properties discussed by Shapiro and Wright in their contribution to
this volume.
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There is a different respect in which a full scheme is stronger than any universally
quantified counterpart: a universally quantified sentence only makes a claim about all
the members of its universe of discourse or claims using all the members of its substi-
tution class. As we have seen, in a suitable setting, those claims will follow from the
corresponding scheme. However, those claims concern only the members of the sub-
stitution class or universe of discourse, while a full scheme will have additional con-
sequences outside any given substitution class or universe of discourse. If there is an
unrestricted universe of discourse,³¹ it might seem that a full scheme is only stronger
in a vacuous sense, but that is not completely clear: if it is possible that something
could have existed (that is, been a number of the unrestricted universe of discourse)
that in fact does not, then the full scheme expresses commitments we would have had
had such things existed that are not expressed by the universally quantified form. Such
commitments might follow from the claim that the universally quantified form is not
only true, but necessarily true. That would tend to demonstrate that, as claimed, the
full schematic form is in the relevant sense stronger than the universally quantified
one even in the presence of unrestricted quantification, since it has not only the uni-
versally quantified form but also its necessitation as a consequence.

The use of necessitation in combination with unrestricted quantification poses a
problem for the advocate of unrestricted quantification. The universe of discourse
is supposed to be unrestricted, and so it should include all states of affairs, possible
worlds, or whatever else one might think a robust notion of necessity requires. It
ought therefore to be possible to express necessity without any modal apparatus that
goes beyond what can be expressed using unrestricted quantification. The apparent
need for a necessitation operator already casts doubt on the claim that the nominally
unrestricted quantification is unrestricted in a sufficiently robust sense.

I grant that it is likely that there will be various ways to argue that there is a mod-
ality that cannot be expressed using unrestricted quantification, for example, simply
by taking the modality to be basic, that is, not reducible to facts about anything
like states of affairs or possible worlds, and so, while there is a problem here that
must be solved by the advocate of unrestricted quantification, it is hardly an insu-
perable one. However, if it is possible that something could have been possible that
is not in fact possible,³² the position of the advocate of unrestricted quantification
becomes considerably more difficult: in that case, a full scheme captures commit-
ments we would have had there been such possibilities that are not even expressed
by the necessitation of a universally quantified form. One might attempt to use some
form of meta-necessity either to express such commitments or to deny that there are
any such second-order possibilities. In either case, the advocate of unrestricted quan-
tification who is unwilling to accept that full schematic generality is in the relevant

³¹ I am ignoring the possibility of an unrestricted substitution class in the text. I have some
doubts about whether there could be such a thing—cardinality considerations seem to pose an
obstacle. However, if there is, what I say in the text about an unrestricted universe of discourse
probably would, mutatis mutandis, also apply to it.

³² The formulation in the text is only adequate for an S5 modality. A more general formulation
would have to involve a notion of unrestricted possibility or the like: a state of affairs is possible if it
is accessible from the present state of affairs; every state of affairs is possible in the unrestricted sense.
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sense stronger than unrestricted quantification is faced with an infinite modal hier-
archy above the unrestricted quantifiers and the attendant problem of expressing gen-
eralizations across the levels of the hierarchy.

Ordinary schemes are in some respects weaker than the corresponding universally
quantified formulas, which has played a role in my argument that schematic general-
ity is not reducible to quantificational generality. It is equally true that full schemes
are in some respects weaker than the corresponding universally quantified formulas,
but full schemes are also, in other respects, stronger than the corresponding univer-
sally quantified formulas. For the purposes of this chapter, it is the respects in which
full schematic generalization is stronger than quantificational generalization that are
of primary importance. To avoid getting mired in side issues, for the rest of the
chapter I shall consider only settings in which we may take schemes to have their uni-
versally quantified counterparts as consequences, that is, settings in which schemes
are at least as strong as their universally quantified counterparts.

To summarize, schematic letters are neither referential nor substitutional variables.
Full schematic generality is different from, and not directly comparable to, the gen-
erality of universal quantification, whether substitutional or referential. Finally, no
universally quantified sentence can have the same consequences as does a suitable cor-
responding full scheme.³³

5.7.3 Restricted Schemes

Let us now look in more detail at schematic letters intended to be restricted to terms
that refer to objects in a particular domain of discourse—like the n in the induction
scheme discussed above, which was implicitly restricted to terms that refer to natural
numbers. Just as in the case of referential variables, we usually leave such restrictions
implicit. If a referential quantification over x, (∀x)φ or (∃x)φ, is restricted to a domain
D, we can make that explicit by using (∀x)(D(x) → φ) and (∃x)(D(x) ∧ φ) in place
of the original formulations, where I have used ‘D’ as a predicate symbol with exten-
sion D. Similarly, a scheme φ may include a schematic letter that we intend to restrict
to terms that denote objects in D. We can then write D(s) → φ to make the restric-
tion explicit. When a referential variable x is restricted to a domain D and a schematic

³³ Williamson (2003, 429) in effect argues in some detail that the force of full schematic generality
(he doesn’t use the term) cannot be captured using quantification except by using unrestricted
quantification or at least comparably strong mechanisms from which unrestricted quantification is
definable. I take that to be the point of his extended discussion of the condition ‘SECOND’. He
takes that to count against the possibility of employing full schemes in the absence of unrestricted
quantification. I fully agree with Williamson that the force of full schematic generality cannot be
captured using quantification except by using unrestricted quantification and for the most part I
endorse his arguments to that effect except in matters of minor detail. I add, however, that the force
of full schematic generality cannot be captured even using unrestricted quantification, or, more
precisely, that doing so raises substantial difficulty for giving a coherent account of unrestricted
quantification. But my conclusion is quite different from that of Williamson: I conclude that full
schematic generality is a distinct type of generality not reducible to quantification. That conclusion
is supported by the fact that quantification can be introduced using full schematic generality and,
moreover, by the fact that standard pedagogical methods of introducing quantification do in fact,
in effect, employ full schematic generality.
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letter s is restricted to terms that denote objects in D, we obtain

(∃x)x = s,

or, when we make the restrictions explicit,

D(s) → (∃x)(D(x) ∧ x = s).

5.8 THE EVERYTHING AXIOM

5.8.1 McGee’s Argument

Now that I have introduced the notion of a full scheme, we can return to the idea that
the axioms and rules of logic provide a complete characterization of the logical oper-
ators. We take the open-ended axioms and rules of logic to be full schemes. Since the
use of full schemes does not presuppose an understanding of the logical operators,
we can take Harris to have proved that the full schematic axioms and rules of logic
provide a complete characterization of the logical operators in a form that is suitable
for introducing those operators on the basis of antecedently understood notions. That
is more than enough to enable us to conclude that the logical operators are in prin-
ciple learnable in a sense far stronger than has generally been thought possible. Let us
see how McGee might use that to conclude that absolutely unrestricted quantification
is unambiguously specified.

McGee (2000, 68) says that, given any object whatsoever, say, a, we can let c be a
constant symbol referring to a and then infer (∀x)P(x)⊢P(c) for any predicate P using
the open-ended rule of universal instantiation. Then, if P is a predicate that applies to
all and only those things that lie in the range of our quantifiers, (∀x)P(x) will be true,
and hence so will P(c). We have shown that a is in the domain of the quantifiers.
Since a was arbitrary, that shows that quantification is absolutely unrestricted. The
argument relies on the open-ended rule of universal instantiation, a rule not used in
the Harris proof.

There is in fact a commonplace predicate that applies to exactly the things
in the universe of discourse of the quantifiers (cf. Quine, 1969a, 94): P(x) =def

(∃y)y = x. Thus, we can apply the above proof to start with (∀x)(∃y)y = x and derive
(∃y)y = c.³⁴ Since we are already allowing the use of full schematic letters, we can
express the open-ended character of our choice of c by giving the proof schematically,
with conclusion

(∃y)y = s,

where s is a full schematic letter. I shall call the formula immediately above, which
we have shown to be a logical truth, the everything axiom.

Here is a formal version of the argument for the uniqueness of everything using
the everything axiom: Let LE

1 be the usual axioms of logic for some arbitrarily chosen

³⁴ McGee adopts the suggested version of the argument in the present volume.
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language explicitly relativized to a domain D1, plus the relativized everything axiom

(∃x ∈ D1)x = s.

The relativized universal specification rule is

(∀x ∈ D1)φ(x)⊢φ(τ )

provided that D1(τ ) holds.
The relativization to D1 does not impose any restriction on the universe of dis-

course. We can in what follows always assume (∀x)D1(x) in theories in the language
L

E
1 , though I do not, since no use is made of that assumption. The advantage of the

relativization is purely expository: it provides us with a name in the language for the
universe of discourse, which, since it is the universe of discourse that is at issue, is
convenient.

Let L
E
2 be defined in the obvious parallel way, relativized to D2. To show that the

universe of discourse is uniquely determined, we must show that D
L

E
1

1 = D
L

E
2

2 . By

symmetry, it is enough to prove that D
L

E
2

2 ⊆ D
L

E
1

1 .³⁵ To do so, let a be an arbitrary

object in D
L

E
2

2 and let c be a new constant symbol used to denote a. Since s is a full
schematic letter, the everything axiom includes the new symbol as a possible substitu-
end for s, and so we have as a theorem of L

E
1 ,

(∃x ∈ D1)(x = c).

Thus, a is in D
LE

1
1 , as required. We seem to have shown that any two implementa-

tions of logic with the everything axiom have the same domain of quantification, as
required.

McGee’s argument amounts to claiming—though this is not at all how he puts
it, since he doesn’t make use of full schemes or of the everything axiom—that the
uniqueness of the logical connectives in combination with the everything axiom gives
us a learnable, unambiguously specified absolutely unrestricted quantifier.

Williamson (2003, 444) also argues that the everything axiom can be used to
convey that the universe of discourse includes absolutely everything. He concludes
that anyone who is unwilling to accept unrestricted quantification must take the
everything axiom to be illegitimate. I do not—the axiom is perfectly legitimate. I

³⁵ There is a problem with the way I am putting things in the text: I am acting as if D
LE

1
1 and

D
LE

2
2 are subsets of a common universe of discourse on which D1 and D2 have extensions in the

usual way. Since D
LE

1
1 and D

LE
2

2 are the unrestricted universes of discourse of the users of languages
LE

1 and LE
2 in the intended application, I am not entitled to assume that there is such a common

universe of discourse. But without such a common universe of discourse, what could, for example,

D
LE

2
2 ⊆ D

LE
1

1 possibly mean? I take it to mean that every object countenanced by the user of language

LE
2 as a member of D

LE
2

2 is also countenanced by the speaker of language LE
1 as a member of D

LE
1

1 .

All of what I say below using D
LE

1
1 and D

LE
2

2 can and should be similarly translated. I have sacrificed
complete accuracy in the text for the sake of readability.



126 Shaughan Lavine

reject the argument that purports to show that it follows from the everything axiom
that the universe of discourse is unrestricted.

The Harris proof does show that the two logics L1 and L2 are fully equivalent, and
thus that the logical operators can unambiguously be added to an antecedently given
language. Though I am not sure I have understood him correctly, that seems to be
all Harris claims. It is a quite impressive result, but it is useless for McGee’s intended
purpose except in concert with the everything axiom, since it does not require open-
ended universal instantiation and makes no mention of adding new constant symbols
to a language.³⁶ Does the use of a unique logic that incorporates the everything axiom
constrain the universe of discourse of the quantifiers to be everything, showing that
unrestricted quantification is learnable? It does not.

5.8.2 The Everything Axiom is Not What it Seems

The everything axiom has been taken to commit us to having everything in the uni-
verse of discourse because for each thing there is or could be an instance of the axiom
that guarantees that that thing is in the universe of discourse. (The ‘could be’ clause
is necessary to handle objects that do not have names in the original language.) It is
supposed to follow that everything must be in the universe of discourse of the quan-
tifiers because to satisfy the everything axiom is to satisfy all of the potential instances
of the axiom.

The problem with the argument is that it employs quantification over all the poten-
tial instances of the axiom to make sense of the idea of satisfying them all, and it is
that quantification, not the everything axiom or the notion of a full scheme, that does
the work. It is standard practice to identify a scheme with the set or class of all of its
instances, and it does not seem unreasonable to consider extending that practice to
identifying a full scheme with the universe of all of its potential instances, whether
or not they form a set or class. McGee (2000, 62, 66–8, 69–71) in effect makes that
extension when he assimilates the open-ended possibilities for sentences to arbitrary
classes of structures, which ensures that every element of the domain of every struc-
ture is denoted by the term in some instance of the everything axiom, and it is also in
effect what Williamson (2003, 439–40) does when he takes an instance of a scheme
open-ended with respect to a free variable to involve an assignment to the variable and
takes the permissible assignments to include the assignment of every member of every
domain to the variable. But to interpret a full scheme in such a manner here is to beg
the relevant question: that interpretation of the scheme employs quantification over
all the potential instances of the scheme, a form of quantification from which, under
reasonably weak assumptions, unrestricted quantification is definable. The argument

³⁶ The Harris result and the everything axiom together provide a powerful new argument for the
claim that to be is to be nameable—that a theory is committed to the existence of an object if and
only if the language of that theory includes or can be expanded to include a constant symbol that
denotes the object. I think that that is correct, and I (2000) have argued for that as a criterion of
ontological commitment. The criterion, since it makes no mention of quantification, has the effect
of completely separating issues of ontological commitment from both quantification and notions of
truth concerning any but atomic sentences.
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that the everything axiom can be used to show that the quantifiers are unrestricted,
since it is based on understanding full schemes in terms of the quantificational notion
of all—in an unrestricted sense of all—of their potential instances, amounts to little
more than noting that if we allow unrestricted quantification over all the potential
instances of a scheme, we may as well allow unrestricted quantification over the uni-
verse of discourse. Since what is at issue is the claim that unrestricted quantification is
learnable, such an argument is of no probative value. What would be required instead
would be an analysis of open-endedness independent of the acceptance of unrestric-
ted quantification that would allow non-trivial use of the (open-ended) everything
axiom. No one has provided such an analysis.

If we track the use of the everything axiom in formal detail without assuming that
all its instances are given in advance, we can see what goes wrong. The problem is to

determine whether D
L

E
1

1 and D
L

E
2

2 are the same. Each is supposed to play the role of

a universe of discourse. That is, to be in D
L

E
1

1 is to exist1 (or, in other words, D
L

E
1

1

is everything1), and to be in D
L

E
2

2 is to exist2, and we want to know if we can prove
that existence1 and existence2 coincide, that is, that there is a well-defined unrestric-

ted sense of ‘everything.’ If an arbitrary element a of D
L

E
2

2 should happen not to be in

D
L

E
1

1 , that is, if a should happen not to exist1, then from the perspective established by

L
E
1 it is not possible to let c denote a—a constant symbol must denote1 an object1,

and this c does not.³⁷ In fact, the addition of c to the language of the logic L
E
1 will

only be acceptable if a is in D
LE

1
1 . To simply assume that a is in D

LE
1

1 is to beg the ques-

tion at issue—whether there could be a universe of discourse D
L

E
2

2 not contained in

D
LE

1
1 . The ‘‘proof ’’ given above that unrestricted quantification has a unique universe

of discourse is worthless: the assumption that the addition of c to L
E
1 is acceptable

amounts to assuming that the everything axiom has a predetermined, unique set of
instances, which is pretty nearly what was to have been proved.

The flaw in the argument becomes starkly apparent if we make the relativization
of the schematic letters explicit, not just the relativization of the quantified variables.
(Just as in the case of the quantified variables, the relativization in and of itself is just
an expository convenience, which need not restrict the application of the scheme.)
Then we have

(∀x ∈ D1)φ(x)⊢D1(τ ) → φ(τ )

and

D1(s) → (∃x ∈ D1)x = s,

the rule of universal instantiation and the everything axiom, respectively, and similar
formulas for L

E
2 . The assumption that the schematic letters are to be restricted to the

³⁷ It is possible to have constant symbols that do not denote in various so-called free logics, and
so one could uphold the everything rule. But such logics have a way of expressing which constant
symbols are denoting symbols, and the problem will reappear at that point. A detailed discussion
would be far too long because there are so many variants of free logic.
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same predicate letter, D1, as the quantificational variables might be taken to be an
unwarranted restriction. I do not think that it is, but I shall note only that it fol-
lows from McGee’s analysis of open-endedness that that assumption is appropriate
when the predicate D1 holds of the entire universe of discourse and the quantifiers

are unrestricted. Now, if we let a be an arbitrary object in D
L

E
2

2 and c a new constant
symbol used to denote a, we can substitute c into the everything1 axiom to obtain

D1(c) → (∃x ∈ D1)x = c,

which is correct, but is no help in showing that a is in D
L

E
1

1 —we need to verify the
antecedent D1(c) in order to detach the conclusion, and the antecedent is precisely
what we are trying to show. The circularity is evident.

McGee’s argument for the learnability of unrestricted quantification turns out to
be at best a self-consistency argument—it, at best, could hope to show that, assuming
that there is such a thing as unrestricted quantification, unrestricted quantification is
learnable. In fact, it does not show even that, because one would have to show some-
how that the notion of all of the potential instances of the everything axiom is learn-
able independently of the general notion of unrestricted quantification in order for
the argument to play any role in an account of how it is possible to learn unrestricted
quantification, and it is not possible to do so. Note that the argument is of absolutely
no use in showing that the notion of unrestricted quantification is well defined.

I suspect that the initial appeal of the idea that the open-ended everything axiom
guarantees that quantification is unrestricted is that unrestricted quantification is
often thought of as quantification over a maximal universe of discourse and open-
endedness is taken to be a way of ensuring maximality. But neither maximality claim
is as useful as it may at first seem.

The universe of discourse of an unrestricted quantifier is not in fact fruitfully con-
ceived of as a maximal universe. It is not maximal in some absolute sense, since it
excludes nonexistent objects. Supposing for the moment that there is a well-defined
universe of discourse for unrestricted quantifiers, a universe that included Sherlock
Holmes would be larger. Naturally, we do in fact exclude Sherlock Holmes from the
universe of discourse of the unrestricted quantifiers because he does not exist, and that
is the appropriate thing to do,³⁸ but it is not maximality that drives the choice.

The most obvious way to implement formally a maximality requirement would be
to require that the everything axiom take every term in the language or any future
expansion of it as a legitimate substituend, a purely syntactic criterion. But that
semantically unrestricted axiom is so strong that no one subscribes to it. For example,
it has as an instance

(∃x)x = God,

but no one will accept that as a sound argument for the existence of God, which shows
that the suggested version cannot be correct.

³⁸ Dieveney (2006) argues that even unrestricted quantification is insufficiently general for
metaphysics, and advocates a form of radically unrestricted quantification that can be used to draw
consequences in which non-referring terms occur.
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It is obvious, in outline, how to fix the unrestricted everything axiom: one must
restrict the terms that can replace the schematic letter to terms that actually denote. I
suppose one could do that via a property of terms directly introduced as a property of
terms, but I see no advantage to be gained. The usual procedure is to say that a term
‘τ ’ denotes if τ exists.³⁹ But what is it to exist? It is just to be in the universe of unres-
tricted discourse, and so, for a user of language L

E
1 , a term ‘τ ’ denotes if D1(τ ). But

that is exactly the restriction on the everything1 axiom imposed by the relativization
introduced above, and so the discussion above applies unchanged.

If there were unrestricted quantifiers, and they had a determinate universe of dis-
course, it might be the case that that universe of discourse would be the maximum
universe of discourse all of whose members exist—I have my doubts about the claim
since it seems to involve quantification over universes of discourse including the max-
imum one, which, if not handled carefully, could lead to the necessity of accepting
that every universe of discourse, including the maximum one, is a member of the
maximum universe of discourse. Even putting such problems concerning the coher-
ence of the claim to one side, the claim is completely uninformative: the notion of
existence with respect to which the universe of discourse is taken to be maximal is
just the same notion as that of the universe of discourse of an absolutely unrestricted
quantifier. After all, it is quite plausible to just take ‘(∃y)y = x’ with an unrestricted
quantifier to define existence.

The maximality condition is as uninformative about the intended universe of dis-
course as is describing the universe of discourse of quantification over the numbers
as the maximum universe of discourse all of whose members are numbers. Of course,
one can give a nontrivial maximality condition that yields the natural numbers. That
will suggest that the universe of discourse of the unrestricted quantifiers might be
obtained from some independent characterization of existence. That is perfectly cor-
rect, but I know of no attempt to provide such a characterization, and it seems to
me very unlikely one can be provided, especially given the paucity of logical resources
available for the purpose.

One might object that by giving the two language users two different, sup-
posedly unrestricted universes of discourse, I have failed to respect a presupposi-
tion of McGee’s argument, namely that there is a determinate universe of absolutely
everything, or, what amounts to the same thing, a determinate extensional predic-
ate ‘Exists’. On McGee’s account, given that interpretation of it, there is no issue of
whether there is such a universe, that is simply assumed, and the issue is only whether
we can learn to use quantifiers that range over it.

The appropriate setting in which to explore the utility of the everything axiom
under the assumption that there is a determinate universe of absolutely everything,
it seems, is one in which our language user (there will be no point to having two) is
using quantifiers relativized to D (we drop the subscript, since there is only one lan-
guage user) and the background universe of discourse is absolutely everything. Our
question has become, how can the language user ensure that everything is in the uni-
verse of discourse D, that is, that it be true that (∀x)D(x)?

³⁹ The quotes are Quine quotes.
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It is not possible for the language user to simply state that (∀x)D(x) is true, because
the sentence uses an unrestricted quantifier, and the restricted version to which the
language user is entitled, (∀x)(D(x) → D(x)), says the wrong thing. The thought must
be that commitment on the part of the language user to the unrestricted everything
axiom will do what is required. But what does the requisite version of the everything
axiom say? As we have seen, the semantically unrestricted everything axiom is too
strong. So, what will the appropriate semantic restriction be? It will be that the schem-
atic letter can be replaced by every term in the language or any expansion of it that
denotes an object that Exists. In order for the language user to apply the restriction,
the language user will have to, prior to any use of the everything axiom, possess the
ability to tell whether or not something Exists. The everything axiom then states that

E(s) → (∃x ∈ D)x = s,

which is logically equivalent to

E(s) → D(s).

In using that formula to show that the language user’s quantifiers are unrestricted,
all the work will be done by the ability to add new terms. The requisite ability is
that for every object that Exists, the language user can expand the language by a
term that denotes that object—that is what is required to ensure that if the everything
axiom holds, then so does (∀x)D(x). It is necessary to assume that even once it has been
granted that the language user has the concept of Existence. The assumption cannot be
formulated by the language user, since it involves unrestricted quantification. Thus, the
argument does nothing to counter the central claim of the Hollywood objection that
nothing the language user can do can evince a commitment to using quantifiers that are
unrestricted. What the argument does appear to show is that one can come to believe
that a language user who endorses the everything axiom also employs unrestricted
quantification by attributing two abilities to the speaker without evidence: first, the
ability to tell whether a term refers to something that Exists, and, second, the ability
to name each object that Exists. Whether or not that is the case, it does nothing to
show that unrestricted quantification is learnable given only that there is a determinate
universe of absolutely everything. The imputed abilities beg the question.

To forestall misunderstanding, let me emphasize that I am not objecting to simply
taking existence, in some unrestricted sense, to be basic—my complaint is not that
of the skeptic. My point is rather that once the advocate of unrestricted quantifica-
tion has done so the everything axiom, a maximality principle, or open-endedness can
be of no additional use in defending unrestricted quantification from the Hollywood
objection.⁴⁰

Suppose two users of the same vocabulary, Gottlob and Thoralf, have different
universes of discourse but that their usage agrees on all names and that on the over-
lap between their universes of discourse they agree on the extensions of all relations
and functions. Suppose further that the two speakers agree completely about which

⁴⁰ I take Williamson’s use of open-endedness in his contribution to this volume to be otiose for
the reason outlined, since he presumes a univocal notion of whether a term has a reference.
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sentences of the language are true. It will follow that the overlap between the two
universes will include all definable objects. It is not implausible to suppose that such
a situation can arise, for it occurs if we let the vocabulary be that of a formal language
and the universes be the E and S of the Hollywood objection. The two language users
will each be able to claim that their syntactically unrestricted quantifiers range over
everything, and each will be able to endorse the open-ended everything axiom. Using
the everything axiom, maximality, and open-endedness, let us attempt to adjudicate
which universe of discourse (if either) is ‘‘really’’ everything.

If one of the two language users could, employing only the common vocabulary,
name or describe something that is not in the universe of discourse of the other, life
would be easy. Since the name or description is in the common vocabulary, the one
who had omitted its referent would be forced to admit that the universe of discourse
from which it had been omitted is not everything, since it is not maximal and does
not satisfy the obvious instance of the everything axiom.

In the setting under discussion, however, by hypothesis, everything that can be
named or described in the common vocabulary lies in the overlap between the uni-
verses of discourse, and so an object that is in one of the two universes but not the
other can only be named or described in an expanded vocabulary. Once an object has
been described, it can be named, and so we may, without loss of generality, assume
that if one of the users of the language, say, Gottlob, wishes to call attention to an
object in his universe of discourse that is not in the universe of discourse of the
other, Thoralf, he will expand his vocabulary by adding a name for the object. For
expository convenience, let us suppose that he names the object ‘North’. Nothing
will prevent Thoralf from conceding that Gottlob has named an object not in his,
Thoralf ’s, universe of discourse, and that his universe of discourse was ipso facto, not
everything, though Thoralf will have to move to an extended universe of discourse
in order to do so. But, and this is the key point, Thoralf is by no means obligated
to do so: he can always coherently maintain that ‘North’ does not denote and con-
sequently that it is not a defect of his universe of discourse that ‘North’ does not
denote anything in it.⁴¹ Thoralf and Gottlob, since they agree on which sentences
are true, agree on the principles that constrain adding new names to the language.
They may, then, reasonably agree on the following principles, which I believe are
implicit in McGee’s ‘‘Everything’’ (2000) and in his contribution to this volume,
and which therefore beg no questions against him: something can be named if and
only if it exists, and something exists if and only if it is in the universe of discourse
of the unrestricted quantifiers. Naturally, each language user will interpret the prin-
ciples within the language used, and, in particular, within the universe of discourse

⁴¹ Quine (1948) has shown how to replace a language in which there are names by an equally
expressive language without them. Such a language is not affected by the possibility of non-denoting
‘names’. I have ignored such a possibility in the text, since the line of argument is not affected.
Quine shows how to translate from the language with names to the language without them, and
the resulting translation of the argument presented here is just as persuasive as the original and for
the (translations of) the same reasons. A similar remark applies to other variants of the language
discussed in the text, including those in which the quantifiers are introduced on the basis of Hilbert’s
ǫ operator.
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used. Thoralf ’s options—conceding that his original universe of discourse was not
everything or denying that ‘North’ exists—follow from those principles.

Since the maximality of the universe of discourse of unrestricted quantifiers is only
with respect to what exists and the open-endedness of the everything axiom is only
with respect to what instances exist, language users who differ about what exists will
not find either of any use in settling their differences, even if they accept the notion
of unrestricted quantification. No method has been provided for settling such dis-
putes, for learning a univocal notion of everything, even if one allows the use of an
unrestricted notion of existence, maximality, and the everything axiom.

Your notion of everything, presuming for the moment that you have one, and my
notion of everything, presuming for the moment that I have one, can be different
even while we subscribe to a common logic and to the everything axiom. A weaker
possibility remains: Might the everything axiom be used to establish that each of
us has an individual notion of everything, even if we have not reached a common
agreement on what everything is? In particular, does my everything axiom establish a
unique universe of discourse for my unrestricted quantification? It does not.

When it is only my own interpretation of the everything axiom that is at issue, there
is no room for ambiguity, or at least so I am prepared to grant. When an object exists,
I can designate it by a constant symbol, and that constant symbol can be substituted
for the schematic letter of the everything axiom to form an instance. That shows that
anything that I take to exist can be in the universe of discourse of one of my quantifiers.
Once again, were there a definite universe of all the instances or potential instances of
the everything axiom, it would also suffice to prove that I have a well-defined individual
sense of unrestricted quantification. But, once again, to assume the existence of such
a universe is to assume that which we were supposed to be using the everything axiom
to verify, and so the everything axiom turns out not to have been of any help.

At this point, we have seen that the argument for the characterizability or learnabil-
ity of unrestricted quantification fails in every form. It fails for absolutely unrestricted
quantification. It fails for unrestricted quantification for an individual or, for the same
reason, unrestricted quantification within a framework or with respect to a sort. It
fails whether or not one allows the presupposition of a universe of unrestricted or even
absolutely unrestricted discourse. It fails whether cast in terms of open-endedness,
maximality, or full schemes. The Hollywood objection survives the attempted refut-
ation unscathed.

Our defence of the Hollywood objection is still not done: Other uses of full
schemes, including the Harris result, succeed, and they block the application of the
Löwenheim–Skolem theorem on which the Hollywood objection has been based.
The Hollywood objection still goes through, but only on the basis of a different result.
To tell that story, I now turn to an analysis of how typical correct uses of full schemes
differ from the applications of the everything axiom that we have been discussing.

5.8.3 Proper Use of Full Schemes

The attempt to employ the everything axiom to characterize the universe of discourse
of unrestricted quantification makes use of the idea that a full scheme commits us to
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every one of its instances. It is important to note that the strategy employed in stand-
ard applications of open-endedness, including the Harris proof of the uniqueness of
the logical operators,⁴² the use of an open-ended induction principle to uniquely char-
acterize the natural numbers, and the use of an open-ended replacement scheme in set
theory does not have comparable defects.⁴³

In typical uses of open-endedness only a single, completely specified instance of
a full scheme is employed. Consider, for example, the Harris proof of the unique-
ness of negation: in the fourth line, φ1,¬1φ1⊢¬2φ2, the ex falso quodlibet rule of
L1 is applied in an open-ended way—it is used to infer the sentence ¬2φ2 of L2.
In the transition from the fifth line to the sixth, the negation introduction rule of
L2 is used in an open-ended way—it is applied even though the sentence ¬1φ1 of
L1 is in the antecedent. To see whether a full scheme is applicable in such cases, in
sharp contrast to the case of the everything axiom, there is no need to have a rigorous
characterization of what instances the scheme yields, and indeed there is no reason to
even be committed to the possibility of such a characterization. It is only necessary
to check a single case. In the cases of interest for the Harris proof of the uniqueness
of negation, one need not look far for reason to accept the necessary instances: as was
noted above in the discussion following the Harris proof the envisioned addition to
the logic L1 looks ‘just like’ L1 and so surely constitutes an acceptable addition to the
language. Analogous considerations suffice for virtually every proposed application of
open-endedness of which I am aware—except for the application of the everything
axiom now being criticized—but I know of no reason why other types of considera-
tions could not turn out to be relevant.

The argument that open-endedness cannot be employed to show that there is a
legitimate context-independent notion of everything or, more precisely, that open-
endedness cannot be employed to defeat a certain objection to that claim, is not a
general objection to, and does not stem from skepticism about, the coherence and
utility of open-endedness. It is based on the unusual way in which open-endedness is

⁴² The fact that the Harris proof of the uniqueness of identity goes through but that no
comparable argument works for unrestricted quantification serves to substantially weaken the
analogy Williamson claims in his contribution to this volume between identity and unrestricted
quantification.

⁴³ I accept the use of open-endedness in the non-defective cases, and that includes the Harris
proof of the uniqueness of the quantifiers. I discuss negation at this point in the text instead of the
quantifiers only because it is more convenient for expository purposes. The Harris proof ensures
only that everything that can be named in a quantificational context is in the universe of discourse of
the quantifiers of that context. (Compare McGee’s (2000, 69) similar assessment, which is repeated
in his contribution to this volume.) The further conclusion that when the quantifiers in a context
are not explicitly restricted, they range over everything, in some well-defined, context-independent
sense of everything, which is the conclusion I dispute, requires more, including the acceptance of
an open-ended version of universal instantiation not employed in the Harris proof. McGee (2000,
69) says, for example, ‘[The rules of inference] ensure . . . that the domain of quantification in a
given context includes everything that can be named within that context. In [contexts in which
there are no restrictions on what can be named], the quantifiers range over everything.’ There is,
on my analysis, an unwarranted jump in that passage from the absence of restrictions on what can
be named to the conclusion that everything can be named, a jump that begs the question against
the Hollywood argument. As I have formalized the argument, it uses the everything axiom, and the
jump is from the open-endedness of the axiom to the use of all of its instances.
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employed in the argument. Moreover, I do not even object, in general, against such a
use of open-endedness. The objection is rather that such a use is question-begging in
the case at hand.

For the everything axiom to be of any use in picking out the universe of discourse
of unrestricted quantification, it would have to pick it out using some particular
instances, not by presuming a well-defined notion of all instances. So far as I am
aware, however, any plausible characterization of a class of instances that does not
illicitly rely on the notion of all (all things, all ordinal numbers, all sets, . . . ) results in
a set I of instances, not a proper class. But then we are in a position to form a Holly-
wood set S that includes I. Since S is not a proper class, it is not E , and the everything
axiom fails to pick out a unique universe of everything that there is.

5.8.4 Hollywood Survives Propriety

I have argued above that the Harris argument shows, making proper use of full
schemes, that logic can be uniquely characterized. I have argued (1999) that, pace
Skolem, we can, by making use of a full schematic replacement axiom for set the-
ory, characterize the following properties up to isomorphism: the property of being
an ordinal, that of being a regular class of ordinals, and the function V (U ) on the
ordinals defined by

V0(U ) = U ,

Vα+1(U ) = Pow(Vα(U )),

Vλ(U ) =
⋃

α∈λ

Vα(U ), when λ is a limit ordinal,

where U is the set of all urelements (that is, non-sets) and Pow is the genuine power-
set operation.⁴⁴

If we take the formal language that is going proxy for natural language to include
full schemes, then the Löwenheim–Skolem theorem will not apply, since it does not
guarantee the existence of a model in which the power-set operation is standard as
is required by full schematic replacement. Thus, to apply a Hollywood argument as
above to show that no set of instances of the everything axiom characterizes every-
thing, I must show that for any set I there is a set S including I that is a proper
elementary substructure of E such that its ordinals and Vα(U )s are all standard, and,
moreover, such that the set of ordinals in S is regular. I shall, for this purpose, view
E as a model of set theory with a set of urelements, possibly with new relations (that
is, other than set membership) on the pure sets. (It is possible to avoid treating E as

⁴⁴ The notion of a regular class of ordinals is not a usual one. It is defined as follows: a class of
ordinals is regular if it is an initial segment of the ordinals and if it has no cofinal subset that can be
put into one-to-one correspondence with a proper initial segment of the class. If a regular class is a
set, then it is a regular ordinal in the usual sense, and an ordinal is a regular class if and only if it is a
regular ordinal in the usual sense. Any class of ordinals is a regular class if and only if it is an initial
segment of the ordinals and the class of all sets that are in the Vα(U )s for the αs in the class satisfies
the full second-order replacement axiom.
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a model, but it significantly complicates the formulation.) New relations might be
definable, for example, as part of mathematical physics—the urelements constituting
the physical universe with their physical relations might, for example, pick out some
dimensionless constants, say, real numbers, which are pure sets. The restriction that
the urelements form a set can be relaxed, but the special case serves to make the gen-
eral point without getting tangled in technicalities concerning urelements. The result
we need is that for every relation R on E , there is a strongly inaccessible cardinal α

such that

〈Vα(U ),∈, R ∩ Vα(U )〉 ≺ 〈E ,∈, R〉,

or at least that result for the particular R of interest.⁴⁵ When that obtains, for suit-
able R, Vα(U ) will be our Hollywood set. But the required result is precisely that the
ordinals form a strongly Mahlo cardinal (Lévy, 1960, compare Kanamori, 1994,
Proposition 6.2, 57) or, more formally, that the following axiom holds:

Every normal function has a strongly inaccessible fixed point.

(Compare Axiom F (Drake, 1974, 115), and see (Drake, 1974) for definitions.) That
axiom has been widely regarded as quite plausible as, indeed has the stronger axiom
that there is a proper class of strongly Mahlo cardinals.⁴⁶

Thus, even given the controversial assumption that there are ways to axiomatize
substantial portions of mathematics that circumvent Skolem’s argument, unrestricted
quantification is still subject to the Hollywood objection. The attempt at characteriz-
ing an unrestricted notion of everything has not succeeded, and it cannot possibly be
patched up to succeed except in the unlikely event that one can defeat widely accepted
hypotheses concerning Mahloness. Of course, the upshot is not that E quantification
is indistinguishable from S quantification, but rather that no one has succeeded in
characterizing or describing or showing that there is a coherent notion of E quanti-
fication.⁴⁷ It is therefore reasonable to conclude, on pragmatic rather than skeptical
grounds, that, absent some compelling need for it in our conceptual economy, the
notion of a fundamental, unrestricted universe of discourse is one it would be better
to do without. I shall canvass reasons that the notion has been thought to be necessary
below, in order to show that it can in fact readily be replaced.

5 .9 UNRESTRICTED QUANTIFICATION IS DISPENSABLE

Now that we have seen that McGee’s arguments against the Hollywood objection
fail, where does that leave us? First of all, of course, the Hollywood objection to

⁴⁵ Shapiro and Wright, in their contribution to this volume, discuss a closely related principle.
⁴⁶ Gödel (1947, 476–7n), for example, said that the existence of Mahlo cardinals is ‘implied by

the general concept of set.’ See (Maddy, 1988, 502, 504n) for discussion and additional references.
⁴⁷ The conclusion is very much like the one Williamson dubs ‘generality absolutism is inarticulate’

in his contribution to this volume. I argue not that there is no consistent theory that purports
to incorporate unrestricted quantification but that there is no informative theory of unrestricted
quantification, that is no theory that does better than simply taking unrestricted quantification as
basic, no theory of how unrestricted quantification could be characterized or learned, or the like.
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everything succeeds. At the outset, I granted that we seem to need the notion of
everything to make general claims like ‘everything is self-identical’, and other more
interesting general philosophical claims. Were that true, we would have to postu-
late everything even though we have found that the notion cannot be unambiguously
characterized. Alonzo Church and Quine have adopted an analogous position about
second-order logic or set theory (Shapiro, 1991, Ch. 8). We would just have to take
everything (that is, more precisely, the possibility of using unrestricted quantification)
to be basic, given, not learnable or subject to further explanation.

Fortunately, the same conceptual clarifications that showed that everything has
not been unambiguously defined show how to live without everything. For example,
given that identity is uniquely characterized by the Harris result, we can express what
‘everything is self-identical’ is intended to express by saying that s = s, where s is a
full schematic letter.⁴⁸ Full schematic generality is the appropriate sort of generality
for many logical, metaphysical, and other philosophical claims, which claims can be
reformulated without loss. We don’t need everything, and so there is no need to adopt
desperate measures to rescue it.

Williamson (2003), has catalogued many truths that he claims cannot be expressed
without using ‘absolutely universal quantification’. I shall run through his list to show
how they can be handled using the generality of full schemes instead of that of uni-
versal quantification. To understand my analysis, it is important to recall that I take
the generality of schemes, including full schemes, to be sui generis, not to be regarded
as defined using quantifiers and that full schemes are stronger than their universally
quantified counterparts, since full schemes express truths encompassing objects that
need not be in the current universe of discourse. The full schemes I shall be consider-
ing will have their universally quantified counterparts over any universe of discourse
as consequences.

The first class of examples Williamson (2003, 423) mentions is that of univer-
sal generalizations falsified by counterexamples. From ‘this page is rectangular’, R(t),
it follows that ¬(∀x)¬R(x), where the quantifier is absolutely unrestricted. (The
example is Williamson’s with the contextual reference of ‘this’ shifted.) I would agree,
were there any reason to think absolutely unrestricted quantification possible. But the
full schematic rules of logic guarantee that ¬(∀x)¬R(x) is true in any universe of dis-
course, given Williamson’s assumption that R(t) is. The word ‘any’ in the preceding
sentence is to be understood as indicating schematic, not quantificational general-
ity. The guaranteed conclusion is¬(∀x ∈ D)¬R(x), where D is a full schematic letter
that is to be replaced by universes of discourse. The scheme ¬(∀x ∈ D)¬R(x) is the
proposed full schematic replacement for Williamson’s¬(∀x)¬R(x). Since quantifiers
have a universe of discourse in any context, we may conclude¬(∀x)¬R(x) in any con-
text, and I take that to explain the basis of the intuition that underlies Williamson’s

⁴⁸ Readers familiar with Parsons’s (1974a, 240, 246–8, 250–1; 1974b, 219–20) proposal,
which he briefly mentions in his contribution to this volume, that statements like ‘everything is
self-identical’ are systematically ambiguous will recognize how strong the affinities are between the
present proposal and his. His reasons, however, which are related to various paradoxes, are very
different from the ones considered here.
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claim. Note that

(∀D)(D is a universe of discourse → R(t) → ¬(∀x ∈ D)¬R(x)),

which is the quantified counterpart of the full schematic claim, doesn’t do the same
job: it is nowhere near general enough, since it only encompasses universes of dis-
course that are in the present universe of discourse.⁴⁹ My version looks odd because
of the explicitly restricted quantifier, but it is in fact a rather normal kind of claim:
we ordinarily use sentences of a system of formal logic in (at least) two ways. One,
we use them to state truths in a particular interpretation. That is how Williamson is
claiming to use the sentence ¬(∀x)¬R(x), in an interpretation with absolutely unres-
tricted quantification. By my lights, he fails, since there is no such interpretation.
Two, we use sentences of formal logic to express something about interpretations of
some kind. The claim ‘¬(∀x)¬R(x) is true in any universe of discourse, given that
R(t) is’, made just above is an example, as is the claim that ‘P ∨ ¬P is true’, when
used as a way of expressing a general fact, absent any particular characterization of
P. My proposed replacement of Williamson’s absolutely unrestricted ¬(∀x)¬R(x),
expressed in that ordinary way, would be ‘¬(∀x)¬R(x), given that R(t)’, which looks
natural, not at all odd. Of course, in the present setting it is also potentially ambigu-
ous in a most undesirable way. The device of full schemes with a schematic letter that
is to be replaced by universes of discourse provides an unambiguous and explicit nota-
tion for such uses of sentences of formal languages.

Williamson’s (2003, 423–4) second class of examples is that of logical truths
and logical consequences of singular premises. His examples include (∀x)¬(R(x) ∧
¬R(x)) and (∀x)(¬R(x) ∨ R(t)) given R(t), and I add (∀x)x = x, all to be understood
as employing absolutely unrestricted universal quantification. Those claims can be
understood, given what was said in the previous paragraph, as attempts to express
facts more appropriately rendered (∀x ∈ D)¬(R(x) ∧ ¬R(x)), (∀x ∈ D)(¬R(x) ∨
R(t)) given R(t), and (∀x ∈ D)x = x, respectively, where D is in each case a full
schematic letter to be replaced by universes of discourse. That is not unreasonable,
but it is unnecessarily complicated, unless one wishes to insist that the generality
being expressed is quantificational: full schemes can be used to express generality dir-
ectly, unmediated by quantification. The general facts supposedly expressed using
unrestricted universal quantification are better rendered ¬(R(s) ∧ ¬R(s)), ¬R(s) ∨
R(t) given R(t), and s = s, respectively, where s is, in each case, a full schematic letter
to be replaced by a term, either closed or open. Universally quantified counterparts
of each of the schemes follow directly from them: in any context in which a universe
of discourse has been fixed, one replaces the schematic letter by a variable and forms
the universal closure. I believe that the full schematic forms come closer to expressing
our pre-theoretic intentions than do the quantified versions, either Williamson’s or
mine. That seems particularly clear in the case of logical truths, since even advocates
of everything have already wanted to take the basic logical truths to be open ended,

⁴⁹ Fine, in his contribution to this volume, seems to conclude that ‘the restrictionist’ cannot
do better than the unsatisfactory quantificational formulation under discussion, and thus that the
restrictionist view is inexpressible. The full schematic formulation expresses what is required.
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that is, to be full schematic. For example, I take ¬(R(s) ∧ ¬R(s)), now generalized
by taking R to be a full schematic letter to be replaced by predicates instead of as hav-
ing the fixed interpretation ‘rectangular’, and s = s, interpreted as before, to be logical
truths not because they hold of absolutely all objects and predicates but rather because
we use them to declare our intention to continue to apply them to whatever we may
ever come to take to be objects and predicates.

Williamson (2003, 424) also considers what he takes to be universal generalizations
we endorse from which we may draw universal consequences, for example, the trans-
itivity of the longer-than relation, which he renders (∀x)(∀y)(∀z)(L(xy) ∧ L(yz) →
L(xz)), where, as usual, he takes the quantifiers to be absolutely unrestricted. He notes
that from L(ab) we can infer (∀x)(L(xa) → L(xb)), whatever a and b are, and where,
once again, the quantifier is absolutely unrestricted. He is right that taking the quan-
tifiers in such claims to be restricted to some universe of discourse or other that is not
comprised of absolutely everything does not do justice to what we are claiming, but
the full schematic formulations L(st) ∧ L(tu) → L(su) and L(sa) → L(sb) do, where
s, t, and u are full schematic letters to be replaced by closed or open terms.

The full schematic versions not only serve as adequate replacements, but have
advantages for other purposes: If ‘longer than’ is vague, then it may not be determined
whether L(ca) is true. In that setting, one can still draw the conclusion L(ca) → L(cb)
from L(sa) → L(sb), and L(st) ∧ L(tu) → L(su) is naturally interpreted as express-
ing our determination to uphold the transitivity of the longer-than relation as we
continue to refine it. The interpretation of full schemes as expressing the intention
to uphold certain principles as the language is refined and expanded thus extends
without modification to their use in expressing the principles by which we constrain
the use of vague predicates. While I do not doubt that it may be possible to use Wil-
liamson’s unrestricted quantificational principle of the transitivity of ‘longer-than’ to
the same end, the application will hardly be routine: it will require providing a theory
of how quantification interacts with vagueness.

Next, Williamson (2003, 436) considers what he calls ‘kind-generalizations’, with
examples ‘Every electron moves at less than the speed of light’, and ‘No donkey
talks’. He takes them to deserve special consideration because it may seem possible
to handle them using only restricted quantification. After all, it is quite reasonable
to think that there is a restricted universe of discourse that includes all donkeys,
and (∀x)(D(x) → ¬T (x)), with quantifiers restricted to such a universe of discourse,
expresses ‘No donkey talks’. His criticism of that maneuver is of no concern here,
since kind-generalizations can be expressed using full schemes without any use of
quantification, restricted or unrestricted, and hence without any need for an appro-
priate restricted universe of discourse for any particular kind, however problematic:
the full schemes E(s) → L(s) and D(s) → ¬T (s), interpreted in the obvious way,
handle the examples without quantification.

Williamson (2003, 438) objects to the use of schemes to represent kind gener-
alizations on the grounds that schemes cannot occur unasserted, for example, neg-
ated or in the antecedent of a conditional. It seems to me that that understates the
force of his objection, which, after all, will apply to every use of schemes to represent
what Williamson contends should be represented using universal quantification:
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the quantified versions can be negated and can appear in the antecedents of con-
ditionals; the schemes cannot. He is perfectly correct. For example, the negation
of (∀x)(D(x) → ¬T (x)) is ¬(∀x)(D(x) → ¬T (x)), ‘there is a talking donkey’, but
the negation of D(s) → ¬T (s) is ¬(D(s) → ¬T (s)), ‘anything is a talking donkey’.
There is apparently no way to say that there is a talking donkey, or anything to the
same effect, without quantifiers.

If ‘¬(∀x)(D(x) → ¬T (x))’ is true, then it is possible to expand the language by a
new constant symbol, say ‘c’, so that ‘D(c) ∧ T (c)’ is true. The sentence ‘D(c) ∧ T (c)’
expresses what is required without unrestricted quantification, which is what we need,
provided we can state a condition to the effect that if anything is a talking donkey,
then c is. Here is the condition: (D(s) → ¬T (s)) ∨ (D(c) ∧ T (c)). We can express
the negation of a full scheme, though not simply by placing a negation sign in front.

The method exemplified suffices to answer the objection. For any full scheme φ(s),
we introduce a new constant symbol c with axiom φ(s) ∨ ¬φ(c) and use ¬φ(c) to
serve as the negation of φ(s). Indirect occurrences other than simple negations are all
reducible to negations. For example, φ → ψ is equivalent to ¬φ ∨ ψ , and so one
can make the appropriate substitution for ¬φ.

The trick sketched suffices to handle the unasserted occurrences Williamson
claimed could only be expressed using unrestricted quantification. There is therefore
no need to postulate unrestricted quantification.

Finally, Williamson (2003, 444–9) argues that one cannot give the semantics for
the universal quantifier without unrestricted quantification, an objection that pre-
sumes that something like the Tarskian semantics are appropriate. I shall, in replying,
adopt that presumption. I have no objection to it, indeed I am inclined to think it cor-
rect for present purposes. I am noting it as a special assumption only because I make
no use of it outside of the present discussion.

In addition to my actual reply, I have available the following brief, unsatisfying
reply: as McGee (2000, 69–71) has shown (see also his contribution to this volume),
the Tarskian semantics for the connectives and quantifiers is derivable from Tarskian
semantics for the nonlogical part of a language (denotations for terms, extensions
for predicates, and a universe of discourse), the assumption that a variable can be
assigned any object in the universe of discourse (or, if one wishes to avoid assump-
tions concerning formulas with free variables, the assumption that the language and
its expansions can be expanded by a constant symbol denoting any object in the uni-
verse of discourse), and the open-ended axioms and rules of logic. As I am entitled
to the hypotheses of McGee’s result, it follows that, not only can I give the Tarskian
semantics for the universal quantifier, I must do so. The reply is fully adequate; it is
only unsatisfying since I haven’t provided the complete derivation. I shall not do so,
since it is far simpler to directly provide the semantics for the universal quantifier than
it would be to derive them on the basis of other assumptions.

Since I take all quantification to be restricted, the universe of discourse will be
determined by a context of use. I can therefore, following Williamson, keep things
simple by taking the context also to determine the interpretations of any constant,
function, and relation symbols.
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The semantics for the universal quantifier are then given by the following clause in
the definition of satisfaction:

The universally quantified formula (∀x)φ is satisfied by assignment a in context C if a is an
assignment for C and, for every member u of the universe of discourse in context C , the for-
mula φ is satisfied by the assignment a

[x
u

]

, the assignment that assigns u to x and agrees with
a on all other variables.

The letters x, φ, a, and C may as well all be taken to be full schematic letters, though
I shall only use the fact that C is a full schematic letter in replying to Williamson. The
language in which the definition of satisfaction is given must be one in which there
is a sufficiently strong background theory available to make sense of the notions of
universally quantified formula, assignment, context, member of the universe of dis-
course of a context, formula, variant assignment, and so forth required to make sense
of the definition of satisfaction. On standard ways of formalizing, a weak theory of
sets will suffice. Note that the only quantifier in the clause is ‘for every member u of
the universe of discourse in context C ’, which has an explicitly specified universe of
discourse.

Williamson (2003, 445) has two related worries about giving the semantics for
the universal quantifier without unrestricted quantification, both of which stem from
from his assumption that the only form of generality available in the absence of unres-
tricted quantification will be restricted quantification. He takes that assumption to
have the consequence that the definition of satisfaction will have to be given in a
fixed context, with a fixed, restricted universe of discourse, which I shall refer to as
the overarching universe of discourse. The first worry is that the semantics will not
work for universes of discourse that are not included in the overarching universe of
discourse. To fix that, one would presumably somehow require that the overarch-
ing universe of discourse include the universe of discourse of the quantifier for which
the semantics are to be given. That leads to the second worry. The overarching uni-
verse of discourse must include everything that can, in any context, be in the uni-
verse of discourse for the quantifier for which the semantics are being presented. That
leaves us with the following dilemma: either the overarching universe of discourse
must include everything, in violation of our stipulation that there is no unrestricted
quantification, or there must be something that is not in the universe of discourse
for the quantifier for which the semantics are being presented in any context, what
Williamson calls a ‘semantic pariah’. Of course, neither alternative is acceptable.

Williamson (2003, 448–9) considers the use of schemes to give the semantics for
the universal quantifier. He takes a scheme to represent a commitment to all of its
instances so that the universe of discourse for the use of ‘all’ implicit in the proposed
semantics for the universal quantifier will have to be an overarching universe of dis-
course in almost exactly the sense of the discussion just above with all of the attend-
ant problems. The semantics for the universal quantifier I have proposed, however,
avoid Williamson’s worries by falsifying his assumption: the full scheme that gives the
semantics for the universal quantifier is not restricted to a single context or universe of
discourse, and so the first worry never arises—different instances of the scheme occur
in different contexts, and the very occurrence of an instance in a context guarantees
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that the requisite universe of discourse is included in the universe of discourse of the
context in which that instance occurs.

In empirical semantics, Williamson claims, one may propose a definition of sat-
isfaction for a language as an empirical hypothesis, and it is therefore necessary to
consider denials and other unasserted occurrences of clauses in a definition of sat-
isfaction as well as assertions of them.⁵⁰ But unasserted occurrences of clauses in a
definition of satisfaction can be handled in the same way as unasserted occurrences of
kind generalizations, discussed above.

Williamson (2003, 424) concludes that ‘unrestricted generality is inescapable’. He
is right. It is. But that provides no reason to think that unrestricted quantificational
generality is inescapable: full schematic generality will suffice, and has a variety of
advantages ranging from simplicity and metaphysical parsimony to the ability to
provide a unified account of a variety of phenomena. Moreover, if the advocate of
unrestricted quantificational generality also employs the notion of open-endedness,
for example to express principles of logic, then the use of full schematic generality
will have no disadvantages, since it will have already in effect been employed for at
least some purposes.

If metaphysics is the study of the general properties shared by all things than meta-
physics is impossible if there isnounrestrictedquantification. (CompareMcGee, 2000,
54; Williamson, 2003, 415.) But it is entirely reasonable to suspect that metaphysics
in that sense is, in fact, impossible. Most metaphysical claims can be expressed per-
fectly well using full schematic generality. One can even express a version of Aristotle’s
conception of ontology as the most general of sciences (Metaphysics Ŵ): ‘The subject-
matter of ontology includes s’. That interpretation, though I am certainly not putting
it forward as a serious contribution to Aristotle scholarship, avoids a problem with the
version that involves unrestricted quantification: the universe of discourse of the unres-
tricted quantifiers is actually infinite, a possibility Aristotle rejected. For example, the
universe of discourse will include, for each line, an actually infinite set of points on it,
which violates Aristotle’s conception that there are potentially, not actually, infinitely
many points on a line. The full schematic version can be used to avoid a commitment
to the actually infinite, which is more in the spirit of what Aristotle intended.

5 .10 LIVING WITHOUT EVERYTHING

What final position do the considerations here suggest? They suggest denying that
there is any such thing as everything, not merely accepting that there is such a thing

⁵⁰ Though nothing in the text relies on it, I am not so sure that the clauses for the logical
operators in a definition of satisfaction do play a role in empirical semantics. The clauses for atomic
sentences and formulas, since they are intimately associated with the denotations of terms and
extensions of predicates, may well play a role in empirical semantics, and the full schematic rules
of logic, since they impose constraints on the use of what have been taken to be logical words,
may well play a role in empirical syntax or, even, perhaps semantics, depending on precisely how
things are carved up. But, granted all that, there is no further role for the clauses in a definition of
satisfaction that are concerned with logical words to play in empirical semantics, since those clauses
will, as McGee has shown, be derivable from the other data.
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but that it is mysterious—not describable or learnable. The denial of everything
apparently has as a consequence

for any discussion there are things that lie outside the universe of discourse of that discussion,

(McGee, 2000, 55) (*)

which can be formalized (∀D)(∃x)¬D(x), a consequence that leads to a contradiction.
Such a contradiction would be, to say the least, a severe problem for the position I am
advocating. However, the consequence is merely

there are things that lie outside D, (**)

where D is a full schematic letter that ranges over universes of discourse, formaliz-
able as (∃x)¬D(x). Once again, a universal quantification has been replaced by a full
scheme. The contradiction evaporates: let A be the present universe of discourse. We
obtain the claim that something lies outside A, (∃x)¬A(x), a claim that evidently must
belong to a new universe of discourse, broader than A.⁵¹

The denial of everything must not commit us to semantic pariahs. That is, we must
apparently be ready to endorse

for each thing o, it is possible to include o in the range of the quantifiers

(Shapiro, 2003, 467),

which employs unrestricted quantification. But it is enough to endorse (∃y)y = s,
where s is a full schematic letter. That is just the everything axiom.

The coherence of the analysis rests on the fact that we have taken full schem-
atic generality to be basic, not dependent upon any form of quantification, and not
dependent upon any universe of discourse. A universe of discourse serves as a universe
for the quantifiers, but places no restrictions on the instances of a scheme. McGee has
made the universe of discourse in his discussion a member of itself by quantifying over
discourses in a discourse that discusses itself, and that leads to the contradiction: the
fact that the present universe of discourse, A, must be in the universe of discourse of
the quantification (∀D) in (*) causes the trouble, since it prevents us from concluding
that certain kinds of discussion of a universe of discourse break out of that universe:
if A were not in the universe of discourse of (∀D), then (*) would not apply to A, and
would thus not be sufficiently general, but if A is in that universe of discourse, then
there is a contradiction. In contrast, the full schematic statement (**), by not men-
tioning its universe of discourse in a context, leaves it coherent to mention that that
universe of discourse is not a member of itself, though doing so inevitably shifts the
context.⁵²

⁵¹ Glanzberg’s contribution to this volume discusses the process of ‘accommodation’ by which
shifts in the universe of discourse are accomplished. His goal is handling examples much like the
one discussed here.

⁵² Williamson (2003, 427–8) argues that anyone like myself who does not accept the possibility
of unrestricted quantification must accept that ‘I am not quantifying over everything’, and argues
that that is self-defeating. But I do not accept that I am not quantifying over everything: Such
acceptance presupposes that there is a coherent, unrestricted notion of everything. Since I deny
the presupposition, I deny the coherence of what Williamson presumes I must accept. He infers
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The context-shifting nature of the full scheme (**) has as a consequence that there
is no single context in which one can assert every one of its instances. Williamson
(2003, 429) complains that that means that the limitation is not ‘fully expressible’ in
any context. Williamson’s notion of ‘fully expressible’ makes implicit use of unrestric-
ted quantification, and his complaint is therefore one with which anyone who does
not endorse unrestricted quantification will have no sympathy. But it seems to me
that in a less tendentious sense of the term, the scheme (**) succeeds in fully express-
ing the fact that any universe of discourse is restricted: any instance of that fact is
expressed by an instance of the scheme, where ‘any’ is to be read as expressing full
schematic, not quantificational, generality. As this example and the analysis of Willi-
amson’s examples above shows, absolutely general thought is perfectly possible in the
absence of unrestricted quantification—the generality of full schemes does all that
is required (contrast Williamson, 2003, 440). Absolute generality need not invoke
the notion of absolutely everything or the allied notion of unrestricted quantifica-
tion: absolutely general statements are those that are preserved across changes in the
universe of discourse.⁵³

5.11 PARADOXES

The point of view adopted here suggests an approach to paradoxes. For brevity, I only
discuss Russell’s paradox: properties are always properties of the elements of a given
universe of discourse. Every property determines a set. But that set need not be in the
original universe of discourse, even when the property is definable in quantificational
terms on it. We can, from that perspective, actually prove that there are things that
lie outside universe of discourse D:

{x ∈ D : x /∈ x} /∈ D

by Russell’s familiar argument. Hence, (∃x)(x /∈ D).⁵⁴ It is part of the approach that
any universe of discourse and any universe of set theory is, in another universe of

that anyone who does not accept the possibility of unrestricted quantification must accept, as a
consequence of ‘I am not quantifying over everything’, ‘something is not being quantified over by
me’. I don’t accept that either. It doesn’t even sound plausible unless one takes the ‘something’ to
be a natural-language form of unrestricted quantification, which, of course, I reject. By my lights,
‘something’ can only mean what ‘something in my present universe of discourse’ does, on which
reading the sentence is obviously false. I am prepared to accept, for a suitable term τ , ‘τ (D) is not in
universe of discourse D’, as discussed below. I take that to express one aspect of the incoherence of
unrestricted quantification, one that Williamson is, with his proposals, groping toward, but it does
so in a way that is not self-defeating.

⁵³ I hope that by this point it is clear that I mean across any change in the universe of discourse in
the full schematic sense of ‘any’, not every change in the universe of discourse in a quantificational
sense.

⁵⁴ The approach itself does not lead to paradox because there is no notion of all universes
of discourse: we cannot anticipate our future universes of discourse, since they may be defined
in languages, and over universes of discourse, not expressible in our present language. Compare
Williamson’s (1998) analogous remarks concerning the liar’s paradox.

We can use absolute schematic generality to generate a contradiction comparable to the one that
plagues the advocate of unrestricted quantification, but it does not pose a problem: suppose we try
to introduce a set r into the language via the full scheme ‘s ∈ r if and only if ¬s ∈ s’, where s is a
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discourse, a set. No illicit quantification over universes of discourse is involved in that
claim, since a suitable new universe of discourse can be defined from the old one.
I do not claim that the approach to the paradoxes is superior, considered solely as
an approach to paradoxes, to one that involves stopping the unfolding of universes
of discourse at some maximum, final, unrestricted universe of discourse. As I said
earlier, I think the two sorts of approaches have, on internal grounds alone, com-
parable virtues. The present approach, of course, avoids commitment to unrestricted
quantification, and I take the tie between the approaches to be broken by the undesir-
able features of unrestricted quantification discussed in the bulk of this paper, features
associated with the Hollywood objection, which are external to the debate about the
consequences of the paradoxes.

I shall discuss two examples of the standoff between the two sorts of approaches
to the paradoxes, the first only briefly. Here it is: Williamson (2003, 434–5) pro-
poses a ‘crucial test’ in the dispute between advocates of unrestricted quantification
and opponents. The advocates are to propose a context that is congenial to unrestric-
ted quantification and defend the claim that quantification in that context is in fact
unrestricted. The opponents are to shift from that context to a new one and demon-
strate that there is something in the new universe of discourse that was not in the
old one. If the dispute is engaged on the grounds provided by the paradoxes, the test
gets us nowhere. The opponent uses some paradox to generate an object not in the
universe of discourse of the original context—in the particular version I have been
exemplifying I would use the collection of all objects in the original universe of dis-
course that are not members of themselves. The advocate then claims that definition
of the object in question employs some principle that begs the question against unres-
tricted quantification—in this case, the principle that one can collect all the objects
in the universe of discourse that are not members of themselves. I then, for example,
take the claim that one cannot collect the objects to be an ad hoc maneuver in defense
of unrestricted quantification. The dance is now complete. It has gotten us nowhere.

The argument against the acceptance of unrestricted quantification that I have
actually employed, based on the Hollywood objection—in contrast to considerations
involving paradox—does not take the form of the proposed test. Given a context
congenial to the advocate of unrestricted quantification, the response is not to shift
to a new context at all, let alone to continue from there by specifying an object in the
new context. It is rather to inquire into the sense in which the context is congenial,
what reason there could be for taking the context to be one in which quantification is
unrestricted. After all, the purpose of language is communication, and so if the con-
text were indeed one in which quantification is to be unrestricted, there would have to
be some feature of the communicative situation in the context, or perhaps of the com-
municative situation in establishing the context, that showed it to be one in which

full schematic letter. We are faced with the familiar contradiction. Fortunately, in contrast with the
paradoxical result for unrestricted quantification, there is no plausible reason or intuition to support
the idea that introducing such an r is legitimate. Though we characterize parts of our language
using full schemes, we do so only as seems useful and well motivated. There do not seem to be any
principles requiring us to allow the use of any particular full schemes, let alone the one for r under
discussion.
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quantification is to be unrestricted. I have, of course, concluded that there can be no
such feature.

Here is the second example of the standoff between the two sorts of approaches
to the paradoxes: Cartwright (1994, 1), a defender of first-order quantification over
everything there is, argues, in my view quite correctly, that to quantify over certain
objects is not to presuppose that they form a collection, and so the fact that certain
objects are all and only the objects in the universe of discourse of some quantifier is
not a reason to conclude that they constitute a set, class, or any other kind of collection
(1994, 8–9). On that basis, he concludes that there is no collection of everything,
though there is a perfectly good universe of discourse that includes everything. That
blocks my assumption that every universe of discourse and every universe of set theory
is, in another universe of discourse, a set, and hence the Russellian proof that something
is outside the universe of discourse comprised of everything (Cartwright, 1994, 12).

While I agree with Cartwright that the fact that certain objects can be quantified
over is not itself a reason to conclude that they constitute a collection, I believe we
have other reasons to take them to constitute a collection. My basic reason is ‘why
not?’ We understand perfectly well what it would be to form a collection of them, and
so, in the absence of a clear reason why our general ability to collect is thwarted when
we try to collect the objects in a universe of discourse, it is ad hoc to deny that they
can be collected just to save unrestricted quantification. Fine, who, like me, rejects
unrestricted quantification—he takes it to be self-defeating—but who, also like me,
takes there to be a rather different sort of absolutely unrestricted generality, expresses
similar sentiments in his contribution to this volume. Shapiro (2003, 469), who ‘allows
unrestricted, absolute first-order quantification’, says that what I say is what the oppo-
nent of unrestricted quantification should say, but that the supporter of unrestricted
quantification will claim that it is question begging (2003, 477), and he and Wright
express similar sentiments in their contribution to this volume. I can cheerfully accept
that the principle that every universe of discourse is a set in another universe of discourse
is question-begging, since it plays no role in my reasons for rejecting unrestricted
quantification. I employ it only after I have already rejected unrestricted quantification
on quite independent grounds connected with the Hollywood objection.

My second reason for accepting that every universe of discourse is a set in another
universe of discourse is mathematical: an important part of the historical motivation
for and present utility of set theory is the desire to provide maximally general notions
of function and collection, so that the domains of applicability of theorems concern-
ing functions and collections can be specified as subcollections of the functions and
collections of set theory. (See Lavine (1994, 7, 28, 30, 35–6, 77) for a brief discus-
sion and references.) On the type of account I have suggested, any collection and any
universe of discourse is a set in some universe of discourse, which gives set theory the
desired absolute generality. Although quantified statements will always have some set
or other as a universe of discourse, there will be no restrictions on what may be a
member of a universe of discourse—we shall in any circumstances be free to extend
the present universe of discourse—and full schemes can be used to make absolutely
general claims. The indefinite extensibility of the notion of ‘set’ can be taken to show
that quantified replacements for such full schemes are inadequate. (Other indefinitely
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extensible notions can be handled within set theory so formulated or treated directly
in an analogous manner.)

For ‘proper classes’, the approach is a familiar one: it is more or less that of Zer-
melo (for a description and references, see Shapiro and Wright’s contribution to this
volume), though expressed in a way less directly tied to a particular theory of sets. It
provides a comparatively straightforward way to understand, for example, proofs of
theorems about ‘all sets’, that is, all sets in a universe of discourse, that are proved
using collections outside that universe of discourse, for instance, proofs by recursion
on ordinals up to twice the length of the class of all the ordinals in the universe of dis-
course. (See Shapiro’s (2003, 471–3) or Shapiro and Wright’s contribution to this
volume for examples of such proofs actually utilized by mathematicians and for dis-
cussion.)

The approach is less familiar for universes of discourse, but it has comparable
advantages: second-order logic on a universe of discourse becomes nothing more than
a fragment of the first-order logic on a universe of discourse in which the first one is
a set. Every interpreted extensional language has, in some universe of discourse, an
ordinary set-theoretic model with a set as its domain of quantification. That means
that many model-theoretic results, including the completeness theorem, apply in
complete generality, which removes the need to provide special versions of them,
proved by essentially the original proofs, for a few supposedly special cases. There is
no need for models with a proper class for the universe of discourse (presented, for
example, by Lévy (1979, 33)) and no need for a separate version of the completeness
theorem for any collection of such models. (Williamson (1999, 135–7) proves such
a completeness theorem, one which he, as an advocate of unrestricted quantification,
must prove separately, imitating the usual proof, but which follows from the usual
proof on the present account.)

Everything is not a communicable or learnable notion, as is shown by the Holly-
wood argument. There is no affirmative reason to believe that everything is a coherent
notion. Moreover, even metaphysicians can do without everything, and so there is
just no need to introduce it as a mysterious but necessary idea. When we add that
denying that there is such a thing as quantification over everything suggests the begin-
nings of an attractive approach to the paradoxes, we see that there is every reason to
believe that there is no such thing as everything.
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6
Sets, Properties, and Unrestricted

Quantification

Øystein Linnebo

6.1 INTRODUCTION

Call a quantifier unrestricted if it ranges over absolutely all things: not just over all
physical things or all things relevant to some particular utterance or discourse but
over absolutely everything there is. Prima facie, unrestricted quantification seems to
be perfectly coherent. For such quantification appears to be involved in a variety
of claims that all normal human beings are capable of understanding. For instance,
some basic logical and mathematical truths appear to involve unrestricted quantifica-
tion, such as the truth that absolutely everything is self-identical and the truth that
the empty set has absolutely no members. Various metaphysical views too appear
to involve unrestricted quantification, such as the physicalist view that absolutely
everything is physical.

However, the set-theoretic and semantic paradoxes have been used to challenge
the coherence of unrestricted quantification. It has been argued that, whenever we
form a conception of a certain range of quantification, this conception can be used
to define further objects not in this range, thus establishing that the quantification
wasn’t unrestricted after all.¹

This chapter has two main goals. My first goal is to point out some problems
with the most promising defense of unrestricted quantification developed to date.
My second goal is to develop a better defense. The most promising defense of unres-
tricted quantification developed to date makes use of a hierarchy of types (Section
6.3). I show that there are some important semantic insights that type-theorists
cannot express in full generality (Section 6.4). I argue that this problem is analog-
ous to those faced by philosophers who deny the coherence of unrestricted quan-
tification. My alternative defense of unrestricted quantification is based on a sharp

I am grateful to Agustín Rayo, Gabriel Uzquiano, Bruno Whittle, and Tim Williamson for valuable
comments on earlier versions of this chapter. Thanks also to audiences at the Universities of Bristol,
Oslo and Oxford and at the Fifth European Congress for Analytic Philosophy in Lisbon, August
2005, for discussion.

¹ See for instance Dummett (1981) ch. 16, Parsons (1974 and 1997), and Glanzberg (2004).



150 Øystein Linnebo

distinction between sets and properties (Section 6.5). Sets are combinatorial entit-
ies, individuated by reference to their elements. Properties are intensional entities,
individuated by reference to their membership criteria. I propose that predicates be
assigned properties as their semantic values rather than sets. This allows us to express
the semantic insights that the type-theorists failed to express. Instead the paradoxes
threaten to re-emerge. I deal with this by imposing a restriction on the property
comprehension scheme—a restriction which I argue flows naturally from the nature
of properties (Section 6.7) and which I prove to be consistent relative to set theory
(Appendix), but which still yields enough properties to allow the desired kind of
semantic theorizing (Sections 6.6 and 6.8).

6 .2 THE SEMANTIC ARGUMENT

I begin by outlining what I take to be the strongest argument against the coherence
of unrestricted quantification. Since this argument is based on a demand for semantic
explicitness, I will refer to it as the Semantic Argument.²

Given any legitimate first-order language L, it must be possible to develop the
semantics of L in a systematic and scientifically respectable way, without impos-
ing any arbitrary restrictions on the ranges of its quantifiers. I will refer to such a
semantic theory as a general semantics. The requirement that any legitimate language
should admit a general semantics is prima facie perfectly reasonable. Granted, it is per-
haps conceivable that Semantic Pessimism should be true: that is, that there should be
legitimate languages whose semantics for some reason cannot be made explicit. But
Semantic Pessimism should be a last resort. In semantics, as well as in any other area
of inquiry, a sound scientific attitude demands that we seek general and informative
explanations until the impossibility thereof has been firmly established.

Assume for contradiction that it is possible to quantify over absolutely everything.
In order to develop a general semantics for L, we need to generalize over interpret-
ations of L’s primitive non-logical expressions. Let ‘P’ be a monadic predicate of L.
Let F be any contentful predicate of our meta-language, which for present purposes
we may assume to be English. Then it must be possible to interpret ‘P’ as meaning F .
Or, to state this claim more precisely, let an interpretation be an assignment of suit-
able semantic values to the primitive non-logical expressions of L. Then there must
exist an interpretation IF such that

(1) ∀x (IF is an interpretation under which ‘P’ applies to x ↔ Fx)

where the universal quantifier ‘∀x’ ranges over absolutely everything.
Now come two more controversial steps, which I label for future reference.

Sem1 An interpretation is an object.
By this is meant simply that interpretations are the kinds of entities that first-order
variables can range over. This seems reasonable, at least at the outset. Given Sem1, it
also seems reasonable to go on and make the following step.

² My formulation of this argument draws heavily on Williamson (2003).
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Sem2 We can define a contentful predicate ‘R’ as follows:
(2) ∀x (Rx ↔ x is not an interpretation under which ‘P’ applies to x)

Having made the steps Sem1 and Sem2, the rest of the argument is uncontroversial.
First we put ‘R’ for ‘F ’ in (1) and apply the definition of ‘R’ from (2) to get

(3) ∀x (IR is an interpretation under which ‘P’ applies to x ↔
x is not an interpretation under which ‘P’ applies to x).

Since the quantifier ‘∀x’ in (3) is assumed to range over absolutely everything, we can
instantiate it with respect to IR to get

(4) IR is an interpretation under which ‘P’ applies to IR ↔
IR is not an interpretation under which ‘P’ applies to IR .

Since this is a contradiction, we must reject the assumption that we can quantify over
absolutely everything.

Suppose that the Semantic Argument works.³ What would this establish? The
answer seems simple enough: it would establish that we cannot quantify over abso-
lutely everything. But let’s attempt to be a bit more precise. When I is an interpreta-
tion of our language, let ∀I and ∃I be the resulting interpretations of the quantifiers.
Let I ⊆ J abbreviate ∀I x∃J y(x = y), that is, the claim that all the objects that exist
according to I also exist according to J . Then if unrestricted quantification is pos-
sible, there must be an interpretation that is maximal in this ordering. But what the
Semantic Argument would establish, if successful, is that there is no such maximal
interpretation but on the contrary, that every interpretation has a proper extension:

(5) ∀I ∃J (I ⊂ J )

where I ⊂ J is defined as I ⊆ J ∧ ¬ (J ⊆ I )
However, things are not as simple as they seem. If the thesis that unrestricted quan-

tification is impossible is true, then this thesis must apply to its own statement as
well. This means that the quantifier ‘∀I ’ cannot be unrestricted but must range over
some limited domain D. But then all (5) says is that every interpretation in the domain
D can be properly extended. But this is compatible with the existence of a maximal
interpretation outside of D. Thus, if we limit ourselves to restricted quantification, we
cannot even properly state the thesis that unrestricted quantification is impossible. In
order to properly state the thesis, we appear to need precisely what the thesis disal-
lows.

We thus appear to be in an unacceptable situation. On the one hand we have
an argument that absolutely unrestricted quantification is incoherent. On the other
hand we appear unable to properly state the conclusion of this argument. Something
has got to give. In what follows I discuss two strategies for defending the coherence
of unrestricted quantification, each based on rejecting one of the premises of the
Semantic Argument.⁴

³ My discussion in this paragraph and the next draws on Fine (2006), Section 2.
⁴ Another strategy, which will not be discussed here, is to look for a way in which the conclusion

of the Semantic Argument can be properly stated after all. For some attempts to carry out this
strategy, see Fine (2006), Glanzberg (2004), and Glanzberg (2006).
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6.3 TYPE-THEORETIC DEFENSES OF UNRESTRICTED
QUANTIFICATION

Can the coherence of unrestricted quantification be defended against the Semantic
Argument? The most promising class of defenses developed to date attempt to use
higher-order logic to undermine the argument’s first premise, Sem1.⁵ This premise,
which says that interpretations are objects, records the fact that we used first-order
variables to range over interpretations. So if we instead use second-order variables to
talk about interpretations, this premise will no longer be true. It has therefore been
suggested that an interpretation be represented by means of a second-order variable
I with the convention that under I , an object-language predicate ‘P’ applies to an
object x just in case I 〈‘P’, x〉.⁶ The definition of the Russell predicate ‘R’ in Sem2
must then be rejected on the ground that it confuses first- and second-order variables.
This blocks the rest of the Semantic Argument.

But it would be premature for a defender of unrestricted quantification to declare
victory.⁷ For a simple modification of the Semantic Argument shows that it isn’t suf-
ficient to admit second-order quantification but that quantification of arbitrarily high
(finite) orders is needed. We see this as follows. The Semantic Argument challenges
us to develop a general semantics for some first-order language L1, say that of ZFC set
theory. The response just outlined develops a general semantics for L1 in a second-
order language L2. However, the Semantic Argument was based on the requirement
that it be possible to develop a general semantics for any legitimate language. Now
clearly, if the above response to the Semantic Argument is to succeed, the language L2

must itself be legitimate. But then the Semantic Argument will require that a general
semantics be developed for L2 as well.

In order to do this, we need to adopt a language that is more expressive than L2.
For in order to develop a general semantics for L2, we would among other things have
to give a theory of truth for the language L2 of second-order ZFC when its first-order
quantifiers range over absolutely all sets. But by Tarski’s theorem on the undefinabil-
ity of truth, this cannot be done within L2 itself. The most natural thing to do at this
point is to adopt an extended language L3 that includes third -order quantification as
well. The argument just given can then be applied to L3. Advocates of the response

⁵ This kind of defense of unrestricted quantification was given a clear and powerful statement in
Boolos (1985), has since been endorsed in Cartwright (1994) and Lewis (1991), and has recently
been developed with quite a lot of technical and philosophical detail in Rayo and Uzquiano (1999),
Williamson (2003), Rayo and Williamson (2003), and Rayo (2006).

⁶ As shown in Rayo and Uzquiano (1999), we can also define a satisfaction predicate which
holds of an interpretation I and the Gödel number of a formula φ just in case I satisfies φ. But
this will require not only second-order quantification but second-order predicates (that is, predicates
that apply to second-order variables in the same way as first-order predicates apply to first-order
variables).

⁷ This is openly acknowledged by at least some of the defenders of this response. See for instance
the papers by Rayo, Uzquiano, and Williamson cited in footnote 5.
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based on second-order logic will in this way be forced up through the hierarchy of
higher and higher levels of quantification.⁸

This response will thus need at least what is known as simple type theory (or ST
for short). In the language LST of this theory, each variable and each argument place
of every predicate has a natural number as an upper index. These indices are called
types. A formula is well-formed only if its types mesh, in the sense that only variables
of type n occur at argument places of type n, and that only variables of type n+ 1
are predicated of variables of type n.⁹ The theory ST contains the usual rules for the
connectives and quantifiers, as well as a full impredicative comprehension scheme for
each type.

How should advocates of this response (or type-theorists as I will henceforth call
them) interpret the formal theory ST? There are two main alternatives, one based on
plural quantifiers, and another based on quantification into concept position. I will
refer to the former as pluralism and the latter as conceptualism.

Pluralism uses as its point of departure George Boolos’s interpretation of second-
order quantifiers in terms of natural language plural quantifiers: ‘∀v2 . . .’ is rendered
as ‘whenever there are some things vv then . . .’, ‘∃v2 . . .’ as ‘there are some things
vv such that . . .’, and predication v2(v1) as the claim that v is one of vv (in sym-
bols v ≺ vv). But what about quantifiers of orders higher than two? For instance, in
order to extend Boolos’s idea to third-order quantifiers we would need quantifiers
that stand to ordinary plural quantifiers as ordinary plural quantifiers stand to sin-
gular quantifiers. Let’s call such quantifiers second-level plural quantifiers. Do such
quantifiers exist? The answer may be negative if by ‘existence’ we here mean existence
in natural language. However, existence in natural language is at best a sufficient cri-
terion for something to be a legitimate device in semantic theorizing; it is certainly
not a necessary condition. This opens the possibility of independent arguments for
the legitimacy of higher-level plural quantifiers.¹⁰

Conceptualism interprets the formal theory ST in a much more Fregean way: the
second-order quantifiers range over ordinary concepts taking objects as their argu-
ments, third-order quantifiers over concepts of such concepts, and so on. But when
glossing this interpretation, the conceptualist has to be stricter than Frege himself was.

⁸ Strictly speaking, the situation is a bit more complicated. A language with n-th order
quantification may or may not contain predicates taking n-th order variables as arguments. If it does
(doesn’t), let’s say that it is a full (basic) n-th order language. We can then prove that one cannot
develop a general semantics for a basic (full) n-th order language in any basic (full) n-language,
but that one can develop a general semantics for a basic n-th order language in a full n-th order
language and for a full n-th order language in a basic (n+ 1)-th order language. For discussion, see
Rayo (2006). But my claim remains valid: The requirement that it be possible to develop a general
semantics for any permissible language forces advocates of the second-order response up through
the hierarchy of types.

⁹ That is, whenever we have an expression of the form �v1(v2)�, where v1 and v2 are variables,
then the type of v1 is one higher than that of v2. (Throughout this chapter, meta-linguistic variables
will be indicated by means of boldface.)

¹⁰ Such arguments are given in Hazen (1997), Linnebo (2004), and (at greater length) Rayo
(2006).
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For instance, the conceptualist cannot say that the second-order quantifiers range over
concepts; for both argument places of the predicate ‘ranges over’ are first-order and
hence apply only to objects. It therefore seems that the conceptualist interpretation
of the language of higher-order logic can be adequately explained only using LST

interpreted in precisely the way at issue. One prominent conceptualist, Timothy Wil-
liamson, therefore suggests that ‘[w]e may have to learn [higher-order] languages by
the direct method, not by translating them into a language with which we are already
familiar’.¹¹

6.4 A PROBLEM WITH THE TYPE-THEORETIC DEFENSES

I will now argue that all type-theorists face a serious problem: On their view, there are
certain deep and interesting semantic insights that cannot properly be expressed.¹²

These insights all involve the notion of a semantic value, which plays a fundamental
role in modern semantics and philosophy of language. Very briefly, this notion can
be explained as follows. Each component of a sentence appears to make some definite
contribution to the truth or falsity of the sentence. This contribution is its semantic
value. It further appears that the truth or falsity of the sentence is determined as a
function of the semantic values of its constituents. This is the Principle of Compos-
itionality. In classical semantics, the semantic value of a sentence is taken to be its
truth-value, and the semantic value of a proper name is taken to be its referent. Once
we have fixed the kinds of semantic values assigned to sentences and proper names,
it is easy to determine what kinds of semantic values to assign to expressions of other
syntactic categories. For instance, the semantic value of a monadic first-order predic-
ate will have to be a function from objects to truth-values.

We have seen that the type-theorists respond to the Semantic Argument by denying
Sem1, which says that interpretations are objects. We have also seen that this forces the
type-theorists up the hierarchy of higher and higher levels of quantification. This com-
mits the type-theorists to a deep and interesting semantic view. On this view, proper
names make a distinctive kind of semantic contribution to sentences in which they
occur, namely the objects to which they refer. Likewise, monadic first-order predicates
make a distinctive kind of semantic contribution: loosely speaking, a function from
objects to truth-values, but, according to the type-theorists, properly represented only
by means of second-order variables. And so it continues up through the types: for each
natural number n, monadic n’th-order predicates make a distinctive kind of semantic
contribution, properly represented only by means of (n+ 1)’th-order variables. The
type-theorist is therefore committed to generalizations of the following sorts.

• Infinity. There are infinitely many different kinds of semantic value.
• Unique Existence. Every expression of every syntactic category has a semantic value

which is unique, not just within a particular type, but across all types.

¹¹ See Williamson (2003), p. 459, where this claim is made about second-order languages. But his
‘fifth point’ on p. 457 makes it clear the same has to hold of higher-order languages more generally.

¹² Similar arguments are familiar from the literature. For a nice example, see Gödel (1944),
p. 466.
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• Compositionality. The semantic value of a complex expression is determined as a
function of the semantic values of the expression’s simpler constituents.

However, type-theorists are prevented from properly expressing any of these insights.
For according to type-theory itself, no variable can range over more than one level of
the type-theoretic hierarchy. But the above insights essentially involve generalizations
across types. Type-theorists thus face expressive limitations embarrassingly similar to
those that they set out to avoid in the first place.¹³

Can the type-theorists express the relevant insights in a more devious way? One
suggestion is that, although these insights cannot be said straight out, they can nev-
ertheless be shown, say by the logical forms of the things that can be properly said.
(A similar view is often attributed to Wittgenstein’s Tractatus.) Another suggestion is
that the relevant insights can be expressed in what Carnap calls ‘the formal mode,’
that is, by talking about the type-theoretic distinctions only at the level of syntax,
never at the level of semantic values. However, it seems doubtful that the former
suggestion can be developed without resorting to unpalatable mysticism, and the lat-
ter, without denying the possibility of semantics in any sense worthy of the term.
Moreover, both suggestions run completely counter to the spirit of the Semantic
Argument. By giving up on semantic explicitness, these suggestions have much more
in common with the view that I called Semantic Pessimism.

A third and more promising suggestion is that the generalizations in question can
be expressed by some sort of schematic generality. This was the idea behind Russell’s
notion of typical ambiguity. But this suggestion too is problematic. Firstly, a notion of
schematic generality would have to be developed which doesn’t collapse to ordinary
universal quantification. Given that the two sorts of generality are subject to the same
introduction and elimination rules, it is unclear whether this can be done. Secondly,
since schematic generalities involve free variables but not quantifiers, they yield the
expressive power of universal quantification but not of existential.¹⁴ But each of the
above three generalizations about the type-theorists’ hierarchy make essential use of
existential quantifiers in addition to universal ones. Moreover, this expressive limit-
ation means that claims involving schematic generality cannot properly be negated
or figure in the antecedents of conditionals. This sits very poorly with the spirit of
semantic explicitness associated with the Semantic Argument.

It seems to me that the problem is best dealt with head on by avoiding all type-
theoretic restrictions. The simplest option is obviously to avoid going type-theoretic
in the first place. But it is not unreasonable to hold that natural language and the
refinements thereof that are used in mathematics have a type-theoretic structure.
Even if this is granted, however, we still have the option of lifting all type-restrictions

¹³ For instance, Williamson (2003) argues that theorists who deny the coherence of absolutely
unrestricted quantification cannot properly express the claim that absolutely no electron moves
faster than the speed of light. But it can likewise be argued that theorists who deny the coherence
of quantification across types cannot properly express Unique Existence, as this would require
expressing the claim that, one exception apart, absolutely nothing (regardless of type) is a semantic
value of some given expression.

¹⁴ More precisely, schematic generalities can formalize �1
1-statements but not �1

1 or anything
more complex.
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associated with our object-language when we describe its semantics in some meta-
language. We do this by allowing the first-order variables of the meta-language to
range over all semantic values assigned to expressions of the object-language, regard-
less of the expressions’ type. I will refer to this move as a nominalization. (The phe-
nomenon of nominalization is familiar from the syntax of natural language, where it
is often permissible to convert an expression that isn’t a singular term (for instance
‘. . . is red’) into one that is (in this case ‘redness’).)

But the suggestion that we carry out a thoroughgoing nominalization when devel-
oping the semantics of our object-language comes at a cost. The cost is the reinstate-
ment of the first premise Sem1 of the Semantic Argument; for the first-order variables
of the meta-language will then be allowed to range over interpretations. This will
remove the type-theorists’ defense against paradox. To avoid paradox, by far the most
natural move will then be to reject the second premise Sem2, which allows the form-
ation of the Russell-entity. But this rejection must not be some ad hoc trick invented
merely to avoid paradox. Ideally, the rejection should be based on restrictions that
are natural given a proper understanding of the entities in question. This is obviously
a tall order. In what follows I will attempt to find and defend such a natural way of
rejecting Sem2. Although this undertaking is fraught with difficulties, it can hardly be
denied that it deserves to be explored. For as we have seen, the main alternatives all
involve some degree of Semantic Pessimism. And although we have no a priori guar-
antee that the kind of semantic explicitness that we desire is possible, this is no excuse
for not exploring potentially attractive ways in which it may be achieved.

6 .5 SETS AND PROPERTIES

Given that we have rejected the type-theoretic responses, we have no choice but to
take the semantic value of a predicate to be an object of some sort. Moreover, given
that we want to allow quantification over absolutely everything, we have no choice
but to accept that a predicate can be true of absolutely everything. Such a predicate
must thus have as its semantic value an object that somehow collects or represents
absolutely all objects, including itself.

Existing attempts to allow such objects have, as far as I know, always suggested that
we trade traditional ZFC set theory for some alternative set-theory that allows uni-
versal sets. Such suggestions have been very unpopular, and rightly so. Traditional
ZFC set theory is an extremely successful theory, which rests on a powerful concep-
tion of what sets are, namely the iterative conception.¹⁵ By contrast, all known set
theories with a universal set, such as Quine’s New Foundations,¹⁶ are not only tech-
nically unappealing but have lacked any satisfactory intuitive model or conception of

¹⁵ It has been argued that the iterative conception of sets favors a set-theory somewhat different
from ZFC. For instance Boolos (1971) argues that it favors Zermelo set-theory Z. But nothing
in what follows turns on precisely ZFC being the theory that is most naturally motivated by the
iterative conception.

¹⁶ See Quine (1953) and Forster (1995).
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the entities in question. It would therefore be folly to trade traditional ZFC for one
of these alternative set theories.

But recall that what is needed is an object that ‘somehow collects or represents
absolutely all objects.’ Why does this object have to be a set? After all, this object is
needed as the semantic value of a certain predicate, and predicates are more plausibly
taken to stand for concepts or properties than to stand for sets. For a predicate is
associated with a condition that an object may or may not satisfy, and such conditions
are more like concepts or properties than like sets. For instance, such conditions can
be negated. Since concepts and properties have complements whereas (ordinary) sets
don’t, this means that conditions are more like the former than the latter. In fact, since
(ordinary) sets don’t have complements, they are extremely poorly suited to serve as
the semantic values of predicates. So rather than replacing standard ZFC set theory
with a non-standard set theory with a universal set, perhaps it is better to supplement
it with a theory of properties, which can then include a property that is absolutely
universal? We can then take interpretations to be countable sets that map well-formed
expressions to their semantic values, and we can insist that predicates be mapped to
properties rather than to sets. The challenge confronting us is then to articulate a
conception of properties which ( just like that of sets) is independently appealing, and
which justifies enough properties to serve the semantic needs that we have delineated.

I will now argue that sets and properties relate to objects in very different ways,
each of which is independently legitimate and interesting.¹⁷ A set relates to objects in
a combinatorial way by combining or collecting many objects into one. Each object
among the many objects that are collected into a set is said to be an element of this
set. It is essential to a set that it has precisely the elements that it in fact has: this set
could not be the object it is had it not had precisely these elements. A property relates
to objects in an intensional way by specifying a universally defined condition that an
object must satisfy in order to possess the property. It is not essential to this property
that it applies to precisely those objects to which it in fact applies. Rather, it is essen-
tial to the property that it applies to all and only such objects as satisfy the condition
associated with the property: this property could not have been the property it is had
it not applied to all and only such objects.

My defense of these claims will make use of a theory of individuation. This theory
will be stated in a way that is sufficiently abstract to be shared by most philosophers
who believe in a theoretically interesting notion of individuation. To produce a fully
satisfactory account of individuation, this account would obviously have to be fleshed
out and defended. But since the present article can afford to remain neutral on these
difficult issues, I will not attempt to do so here.¹⁸

According to our abstract theory, individuation is based on two elements. Firstly,
for every sort of object that can be individuated, there is a class of fundamental
specifications of such objects. To use Frege’s classic example, directions are most

¹⁷ My distinction between sets and properties is inspired by a similar distinction that Charles
Parsons draws between sets and classes. See especially Parsons (1974) and Parsons (1977).

¹⁸ For one attempt to flesh out and defend the abstract theory of individuation described below,
see my Linnebo (forthcoming).
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fundamentally specified by means of lines or other directed items. Secondly, for every
sort of object that can be individuated, there is an equivalence relation on the fun-
damental specifications of such objects which states when two such specifications
determine the same object. Continuing with Frege’s example, the equivalence rela-
tion associated with directions is that of parallelism: two lines or other directed items
determine the same direction just in case they are parallel. I will refer to such equi-
valence relations as unity relations. I will say that a specification and a unity relation
individuates the object that the former determines in accordance with the latter.

Let’s apply this theory to sets. A set is most fundamentally specified by means of
a plurality of objects. Such pluralities can be represented by plural variables (as in
Section 6.4).¹⁹ Let’s write F(uu, x) for the claim that uu form a set x; that is, that
there is a set x whose elements are precisely the objects uu. It is standardly thought
that some pluralities are ‘too large’ to form sets. But when two pluralities do form
sets, the extensionality of sets requires that these sets be identical just in case the plur-
alities from which they are formed encompass precisely the same objects. I therefore
claim that sets are individuated in accordance with the following principle:

F(uu, x) ∧ F(vv, y) → [x = y ↔ ∀z(z ≺ uu ↔ z ≺ vv)]²⁰(Id-Sets)

Since sets are bona fide objects, they may themselves be among the objects that make
up a plurality. This means that the process of forming sets can be iterated. Moreover,
since any object can be among the objects that make up a plurality, we must modify
standard ZFC set theory so as to allow urelements. Let ZFCU be like ZFC except
that the axiom of Extensionality is restricted so as to apply only to sets.²¹

A property F is said to be essential to an object x just in case x must possess F in
order to be the object it is.²² The above account of how sets are individuated explains
why it is essential to a set that it have the elements that it in fact has, and why any
characteristics by means of which these elements are specified need not be essential to
the set. To see this, let x be a set, and let uu be some objects that jointly form this set.
Then an object y cannot be identical with x unless y is a set formed by some objects vv
such that ∀z(z ≺ uu ↔ z ≺ vv). This means that y cannot be identical with x unless
y has precisely the same elements as x. But since vv can be specified by means of char-
acteristics completely different from those used to specify uu, it need not be essential
to x what characteristics its elements have.²³

¹⁹ For an elegant use of plural logic to motivate the axioms of ZFC, see Burgess (2004). Like
Burgess, I allow ‘degenerate’ pluralities consisting of only one or zero objects.

²⁰ In my Linnebo (unpublished) I defend the heretical view that every plurality forms a set. I
avoid paradox by formulating and defending a restriction on the naive plural comprehension scheme
(which says that for every condition, there are some things which are all and only the things that
satisfy this condition). Let σ (uu) be the set formed by uu. Sets are then individuated in accordance
with the following, simpler principle: σ (uu) = σ (vv) ↔ ∀z(z ≺ uu ↔ z ≺ vv).

²¹ Unlike some axiomatization of ZFCU, ours will not have an axiom postulating the existence
of a set of all urelements. The reason is that we want to allow there to be as many properties as there
are sets.

²² See Fine (1994).
²³ However, if it is essential to one of x’s elements that it possess some characteristic, it will be

essential to x that it has an element with this characteristic. (Fine calls such properties mediately
essential.)
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Turning now to properties, we begin by observing that it suffices for present pur-
poses to consider monadic properties. For we will always be working in theories that
allow the formation of sets, which means that an n-adic property can be represented
as a monadic property of (set-theoretic) n-tuples. So officially I will henceforth only
operate with monadic properties. But unofficially I will still often talk about polyadic
properties or relations, with the understanding that these are represented in the way
just described.

It is useful to approach properties by way of concepts, roughly in the sense of Frege
(or of the conceptualist of Section 6.3). A concept is most fundamentally specified by
means of some completely general condition. By ‘condition’ I mean any meaningful
one-place predicate, possibly with parameters. An account of what it is for a condi-
tion to be completely general will be given in Section 6.7. Next, two completely gen-
eral conditions φ(u) and ψ(u) determine the same concept just in case they stand in
some suitable equivalence relation, which I will write as Eqvu(φ(u), ψ(u)). For present
purposes, all we need to assume about this equivalence relation is that it cannot be
coarser than co-extensionality; that is, if Eqvu(φ(u), ψ(u)), then ∀u(φ(u) ↔ ψ(u)).
(Why this requirement suffices will become clear shortly.) Concepts are then indi-
viduated as follows:

(�) �u.φ(u) = �u.ψ(u) ↔ Eqvu(φ(u), ψ(u))

It is important to bear in mind that the �-terms are second-order terms.²⁴ An object
x is said to fall under a concept �u.φ(u) just in case φ(x).

This account of how concepts are individuated shows their essential properties to
be very different from those of sets. For the identity of a concept �u.φ(u) is essentially
tied to its condition of application φ(u). Had there been other objects satisfying the
condition φ(u) than there actually are, then these objects too would have fallen under
the concept �u.φ(u). And had some of the objects that actually satisfy the condition
φ(u) not done so, then they would not have fallen under this concept �u.φ(u). So
the essential properties of a concept have to do with the condition that an object must
satisfy in order to fall under the concept, not with those particular objects that happen
to satisfy this condition. For instance, it is essential to the universal concept �u. (u =
u) that absolutely every object fall under it.

Next, observe that basic logical operations such as negation, conjunction, and exist-
ential generalization preserve the complete generality of conditions to which they are
applied; for instance, the negation of a completely general condition will in turn be a
completely general condition. This means that the realm of concepts is closed under
the algebraic counterparts of these logical operations. (These algebraic operations will
be described in more detail in the next section.) This in turn means that concepts,
unlike sets, are well suited to serve as the semantic values of predicates.

²⁴ It may therefore be objected to (�) that identity is a relation that can only hold between
objects, not between concepts. I have no quarrel with this view provided it be conceded that there
is a (second-order) relation on (first-order) concepts which is analogous to identity in that it is an
equivalence relation which supports the analogue of Leibniz’s Law. I will henceforth ignore this
complication and talk as if concepts can be identical.
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Let’s now attempt to nominalize concepts, that is, to bring concepts into the range
of the first-order variables. We must then replace the second-order �-terms with ana-
logous first-order λ-terms. I will refer to the resulting entities as properties. I use this
label solely because in English the nominalization of a concept is often called a prop-
erty. For instance, the nominalization of the concept involved in ‘Fido is a dog’ is
the property of being a dog. It is important to leave aside other philosophical con-
notations of the word ‘property’. In what follows the word will be used exclusively
in the sense of a nominalization of a concept. Properties are then individuated by the
following first-order counterpart of (�)

(λ) λ u . φ(u) = λu.ψ(u) ↔ Eqvu(φ(u), ψ(u))

with some suitable restriction on the conditions φ(u) and ψ(u) to avoid paradox.
Next we introduce a predicate P to be true of all and only properties by laying

down the following axiom scheme:

(P) P ( λ u.φ(u))

We also define the relation η of property possession by laying down:

(η) v η λ u.φ(u) ↔ φ(v)

Note that the predicates P and η aren’t explicitly defined but that their meanings will
depend on what properties there are. This will become important towards the end of
this chapter.

Because properties are just nominalized concepts, they inherit from concepts their
essential properties, namely their conditions of application. This means that prop-
erties and sets have completely different essential properties, which in turn means
that no property can be a set and that the two relations ∈ and η are fundamentally
different.

Since my concern in this paper is chiefly with pure mathematics and its semantics,
a simplification is possible. In pure mathematics there appears to be no difference
between truth and necessary truth. It is therefore customary to regard all mathem-
atical concepts as extensional. I will therefore assume that the equivalence relation
Eqvu(φ(u), ψ(u)) is simply that of co-extensionality. Although the ensuing properties
will behave slightly oddly on objects whose existence is contingent, this is irrelev-
ant to our present concerns.²⁵ With this simplification, properties are individuated
as follows:

(V ) λ u . φ (u) = λ u .ψ(u) ↔ ∀u(φ(u) ↔ ψ(u))

Since this is just Frege’s famous Basic Law V, some restriction will have to be imposed
on the conditions φ(u) and ψ(u) so as to avoid paradox. The task of finding and
defending some such restriction will be our concern in Section 6.7.

²⁵ My commitment to calling the resulting entities ‘properties’ is not very deep anyway. Perhaps
it would be better to call them ‘extensions.’ But this too is potentially confusing, as there is a long
tradition of taking extensions to be sets.
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It is often advantageous to adopt an axiomatization of our theory of properties dif-
ferent from the one based on (P), (η), and (V). We can do this by ‘factoring’ (V) into
two components, one representing its existential import, the other representing its
criterion of identity for properties. The first component consists of a property com-
prehension scheme that specifies what properties the theory is committed to. That is,
for every suitable condition φ(u) we include an axiom stating that it defines a prop-
erty:

(V ∃) ∃x[Px ∧ ∀u(u η x ↔ φ(u))]

The second component consists of the following axiom that provides a criterion of
identity for properties:

(V =) Px ∧ Py → [x = y ↔ ∀u(u η x ↔ u η y)]

This axiomatization uses the predicates P and η as primitives but does away with λ.
We may still use the λ-notation, however, subject to the contextual definition that
ψ[λu.φ(u)] be understood as short for ∃x[∀u(u η x ↔ φ(u)) ∧ ψ(x)].

6 .6 A GENERAL SEMANTICS FOR FIRST-ORDER
LANGUAGES

I will now show how a theory of both sets and properties allows us to develop a gen-
eral semantics for first-order languages. I will define the notion of an interpretation
of a first-order language and outline some simple applications of it. As will become
clear shortly, I will take an interpretation to be a set-theoretic function that maps
well-formed expressions to their semantic values, some of which are properties. The
resulting semantics illustrates how beautifully sets and properties can interact.

A first-order language with identity is a language L of the following form. The simple
expressions of L divide into logical constants, non-logical constants, and variables. The
logical constant are the connectives ¬, ∧, and ∃, as well as the predicate =. These
expressions have a fixed interpretation (as respectively negation, conjunction, exist-
ence, and identity). The non-logical constants of L divide into names ai and n-ary
predicates F n

i (where i < ω and 0 < n < ω). Being non-logical, these expressions are
assigned different values by different interpretations. Finally, L has first-order vari-
ables xi for i < ω. On the semantics to be developed, a variable is a mere place-holder
and will as such not be assigned any semantic value on its own. A singular term is
either a name or a variable. An atomic formula is an n-ary predicate applied to n sin-
gular terms. Something is a formula just in case it is either an atomic formula or can
be obtained from formulas in the usual way by means of negation, conjunction, or
existential generalization.

A lexicon for a first-order language L is a set-theoretic function that assigns to each
of L’s non-logical constants (but not to the variables) an appropriate semantic value:
to each name an object, and to each predicate a property (which is just a special kind
of object). An interpretation of a language L is a set-theoretic function that maps any
well-formed expression of L to an appropriate semantic value in a way that respects
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the expression’s logical structure (of which more shortly).²⁶ An interpretation of a lan-
guage L satisfies an L-theory T just in case all the axioms of T come out true under
this interpretation.

Our first goal is to extend a given lexicon I− to an interpretation I . The obvious
way to proceed is by recursion on the formation rules of L. We begin by interpret-
ing an atomic formula φ of the form P(t0, . . . , tn). Assume the variables among the
singular terms ti are xi0 , . . . , xik for some k ≤ n. Assume also that these variables are
naturally ordered, in the sense that ip < ip+1 for each p < k. Where J is a lexicon or
an interpretation, let [[E]]J abbreviate J (E); where there is no danger of confusion,
the subscript will be dropped. For such J , we also define the following translation
of terms into the meta-language (which we assume to have the same variables as the
object-language L):

ti
J =

{

ti if ti is a variable

[[ti]]J if ti is a name

The interpretation [[φ]]I of the atomic formula φ is then defined by the universal gen-
eralization of the following formula:

(IAt) 〈xi0 , . . . , xik 〉 η [[φ]]I ↔ 〈t0
I− , . . . , tn

I−〉 η [[P]]I−

If on the other hand the singular terms ti are all names, then [[φ]]I won’t be a prop-
erty but a truth-value. Assume the truth-values are represented by the numbers 1 and
0 (which may in turn be represented by sets). In this special case, the left-hand side
of (IAt) must be replaced by ‘[[φ]]I = 1’. To see that (IAt) and the special case just
mentioned are reasonable definitions, it helps to consider some simple examples. For
instance, according to (IAt) the semantic values of the atomic formulas F 2

0 (x1, x0) and
F 2

0 (a0, x0) are given by the universal closures of the following formulas:

〈x0, x1〉 η [[F 2
0 (x1, x0)]] ↔ 〈x1, x0〉 η [[F 2

0 ]]

x0 η [[F 2
0 (a0, x0)]] ↔ 〈[[a0]], x0〉 η [[F 2

0 ]]

This is as one would expect: [[F 2
0 (x1, x0)]] is the converse of [[F 2

0 (x0, x1)]] (= [[F 2
0 ]]), and

[[F 2
0 (a0, x0)]] is the property obtained by assigning [[a0]] to the first argument place of

the relation [[F 2
0 ]].

To describe the recursion clauses for formulas in general, it is useful to let �x abbre-
viate strings of variables of the form 〈xi0 , . . . , xik〉. The semantic values of formulas in
general are then given recursively by the universal closures of the following formulas

(I¬) �x η [[¬φ]] ↔ ¬(�x η [[φ]])

(I∧) �z η [[φ ∧ ψ]] ↔ (�x η [[φ]]) ∧ (�y η [[ψ]])

(I∃) �x0 η [[∃vφ]] ↔ ∃v(�x η [[φ]])

²⁶ To keep things simple, I will not consider interpretations that restrict the ranges of the
quantifiers to a property x. But this would be a straightforward modification.
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where �x is the tuple of variables occurring in φ, �y is the corresponding tuple for ψ , �z is
the tuple of variables occurring in the conjunction φ ∧ ψ , and finally �x0 is as �x except
with v removed. We must also add special clauses for the cases where the formulas are
sentences, ensuring that these sentences are assigned the right truth-values.

We would now like to formalize semantic theorizing about the object-language L.
The following two formal languages will be particularly important in this undertak-
ing.

Definition 1

(a) Let L0 be the language of ZFCU, that is, the first-order language with identity
whose only non-logical constant is the set membership predicate ∈.

(b) Let L1 be as L0 except for containing an additional non-logical predicate con-
stant η for property possession. We will also use the λ-notation, subject to the
contextual definition that ψ[λu.φ(u)] be understood as short for ∃x[∀u(u η x ↔
φ(u)) ∧ ψ(x)].

Given that our semantic theorizing involves both sets and properties, it is natural to
base our meta-theory T on L1.

Our first task will be to convert the above implicit definition of an interpretation
(relative to some given lexicon) into an explicit definition. Assume our meta-theory
T contains enough set theory to handle n-tuples and to carry out set-theoretic recur-
sion on syntax. Then, on the assumption that T contains enough axioms to ensure
the existence of the requisite properties, we can simply use set-theoretic recursion on
syntax to provide an explicit definition of the interpretation I . This is an example
of how nicely sets and properties interact. Note in particular that this construction
would have been impossible had concepts not been nominalized to properties. For
the elements of a set are always in the range of first-order variables.

Precisely what axioms concerning properties must T contain? In general terms the
answer is that T must contain enough axioms to ensure the existence of all the prop-
erties invoked in the above recursion clauses. But let’s be more specific. First we need
the existence of a property i to interpret the identity predicate, that is, a property had
by all and only ordered pairs of the form 〈u, u〉. Then we need a series of axioms that
ensure that the realm of properties is closed under some simple algebraic operations
corresponding to the logical operations that are used in the recursion clauses. These
will be operations such as permuting the argument places of a property, evaluating a
property of n-tuples at some particular object in one of its argument places (both of
which are crucial for the clause governing atomic formulas), taking the complement
of a property (which is crucial for negation), taking the intersection of two proper-
ties (which is crucial for conjunction), projecting a property of n-tuples onto all but
one of its axes (which is crucial for the existential quantifiers), and taking the inverse
of a projection (which is needed for the conjunction of two formulas with different
variables). Let’s call these the basic operations. The previous section explained why it
is reasonable to assume that the realm of properties is closed under these operations.
An appendix will provide a proper consistency proof.



164 Øystein Linnebo

Definition 2

(a) Let the minimal theory of properties, V−, be the L1-theory whose non-logical
axioms are (V=), a comprehension axiom ensuring the existence of the identity
property i, and axioms ensuring that the basic operations are always defined on
properties.

(b) Where X is some class of property comprehension axioms, let VX be the L1-
theory which in addition to the axioms of V− also has the property compre-
hension axioms in X . In particular, let V∈ be the theory that extends V− by a
comprehension axiom ensuring the existence of a property ǫ had by all and only
ordered pairs 〈u, v〉 such that u ∈ v.

(c) Let ZFCU0 be the L1-theory that contains all the usual axioms of ZFCU except
that the Replacement and Separation schemes are replaced by single axioms quan-
tifying over properties. Separation is thus formalized as

(Sep) ∀x∀p∃y∀u(u ∈ y ↔ u ∈ x ∧ u η p),

and likewise for Replacement.

(d) Let ZFCU0 + VX be the L1-theory whose set-theoretic axioms are those in
ZFCU0 and whose property-theoretic axioms are those in VX .

Say that a meta-theory T is minimally adequate if it contains the minimal the-
ory of properties and enough set-theory to handle n-tuples and set-theoretic recur-
sion on syntax. A great amount of general semantic theorizing can be formalized in
any minimally adequate meta-theory. We have already seen how such theories allows
us to extend any lexicon to an interpretation. This also ensures that such theories
can do justice to the claims that eluded the type-theorists in Section 6.4. The first
claim, Infinity, is no longer relevant, as we now have only one kind of semantic values,
namely objects. Unique Existence says that an interpretation assigns a unique semantic
value to each expression. This is established by an easy induction on syntax. Com-
positionality too can be stated and proved. For instance, one easily shows that the
truth-value of a simple subject-predicate sentence depends only on the semantic val-
ues assigned to the subject and the predicate.

Moreover, the usual method of Gödelization enables us to code various syntactic
and proof-theoretic properties in T . For instance, let Int(I ) and Thm(x) formalize
respectively the claim that I is an interpretation of L and the claim that x is the
Gödel number of a logical theorem. Then T proves the formalizations of a number
of semantic truths. The first fundamental result of this sort concerns how the inter-
pretation of an L-formula φ relates to a very natural translation of φ into the meta-
language L1, which I will now describe. Given an L-lexical J (or an L-interpretation
J which is based on some lexicon) I have already defined a translation t �→ t J of sin-
gular terms of L into L1. This translation can be extended to L-formulas as follows.
Where φ is an atomic formula P(t0, . . . , tn), let φ J be 〈t0

J , . . . , tn
J 〉 η [[P]]J . Let the

translation commute with the logical connectives. Then we get the following lemma,
which will be very useful in semantic theorizing about L.
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Lemma 1 (Interpretation Lemma)

Let T be a minimally adequate meta-theory. If the L-formula φ has free variables, let
�x be based on its free variables taken in their natural order. Then

⊢T Int(I ) → ∀�x ( �x η [[φ]]I ↔ φI ).

If on the other hand φ is a sentence, the consequent of the above conditional must
be replaced by [[φ]]I = 1 ↔ φI . This special case becomes clearer if we introduce a
predicate TrI (x) defined as [[x]]I = 1. Then T proves that, whenever I is an inter-
pretation, TrI (x) expresses the property of truth on the interpretation I .

Proof. By induction in T on the complexity of φ.

Theorem 1 (Soundness Theorem)

Let T be a minimally adequate meta-theory. Then T proves the soundness of first-
order logic with respect to our semantics. More precisely, if we let C(x) be a function
that maps the Gödel number of a formula to the Gödel number of its universal clos-
ure, then

⊢T Thm(x) ∧ Int(I ) → TrI (C(x)).

Proof. Assume a Frege-Hilbert style axiomatization of first-order logic with identity. Since
the translation φ �→ φI commutes with the logical constants, it maps each axiom of the
object theory to an axiom of the meta-theory T . By the Interpretation Lemma, T proves
TrI (C (x)) for each axiom x and each interpretation I . It remains to show that satisfaction
of TrI (C (x)) is preserved under applications of the inference rules. The Interpretation Lemma
allows us to translate this question to the question whether the corresponding inferences are
truth-preserving in the meta-language, which they clearly are. Hence the corollary follows by
induction in T .

We can in a similar way define the usual notion of logical consequence and prove
basic truths about it.

Our definitions and results thus far have only involved universal generalizations
over interpretations but no claims about the existence of specific interpretations.
We have therefore been able to make do with a minimally adequate meta-theory.
But claims about the existence of specific interpretations will be needed in order to
develop the intended semantics of a given theory and to give a formal proof of its con-
sistency. For the former purpose, we need a meta-theory that proves the existence of
an intended interpretation. For the latter purpose, it is extremely useful to be able to
prove the existence of an interpretation that satisfies the object theory. For these pur-
poses we typically need more than a minimally adequate meta-theory. The following
theorem provides an example of such reasoning.

Theorem 2 (General Semantics of ZFCU)

In ZFCU0 + V∈ we can prove the existence of the intended interpretation of ZFCU.
This means in particular that ZFCU0 + V∈ proves the consistency of ZFCU.
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Proof. The only non-logical constant of the language L0 of ZFCU is the membership pre-
dicate ‘∈’. In ZFCU0 + V∈ we can define the intended lexicon I− for L0 that assigns to
‘∈’ the membership property ǫ. We can also define an interpretation I based on this lex-
icon. By the Interpretation Lemma, ZFCU0 + V∈ proves TrI (φ) ↔ φI for every L0-sentence
φ. But since I is the intended interpretation, φI can be simplified. Recall that (u ∈ v)I is
〈u, v〉 η [[∈]]I , and that [[∈]]I = ǫ. From the definition of ǫ it thus follows that (u ∈ v)I ↔ u ∈
v. Since all of this is provable in ZFCU0 + V∈, this theory proves TrI (φ) ↔ φ for every L0-
sentence φ.

Next, observe that ZFCU0 + V∈ licences property comprehension on any L0-formula.
Such property comprehension enables us to derive all the comprehension and separation
axioms of ZFCU. Since ZFCU0 + V∈ thus proves every axiom of ZFCU, it follows from
(a formalization of ) the result of the previous paragraph that ZFCU0 + V∈ also proves that
every axiom of ZFCU is true on the intended interpretation. By the Soundness Theorem,
ZFCU0 + V∈ proves that every theorem of ZFCU is true on the intended interpretation.
But if ZFCU was inconsistent, not all of its theorems could be true on one and the same
interpretation.

A natural question at this point is whether we can go on and prove the existence of an
interpretation that satisfies what we just used as our meta-theory, namely ZFCU0 +
V∈. This question is answered affirmatively in Section 6.8, which describes an infinite
sequence of theories of sets and properties, each strong enough to prove the existence
of an interpretation satisfying all of the preceding theories.

Another natural question is what property comprehension axioms are true, or can
at least consistently be added to ZFC set theory. The next two sections address the
issue of truth, relying on a mixture of philosophical and mathematical considerations.
An appendix gives a mathematical proof of consistency relative to ZFC plus the exist-
ence of an inaccessible cardinal.

6 .7 WHAT PROPERTIES ARE THERE?

To be acceptable, a proposed restriction on the property comprehension scheme must
satisfy two potentially conflicting requirements. Firstly, the restriction must be lib-
eral enough to allow the properties we need in order to carry out the desired kind
of semantic theorizing. Secondly, the restriction must be well motivated. As an abso-
lute minimum, the restriction must give rise to a consistent theory. But ideally, the
restriction should be a natural one, given an adequate understanding of properties.
The restriction should be one it would have been natural to impose anyway, even dis-
regarding the fact that paradox would otherwise ensue. I will now develop an account
of properties that attempts to walk this fine line between admitting too few prop-
erties (such that the desired kind of semantic theorizing cannot be carried out) and
admitting too many (such that contradiction ensues).²⁷

²⁷ It should be noted that nothing claimed in the paper so far commits me to the particular
account of properties that follows. All that is required is an account of properties that satisfies the
two requirements just described.
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My account of what properties there are is based on the requirement that indi-
viduation be well-founded. According to this requirement, the individuation of some
range of entities can only presuppose such objects as have already been individuated.
A requirement of this sort is prima facie very plausible. To individuate is to give an
account of what the identity of some range of entities consists in. If this account is to be
informative, it cannot presuppose the very entities in question, since doing so would
amount to presupposing precisely what we are trying to explain. I will now investigate
how such a well-foundedness requirement is best formulated and understood.²⁸

The well-foundedness requirement applies to both kinds of elements on which
individuation is based: specifications and unity relations. The requirement that spe-
cifications not involve or presuppose the object to be individuated is fairly straight-
forward. Sets provide a nice example. I argued in Section 6.5 that sets are specified
by means of pluralities of objects. The well-foundedness requirement then says that
no such plurality can contain the very set that it is supposed to specify. This means
that no set can be an element of itself. More generally, it gives rise to the familiar set-
theoretic axiom of Foundation. Concepts and properties provide another example.
Here it is required that a condition that is supposed to specify some concept or prop-
erty not contain parameters referring to the very concept or property that we are
attempting to individuate.

It is somewhat harder to tell what the well-foundedness requirement amounts to in
the case of unity relations. The presence of any parameters in the characterization of
these relations causes no problems: this will be handled as just discussed. The prob-
lem comes from the fact that the characterization of a unity relation often makes use
of quantifiers. It is natural to think that, in order to determine the truth-value of a
quantified statement, we need to consider all the corresponding instances. And clearly
each instance involves or presupposes the entity with respect to which it is an instance.
So from this natural thought it follows that a unity relation presupposes all entities in
the ranges of its quantifiers. When this analysis of the presuppositions of a quanti-
fied statement is plugged into the well-foundedness requirement, we get the familiar
Vicious Circle Principle, according to which the concept or property defined by a
condition φ(u) cannot itself belong to the totality over which the variable u is allowed
to range. This result would be disastrous for our project of developing a semantics for
languages with genuinely universal quantification. For if a concept or property can
never belong to the totality on which it is defined, then this totality cannot be com-
pletely universal. It would therefore be impossible to define a concept or a property
that is genuinely universal.

Fortunately, this analysis of the presuppositions of a quantified statement is excess-
ively strict. For although natural, the thought that the truth-value of a quantified
statement requires consideration of all of its instances is incorrect. The most extreme
example of this is the statement that absolutely everything is self-identical. The truth
of this statement can be determined without consideration of a single instance. This

²⁸ I won’t here attempt any systematic defense of the resulting requirement. This would require
fleshing out the abstract and minimal account offered in Section 6.5. For some ideas towards a
defense, see Linnebo (forthcoming).
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means that we need a better analysis of what objects a quantified statement presup-
poses. I will here focus on the presuppositions carried by the conditions that define
concepts and properties. Such conditions must be capable of occurring within the
scope of absolutely universal quantifiers. What objects do such conditions presuppose?

The answer I would like to propose distinguishes between two kinds of presup-
positions carried by a condition: An entity can be presupposed either for its mere
existence or for its identity, that is, for being the thing it is. For an example of the
former, consider the two conditions u = u and u 
= u. Whether these two conditions
are co-extensive depends on whether there is anything in the domain on which they
are defined. Now, the domain we are interested in is the absolutely universal one.
Since this domain contains all sets, this sort of presupposition will not be a prob-
lem, as there will always be enough sets available. I will also assume that the universal
domain contains as many objects not yet individuated as there are sets. This is a very
plausible assumption. We may always go on to individuate new mathematical objects.
This assumption will prove to be important below.

What is it for a condition to presuppose an entity for its identity? Since what a
condition does is distinguish between objects—those of which it holds and those
of which it doesn’t—this notion of presupposition should be spelled out in terms
of what distinctions the condition makes. Now, a condition can only presuppose an
object if it is able to distinguish this object from other known objects. I therefore pro-
pose that we analyze what it is for a condition to presuppose only entities that are
already individuated in terms of the condition’s not distinguishing between entities
not yet individuated. This proposal can be made mathematically precise as follows.
Consider permutations π that fix all objects already individuated and that respect all
relations already individuated in the sense that for each such relation R we have

(∀x0 . . .∀xn(Rx0 . . . xn → Rπx0 . . . πxn))

My proposal is then that a condition φ(u) presupposes only entities that are already
individuated just in case φ(u) is invariant under all such permutations.

When a formula presupposes only entities that have already been individuated,
there is no obvious philosophical reason why it should not define a property. For we
have specified in a non-circular way what this property would be. Nor is there any
mathematical reason why such a formula should not define a property. To see this,
begin by observing that such a condition clearly defines a concept. Next I claim that
any concept individuated in accordance with the well-foundedness requirement can
be nominalized. For each such concept can be represented by means of one of the
objects not yet individuated. Since these concepts don’t distinguish between objects
not yet individuated, it doesn’t matter which representative we choose. Moreover,
since we have assumed that there are as many objects not yet individuated as there are
sets, there will be enough objects to represent all the concepts definable by conditions
in any reasonable language. And we can carry out this process as many times as there
are sets. I therefore conclude that the independently motivated well-foundedness re-
quirement on the definition of concepts gives us nominalization of concepts for free.

Let’s apply the above analysis of the well-foundedness requirement to the task of
justifying such properties as were needed for the semantic theory developed in the
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previous section. Assume we have individuated all sets and that we want to go on
and individuate concepts and properties. Say that a permutation π of the universe
is ∈-preserving just in case ∀x∀y(x ∈ y → πx ∈ πy). By transfinite induction one
easily proves that ∈-preserving permutations leave pure sets untouched. There are
also objects that are partially individuated, such as the singleton of an object u that
is not yet individuated. But ∈-preserving permutations preserve precisely the relation
between this object u and its singleton. To fix everything already individuated, it is
therefore sufficient to require that a permutation be ∈-preserving. The well-founded-
ness requirement, as analyzed above, therefore demands that the condition used to
define a concept or a property be invariant under ∈-permutations.

The following lemma says that a large class of conditions satisfy this requirement.

Lemma 2 (Indiscernibility Lemma)

Let φ(v0, . . . , vn) be an L0-formula, possibly with parameters referring to pure sets.
Let π be a ∈-preserving permutation. Then 〈x0, . . . , xn〉 satisfies φ just in case 〈πx0,
. . . , πxn〉 satisfies φ.

The proof is an easy induction on the logical complexity of φ. (Note that when π is ∈-
preserving, we have π〈x0, . . . , xn〉 = 〈πx0, . . . , πxn〉.)

Say that x and y are set-theoretically indiscernible (in symbols: x ≈ y) just in case there
is a ∈-preserving permutation π such that πx = y. This is easily seen to be an equi-
valence relation. Note that any two urelements are set-theoretically indiscernible. Say
that a property x is set-theoretic just in case it doesn’t distinguish between objects that
are set-theoretically indiscernible (that is, just in case u η x ∧ u ≈ u′ → u′ η x). Set-
theoretic properties make maximally coarse distinctions among non-sets: if such a
property applies to one non-set, it applies to all. The Indiscernibility Lemma thus
says that any property defined by a L0-formula with parameters referring to pure sets
must be set-theoretic.

We can give a particularly nice explanation of how set-theoretic properties are indi-
viduated if we avail ourselves of second-order logic. The second-order theory I will use
is von Neumann-Bernays-Gödel set theory with urelements (henceforth, NBGU ).²⁹
The intended interpretation of this second-order language will have the first-order
variables range over absolute everything. Thus, when I speak below about ‘the whole
universe,’ I mean the whole thing. I use capital letters as second-order variables and
refer to their values as classes.

I begin by characterizing what is required for a formula to be universally defined,
not just on objects individuated thus far, but on all such as are yet to be individuated.

Definition 3

M is a mock universe for a formula φ iff M is indistinguishable from the whole uni-
verse from the point of view of φ. More precisely, M is a mock universe for φ iff there

²⁹ NBGU is the (conservative) extension of ZFCU that allows second-order variables and
quantifiers, contains a predicative second-order comprehension scheme, but allows no bound
second-order variables in instances of the Separation or Replacement schemes.
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is an equivalence relation ≈ on the whole universe such that φ cannot distinguish
between objects that are thus equivalent and such that ∀x∃y(My ∧ x ≈ y).

Definition 4

M is an individuating domain for a formula φ iff
(a) M is a mock universe for φ;
(b) M does not involve any property defined by φ;
(c) φ is defined on all of M .

Thus, to ensure that a formula is defined on the whole universe, including objects yet
to be individuated, it suffices to show that it has an individuating domain.

Let V [I ] be the standard model of ZFCU based on a proper class I of as many
urelements as there are sets. Then we have the following lemma.

Lemma 3

V [I ] is an individuating domain for L0-formulas with parameters referring to pure
sets.

Proof. By the Indiscernibility Lemma, such formulas cannot distinguish between objects that
are set-theoretically indiscernible. Since every object is set-theoretically indiscernible from
some object in V [I ], this is a mock universe for L0-formulas. Next, V [I ] can be described
without in any way presupposing properties. (V [I ] can for instance be simulated in the stand-
ard model V of ZFC by letting some of the pure sets serve as urelements). Finally, all L0-
formulas are defined on V [I ].

Next I state a corollary that ensures that any property defined by a formula of the kind
in question is individuated by its behavior on V [I ].

Corollary 1

Let φ(u) and ψ(u) be two L0-formulas, possibly with parameters referring to pure
sets. Then the two properties û.φ(u) and û.ψ(u) defined by these formulas are
identical iff ∀u(φ(u) ↔ ψ(u)) holds in V [I ].

Proof. The only non-trivial direction is right-to-left. Assume û.φ(u) 
= û.ψ(u). Then by (V=)
there is an object x on which φ(u) and ψ(u) disagreed. But then, by the above lemma, these
formulas also disagree on some object y in V [I ] such that x ≈ y.

This strategy can easily be adapted to show that other classes of formulas have indi-
viduating domains. We may for instance allow the formulas to contain parameters
referring to other kinds of objects already individuated or to contain predicates that
are true only of such objects. Let X be the class consisting of all referents of such para-
meters and all objects of the sort that these predicates can be true of. Consider the
class of permutations that not only preserve the ∈-relation but that also fix all the
objects in X . Let ≈ be defined as above except in terms of this more restrictive class
of permutations. We can then prove a modified Indiscernibility Lemma to the effect
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that the relevant formulas cannot distinguish between ≈-equivalent objects. We can
also prove that, when I is a proper class of new urelements, V [X ∪ I ] is an individu-
ating domain for these formulas.

I now turn to the second of the two requirement on a theory of properties that were
described at the beginning of this section. According to this requirement, the the-
ory of properties must in a natural and well-motivated way rule out such properties
as would give rise to paradox. Since the most obvious threat of paradox stems from
the Semantic Argument, I will examine what this argument looks like in our present
setting. Recall that we are taking interpretations to be countable sets that map expres-
sions to objects. This means that the premise Sem1, which says that interpretations
are objects, is incontrovertible. But we have also stipulated that interpretations are to
map predicates to properties. Our hope is that this will provide a principled reason
for rejecting the other premise Sem2, which permits the definition of a Russell-like
property.

Assume the predicate letter ‘P’ is first in the series of non-logical expressions to
which an interpretation must assign values. Then Sem2 permits the following defin-
ition of a Russell-like property r0:

(Def− r0)] ∀x(x η r0 ↔ ¬ x η x(0))

How plausible is it to reject this attempted definition? With some minimal assump-
tions, we can show that this definition is permissible just in case the following defini-
tion of a more traditional Russell property r is permissible:

(Def− r) ∀x(x η r ↔ ¬ x η x)

Our question is thus how plausible it is to reject (Def-r).
I claim that we have good reason to reject this attempted definition. Let’s begin by

considering the predicate η in its intended sense, as true of two objects u and x just
in case x is a property possessed by u. I claim that, if this intended sense can be made
out at all, the well-foundedness requirement disallows the predicate η from defining
any concept or property. For η will then represent the relation of property possession
for all properties whatsoever. But two properties x and y are identical just in case they
are borne η by precisely the same objects, that is, just in case ∀u(u η x ↔ u η y). This
means that η in its intended sense would distinguish every property from every other,
thus maximally violating the well-foundedness constraint.

Although this gives us reason to be suspicious, the official verdict on the legit-
imacy of comprehension on formulas containing η must be based on the whatever
meaning has officially been assigned to this predicate. The only such meaning comes
from (V=) and the property comprehension axioms, which implicitly define η and
the other primitive P (for being a property). I claim that already this official meaning
makes η problematic from the point of view of the well-foundedness requirement.
Assume we have individuated certain entities and now want to go on and individu-
ate a property defined by ‘u η x’. The requirement is then that the condition ‘u η x’
be invariant under all permutations that fix all objects and respect all relations indi-
viduated thus far. But this requirement isn’t satisfied. For the second argument place
of ‘u η x’ distinguishes between objects yet to be individuated as non-properties (on
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which the condition will always be false) and objects yet to be individuated as non-
empty properties (on which the condition will be true for suitable values of u).

Even so, we have not yet excluded the possibility that the Russell condition
‘¬ u η u’ is less problematic than the more general condition ‘u η x’. To examine
this possibility, assume we attempt to individuate the Russell property after having
individuated certain other entities. The well-foundedness requirement then says that
the Russell condition must be invariant under all permutations that fix all objects and
respect all relations individuated thus far. But just as above, this requirement isn’t sat-
isfied, since the Russell condition distinguishes between objects yet to be individuated
as non-properties (on which the condition will be true) and objects yet to be individu-
ated as properties that possess themselves (on which the condition will be false). The
well-foundedness requirement therefore disallows property and concept comprehen-
sion on the Russell condition as well.

6 .8 A HIERARCHY OF SEMANTIC THEORIES

I have just argued that the well-foundedness requirement disallows property and
concept comprehension on the condition ‘u η x’. But in order to avoid Semantic
Pessimism, we will have to develop a general semantics for languages such as L1 that
contain the predicate η. This means that some property will have to be assigned to
this predicate as its semantic value. What could this semantic value be?

I begin with an informal description of my answer.³⁰ The problem we have
encountered is that η—whether in its intuitive sense or its official sense fixed by
the axioms—is concerned with objects yet to be individuated and therefore violates
the well-foundedness requirement. But this problem can be avoided by adding to the
condition ‘u η x’ the restriction that x must be a property already individuated. The
resulting condition does not distinguish between objects not yet individuated, and
the well-foundedness requirement therefore allows it to define a property, which I
will call e0. When this new property e0 is assigned to ‘η’ as its semantic value, we
get an interpretation that satisfies ZFCU0 + V∈. Next, we can apply the basic oper-
ations to e0 to define a whole range of new properties, which will thereby have been
individuated. These new properties allow us to relax the restriction on the condition
‘u η x’, now requiring only that x belong to the larger range of properties that have
now been individuated. The resulting condition can again be shown to satisfy the
well-foundedness requirement. It therefore defines a new property, which I will call
e1. When e1 is assigned to ‘η’ as its semantic value, we get an interpretation that sat-
isfies not only ZFCU0 + V∈ but also the property comprehension axiom by which

³⁰ In August 2005, two months after having completed this chapter, I learnt from a talk by
Kit Fine at the European Congress of Analytic Philosophy in Lisbon that he has carried out a
construction very similar to the one I am about to describe; see his Fine (2005). Fine has also proved
a number of technical results about his construction that go far beyond anything anticipated in
this chapter. He informs me that most of this work dates back to the academic year 1996-7; the
construction is also alluded to in Fine (1998), pp. 602 and 623.
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e0 was introduced. Continuing in this way, we get an infinite sequence of theories
of sets and properties, each of which can be shown to be strong enough to prove the
consistency of the preceding ones.

I now describe this construction in more detail. We begin by individuating some
class of set-theoretic properties. For concreteness, assume we individuate those set-
theoretic properties definable by formulas of L0 but allowing for parameters refer-
ring to pure sets. Now we want to use the set-theoretic properties we have just indi-
viduated to individuate more properties. We therefore look at permutations that not
only respect the elementhood relation ∈ but that fix the set-theoretic properties we
have just individuated. By the argument of the previous section, any condition that is
invariant under all such permutations defines a property. We would therefore like to
characterize the conditions that are invariant in this way.

These conditions can clearly contain the predicate ∈. But more interestingly, I will
now show that they can also contain a two-place predicate ψ , which we get by adding
to the condition ‘u η x’ the restriction that x is one of the set-theoretic properties just
individuated. I begin by observing that this predicate ψ is definable in ZFCU0 + V∈.
For x is one of the set-theoretic properties just individuated if and only if x is definable
from i and ǫ by basic operations (where any parameters must again refer to pure sets).
We can therefore use set-theoretic recursion to define what it is for a property x to be
definable from i and ǫ. This allows us to formulate the desired predicate ψ(u, x). I
next prove that ψ(u, x) is invariant under the permutations just described. Let π be
any such permutation. If x isn’t one of the properties just individuated, then nor is
πx. Hence it follows that both ψ(u, x) and ψ(πu, πx) are false. If, on the other hand,
x is such a property, then πx = x. But since x is then a set-theoretic property, we have
ψ(u, x) ↔ ψ(πu, x). Combining these observations, we get ψ(πu, πx) ↔ ψ(u, x),
as desired.

Since ψ(u, x) is invariant under the relevant class of permutations, it defines a prop-
erty, which I will call e0. We therefore adopt the following property comprehension
axiom:

(V 0) ∃e0∀u∀v[〈u, v〉 η e0 ↔ ψ0(u, v)]

I claim that, when e0 is assigned to ‘η’ as its semantic value, we get an L1-
interpretation that satisfies ZFCU0 + V∈. We begin by observing that since i and ǫ

are definable from e0, we can in ZFCU0 + V0 define an L1-lexicon that assigns to
‘∈’ and ‘η’ respectively ǫ and e0. We have also seen how to extend this lexicon to an
interpretation. This interpretation clearly satisfies ZFCU0. Moreover, by our choice
of ψ0, this interpretation also satisfies the property-theoretic axioms in V∈.³¹ This
means that every axiom of ZFCU0 + V∈ is true under our interpretation. In fact, this
claim itself is provable in ZFCU0 + V0, using the Interpretation Lemma. This means
that ZFCU0 + V0 proves the consistency of ZFCU0 + V∈.

Our next task is to define an interpretation that satisfies our new theory ZFCU0 +
V0. The minimal way of doing this is by introducing a property comprehension

³¹ In fact, e0 is the smallest property which, when interpreted as the relation of property
application, satisfies the property-theoretic axioms in V∈.
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axiom (V1) that ensures the existence of a property e1 under which fall all and only
ordered pairs 〈u, x〉 such that x is definable by basic operations from i, ǫ, and e0 and
such that u possesses this property x. As above, we can write down a comprehension
axiom for e1 and prove that this comprehension axiom satisfies the well-foundedness
requirement. We can also prove that the resulting theory of sets and properties allows
us to define an interpretation that satisfies ZFCU0 + V0.

I end by outlining how this process can be continued up through the ordinals. The
process is carried out by set-theoretic recursion in a meta-theory containing ZFC.
Assume the process has been carried out for all ordinals γ < α. Then there is a (set-
theoretic) sequence 〈i, ǫ, e0, . . . , eγ , . . .〉γ<α listing the properties explicitly licensed
by comprehension axioms so far, each eγ being defined as the property under which
falls all and only ordered pairs 〈u, x〉 such that x is a property definable by basic opera-
tions from the preceding elements of the sequence and such that u possesses this prop-
erty. Call such sequences eta-sequences. Let EtaSeq(x) be a formalization in L1 of the
claim that x is an eta-sequence. One easily proves that, given any two eta-sequences,
they are either identical or one is an initial segment of the other. Let Length(x, α) be a
formalization of the claim that x is a sequence of length α. Property comprehension
axioms can then be stated as axioms asserting the existence of eta-sequences of various
ordinal lengths:

(V α)∃x(EtaSeq(x) ∧ Length(x, α + 2))

(V <∞)∀α(Ord (α) → ∃x(EtaSeq(x) ∧ Length(x, α + 2)))

I now state a fundamental theorem about theories based on such comprehension
axioms.

Theorem 3

(a) ZFCU0 + Vα proves that, for any ordinal γ < α, ZFCU0 + Vγ is consistent.
(b) ZFCU0 + V<∞ proves that, for any ordinal α, ZFCU0 + Vα is consistent.

Proof sketch. For (a), observe that ZFCU0 + Vα proves the existence of an interpretation that
maps ‘η’ to the (α + 2)’th element of an eta-sequence, which we may refer to as eα . This
interpretation is easily seen to satisfy ZFCU0 + Vγ for each γ < α. For (b), observe that
ZFCU0 + V<∞ proves that for each α there is an interpretation of the form just described.

I show in an Appendix how to develop purely set-theoretic consistency proofs for all
these theories of sets and properties.

6 .9 CONCLUSION

I will end by taking stock of what has been accomplished. I began by explaining
what I take to be the strongest argument against the coherence of unrestricted quan-
tification, namely the Semantic Argument (Section 6.2). Then I outlined the type-
theoretic response to this argument (Section 6.3). Although I believe this to be the
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strongest response developed to date, I argued that the type-theorists are unable to
properly express certain important semantic generalizations about their view, and that
in order to do better, we need a type-free theory where some sort of object can serve
as the semantic values of predicates (Section 6.4).

Next I introduced a distinction between sets and properties, which I argued is nat-
ural and well motivated, and according to which properties are very well suited to
serve as the semantic values of predicates (Section 6.5). I also showed how a theory
of sets and properties can be used to develop a very explicit semantics for first-order
theories whose quantifiers range over absolutely everything (Section 6.6).

The main challenge that remained at the end of Section 6.6 was to give an account
of what properties there are. This account must satisfy two potentially conflicting
requirements. On the one hand, the theory must allow enough properties to enable
the desired sort of semantic theorizing. On the other hand, the theory must in a nat-
ural and well motivated way disallow such properties as would lead to paradox. I
attempted to meet this challenge in Section 6.7 by means of the plausible requirement
that individuation be well-founded. I showed that the resulting account allows all the
properties needed for the semantic theory of Section 6.6, while simultaneously disal-
lowing paradoxical properties such as the Russell-property postulated by the second
premise Sem2 of the Semantic Argument.

The most serious worry remaining at the end of Section 6.7 concerns the fact that
the predicate η, in its intended sense, fails to define a property. Many people will no
doubt feel this as a loss. But it should be kept in mind that the rejection of such a
property is not an ad hoc trick to avoid paradox but follows from the independently
motivated well-foundedness requirement. So perhaps we must give up as illusory our
apparent grasp of an absolutely general relation of property application. What we do
have, however, are relations of property application restricted to whatever properties
have been individuated. And as we saw in Section 6.8, these restricted relations suffice
to develop general semantics for all of our theories containing the predicate η.

No doubt, further investigations will be needed, especially of how unnatural it is to
do without an absolutely general relation of property application. But I firmly believe
that my arguments and results represent progress. I hope in particular to have shown
that a first-order theory of sets and properties offers an approach to the problem of
unrestricted quantification that is at least as promising as the popular type-theoretic
responses of Section 6.3.

APPENDIX. SET-THEORETIC CONSISTENCY PROOFS

I will now describe a method for proving the consistency of various theories of sets
and properties relative to ZFC plus the existence of an inaccessible cardinal. I will
therefore only be concerned with set-theoretic models of our object theories. Although
this means that second-order variables of the meta-language can be interpreted set-
theoretically, I will continue to speak of the values of these variables as ‘concepts’ and
‘relations.’ Recall also our convention from Section 6.7 of using lower- and upper-
case letters as respectively first- and second-order constants and variables.
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Definition 5

Let M be a model of ZFCU. Let E be a dyadic relation on its domain M . Let F be a
concept on M . Say that E nominalizes a concept F iff there is an x such that ∀u(Fu ↔
E〈u, x〉). This x will then be said to nominalize F under E or to be the nominalization
of F under E . Finally, say that E is nominalizing iff E nominalizes the identity relation
and the concepts that E nominalizes are closed under the basic operations.

Note that for a model M of ZFCU to satisfy the minimal theory of properties V−,
there must be a nominalizing relation E on M that can interpret ‘η’. Our goal
will therefore be to construct models of ZFCU with suitable nominalizing relations.
Unfortunately, our next lemma shows that we cannot have the sort of nominalizing
relation that we most would have wanted.

Lemma 4

Let M be a model of ZFCU. Then no nominalizing relation E on M can nominalize
itself.

Proof. Assume for reductio that some nominalizing relation E nominalizes itself. Then there
is some x such that E〈u, v〉 ↔ E〈〈u, v〉, x〉. Since E is nominalizing, one of its nominaliza-
tions is the Russell property r, which is definable from x and the nominalization i of iden-
tity as (π0(x ∩ i))c by the basic operations of projection, intersection, and complementation.
This definition of r ensures that E〈u, r〉 ↔ ¬E〈〈u, u〉, x〉. By substituting r for u we thus get
E〈r, r〉 ↔ ¬E〈〈r, r〉, x〉. But from our choice of x we also have E〈r, r〉 ↔ E〈〈r, r〉, x〉. This
produces a contradiction.

This lemma leaves us with two main options. Either we can give up our insistence
that all properties be total and assign to ‘η’ a partial property. Or we can maintain
our view that all properties are total and instead make use of nominalizing relations
that don’t nominalize themselves. These relations will serve as lower approximations
to the desired partial property. Although I have no principled objection to the former
option, I will here pursue the latter.

Definition 6

Where κ is a cardinal, let V <κ [U ] be the iterative hierarchy based on the class U of
urelements but with the requirement that at every stage of the iterative construction
of sets all sets be of cardinality < κ .

It is easily seen that, when κ is a regular cardinal, the construction of V <κ [U ] ter-
minates after κ steps. It is also easily seen that κ is inaccessible just in case V <κ [U ] |=
ZFCU.

Lemma 5 (Nominalization Lemma)

Let κ be an infinite cardinal and U a collection of κ urelements. Assume there is a
nominalizing relation E on V <κ [U ]. Assume there is a subclass I ⊆ U containing κ



Sets, Properties, and Unrestricted Quantification 177

urelements that don’t nominalize any concepts under E . Let Q be a class of at most κ

concepts on V <κ [U ]. Then it is possible to extend E to a nominalizing relation E+

that nominalizes all the concepts in Q . Moreover, E+ can be chosen such that there
are still κ urelements that don’t nominalize any concepts under E+.

Proof. We begin by making some simplifying assumptions. We may assume that Q contains
all the concepts nominalized by E . For upon addition of these concepts, the cardinality of Q
will still be ≤ κ . We may also assume that Q is closed under the basic operations. To see this,
note first that the cardinality of V <κ [U ] is κ . Using this, a simple cardinality argument shows
that the cardinality of the closure of Q is still ≤ κ .

Next we identify each member of Q that is not already nominalized by E with a unique
member of I . We can do this in such as a way that J = I \Q is of cardinality κ . Then we let
E+ be such that E+〈u, x〉 iff either E〈u, x〉 or x has been identified with some concept F ∈ Q
such that Fu. By our assumptions regarding Q it follows that E+ is a nominalizing relation
that nominalizes all the desired concepts. By our choice of J , there are still κ urelements that
don’t nominalize any concepts under E+.

Theorem 4

ZFCU0 + V∈ is consistent.

Proof. Let κ be an inaccessible cardinal. Then V <κ [U ] is a model of ZFCU. Let E be the
empty relation. Use the Nominalization Lemma to produce an extended nominalizing relation
E+ that nominalizes the concepts defined by u = v and u ∈ v. Interpreting ‘η’ as E+ produces
a model of ZFCU0 + V∈.

Theorem 5

ZFCU0 + V<∞ is consistent.

Proof sketch. Let M be the model of ZFCU0 + V∈ resulting from the proof of Theorem 4.
Our task is to construct, for every ordinal α < κ , an eta-sequence of length α. We proceed
by induction on α. Let E0 be the nominalizing relation on M emerging from the proof of
Theorem 4 (where this relation was called E+). Recall that E0 can be chosen such that there
is a collection I of κ urelements of M that don’t nominalize concepts under E0. So by the
Nominalization Lemma, there is a larger nominalizing relation E1 that nominalizes E0 while
still preserving a collection of κ urelements that don’t nominalize concepts. Let e0 be the nom-
inalization of E0 under E1. For α = β + 1, let Eβ be the nominalizing relation that emerges
from stage β. We then proceed as above to define an extended nominalizing relation Eα that
nominalizes Eβ , say as eβ . For α a limit ordinal, we let the new nominalizing relation Eα be
the union of the nominalizing relations at the preceding stages. Our construction can be car-
ried out such that at every step there are still κ urelements that don’t nominalize any concepts
under this new nominalizing relation.
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7
There’s a Rule for Everything

Vann McGee

7.1 SEMANTICAL SKEPTICISM IN GENERAL

Nothing in sociology is certain, but a sociological thesis that is about as sure as any-
thing we’ll find is that human beings use language to communicate, and one of the
ways they accomplish this is by expressing judgments that are capable of being true
or false. To understand how communication is possible, we have to understand what
makes true statements true.

The first duty of a theory of truth is to provide truth conditions that appropriately
reflect speakers’ dispositions to assertion and denial and to assent and dissent. What
exactly is required here is a matter of some delicacy, since the proposal that comes first
to mind—speakers assent to things they regard as true—overlooks the possibilities
of irony and deceit. However it’s understood, the requirement that truth conditions
reflect conditions of assertion and assent leaves truth conditions drastically underde-
termined, because it doesn’t give us any guidance in determining the semantic status
of sentences sincere speakers aren’t prepared either to assert or deny. Are they true but
unknown, false but unrefuted, or so semantically deformed as to count as neither true
nor false?

There are some further constraints on a theory of truth, in addition to getting the
right matchup between truth conditions and assertibility conditions, of which I’ll
mention two. The first is that the language has to be learnable by human beings.
One consequence of this requirement is that the semantics has to be, in some sense,
compositional, to take account of speakers’ ability to understand sentences they’ve
never heard before, and of the astonishing facility with which a child, upon learn-
ing a new word, is able to figure out the meanings of sentences that contain it. This
requirement is less informative than one might have hoped, however, because the pos-
sibilities for what aspects of an expression’s use are counted as its meaning and for the

I would like to thank Gabriel Uzquiano and Agustín Rayo for their help.
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manner in which the meanings of the parts determine the meaning of the whole are so
multifarious.¹ Certainly the requirement gives us no assurance that anything like the
account of the simplest sentences that we find in the Sophist (261d–263d)—nouns
name individuals and verbs name properties and actions, and the sentence obtained
by combining a name with a verb is true if and only if the individual has the property
or performs the action—has to hold. Indeed, there are a number of potent argu-
ments, centered mainly around chapter 2 of Quine’s Word and Object, that purport
to show that a name doesn’t have a uniquely determined referent.

The other constraint is that semantic theories need to reflect the fact that whatever
semantic values an expression has are given to it by the activities of the community of
speakers. This condition makes the linguist’s task harder, because it limits her options.
The linguist is not permitted to fill in the gaps arbitrarily, choosing, from among the
assignments of truth values that reflect community patterns of assent and assertion,
whichever is most convenient for the linguist, for such a fiat would yield semantic
values that are imposed by the linguist, rather than being discovered, indigenous in
the community’s practices.

Skepticism is apt to creep in through the smallest crack, and the gap between
semantic theory and the totality of actual and potential data is less a crack than a
chasm. I don’t intend to address the general problem of semantic skepticism here, but
only to discuss a small corner of the problem, namely, skepticism about logical terms,
the quantifiers in particular. Against skepticism, I want to uphold the view that the
meaning of the logical terms is fixed by rules of inference.

Semantical skepticism takes a peculiar form. Scarcely anyone wants to deny that
people say things that are true. The prevalent skeptical view, which is sometimes
called deflationism² or minimalism,³ allows that a speaker can say things that are true,
but denies that her ability to do so depends on the linguistic practices of herself and
her community.

Deflationism, as I understand it, comprises two theses. An oversimplified
version of disquotationalism,⁴ which is the first thesis, tells us that the (T)-
sentences—sentences that follow the paradigm, ‘ ‘‘Snow is white’’ is true if and only
if snow is white’—are analytic, and that there is nothing more to the notion of truth
than the (T)-sentences provide. This way of putting things is conveniently simple, but
it runs the risk of seriously misleading. Sentences aren’t either true or false. When we
say ‘It is snowing’ at a time and a place it is snowing, we say something true, whereas
when we say the same sentence at a time and place it is not snowing, we say some-
thing false; the sentence itself is neither true nor false. A sentence can only be said to
be true in a language in a context. Such attributions are widely thought to be derivat-
ive, on the grounds that the primary bearers of truth values are propositions, so that a
sentence is said to be true in a language in a context because, in that language and con-
text, the sentence expresses a true proposition. Derivative or not, ascribing truth to a

¹ See Schiffer (1987). ² See Leeds (1978) and Field (1986 and 1994).
³ Paul Horwich’s (1990) minimalism is primarily a doctrine about propositions, rather than

sentences.
⁴ See Quine (1970), p. 12.
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sentence in a language in a context is perfectly intelligible. So-called eternal sentences
of a language,⁵ whose truth conditions in the language don’t vary by context, can be
said to be true in the language, and which language is relevant can often be reasonably
presumed to be tacitly understood. With these reservations in mind, it makes sense to
speak of a sentence as true, but the reservations should not be forgotten.

However many codicils and caveats we lay down, we’ll not save all the (T)-
sentences, on account of the Liar paradox. The Liar paradox is a deeply important
problem, but not our problem here, so we’ll not be talking about sentences that have
significant self-reference.

According to disquotationalism, as I understand it, to say that snow is white and to
say that ‘Snow is white’ is true are, for normal speakers of English, two ways of saying
the same thing. In particular, whatever is required to cause it to be the case that snow
is white will be necessary and sufficient to cause it to be the case that ‘Snow is white’
is true. The requirement that the two assertions are alike in meaning isn’t automatic-
ally entailed by the thesis that the (T)-sentences are analytic. One could, for example,
use the (T)-sentences as a reference-fixing device for establishing a framework upon
which to hang a substantial theory of truth.⁶ But the thesis that the two assertions say
the same thing is part of disquotationalism, as I understand it.

Disquotationalism is a surprising doctrine. One would have thought that what
makes it the case that snow is white are facts about crystallography and optics, whereas
to make it the case that ‘Snow is white’ is true requires both the facts about crys-
tallography and optics that make snow white and the facts about English usage that
make the sentence mean what it does. But according to disquotationalism, the truth
of ‘Snow is white’ doesn’t have any implications at all about how the sentence is used
in English.

Because disquotationalism doesn’t connect truth conditions with patterns of usage,
there is a gap between what we would have naively expected a semantic theory to give
us and what disquotationalism provides. Deflationism’s second thesis is that there
aren’t any other, more robust semantic notions that fill the gap. One popular way of
thinking about vagueness provides an example of a position that is disquotational but
not deflationary. If Clare is a border case of ‘poor’, so that our customs in using the
word ‘poor’, together with the facts about Clare’s financial situation, leave it unsettled
whether the word ‘poor’ properly applies to Clare, then one naturally wants to say
that ‘Clare is poor’ is neither true nor false. One wants to say this but cannot, on a
disquotational conception of truth and falsity (treating falsity as the truth of the neg-
ation), since ‘ ‘‘Clare is poor’’ is either true or false’ is logically entailed by:

‘Clare is poor’ is true if and only if Clare is poor.
‘Clare is poor’ is false if and only if Clare is not poor.

The solution is to introduce an operator ‘determinately’, so that, if linguistic and fin-
ancial factors conspire to put Clare in the extension of ‘poor’, Clare is determinately
poor and ‘Clare is poor’ is determinately true, whereas if Clare is a borderline case, she

⁵ See Quine (1960), p. 193f.
⁶ This possibility was suggested to me by Stephen Yablo. Cf. Evans, (1982), ch. 2.



182 Vann McGee

is neither determinately poor nor determinately not poor, and the sentence is neither
determinately true nor determinately false. Because correct attributions of determin-
ate truth are grounded in linguistic usage, this version of disquotationalism counts as
inflationary.

To count as an inflationist, one needn’t believe that the connections between usage
and meaning are regular enough to submit themselves to a useful theoretical under-
standing. It may well be that for each word there is an etymological history that
connects the word to its meaning, but that when you bundle the different histories
together you get a ragtag assemblage of capricious accidents, with too few common
features to allow significant generalizations.⁷ If that’s the way you think things are,
you still won’t count as a deflationist, because you are willing to admit that there are
paths that lead to meaning from usage, even if the pathways are too ragged to permit
a tractable theory.

Disquotationalism gives us a notion of truth for our own language, and we can
extend the notion of truth to other languages by translating those languages into
our own. Correct translation is guided by the aim of preserving an appropriate com-
bination of causal connections and conceptual roles. The result is a theory that can
describe communication by saying what a speaker means by the words she uses, but,
unless it is supplemented by further semantical notions not permitted to the defla-
tionist, it cannot explain communication, because it has nothing at all to say about
why our words mean what they do. Deflationism can help itself to a notion of same-
ness of meaning, according to which our neighbor’s sentence that we translate ‘Snow
is white’ means the same thing as our own sentence ‘Snow is white’, but the defla-
tionist can’t explain why either of us mean what we do by the words we use, because
the (T)-sentences for our own language are, for the deflationist, an inexplicable brute
fact. Sentences don’t get their truth conditions by magic. They are given them by the
activities of a community of speakers, but how this is done is, for the deflationist, a
complete mystery.

7 .2 SKEPTICISM ABOUT THE QUANTIFIERS,
IN PARTICULAR

Deflationism suffers from blatant explanatory deficiencies. Even so, the disparity
between what an inflationary semantic theory requires and what the totality of pos-
sible data supplies is so great that deflationism has sometimes seemed inescapable.
Here I would not like us to talk about the general problems faced by inflationary
semantics, but rather to talk specifically about the prospects for an inflationist account
of the logical operators. If we intend to construct an inflationist theory, the logical
operators are a good place to start, because of the central role of the logical words in
the construction of complex sentences, and of the fundamental role of logical infer-
ences in successful communication. One has the feeling that, if we can’t even put

⁷ See Leeds (1995).
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together a more-than-disquotational account of the logical words, then inflationist
semantics is a lost cause.

We are going to be restricting our attention to formal languages formulated using
the first-order predicate calculus, and to fragments of English that can be aptly form-
alized within such formal languages. Our methodological strategy is to investigate a
complex phenomenon by examining its simplest manifestations first, then to work
our way up to the more complicated manifestations that we really care about. It’s
a good general strategy, but in this case the differences between the first-order lan-
guages and the natural language are so vast that it may well turn out that, even if we
are fully successful at getting a satisfactory semantic theory for the formal languages,
nothing of what we learn is applicable to the semantics of English, so that we have
made no progress at all toward our real goal. That’s OK, because our intention here
is less ambitious than to try to develop the beginning of a semantics of English. Our
intention here is to soothe a skeptical itch, by showing that an inflationary semantics
for the basic logical connectives is, in principle, possible, and for that success with the
toy languages will be enough.

The formal-language quantifiers ‘(∀x)’ and ‘(∃x)’ are used in different ways in dif-
ferent contexts, as are the English phrases ‘for all’, ‘everything’, ‘for some’, and ‘some-
thing’. Sometimes they are used in such a way that the domain of quantification
is tacitly or explicitly restricted, but other times no such restriction is apparent. If
we take this appearance at face value, then, following the generally sound strategy
of beginning an inquiry by investigating relatively simple phenomena and working
our way up toward greater complexity, we would be wise to start with unrestric-
ted quantification, since Frege taught us how to reduce restricted quantification to
unrestricted. If our domain of quantification has hitherto been restricted to As, we
can make the restriction explicit by writing ‘(∀x)(Ax ⊃ Bx)’ and ‘(∃x)(Ax ∧ Bx)’ in
place of ‘(∀x)Bx’ and ‘(∃x)Bx’, with the quantifiers now understood as unrestricted.
(We cannot do this for other English quantifiers like ‘for most’ and ‘for many’; that
is one reason why only paying attention to first-order logical devices is such a severe
restriction.)⁸ A semantic theory that encompasses restricted quantification is sure to
be a lot more complicated that one that only takes account of unrestricted quantific-
ation because the domain of quantification, whether it’s given explicitly or tacitly, is
almost certain to be vaguely defined. A theory of restricted quantification will have to
confront all the old problems about vague predication, which have bedeviled philo-
sophers since Eubulides, as well as whatever new problems the quantifiers may bring.
If we are following the maxim, ‘Simple things first’, unrestricted quantification is the
place to start.

Vagueness is omnipresent in human language. Our most rigorous efforts at sci-
entific exactitude reduce, but do not eliminate, imprecision. Unrestricted quantific-
ation offers us something quite extraordinary: a sharp boundary. Vagueness appears
when there are actual or potential borderline cases, and something that’s alleged to
be on the border between being and nonbeing is still something, and hence not on

⁸ Barwise and Cooper (1981) have initiated the search for a more comprehensive theory.
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the border. A painting that’s sketched by Valázquez and completed by his pupil may
occupy an intermediate position between ‘Valázquez’ and ‘counterfeit Valázquez’, but
whoever its author is, the painting unmistakably exists. The idea of a thing occupying
a position intermediate between being and nonbeing is nonsensical.

In regarding unrestricted quantification as simple and restricted quantification as
complex, I am presuming that the default value of the quantifiers, the value they
take when they aren’t subject to any restriction, public or private, spoken or silent, is
quantification over absolutely everything. One could try to tell an alternative story, in
which one starts out with variables ranging over middle-sized objects in one’s imme-
diate neighborhood and expands the domain by acknowledging new objects as con-
ceptually or conversationally required, but it’s hard to see how such an account would
go. When we expand the domain by recognizing new objects, we’ll need to specify the
new objects, and it’s hard to see how we could specify the new objects when the logical
devices at our disposal are limited to quantifiers that range over the old objects. One
can imagine a mental representational faculty, entirely unlike anything we find in
public language, that picks out the varying domains, but such imaginings are purely
speculative.

The realist doctrine is that unambiguously unrestricted quantification is possible.
Skeptics have challenged both aspects. Some have argued that our usage never picks
out a uniquely determined infinite domain of quantification, while others have con-
tended that, even when our quantified variables do have a specific domain, that
domain is never all-inclusive.

The doctrine that quantification can never be fully comprehensive originates in
Principia Mathematica’s analysis of the paradoxes. To have a single, unified domain
of quantification would be illegitimate, we are told, since if we attempt to define a set
employing quantifiers that range over all sets, we violate the vicious circle principle,
which is our bulwark against antinomy.

This objection strikes me as a bit naive, since it takes at face value what Whitehead
and Russell said they were doing in Principia Mathematica, without taking account
of the disparity between what they said they were doing and what they actually did.
What they actually did was something truly marvelous: they provided a uniform foun-
dation for all of classical mathematics, including classical analysis. What they said
they did was to accomplish this while holding themselves strictly within the confines
of the vicious circle principle. However, to get analysis in its classical form, you need
the principle that every nonempty collection of real numbers that’s bounded above
has a least upper bound. The least upper bound is defined in terms of the totality
of upper bounds, and hence it’s defined in terms of a totality that includes itself, in
violation of the vicious circle principle. Whitehead and Russell talk as if they were rig-
orously constrained, at every step, by the vicious circle principle, but the Least Upper
Bound Principle puts them in a tight place. To escape, they adopt the Axiom of Redu-
cibility, but accepting the Axiom of Reducibility means abandoning the vicious circle
principle. As Ramsey (1925) noted clearly, after we adopt Reducibility, we still have
a hierarchy of sets—a set has to be at a higher level than its elements—but the basis
of the hierarchy is consideration of how sets are built up out of their elements, rather
than restrictions on what things we are allowed to talk about when we are doing set
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theory. With the acceptance of the axiom, the earlier requirement that a proposi-
tional function has to lie above, not only all its arguments, but all the things you talk
about in defining the function, is neutralized. This line of reasoning was completed
by Gödel (1944), who noted that it was possible to consolidate the entire labyrinth
of type theory into a straightforward and uniform first-order theory. Indeed, if we
modify the Principia Mathematica framework by allowing cumulative types, a modi-
fication that doesn’t transgress the vicious circle principle, we find that the axioms we
need were already provided by Zermelo (1908).

The thesis that genuinely universal quantification is not possible, so that, whenever
we use quantifiers, even if it looks as if we are using them unrestrictedly, there will
always be things that lie outside our universe of discourse, is not an easy doctrine to
maintain. Indeed, it is not a doctrine that can be propounded coherently. To uphold
it, you would have to maintain that, for every discussion, there are things that lie out-
side the domain of that discussion. This, you will have to say, holds for all discussions,
including the discussion we are having right now. So there are things that lie out-
side the domain of our current discussion. But in saying, ‘There are things that lie
outside the domain of our present discussion’, you can’t be saying something true,
because any witness to its truth would have to lie outside the domain of our current
discussion.

The doctrine that quantifiers are always restricted is not easy to maintain, but it has
been thought to be forced upon us by the relentless logic of Russell’s paradox. But a
look at the post-Principia history of set theory shows that Russell’s paradox is not as
merciless as it first appears. The bothersome worry, it seems to me, is not that our
domain of quantification is always assuredly restricted but that the domain is never
assuredly unrestricted. The origin of this worry is Skolem’s paradox, and it finds its
sharpest expression in Hilary Putnam’s ‘Models and Reality’. Suppose, for reductio
ad absurdum, that our usage picks out a unique intended model for our language,
and that this model has an all-inclusive domain. The Löwenheim–Skolem theorem
tells us that there is a countable set S such that we get an elementary submodel of
the intended model when we restrict the domain to S. There isn’t anything in our
thoughts and practices in virtue of which the so-called intended model fits our inten-
tions in using the language better than the countable submodel, so that there isn’t
anything that makes unrestricted quantification, rather than quantification over S,
the intended meaning of the quantifiers.

The Löwenheim–Skolem theorem applies to languages for the first-order predicate
calculus, but not to logically more robust languages, and one might dismiss the prob-
lems aroused by Skolem’s paradox as an artifact of an overly simplified model. They
are serious difficulties for creatures who speak first-order languages, but we aren’t such
creatures. This response is correct as far as it goes, but I’m not sure it goes far enough.
The worry is that, when we move to logically more expressive languages, the diffi-
culties will reassert themselves in a slightly different form. If we go to second-order
logic, we find that there are so-called Henkin models,⁹ countable models in which

⁹ From Henkin (1950).
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a nonstandard interpretation of the second-order quantifiers makes all the right sen-
tences true even though the second-order variables range over a countable collection
of collections. A similar treatment can be applied to modal operators and counter-
factuals. If we describe the possible-world semantics by a first-order model, taking a
countable elementary submodel gives us a model of the modal language in which all
the expected modal and counterfactual statements are true, albeit with a notion of
possibility more restrictive than expected. Of course, even these more robust formal
languages don’t come close to the logical complexity of English, but one lacks confid-
ence that the Löwenheim–Skolem theorem won’t follow us, in one form or another,
even as we move to languages that are logically highly complex.

Applied to first-order languages, the Löwenheim–Skolem construction takes the
purported intended model of the language, and provides a countable submodel in
which the same sentences are true. A righteous complaint against the philosophical
application of the construction, which claims that the countable submodel has as
good a claim to count as ‘intended’ as the original, is that it requires too little of the
intended model. In supposing that sentences are either true or false, one implicitly
restricts one’s attention to sentences that are used to make assertions, as opposed to
such activities as making promises and issuing commands, and among those, one only
looks at sentences for which the truth value of what one says in uttering the sentence
does not vary by context of utterance. Surely an adequate interpretation of the lan-
guage has to account for occasion sentences, as well as eternal sentences, and it has to
say correctly when promises are fulfilled and when commands are obeyed.

The problem about not accounting for speech acts other than assertions isn’t so ser-
ious, since questions about the conditions of satisfaction of other speech acts are redu-
cible to questions about the truth conditions of assertions. The situations in which
the request, ‘Please lend me $10 until payday’ is fulfilled are the ones in which the
assertion ‘You will lend me $10 until payday’ is true. The problem about not taking
account of occasion sentences is more serious, but Putnam (1980, pp. 431–3) has
an ingenious answer to it. The Skolem construction allows us to hold denumerably
infinitely many individuals fixed in place as we move from original model to element-
ary submodel. In effect, we can introduce names for ℵ0 individuals, chosen however
we wish, and we can use those names to pin down the correct truth values for utter-
ances of occasion sentences.

A related complaint is that, to account for speakers’ dispositions to verbal behavior,
it is not enough to find an interpretation that gets the right truth values; it needs to
get the right truth conditions. To understand what speakers assert and accept, we have
to know what sentences they regard as true, which we figure out by discerning what
the truth conditions for a sentence are and whether their situation is one in which
they are likely to believe that those conditions are met. The sentences they regard as
true will coincide with the sentences that are, in fact, true only for speakers who are
omniscient.

This is a serious complaint, but our earlier discussion of the status of modal state-
ments provides a ready answer. Taking a countable elementary submodel of the
possible-worlds model enables us to associate an intension with each term in such a
way that every sentence gets the right truth value in every identifiable counterfactual
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situation. One can reply that identifying possible-world truth conditions isn’t enough
to determine conditions for assertion and acceptance. ‘The Red Sox won the pennant
in 2004’ has different assertion conditions from its conjunction with Fermat’s Last
Theorem, even though they’re true in the same possible worlds. But one would like
some assurance that, once these more refined assertion and acceptance conditions are
discerned, the Skolemite skeptic won’t still be a position to make mischief.

Another objection, one I don’t know how the Skolemite can answer, concerns
learnability. To learn to employ quantification over the countable set S, we would
have had to distinguish the Ss from the non-Ss somehow, but the construction has
been artfully contrived to ensure that we can’t make the distinction. If, in fact, we
can make the distinction, then we can introduce a new predicate true of only the
Ss, and we can differentiate the two modes of quantification by asking whether
‘(∀x)Sx’ is true. If, on the other hand, we can’t distinguish the things inside and
outside the domain, then we can’t learn S-quantification. There isn’t a compar-
able problem for learning unrestricted quantification, because there aren’t any things
outside.

A further realist rebuttal to Skolemite skepticism appeals again to the disparity
between natural languages and the various formal languages we use to represent
them. The formal languages always have a fixed vocabulary, whereas natural lan-
guages change continually. Whenever we adopt and name a stray dog or we introduce
a new scientific theory with concomitant vocabulary, we expand the language. Fun-
damental principles of inference, like the principle of mathematical induction, are
upheld even with the enlarged vocabulary. We don’t have to reassess the validity of
mathematical induction when we expand our inventory of theoretical concepts, for
our current understanding of the natural numbers ensures that, no matter how we
expand our language in the future, induction axioms formulated with the enlarged
vocabulary will still be true. That’s one reason for the remarkable stability of math-
ematics; scientific paradigms may come and go, but the principles of number theory,
pure and applied, remain the same.

The recognition that the rules of logical inference need to be open-ended, in the
sense that they will continue to be upheld even if we add new constants and predicates
to the language, frustrates Skolemite skepticism. The Löwenheim–Skolem construc-
tion requires that every individual that’s named in the language be an element of the
countable subdomain S. If the individual constant c named something outside the
domain S, then if ‘(∀x)’ were taken to mean ‘For every member x of S’, the principle
of universal instantiation, which permits us to infer ϕ(c) from (∀x)ϕ(x), would not be
truth preserving. A counterexample would be the inference from ‘(∀x)(∃y)y = x’ to
‘(∃y)y = c’. Following Skolem’s recipe gets us a countable set S with the property that
interpreting the quantifiers as ranging over S makes the classical modes of inference
truth-preserving, but when we expand the language by adding new constants, truth
preservation is not maintained. The hypothesis that the quantified variables range
over S cannot explain the inferential practices of people whose acceptance of universal
instantiation is open-ended. As long as we restrict our attention to the original lan-
guage, S-quantification and unrestricted quantification act alike, but expanding the
language puts S-quantification under stresses it cannot endure.
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The appeal to open-endedness taps into a standard strategy for responding to
semantic skepticism. For example, we want to say that the nonstandard models of
arithmetic are not the ‘intended’ models, but what is there about our intentions that
selects the standard models? Not our theory. Even if we were somehow able to dis-
cern all the arithmetical truths, the Compactness Theorem assures us that our theory
would have a nonstandard model. Not our practices in using numbers in applications.
For counting out apples, it makes no difference whether the system of ‘numbers’ we
employ has nonstandard elements. But apart from theory and practice, what else is
there? The reply is to appeal to the open-endedness of our theoretical commitments.
Standard models support the open-ended application of the principle of mathemat-
ical induction.¹⁰

Another source of skepticism about unequivocally unrestricted quantification is
the thought that in order to have a fully precise domain of quantification, one would
have to have definite answers to all the major ontological questions. But not all the
major ontological questions have definite answers. Most ontological questions can be
less glamorously rephrased as questions about the choice of a system of symbolic nota-
tion, and such choices are, to a certain extent, arbitrary. Moreover, even if the ontolo-
gical questions have definite answers, there is little likelihood that we, the people who
are supposed to use these unambiguously unrestricted quantifiers, are going to know
them.

Let me illustrate this worry with an example. I find the arguments Davidson (1967)
presents for including events among the basic constituents of reality to be persuas-
ive but not quite compelling. One cannot help but admire the power and elegance
of the theory Davidson advances, but one also feels the attraction of a more Spartan
ontology that makes room for bodies of various shapes and sizes that move about and
from time to time collide, but doesn’t allow that, in addition to the bodies, there are
some further things, their occasional collisions. There is quite a lot to be said, one way
or the other, but it’s not implausible to imagine that, at the end of the day, rational
inquiry will fail to resolve the issue. In fact, it seems to me not too implausible to
imagine that, in the end, we’ll want to say that you can have it either way you like. If
you find it useful to talk about events, you are free to talk that way, whereas if you are
more comfortable with the sparer ontology, that’s OK too. There is, I want to suggest,
no fact of the matter whether there are events. (This example works for me. It won’t
work for you, if you are persuaded either that there are events or that there aren’t any,
in which case you should change the example. There is surely some ontological ques-
tion about which your views are so unsettled that you are inclined to allow that there
may be no fact of the matter.)

How can this be? How can there be indeterminate ontological questions when
there is a fully exact domain of quantification? If we had the luxury of a vari-
able universe of discourse, we might find ourselves in a position where we could
include or exclude events at our convenience. But if we are decisively quantifying
over everything, then if we are permitted to allow events into our ontology, we are

¹⁰ For an illuminating further discussion of Skolemite skepticism, see Lavine (forthcoming),
which is, however, focused on quantification in mathematics, rather than quantification in general.
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obligated to do so. To say that there is no fact of the matter is to relegate events to the
impossible border between being and nonbeing.

The answer to this problem, I want to suggest, is to allow that there is no fact of the
matter whether there are events, but to explain this imprecision by the indeterminate
reference of the word ‘event’, rather than by any slackness in the reach of the quan-
tifiers. We embrace the ontological thesis that there are events by adopting a theory
that entails their existence. If it isn’t possible to find any things to play the theoret-
ical role of events while upholding the underlying facts about bodies in motion, then
we can say definitively that there are no such things as events. But things that are able
to play the theoretical role of events are not necessarily events, and showing that there
are things able to play the role only shows that event theory is consistent with the facts
about bodies in motion; it doesn’t show that the theory is true.

Ramsey’s ‘Theories’ develops the radical empiricist thesis that only statements that
describe observable things express genuine propositions, so that theoretical statements
are useful merely as intermediaries to help us in describing and predicting the results
of observations. Even people who aren’t radical empiricists have found the logical
machinery he develops valuable, as a way of accommodating modes of speech that
are metaphysically dubious but practically useful. For our purposes here, we’ll think
of statements about bodies in motion as playing the role of Ramsey’s ‘observational’
sentences, and we’ll treat terms like ‘event’ and ‘happens at’ as ‘theoretical’. Ramsey
regards a theory as true if the existential closure of the open sentence you get by tak-
ing the conjunction of the theory’s axioms and replacing all the theoretical terms by
variables of appropriate type is true. This way of putting things has the peculiar con-
sequence that logically incompatible theories are sometimes both counted as true,¹¹
but this verbal oddity shouldn’t detract from the account’s value in helping us under-
stand a theory’s dual role in describing and predicting the results of observations and
in fixing the meanings of theoretical terms. If the existential closure is true, then the
theory has done all it’s required to do by way of conforming to the observable facts.
That it has met this obligation is, as I understand it, what Ramsey has in mind by
declaring such a theory true. If the theory is ‘true’ in Ramsey’s sense, then it is pos-
sible, while keeping the meanings of the observation terms fixed, to assign semantic
values to the theoretical terms in such a way as to make the theory ‘true’ as judged
by a Tarski-style theory of truth,¹² but the fact that we are able to use the theoretical
terms in such a way as to make the theory true by no means obligates us to do so. We
might use the terms in some other way, or not use them at all. What we choose to do
is a pragmatic matter. Once we have ascertained that the theory is Ramsey-true, we
are free to use it; that is, we are free to employ the theoretical terms in such a way as
to make the theory true. We’ll choose to use the theory if we find it useful.

Ramsey’s analysis explains why ontological questions, like the question whether
there are events, can remain unsettled even if the domain of quantification is made
fully precise. If event theory is Ramsey-false, we must reject it as false. If, however,
the theory is Ramsey-true, we are free to accept or to reject it, deciding on pragmatic

¹¹ See McGee (2004). ¹² See Tarski (1935).
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grounds. If pragmatic considerations are completely indecisive, so that the issue can-
not be settled except by arbitrary fiat, then we say that there’s no fact of the matter. If
so, then we get to choose whether to use the word ‘event’ in such a way that the sen-
tence, ‘There are events’, is true. The indefiniteness arises from limitations we face in
pinning down the meanings of theoretical terms, and it will persist even if our domain
of quantification is unambiguously unrestricted.

7 .3 A RULE FOR ‘EVERYTHING’

The bifurcation of our naive notion of truth into two notions, disquotational truth
and correspondence truth, is an unwelcome development.¹³ It is a theoretical misfor-
tune, since the dialectical tension between opposing tendencies within a single com-
plex notion is a source of cognitive power, lost when the notion snaps in two; and it
is a misfortune intuitively, inasmuch as there is nothing in ordinary usage to suggest
that the word ‘true’, as we presently use it, is ambiguous. It is an unhappy devel-
opment, but it is forced upon us by our inability to reconcile two nearly irresistible
theses—that the correct usage of ‘true’ is governed by the (T)-sentences, and that
sentences have the truth conditions they have as an effect of the activities of a com-
munity of speakers—with the fact that there are meaningful assertions, such things as
borderline attributions of vague terms, for which speakers’ usage fails to establish pre-
cise, exclusive, and exhaustive truth and falsity conditions. A ‘fact’ I call it, that there
is indeterminacy at the boundaries of vague terms, but to establish it conclusively, I
would need something no one now has, a comprehensive theory of meaning fixation
for English. Timothy Williamson (1994) has thrown himself into the argumentative
gap, arguing that subtle nuances of the verbal behavior of English speakers establish
an exact, down-to-the-last-penny boundary where the applicability of ‘poor’ leaves
off and that of ‘not poor’ begins. Williamson’s argument is straightforward: The con-
clusion that speakers’ usage somehow delineates sharp boundaries whenever a vague
term is meaningfully used is forced upon us by the two theses. The force of William-
son’s argument is undeniable, but I nonetheless want to resist its conclusion, because
it seems to me so prima facie implausible that our usage of such woolly phrases as ‘a
little on the heavy side’ and ‘sounds sort of like a polka’ establishes precisely delim-
ited boundaries, and because Williamson, while insisting that our usage fixes exact
boundaries, doesn’t provide even a hint of an account of how this is done.

The reason I am rehashing the debate with Williamson¹⁴ here is the worry that I
am making myself vulnerable to the same complaint I am lodging against him. We
haven’t found any compelling reason to deny that there is a causal mechanism by
which speakers of English are able to effect unambiguously unrestricted quantifica-
tion, and, other things being equal, we would like to avoid theories that postulate
widespread semantic indeterminacy, since such theories make it hard to understand

¹³ See McGee (2005).
¹⁴ It was hashed in an exchange in Linguistics and Philosophy between Williamson (2004) and

Brian McLaughlin and me (1998 and 2004).
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the ease with which people are able to communicate. So we’d like to hope that there is
a causal mechanism for bringing it about that our quantifiers have limitless range, but
to suppose our hopes are realized without at least the beginning of an account of what
that mechanism might be is little more than wishful thinking. It would be too much
to demand to see the mechanism in virtue of which the English word ‘everything’
means what it does; such a demand would require an extensive investigation into the
sociology of English speakers and the psychology of its members. In the same way, it
would be too much to require that Williamson explain in detail how vague terms get
sharp boundaries. But without at least the crude beginnings of a sketch of how the
causal mechanisms we postulate might operate, one can’t help suspecting that he and
I are bluffing.

The positive account I would like to develop is the simplest one you can think of:
the semantic values of the quantifiers are fixed by the rules of inference. I don’t for a
moment suppose that this is a correct account of quantification in English. The story
is only supposed to apply to a suitable class of formalized languages, but this will be
enough to assuage the skeptical worry that unambiguously unlimited quantification
isn’t available at all.

The worry about the quantifiers isn’t that they are meaningless, like the braying of
cattle. People are too successful at using quantified sentences to convey information
for the thesis that quantifiers are meaningless to be even remotely plausible. The wor-
risome hypothesis is that, while our usage partially determines the semantic values of
the quantifiers, it’s not incisive enough to uniquely pin the values down.

Where there is indeterminacy, there are multiple candidates. Where there are sev-
eral candidates for what the semantic value of a word might be, each conforming to
our practices in using the word and none emerging as superior to the others, then we
have good reason to suppose that there is no fact of the matter which candidate the
word refers to. That this is not the situation of the quantifiers is a remarkable theorem
of J. H. Harris (1982). Specifically, Harris showed that, if ‘∀1’ and ‘∀2’ are operators
that play the syntactic and inferential roles of the universal quantifier, so that each of
them is governed by the rules Universal Specification (US)¹⁵ (From {(∀x)ϕ(x)}, you
may infer ϕ(c), for any individual constant c) and Universal Generalization (UG) (If
you are able to infer ϕ(c) from Ŵ, where c is an individual constant that doesn’t appear
in ϕ(x) or in Ŵ, then you can infer (∀x) ϕ(x) from Ŵ), then from each of (∀1x) ϕ(x)
and (∀2x) ϕ(x) you can derive the other. The proof is easy. From {(∀1) ϕ(x)} you
can infer ϕ(c) by US, where c is a constant that doesn’t appear in ϕ(x),¹⁶ and then
you can use UG to strengthen the conclusion to (∀2x) ϕ(x). The other direction is
symmetrical, showing that, assuming that interderivability is a sign of logical equival-
ence, ‘∀1’ and ‘∀2’ are logically equivalent. Similar arguments apply to ‘∃’, and also
to the standard sentential connectives and ‘=’, showing that these operators satisfy
uniqueness, one of two criteria Nuel Belnap (1962) proposed for successful introduc-
tion of a logical operator by rules of inference. Belnap’s other criterion, conservat-
iveness (if you can use the new rules to derive a conclusion that doesn’t contain the

¹⁵ Our formulation of the rules follows Mates (1972).
¹⁶ I am taking it for granted that we have an unlimited supply of individual constants.
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new operator from premises that don’t contain the new operator, then it was already
possible to derive the conclusion from the premises without the new rules), is also
satisfied.

The Harris theorem doesn’t show that there aren’t other legitimate uses of ‘∀’ and
‘∃’, apart from unrestricted universal and existential quantification. It does show that
different ways of using the symbols cannot peacefully coexist within a single context.
Thus if ‘∀1’ is universal quantification over the objects in the Milky Way, ‘(∀1x)x is
within one million light years of the earth’ will be true, and so, in order for Univer-
sal Instantiation to be truth preserving, individual constants that denote stars in the
Andromeda galaxy must be forbidden. If ‘∀2’ designates unrestricted quantification,
then, in order for us to be assured of the truth of a sentence of the form (∀2x) ϕ(x)
on the basis of having inferred ϕ(c) (where ϕ doesn’t contain c) from premisses that
don’t contain c, any objects at all, including stars in Andromeda, must be allowed as
possible referents of ‘c’. We can’t use both rules for both quantifiers within a single
context.

We can, if we like, use ‘∃3’ in such a way that ‘(∃3x) ϕ(x)’ means that, according to
Lord of the Rings there exists a ϕ. Within contexts in which we are interested in truth
within the story, rather than truth, we can use ‘Frodo’ and ‘Gandalf ’ as legitimate
names, suitable for application of Existential Generalization (EG) (the rule that per-
mits you to derive (∃x) ϕ(x) from {ϕ(c)}). ‘Frodo’ and ‘Gandalf’ are not, of course,
names that denote nonexistent things, for there are no nonexistent things, but we
can describe the names’ use by defining a Lord of the Rings model to be a model in
which the story, together with whatever innocent background truths we are willing
to import into the story, is true (such models have to exist if the story is consistent,
by the Completeness Theorem), and regarding a sentence as true within Lord of the
Rings if it is true in all Lord of the Rings models. This semantics legitimates both EG
and Existential Specification (ES) (the rule that tell you that, if you are able to infer ψ

from Ŵ∪ {ϕ(c)}, where the individual constant c doesn’t appear in Ŵ,ϕ(x), or ψ, you
may infer ψ from Ŵ∪ {(∃x)ϕ(x)}), since the rules preserve truth within Lord of the
Rings models. We cannot, however, use EG and ES for ‘∃3’ within a context within
which we are also using ‘∃2’ to denote ordinary existential quantification over actually
existing things. If we could, we could use EG for ‘∃2’ to derive ‘(∃2x)x is a Nazgul’
from {‘c is a Nazgul’}, then employ ES for ‘∃3’ to upgrade our premiss set to {‘(∃3x)x
is a Nazgul’}, and finally use Conditional Proof to conclude that, if there are Nazguls
in the story, then there are Nazguls in real life.

The Harris theorem doesn’t tell us what the semantic values of the quantifiers are,
or even what sort of thing we ought to look for as the ‘semantic value’ of a logical
operator. Nevertheless, the theorem gives us reason to anticipate that, when we do
develop a semantic theory, it will favor unambiguously unrestricted quantification.
The theorem tells us that, in any context within which we are willing to give the quan-
tifier rules free rein, either the rules misfire completely, so that there is no candidate
for the semantic value of the quantifier that is compatible with our usage, or else there
is a uniquely determined optimal candidate.

I’m not sure what it would take for the first alternative to obtain, but possibilities
that come to mind are that the attempt to use the quantifier according to the rules
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somehow lapses into incoherence, and that the pattern of use we get by following the
rules consistently is so erratic that the quantifier doesn’t contribute to the truth con-
ditions of sentences in any systematic way. But if there were an incoherence it would
surely have shown up before now, and the quantifiers figure so prominently in suc-
cessful communication and demonstration that it’s hard to believe that they don’t
make a reliable contribution to truth conditions.

Accepting the second Harris alternative, so that the quantifier has a uniquely
determined semantic value, doesn’t tell us what that value is, but it does limit the
range of choices. Quantification over the things in the Milky Way is excluded, as is
Lord of the Rings quantification, because they are imprecise. We could perhaps, with
enough effort and ingenuity, devise fully precise quantifiers that had more-or-less the
same effect as quantification over the inhabitants of the Milky Way or of the Tolkien
trilogy.¹⁷ We could do so, but is there any reason to imagine that we actually have
done so? To suppose that we are employing a precisified variant of Milk Way quan-
tification is to adopt an hypothesis that is wildly speculative and extravagantly com-
plicated when a simple and straightforward alternative is ready to hand. The name of
the game, in semantics as in the other sciences, is inference to the best explanation,
not inference to the only possible explanation, and in that game the smart money is
on the unrestricted quantifiers.

The Harris theorem tells us that the quantifiers and the other logical operators each
assume at most one semantic value, but it doesn’t tell us anything about what that
semantic value might be. This is hardly surprising. The principal task of semantic
theory is to identify features of the world that make true sentences true and false sen-
tences false, and Harris’s theorem restricts its concern to logical connections that are
sure to hold no matter what the world is like. Only after we already have a funda-
mental understanding of the notions of truth and consequence as those notions apply
to logically simple expressions does it make sense to look to inferential roles to help
extend these notions to logically complex expressions.

The simplest semantic theory that will suit our purposes is that of Tarski (1936),
who defines a model of a language as a function assigning a value of appropriate type
to each nonlogical constant.¹⁸ For us, the nonlogical constants will be individual con-
stants, each of which is assigned an individual, and n-place predicates other than the
2-place logically constant predicate ‘=’, each of which is assigned a collection of n-
tuples. (In supposing that the things assigned to a 1-place predicate invariably form

¹⁷ The simplest method for trying to get Milky Way quantification would be an ad hoc restriction
on the category of individual constant, so that, for the purposes of the rules of inference, an ordinary
name that denotes a star in Andromeda doesn’t count as an individual constant; it plays the right
syntactic role, but it doesn’t pass a further semantic test. This effort stumbles at the galaxy’s vague
border, where we can have names in the ordinary sense whose status as names for the purpose of
the rules is dubious. In order to make sure that US is truth preserving, we’ll want to be stingy about
allowing disputed terms, whereas a liberal policy is required to ensure that UG preserves truth in
every Milky Way model. To get the two rules to act in harmony, we’ll need to make the border
precise.

¹⁸ Actually, Tarski defines a model of a theory Ŵ to be a variable assignment that satisfies the
formulas you get from Ŵ by uniformly substituting variables of appropriate types for the nonlogical
constants, but it’s simpler to avoid the detour through the substituted variables.
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a collection, I am oversimplifying, but bear with me for the moment.) A variable
assignment is a function that assigns an individual to every variable. The conditions
under which a variable assignment satisfies an atomic formula in a model and under
which an atomic sentence (atomic formula with no free variables) is true in a model
are defined in the standard way.

The notion of satisfaction in a model provides us with an natural notion of logical
consequence. A formula ϕ is a logical consequence of a set of formulas Ŵ if and only if
ϕ is satisfied in every model by every variable assignment that satisfies all the members
of Ŵ. Because the semantics is extensional, we can trace the descendance of this notion
of logical consequence as a relation among open sentences¹⁹ from the, perhaps more
basic, notion of logical consequence as truth preservation. A formula ϕ is a logical
consequence of Ŵ if and only if the sentence we get from ϕ by uniformly substituting
new constants for variables is true in every model in which sentences we obtain by
making the same substitutions into the formulas of Ŵ are true. Thus we may harm-
lessly extend whatever rules of inference we adopt by allowing open as well as closed
sentences to appear, confident that, provided we are careful to avoid unintentionally
bound variables, the extended rules will preserve satisfaction in a model if the original
rules preserved truth in a model.

The notion of logical consequence is eminently clear, but, so long as we are only
talking about atomic formulas, one can’t resist sniping that, of course it’s clear,
because we’re peering through empty space. Atomic formulas are mutually logically
independent, so that an atomic formula ϕ is a logical consequence of a set of atomic
formulas Ŵ if and only if ϕ is a element of Ŵ. A useful notion of logical consequence
will need to take account of formulas that are logically complex. The standard way
to proceed is, first, to introduce the logical connectives syntactically, then to give
truth and satisfaction conditions for the new operators, next to see which patterns
of inference preserve truth and satisfaction, and finally to provide rules that generate
the approved inferences. Here we would like to proceed in opposite direction, start-
ing with rules of inference and seeing what we can learn about truth and satisfaction
conditions by enforcing the constraint that the rules have to be truth and satisfaction
preserving.

Arnold Koslow (1992) initiated what he calls a ‘structuralist’ approach to logic,
which identifies logical operators in terms of their inferential role. The conjunction
of two sentences is, for Koslow, whatever sentence plays the appropriate role in infer-
ences, whether or not that role is marked by the syntax. Specifically, the conjunction
of two sentences is the weakest sentence that entails them both, so that we have the
rules:

From {(ϕ ∧ψ)}, you may infer ϕ.
From {(ϕ ∧ψ)}, you may infer ψ.
If you can infer ϕ from {η} and you can also infer ψ from {η}, then you may infer
(ϕ ∧ψ) from {η}.

¹⁹ A sentence (or ‘closed sentence’ for emphasis) is an open sentence with no free variables.
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These rules suffice for the proof of Harris’s theorem, so they pin down a unique
semantic value for the operator. This is a surprising result, since the rules leave the
rudimentary logical properties of the conjunction operator—notably, the principle
that (ϕ ∧ψ) is a logical consequence of {ϕ, ψ}—unproved.²⁰ The explanation, I
think, is that the weakest sentence within a given language that entails both ϕ and
ψ might or might not play the semantic role of their conjunction, depending on the
expressive power of the language. A sentence χ might be the weakest sentence that
entails both ϕ and ψ merely because the language is impoverished, and it might be
dislodged from this position, without any change in the meanings of ϕ, ψ, or χ , just
by introducing into the language a new sentence of intermediate logical strength. To
truly count as the conjunction of ϕ and ψ, it must entail both ϕ and ψ, and it must be
weaker than any other sentence that does this, not only within the current language,
but within any possible extension of the current language.

Absent a semantic theory, the notion of a possible extension of a language is hope-
lessly murky, but a good semantic theory clears things up nicely. Within a model, an
individual constant names an individual, and one way to extend the language is to add
new constants to designate heretofore unnamed individuals. An n-place predicate is
satisfied by a collection of n-tuples, and one way to extend the language is by intro-
ducing a new predicate for a new collection of n-tuples. A formula with free variables
v1, . . . , vn is satisfied by a collection of variable assignments with the property that,
whenever two variable assignments assign the same values to each of the vis, then both
are in the collection if either is. If C is such a collection of variable assignments, we
can produce an atomic formula satisfied by C by introducing an appropriate n-place
predicate.

Given formulas ϕ and ψ and a model A, we can produce a formula θ that is
satisfied, in A, by precisely the variable assignments that satisfy both ϕ and ψ. The
formula we use doesn’t depend on the model A, though its interpretation does, so
we can think of θ as a formula that, within each model A of the original language,
is satisfied by precisely those variable assignments that satisfy both ϕ and ψ in A.
Whether a variable assignment satisfies θ is determined, as we go from one model
to another, by which variable assignments satisfy ϕ and ψ; so we should think of θ

as logically complex, since the three formulas don’t manifest the mutual logical inde-
pendence we would expect if they were all atomic.²¹ Any variable assignment that
satisfies θ in a model also satisfies ϕ in that model, and so {θ} entails ϕ. {θ} like-
wise entails ψ, and so, since the third of the three rules for ‘ ∧’ preserves entailment,
{θ} entails (ϕ ∧ψ). Consequently, since any variable assignment that satisfies both ϕ

and ψ in a model satisfies θ in that model, any such variable assignment also satisfies
(ϕ ∧ψ). Since {(ϕ ∧ ψ)} entails ϕ, any variable assignment that satisfies (ϕ ∧ψ) sat-
isfies ϕ; similarly for ψ. Thus we get the expected satisfaction condition for conjunc-
tion: A variable assignment satisfies (ϕ ∧ψ) in a model if and only if it satisfies both ϕ

and ψ.

²⁰ For a proof, see Koslow (1992), p. 129.
²¹ Note that the implicational structure does not uniquely determine which formulas are to

count as atomic.
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The semantic value of a binary connective is a binary function that takes collections
of model/variable-assignment pairs as inputs and yields a collection of model/variable-
assignment pairs as outputs.²² The first two rules for ‘∧’ assure us that the output is
included in each of the two inputs. The third rule, understood as open-ended, so that
every collection of model/variable-assignment pairs is a possible semantic value of η,
tells us that the output includes every collection that is included in both inputs. In
other words, the output is the intersection of the two inputs, which is just what the
classical semantics tells us. Given, in the background, the standard Tarskian semantics
for the atomic formulas, the standard semantics for ‘∧’ is forced upon us by the rules
of inference.

Similar connections between semantics and rules can be found for the other stand-
ard sentential connectives, for ‘=’, and for the quantifiers.²³ For ‘∀’, the validity of
US ensures that, if a variable assignment σ satisfies (∀x)ϕ in A, then every variable
assignment that agrees with σ except possible at x satisfies ϕ in A. The validity of UG
establishes the converse.

The crucial step was at the very beginning, where we followed Tarski (1936) in
defining a model to be what we get by assigning values of appropriate type to non-
logical constants. The usual definition of model begins by discerning a universe of
discourse and then assigning values from within the universe of discourse (in ways
appropriate to their types) as values of the nonlogical constants. In employing Tarski’s
simpler definition of ‘model’, the construction presupposed a fixed domain of dis-
course.²⁴ What it aimed to show was how observance of the rules establishes the same
domain for the object language as for the metalanguage.

I am not, I want to insist, cheating. If I were proposing that our examination of the
rules refuted skepticism, I would be blatantly assuming what I was trying to prove,
but that’s not the proposal. The argument against skepticism, to the extent there is
one (I don’t suppose it will convince the confirmed skeptic), is that our success in
using the quantifiers to communicate creates a presumption in favor of determin-
istic hypotheses. The rule-based semantics is intended, not to repel skepticism, but
to fill in part of a realist story, told from a realist point of view. For those who already
are inclined to suppose that unabashedly unrestricted quantification is something we
sometimes do, the narrative about the rules is intended to provide an idealized and
stylized account of how we do it.

Tarski obtained his theory of truth in a model by generalizing methods he
developed in (1935) for devising theories of truth simpliciter. His techniques provide
truth theories for languages that are fully precise, so they are not directly applic-
able to our concerns here, where we are especially interested in languages that are
imprecise. They are, it turns out, indirectly relevant. Bas van Fraassen (1966) and Kit

²² There are constraints that reflect the requirement that whether a variable assignment satisfies
a formula in a model only depends on the values it assigns to the variables that occur free in the
formula.

²³ See McGee (2000) and (2002).
²⁴ Tarski’s simpler-than-usual notion of model causes substantial difficulties for his analysis of

logical truth and logical consequence. These difficulties are examined by Etchemendy (1990).
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Fine (1975) made the remarkable discovery that Tarski’s methods could be straight-
forwardly adapted to provide semantic theories for imprecise languages. Instead of
providing a unique intended model for the language, usage provides a family of
acceptable models, and a sentence counts as true, false, or unsettled according as it
is true in all, none, or some but not all of them. Their methods allow indefinite-
ness in quantification as well as in naming and predication, there being no logical
impediment to having the universe of discourse vary from one acceptable model to
another. For situations in which our discourse is restricted to some imprecisely delim-
ited domain—Milky Way quantification, for instance—this is the sensible proced-
ure. Where we haven’t done anything to restrict the domain, however, it would, I
think, be a mistake to allow the domain to vary. The difference is that picking an
extension of ‘poor’ is a matter of choosing, more or less arbitrarily, one undistin-
guished candidate from a vast array of equally plausible possibilities, whereas one
candidate for the semantic value of ‘∀’ stands apart from all the others.

An overdue correction: the realist thesis we’ve been developing upholds the pos-
sibility of fully comprehensive quantification that holds all things, of whatever sort,
within its domain. Among the things we want to be able to talk about are collections.
We would like, for example, to be able to discuss the merits of von Neumann’s (1925)
limitation-of-size principle, according to which things form a collection unless they
can be put in one-one correspondence with the universe. However, the semantic the-
ory we’ve been investigating tells us that the semantic value of a n-place predicate is
a collection of n-tuples. But when we ask about the collection assigned to a binary
predicate true of the pairs < x, y >, where y is a collection and x is not a element
of y, we run headlong into Russell’s paradox. Happily, George Boolos ((1984) and
(1985)) has provided us a way to say the things we want to say without succumb-
ing to paradox, by using plural noun phrases to take the place of talk about collec-
tions. For example, we shall say that things form a model if they meet these three
conditions:²⁵

Each of them is an ordered pair whose first component is a nonlogical term.
For any individual constant c, there is exactly one of them whose first component is c.
Each of them that has an n-place predicate as its first component has an n-tuple as its second
component.

Unfortunately, the plural constructions, while lovely metaphysically, are quite cum-
bersome, so the practice I’ve followed here—first approximating what one wants
to say while pretending that there aren’t any things that don’t form a collection,
then indicating how the approximation can be cashed out in the official plural
idiom—will, I hope, be forgiven.

We’ve been talking about first-order languages, but giving the semantics required
us to employ plural quantification,²⁶ which is tantamount to second-order logic.²⁷
Typically, in fact, when we develop the semantic theory of a language, we require
logical resources beyond what are available within the language itself. This is a deeply

²⁵ See Rayo and Uzquiano (1999). ²⁶ See Rayo and Williamson (2004).
²⁷ See Boolos (1985).
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troubling phenomenon, but when we set the Liar paradox aside, we agreed not to
worry about it here.

We’ve been working with first-order languages, but the languages we really care
about are natural languages. Our hope was that the first-order languages, while obvi-
ously much, much simpler than natural languages, would nonetheless be rich enough
in logical structure to provide some useful lessons when we turn to the more import-
ant project of trying to understand natural-language quantification. The thought was
that everything we can do in the first-order language, we can do in a natural lan-
guage, so, in particular, if one of the things we can achieve in the artificial language is
unambiguously unrestricted quantification, then that’s something we should expect
to be able to accomplish in natural languages as well. There is, however, a sticking
point: the role in the first-order theories of individual constants. Individual constants
play in the formal language a role directly analogous to that of proper names in Eng-
lish, but individual constants always denote something—that’s what validates US
and EG—whereas proper names are often associated with fictional or mythological
characters. EG isn’t valid in English, since ‘Frodo is a hobbit’ does not entail ‘There
are hobbits’. The story is supposed to go that human beings are capable of learning
and employing the artificial language, and that they can employ it in such a way that
their quantifiers range over everything. If that story depends on the assumption that
hypothetical speakers of the artificial language learn and use individual constants the
same way that actual speakers of the natural language use proper names, then it breaks
down at a crucial stage. We need a version of the story that doesn’t depend of the
analogy between individual constants and proper names.

Frege faced a similar problem in §11 of the Grundgesetze. He wanted to introduce
a mechanism into his concept-writing that served the purposes definite description
serves in German or English, but he wanted his Begriffschrift to be a logically per-
fect language, unblemished by nondenoting terms. Frege’s solution was the simplest
possible. In situations where the definite description is well-behaved, that is, situ-
ations in which there is one and only one ϕ, (ιx) ϕ(x) denotes that uniquely selected
individual, whereas if the ϕs are none or many, the symbol designates an arbitrarily
selected default value.

Following Frege’s lead, we want to utilize definite descriptions, used in such a way
that they are automatically guaranteed referents, to play the roles that have hitherto
been played by proper names. To do this, it is not necessary that we identify a Fregean
sense for each proper name. Following a suggestion of Quine (1948), we can intro-
duce a new atomic predicate for each proper name, stipulating that the new predicate
is to be true of exactly one thing, either the referent of the name, if it has one, or else
the default value. To implement our plan, we need to do two things. First, we need
to settle upon a default value or default values for the different descriptions. Second,
we need to adopt appropriate rules to fix the inferential roles of the quantifiers and
the definite description operators. We keep the familiar rules, US and EG, modified
to allow other singular terms—in particular, definite descriptions—in addition to
individual constants, and we modify UG and ES, as follows:
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If you can derive ψ((ιx) ϕ(x)) from Ŵ, and if the atomic predicate ϕ(x) does not
appear either in Ŵ or in ψ , then you may derive (∀x)ψ(x) from Ŵ.

If you can derive χ from Ŵ∪ {ψ((ιx) ϕ(x))}, and if the atomic predicate ϕ(x) does
not appear in Ŵ, in ψ(x), or in χ , then you may derive χ from Ŵ ∪ {(∃x)ψ(x)}.

In addition, we adopt rules for ‘(ιx)’:

You may derive (ψ((ιx) ϕ(x)) ↔ (∀x)(ϕ(x) → ψ(x))) from
{(∃y)(∀x)(ϕ(x) ↔ x = y)}.
You may derive (ψ((ιx)ϕ(x)) ↔ ψ(Default Value)) from
{ ∼ (∃y)(∀x)(ϕ(x) ↔ x = y)}.

Harris’s argument shows that these rules, taken together, determine unique values for
both quantifiers and for the definite description operator.

A cause of dissatisfaction here is that it presumes a uniquely determined referent for
‘Default Value’, and the inscrutability of reference arguments make us less than fully
confident in this presumption. Moreover, even if we are able to pick out a unique
referent, in order for this determination to count as logical, the chosen referent will
have to be a logical object. Frege believed that there were such things as logical objects,
but few have followed him here.

We don’t really need the uniquely determined default value to accomplish the aim
of affixing a unique semantic value to each quantifier. If we remove the rule involving
the default value, we shall still have the following:

From {(∀1x)ϕ(x)}, you may derive (∀2x)ϕ(x), and conversely.
From {(∃1x)ϕ(x)}, you may derive (∃2x)ϕ(x), and conversely.
From {(∃iy)(∀ix)(ϕ(x) ↔ x = y)}, for i = 1 or 2, you may derive
(ι1x)ϕ(x) = (ι2x)ϕ(x).

In this more relaxed system, ‘the present king of France’ plays a similar role to ‘the
shortest tall man’. Assuming, for simplicity, that there are no exact ties in height, we
can be sure of the truth of ‘There is a tall man who is shorter than every other tall
man’. We can be assured of its truth because it follows logically from ‘There is at
least one tall man’, ‘There are fewer than (say) fifty billion tall men’, and the assump-
tion that the men are ordered by height. It is determined that there is a shortest tall
man because, on any way of drawing the border between men who satisfy ‘tall’ and
those who satisfy ‘not tall’, there will be a shortest man of the tall side of the parti-
tion, but there isn’t any individual of whom it is determined that he is the shortest
tall man, because different ways of drawing the border select different candidates for
‘the shortest tall man’. Similarly, ‘E!(ιx)x is now king of France’ is determinated to be
true, because ‘(ιx)x is now king of France’ is assigned a unique value by any plan for
assigning default values to defective definite descriptions, but different plans pick out
different default values, so there isn’t any individual of whom it is determined that
‘(ιx)x is now king of France’ refers to him.

Let me end this paper on a defensive note. I have been sketching a crude account
of how rules of inference fix the meanings of the logical terms. I hope that you find
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it attractive. But if you don’t, I would urge you respond by looking about for a bet-
ter story, perhaps one closer to natural language and less dependent on formalistic toy
models. What I hope you will not do is succumb to the skeptical doctrine that the fact
that ‘everything’ means everything is an inexplicable brute fact that can’t be accoun-
ted for by the way speakers use the word. Communication by language is too central
a feature of the human experience for us willingly to relegate its causes to a realm of
mystery.
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8
The Problem of Absolute Universality1

Charles Parsons

8.1

Very often, when we make general statements, there is an explicit or contextually
understood restriction. ‘All ravens are black’ is a generalization about ravens. It is now
standardly understood as applying a quantifier restricted to ravens to the predicate ‘is
black’. We can read it as not saying anything about objects other than ravens. When
leaving an airplane with my wife, she might ask, ‘Were you sure to take everything?’
Clearly that refers to the possessions I brought onto the plane (and perhaps such of
hers as she took me to be responsible for). So a negative answer would not be implied
by my not having taken the in-flight magazine or the airsickness bag from the pocket
in front of my seat.

It is probable that most generalizations made in everyday life and even in sci-
entific inquiry can be understood as restricted in this way. In logic, mathematics,
and philosophy things are not so simple. Timothy Williamson quotes F. H. Brad-
ley as describing metaphysics as ‘the effort to comprehend the universe, not simply
piecemeal or by fragments, but somehow as a whole’.¹ Williamson reasonably asks
how we could comprehend the universe as a whole, if a contextual restriction made
some parts irrelevant.² The universe of such a metaphysician’s purview surely includes
everything, with no restriction tacit or otherwise. Logic might at first sight seem to
envision only restricted generalizations. We interpret the language of quantificational
logic with respect to a domain or ‘universe of discourse’ (in the case of higher-order
logic, a domain of individuals and then further domains for the higher-order vari-
ables). Typically, the domain is a set, and set theory tells us how, given a set, to
describe a set containing elements not in the first set.³ In a sense, the received way

¹ Earlier versions of this chapter were presented as a paper as the Reichenbach Lecture at
UCLA on June 4, 2004, and at the conference on Mathematical Knowledge at Fitzwilliam College,
Cambridge, on July 2. Later versions were presented at the Hebrew University of Jerusalem, and
the University of California, Riverside and Irvine. I am grateful to the members of the audiences
and to the editors for their comments. Individuals are acknowledged in footnotes below. I am also
much indebted to Michael Glanzberg, who presents a view congenial to my own in his (2004).

² (1893), p. 1. ³ (2003), p. 415.
⁴ Of course there are variant set theories allowing a universal set. I will leave them out of account

for the moment. The relevance, or lack of it, of taking the domain to be a proper class will emerge
as we proceed.



204 Charles Parsons

of interpreting quantificational logic takes all the quantifiers to be restricted. It is sig-
nificant, however, that the restriction arises at the meta-level, with the interpretation,
and is not explicitly given in the sentences themselves.

However, logic seems to give us some outright statements, of which we want to
say they are simply true. In first-order logic, only identity could occur essentially in
such a statement, but that still leaves examples, such as ‘Everything is self-identical’,
∀x(x = x). Quine offered this as an example of an especially obvious logical truth.
But then surely it is supposed to mean that everything is self-identical. If there is a
contextually understood restriction, it is hard to imagine what it could be. Similarly,
identity is symmetric, ∀x∀y(x = y → y = x). No matter what x and y may be, if x =
y then y = x.

It seems that more humdrum examples can be cited of statements whose quantifi-
ers are unrestricted and might be presumed to range over absolutely everything. One
type would be statements of nonexistence. There are no unicorns. Suppose ‘there are’
ranges over some domain D. Then it seems that the statement might be true even
though somehow there is a unicorn outside D. But it will be protested that the state-
ment says there are no unicorns period, and thus the hypothesized unicorn would be
a counterexample. That would imply that either we were wrong in supposing that the
domain is D, or D includes the counterexample. Can we exclude this outcome short
of admitting a D that is absolutely everything?

Mathematics is at first sight a domain where quantification is more or less restric-
ted. Generalizations are over number systems, spaces, algebraic structures, sets, cat-
egories, and the like. A situation where quantification purporting to be over abso-
lutely everything arises in mathematics would be somewhat artificial. But suppose for
the moment that all mathematical objects are sets and furthermore (apparently trivi-
ally) that sets are mathematical objects. Then non-mathematical objects are not sets
and so must be urelements in the technical sense of set theory. Now it seems that
we might understand the quantifiers of the usual language of set theory as ranging
over absolutely everything. On our hypothesis, whatever is true in set theory with
urelements that does not depend on the number of the latter will be true on this inter-
pretation.⁴

A second way in which mathematics touches on our question is the universal
applicability of mathematics, or at least of some branches such as arithmetic. Frege
famously insisted that it should be a constraint on any analysis of number that objects
of any kind should be countable. The domain of what is countable is ‘the most com-
prehensive of all; for it is not only what is actual, not only what is intuitable, that
belongs to it, but everything thinkable’.⁵ If Frege’s thesis is correct, then mathematics
is brought into relation with everything there is. It seems that reference to absolutely
everything is needed even to state the thesis.

⁵ If there is a definite number (presumably infinite) of non-mathematical objects, then of course
it will also be true that there is that number of urelements.

⁶ Grundlagen §14; cf. §24 and (1885), p. 94. In the latter text he makes the qualification that ‘a
certain sharpness of circumscription’ is required; he evidently means that concepts to which number
is attributed must have sharp boundaries.
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It also turns out that the logical problems that have been raised about gener-
alizations covering absolutely everything already arise in mathematics before the
issues about application that underlie the above remarks, since if quantification over
everything is problematic on logical grounds, then so is quantification over all sets, or
possibly even talk of ‘the universe of sets’, which set theorists engage in rather freely.

How can one characterize the statements an inquiry about absolute generality is
about? Try the following: call a statement an absolute generalization if it is of the
form (Qx)Fx where the variables range over absolutely everything. However, nor-
mally when we talk of what variables range over, we are describing a domain that
they range over. One might object that there is no domain comprising absolutely
everything, on roughly the grounds on which standard set theory rejects a universal
set. Although replies to this objection can be made, it may be that it is not possible to
give a characterization of the statements that concern us that is neutral on questions
about absolute generality that will be contested.

Natural language gives us conflicting signals about whether generalization cover-
ing absolutely everything is a normal part of the expressive resources of a language.
On the one hand the determiners that express quantifiers call for a noun phrase that
typically gives rise to a restriction. On the other hand, this syntactic condition can
be fulfilled by the ‘thing’ in ‘everything’ or ‘something’ or by a word like ‘object’
or ‘entity’. Although there may still be a contextually indicated restriction, as in the
example with which I began, it is not obvious that such is required. The word ‘thing’
is often used so that much is excluded from the realm of things, but it is doubtful
that such an exclusion is intended in the context ‘everything’; for example, logicians,
in saying that everything is self-identical, don’t intend to leave out such non-things
as persons. One could express this by saying that ‘everything’ doesn’t mean ‘every
thing’.⁶ ‘Object’ is in most usage more general than ‘thing’, but conceptions of ‘entit-
ies’ that are not objects have had defenders, notably Frege.

8 .2

One might ask how one could possibly doubt that we make meaningful statements
about absolutely everything. The principal reasons are logical, and we will come to
them shortly. First, however, I want to deal with a problem of a more metaphysical
character. Metaphysicians differ about what there is. That is neither news nor espe-
cially interesting. What seems to me a potential problem is that if our quantifiers
can really capture everything in some absolute sense, then some form of what Hil-
ary Putnam calls ‘metaphysical realism’ seems to follow.⁷ As I understand it that is
that there is some final answer to the question what objects there are and how they
are individuated.

⁷ Working in other languages, we might not even be tempted to think that it does; for example,
‘everything’ and ‘every thing’ would be rendered in German as ‘alles’ and ‘jedes Ding’.

⁸ The kind of view I have in mind may not be incompatible with some forms of idealism, because
the question is whether there is an absolute reality accessible to the human mind, not whether
this reality is in the end independent of the mind in whatever sense is relevant to realism. I have



206 Charles Parsons

Doubts about this are suggested by simple metaphysical examples. We might
describe objects and their properties in the straightforward way, so that to monadic
predicates correspond properties, and an object’s having a property is a sort of brute
fact. Alternatively, we might view an object as consisting of parts some of which are
abstract and, we might say, property-like. Among the parts of my shirt, for example,
is its particular color, which would differ from the color-part of another shirt that
was, in ordinary parlance, of exactly the same color. Then for objects a and b to have
exactly the same color is for a and b to have color-parts that are exactly similar. Parts
of this kind are, following Donald Williams, now usually called tropes.⁸ It is at least
plausible that we could describe the world in the language of objects and properties
and instantiation of the latter by the former, and equally in the language of objects,
tropes, and their resemblance. Now consider the statement ‘There are tropes.’ On the
first scheme it appears to be false, on the second a trivial truth.

To be sure ‘Are there tropes?’ is just what Carnap called an external question. We
could avoid this by using as our example a particular situation described differently
in the two schemes. But we might consider the implications of invoking Carnap’s
distinction. It certainly implies a rejection of metaphysical realism, since external
questions are addressed by choosing a linguistic framework, and different frameworks
will postulate different kinds of objects. According to the property framework, tropes
don’t exist, and according to the trope framework, properties don’t exist. Does that
mean that the quantifiers of a particular framework cannot really capture everything?
To do this seems to require an overarching framework that encompasses the onto-
logy of all. But in the absence of such a framework, the Carnapian perspective shows
something nonabsolute about the quantifiers in a given framework, since by going to
another we can envisage objects of which the first framework knows nothing.

Our problem is that for statements of an absolutely general kind to have a def-
inite truth-value, it appears that there has to be a final answer to the question what
objects there are, when they are identical and different, and what their properties and
relations are. That is metaphysical realism. I don’t want to enter into the arguments
against such a view advanced by Putnam and others.⁹

There is, however, a reason why this conclusion might be questioned. In our
example there seemed to be an equivalence between the language of properties and
the language of tropes. What we could say in one, we could find a way of saying in
the other. It follows that given sufficient logical resources, each way of talking could

little knowledge of British idealism, but it seems to me that Bradley and probably McTaggart were
metaphysical realists in the sense that concerns me.

I do assume in the discussion in this section that our logic is classical, as Crispin Wright pointed
out. I have trouble understanding what metaphysical realism would be in the context of intuitionistic
logic, but the issue would require further discussion.

⁹ Williams (1953). Williams borrowed the word from Santayana while changing its meaning;
see p. 115. The concept is much older, going back to Edmund Husserl and G. F. Stout; it probably
descends from the traditional notion of accident.

¹⁰ Glanzberg (2004) argues that a view of absolute quantification of the general kind advanced
in this paper is not incompatible with metaphysical realism. What he denies is that metaphysical
realism implies that quantifiers have a straightforward absolute reading, i.e. the converse of the claim
made in this section.
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reconstruct the other. A trope, for example, could be a pair of an object and a property
(possibly a very refined property). Even if such constructions are highly artificial,
they do give a framework a claim to embrace everything without making claims of
nonexistence that are certain to be contested. But would a view that allowed alternat-
ive equivalent descriptions, each of which is able to construct the entities postulated
by the other, really be a metaphysical realism in the sense that concerns us? That is
less important than the question whether such equivalent comprehensive descriptions
actually exist. The mere fact of the possibility of construction is not sufficient, since
constructions that may be offered will not necessarily satisfy the metaphysical intu-
itions that drive the alternative framework. That’s a reason for thinking that even if
this possibility gives us a way of talking about everything in the world that does not
commit us to metaphysical realism, even making sense of it gets us into heavy-duty
metaphysics.

The Carnapian point of view suggests a distinction that will turn out to be import-
ant. Within a Carnapian framework, there is nothing to prevent our having quanti-
fiers of maximal range, i.e. such that anything that can be recognized as a term with
reference can be instantiated for them and is a potential counterexample to a universal
statement or witness for an existential one. Together with our observation that natural
language contains quantifier expressions where there is no noun phrase that restricts
them, and at least some cases where there is on the surface at least no restriction given
by the context, it suggests that we do encounter quantifiers that are unrestricted. That
a quantifier is unrestricted, however, is not the same as its being absolute.¹⁰ Just what
the relativity might be remains to be explored. On the Carnapian view, an alternat-
ive framework can recognize potential values of variables that a given framework does
not, and it may be a pragmatic question which framework to adopt. In general there
will be alternatives. Some might be extensions of the given one, in the sense that there
will be a natural interpretation of the first in the second, so that the entities of the first
are a proper subclass of those of the second. When I talk of interpretations or purpor-
ted interpretations that treat the quantifiers as ranging over absolutely everything, I
will call them absolute or absolutely unrestricted.

8 .3

I have suggested that the discussion of our question has been driven not by the sort of
consideration suggested in the last section but by logical difficulties. Although reas-
ons of this kind are not difficult to articulate, it is not so easy to say what they are
supposed to show. But they arise from considering how sentences or discourses con-
taining quantifiers are interpreted. This apparently innocent talk of interpretation
turns out to have considerable weight.

We might first consider the strongest conclusion, that contrary to appearances
there is simply no such thing as quantification over absolutely everything, that in

¹¹ The importance of this distinction was urged by Kit Fine in a seminar at Harvard University
in the fall of 2003.
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order to make sense of any generalization we would have to understand its reach as
falling short of that, so that even unrestricted quantifiers have a relative character,
as the Carnapian view just canvassed suggests. This conclusion seems to differ from
the ostensibly weaker one that absolute quantification is in some way illegitimate or
logically mistaken. But if it is genuinely possible to speak about absolutely everything,
how could it be illegitimate or mistaken to do so? It can’t be that any such statement
is false, because if so its negation is true and still contains quantifiers ranging over
absolutely everything.¹¹

A more natural reading of the weaker view is that statements that purport or
attempt to quantify over absolutely everything miss their mark; either they are mean-
ingless or sense can be made of them only by interpreting their quantifiers as covertly
restricted, contrary perhaps to the intentions of the speakers who make them. Then
there is no real difference between the strong conclusion and its apparent weakening.

Something like the strong conclusion was affirmed by Michael Dummett in Frege:
Philosophy of Language. In another place Dummett went so far as to say that this was
the consensus view among modern logicians:

The overwhelming majority of logicians . . . do not think it possible to quantify over all objects
whatever.¹²

However, Dummett’s affirmation of the strong conclusion is not quite so unqual-
ified as that statement suggests, as we shall see later.

We can see how one might be driven in that direction by considering the usual
semantics for first-order logic. Quantifiers are interpreted as ranging over some
domain, and predicates by subsets of the domain or its Cartesian product with itself
some finite number of times. The domain is understood to be a set. But then, as we
have pointed out already, in standard set theory it cannot be universal. If we were to
use instead a variant set theory with a universal set, then we would have to restrict the
axiom of separation, which is what insures that we have an interpretation for every
predicate of objects in the domain.

The semantic definitions of logical validity and consequence have often been
thought to lack generality because of this feature of the usual semantics. A natural
remedy would be to allow that the domain might be a proper class. The usual the-
ories of classes allow them to be closed under first-order definability, so that classes
will be available to interpret predicates, but with more restrictions since we cannot
freely postulate arbitrary subclasses of the domain. If the domain is to include abso-
lutely everything, moreover, we will have a problem in designing a theory so that these
classes will also fall into the domain.

¹² It may still be held that there are no true absolutely universal statements, but there are true
absolute existential statements. That is highly implausible; if we can really understand ‘Everything
is self-identical’ as about absolutely everything, how can we reject it? That example also makes it
implausible to hold that we cannot know absolutely universal statements although we can know
absolute existential statements.

¹³ Dummett (1981a), p. 229. As we shall see, this is not Dummett’s most careful formulation.
For calling such passages of Dummett to my attention, I am indebted to Cartwright (1994), p. 2.
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However, the difficulty does not come specifically from the notion of set or class.
Semantic interpretation typically works by assigning objects to the parts of a sen-
tence; the domain is an object so assigned to the quantifiers. Any such assignment
runs into a limitation dramatized by Russell’s paradox. Suppose that to one-place
predicates are assigned objects (Ox)Fx. In application there will be some copula-like
expression η so that ‘Fa’ is equivalent to ‘a η (Ox)Fx’. (I will call this the basic equi-
valence.) The familiar form of this schema is where (Ox)Fx is the (alleged) set or class
of x’s such that Fx, and η means ‘is an element of ’. But (Ox)Fx could be the prop-
erty of being an F , and we could read η simply as ‘has’. Or (Ox)Fx could be what
Frege calls the concept F (which of course is by his lights an object), and η would
be read ‘falls under’. But if we suppose that the predicate η is in the language, then
we obtain Russell’s paradox by considering (Ox)¬(x η x), since if t is that term, we
have

t η (Ox)¬(x η x) iff¬(t η t), i.e. t η t iff¬(t η t).

Of course the paradox admits of a number of ways out. If (Ox)Fx is what is assigned
to F by the standard set-theoretic semantics, then (Ox)¬(xηx) does not belong to the
domain of the interpretation, so that the quantifiers are not absolutely unrestricted.
An alternative would be to say that there is no such object as (Ox)Fx or to say that
in some cases the equivalence of ‘Fa’ and ‘a η (Ox)Fx’ fails. Suppose, for example,
that the only relevant objects are sets and classes. Then there is no set of all objects
that are not elements of themselves or even a set of all such sets, but we can admit
a class of all sets that are not elements of themselves. But if we admit a class of all
objects, sets, classes, or otherwise, that are not elements of themselves, then it must
either fail to satisfy the basic equivalence (which seems contrary to the specification)
or not be in the range of our variables. But then it is not the class of absolutely all such
objects.

One can object to drawing the strong conclusion from even the full generality
of the Russellian paradox on the ground that our notion of interpretation is onto-
logically loaded in a way that it seems possible to avoid. We have assumed that
interpretation proceeds by assigning objects to linguistic structures. One discussion
of our question challenges forcefully the assumption that in understanding quantific-
ation we must understand the domain as an object that in some way comprehends
the objects in it. Commenting on a remark of Frank Drake, Richard Cartwright
writes:

The general principle appears to be that to quantify over certain objects is to presuppose that
these objects constitute a ‘collection’ or a ‘completed collection’—some one thing of which
those objects are members. I call this the All-in-One Principle.¹³

The principle is not just the assumption that if we quantify over certain objects we can
identify a single object of which they can be said to be in some sense members. That
might be done in a trivial way. Evidently what Cartwright has in mind is that the
object should be set-like in that the relation of membership satisfies principles close

¹⁴ (1994), p. 7.
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to those of set theory.¹⁴ In fact he canvasses some assumptions, mostly from set
theory, by which the all-in-one principle leads to the rejection of absolute quantific-
ation. The further assumption the argument from Russell’s paradox made was that
there is a general assignment of objects to linguistic expressions, predicates included,
from which truth-conditions could be constructed.

Cartwright himself seems sometimes to permit himself such an object as the all-in-
one principle would call for, as when he talks of ‘the universe of discourse’ over which
one is quantifying. I think, however, that he sees a way out of recognizing reference
to an object here, since more often he uses the plural, as when he writes:

It is generally agreed that the members of any non-empty set can simultaneously be the values
of the variables of a first-order language. But the disputed proposition extends to the case in
which the objects in question do not constitute a set.¹⁵

He also uses other non-singular phrases, such as ‘any objects there are’ (p. 2). The
relevance of the plural to our question will be considered in Section 8.4.

In an earlier paper, I interpreted the generality of Russell’s paradox just pointed
to as an intrinsic limitation on the ‘method of nominalization’ for generalizing over
the places in language occupied by predicates.¹⁶ In the present context, where the
problem arises from ontologically loaded notions of interpretation, it is natural to
look for less loaded notions of interpretation along the lines of what I there called the
method of semantic ascent (obviously following Quine). That is, we would character-
ize truth-conditions directly in an inductive manner. Sticking to a first-order language
for simplicity, the domain is given by a predicate in the language in which the inter-
pretation is formulated, and predicates are interpreted by translation (which of course
may be homophonic). Such a paradigm of interpretation is familiar from the writings
of Donald Davidson. For our purposes we need not concern ourselves with the epi-
stemological problems that drive his notion of ‘radical interpretation’. But you will
recall that in early papers motivating his program he argued that meanings as objects
were not helpful for his theoretical purposes. Though the issues were quite different,
that should remind us that there might be reasons independent of our present prob-
lem for preferring less ontologically loaded notions of interpretation.

On such a conception, there seems to be no obstacle to choosing as a domain pre-
dicate something trivial like ‘x = x’, so that we don’t allow ourselves to introduce
objects that we don’t attribute to the ontology of the language we are interpreting.
We may need to have some mathematical objects such as at least finite sequences,
but if the question is whether the domain of the object language includes absolutely
everything, we can freely assume it includes what we need. But we have a predicate
that does the work of η, namely ‘true of ’, or, if we need to deal with predicates of
arbitrary numbers of places, Tarski’s ‘satisfies’.

¹⁵ The mention of a ‘completed collection’ is misleading, since it seems to rule out the intended
sense of quantification in intuitionistic mathematics. But Cartwright’s arguments do not turn on
that.

¹⁶ Ibid., pp. 2–3, emphasis mine. ¹⁷ (1982), §5.
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We then find, apparently miraculously, that there is no obstacle to correlating an
object with each predicate of the language. For a one-place predicate F , (Ox)Fx might
as well be F itself, so that ‘a η (Ox)Fx’ is just ‘F is true of a’, and the basic equival-
ence is a case of Tarski’s truth schema (more properly, satisfaction schema). Evidently
nothing requires us to take the domain as less than absolutely everything, unless the
quantifiers used in our own interpretation fall short of absoluteness. Although the all-
in-one principle as Cartwright intended it is not satisfied, the more trivial variant is,
where the object is just the open sentence ‘x = x’.

In this case our version of ‘Russell’s paradox’ reduces to a familiar semantic
paradox, in effect the ‘heterological’ paradox. But in a classical interpretation
‘satisfies’ and therefore ‘true of ’ are not in the language interpreted. That was one of
the options regarding η mentioned above. So the interpretation does require
‘ideology’ not present in the language interpreted, but it does not require an
expansion of ontology. So far so good for the idea that the domain of the variables
includes absolutely everything.

Matters may become more difficult, however, if one tries to generalize about inter-
pretation.¹⁷ Suppose we consider only interpretations of the form just mentioned,
where we introduce a predicate for the domain and translate the expressions of the lan-
guage interpreted by expressions of the same syntactic type. Experience in other areas,
such as understanding schemata in mathematics such as induction and separation, tells
us that what counts as a ‘predicate’ is open-ended and sensitive to our ontology.¹⁸ The
familiar examples of the latter come from mathematics; what counts as an instance of
the schemata of separation and replacement in set theory depends on what values are
admitted for parameters, and also what the quantifiers in an instance range over. If we
assume that we understand quantification over absolutely all sets, then of course we
will understand what an instance of (first-order) separation or replacement is. Any set
(and any of whatever urelements are admitted) can be a value of a parameter.

If we consider interpretations themselves to be objects, then we will face the diffi-
culties that we faced with the ontologically loaded notion of interpretation, as both
Williamson and Michael Glanzberg have pointed out. Can actual paradox be gener-
ated when one has the notion of truth under an interpretation? Evidently so if the
interpretation assigns objects to predicates so that the usual satisfaction condition
holds; that was one of the versions of Russell’s paradox mentioned above. Can we
weaken this assumption? An attempt to do so in earlier versions of this chapter was
unsuccessful.¹⁹ I am not sure whether the assumption can be weakened in a decisive

¹⁸ This may be needed to define notions of semantic validity and consequence, as the editors
point out. I do not propose any particular treatment, because what is appropriate will depend on
further particulars about the language. If it is first-order and contains arithmetic, then (following
Bolzano and Quine) we can define a sentence as valid if it remains true on every uniform substitution
of nonlogical terms. In this case, we do not really have to generalize about interpretations.

¹⁹ The first-order separation scheme might seem quite adequate for all the purposes of set theory.
Even if so, what counts as an instance depends on the values that can be taken by parameters. These
can be arbitrary sets, so that the same problem arises as with the notion of ‘all sets’.

²⁰ This was the so-called ‘superliar paradox’ of my (1974), p. 251. The example is a sentence
that says of itself that it is not true under any interpretation. If we model the notion of truth under
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way, completely cutting loose from the idea of assigning objects to predicates. The
different versions of the liar paradox do so, but it is not obvious how they bear on our
present problem.

However, a version of the Russellian paradox due to Williamson is instructive.²⁰
Recall that even the Davidsonian paradigm of interpretation led to an assignment of
objects to predicates, although in that case the assignment seemed to bear no logical
weight. Imagine that our language contains a schematic one-place predicate P, which
can be interpreted freely. In English ‘Px’ might be expressed as ‘x is one of them’.
Then if F is any predicate we can formulate, it seems we can form an interpretation
I , call it I (F ), so that for any x

(1) P is true of x according to I (F ) ↔ Fx.

But we can define a predicate R by the condition

(2) Rx ↔ ¬(P is true of x according to x).

But then by (1) and (2)

(3) P is true of x according to I (R) ↔ ¬(P is true of x according to x).

Taking I (R) as the value of x

(4) P is true of I (R) according to I (R) ↔ ¬(P is true of I (R) according to I (R)).

This is a contradiction.²¹
In the application of the simple Russell paradox to Davidsonian interpretation, the

natural conclusion was the Tarskian one, that ‘true of ’ is not in the language inter-
preted. There one could go on to interpret the metalanguage, with a new predicate
‘true of ’. In Williamson’s setting, this response can be resisted, since now we are tak-
ing interpretations themselves to be objects in the range of the variables. If we really
capture all interpretations in an absolute sense, why should we not have a perfectly
general notion of truth under an interpretation? But it is those two assumptions that
lead to a contradiction in Williamson’s argument.

In the usual Liar paradox we can pass to a more comprehensive scheme of interpret-
ation and say that, although what I said was not true under the scheme underlying its

an interpretation by the set-theoretic notion of truth in a model, then the formal sentence that
says of itself that it is true in no model can be refuted by a simple argument using the reflection
principle. But the turning of the tables leading to a derivation of the sentence that is characteristic
of Strengthened Liar examples would be possible on this modeling only in an inconsistent extension
of ZF. These considerations suggest that the original informal example is simply false. I think the
transmission back to the informal example of the formal refutation has some plausibility, but I do
not insist on it. (I am indebted to Byeong-Uk Yi and especially Hartley Slater for pointing out
difficulties in my presentation of this example in the UCLA and Cambridge lectures.)

²¹ (2003), p. 426. In presenting his paradox, I have adjusted the terminology to fit my own.
²² It is natural to take ‘P is true of x according to y’ to imply that y is an interpretation.

However, we might not assume this and replace (1) by the conditional whose antecedent is ‘I (F ) is
an interpretation’ and whose consequent is (1). Then the conclusion of the argument is that I (R) is
not an interpretation.
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use of ‘true’, it is true (or, depending on the example, false) under a more compre-
hensive scheme. One way we might do this in the face of Williamson’s paradox is
to admit that the interpretation I (R) was not in the range of the quantifiers, so that
their range falls short of absoluteness. Resisting this conclusion forces us to take the
Tarskian view now about the predicate ‘P is true of x according to I ’. That amounts
again to saying that we have determinate quantification over absolutely all interpret-
ations but do not have an equally general notion of truth under an interpretation.
One way of making sense of this is not congenial to the friends of absolute quanti-
fication: the objects playing the role of ‘interpretations’ are proxies in some model of
interpretation, possibly even chosen from a clearly restricted domain.

It is instructive to consider what happens with interpretations of the sort usually
considered in formal semantics, which we have called ontologically loaded. Suppose,
to begin with, that interpretations are models in the usual set-theoretic sense, and ‘P
is true of x according to M ’ is just a case of satisfaction in a model and is definable in
set theory. However, (1) holds only for x in the domain of M , and since it is easy to
see that I (R) cannot be in the domain, no paradox ensues. That illustrates what we
already know, that the set-theoretic notion of model will not satisfy the demand for
interpretations with domain absolutely everything, or even all sets. One could expect
a similar result if interpretations are objects of another kind such that the theory of
them allows definition of the notions of truth and satisfaction under an interpretation.

A more natural reading has the result that ‘all interpretations’ behaves in many
ways like ‘all sets’. The interpretation function yielding I (R) will not be a set, since
its domain comprehends all sets, so that it does not fall under the original set-
theoretic concept of interpretation. Thus even given absolute quantification over sets,
the informal concept of interpretation extends beyond the one that is modeled set-
theoretically. This situation is familiar from G. Kreisel’s well-known remarks about
the intuitive notion of logical validity and the completeness of first-order logic.²²

The friends of absolute quantification owe us a resolution of the tension between
quantification over all interpretations and the absence of a determinate notion of
truth under an interpretation. One way of putting the point is that the position seems
to be that ‘interpretation’ is not an indefinitely extensible concept while ‘truth under
an interpretation’ is.

8 .4

Surely, you will protest, when we say that everything is identical to itself, we don’t
intend any restriction, and we would fault any interpreter who would take our state-
ment to be restricted in any way. This seems clearly to be the case for many existential
statements, already invoked above, and even for some logically more complex state-
ments. ‘Every ordinal has a successor’ is not a strictly unrestricted quantification, but
as we have indicated ‘all ordinals’ is problematic in many of the ways that ‘all objects
whatsoever’ is.

²³ (1967), pp. 152–55.
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At this point I would like to return to Dummett. His remarks suggest a nuance that
he does not emphasize himself and that Cartwright does not pick up on. In particular,
this concerns his conception of the consensus among modern logicians:

All modern logicians are agreed that, in order to specify an interpretation of any sentence or
formula containing bound variables, it is necessary expressly to stipulate what the range of the
variables is to be.²³

This, of course, does not say that the range cannot comprehend absolutely everything,
but apparently he takes that to be a lesson of the set-theoretic paradoxes. But
we should note that this is a condition on interpretation. After introducing some
examples like those I have just cited, he goes on to interpret his own position:

What is meant, rather, is that it is not possible to suppose that, by specifying a range of some
style of individual variables as being over ‘all objects’, or ‘all sets’, or ‘all ordinals’, we have
thereby conferred a determinate truth-value on all statements containing quantifiers binding
such variables (even given that the other symbols occurring in these statements have been
assigned a determinate sense). Any attempt to stipulate senses for the predicates, relational
expressions and functional operators that we shall want to use relative to such a domain will
either lead to contradiction or will prompt us to concede that we are not, after all, using the
bound variables to range over absolutely everything that we could intuitively acknowledge as
being an object, a set, or an ordinal number.²⁴

Earlier, he formulates the lesson of the set-theoretical paradoxes as being

that quantification over that domain [all objects whatsoever] cannot be regarded as yielding,
in all cases, a sentence with a determinate truth-value.²⁵

Thus, his problem is with the interpretation of a language where the domain is to be
all objects whatsoever and with the idea that such interpretation confers determinate
truth-values on all sentences of the language. In the longer of the above quotations, it
appears that interpretation attributes senses to expressions, precisely the type of inter-
pretation that assigns objects to the expressions that we considered in Section 8.3. So
it may be that Dummett does not adhere to the all-in-one principle absolutely but
rather that he takes it to be implicit in a certain very natural and persuasive concep-
tion of interpretation.

With Dummett, we all want to say that such statements as ‘Everything is identical
with itself ’ can be understood without any implicit restriction. The first observation
to be made is that the quantifier is unrestricted, and we can suppose that there is noth-
ing in the context that would lead to such a restriction; indeed a speaker’s telling us
that he means everything or to include anything whatsoever would be a rejection of any
such restriction. We might interpret a larger part of what he has to say so as to take his
quantifiers to range over a domain that is not absolute. On any paradigm of interpret-
ation that is exact enough to be formulated mathematically, such interpretations will
be available at least of finite discourses because of set-theoretic reflection principles. It
may be, however, that our speaker will persist in protesting against any interpretation

²⁴ (1981), p. 567, emphasis mine. ²⁵ Ibid., pp. 568–69, emphasis mine.
²⁶ Ibid., p. 516.



The Problem of Absolute Universality 215

of that kind that is offered, for example by embracing the stronger axioms that the
interpreter must be assuming.

Persisting in this policy would allow the speaker to reject any interpretation that
restricts the range of his variables. The interpreter may be skeptical; he may reply that
the speaker is shifting his conceptual ground; the very meaning of ‘object’ or ‘entity’
is changing as he goes along and is confronted with more comprehensive interpreta-
tions. But let’s suppose we let the speaker have his way. The interpreter may give up
and say that he doesn’t any longer have the resources to interpret the speaker so that
his variables have a restricted range.

Unrestricted quantifiers are a part of language, and their use is not what posed
our problem. Rather, the problem arose because interpretation gave rise to admitting
objects not in their range, so that they fall short of being absolute. But is it clear that
in order to understand the speaker we have to interpret him in this sense? We might
bite the bullet thoroughly and say that we can understand our absolutist speaker’s lan-
guage, without engaging in any form of semantic reflection on it. Such a renunciation
of semantic reflection is a very high price to pay. The considerations at the end of the
last section suggest that we don’t have to go quite that far, but if we maintain that
our quantifiers comprehend all interpretations in an absolute sense one has to admit,
by the absence of a full notion of truth under an interpretation, that the interpreta-
tions quantified over do not contain all the information that we usually think of an
interpretation as embodying.

In recent literature other attempts have been made to have one’s cake and eat it too,
to understand the variables of a first-order language as absolutely unrestricted and at
the same time construct a semantics for the language. That would be a response to
the difficulty we are raising. The idea is to use second-order logic. Agustín Rayo and
Timothy Williamson prove a completeness theorem for first-order logic with the vari-
ables ranging over absolutely everything.²⁶ (If one is skeptical of that understanding,
the theorem certainly shows completeness for models whose domain of individuals is
the same as that of the metalanguage.) One might ask how one could even state such a
theorem. The models or interpretations are in the range of the second-order variables.
This would pose no difficulty for the Fregean point of view: models are concepts or
relations, and the completeness theorem concerns first-order logic with the variables
ranging over all objects. But of course on Frege’s view, concepts and relations are not
objects, so that on this suggested reading the first-order variables fall short of ranging
over absolutely everything.²⁷ However, so long as there are only a small number of
types, as is the case in Frege’s published writings, the effect of absolute quantification
is achieved by quantifying over all objects, all concepts, all relations, and so on.

Rayo and Williamson, following other friends of absolute quantification, accept
the claim of George Boolos that the appeal to the natural language plural to interpret

²⁷ Rayo and Williamson (2004).
²⁸ Thus up to now I have interpreted the problem of absolute universality rather narrowly, so

that quantification over all objects is not absolute if other styles of quantifiers are allowed that are still
ontologically committing. Richard Heck reminded me that some discussion of the Fregean option
was needed. I am indebted here also to the editors.
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monadic second-order quantifiers makes such quantification ontologically innocent.
(That view may well have been behind Cartwright’s use of plural formulations to
describe his ‘universe of discourse’.) They obtain polyadic quantification for free,
since they naturally assume that the objects there are are closed under the usual oper-
ations of set theory, so that a pairing function is easily defined. But the appeal to
Boolos’s claim is not needed for the immediate purpose, since they could have taken
the position I just offered to the Fregean view.

I have been skeptical of Boolos’s claim and have criticized it in an earlier paper.²⁸
It implies, for example, that there is no ontological difference between a second-order
theory with full comprehension and one with only first-order comprehension, even
though that difference can give rise to great differences in proof-theoretic strength.
Furthermore, Boolos’s own suggestion for a semantics for second-order logic as he
interprets it introduces a primitive second-level predicate. It seems to be another mat-
ter when second-order variables take the place of arguments; can it really be that that
does not commit us to pluralities or, in Russell’s phrase, classes as many? However,
with the help of a suggestion of Vann McGee, Rayo and Williamson are able to avoid
such second-level predicates in their completeness proof.²⁹

However, it seems to me that even accepting Boolos’s thesis only postpones the
day of reckoning.³⁰ As a language in use, Rayo and Williamson have a second-order
language with variables ranging over all objects, claiming that they embrace absolutely
everything. But it appears that even by their own lights interpretation and metatheory
have to end there, since the next steps will go into third-order logic, and they have no
suggestion of how to formulate a semantics for that without abandoning the claim
that the range of the individual variables is absolutely everything.

In his chapter in this volume, Rayo does make a proposal. That is to extend plural
logic to the higher levels. The thesis of the ontological innocence of traditional plural
logic already has its difficulties, and Rayo’s extension loses one of its main props, the
appeal to the linguistic intuitions that Boolos and others rely on, since Rayo admits
that ‘superplural’ and higher levels are not found in natural languages. Furthermore,

²⁹ (1990), end of Section 6. Of course I was even then not alone in criticizing Boolos’ claim.
Linnebo (2004) contains a judicious summary of the issues in the debate surrounding Boolos’ thesis.

³⁰ They cannot avoid using the global axiom of choice, which on their reading implies that there
is a well-ordering of absolutely everything. More carefully put: some pairs well-order everything. A
result of Harvey Friedman implies that with some restrictions on the language, their completeness
theorem is equivalent to the weaker principle that the universe has a linear ordering. (See Friedman,
‘A complete theory of everything,’ posted at www.math.ohio-state.edu/∼friedman.) Friedman is
skeptical about the truth of this, while Rayo and Williamson seem willing to accept the stronger
global choice principle. It should be remembered that, as usually deployed in set theory, global
choice implies a well-ordering of the pure sets. Rayo and Williamson’s principle is stronger than that.
However, the issue arises because absolute quantifiers would have to take in all non-mathematical
objects, and on such a view there is some plausibility in supposing that they constitute a set.
Someone doubtful about Rayo and Williamson’s assumption might already be disposed to question
the axiom of choice in some applications of set theory with urelements, independent of the question
of absolute universality. Thus a friend of absolute quantification might question the global choice
principle and renounce the Rayo-Williamson completeness theorem.

³¹ The same will be true of the Fregean interpretation of the second-order variables as ranging
over concepts and relations, where one stops the ascent to higher levels.

www.math.ohio-state.edu/~friedman
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he faces the problem how to understand semantic reflection on the full language with
all finite levels.³¹

8.5

A suggestion made in earlier writings of my own, embraced by some recent skeptics
about absolute quantification, is that statements like ‘Everything is identical to itself ’
be understood as systematically ambiguous, akin to Russell’s typical ambiguity. I have
always felt some discomfort at not having more of a theory about systematic ambi-
guity. I’m not in a position to offer much more now than I did earlier, and I think
there is some reason to think there are limits to what one can expect. A precise the-
ory will behave like theories in formal semantics and will run into the problems about
generalizing about interpretation that we have considered.

In the particular case at hand, we are confident that no matter how our conception
of ‘object’ or ‘entity’ might be expanded, the truth of ‘∀x(x = x)’ will be preserved.
It is, one might say, a constraint on possible expansions of these conceptions. In this
particular case, it also cuts across the different ways in which even the objects of the
familiar world are conceived in science and metaphysics; in particular whatever ‘cri-
teria of identity’ we deploy, the law of self-identity will hold.

The ‘ambiguity’ in this case is broader than that that statements about sets or pro-
positions might have, where it is expansion of the domain while leaving the individu-
ation of the objects we already have alone that is at issue. That would be the situation
with ‘Every ordinal has a successor’ (Dummett’s example) and even about many of
the axioms of set theory, possibly all of those that are firmly accepted.³² The idea is
that we don’t have a definite conception of ‘all sets’ according to which these axioms
are true when the variables are taken to range over all sets. The fact, pointed out by
Gödel already in 1933 and underlying Zermelo’s famous paper of 1930, that any
means of specifying how sets might be ‘generated’ gives rise to new means that will
generate more, and according to which what the means available generate will be a
set, discourages the idea that we have such a conception. One could say that state-
ments about all sets, even quite simple and unproblematic ones, have a schematic

³² Rayo’s generalization of plural logic has full comprehension at all levels (see Section 4.1). This
is not necessary in order to define truth and satisfaction at lower levels. A weaker version of Rayo’s
logic, with full second-order comprehension but only predicative comprehension from there up,
would allow the definitions of truth and satisfaction at each level. Full second-order comprehension
seems to be needed for the completeness theorem. The higher than second-level quantifiers could
be given a relative substitutional interpretation (relative to the values of the first- and second-order
variables). That might vindicate the claim that beyond the second level, the ascent is one of ideology
and not ontology, and for the second level only Boolos’s original thesis would be needed. On this
reading, at higher levels the motivation from the plural would play only a heuristic role. (I have
benefited here from discussion with Rayo.)

³³ With the exception of purely existential axioms, in particular the axiom of infinity. Once the
domain is large enough to contain a witness for that, it remains true under expansion of the domain,
even many expansions insensitive to the principles of set theory.
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character.³³ That suggests that there is an implicit dimension of generalization, not
captured by the quantifiers. That is correct, but the generalization is only partly over
mind-independent objects, since it concerns the possible development of our own
conceptions. Attempting to capture it by an additional style of quantifier will run into
all sorts of difficulties.

A view like ours faces a challenge posed by Williamson, according to which the
usual understanding even of statements with restricted quantifiers presupposes abso-
lute quantification.³⁴ An ordinary restricted statement, such as ‘No donkey talks’
(Williamson’s example), is understood as containing a quantifier restricted to don-
keys. But in order for it to have the right truth-conditions, we need to be sure that its
range at least takes in all donkeys. And surely that means all the donkeys that there are.
Now we describe this situation with unrestricted quantifiers. But if an interpretation
of our discourse makes them range over less than absolutely everything, don’t we face
a problem mentioned at the beginning, that our statement ‘No donkey talks’ may
be true even though (from the point of view of the metalanguage) there is a talking
donkey out there?

In some cases such as simple existential statements like ‘There are donkeys’, we can
rely on logical properties such as the persistence of such statements under expansion
of the domain, as Michael Glanzberg emphasizes. In the case of universal statements,
we need something else, assurance that if our domain is expanded it won’t change
the class of donkeys.³⁵ But that seems pretty clear from the considerations that in fact
drive such expansion. Why should donkeys be worse off than, say, pure sets of finite
rank? We know where counterexamples to ‘No donkey talks’ are to be found if they
exist, in the relatively recent history of our planet, a highly circumscribed region of
space. Certainly the least unlikely way in which ‘No donkey talks’ might come to be
rejected is through finding a talking donkey approximately where we now think don-
keys are to be found, in such a way that the statement is falsified according to our
present understanding.

However, there might be an analogy between the logically driven expansion we
have emphasized and conceptual changes in the development of science. Then it
might be imaginable that in some at present unconceived part of the universe, there
might be or have been more donkeys. It is not obvious how to understand the bear-
ing of such possibilities on ‘manifest image’ facts such as that donkeys do not talk.

³⁴ An idea I have entertained is that one might reason with such statements by taking on
restrictions like what Hilbert proposed for finitary mathematics: generality would be expressed
by free variables, so that universal statements would not enter into logical combinations, and an
existential statement could be made only by presenting a witness, in this case a limited domain in
which a witness is to be found. But I have not developed a formal language that would model this
idea.

However, in a lecture at UCLA in June 2005, Saul Kripke presented an axiomatization of set
theory based on just this conception, where bounded quantification behaves in the usual way, but
unbounded generalizations are expressed using free variables. That requires adding to the language
terms for certain basic operations, such as power set.

³⁵ (2003), Section 8.4.
³⁶ In fact it would do if it didn’t change some essentials of the nature of donkeys which

distinguish them from humans and even, perhaps, parrots.
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And it can be argued, on Kripkean grounds, that if the future development of science
turns up a possibility like that, the entities involved will not be donkeys, because they
have no evolutionary connection with the donkeys we know. However that may be,
I don’t think the statement ‘No donkey talks’ as we actually use it has to deal with
possibilities like that, of which we have at present no conception. One could discern
metaphysical realist prejudice in the expectation that it should. It seems that what we
can now understand as ‘the objects that there are’ (even on rather different ontolo-
gical schemes) doesn’t have a provision for expansion that would allow more donkeys.
But when we think of the ways our views of things in science and philosophy have
changed over time, are we really 100 percent sure that future generations won’t show
us wrong in that?
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9
Beyond Plurals

Agustín Rayo

I have two main objectives. The first is to get a better understanding of what is at
issue between friends and foes of higher-order quantification, and of what it would
mean to extend a Boolos-style treatment of second-order quantification to third- and
higher-order quantification. The second objective is to argue that in the presence of
absolutely general quantification, proper semantic theorizing is essentially unstable:
it is impossible to provide a suitably general semantics for a given language in a
language of the same logical type. I claim that this leads to a trilemma: one must
choose between giving up absolutely general quantification, settling for the view that
adequate semantic theorizing about certain languages is essentially beyond our reach,
and countenancing an open-ended hierarchy of languages of ever ascending logical
type. I conclude by suggesting that the hierarchy may be the least unattractive of the
options on the table.

9 .1 PRELIMINARIES

9.1.1 Categorial Semantics

Throughout this chapter I shall assume the following:

C S

Every meaningful sentence has a semantic structure,¹ which may be represented as a certain
kind of tree.² Each node in the tree falls under a particular semantic category (e.g. ‘sentence’,

Many thanks to Kit Fine, Øystein Linnebo, John MacFarlane, Tom McKay, Charles Parsons, Marcus
Rossberg, Barry Schein, Gabriel Uzquiano, Tim Williamson, Crispin Wright, and audiences at
’s  Reading Group, La Universidade de Santiago de Compostela and Arché the 

Research Centre for the Philosophy of Logic, Language, Mathematics and Mind.
¹ If a sentence is ambiguous, it might have more than one semantic structure. I will henceforth

ignore ambiguity of this kind to simplify my presentation. For present purposes, ambiguity may be
thought of as a matter of homophonic but distinct expressions.

² More precisely, as a finite tree with ordered nodes. A finite tree is an ordered-pair 〈N ,≤〉, where
N is a finite set of ‘nodes’ and ≤ is a binary relation on N with the following properties: (i) ≤ is
reflexive, transitive and antisymmetric; (ii) N has a ≤-minimal element, which we call ‘base node’;
(iii) every node x in N other than the base node has an immediate ≤-predecessor (i.e. there is a y
in N such that y ≤ x and there is no z in N such that y ≤ z ≤ x); and (iv) for any x in N there is
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‘quantifier’, ‘sentential connective’), and has an intension that is appropriate for that category.
The semantic category and intension of each non-terminal node in the tree is determined by
the semantic categories and intensions of nodes below it.

Although I won’t attempt to defend C S here,³ two points are
worth emphasizing. First, the claim that meaningful sentences are endowed with
some sort of semantic structure is not optional. It is forced upon us by considerations
of compositionality. (It is hard to understand how a sentence could have different
semantic ‘constituents’ in the absence of some kind of semantic structure.) Second,
the notions of semantic structure and semantic category should be distinguished from
the notions of grammatical structure and grammatical category. Whereas the former
are chiefly constrained by a theory that assigns truth-conditions to sentences, the lat-
ter are chiefly constrained by a theory that delivers a criterion of grammaticality for
strings of symbols. (The two sets of notions are nonetheless interrelated, since we
would like to have a transformational grammar that specifies a class of legitimate
transformations linking the two.)

9.1.2 An Example

Let L0 be an (interpreted) propositional language. It consists of the following sym-
bols: the sentential-letters ‘p’, ‘q’, and ‘r’; the one-place connective-symbol ‘¬’; the
two-place connective-symbols ‘∨’ and ‘∧’; and the auxiliary symbols ‘(’ and ‘)’. Well-
formed formulas are defined in the usual way.

Here is an example of a categorial semantics for L0. There are three semantic
categories: ‘sentence’, ‘one-place connective’ and ‘two-place connective’. To each of
these categories corresponds a different kind of intension: the intension of a sentence
is a set of possible worlds, the intension of a one-place connective is a function that
takes each set of possible worlds to a set of possible worlds, and the intension of a two-
place predicate is a function that takes each pair of sets of possible worlds to a set of
possible worlds. We let the basic semantic lexicon of L0 consist of ‘p’, ‘q’, ‘r’, ‘¬’, ‘∨’
and ‘∧’. The lexical items ‘p’, ‘q’ and ‘r’ fall under the ‘sentence’ category and have
the following intensions:

I (‘p’) = {w : snow is white according to w}

I (‘q’) = {w : roses are red according to w}

I (‘r’) = {w : violets are blue according to w}

a unique path back to the base node (i.e. for any y and z, if y ≤ x and z ≤ x then either y ≤ z or
z ≤ y). We say that x is a terminal node if, for every y, x ≤ y only if x = y. If x ≤ y and x 
= y we say
that y is below x in the tree. If y is below x and no z is such that z is below x and y is below z, then
we say that y is immediately below x. Finally, a finite tree with ordered nodes is a pair 〈T , F 〉 where
T is a finite tree and F is a one–one function from nodes in T to natural numbers. If y and z are
both immediately below x, we say that y is to the left of z just in case F (y) < F (z).

³ For a defence, see Lewis (1970) and Montague (1970).
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The lexical item ‘¬’ falls under the ‘one-place connective’ category and has the fol-
lowing intension:

I (‘¬’) = the function taking W to its set-theoretic complement W

The lexical items ‘∨’ and ‘∧’ fall under the ‘two-place connective’ category and have
the following intensions:

I (‘∨’) = the function taking each pair 〈W , V 〉 to W ∪ V

I (‘∧’) = the function taking each pair 〈W , V 〉 to W ∩ V

The semantic structure of a formula of L0 mirrors its syntax. For instance, the
semantic structure of ‘(p ∧ q) ∨ ¬r’ (or, in Polish notation, ‘∨ ∧ p q ¬r’) is given by
the following tree:

∨

C2

∧

C2

p

S

q

S

S

¬

C1

r

S

S

S

(‘S’, ‘C1’ and ‘C2’ stand for ‘sentence’, ‘one-place connective’ and ‘two-place
connective’, respectively.) Each terminal node in the tree is assigned the intension
and semantic category of the lexical item displayed underneath. The intensions and
semantic categories of non-terminal nodes are determined by the intensions and
semantic categories of nodes below them, in the obvious way (e.g. the intension of
base node is (I (‘p’) ∩ I (‘q’)) ∪ I (‘r’)).

Since the intensions of sentences are taken to be sets of possible worlds, the
semantics immediately delivers a characterization of truth for sentences in L0: sen-
tence S is true in world w if and only if w is a member of the intension assigned to the
base node of S’s semantic structure.

9.1.3 Legitimacy

I shall say that a semantic category C is legitimate just in case it is in principle possible
to make sense of a language whose semantic properties are accurately described by a
categorial semantics employing C.

One can certainly make sense of a propositional language. So ‘sentence’, ‘1-place
connective’ and ‘2-place connective’ are all legitimate semantic categories. One can
also make sense of a first-order language. So ‘name’, ‘n-place predicate’ and ‘first-
order quantifier’ (with suitable intensions), are also legitimate semantic categories.
But where do the limits lie? Might a purported semantic category be ruled out by the
very nature of language?
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An example might bring the matter into sharper focus. Let L1 be an (interpreted)
first-order language, and suppose it is agreed on all sides that the individual constant
‘c’ of L1 falls under the semantic category ‘name’, and that the predicate ‘P(. . .)’ of
L1 falls under the semantic category ‘one-place predicate’.⁴ To fix ideas, think of the
intension of a name as a function that takes each world to an individual in that world,
and of the intension of a one-place predicate as a function that takes each world to a
set of individuals in that world. Now suppose we tried to enrich L1 with the new item
‘ξ ’, in such a way that ‘ξ (c)’ and ‘P(ξ )’ are both sentences. It is tempting to think that
there is no way of carrying out the extension without lapsing into nonsense. If this
is right, then there is reason for thinking that ‘ξ ’ could not fall under a legitimate
semantic category.

This is something of an extreme case, since the possibility of a semantic category
corresponding to ‘ξ ’ is ruled out by the category-formation rules of standard imple-
mentations of categorial semantics.⁵ But the philosophy of logic is peppered with
cases that are more difficult to adjudicate. Consider, for example, the debate that is
sometimes labeled ‘Is second-order logic really logic?’⁶ Quine has famously argued
that the only way of making sense of second-order quantifiers is by understanding
them as first-order quantifiers ranging over set-like entities. If this is right, second-
order quantifiers cannot fall under a legitimate semantic category, at least not insofar
as it is insisted that they not be thought of as first-order quantifiers.

Contrary claims are made by Quine’s rivals. Boolos (1984) argues that it is possible
to make sense of the Geach-Kaplan Sentence:

[Some critics admire only one another.]

even though it is ‘a sentence whose quantificational structure cannot be captured by
first order logic.’ If this is right, plural quantifiers fall under a semantic category that
is both legitimate and distinct from ‘first-order quantifier’.

Boolos’s work on plural quantification is an important contribution to the debate
on second-order logic not because it shows that second-order quantifiers are plausibly
understood as plural quantifiers. (Although plural quantifiers can be used to play the
same role as second-order quantifiers for certain purposes, they should not be identi-
fied with second-order quantifiers because plural terms such as ‘they’ and ‘them’ do
not take predicate positions.)⁷ Rather, it is important because it makes a convincing

⁴ Strictly, one should distinguish between the expressions of a first-order language, and the
members of the language’s semantic lexicon. Only the latter can be properly said to fall under
semantic categories. I shall fudge this distinction—here and throughout the remainder of the
chapter—for presentational purposes.

⁵ According to Lewis (1970), for example, the semantic category of a predicate is 〈S/N 〉 and
the semantic category of a name is N (or, alternatively, 〈S/(S/N )〉). So, in order for ‘ξ (c)’ to be a
sentence, the semantic category of ‘ξ ’ would have to be 〈S/N 〉 (or, alternatively, either 〈S/N 〉 or
〈S/(S/(S/N ))〉), and in order for ‘P(ξ )’ to be a sentence, the semantic category of ‘ξ ’ would have
to be either N or 〈S/(S/N )〉. And it is impossible to fulfill both of these conditions at once.

⁶ For the Quinean side of the debate see Quine (1986) ch. 5, Resnik (1988), Parsons (1990) and
Linnebo (2003) (among others). For the Boolosian side of the debate see Boolos (1984), Boolos
(1985a), Boolos (1985b), McGee (1997), Hossack (2000), McGee (2000), Oliver and Smiley
(2001), Rayo and Yablo (2001), Rayo (2002) and Williamson (2003) (among others).

⁷ See Simons (1997), Rayo and Yablo (2001) and Williamson (2003).
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case for the view that quantifiers other than the standard (singular) first-order quanti-
fiers can fall under a legitimate semantic category, and this opens the door for think-
ing that it might be possible to understand second-order quantifiers in such a way
that they too belong to a semantic category that is both legitimate and distinct from
‘first-order quantifier’.

Needless to say, the concession that second-order quantifiers fall under a semantic
category that is both legitimate and distinct from ‘first-order quantifier’ would leave
a number of important issues unresolved. The logicality of second-order quantifiers
would not automatically be settled, since a single semantic category might include
both logical and non-logical items (e.g. ‘ . . . = . . . ’ and ‘ . . . is a parent of . . . ’).
The ontological commitments of second-order quantifiers would not automatically
be settled, since the standard criterion of ontological commitment—Quine’s cri-
terion—applies only to first-order languages.⁸ And the determinacy of second-order
quantifiers would not automatically be settled, since an expression can be indeterm-
inate even if its semantic category is fixed.⁹

9.2 BEYOND PLURALS

In this section I will introduce an infinite hierarchy of predicates, terms and quanti-
fiers. I will claim without argument that each element in the hierarchy falls under a
legitimate semantic category. Later in the chapter I will try to motivate this claim.

9.2.1 First-Level Predicates

A first-level predicate is a predicate that takes a singular term in each of its argument
places. It is tempting to think that the semantic value of the monadic first-level pre-
dicate ‘ . . . is an elephant’ is the set of elephants. More generally, it is tempting to
think that the semantic value of the monadic first-level predicate ‘P1(. . .)’ is the set of
individuals ‘P1(. . .)’ is true of. But now assume—as I will throughout the remainder
of the paper—that it is possible to quantify over absolutely everything.¹⁰ Then the
thought is unsustainable. For it leads to the unwelcome conclusion that predicates
such as ‘ . . . is self-identical’ or ‘ . . . is a set’ lack a semantic value.

(The problem cannot be solved by appealing to a non-standard set theory, or by
employing entities other than sets. Suppose, for example, that one takes the semantic
value of a monadic first-level predicate to be a set∗ rather than a set. It follows from
a generalization of Cantor’s Theorem that at least one of the following must be the
case:¹¹ either (a) there are some things—the Fs—such that there is no set∗ consisting
of all and only the Fs, or (b) there are some things—the Fs—and some things—the

⁸ For an expanded criterion of ontological commitment, see Rayo (2002).
⁹ For discussion of determinacy, see Jané (2005).

¹⁰ For more on absolutely unrestricted quantification see Parsons (1974b), Dummett (1981)
chs. 14-16, Cartwright (1994), Boolos (1998b), Williamson (1999), McGee (2000), the postscript
to Field (1998) in Field (2001), Rayo (2003), Rayo and Williamson (2003), Glanzberg (2004), and
Williamson (2003).

¹¹ See Rayo (2002).
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Gs—such that the Fs are not the Gs but the set∗ of the Fs is identical to the set∗ of the
Gs. So we are left with the unsettling conclusion that either there are some things such
that a predicate true of just those things would lack a semantic value, or there might
be two predicates that share a semantic value but are not true of the same things.)

Rather than taking ‘ . . . is an elephant’ to stand for the set of elephants, I would
like to suggest that one should take it to stand for the elephants themselves. It is gram-
matically infelicitous to say that the semantic value of ‘ . . . is an elephant’ is the ele-
phants. So I shall say state the view by saying that ‘ . . . is an elephant’ refers to the
elephants. Formally,

∃xx(∀y(y ≺1,2 xx ↔ E1(y)) ∧ R1,2(‘ . . . is an elephant’, xx))

which is read:

There are some things—the xxs—such that: (a) for every y, y is one of the xxs if and only if
y is an elephant, and (b) ‘ . . . is an elephant’ refers to the xxs.

Double variables are used for plural terms and quantifiers,¹² and superscripts indicate
the type of variable that the relevant predicate takes in each of its argument places.
Predicates are interpreted in the obvious way: ‘y ≺1,2 xx’ means ‘y is one of the xxs’
(or ‘ity is one of themxx ’), ‘1(y)’ means ‘y is an elephant’ and ‘1,2(y, xx)’
means ‘y refers to the xxs’ (or ‘ity refers to themxx ’). The proposal therefore makes use
of second-level predicates. (A second-level predicate is a predicate that takes a plural
term in one of its argument places, and either a singular term or a plural term in the
rest; more will be said about second-level predicates below.)

A snappy way of stating my claim is by saying that the reference of a monadic first-
level predicate is a plurality. (One could say, for instance, that the reference of ‘. . . is
an elephant’ is the plurality of elephants.) But it is important to be clear that appar-
ently singular quantification over ‘pluralities’ is a syntactic abbreviation for plural
quantification over individuals; and that plural quantification is not the standard sort
of (first-order) quantification over a new kind of ‘item’ (‘plurality’); it is a new kind
of quantification over individuals, which are the only kind of ‘item’ there is.

9.2.2 First-Level Terms

Let us now turn our attention to plural terms (or first-level terms, as I shall call them).¹³
I argued above that it implausible to think that the first-level predicate ‘ . . . is an
elephant’ refers to the set of elephants. It is similarly implausible to think that the first-
level term ‘the elephants’ refers to the set of elephants, since the general view that ‘the
Fs’ refers to the set of Fs leads to the unwelcome result that first-level terms such as
‘the self-identical things’ or ‘the sets’ are without reference. (And, for the same reasons
as before, the problem cannot be avoided by appealing to a non-standard set-theory,
or by employing entities other than sets.)

¹² In using this notation I follow Burgess and Rosen (1997).
¹³ Although a cleaner example of an English first-level term would be ‘they’ in ‘Some elephants

passed by; they were generally nice to each other’, I treat expressions like ‘the elephants’ as if they
were uncontroversially first-level terms for ease of exposition.
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I would like to suggest that first-level terms—like monadic first-level predicates—
refer to pluralities. Thus, ‘the elephants’ refers, not to the set of elephants, but to the
elephants themselves. Formally,

∃xx(∀y(y ≺1,2 xx ↔ 1(y)) ∧ 1,2(‘the elephants’, xx))

which is read:

There are some things—the xxs—such that: (a) for every y, y is one of the xxs if and only if
y is an elephant, and (b) ‘the elephants’ refers to the xxs.

9.2.3 The Saturation Operator

Let the saturation operator ‘σ ’ be such that, given any monadic first-level predicate
‘P1(. . .)’, ‘σ [P1(. . .)]’ is a first-level term for which the following holds:

∀xx(R1,2(‘P1(. . .)’, xx) ↔ R1,2(‘σ [P1(. . .)]’, xx))

The term ‘σ [P1(. . .)]’ may therefore be thought of as something along the lines of the
plural definite description ‘the P1s’. (See, however, Section 9.3.4.)

There are interesting similarities between our saturation operator and the abstrac-
tion operator ‘λ’. But, of course, they are distinct. Whereas the saturation operator
transforms predicates into terms, the abstraction operator transforms sentences into
predicates.

One may wish to insist that it is inappropriate to use a single reference relation for
predicates and terms. One might think that, strictly speaking, there are two differ-
ent kinds of reference: predicate-reference and term-reference. Nothing I shall say is
incompatible with such a view. If one wanted, one could characterize the saturation-
operator as follows:

∀xx(P-R1,2(‘P1(. . .)’, xx) ↔ T-R1,2(‘σ [P1(. . .)]’, xx))

But the real difference between ‘ . . . is an elephant’ and ‘the elephants’ is that they
fall under distinct semantic categories. And, since that is a difference that is already
reflected in the syntax, I won’t bother distinguishing between predicate-reference and
term-reference.

9.2.4 Second-Level Predicates

There is a case to be made for the view that English predicates such as ‘ . . . are
scattered on the table’ in ‘The seashells are scattered on the table’ or ‘ . . . are sur-
rounding the building’ in ‘the students are surrounding the building’ are best under-
stood as genuine second-level predicates.¹⁴ Suppose such a view is correct. One might
then be tempted to think that the reference of ‘ . . . are scattered on the table’ is the
set of all and only sets whose members are scattered on the table (or, alternatively, the
plurality consisting of all and only sets whose members are scattered on the table).

¹⁴ See Rayo (2002).
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More generally, one might be tempted to think that the second-level predicate ‘. . . are
P’ refers to the set of all and only sets whose members are collectively P (or, alternat-
ively, to the plurality consisting of all and only sets whose members are collectively P).
But one would then be forced to withhold reference from, e.g. a second-level predic-
ate true of all and only pluralities whose members are too many to form a set. (And,
as before, the problem cannot be avoided by appealing to a non-standard set-theory,
or by employing entities other than sets.)

I propose instead that the reference of ‘ . . . are scattered on the table’ should be
characterized as follows:

∃xxx(∀yy(yy ≺2,3 xxx ↔ S2(yy)) ∧ R1,3(‘. . . are scattered’, xxx))

where treble variables are used for super-plural terms and quantifiers. There are, of
course, no super-plural terms or quantifiers in English, but I would like to suggest
the relevant semantic category is nonetheless legitimate: super-plural quantifiers are
to third-order quantifiers what plural quantifiers are to second-order quantifiers.

Since I cannot use English to state my proposal, I shall state it by saying that the
reference of a monadic second-level predicate is a super-plurality. The reference of
‘. . . are scattered on the table’, for example, is the super-plurality to which all and
only pluralities scattered on the table belong. But it is important to be clear that
apparently singular quantification over ‘super-pluralities’ is a syntactic abbreviation
for super-plural quantification over individuals. Super-plural quantification is not
singular (first-order) quantification over a new kind of ‘item’ (‘super-plurality’), nor
is it plural quantification over a new kind of ‘item’ (‘plurality’). Super-plural quan-
tification is a new kind of quantification altogether. And like its singular and plural
counterparts, it is quantification over individuals, which are the only kind of ‘item’
there is.

I would like to insist that thinking of super-plural quantification as an iterated form
of plural quantification—plural quantification over pluralities—would be a serious
mistake. Plural quantification over pluralities can only make sense if pluralities are
taken to be ‘items’ of some kind or other. And a plurality is not an ‘item’: apparently
singular quantification over pluralities is a syntactic abbreviation for plural quantific-
ation over individuals.

It is one thing to have a general understanding of the sort of role super-plural quan-
tifiers are supposed to play. But acquiring a genuine grasp of super-plural quantific-
ation—making sense of a language containing super-plural quantifiers—is a very
different matter. The remarks in this section are intended to help with the former,
but certainly not the latter. The best way of attaining a genuine grasp of super-plural
quantification is presumably by mastering the use of super-plural quantifiers. (A suit-
able deductive system is discussed in Section 9.4.2.)

9.2.5 Second-Level Terms

Debatable examples such as ‘the couples’ or ‘the collections’ aside, English appears
to contain no second-level terms. But I submit that the relevant semantic category is
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nonetheless legitimate.¹⁵ One can use the saturation operator, ‘σ ’, to form second-
level terms by stipulating that, for any monadic second-level predicate ‘P2(. . .)’,
‘σ [P2(. . .)]’ is a second-level term for which the following holds:

∀xxx(R1,3(‘P2(. . .)’, xxx) ↔ R1,3(‘σ [P2(. . .)]’, xxx))

Thus, ‘σ [S2(. . .)]’ is to ‘ . . . are scattered’ what ‘σ [E1(. . .)]’ is to
‘ . . . is an elephant’. In each case, there is a difference in semantic category without a
difference in reference.

9.2.6 Beyond

A third-level predicate is a predicate that takes a second-level term in one of its argu-
ment places, and either a second-level term, a first-level term or singular term in the
rest. It seems clear that English contains no third-level predicates. But I submit that
the relevant semantic category is nonetheless legitimate. In analogy with the above,
the reference of a monadic third-level predicate ‘P3(. . .)’ may be characterized as
follows:

∃xxxx(∀yyy(yyy ≺3,4 xxxx ↔ P3(yyy)) ∧ R1,4(‘P3(. . .)’, xxxx))

where quadruple variables are used for super-duper-plural terms and quantifiers. There
are, of course, no super-duper-plural terms or quantifiers in English, but, again, I sub-
mit that the relevant semantic category is nonetheless legitimate: super-duper-plural
quantifiers are to fourth-order quantifiers what super-plural quantifiers are to third-
order quantifiers and plural quantifiers are to second-order quantifiers.

And, of course, one can use the saturation operator, ‘σ ’, to form third-level terms
by stipulating that, for any monadic third-level predicate ‘P3(. . .)’, ‘σ [P3(. . .)]’ is a
third-level term for which the following holds:

∀xxxx(R1,4(‘P3(. . .)’, xxxx) ↔ R1,4(‘σ [P3(. . .)]’, xxxx))

A similar story can be told about n-th level terms and predicates for any finite n.

9 .3 FINE-TUNING

9.3.1 Improving the Notation

Consider the first-level predicate ‘ . . . is an ancestor of Clyde’. The first-level term

σ [ . . . is an ancestor of Clyde]

might be read ‘the ancestors of Clyde’ (or, more idiomatically, ‘Clyde’s ancestors’).
We can therefore write

¹⁵ In this connection, see Black (1970) and Hazen (1997).
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(1) VN2(σ [ . . . is an ancestor of Clyde]),

(read: ‘Clyde’s ancestors are very numerous’).

Now consider the result of deleting ‘Clyde’ from (1). Since ‘Clyde’ is a singular term
and (1) is a sentence, what we should get is a first-level predicate, true of all and only
individuals whose ancestors are very numerous. But it is be infelicitous to write

VN2(σ [ . . . is an ancestor of . . . ]),

because it is unclear which of the two empty argument places in ‘ . . . is an ancestor
of . . . ’ the saturation operator is germane to. We need to improve our notation. One
possibility is to add indices to ‘σ ’ and each of the empty argument places in ‘ . . . is
an ancestor of . . . ’. This allows us to distinguish between

VN2(σ1[ . . . 1 is an ancestor of . . . 2])

and

VN2(σ2[ . . . 1 is an ancestor of . . . 2]).

Both are first-level predicates. The first is true of all and only individuals whose ancest-
ors are very numerous; the second is true of all and only individuals whose descend-
ants are very numerous. Accordingly, one can construct the following sentences:

(2) FC2(σ2[VN2(σ1[ . . . 1 is an ancestor of . . . 2])]),
(roughly: the individuals whose ancestors are very numerous form a club);

and

(3) FC2(σ1[VN2(σ2[. . .1 is an ancestor of . . .2])]),
(roughly: the individuals whose descendants are very numerous form a club).

Maintaining the dotted-line notation turns out to be somewhat inconvenient, how-
ever. I shall therefore forego the use of ‘. . .i’ in favor of ‘vn

i ’ (where n is the level of
terms taking the place of ‘. . .i ’). Thus, (2) and (3) become (2′) and (3′), respectively:

(2′) FC2(σ 0
2 [VN2(σ 0

1 [v0
1 is an ancestor of v0

2])])

(3′) FC2(σ 0
1 [VN2(σ 0

2 [v0
1 is an ancestor of v0

2])])

9.3.2 The Reference of Polyadic Predicates

I offered a proposal about the reference of monadic nth level predicates in Section 9.2.
But nothing has been said so far about the reference of polyadic predicates, such as
‘A1,1(. . . , . . .)’, or ‘. . . ≺1,2 . . .’.

One possibility is to take the reference of ‘A1,1(. . . , . . .)’ to be a plurality
of ordered-pairs. Alternatively, one can take it to be a super-duper-plurality. (Specific-
ally: the super-duper-plurality consisting of all and only super-pluralities that consist
of two pluralities, one of them consisting of an individual and her ancestor and the
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other consisting of the ancestor alone.¹⁶) Such proposals generalize naturally to poly-
adic predicates of any arity and any finite level. A generalization of the first proposal
is supplied in the appendix.

9.3.3 Intensions

Section 9.2 focused on the notion of reference. But the proposal can easily be gener-
alized to provide a characterization of the intensions of nth-level predicates and terms.

Consider the monadic first-level predicate ‘E1(. . .)’ as an example. One
possibility is to take its intension to be the plurality of ordered-pairs 〈w, x〉 such that
w is a possible world and x is an elephant in w. Alternatively, one can take the inten-
sion of ‘E1(. . .)’ to be a super-duper-plurality. (Specifically: the super-duper
plurality consisting of all and only super-pluralities that consist of two pluralities, one
of them consisting of a possible world and an elephant in that world and the other
consisting of the world alone.)¹⁷ Such proposals generalize naturally to polyadic pre-
dicates of any arity and any finite level.

To keep things simple, I will focus on reference rather than intension throughout
the remainder of the paper. But the view can be extended to accommodate intensions
if need be.

9.3.4 Empty Predicates

The second-order sentence

(4) ∃X∀y¬(Xy)

is true, since it can be derived from the true sentence ‘∀y¬(U1(y))’ by existen-
tial generalization. By contrast, the structurally analogous plural sentence

(5) ∃xx∀y¬(y ≺1,2 xx)

¹⁶ Formally,

∃xxxx∀yyy[yyy ≺3,4 xxxx ↔ ∀zz(zz ≺2,3 yyy ↔

∃w∃u(A1,1(w, u) ∧ (∀t(t ≺1,2 zz ↔

(t = w ∨ t = u)) ∨ ∀t(t ≺1,2 zz ↔ (t = w)))))∧

R1,4(‘A1,1(v0
i , v0

j )’, xxxx)].

¹⁷ Formally,

∃xxxx∀yyy[yyy ≺3,4 xxxx ↔ ∀zz(zz ≺2,3 yyy ↔

∃w∃u(W1(w) ∧ E-1,1(w, u) ∧ (∀t(t ≺1,2 zz ↔

(t = w ∨ t = u)) ∨ ∀t(t ≺1,2 zz ↔ (t = w)))))∧

I1,4(‘E1(v0
i )’, xxxx)].
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is false, since it is to be interpreted as ‘there are some things such that nothing is one of
them’.¹⁸ In some respects, the difference in truth-value between (4) and (5) is of little
importance: Boolos (1984) has shown that there is a systematic way of paraphras-
ing second-order sentences as sentences of a first-level language enriched with plural
quantifiers (and no second-level predicates other than ‘≺1,2’). We will see, however,
that the falsity of (5) is not without implications in the present context.

One cannot say of the predicate ‘U1(. . .)’, which is satisfied by no object,
that it has a reference—not if the reference of a monadic first-level predicate is to be a
plurality. For saying of ‘U1(. . .)’ that it refers to an ‘empty’ plurality amounts
to saying:

(6) ∃xx(R1,2(‘U1(. . .)’, xx) ∧ ∀y¬(y ≺1,2 xx));

and the falsity of (6) is an immediate consequence of the falsity of (5). Happily, the
claim that ‘U1(. . .)’ has no reference is distinct from the claim that it is mean-
ingless.¹⁹

To characterize the compositional behavior of empty predicates, let us begin by
stipulating that an atomic predication based on an empty predicate is always false.
Thus, for the case of ‘U1(. . .)’, we have:

(7) ¬T1(�U1(t0)�),

for �t0
� an arbitrary singular term. This does not, however, settle the question of how

to deal with ‘U1(. . .)’ when it occurs within the scope of the saturation oper-
ator, as in ‘σ 0

1 [U1(v0
1)]’. We know from Section 9.2.3 that:

∀xx(R1,2(‘U1(. . .)’, xx) ↔ R1,2(‘σ 0
1 [U(v0

1)]’, xx)).

Since ‘U1(. . .)’ is referenceless, it follows that ‘σ 0
1 [U1(v0

1)]’ must be
referenceless as well. So the question we face is that of characterizing the composi-
tional behavior of empty terms. For instance, under what circumstances should one
say that the following sentence is true?

P2(σ 0
1 [U1(v0

1)]).

Think of the matter like this. An atomic first-level predicate �P1(. . .)� is used to say of
an individual that it is thus-and-so. Thus, when �t0

� is an empty singular term, such
as ‘Zeus’, �P1(t0)� is false; for one cannot truthfully say of nothing that it is thus-
and-so. Similarly, an atomic second-level predicate �P2(. . .)� is used to say of some
individuals that they are thus-and-so. Thus, when �t1

� is an empty singular term,

¹⁸ See, however, Schein (forthcoming).
¹⁹ This way of thinking of empty predicates yields the result that a predicate not-F might be

referenceless even though F is not, and that a predicate F-and-G might be referenceless even though
F and G are not. One must also take special care in dealing with generalized quantifiers (see Rayo
(2002)). Empty predicates may not be the only case of meaningful but referenceless predicates.
Predicates such as ‘is taller than him’ in a context in which ‘him’ hasn’t been assigned a reference
might constitute another example. (Thanks here to Tim Williamson.)
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such as ‘σ 0
1 [U1(v0

1)]’, ‘�P2(t1)�’ is false; for one cannot truthfully say of no
things that they are thus-and-so.²⁰

Let us therefore stipulate that an atomic predication that applies to an empty term
is always false. For the case of ‘σ 0

1 [U1(v0
1)]’, we have:

(8) ¬T(�P2(σ 0
1 [U1(v0

1)])�),

for �P2(. . .)� an arbitrary atomic monadic second-level predicate. (The polyadic case
is analogous). A semantics based on (7) and (8) is developed in the appendix.

9.3.5 Collapse

Say that Socrates is the one and only Socratizer. It would still be incorrect to say the
following:

(∗) Socrates is the same individual as the Socratizers

But this is not because (∗) is false. The problem with (∗) is that it is ungrammatical.
It is ungrammatical in just the way that each of the following is ungrammatical:

∗The Socratizers is the same individual as Socrates
∗Socrates are the same individuals as the Socratizers

It is important to be clear, however, that this is a point about grammar, not metaphys-
ics. Just because mixed identity statements are ungrammatical, it doesn’t follow that
the world contains additional items—the ‘pluralities’—over and above individuals.
Individuals are the only ‘items’ there are.

One could, if one wished, extend the formation rules of one’s language so as to
admit mixed identities as well-formed, and extend the semantics for one’s language
to assign mixed identities suitable truth conditions. More generally, one could, if one
wanted, allow nth-level predicates to take mth-level terms as arguments for any m <

n. The most natural way of doing so is by identifying the truth-conditions of
�Pn(vk

l )� (k + 1 < n) with those of

∃vk+1
i ∀vk

j ((vk
j ≺

k+1,k+2 vk+1
i ↔ vk

j =
k+1,k+1 vk

l ) ∧ Pn(vk+1
i ));

where �vn
i =

n+1,n+1 vn
j � (0 < n) is a syntactic abbreviation of

∀vn−1
s (vn−1

s ≺n,n+1 vn
i ↔ vn−1

s ≺n,n+1 vn
j );

(and similarly for polyadic predicates). With the extended conception of grammat-
icality in place, (∗) can be formalized as something which is both well-formed and
true.

This revised conception of grammaticality will be ignored in what follows. But as
long as one is prepared to resist the temptation of drawing metaphysical conclusions
from terminological maneuvering, I can see no objections to adopting it.

²⁰ Compare with the treatment of empty names in Oliver and Smiley (typescript).
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9.3.6 Higher-Order Predicates

A monadic (n+ 1)th-level predicate should be distinguished from a monadic (n+
1)th-order predicate: whereas the former takes an nth-level term in its argument-place,
the latter takes a nth-level predicate in its argument-place.

On its most natural interpretation, the hierarchy of higher-order predicates is not
structurally analogous to the hierarchy of higher-level predicates we have considered
here. One important difference was emphasized in the preceding section. If ‘E1(. . .)’
is a first-order predicate satisfied by nothing, the standard semantics for higher-order
languages allows for the atomic second-order predication ‘P2

x (E1(x))’ to be either true
or false. But, on the semantics sketched above, the atomic second-level predication
‘P2(σ 0

i [E1(v0
i )])’ is always false.

In this paper I give no reason for favoring a hierarchy of higher and higher level pre-
dicates over a hierarchy of higher and higher order predicates. I have chosen to focus
on the former because it seems to me that second-level predicates deliver a more nat-
ural regimentation of English predicates with collective readings than their second-
order counterparts. But either hierarchy will do, as far as the purposes of this paper
are concerned.²¹

9.4 HIGHER-LEVEL LANGUAGES

9.4.1 Limitω Languages

Let a limitω language consist of the following symbols:

1. The logical connectives ‘∧’ and ‘¬’;

(‘∨’, ‘⊃’ and ‘↔’ are characterized in terms of ‘¬’ and ‘∧’ in the usual way);

2. for n ≥ 0 and i ≥ 1, the placeholder �vn
i �;

3. for i ≥ 1, the individual constant symbol �c0
i �;

(in practice, we will sometimes write, e.g. ‘Clyde’ or ‘c’ in place of �c0
i �);

4. for s a finite sequence of positive integers and i ≥ 1, the non-logical predicate-
letter �P s

i�;

(in practice, we will sometimes write, e.g. ‘A1,1’ and ‘S2’ in
place of �P1,1

i � and �P2
j �);

5. for n ≥ 2, the logical predicate-letters ‘=1,1’, �≺n−1,n
� and �En

�;

(in practice, we will sometimes write ‘=’ in place of ‘=1,1’, and ‘ ≺ ’ in place of
�≺n−1,n

�);

6. for n ≥ 0 and i ≥ 1, the saturation-symbol �σ n
i �;

7. the auxiliaries ‘(’, ‘)’, ‘[’ and ‘]’.

²¹ This subsection and the last have benefited greatly from discussion with Øystein Linnebo.
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Terms and formulas are characterized simultaneously, as follows:

1. �c0
i � is a term of level 0;

2. �vn
i � is a term of level n;

3. if s is the sequence n1, . . . , nm and �t1�, . . . , �tm� are terms of level n1 −
1, . . . , nm − 1 (respectively), then �P s

i (t1, . . . , tm)� is a formula;

4. if �t1� and �t2� are terms of level 0, then �t1 = t2� is a formula;

5. if, for n ≥ 2, �t1� and �t2� are terms of level n− 2 and n− 1 (respectively), then
�t1 ≺

n−1,n t2� is a formula;

6. if, for n ≥ 2, �t� is a term of level n− 1, then �En(t)� is a formula;

7. if ϕ is a formula, then �σ n
i [ϕ]� is a term of level n+1;

8. if ϕ and ψ are formulas, �¬ϕ� and �(ϕ ∧ ψ)� are formulas;

9. nothing else is a term or a formula.

Finally, we say that formula ϕ is a sentence if every occurrence of a placeholder �vn
i �

in ϕ is within a subformula of the form �σ n
i [ψ]�.

It is worth emphasizing that limitω languages contain no primitive quantifier-
symbols. Instead, we introduce the following syntactic abbreviations:

∃vn
i (ϕ) ≡df En+2(σ n

i [ϕ])

∀vn
i (ϕ) ≡df ¬∃vn

i (¬ϕ)

On the intended interpretation of �En
�, this has the result that ‘∃v0

i ’ may be used
to play the role of singular quantifiers, ‘∃v1

i ’ may be used to play the role of plural
quantifiers, ‘∃v2

i ’ may be used to play the role of super-plural quantifiers, and so forth.
Thus, ‘∃v0

1(E1(v0
1))’, which abbreviates

E2(σ 0
1 [E1(v0

1)])
(roughly: the plurality of elephants exists),

may be paraphrased as

∃x(E1(x))
(there is something that is an elephant);

and ‘∃v1
1∃v0

1(v0
1 ≺ v1

1)’, which abbreviates

E3(σ 1
1 [E2(σ 0

1 [v0
1 ≺ v1

1])])
(roughly: the super-plurality xxx exists, where xxx consists of all and only pluralit-
ies xx such that the plurality yy exists, where yy consists of all and only individuals
y such that y is one of the xx),

may be paraphrased as

∃xx∃y(y ≺ xx)
(there are some things such that something is one of them).

To improve readability, I shall sometimes write, e.g. �∃xn
� and �∃ym

� in place of
�∃vn

i � and �∃vm
j �.
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9.4.2 A Deductive System

In this section I will specify a deductive system for limitω languages.²² It is sound
with respect to the semantics supplied in the appendix. But Gödel’s Incompleteness
Theorem implies that one cannot hope for completeness.

We begin with a standard deductive system for the propositional calculus:

(1) ϕ ⊃ (ψ ⊃ ϕ)
(2) (ϕ ⊃ (ψ ⊃ χ )) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ ))
(3) (¬ϕ ⊃ ¬ψ) ⊃ (ψ ⊃ ϕ)
() Modus Ponens

ϕ, ϕ ⊃ ψ

ψ

Next, we introduce an axiom-schema governing the identity-sign:

() t0
i = t0

j ⊃ (ϕ(t0
i ) ⊃ ϕ(t0

j ))

(where t0
j is free for t0

i in ϕ)²³

A universally quantified version of reflexivity, ‘∀v0
1(v0

1 = v0
1)’, is an immediate con-

sequence of (1) below. But our deductive system does not include the reflexivity
axiom-schema ‘t0 = t0’. This is because we wish to allow for empty singular terms.
When ‘t0’ is empty, the semantics sketched in Section 9.3.4 makes any sentence
of the form �P1(t0)� false (and its negation true), for �P1

� atomic. It makes, for
instance, ‘Zeus = Zeus’ false (and its negation true)—though, of course, if the lan-
guage includes an atomic non-identity-symbol ‘ 
=’, then ‘Zeus 
= Zeus’ will be false
(and its negation true).

The next step is to introduce axioms and rules governing quantification. But care
must be taken. For, whereas a limitω language may involve empty terms of any level,
there is no such thing as an ‘empty’ individual, or an ‘empty’ plurality, or an ‘empty’
super-plurality (and so forth). So each of the axioms and rules includes a provision
disallowing empty terms:

(1) Existential Introduction—first-level version

t0 = t0 ⊃ (ϕ(t0) ⊃ ∃v0
i (ϕ(v0

i )))

(where t0 is free for v0
i in ϕ)

(1) Existential Elimination—first-level version

Ŵ

c = c ⊃ (ϕ(c) ⊃ ψ)
→

Ŵ

∃v0
i (ϕ(v0

i )) ⊃ ψ

(where c does not occur in Ŵ or ψ)

²² With some modifications, I follow the presentation in Shapiro (1991), §3.2.
²³ The required notion of freedom-for is an exact analogue of the notion of freedom-for in a

standard first-order language: tj is free for ti in ϕ just in case no occurrence of ti in ϕ lies within a
formula of the form �σm

j [ψ]�, where �vm
j � is a placeholder occurring in tj . Thus, ‘v0

0 ’ is free for

‘v0
1 ’ in ‘G2(σ 0

1 [F1(v0
1)])’ or ‘G2(σ 0

2 [F1(v0
1)])’ but not in ‘G2(σ 0

0 [F1(v0
1)])’.
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(H ) Existential Introduction—higher-level version

∃vn
j (ψ(vn

j )) ⊃ (ϕ(σ n
j [ψ(vn

j )]) ⊃ ∃vn+1
i (ϕ(vn+1

i )))

(where σ n
j [ψ(vn

j )] is free for vn+1
i in ϕ)

(H ) Existential Elimination—higher-level version

Ŵ

∃vn
j (Pn+1

k (vn
j )) ⊃ (ϕ(σ n

j [Pn+1
k (vn

j )]) ⊃ ψ)
→

Ŵ

∃vn+1
i (ϕ(vn+1

i )) ⊃ ψ

(where Pn+1
k does not occur in Ŵ or ψ)

Finally, we include an axiom-schema that simultaneously governs the behavior of ‘≺’
and the behavior of the saturation-operator:

() ∀vn
i (vn

i ≺ σ n
j [ϕ(vn

j )] ↔ ϕ(vn
i ))

And one could, if one wished, add some version or other of the Axiom of Choice.
On the basis of these axioms and rules, it is straightforward to prove a suitable

version of the Deduction Theorem. One can also derive an axiom-schema of com-
prehension and principles governing universal quantification:

() Comprehension

∃vn
i (ϕ(vn

i )) ⊃ ∃vn+1
i ∀vn

j (vn
j ≺ vn+1

i ↔ ϕ(vn
j ))

(where vn+1
i does not occur in ϕ)

(1) Universal Elimination—first-level version

t0 = t0 ⊃ (∀v0
i (ϕ(v0

i )) ⊃ ϕ(t0))

(where t0 is free for v0
i in ϕ)

(1) Universal Introduction—first-level version

Ŵ

c = c ⊃ (ψ ⊃ ϕ(c))
→

Ŵ

ψ ⊃ ∀v0
i (ϕ(v0

i ))

(where c does not occur in Ŵ or ψ)

(H ) Universal Elimination—higher-level version

∃vn
j (ψ(vn

j )) ⊃ (∀vn+1
i (ϕ(vn+1

i )) ⊃ ϕ(σ n
j [ψ(vn

j )]))

(where σ n
j [ψ(vn

j )] is free for vn+1
i in ϕ)

(H ) Universal Introduction—higher-level version

Ŵ

∃vn
j (Pn+1

k (vn
j )) ⊃ (ψ ⊃ ϕ(σ n

j [Pn+1
k (vn

j )]))
→

Ŵ

ψ ⊃ ∀vn+1
i (ϕ(vn+1

i ))

(where Pn+1
k does not occur in Ŵ or ψ)
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9.4.3 nth-Level Languages

Some additional notation will be useful in what follows:

• A basic first-level language is what one might recognize as a first-order language
with no non-logical vocabulary. It is the fragment of a limitω language containing
no placeholders other than those of the form �v0

i �, no non-logical predicates, no
logical predicates other than ‘=’ and ‘E2’, and no occurrences of the saturation-
symbol other than those of the form �σ 0

i �.

• A full first-level language is the result of enriching a basic first-level language with
non-logical first-level predicates.

• A first-level language is a full or basic first-level language.

And correspondingly for finite levels greater than 1:

• A basic (n+ 1)th-level language is the result of enriching a full nth-level language
with placeholders of the form �vn

i �, the logical predicates ‘≺n,n+1’ and ‘En+2’, and
occurrences of the saturation-symbol of the form �σ n

i �.

• A full (n+ 1)th-level language is the result of enriching a basic (n+ 1)th-level lan-
guage with non-logical (n+ 1)th-level predicates.

• An (n+ 1)th-level language is a full or basic (n+ 1)th-level language.

9 .5 MOTIVATING THE HIERARCHY

9.5.1 Preliminaries

Let me begin with a warm-up case. Consider a skeptic who doubts that the stand-
ard first-level quantifiers fall under a legitimate semantic category. How might one
respond to such skepticism?

The first thing to note is that the skeptic’s doubts might take two different forms.
A radical skeptic would deny that there is any sense to be made of sentences involving
quantifier-symbols (as used by logicians). A moderate skeptic, on the other hand,
would concede that the sentences make sense but contend that their semantic prop-
erties are best described by semantic categories other than ‘first-level quantifier’ (or,
more generally, ‘second-level predicate’). Each type of skepticism calls for a different
kind of response.

Let us consider the more radical position first. In responding to the radical skep-
tic, appeals to introspection are unlikely to be very effective. One might claim,
for instance, that one gets a certain ‘feeling of understanding’ when one considers,
e.g. ‘∃x E(x)’. But it is open to the skeptic to counter by arguing that speak-
ers are not always reliable judges of what they do and do not understand.

An alternative approach is to set forth a theory of what linguistic understanding
consists in, and respond to the skeptic by arguing that the relevant speakers satisfy
the constraints of the theory when it comes to the relevant sentences. But even this
more sophisticated strategy is likely to be of limited effectiveness. Suppose one held
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the view that to understand a sentence is, at least in part, to know its truth condi-
tions. It would be useless to respond to the skeptic by claiming that speakers know
that ‘∃x E(x)’ is true just in case there is an individual such that it is an ele-
phant. For rather than conceding that there is sense to be made of ‘∃x E(x)’,
the skeptic would protest that one has begged the question by attributing to speakers
knowledge whose intelligibility is under dispute.

A more promising strategy would be to bracket the question of what linguistic
understanding consists in and attempt to come to an agreement with the skeptic
about the sorts of things that would count as evidence of linguistic understanding.
Here are some natural candidates:

1. that speakers have the ability to use assertions of sentences containing the disputed
vocabulary to update their beliefs about the world;

2. that speakers have the ability to use their beliefs about the world to regulate their
assertions of sentences containing the disputed vocabulary;

3. that speakers have the ability to use sentences involving the disputed vocabulary as
part of a robust and consistent inferential practice.

One can then go on to produce a non-question-begging argument for the intelligibil-
ity of sentences involving quantifier-symbols by showing that the relevant constraints
are met.

As long as something along the lines of 1–3 is admitted as evidence of linguistic
understanding, there will be a route for silencing the radical skeptic. But nothing
has been done so far to address the moderate skeptic’s concerns. The moderate
skeptic can agree that 1–3 provide evidence for the view that speakers understand
‘∃x E(x)’, and go on to insist that the semantic properties of such sentences
are best described by appeal to semantic categories other than ‘first-level quantifier’.
She might insist, for example, that the semantic structure of ‘∃x E(x)’ is best
described as the infinite disjunction

E(n1) ∨ E(n2) ∨ E(n3) ∨ . . .

where the �ni� are the singular terms in the language. How might the issue be
resolved?

As before, linguistic introspection is unlikely to help. For in response to the claim
that one’s intuitions suggest that ‘first-level quantifier’ is the right semantic cat-
egory, the skeptic can claim that her intuitions suggest otherwise (and add that
she is as competent a logician and English speaker as you). And, as before, one
shouldn’t expect much progress from the suggestion that a speaker’s understanding
of ‘∃x E(x)’ consists, at least in part, of knowing that that ‘∃x E(x)’
is true just in case there is an individual such that it is an elephant. For the skeptic will
immediately grant the point, and go on to claim that the semantic properties of ‘there
is an individual such that . . . ’ are best described by appeal to semantic categories
other than ‘first-level quantifier’.

It seems to me that the best way of addressing the moderate skeptic’s concern
is to argue that relevant mental and linguistic phenomena are best explained by a
semantic theory that makes use of ‘first-level quantifier’ (or ‘second-level predicate’)
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as a semantic category. Here are some examples of considerations that might be set
forth on behalf of the standard semantics:

• on the skeptical semantics, but not the standard semantics, the semantic structure
of quantified sentences has infinitely many semantic constituents;

• on the skeptical semantics, but not the standard semantics, the meaning of ‘∃x F (x)’
is in constant flux, as some singular terms are introduced to the language and others
are dropped;

• on the skeptical semantics, but not the standard semantics, there is a risk of being
left with the result that speakers cannot fully grasp ‘∃x F (x)’ until they learn every
singular term in the language.

If, as one might expect, it turns out that the best semantic theory (all things con-
sidered) is the standard semantic theory, one will be in a position to answer the mod-
erate skeptic. It is worth noting, in particular, that there is a certain kind of argument
that it would be illegitimate for the skeptic to employ. She should not defend her pos-
ition by arguing that until one has independent evidence for the view that first-level
quantifiers fall under a legitimate semantic category, the relevant linguistic practice
cannot be accounted for by a categorial semantics that mentions first-level quantifi-
ers. That would be to put the cart before the course. The best evidence one could have
for the legitimacy of a semantic category is its presence in our best—simplest, most
fruitful, best integrated—semantic theorizing.

9.5.2 The Argument

In preceding sections I claimed without argument that, for any finite n, nth-level
predicates and terms belong to legitimate semantic categories. (I also claimed that
plural quantifiers, super-plural quantifiers and beyond fall under legitimate semantic
categories, but we saw in Section 9.4.1 that the such quantifiers needn’t be taken as
primitive once one has higher-level predicates and terms.) In this section I will try to
supply the missing justification. My argument will be similar in form to that of the
warm-up example, but this time proponents of the view that nth-level predicates and
terms do not fall under legitimate semantic categories will take the place of the skep-
tic. The argument will not be conclusive, but I hope it is enough to show that the
legitimacy of higher-level predicates and terms can be taken seriously.

I begin with the following observation:

N P

When an all-encompassing domain of discourse is allowed, it is not generally possible to para-
phrase a basic second-level language as a first-order language.

(We say that a basic second-level language L2 can be paraphrased as a first-order lan-
guage just in case there is a range of individuals—the ‘classes’, say—such that, for
any sentence in L2, the following transformation preserves truth-value:

• (∃v0
i (ϕ))Tr

 ∃xi(ϕTr )

• (∃v1
i (ϕ))Tr

 ∃αi(ϕTr)
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• (v0
i ≺ v1

j )Tr
 xi ∈ αj

• (v0
i = v0

j )Tr
 xi = xj

• (P(v0
i1

, . . . , v0
in

))Tr
 P(xi1 , . . . , xin )

• (ϕ ∧ ψ)Tr
 ϕTr ∧ ψTr

• (¬ϕ)Tr
 ¬(ϕTr )

where �xi� ranges over the individuals in the domain of discourse of L2, �αi� ranges
over (non-empty) ‘classes’ of these individuals, and ‘∈’ expresses a membership rela-
tion appropriate for ‘classes’.)

To see that N P holds, assume for reductio that it is generally pos-
sible to paraphrase a second-level language as a first-order language. Let the domain
of discourse of L2 consist of absolutely everything, and let L2 contain a predicate,
‘M’, which is true of x and y just in case x is a member of ‘class’ y. Then the
following must be true:

(9) ∀v1
1∃v0

1∀v0
2(v0

2 ≺ v1
1 ↔ M(v0

2, v0
1)),

since the result of applying Tr to (9) is:

(10) ∀α1∃x1∀x2(x2 ∈ α1 ↔ M(x2, x1)),

(which is true because ‘M’ and ‘∈’ must be coextensive in light of the fact that
the domain of discourse of L2 is absolutely unrestricted). But, on the assumption that
there are at least two objects, (9) entails a contradiction. To see this, note that one can
derive the following from (9) by applying (UEH ) and (S):

(11) ∃v0
2(¬M(v0

2, v0
2)) ⊃ ∃v0

1∀v0
2(¬M(v0

2, v0
2) ↔ M(v0

2, v0
1)).

A tedious but straightforward proof shows that the antecedent of (11) can be derived
from (9) (together with the assumption that there are at least two objects). So we are
left with:

∃v0
1∀v0

2(¬M(v0
2, v0

2) ↔ M(v0
2, v0

1)),

from which one can derive a contradiction by applying (EE1) and (UE1). This con-
cludes the reductio.

I would like to suggest that N P provides some evidence for the view
that second-level predicates and first-level terms fall under legitimate semantic cat-
egories. The argument runs as follows.

Consider a community of speakers that sets out to speak a second-level lan-
guage. They let their syntax be governed by (suitable restrictions of) the rules in
Section 9.4.1, and let their deductions be constrained by (suitable restrictions of) the
axioms and rules in Section 9.4.2. The new conventions eventually take hold, and
speakers come to engage in a successful linguistic practice. In particular, conditions
1–3 from Section 9.5.1 are all satisfied.

As long as it is conceded that such a scenario is possible, one will be in a position to
counter radical skepticism: one will be in a position to argue that members of the com-
munity succeed in speaking some language or other and, accordingly, that there is sense
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to be made of the relevant sentences. But this is not yet to concede that second-level
predicates and first-level terms fall under legitimate semantic categories. A moderate
skeptic would concede that there is sense to be made of the relevant sentences but
doubt that the language is best described by a semantic theory employing the semantic
categories ‘second-level predicate’ and ‘first-level term’. In particular, the moderate
skeptic might endorse a firstorderist view whereby members of the community speak
the first-order language induced by Tr, and supply a semantics accordingly.

The lesson of N P is that when an all-encompassing domain of dis-
course is allowed, proponents of the firstorderist position must make a concession.
They must concede that some of the rules and axioms that speakers take their
inferences to be constrained by are not, in fact, logically valid. For the proof of
N P entails that the following is a theorem of the deductive system in
Section 9.4.2:

(12) ∃v0
1∃v0

2(¬(v0
1 = v0

2)) ⊃ ¬∀v1
1∃v0

1∀v0
2(v0

2 ≺ v1
1 ↔ P1,1

1 (v0
2, v0

1))

But from the perspective of a firstorderist, (12) must be false when ‘P1,1
1 ’ expresses

the membership relation appropriate for ‘classes’ and the domain of discourse is abso-
lutely unrestricted.

This puts the firstorderist position under some pressure. Suppose, for example,
that speakers resolve to enrich their language with the first level predicate ‘M’,
which, as before, is to be true of x and y just in case x is a member of ‘class’ y (and that
speakers continue to take their syntax to be governed by the rules in Section 9.4.1, and
their deductions be constrained by the axioms and rules in Section 9.4.2). Firstorder-
ists will then face an awkward decision. On the one hand, they might concede that
some of the community’s fundamental axioms are not merely not logically valid but
outright false (or that some of the community’s fundamental rules are not merely not
logically valid but have a true premise and a false conclusion). For firstorderists must
regard the result of replacing ‘P1,1

1 ’ with ‘M’ in (12) as false, even though it is a
deductive consequence of the community’s fundamental rules and axioms. Alternat-
ively, firstorderists might claim that enriching the language with ‘M’ leads to
a change in the way quantification works: whereas in the original language the �αi�

range over ‘classes’, in the enriched language they range over ‘classes*’, which are such
that (12) is true. This would certainly forestall any breaches in charity, but at the cost
of complicating one’s semantic theory, since the semantic behavior of the quantifiers
will have to depend on what predicates the language happens to contain. And there
would appear to be little independent motivation for the additional complexity.

Of course, the firstorderist position might still be vindicated at the end of the day.
For all I have argued here, it might be possible to make a case for the view that, e.g. the
gain in parsimony that is achieved by limiting one’s stock of legitimate semantic cat-
egories is significant enough to outweigh firstorderism’s less palatable consequences.
But, as in the warm up case considered earlier, it is important to keep in mind that the
there is a certain kind of argument that it is important to resist. One should not argue
for the firstorderist position by claiming that, unless one has independent evidence for
the view that higher-level predicates and terms fall under legitimate semantic categor-
ies, the relevant linguistic practice cannot be accounted for by a categorial semantics
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that mentions higher-level predicates and terms. The best evidence one could have
for the legitimacy of a semantic category is its presence in our best—simplest, most
fruitful, best integrated—semantic theorizing. By insisting that higher-level predic-
ates and terms remain unavailable to semantic theorizing until the relevant semantic
categories have been shown to be legitimate on independent grounds, firstorderists
would be begging the question against their opponents.

In sum, my argument is this. Should it turn out that a community’s linguistic
practice is best accounted for by a semantic theory that makes use of the categories
‘second-level predicate’ and ‘first-level term’, we would be justified in thinking that
second-level predicates and first-level terms fall under legitimate semantic categor-
ies. But when an all-encompassing domain of discourse is allowed, N P

suggests that firstorderism—the most salient alternative—will be subject to certain
kinds of difficulties. So, when an all-encompassing domain of discourse is allowed,
we have some preliminary evidence for the view that second-level predicates and first-
level terms fall under legitimate semantic categories.

I have focused on second-level languages for expository purposes, but the argument
is quite general. For each finite n, one can prove a version of N P for
(n+ 1)th-level languages:²⁴

When an all-encompassing domain of discourse is allowed, it is not generally possible to para-
phrase a basic (n+ 1)th-level language as an nth-level language.

²⁴ In analogy with the above, we say that a basic (n+ 1)th-level language Ln+1 (n ≥ 2) can
be paraphrased as an nth-level Ln language just in case there is a range of individuals—the
‘classes’—such that, for any sentence in Ln+1, the following transformation into Ln preserves
truth-value (certain clauses are omitted for the sake of brevity):

• for m < (n− 1), (∃vm
i (ϕ))Tr

 ∃vm
i (Dm+1(vm

i ) ∧ ϕTr )

• (∃vn−1
i (ϕ))Tr

 ∃vn−1
2i−1(Dn(vn−1

2i−1) ∧ ϕTr)

• (∃vn
i (ϕ))Tr

 ∃vn−1
2i (Cn(vn−1

2i ) ∧ ϕTr )

• (vn−1
i ≺ vn

j )Tr
 vn−1

2i−1 ≪ vn−1
2j

where ‘Dm’, ‘Cm’ and vm
i ≪ vm

j are characterized as follows:

— ‘D1’ is true of all and only individuals in the domain of discourse of Ln+1

— Dk+2(vk+1
s ) ↔ ∀vk

t (vk
t ≺ vk+1

s ⊃ Dk+1(vk
t ))

— ‘C1’ is true of all and only (non-empty) ‘classes’ of individuals in the domain of discourse of
Ln+1

— Ck+2(vk+1
s ) ↔ ∀vk

t (vk
t ≺ vk+1

s ⊃ Ck+1(vk
t ))

— v0
i ≪ v0

j ↔ v0
i ∈ v0

j

— vk+1
i ≪ vk+1

j ↔ ∃vk
s (vk

s ≺ vk+1
j ∧ ∀vk

t (vk
t ≺ vk+1

i ↔ vk
t ≪ vk

s )),

and ‘∈’ expresses a membership relation appropriate for ‘classes’.

The higher-level version of N P can then be established by focusing on the following
sentence of Ln+1:

∀vn
1∃vn−1

1 ∀vn−1
2 (vn−1

2 ≺ vn
1 ↔ M(vn−1

2 , vn−1
1 ))

where ‘M’ is characterized just like ‘≪’.
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If one then considers a community of speakers who have set out to speak an (n+
1)th-level language, one can replicate the argument above to make a preliminary case
for the view that the relevant linguistic practice is best accounted for by a semantic
theory that mentions (n+ 2)th level predicates and (n+ 1)th level terms, and there-
fore a preliminary case for the view that (n+ 2)th-level predicates and (n+ 1)-level
terms fall under legitimate semantic categories. All of this on the assumption that an
all-encompassing domain of discourse is allowed.²⁵

9.6 MODEL-THEORY

A model-theory for a language L is strictly adequate just in case it agrees with one’s
categorial semantics for L in the following sense: any reference a (non-logical) predic-
ate might take by the lights of one’s categorial semantics corresponds to the semantic
value the predicate gets assigned by some model of one’s model-theory. Thus, given
a categorial semantics whereby the reference of a first-level predicate is a plurality, a
model-theory for the relevant language can only be strictly adequate if, for any plural-
ity, there is a model on which a given first-level predicate is assigned a semantic value
corresponding to that plurality.

When quantification over absolutely everything is allowed, it is easy to show that
there must be ‘more’ pluralities than there are individuals.²⁶ So, on the assumption
that the reference of a monadic first-level predicate is a plurality, there must be ‘more’
ways of assigning reference to a monadic first-level predicate than there are individu-
als. It follows that a model-theory for a full first-level language can only be strictly
adequate if it appeals to ‘more’ models than there are individuals.

An immediate consequence of this result is that no model-theory according to
which a model is a set can be strictly adequate. More generally, one cannot give a
strictly adequate model-theory for a full first-level language in a first-level language,
since a model-theory requires quantification over models, and the only kind of quan-
tification available in a first-level language is singular quantification over individuals.
Fortunately, this does not mean that it is impossible to give a strictly adequate model-
theory for full first-level languages. By taking a model to be a plurality, one can give
a strictly adequate model-theory for first-level languages in a basic second-level lan-
guage.²⁷ (To fix ideas, think of a model m1 as a plurality consisting of ordered-pairs
of the form 〈‘∀’, x0〉 and ordered-pairs of the form 〈‘P1

i ’, x0〉, for ‘P1
i ’ a predicate in

the language. Intuitively, 〈‘∀’, x0〉 ≺ m1 just in case x0 is in the ‘domain’ of m1, and
〈‘P1

i ’, x0〉 ≺ m1 just in case x0 is in the reference of ‘P1
i ’ according to m1.) For reasons

relating to Tarski’s Theorem, it is impossible to give a strictly adequate model-theory

²⁵ This section benefited greatly from discussion with Gabriel Uzquiano and Crispin Wright.
²⁶ The basic idea is due to Bernays (1942); for a formal statement of the result see Rayo (2002).

The proof is analogous to that of theorem 5.3 of Shapiro (1991).
²⁷ See McGee (forthcoming). For present purposes, it is best to think of the dyadic second-order

quantifier in McGee’s construction as a monadic quantifier ranging over ordered-pairs.
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for a basic second-level language in another basic second-level language.²⁸ But one
can give a strictly adequate model-theory for a basic second-level language in a full
second-level language.²⁹

These results can be generalized for n ≥ 1.³⁰ Thus:

S A

(a) It is impossible to give a strictly adequate model-theory for a full nth-level language in an
nth level language.

(b) It is possible to give a strictly adequate model-theory for full nth-level languages in a basic
(n+ 1)th-level language.

(c) It is impossible to give a strictly adequate model-theory for a basic (n+ 1)th-level lan-
guage in a basic (n+ 1)th level language.

(d ) It is possible to give a strictly adequate model-theory for basic (n+ 1)th-level languages
in a full (n+ 1)-th level language.

(A strictly adequate model-theory for nth-level languages is developed in the
appendix.)

A famous argument of Kreisel’s can be used to show that any first-level sen-
tence that is true according to some model of a strictly adequate model-theory is
also true according to some model of a standard model-theory (in which mod-
els are sets rather than pluralities).³¹ This result—which I shall refer to as Kreisel’s
Principle—guarantees that an extensionally adequate characterization of logical con-
sequence for a first-level language can be given within another first-level language. In
light of Kreisel’s Principle, it is tempting to conclude that a thorough understanding
of first-level languages can be attained by appeal to a model-theory that is not strictly
adequate, and hence that the requirement of strict adequacy is unnecessarily strong.

The temptation should be resisted. For there is more to model-theory than a char-
acterization of logical consequence. Conspicuously, model-theory might be thought
to deliver a generalized notion of reference, which is concerned not just with the
assignment of reference an expression actually takes, but with any possible assign-
ment of reference the expression might take. Suppose, for example, that one wished
to record the fact that, by the lights of one’s categorial semantics, a monadic first-level
predicate could be assigned a reference that consists of too many objects to form a set.
A strictly adequate model-theory immediately delivers the resources to do so:

∃mm∃xx[M2(mm) ∧ R2,1,2(mm, ‘P1(. . .)’, xx)∧ ¬∃y∀z(z ∈ y ↔ z ≺1,2 xx)]

²⁸ See Rayo and Williamson (2003), footnote 7.
²⁹ See Rayo and Uzquiano (1999).
³⁰ One might worry that my arguments for S A rely on unwarranted assumptions

about predicate-reference. For I used the assumption that, e.g. the reference of a monadic first-level
predicate is a plurality. But what if one held a view such as the following?

∀x(R1,1(‘ . . . is an elephant’, x) ↔ E1(x))

In fact, it makes no difference whether one chooses to say that something is a referent of ‘ . . . is an
elephant’ just in case it is an elephant, rather than saying that the reference of ‘ . . . is an elephant’ is
the plurality of elephants. The arguments for S A go through just the same.

³¹ See Kreisel (1967).



Beyond Plurals 245

(where ‘M2(mm)’ is a second-level formula stating that the mms form a model,
and ‘R2,1,2(mm, ‘P1(. . .)’, xx)’ is a second-level formula stating that the reference
assigned by the mms to ‘P1(. . .)’ is the plurality consisting of all and only the xxs).
But it is hard to see how one could make a similar statement within the confines of a
standard model-theory.

This limitation of standard model-theory also affects its ability to produce exten-
sionally adequate characterizations of logical consequence in certain special cases.
Consider, for instance, the result of enriching a first-level language with a quanti-
fier ‘∃AI ’, as in McGee (1992). The sentence ‘∃AI x(φ(x))’ is to be true just in case
the individuals satisfying ‘φ(x)’ are too many to form a set. So ‘∃AI x(x = x)’ is true
(and therefore consistent). But it would be deemed false by any model of a stand-
ard model-theory. The lesson is clear. Kreisel’s Principle shows that strictly adequate
model-theories can be supplanted by standard model theories for the purposes of one
particular application, but not that they can be supplanted in general.

Two further points are worth emphasizing. First, the benefits of Kreisel’s Principle
can only be claimed by those who have already ventured beyond first-level languages.
For although the principle is often stated informally, it cannot be formulated properly
within a first-level language. Within a second-level language, on the other hand, it has
a straightforward formulation.

Second, the status of higher-level versions of Kreisel’s Principle is increasingly
problematic. A version of Kreisel’s Principle for a basic second-level language, for
instance, is provably independent of the standard axioms of set theory (if consist-
ent with them).³² So friends of plural quantification cannot make use of Kreisel’s
Principle to avoid giving a strictly adequate model-theory without making substantial
set-theoretic presuppositions.

9 .7 AN OPEN-ENDED HIERARCHY

Since a limitω language contains an nth-level language as a part for each finite n, the
following is a consequence of S A (a) and (c):³³

S A

(e) It is impossible to give a strictly-adequate model-theory for a limitω language in a limitω
language.

I would like to consider two different ways of dealing with this result. The first
strategy is to settle for what I shall call semantic pessimism: the view that it is impossible
to provide a strictly adequate model-theory for some language built up from legit-
imate semantic categories. Philosophers have grown accustomed to the fact that any

³² It implies, for example, the existence of inaccessible cardinals. See Shapiro (1991), §6.3.
³³ Proof: Suppose for reductio that some formula ϕ in a limitω language captures the notion of

truth-in-a-model. Since ϕ contains finitely many symbols, it is also a formula in some nth-level
language. And this contradicts the conjunction of (a) and (c), since a limitω language includes
nth-level languages as proper parts for any finite n.
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given language must suffer from important expressive limitations. The Liar Paradox,
for instance, has taught us that (on appropriate assumptions) the truth predicate for
a given language cannot be expressed in the language itself, even though it can be
expressed in a different language of the same logical type. But semantic pessimism is
pessimism of a much more radical kind. For one is forced to countenance the view
that a language might have features whose investigation is ruled out by the nature of
language itself.³⁴

The second strategy is to try to avoid semantic pessimism by claiming that the legit-
imate languages—the languages it is in principle possible to make sense of—form an
open-ended hierarchy such that any language in the hierarchy can be given a strictly
adequate model-theory in some other language higher-up in the hierarchy. So there
is no legitimate language with respect to which semantic pessimism would threaten.
The simplest way of setting forth such a hierarchy is by claiming that nth-level lan-
guages are legitimate for any finite n but denying that languages of transfinite level
(including limitω languages) are legitimate. An alternative is to take the hierarchy into
the transfinite by treating limitω languages as legitimate and postulating the legitim-
acy of a language L⋆ of transfinite-level in which a strictly adequate model-theory for
limitω languages can be given, postulating the legitimacy of a language L⋆⋆ in which
a strictly adequate model-theory for L⋆ can be given, and so forth.³⁵ Whatever the
details of the hierarchy, what is crucial is that there be no such thing as an absolute-
level language: a language combining the resources of all legitimate languages. For
a suitable generalization of S A would imply that it is impossible to
give a strictly adequate model-theory for an absolute-level language. So the result of
making room for an absolute-level language is that one would be left with semantic
pessimism after all.

A potential difficulty for the postulation of such hierarchies emerges from the
observation that the legitimacy of absolute-level languages follows from two seem-
ingly plausible principles: the first is a Principle of Union according to which the res-
ult of combining the resources of legitimate languages is itself a legitimate language;
the second is a principle to the effect that it make sense to talk about all languages in
the hierarchy. For, by the first principle, the hierarchy must be closed under unions,
and, by the second, one of the unions must be maximal.

Denying the second of these principles seems especially problematic in the present
context. For we began our investigation by assuming that one can quantify over abso-
lutely everything and used this assumption to argue for the view that higher-level
predicates and terms fall under legitimate semantic categories. But now, in an attempt
to study the semantic properties of higher-level resources, we are under pressure to
countenance the idea that one cannot talk about all legitimate languages. Is this not
a reductio of the original assumption? If it is possible to quantify over absolutely

³⁴ See Williamson (2003).
³⁵ The matter of giving a strictly adequate model-theory for languages of transfinite-level is

non-trivial. Andrews (1965) develops a strictly adequate model-theory for limitω languages by
allowing quantification over types.
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everything, and if ‘F( . . . )’ is a predicate in good standing, shouldn’t it be possible
to quantify over all Fs?

It is not clear, however, that ‘ . . . is a language’ is a predicate in good standing
in the relevant respect. To see the problem, observe that there are at least as many
(interpreted) first-level languages as there are assignments of reference to a first-level
predicate. Since the reference of a first-level predicate is a plurality, and since there
are ‘more’ pluralities than there are objects, this means that there are ‘more’ first-level
languages than individuals, and therefore that a first-level language cannot, in general,
be an individual. It is best to think of a first-level language as a certain kind of plurality.
For analogous reasons, it is best to think of a second-level language as a certain kind of
super-plurality, and best to think of a third-level language as a super-duper-plurality,
and so forth. Accordingly, the predicate ‘ . . . is an nth-level language’ must be (at
least) of level n+ 1. And one can expect a similar result to hold for languages of
infinite level: the predicate ‘ . . . is an αth-level language’ must be (at least) of level
α + 1. So what type of predicate could ‘ . . . is a language’ be? Any predicate falling
under a legitimate semantic category must be of some level or other. But ‘ . . . is a
language’ cannot be an αth-level predicate, lest one be left with the unintended result
that α-level languages are not languages. The lesson, I would like to suggest, is that
‘ . . . is a language’ is best understood as ambiguous between various legitimate predic-
ates of the form ‘ . . . is a language of at most level α’. And if this is right, one cannot
go from quantification over absolutely everything to quantification over all languages.

(Parenthetical remark: The preceding remarks suggest a novel way of making sense of the idea
that the classes form an indefinitely extensible totality.³⁶ For if one thinks of a class, not as an
individual of a certain kind, but as the reference of a predicate in some language, then the pre-
dicate ‘ . . . is a class’ will have a status similar to that of ‘ . . . is a language’. The reference of a
first-level predicate is a plurality; the reference of a second-level predicate is a super-plurality;
the reference of a third-level predicate is a super-duper-plurality; and so forth. So what type of
predicate could ‘ . . . is a class’ be? Any predicate falling under a legitimate semantic category
must be of some level or other. But ‘ . . . is a class’ cannot be an αth-level predicate, lest one be
left with the unintended result that the reference of an α-level predicate is not a class. Accord-
ingly, ‘ . . . is a class’ is best understood as ambiguous between various legitimate predicates of
the form ‘ . . . is a class of at most level α’.)

The postulation of an open-ended hierarchy of languages faces a familiar difficulty: it
leads to the result that statements of the form ‘the hierarchy is so-and-so’ are, strictly
speaking, nonsense.³⁷ (This does not, of course, imply that the state of affairs under
discussion fails to obtain; what it shows is that there are important limits in the sorts
of statements that can be made about it.)

In spite of its problems, the postulation of an open-ended hierarchy of languages
may turn out to be the least unattractive of the options on the table. It may very well
be part of the nature of language and thought that matters cannot be improved upon.

³⁶ For more on indefinite extensibility, see Russell (1906), Dummett (1963), Parsons (1974a),
Parsons (1974b), Dummett (1991) pp. 316-19, Dummett (1993b), Hazen (1993), Williamson
(1998), Glanzberg (2004), Shapiro ((2003a) and (2003b)).

³⁷ For a detailed discussion of these matters, see Priest (2003).
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Note, for example, that there is a striking parallel between the open-ended hierarchy
of ideology that we have considered here and the open-ended hierarchy of ontology that
defenders of the view that it is impossible to quantify over absolutely everything have
sometimes set forth.³⁸ (This is not to say, of course, that the two pictures are equival-
ent: whereas proponents of the ideological hierarchy consider only a fragment of their
logical resources at a time, and are thereby able to supply a strictly adequate model-
theory for the language under consideration, proponents of the ontological hierarchy
consider only a fragment of their ontology at a time, and are thereby unable to supply
a strictly adequate model-theory for any language complex enough to be interest-
ing.) From the present perspective, one might think of the ontological hierarchy as
the first-order ‘projection’ of the ideological hierarchy that results from objectifying
pluralities, super-pluralities and beyond.

APPENDIX

I provide a model-theory for a full nth-level language L (n > 1) in a basic (n+ 1)th-
level language.

The first step is to characterize a generalized notion of n-tuple membership:

• z0 ≪1,1
i,n x0 ≡df ∃y0

1 . . . ∃y0
i . . . ∃0

n(x0 = 〈y0
1, . . . , y0

i , . . . , y0
n〉 ∧ z0 = y0

i )

(z0 is the ith member of zeroth-level n-tuple x0)

• z1 ≪2,2
i,n x1 ≡df ∀w0(w0 ≺ z1 ↔ ∃y0(y0 ≺ x1 ∧ w0 ≪1,1

i,n y0))

(z1 is the ith member of first-level n-tuple x1)
...

• zm ≪m+1,m+1
i,n xm ≡df ∀wm−1(wm−1 ≺ zm ↔ ∃ym−1(ym−1 ≺ xm ∧ wm−1 ≪m,m

i,n
ym−1))

(zm is the ith member of mth-level n-tuple xm)
...

Next, we characterize a same-level pseudo-identity relation:

• x0 ≈ y0 ≡df x0 = y0

• xn+1 ≈ yn+1 ≡df ∀zn(zn ≺ xn+1 ↔ zn ≺ yn+1)

and a cross-level pseudo-identity relation:

• xn ≈ yn+1 ≡df ∀zn(zn ≺ yn+1 ⊃ xn ≈ zn)
• xn ≈ yn+k+1 ≡df ∃zn+1 . . . ∃zn+k(xn ≈ zn+1 ∧ . . . ∧ zn+k ≈ yn+k+1)

By using the pseudo-identity relation we can extend our characterization of general-
ized n-tuple membership as follows:

³⁸ See, for instance, Parsons’s contribution to this volume. For further discussion of this point,
see Linnebo and Weir’s contributions.
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zr ≪r+1,m+1
i,n xm ≡df ∃zm(zr ≈ zm ∧ zm ≪m+1,m+1

i,n xm)
(where r < m)

Some additional pieces of preliminary notation:

xm ≈ 〈yr1
1 , . . . , y

rk
k 〉 ≡df (yr1

1 ≪
r1+1,m+1
1,k xm ∧ . . . ∧ y

rk
k ≪

rk+1,m+1
k,k xm)

(where ri ≤ m)

〈yr1
1 , . . . , y

rk
k 〉 ≺ xm+1 ≡df ∃zm(zm ≈ 〈yr1

1 , . . . , y
rk
k 〉 ∧ zm ≺ xm+1)

(where ri ≤ m and ‘zm’ is an unused variable)

yr ≺ xm+1 ≡df ∃zm(yr ≈ zm ∧ zm ≺ xm+1)
(where r ≤ m)

We may now characterize the notion of an assignment function. Intuitively, an assign-
ment function maps an object to each zeroth-level placeholder, a plurality to each
first-level placeholder, a super-plurality to each second-level placeholder, and so forth,
for every place-holder in L. Formally, an nth-level predicate ‘A(xn−1)’ (read ‘xn−1 is
an assignment’) may be characterized as follows:

A(xn−1) ≡df {∀yn−2(yn−2 ≺ xn−1 ⊃

[∃w0∃z0(w0 is a zeroth-level place-holder ∧ yn−2 ≈ 〈w0, z0〉) ∨

∃w0∃z0(w0 is a first-level place-holder ∧ yn−2 ≈ 〈w0, z0〉) ∨

∃w0∃z1(w0 is a second-level place-holder ∧ yn−2 ≈ 〈w0, z1〉) ∨

...

∃w0∃zn−2(w0 is an (n− 1)th-level place-holder ∧ yn−2 ≈ 〈w0, zn−2〉)]) ∧

∀w0(w0 is a place-holder ⊃ ∃zn−2(〈w0, zn−2〉 ≺ xn−1)) ∧

∀w0(w0 is a zeroth-level place-holder ⊃

∃z0(〈w0, z0〉 ≺ xn−1 ∧ ∀tn−2(〈w0, tn−2〉 ≺ xn−1 ⊃ z0 ≈ tn−2)))}

When A(xn−1) and v is a place-holder of L, it will sometimes be useful to employ the
following notational abbreviation:

�(αxn−1(v)) ≡df ∃yn−1∀zn−2((〈v, zn−2〉 ≺ xn−1 ↔ zn−2 ≺ yn−1) ∧�(yn−1))
where ‘yn−1’ is an unused variable.

(Intuitively, ‘�(αxn−1(v))’ says that the value that placeholder v is assigned by assign-
ment xn−1 is �.)

We shall also use the following notation:

• x0 ≺1,2
trans y1 ≡df x0 ≺ y1

• x0 ≺1,3
trans y2 ≡df ∃z1(x0 ≺1,2

trans z1 ∧ z1 ≺ y2)
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...

• x0 ≺1,k+1
trans yk ≡df ∃zk−1(x0 ≺1,k

trans zk−1 ∧ zk−1 ≺ yk)
...

The next step is to characterize the notion of a model. Intuitively, a model might be
thought of as codifying four distinct things. Firstly, it codifies information about a
domain (in the form of a plurality of ordered-pairs 〈‘∀’, x〉); secondly, it a codifies
a function mapping an object (or nothing at all) to each individual constant symbol,
a plurality (or nothing at all) to each non-logical monadic first-level predicate-letter, a
super-plurality (or nothing at all) to each non-logical monadic second-level predicate-
letter, and so forth for every non-logical monadic predicate-letter in L (and similarly
for non-logical polyadic predicate-letters); thirdly, it codifies information about the
denotations of terms of L (relative to an assignment function an−1); finally it codifies
information about the satisfaction of formulas of L (relative to an assignment func-
tion an−1). Formally, the notion of a model can be characterized as follows. (In each
clause, I omit initial universal quantifiers for the sake of readability.)

M(xn) ≡df

{[c is an individual constant ⊃ (〈c, an−1, zn−1〉 ≺ xn ↔

∃w0(w0 ≈ zn−1 ∧ 〈c, w0〉 ≺ xn ∧ ∀yn−1(〈c, yn−1〉 ≺ xn ⊃ w0 ≈ yn−1)))] ∧

(Intuitive gloss: the reference assigned to individual constant c by the model relative
to assignment an−1 is the reference assigned to c by the model.)

[v is a place-holder ⊃ (〈v, an−1, zn−1〉 ≺ xn ↔

∃yn−2(yn−2 ≈ zn−1 ∧ yn−2 ≺ αan−1 (v)))] ∧

(Intuitive gloss: the reference assigned to placeholder v by the model relative to assign-
ment an−1 is the reference assigned to v by an−1.)

[�t1 = t2� is a formula ⊃ (〈�t1 = t2�, an−1〉 ≺ xn ↔

∃z0(〈t1, an−1, z0〉 ≺ xn ∧ 〈t2, an−1, z0〉 ≺ xn))] ∧

(Intuitive gloss: �t1 = t2� is true in the model relative to assignment an−1 just in
case �t1� and �t2� are assigned the same reference by the model relative to an−1)

[�t1 ≺
k−1,k t2� is a formula → (〈�t1 ≺

k−1,k t2�, an−1〉 ≺ xn ↔

∃zn−1(∀wn−2(wn−2≺zn−1 ↔ 〈t1, an−1, wn−2〉≺xn)∧〈t2, an−1, zn−1〉 ≺ xn))] ∧

(Intuitive gloss: �t1 ≺
k−1,k t2� is true in the model relative to assignment an−1 just

in case the reference assigned by the model to �t1� relative to an−1 is ‘among’ the
reference assigned by the model to �t2� relative to an−1.)
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[�P
r1,...,rk
j (t1, . . . , tk)� is a formula ⊃ (〈�P

r1,...,rk
j (t1, . . . , tk)�, an−1〉 ≺ xn ↔

(∃yn−1[〈�P
r1,...,rk
j �, yn−1〉 ≺ xn ∧ for each �ti� (1 ≤ i ≤ k) ∃zn−1

(∀wn−2(wn−2 ≺ zn−1 ↔ 〈ti, an−1, wn−2〉 ≺ xn) ∧

∃rn−1(〈i, k, zn−1, rn−1, yn−1〉 ≺ xn))] ∧

∀zn−1∀rn−1∀yn−1(〈1, k, zn−1, rn−1, yn−1〉 ≺ xn ↔

(zn−1 ≪n,n
1,2 yn−1 ∧ rn−1 ≪n,n

2,2 yn−1)) ∧

∀i(1 ≤ i ≤ k)∀zn−1∀rn−1∀yn−1(〈i + 1, k, zn−1, rn−1, yn−1〉 ≺ xn ↔ ∀wn−1∀un−1

(〈i, k, wn−1, un−1, yn−1〉 ≺ xn ⊃ (zn−1 ≪n,n
1,2 un−1 ∧ rn−1 ≪n,n

2,2 un−1)))))] ∧

(Intuitive gloss: �P
r1,...,rk
j (t1, . . . , tk)� is true in the model relative to assignment

an−1 just in case the (generalized) k-tuple consisting of the references assigned by the
model to each of the �ti� relative to assignment an−1 is ‘among’ the reference assigned
by the model to �Pr1,...,rk� relative to an−1. The clause is cumbersome because it
makes use of an encoding system to attain the effect of quantifying over k-tuple posi-
tions: ‘〈i, k, zn−1, rn−1, yn−1〉 ≺ xn’ might be thought of as enconding the informa-
tion that according to the model, zn−1 (which is the reference assigned by the model
to �ti� relative to an−1) is the ith component of yn−1 (which is ‘among’ the reference
assigned by the model to �Pr1,...,rk� relative to an−1). The last three lines of the clause
are a specification of how the coding is to work.)

[φ is a formula ⊃ (〈�σ k
i [φ]�, an−1, zn−1〉 ≺ xn ↔

(∀s0(s0 ≺1,n
trans zn−1 ⊃ 〈‘∀’, s0〉 ≺ xn) ∧ the assignment ân−1 (which is just

like an−1 except that αân−1 (�vk
i �) ≈ zn−1)is such that 〈φ, ân−1〉 ≺ xn)] ∧

(Intuitive gloss: ‘among’ the reference assigned by the model to �σ k
i [φ]� relative to

assignment an−1 are all and only those zn−1 such that: (a) the ‘transitive closure’ of
zn−1 consists entirely of individuals in the domain, and (b) φ is true in the model

relative to the an−1-variant assigning zn−1 to �vk
j �.)

[�Ek(t)� is a formula⊃ (〈�Ek(t)�, an−1〉≺xn ↔ ∃zn−1(〈t, an−1, zn−1〉≺xn))] ∧

(Intuitive gloss: �Ek(t)� is true in the model relative to assignment an−1 just in case
the model assigns a reference to t relative to an−1.)

[φ is a formula → (〈�¬φ�, an−1〉 ≺ xn ↔ ¬(〈�φ�, an−1〉 ≺ xn))] ∧

(Intuitive gloss: �¬φ� is true in the model relative to assignment an−1 just in case φ
is not.)
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[φ and ψ are formulas → (〈�φ ∧ ψ�, an−1〉 ≺ xn ↔

(〈�φ�, an−1〉 ≺ xn ∧ 〈�ψ�, an−1〉 ≺ xn))]}

(Intuitive gloss: �φ ∧ ψ� is true in the model relative to assignment an−1 just in case
φ and ψ are.)

It is then straightforward to characterize logical consequence for L:

φ is a logical consequence of Ŵ ≡df

∀xn[M(xn) →

(∀ψ(ψ ∈ Ŵ ⊃ ∀an−1(A(an−1) ⊃ 〈ψ , an−1〉 ≺ xn)) ⊃

∀an−1(A(an−1) ⊃ 〈φ, an−1〉 ≺ xn))]

By using the technique in Rayo and Uzquiano (1999), this explicit characterization
of logical consequence for a full nth-level language in a basic (n+ 1)th-level language
can be transformed into an implicit characterization of logical consequence for a basic
(n+ 1)th-level language in a full (n+ 1)th-level language.
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10
All Things Indefinitely Extensible

Stewart Shapiro and Crispin Wright

The direct concern of our chapter is not with unrestricted quantification. Or at least:
not unrestrictedly unrestricted quantification—quantification over absolutely every-
thing there is. Our direct concern is with whether it is admissible to quantify over
sets without restriction—whether it is coherent to speak of, and have bound vari-
ables ranging over, all pure sets, or all pure set-like totalities (see also Shapiro, 2003).
(‘Well, but didn’t you just do so?’) Closely connected questions, also within our
focus, are whether it makes sense—and if so, what kind of sense—to speak of all
cardinal numbers, or all cardinalities, and all ordinal numbers, or all order-types of
well-orderings?

That such quantification is somehow illicit has of course often been suggested as
the principal lesson to be taken from the Russell, Cantor, and Burali-Forti paradoxes.
And if quantification over all sets, for example, is indeed illicit, so much the worse,
presumably, for the even more ambitious ‘absolutely everything’. (Of course even if
quantification over all sets is permissible, there could still be residual problems for
‘absolutely everything’. But we will not attempt to explore the territory opened by
that observation here.)

10 .1 INDEFINITE EXTENSIBILITY INTUITIVELY
UNDERSTOOD

In a much-discussed letter to Dedekind, Cantor wrote:

. . . it is necessary, as I discovered, to distinguish two kinds of multiplicities . . . For a mul-
tiplicity can be such that the assumption that all of its elements ‘are together’ leads to a con-
tradiction, so that it is impossible to conceive of the multiplicity as a unity, as ‘one finished
thing’. Such multiplicities I call absolutely infinite or inconsistent multiplicities.

As we can readily see, the ‘totality of everything thinkable’, for example, is such a multiplicity
. . .

If on the other hand the totality of elements of a multiplicity can be thought of without con-
tradiction as ‘being together’, so that they can be gathered together into ‘one thing’, I call it a
consistent multiplicity or a ‘set’.

(Cantor, 1899, 114)
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This connotation of the word ‘set’ is now standard, and we will stick to it here. Can-
tor’s distinction between sets and ‘inconsistent multiplicities’ goes back at least to
his (1883). Prior to that, he only considered sets of some fixed ‘conceptual sphere’,
such as sets of natural numbers or sets of real numbers (see Tait, 2000). In the 1883
Grundlagen, he wrote that ‘By a ‘manifold’ or ‘set’ I understand any multiplicity
which can be thought of as one, i.e., any aggregate of determinate elements which
can be unified into a whole by some law’. In defining the transfinite numbers, Cantor
invoked two principles. The first is that each number α has an immediate successor
α + 1. The second is that each set S of numbers which has no largest member has
a limit: the smallest number larger than every member of S. It follows immediately
that the transfinite numbers cannot compose a set and are thus an inconsistent mul-
titude. As Cantor somewhat obliquely expresses it, the numbers are the result of ‘a
thoroughly endless process of creation’. His work presupposes that every number is
‘generated’ from one of these two principles.

A few years later, Russell provided a more nuanced characterization of what appears
to be essentially the same idea. His (1906) begins with an examination of the standard
paradoxes, and concludes:

the contradictions result from the fact that . . . there are what we may call self-reproductive
processes and classes. That is, there are some properties such that, given any class of terms all
having such a property, we can always define a new term also having the property in question.
Hence we can never collect all of the terms having the said property into a whole; because,
whenever we hope we have them all, the collection which we have immediately proceeds to
generate a new term also having the said property.

Citing this passage, Michael Dummett (1993, 441), writes that an

indefinitely extensible concept is one such that, if we can form a definite conception of a totality
all of whose members fall under the concept, we can, by reference to that totality, characterize
a larger totality all of whose members fall under it

(emphasis ours).

According to Dummett, an indefinitely extensible concept P has a ‘principle of exten-
sion’ that takes any definite totality t of objects each of which has P, and produces an
object that also has P, but is not in t (see also Dummett, 1991, 316–19). Let us say
that a concept P is Definite if it is not indefinitely extensible. Connecting this with
Cantor’s terminology, we can say that P is Definite if and only if the P’s are ‘consist-
ent’, and thus form a set.

Obviously, Dummett’s remarks won’t do as a definition, since he uses the comple-
mentary ‘definite’ to characterize what it is for a concept to be indefinitely extensible.
And Russell, of course, does no better by speaking unqualifiedly of ‘any class of terms
all having such a property’, since he means us to take it as given that classes, properly
so regarded, are ‘wholes’—are Definite. But the following familiar material makes
salient the pattern that Russell and Dummett both discern:

(1) The Burali-Forti paradox. Rather than work with the usual identification of the
ordinals with sets in the iterative hierarchy, such as von Neumann ordinals, let us here
think of them in an intuitive way simply as order-types of well-orderings: an ordinal
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is an object denoted by a nominalization of a predicate for a well-ordering. Let O be
any Definite collection of ordinal numbers. Let O′ be the collection of all ordinals α

such that there is a β ∈ O for which α ≤ β. It is easy to see that O′ is well-ordered
under the natural ordering of ordinals. Let γ be the order-type of O′. So γ is itself an
ordinal. Let γ ′ be the order-type of O′∪{γ }. That is γ ′ is the order-type of the well-
ordering obtained from O′ by tacking an element on at the end. Then γ ′ is an ordinal
number, and γ ′ is not a member of O. So ordinal number is indefinitely extensible.
As Dummett (1991, 316) puts it,

if we have a clear grasp of any totality of ordinals, we thereby have a conception of what is
intuitively an ordinal number greater than any member of that totality. Any [D]efinite totality
of ordinals must therefore be so circumscribed as to forswear comprehensiveness, renouncing
any claim to cover all that we might intuitively recognise as being an ordinal.

In the next section we will offer an argument that the notion of ordinal number is in
fact the central paradigm of an indefinitely extensible concept.

(2) The Russell Paradox. Let R be any set of sets that do not contain themselves; so
if r ∈ R then r /∈ r. Then R does not contain itself. So the concept, set that does not
contain itself, is indefinitely extensible—any set of such sets omits a set, namely itself.
A fortiori, set itself is indefinitely extensible, since any Definite collection—set—of
sets must omit the set of all of its members that do not contain themselves.

(3) The Cantor Paradox. Let C be a collection of cardinal numbers. Let C ′ be
the union of the result of replacing each κ ∈ C with a set of size κ . The collection
of subsets of C ′ is larger than any cardinal in C . So cardinal number is indefinitely
extensible.

To be sure—though perhaps with the exception of the reasoning leading to Rus-
sell’s paradox—these examples are not completely uncontentious. One can challenge
the set-theoretic principles (Union, Replacement, Power-set, etc.) that are invoked in
the constructions. Or else one can tinker with the logic. Nevertheless, we think it reas-
onable to agree with Russell and Dummett that the concepts in question do have the
‘self-reproductive’ feature which the notion of indefinitely extensibility gestures at.
There remain the questions

(i) Whether the notion can be characterized more satisfactorily, without circularity;
(ii) Which are the indefinitely extensible concepts/totalities when the notion is best

understood,
and

(iii) What bearing the notion has on the various issues in the philosophy of mathem-
atics, including
the proper diagnosis of the paradoxes;
the legitimacy of unrestricted quantification;
the content of quantification (if legitimate at all) over indefinitely extensible totalities and
the legitimacy of classical logic for such quantifiers;
the proper conception of the infinite; and
the possibilities for neo-logicist foundations for set-theory,
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on each of which it has been held to have some import. A satisfactory treatment of
this agenda would be a task for a substantial book. But each of the listed issues will be
touched on, if only modestly, in the discussion to follow.

10 .2 INDEFINITE EXTENSIBILITY AND THE ORDINALS:
RUSSELL’S CONJECTURE

Russell (1906, 144) wrote that it ‘is probable’ that if P is any concept which demon-
strably does not have an extension, then ‘we can actually construct a series, ordinally
similar to the series of all ordinals, composed entirely of terms having the concept P’.
Putting the presumably metaphorical talk of construction aside,¹ Russell’s conjecture
is in effect that if P is indefinitely extensible, then there is a one-to-one function from
the ordinals into P. Russell does not give an argument for this, but here is one:

Let α be an ordinal and assume that we have a one-to-one function f from the ordinals smaller
than α to objects that fall under P. Consider the collection {f β | β<α}. This is Definite. Since
P is indefinitely extensible, there is an object a such that P holds of a, but a is not in this set.
Set f α = a.

Thus for any ordinal α, if all the ordinals smaller than α can be injected into P, then
the ordinals up to and including α can be injected into P. So all the ordinals can be
injected into P.

This reasoning requires transfinite recursion on ordinals—but that can hardly be
doubted. It is part of what it is to be an ordinal that definitions by transfinite recur-
sion and proofs by transfinite induction are valid. (Both points seem to follow from
Cantor’s two principles noted above together with the assumption that every ordinal
is ‘constructed’ from one or the other of them.) The argument also relies on a version
of Replacement: if a totality t is equinumerous with an ordinal, then t is Definite.²

¹ This and cognate metaphors are pervasive in the source literature. Cantor speaks of a process
of ‘creation’ of ever more numbers. Russell notes that indefinitely extensible concepts come with
‘processes’ which ‘seem essentially incapable of terminating’, and Dummett speaks of ‘principles
of extension’. The metaphors are stretched. It is stretching things, for example, to think of the
ordinals, classically conceived, as generated by a process. Processes take place in time, and time
does not have enough structure to carry the ‘construction’ of ordinals very far into the transfinite
(see Parsons, 1977). A major part of the interpretative and analytical project in the vicinity is to
provide a satisfactory reading of the intent of these metaphors.

² Depending on the exact formulation of the notion of indefinite extensibility, the argument
might also invoke a global choice principle, or at least a choice function on sub-totalities of the given
indefinitely extensible property. Recall the clause from the first passage from Russell: ‘there are some
properties such that, given any class of terms all having such a property, we can always define a new
term also having the property in question’. If this means something like ‘given any class of terms all
having such a property, there is a new term also having the property in question’, Choice is needed
in the argument. On the other hand, if Russell’s clause is taken (more or less) literally, the ability to
‘define’ a new term is part of what it is for a notion to be indefinitely extensible. If so, then Choice
is not needed in the argument. Similarly, Dummett says that an indefinitely extensible property P
has a ‘principle of extension’ that takes any Definite totality t of objects each of which has P, and
produces an object that also has P, but is not in t. If this principle of extension is a function, then
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There is no knowing whether Russell had something like the above argument sup-
porting his conjecture in mind. Whether or not he did, later in the same article, he
invokes the conjecture to motivate a ‘limitation of size’ resolution of the paradoxes.
But, as we saw, the above argument invokes Replacement, which itself expresses a
limitation of size principle. So for Russell’s own purpose, the argument offered him
above would beg the question.³

The converse of Russell’s conjecture seems solid for its part: if there is a one-one
function taking the ordinals into the objects satisfying a concept P, then P is indefin-
itely extensible. For let f be a one-to-one function from the ordinals into the P’s, and
let C be a Definite collection of P’s. Let c be the collection of ordinals α such that f α

is in C . By Replacement, c is a Definite collection (and thus a set) of ordinals. Let α′

be the smallest ordinal not in c. Then Pf α′, but f α′ is not in C . If the ordinals can
be embedded into the P’s, then P inherits the indefinite extensibility of the ordinals.

So both Russell’s conjecture and its converse are plausible. Together they imply
that a concept is indefinitely extensible if and only if there is an injection of the ordin-
als into it. This is the reason, foretold in the previous section, to take the ordinals to
be the paradigm case of an indefinitely extensible totality, and the mechanics of the
Burali–Forti paradox to be the paradigm of indefinite extension.

Historical note: Cantor himself made frequent use of the converse of the Russell
conjecture. To show that a given multiplicity is ‘inconsistent’, he would show how to
embed the series of ordinals into it. The aforementioned letter to Dedekind contains
a sketch of the series of alephs. Cantor asks whether there is a set whose cardinality is
not an aleph:

This question is to be answered negatively . . . If we take a definite multiplicity [i.e., a set] V
and assume that no aleph corresponds to it as its cardinal number, we conclude that V must be
inconsistent. For we readily see that, on the assumption made, the whole system 
 [of transfin-
ite numbers] is projectible into the multiplicity V , that is, there must exist a submultiplicity
V ′ of V that is equivalent to the system 
.

Cantor thus provides an argument for what would later be Zermelo’s (1904) well-
ordering theorem. In his capacity as editor of Cantor’s collected works, Zermelo
added a long footnote to the published version of Cantor’s letter taking him to task
for his talk of ‘procedures’ and the like:⁴

Cantor apparently thinks that successive and arbitrary elements of V are assigned to members
of 
 in such a way that every element of V is used only once. Either this procedure would come

we do not need Choice in the foregoing argument. The presumed principle of extension does the
‘choosing’.

³ The ‘limitation of size’ conception is that a given ‘totality’ forms a set if and only if it is not
too ‘large’. From this perspective, the sets, the ordinals, and the cardinals do not themselves form
sets because there are too many of them. Russell’s conjecture fits in well with this conception. If it
were the case that the ordinals could be embedded into any indefinitely extensible totality T , then,
since there are ‘too many’ ordinals to form a set, there are also too many T ’s to form a set. The
replacement principle is a contrapositive, of sorts, to this observation. It says that if a collection S
is Definite, and there are exactly as many U ’s as S’s, then the U ’s form a set as well. Thanks to
Michael Potter here.

⁴ Cantor’s letter and Zermelo’s note are published in van Heijenoort (1967, 113–17).
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to an end once all elements of V had been exhausted, and then V would be mapped onto a
segment of the number sequence and its cardinality would be an aleph, contrary to the assump-
tion, or V would remain inexhaustible, hence contain a constituent part that is equivalent
to all of 
 and therefore inconsistent. Thus the intuition of time is applied here to a pro-
cess that goes beyond all intuition . . . Only through the ‘axiom of choice’, which postulates
the possibility of a simultaneous choice and which Cantor uses unconsciously and instinctively
everywhere but does not formulate explicitly anywhere, could V ′ be defined as a subset of V .
But even then there would still remain a doubt: perhaps the proof involves ‘inconsistent’ mul-
tiplicities, indeed possibly contradictory notions, and is logically inadmissible already because
of that. It is precisely doubts of this kind that impelled the editor (Zermelo) a few years later
to base his own proof of the well-ordering theorem (1904) purely upon the axiom of choice
without using inconsistent multiplicities.

10.3 ‘SMALL’ INDEFINITELY EXTENSIBLE CONCEPTS?
CASE STUDY (1) : THE BERRY PARADOX

Russell’s Conjecture, taken with its converse, makes for an extensional connection
between ordinal and indefinite extensibility: the totality of elements falling under an
indefinitely extensible concept contains a system isomorphic to the ordinals. Clearly,
though, even if this connection is accepted, we still want for an analysis, or further
conceptual elucidation, of the notion: something to provide some leverage on the
cluster of issues itemized at the conclusion of Section 10.1—something the connec-
tion made with the ordinals, unsupplemented, manifestly fails to do.

But is the connection made by Russell’s Conjecture correct in any case? Dummett
for one has characteristically taken it that the natural and real numbers are indefinitely
extensible totalities in just the same sense that the ordinals and cardinals are, with sim-
ilar consequences, in his view, for the understanding of quantification over them and
the standing of classical logic in the investigation of these domains. And in the article
(Dummett, 1963) which contains his earliest published discussion of the notion, he
argues that the proper interpretation of Gödel’s incompleteness theorems for arith-
metic is precisely to teach that arithmetical truth and arithmetical proof are indefin-
itely extensible concepts—yet neither presumably has an even more than countably
infinite extension, still less an ordinals-sized one. (For the ordinary, finitely based lan-
guage of second-order arithmetic presumably suffices for the expression of any arith-
metical truth.) It is disconcerting to have lost contact with one of the leading friends
of indefinite extensibility so early in the discussion. But then where does the argument
for Russell’s conjecture and its converse go wrong, or betray Dummett’s intent?

It is relevant to recall that Russell (1908) himself, in motivating a uniform dia-
gnosis of the paradoxes, included in his list of chosen examples some at least where the
‘self-reproductive’ process seems bounded by a relatively small cardinal. For instance
the Richard paradox concerning the class of decimals that can be defined by means
of a finite number of words makes play with a totality which, if indeed indefinitely
extensible, is at least no greater than the class of decimals itself, i.e. than 2ℵ0. Was
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Russell simply unaware of this type of example in 1906, when he proposed the Con-
jecture discussed above? Or did he not in 1906 regard the Richard paradox and others
involving ‘small’ totalities as genuine examples of the same genre, revising that opin-
ion two years later?

Well, are they examples of the same genre? To fix ideas, let us consider in some
detail the so-called Berry paradox, the paradox of ‘the smallest natural number not
denoted by any expression of English of fewer than seventeen words’. This is an
English expression which, on plausible assumptions, should denote a natural num-
ber—but it contains sixteen words. So its referent—the smallest natural number not
denoted by any expression of English of fewer than seventeen words—is denoted by
an English expression of sixteen words. Is this a paradox of indefinite extensibility?

Let’s try to state the paradox more carefully. Define an expression t to be numer-
ically determinate if t denotes a natural number and let C be the set—if there is
one—of all numerically determinate expressions of English. Consider the expres-
sion b: ‘the smallest natural number not denoted by any expression in C of fewer
than seventeen words’. Assume: (1) that b is a numerically determinate expression of
English (i.e., b ∈ C) and (2) that C indeed exists. Then contradiction follows from
(1) and (2) and the empirical datum that b has sixteen words (counting the contained
occurrence of ‘C ’ as one word).

Evidently, there are some issues that would need to be addressed in a watertight
version of the paradox. Notice, for instance, that assumption (1) presupposes that
‘C ’ is an expression of English. But, of course, you won’t find it in any dictionary of
the English language. The paradox presumes to take ‘English’ to include expressions
introduced by new explicit abbreviative definitions of English expressions. Assump-
tion (1) also presupposes of course that b—‘the smallest natural number not denoted
by any expression in C of fewer than seventeen words’—denotes something in Eng-
lish. But what in that case is being assumed about the decimal numerals? Are they part
of English? If so, how many words do they contain? If e.g. ‘1002’ ranks as a one-word
English expression, then assumption (1) is contradicted and the paradox is stillborn.
We could take the view that each occurrence of one of the ten basic decimal numerals
within a compound decimal numeral counts as one word. But once we allow Eng-
lish to contain abbreviative definitions, what is to stop us taking an infinite series
of—presumably—single-symbol expressions,

T T T T T T

asymptotically approaching a size half that of the first, and then assigning to each nth

expression in this series the nth natural number as referent and deeming the whole to
be part of English? In that case, b has again no denotation in English.

But suppose we manage to work these issues out and get a rigorous contradiction.
Then the diagnostic thought, shared by Russell and Dummett, will be that the para-
dox is due to the indefinite extensibility of the concept, numerically determinate expres-
sion of English. The problem, on this proposal, is the assumption that any such set
as C —the set of all numerically determinate expressions of English—exists. There is
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no such set. Rather, any set of such expressions aids and abets the construction of a
new such expression, in the kind of way illustrated by the paradox, which it demon-
strably cannot contain.

The analogy with the classic paradoxes looks good. But, as emerges if we think the
process of ‘indefinite extension’ through, it is not quite right. Again: take P as the
concept, numerically determinate expression of English, and let D be any definite, finite
collection of P’s. Introduce a (one word) name d for D (counting d , as remarked
above, as part of ‘English’), and consider ‘the smallest natural number not denoted by
any member of d of fewer than seventeen words’. Call this sixteen-worded expression
‘w’. It is clear that w is a P (i.e., a numerically determinate expression of English); for
there will be a definite finite subset, D*, of D comprising exactly those of the members
of D with fewer than seventeen words, and—since all these expressions are numer-
ically determinate—a definite greatest number, k, denoted by any member of D*.
So the referent of w is less than or equal to k + 1. However w is not in D, since no
member of D denoting w has fewer than seventeen words. Clearly we can iterate the
process, now taking D∪{w} for D, and giving this set a new one-word English name.
Still the process is not indefinitely extensible.

To see why, let the initial collection D just consist of the Arabic numerals, ‘0’-‘9’.
Do the Berry construction on this to get a w1 —it will denote 10—that is P, but not
in D. Let D1 be D∪{w1}. Give D1 a one-word name. Now do a Berry on D1, produ-
cing w2. Let D2 be D1∪{w2}. Give D2 a one-word name. Do the Berry construction
again. Keep going . . . Now let Dω be the union of D, D1, D2, . . . What happens
next?—what happens when we apply the Berry construction to Dω?

The answer is that it fails. For reflect that 0 to 9 are all denoted by single-word
members of D; 10 is denoted by the sixteen-worded ‘the smallest natural number not
denoted by any member of [write in the one-word name of D] of fewer than seven-
teen words’; 11 is denoted by the ‘the smallest natural number not denoted by any
member of [write in the one-word name of D1] of fewer than seventeen words’; 12
is denoted by the ‘the smallest natural number not denoted by any member of [write
in the one-word name of D2] of fewer than seventeen words’; and so on. So the ‘the
smallest natural number not denoted by any member of [write in the one-word name
of Dω] of fewer than seventeen words’ has no reference—for every natural number is
denoted by at least one member of Dω of fewer than seventeen words.

Of course the construction fails in a more pedestrian way if we do not allow oursel-
ves to include as part of English the countably many one-word abbreviations needed
to press the iteration beyond the finite. What it seems fair to say is that, with that
idealization—if that is what it is—of what counts as English, there is a kind of indef-
inite extensibility about the concept, numerically determinate expression of English. But
it is a bounded indefinite extensibility, as it were—indefinite extensibility up to a
limit (ordinal). If union is a Definiteness preserving operation, there will be, in such
bounded cases, a definite collection of entities of the kind in question that does not
in turn admit of extension by the original operation. So they will not be indefinitely
extensible, at least not in the spirit of our initial characterization.
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10.4 ‘SMALL’ INDEFINITELY EXTENSIBLE CONCEPTS?
CASE STUDY (2) : ARITHMETICAL TRUTH

As noted earlier, Dummett (1963) argues that Gödel’s incompleteness theorem shows
that arithmetical truth is indefinitely extensible. Given any definite collection C of
arithmetical truths, one can construct a truth—the Gödel sentence for C —that is
not a member of C .

This is prima facie a puzzling claim. If ‘definite collection’ means something like
set, and if the latter concept is understood as in classical mathematics, then it just
seems wrong—arithmetical truth is not indefinitely extensible. Following Tarski, one
can give a straightforward explicit definition of ‘arithmetical truth’. It then follows
from the Aussonderungsaxiom that there is a set of all arithmetical truths. There is no
‘Gödel sentence’ for this set. But, of course, Dummett’s claim is not offered, presum-
ably, within the context of the classical conception of set.

Fix an effective Gödel numbering of the sentences of arithmetic. It follows from
Tarski’s theorem that the notion of arithmetical truth is not arithmetic.⁵ In other
words, there is no formula T (x) in the language of arithmetic, such that for each nat-
ural number n, T (n) if and only if n is the Gödel number of a truth of arithmetic.

A generalization of Gödel’s theorem does suggest something approximating indef-
inite extensibility: if C is any arithmetic set of (Gödel numbers of ) truths of arith-
metic, then there is a truth of arithmetic that is not in C . Indeed, let A(x) be a formula
in the language of arithmetic that characterizes C . That is, for every natural number
n, A(n) if and only if n ∈ C . A fortiori, for each natural number n, if A(n) then n is the
Gödel number of a true sentence of arithmetic. Let P be a fixed point for the formula
¬A(x). That is, if p is the Gödel number of P, then

P ≡ ¬A(p)

is a theorem of arithmetic. It follows that P is true,⁶ and thus¬A(p). So p is not in C .
Given Dummett’s general outlook in the philosophy of mathematics, he would

surely deny that the ‘totality’ of arithmetical truths is Definite. It is certainly not deci-
dable. Perhaps it is reasonable to hold that, for Dummett, a ‘totality’ of natural num-
bers is Definite only if it is recursively enumerable, or at least arithmetic. If so, the
foregoing construction shows that, for Dummett, something in the neighborhood of
indefinite extensibility holds for arithmetical truth.

⁵ A property (or set) of natural numbers F is arithmetic if there is a formula �(x) in the language
of arithmetic, with only x free, such that for each natural number n, n is an F (or n ∈ F ) if and only
if �(n) holds. The general form of Tarski’s (1933) theorem is that no sufficiently rich interpreted
language can define its own truth predicate. The specific form here is that there is no arithmetic
definition of ‘truth in arithmetic’.

⁶ Assume A(p). Then p is the code of a truth of arithmetic. But p is the code of P. So P is
true. But P is equivalent to ¬A(p), which is thus true. Contradiction. So ¬A(p), which (again) is
equivalent to P.
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More specifically, it is straightforward to initiate something that looks like a process
of ‘indefinite extension’. Let A0 be a given Definite set of arithmetical truths—for
instance, let A0 be the theorems of some standard axiomatization of arithmetic. For
each natural number n, let An+1 be the collection An together with a Gödel sentence
for An. Presumably, if An is Definite, then so is An+1, and, of course, An and An+1 are
distinct. Unlike the above situation with the Berry paradox, this ‘construction’ can
be continued into the transfinite. Let Aω be the union of A0, A1, . . . Arguably, Aω

is Definite. Indeed, if A0 is recursively enumerable, then so is Aω; if A0 is arithmetic,
then so is Aω. Thus, we can define Aω+1, Aω+2, . . . Then we take the union of those
to get A2ω, and onward, Gödelising all the way (so to speak).

On the usual, classical construal of the extent of the ordinals, however, the ‘con-
struction’ does not continue without limit. It ‘runs out’ well before the first uncount-
able ordinal. Let λ be an ordinal and let us assume that we have defined Aλ. The
foregoing construction will take us on to the next set Aλ+1 only if the collection Aλ

has a Gödel sentence. And this is possible only if Aλ is arithmetic. Clearly, it can-
not be the case that for every (countable) ordinal λ, Aλ is arithmetic. There are only
countably many arithmetic sets (at most one for each formula in the language of arith-
metic), but there are uncountably many (countable) ordinals.⁷ Let κ be an ordinal
such that Aκ is not arithmetic. For a Dummettian, presumably, Aκ is not Definite.

One option, to be sure, is that of accepting the Russell-conjecture but maintaining
that there is no such ordinal as κ . The proof, in set theory, that such an ordinal exists
relies on excluded middle. But, for the classical mathematician at least, the notion of
arithmetical truth is not fully indefinitely extensible; we cannot run on indefinitely
through the ordinals in iterating Gödel sentences.

10 .5 INDEFINITE EXTENSIBILITY EXPLAINED

Let’s take stock. Russell’s Conjecture, that indefinitely extensible concepts are marked
by the possession of extensions into which the ordinals are injectible, still stands.
Apparent exceptions to it, like numerically determinate expression of English and arith-
metical truth, are not really exceptions. For the principles of extension they involve
are not truly indefinitely extensible but stabilize after some series of iterations iso-
morphic to a proper initial segment of the ordinals. Or at least they do so if the
ordinals are allowed their full classical structure. As we just noted, the friend of small
indefinitely extensible concepts has the option of preserving Russell’s Conjecture by

⁷ We can be a bit sharper. If λ is a limit ordinal, then the contents of Aλ, if it exists, depend on
the particular Gödel numbering chosen and, more importantly, on the method for coding countable
ordinals as natural numbers (so we can ‘axiomatize’ Aλ). For any such coding, there are countable
ordinals that have no code. Let κ be the smallest such (for a given coding). Then for each λ < κ, Aλ

exists and is arithmetic. So we can go on to Aλ+1. We can take the ‘union’ of all such sets, which
is Aκ . But this is the end of the line: Aκ is not arithmetic, and thus has no Gödel sentence. The
construction sketched here, of iterating the Gödel construction into the transfinite, is well-studied.
For more details, see Turing (1939) and Feferman (1962), (1988).
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‘cutting back’ the ordinals appropriately far. At the limit, when only the finite ordin-
als are countenanced, there will then be many more indefinitely extensible concepts
than otherwise, including numerically determinate expression of English and arithmet-
ical truth; and all will, indeed, be ‘small’.

Any invocation of the notion of ordinal number in the explanation of indefinite
extensibility may seem to invert the priorities, but actually there is something import-
antly right about it. Intuitively the indefinite extensibility of P has to do with the
P-conservativeness of some germane principle of extension no matter how long a series
of iterated applications of it may be made. What one thinks that means will inevit-
ably depend on how one thinks about the structure of the measures of such a series
of iterated applications—and so will depend on one’s preconceptions about ordinal
number. More or less generous such preconceptions will consequently factor into the
extension of indefinite extensibility. This relativity, we suggest, was inbuilt from the
start, and the concept of indefinite extensibility is consequently open to refinement
and mutation in tandem with developments, sophisticated or unfortunate, in one’s
conception of how long such series can in principle be (see Section 10.9 below).

That said, though, Russell’s Conjecture, even if extensionally correct, is not the
kind of characterization of indefinite extensibility we should like to have. To get a
clear sense of the shortfall, reflect that if Russell’s Conjecture provided a full account,
it would be a triviality that the ordinals are indefinitely extensible. Whereas what is
wanted is a perspective from which we can explain why Russell’s Conjecture is good if
indeed, as it seems, it is—equivalently, a perspective from which we can explain what
it is about ordinal that makes it the paradigm of an indefinitely extensible concept.

Any indefinitely extensible totality P is intuitively unstable, ‘restless’, or in ‘growth’.
Whenever you think you have it safely corralled in some well-fenced enclosure, sud-
denly—hey presto!—another fully P-qualified candidate pops up outside the fence.
The primary problem in clarifying this figure is to dispense with the metaphors of
‘well-fenced enclosure’ and ‘growth’. Obviously a claim is intended about sub-totalities
of P and functions on them to (new) members of P. Equally obviously, we need to
qualify for which type of sub-totalities of P the claim of iterative extensibility within P
is being made. Clearly it cannot be sustained for absolutely any sub-totality of P: if for
example, we continue to take it that ordinal is a paradigm of indefinite extensibility,
we do not claim that ordinal itself picks out a sub-totality of the relevant kind (though
of course there are issues, which will occupy us later, about whether one can avoid that
claim). Nor would it help to restrict attention to proper sub-totalities: ordinal other
than three does not pick out the right kind of sub-totality either. If we could take it
for granted that the notion of indefinite extensibility is in clear standing and picks out
a distinctive type of totality, or concept, then we could characterize the relevant kind
of sub-totality exactly as Dummett did—they are the Definite sub-totalities. For the
indefinite extensibility of a totality, if it consists in anything, precisely consists in the
fact that any Definite sub-totality is merely ‘proper’. But unless there is some direct
route into the intended notion of Definiteness other than via ‘not indefinitely extens-
ible’ we make no explanatory progress. No doubt circularity in our best explanation
of a concept need not—pace Quine (1951)—enforce skepticism about it. Concepts
can be explained by giving illustrative instances, for one thing. But the problem in
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this case is that the intended concept is too sophisticated to allow of explanation only
by examples: what the standard examples seem to illustrate—if indeed they genuinely
illustrate anything distinctive at all—cannot be a basic resemblance, beyond further
articulation, but surely has to be something which allows of explicit characterization.

What is the way forward? Here is our suggestion. In order, at least temporarily, to
finesse the ‘which sub-totalities?’ issue, let’s start with an explicitly relativized notion.
Let P be a concept of items of a certain type τ . Typically, τ will be the (or a) type of
individual objects. Let � be a concept of concepts of type τ items. Let us say that P is
indefinitely extensible with respect to � if and only if there is a function F from items
of the same type as P to items of type τ such that if X is any sub-concept of P such
that �X then

(1) FX falls under the concept P,

(2) it is not that case that FX falls under the concept X , and

(3) �X ′, where X ′ is the concept instantiated just by FX and every item which instan-
tiates X (i.e., ∀x[X ′x ≡ (Xx ∨ x =FX )]; in set-theoretic terms, X ′ is (X∪{FX }).

Intuitively, the idea is that the sub-concepts of P of which � holds have no maximal
member.⁸ For any sub-concept X of P such that �X , there is a proper extension X ′

of X such that �X ′.
This relativized notion of indefinite extensibility is quite robust, covering a lot of

different situations. Below we give twelve examples. (The reader may choose to skip
some at first reading.)

1. Px iff x is a finite ordinal (or cardinal) number; �X iff there are only finitely many
X ’s; FX is the successor of the largest X . So being a finite ordinal (or cardinal) is
indefinitely extensible with respect to ‘finite’.

2. Px iff x is a countable ordinal (i.e., countable well-ordering type); �X iff there are
only countably many X ’s; FX is the successor of the union of the X ’s. So being a
countable ordinal is indefinitely extensible with respect to ‘countable’.

3. In general, let κ be any regular cardinal number,⁹ and define Px iff x is an ordinal
smaller than κ . �X iff there are fewer than κ-many X ’s; FX is the successor to the

⁸ Say that P is weakly indefinitely extensible with respect to � if and only if for each sub-concept
X of P such that �X , there is an item t of type τ such that

(1) Pt,
(2) it is not that case Xt, and
(3) �X ′, where X ′ is the concept which applies to t and to every item to which X applies.

The difference, of course, is that with the stronger notion characterized above, it is required that
there be a function that gives the extra element t. The strong notion is equivalent to the weak one if
we assume a strong choice principle:

∀X∃xR(X , x) → ∃ f ∀XR(X , f X ),

where x is a variable of type τ , X has the type of concepts of type τ items, and f has the appropriate
function-type. See note 2 above.

⁹ Recall that a cardinal κ is ‘regular’ if no set of size κ is the union of fewer than κ-many sets
each of which is smaller than κ. It follows from the axiom of choice that every infinite successor
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union of the X ’s. So, for each regular cardinal κ , the concept of ‘being an ordinal
smaller than κ ’ is indefinitely extensible with respect to ‘smaller than κ ’.

A converse holds. A cardinal κ is regular if and only if ‘being an ordinal smaller than
κ ’ is indefinitely extensible with respect to ‘smaller than κ ’ using the indicated ‘suc-
cessor of union’ function.

4. Let κ be any infinite cardinal, and define Px iff x is an ordinal smaller than κ . �X
iff there are fewer than κ-many X ’s; FX is the smallest ordinal λ such that Pλ &
¬X λ. So, for each infinite cardinal κ , the concept of ‘being an ordinal smaller than
κ ’ is indefinitely extensible with respect to ‘smaller than κ ’.

5. Let κ be a strong inaccessible. Px iff x is an ordinal smaller than κ ; �X iff there are
fewer than κ-many X ’s. FX is the powerset of the union of the X ′s. So, for each
strong inaccessible κ , the concept of ‘being an ordinal smaller than κ ’ is indefinitely
extensible with respect to � via this function. (Here, again, there is a converse.)

6. Px iff x is a real number; �X iff there are only countably many X ’s. Define FX
using a Cantorian diagonal construction. So being a real number is indefinitely
extensible with respect to ‘countable’.

7. Px iff x is (the Gödel number of ) a truth of arithmetic; �X iff the X ’s are recurs-
ively enumerable. FX is a Gödel sentence generated by the X ’s, or the straightfor-
ward statement that the X ’s are consistent. Then, if every member of X is true of
the natural numbers, then so is the sentence FX. And, of course, FX is not one
of the X ’s. So being (the Gödel number of ) a truth of arithmetic is indefinitely
extensible with respect to the property of being recursively enumerable.

As noted, Dummett first introduced the terminology of indefinite extensibility in his
(1963). The only indefinitely extensible notion discussed there is the preceding, for
which the case can be generalized as indicated in the previous section:

8. Px iff x is the Gödel number of a truth of arithmetic; �X iff the X ’s are arithmetic,
i.e., iff there is a formula �(x) with only x free such that �(x) iff Xx. FX is a fixed
point for ¬�(x): the Gödel number n of a sentence � such that (� ≡ ¬�(n)) is
provable in ordinary Peano arithmetic (and so true). So being (the Gödel number
of ) a truth of arithmetic is indefinitely extensible with respect to the property of
being arithmetic.

With even more generality, Tarski’s theorem is in effect that the notion of truth for
any sufficiently rich language is indefinitely extensible with respect to concepts defin-
able in that language. Another generalization is studied in recursive function theory:

9. Let A be a productive set of natural numbers (see Rogers, 1967, 84). Px iff x ∈
A;�X iff X is recursively enumerable. So, for each productive set A, the concept

cardinal is regular. Given Choice, the smallest infinite non-regular cardinal is ℵω. It is common
nowadays to identify ordinals with von Neumann ordinals and to identify cardinals with alephs,
which, in this context, are von Neumann ordinals of minimal cardinality. That is, κ is an aleph if
κ is a von Neumann ordinal and the cardinality of each λ ∈ κ is less than that of κ. With these
identifications, Px iff x ∈ κ.
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of being a member of A is indefinitely extensible with respect to the property of
being recursively enumerable.

Notice that the set of Gödel numbers of arithmetic truths is productive.
Finally—and as they had better—the three notions invoked at the start to intro-

duce the notion of indefinite extensibility also fit the present template:

10. Px iff x is an ordinal (or a von Neumann ordinal); �X iff each of the X ’s is
an ordinal and the X ’s are themselves isomorphic to an ordinal (under the nat-
ural ordering). In other words, �X iff each X is an ordinal and the X ’s have (or
exemplify) a well-ordering type. (In still other words, �X iff the X ’s are a set of
ordinals.) FX is the successor of the union of the X ’s. So being an ordinal is indef-
initely extensible with respect to the property of being isomorphic to an ordinal
(or exemplifying a well-ordering type).

This, of course, is just the Burali–Forti construction.

11. Px iff x is a set that does not contain itself; �X iff the X ’s form a set, i.e., ∃y∀x(x ∈
y ≡ Xx). FX is just the set of X ’s: {x|Xx}. So being a set that does not contain
itself is indefinitely extensible with respect to the property of being, or constitut-
ing, a set.

12. Px iff x is a cardinal number; �X iff the X ’s form a set (with a cardinal num-
ber). Given such an X , take the union of a totality consisting of at least one set
whose cardinality is in a set that has X (using Choice and Replacement); FX is
the powerset of that. So being a cardinal number is indefinitely extensible with
respect to the property of being, or constituting, a set.

Most of these instances of relativized indefinite extensibility are unremarkable. They
do not, as far as they go, shed any philosophical light on the paradoxes. Our ultimate
goal, of course, remains to define an unrelativized notion of indefinite extensibility, a
notion that covers ordinal, cardinal, and set and at least purports to shed some light
on the paradoxes, in the sense that the latter should emerge as somehow turning on
the indefinite extensibility of the concepts concerned. So what next?

Three further steps are needed. Notice to begin with that the listed examples sub-
divide into two kinds. There are those where—helping ourselves to the classical ordi-
nals—we can say that some ordinal λ places a lowest limit on the length of the series
of �-preserving applications of F to any X such that �X . Intuitively, while each
series of extensions whose length is less than λ results in a collection of P’s which is
still �, once the series of iterations extends as far as λ the resulting collection of P’s is
no longer �, and so the ‘process’ stabilizes. This was the situation noted with numer-
ically determinate expression of English and arithmetical truth, as discussed in preceding
sections, and it is also the situation of all but examples 10, 11 and 12 listed above. In
those three cases, by contrast, there is no ordinal limit to the �-preserving iterations.
With 10, this is obvious, since the higher-order property � in that case just is the
property of having a well-ordering type. Indeed, let λ be an ordinal. Then the first λ

ordinals have the order type λ and so they have the property. The ‘process’ thus does
not terminate or stabilize at λ. With 11 and 12, we get the same result if we assume
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that for each ordinal λ, a totality that has order type λ is a set and has a cardinality.
This is just the replacement principle invoked in the argument for the Russell conjec-
ture in Section 10.2 above.

Let’s accordingly refine the relativized notion to mark this distinction. So first, for
any ordinal λ say that P is up-to-λ-extensible with respect to � just in case P and �

meet the conditions for the relativized notion as originally defined but λ places a limit
on the length of the series of �-preserving applications of F to any sub-concept X
of P such that �X . Otherwise put, λ iterations of the extension process on any �X
‘generates’ a collection of P’s which form the extension of a non-� sub-concept of P.
Next, say that P is properly indefinitely extensible with respect to � just if P meets the
conditions for the relativized notion as originally defined and there is no λ such that
P is up-to-λ- extensible with respect to �. Finally, say that P is indefinitely extensible
(simpliciter) just in case there is a � such that P is properly indefinitely extensible
with respect to �.

Our suggestion, then, is that the circularity involved in the apparent need to char-
acterize indefinite extensibility by reference to Definite sub-concepts/collections of a
target concept P can be finessed by appealing instead at the same point to the exist-
ence of some species—�—of sub-concepts of P/collections of P’s for which �-hood
is limitlessly preserved under iteration of the relevant operation. This notion is, natur-
ally, relative to one’s conception of what constitutes a limitless series of iterations of
a given operation. No doubt we start out innocent of any conception of serial lim-
itlessness save the one implicit in one’s first idea of the infinite, whereby any count-
able potential infinity is limitless. Under the aegis of this conception, natural num-
ber is properly indefinitely extensible with respect to finite and so, just as Dummett
suggests, indefinitely extensible simpliciter. The crucial conceptual innovation which
transcends this initial conception of limitlessness and takes us to the ordinals as clas-
sically conceived is to add to the idea that every ordinal has a successor the principle
that every infinite series of ordinals has a limit, a first ordinal lying beyond all its ele-
ments—the resource encapsulated in Cantor’s second number principle. If it is gran-
ted that this idea is at least partially—as it were, initial-segmentally—acceptable, the
indefinite extensibility of natural number will be an immediate casualty of it. (Critics
of Dummett who cannot see what he is driving at are presumably simply taking for
granted the orthodoxy that the idea is at least partially acceptable.)

10 .6 INDEFINITE EXTENSIBILITY AND THE PARADOXES

Roughly, then, P is indefinitely extensible just in case, for some �, any � sub-concept
of P allows of limitless �-preserving enlargement. There seems to be nothing inher-
ently paradoxical about this idea. So what is the connection with paradox—how is
the indefinite extensibility of set, ordinal and cardinal linked with the classic para-
doxes that beset those notions? The immediate answer is that in each of these cases
there is powerful intuitive reason to regard P itself as having the property �. For
example, in case P is ordinal, and �X holds just if the X ’s exemplify a well-order-
type, it seems irresistible to say that ordinal itself falls under �. After all, the ordinals
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are well-ordered. But then the relevant principle of extension kicks in and dumps a
new object on us that both must and cannot be an ordinal—must because it corres-
ponds, it seems, to a determinate order-type, cannot because the principle of exten-
sion always generates a non-instance of the concept to which it is applied. So we have
the Burali–Forti paradox.

The question, then, is what leads us to so fix our concepts of set, ordinal, and car-
dinal so that they seem to be indefinitely extensible with respect to �’s which are,
seemingly, characteristic of those very concepts themselves? These remarks of Dum-
mett (1991, 315–16) suggest what we believe is the key insight:

to someone who has long been used to finite cardinals, and only to [finite cardinals], it seems
obvious that there can only be finite cardinals. A cardinal number, for him, is arrived at by
counting; and the very definition of an infinite totality is that it is impossible to count it . . . .
[But this] prejudice is one that can be overcome: the beginner can be persuaded that it makes
sense, after all, to speak of the number of natural numbers. Once his initial prejudice has been
overcome, the next stage is to convince the beginner that there are distinct transfinite cardinal
numbers: not all infinite totalities have as many members as each other. When he has become
accustomed to this idea, he is extremely likely to ask, ‘How many transfinite cardinals are
there?’. How should he be answered? He is very likely to be answered by being told, ‘You
must not ask that question’. But why should he not? If it was, after all, all right to ask, ‘How
many numbers are there?’, in the sense in which ‘number’ meant ‘finite cardinal’, how can it be
wrong to ask the same question when ‘number’ means ‘finite or transfinite cardinal’? A mere
prohibition leaves the matter a mystery. It gives no help to say that there are some totalities so
large that no number can be assigned to them. We can gain some grasp on the idea of a totality
too big to be counted . . . but once we have accepted that totalities too big to be counted may
yet have numbers, the idea of one too big even to have a number conveys nothing at all. And
merely to say, ‘If you persist in talking about the number of all cardinal numbers, you will run
into contradiction’, is to wield the big stick, but not to offer an explanation.

What the paradoxes revealed was not the existence of concepts with inconsistent extensions,
but . . . indefinitely extensible concepts.

We have already noted that indefinite extensibility does not per se seem paradox-
ical, so the insight that Dummett is giving expression to is not well summarized by
the last two quoted lines. The insight is rather into the interconnection, in the case
in point, between the indefinite extensibility of cardinal number and the temptation
to say that the concept falls under—ought to fall under—the relevant �. We get
the indefinitely extensible series of transfinite cardinals up and running in the first
place by insisting on one-one correspondence between concepts as necessary and suf-
ficient for sameness, and hence existence, of cardinal number in general—not just in
the finite case—and then, under the aegis of that insistence, by bringing to bear the
Axioms of Union and Powerset, and then Cantor’s theorem. A conception of cardinal
embracing both the finite and the spectacular array of transfinite cases only arises in
the first place when it is taken without question that concepts in general—or at least
any that sustain determinate relations of one-one correspondence—have cardinal
numbers, identified and distinguished in the light of those relations. That is how the
intuitive barrier to the question, how many natural numbers are there, is overcome.
But then the lid is off Pandora’s box: for the intuitive barrier to the question, how
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many cardinal numbers are there is overcome too. Cardinal, it seems, has to be both
indefinitely extensible with respect to has a cardinal number and an instance of it.

It is straightforward to transpose this diagnosis to our paradigm, the ordinals,
taken intuitively as the order-types of well-orderings. Consider an imaginary Hero
(cf. Wright, 1998) being introduced to the ordinal numbers. Suppose that she has
been introduced to the finite ordinals, but not the infinite ones. She wonders about
the order-type of the finite ordinals, and realizes that she has no ordinal for this—yet.
So she thinks that there is no ordinal of finite ordinals. But we tell her that the finite
ordinals do indeed have an ordinal, just not one that she has encountered already. She
thus meets ω, and she formulates the notion of ‘countable ordinal’. Hero then learns
about ω + 1, 2ω, ω2, ωω, ε0, etc. Perhaps she reads Cantor (1883), or a contempor-
ary text in set theory. So now she naturally asks about the order-type of the countable
ordinals, and she encounters the same problem. We tell her that the countable ordin-
als do have an ordinal—just not one that she has encountered already. So she learns
about ω1. Hero is a quick study, and she recognizes the pattern: every initial segment
of the ordinals has an order-type—just not one featuring in the segment itself, but
rather the next one after all those. But now she notices that the ordinals themselves
are well-ordered, and so she inquires after the order-type of all ordinals. This time
it seems we have the option neither of telling her that the ordinals do indeed have an
order-type—just not one among those she has encountered already—nor of denying
that they have any order-type. She asked about the order-type of ALL ordinals, and
since the ordinals are well-ordered, there ought to be one. But if this order-type exists,
it too is an ordinal and must therefore occur among the ordinals whose collective
order-type she asked about. Ordinal has been so explained to her as to be indefin-
itely extensible with respect to has instances which exemplify a well-order-type —and
the nemesis is that there then seems no option but to allow that it is itself an instance
of this �.

We leave it to the reader to construct a narrative for Hero’s corresponding experi-
ence with the notion of set itself.

The three classic paradoxes of the transfinite, then, arise not with indefinite extens-
ibility as such—at least, not if that is characterized as we have proposed—but with a
particular twist taken by the examples concerned: cases where we unwittingly load a
concept with a principle of indefinite extension whose trigger-concept—the relevant
�—can be denied of the concept in question only by making an arbitrary exception
to a connection—e.g. that well-ordered collections have order-types, that concepts
which sustain relations of one-one correspondence have cardinals, that well-defined
collections comprise sets—which is integral to the operation of the principle in ques-
tion. Of course it may seem perverse to caption the making of an exception necessary
to avoid contradiction as arbitrary. But, as Dummett said, intimidation is one thing,
and explanation is another.

The situation we find ourselves in is one in which, in the view of Graham Priest
(2002), we bump up against one of a number of ‘limits of thought’—effectively, the
limit involved in the attempt coherently to conceive of an absolutely limitless process
of iteration. Abstractly put, the attempt involves successively thinking beyond any-
thing that presents itself as a limit, always being ready to postulate a next element or



272 Stewart Shapiro and Crispin Wright

stage lying beyond what temporarily passes as a barrier—a new element of the same
general category as everything that comes before but differing, of course, by virtue of
being, in one or another respect, of a new species. (Cantor’s second number principle,
see Section 10.11 above.) The ‘limit of thought’ is reached when we attempt to form
a conception of the entirety—the whole array—of the elements or stages involved
in the absolutely limitless iteration. If we accept that, this time, the array cannot be
transcended, then it seems there is a limit after all and accordingly that we have not
succeeded in conceiving of genuine iterative limitlessness. But this time we no longer
have the option of postulating another instance of the generic category of object in
question (ordinal, cardinal, set), because we are supposed to be dealing with ALL of
them—or at least trying to.¹⁰

Priest himself suggests a dialetheic resolution: give up the law of non-contradiction,
and allow, for instance, that ordinal both does and does not have an order-type. So the
ordinals are indeed absolutely limitless and at the same time transcended in thought:
there is an ordinal which succeeds all the ordinals (and is itself succeeded in turn by
ordinals . . . ) For those of a nervous disposition who find this too strong to stomach,
it may seem that the only option is to deny that there is an ordinal of all ordinals, a
set of all sets, and a cardinal of all cardinalities. There are several options—see Section
10.11 below. That standard set-theory (ZFC) itself sanctions these denials does not
of course make them principled.

10 .7 A CONFESSION

Sua culpa. From the perspective just arrived at, the notion of ‘proper class’—made
free use of in Shapiro (1991)—now looks quite illegitimate. Invoking proper classes
is an attempt to do the very thing we are intuitively barred from doing—a fudge
which attempts to allow both that set itself falls under various of the �’s that trigger
relevant principles of extension for sub-concepts/collections of it and that a new kind
of ‘collection’ provides the corresponding values. The theorist who invokes proper
classes thus confusedly thinks of himself as doing something analogous to Hero’s
move from finite to countable ordinals. But he has forgotten that set is supposed to
encompass the maximally general category of entities of the relevant kind. The point is
trenchantly made by George Boolos, 1998a, 35–6:¹¹

Wait a minute! I thought that set theory was supposed to be a theory about all, ‘absolutely’
all, the collections that there were and that ‘set’ was synonymous with ‘collection’ . . . If one
admits that there are proper classes at all, oughtn’t one to take seriously the possibility of an

¹⁰ Perhaps Cantor is giving expression to the strain here when he writes (1883, endnote 2):
‘we shall never reach a boundary that cannot be crossed; but we shall also never achieve even an
approximate conception of the absolute. The absolute can only be acknowledged, but never known,
not even approximately.’

¹¹ Boolos’s observation here is the main motivation behind his well-known pluralist reading
of (monadic) second-order quantifiers—in effect, an attempt to make sense and secure some of
the theoretical advantages of second-order set theory, without admitting special items for the
higher-order quantifiers to range over.
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iteratively generated hierarchy of collection-theoretic universes in which the sets which ZF
recognizes [merely] play the role of ground-floor objects? I can’t believe that any such view of
the nature of ‘∈’ can possibly be correct. Are the reasons for which one believes in [proper]
classes really strong enough to make one believe in the possibility of such a hierarchy?

Similar strictures apply to what may be called ‘super-ordinals’—which would be
well-orderings that are too big to be ordinals—and super-cardinals, which would be
the sizes of proper classes. Cantor’s ‘inconsistent multiplicities’—considered as genu-
ine objects—seem to be the same sort of thing as proper classes, and just as illegitim-
ate. Zermelo was well advised to eschew all reliance on such ‘things’.¹²

10.8 NEO-LOGICISM, ANTI-ZERO AND FRIENDS

The first stage in the neo-logicist program is to develop arithmetic from Hume’s prin-
ciple (HP):

∀F∀G[(Nx : Fx = Nx : Gx) ≡ (F ≈ G)],

where F ≈ G is an abbreviation of the second-order statement that there is a relation
mapping the F ’s one-to-one onto the G’s. In both Frege (1884) and Wright (1983),
the opening quantifiers are unrestricted. This seems to be well motivated. One insight
that underlies both Frege’s own treatment and neo-logicism is the universal applicab-
ility of arithmetic (Frege, 1884, §14). So long as one has objects, one can count them:
arithmetic is applicable to absolutely any objects. So a principle governing identity of
cardinal number in general should be formulated in such a way as to embrace (con-
cepts of ) objects of absolutely any sort (see Wright, 1998, 356–7).

Well motivated or not, Boolos (1997) launched an intriguing criticism of neo-
logicism on the basis of this point. It follows from HP that self-identical has a cardinal
number. This would be the number of all objects whatsoever—dubbed ‘anti-zero’ by
Wright. Similarly, HP entails that there is a number of all cardinal numbers, a num-
ber of all ordinal numbers, and a number of all sets. Boolos observes that prima facie,
this presents a conflict with ordinary Zermelo–Fraenkel set theory:

[I]s there such a number as [the number of all objects whatsoever?] According to [ZF] there
is no cardinal number that is the number of all the sets there are. The worry is that the theory
of number [based on HP] is incompatible with Zermelo–Fraenkel set theory plus standard
definitions.

(Boolos, 1997, 260)

A first reaction to the objection is that it involves an illicit commutation. Boolos
writes ‘According to [ZF] there is no cardinal number that is the number of all the sets
there are’, but all that is justified is something like the weaker ‘It is not the case that
according to [ZF] there is a cardinal number that is the number of all the sets there
are.’ ZF does not countenance proper classes, to be sure, and thus it does not assign

¹² See the passage quoted at the end of Section 10.2 above.
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numbers to such items. But ZF does not deny the existence of such large ‘numbers’.
As a first-order theory, it cannot even formulate the question. One would not criticize
standard Peano arithmetic for failing to recognize real numbers, so why fault ZF for
failing to recognize numbers of some (proper class sized) concepts?

However, as we interpret it, Boolos’s criticism of HP runs deeper than this, and is
of a piece with his rejection of proper classes. The first-order variables of set-theory are
supposed to range over every set-like object there is. If proper classes are set-like they
should have been included in the range of the variables of set theory. With the axiom
of choice, it is plausible to hold that a concept has a size only if it is equinumerous
with a cardinal. If we reject proper classes, then cardinals are sets, and only sets have
cardinals.

Wright (1999, 12–13) himself gives an independent argument against anti-zero,
arguing that the cardinality operator is properly restricted to concepts that are sortal
and that self-identical is not one of them. That point, however, offers no treatment
of Boolos’s objection in relation to ordinal, cardinal, and set. For these cases Wright
granted the force of Boolos’s objection, allowing ‘the plausible principle . . . that there
is a determinate number of F ’s just provided that the F ’s compose a set’, and obser-
ving that ‘Zermelo–Fraenkel set theory implies that there is no set of all sets. So it
would follow that there is no number of all sets’. On the same count, there is no
number of all ordinals and no number of all cardinals—contra the straightforward
reading of HP. Wright’s response is further to restrict the second-order variables in
HP, so that some sortal concepts do not have numbers, and to invoke the notion of
indefinite extensibility for this purpose. He writes:

I do not know how best to sharpen [the notion of indefinite extensibility] . . . Dummett
could be [wrong about some of his claims concerning the notion but still] . . . emphasizing an
important insight concerning certain very large totalities—ordinal number, cardinal number,
set, and indeed ‘absolutely everything’. If there is anything at all in the notion of an indefin-
itely extensible totality . . . one principled restriction on Hume’s Principle will surely be that
[cardinal numbers] not be associated with such totalities.

(Wright, 1999, 13–14)

Thus, Wright suggests that the second-order variables in HP be restricted to sortal
concepts that are Definite. Wright’s programmatic suggestion provoked Shapiro
(2003a). If we can restrict HP in the way Wright suggests—to avoid saying that there
is a number of all ordinals, a number of all sets, etc.—then why not restrict Basic Law
V similarly, and perhaps resurrect set theory along neo-logicist lines? Indeed, if P is
a Definite concept, then the extension of P is just the set of P’s. No danger of con-
tradiction there. Of course, to develop this project, we need a robust articulation of
indefinite extensibility. We consider this direction further in Section 10.10 below.

In response to Wright’s proposal, Peter Clark (2000) argued that the best candid-
ate for ‘not indefinitely extensible’ is ‘set sized’, where ‘set’ is the notion given by
Zermelo–Fraenkel set theory. That is, Clark argues that ‘Definite’ just means some-
thing like ‘equinumerous with a member of the iterative hierarchy’. So if the notion of
indefinite extensibility is indeed needed for the neo-logicist program, then that pro-
gram is hopeless. It requires that we articulate the iterative hierarchy before we can
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give the proper foundation even for arithmetic—before we can even so much as state
Hume’s Principle in full generality.

If our proposals above about the proper characterization of indefinite extensibility
are accepted, Clark’s objection has been answered. It may prove to be, as he suggests,
that the extension of Definite coincides with that of set-sized. But that is not the direc-
tion in which to seek a proper characterization of Definite or its contrary. Rather, to
repeat, an indefinitely extensible concept P is one such that, for some �, any � sub-
concept of the original allows of limitless �-preserving intra-P enlargement. There
is no implicit appeal to the notion of set. It is true that, as we stressed above, the
conception of limitlessness is parametric in the characterization, and one construc-
tion of it will run in harness with the ZF treatment of the ordinals. But that is (one)
working out of the notion of indefinite extensibility, rather than something which
belongs with the kind of explanation that would have to be given before a restriction
of HP—or Basic Law V, for that matter—to Definite concepts could be presumed
intelligible. And of course however it works out, finite concepts will pass the test. So
at least the neo-logicist treatment of arithmetic is safe.

10 .9 INDEFINITE EXTENSIBILITY, LIMITATION OF SIZE
AND THE TRUE INFINITE — HOW MANY IS ‘ TOO MANY ’?

The principal thesis of Russell’s (1906) limitation of size conception of sets is that
‘there [is] (so to speak) a certain limit of size which no [set] can reach; and any sup-
posed [set] which reaches or surpasses this limit is . . . improper . . . , i.e., is a non-
entity’. Someone in sympathy with the tendency of our discussion so far will find it
hard to take Russell’s expression of his point literally. Those of us trained in set theory
will in any case find it natural to think of ‘size’ as something only sets have, following
Cantor, Zermelo, et al. If a ‘collection’ is not a set, then it is nothing, has no size at
all, and so can’t be ‘too big’. Indeed Russell himself speaks of ‘non-entity’. Moreover
if Wright’s (1999) suggestion just rehearsed is accepted, indefinitely extensible con-
cepts will determine neither sets nor cardinals; so there will be no size(s) for the ‘non-
entities’ to have.

From the present point of view, the solid core to the suggestion that sets are sub-
ject to limitation of size is nothing but the thesis that indefinitely extensible concepts
do not determine sets. What is striking is that Russell (1906, 153–154), for his part,
dismisses the limitation-of-size conception (in favor of the no-class theory) almost as
soon as he raises it, and that the reason he gives for doing so is absolutely consistent
with and germane to this proposed interpretation of it. He writes:

A great difficulty of this theory is that it does not tell us how far up the series of ordinals it
is legitimate to go. It might happen that ω was already illegitimate: in that case all proper
[sets] would be finite . . . .. Or it might happen that ω2 was illegitimate, or ωω, or ω1 or any
other [limit] ordinal . . . [O]ur general principle does not tell us under what circumstances [a
concept is Definite].

It is no doubt intended by those who advocate this theory that all ordinals should be admitted
which can be defined, so to speak, from below, i.e., without introducing the notion of the
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whole series of ordinals. Thus, they would admit all of Cantor’s ordinals, and they would only
avoid admitting the maximum ordinal. But it is not easy to state such a limitation precisely:
at least I have not succeeded in doing so.

It is obvious, of course, that anyone who wishes to propose a set theory developed in
terms of ‘limitation of size’ must face the conceptual problem of delimiting just how
‘many’ objects a concept must apply to, in order for it to rank as inadmissibly big. But
Russell’s objection, re-expressed in the light of the interpretation of size-limitation
latterly proposed, comes to the concern that, without some independent and well-
motivated grip on the idea of limitless iteration, we have no principled characterization
of which concepts determine sets. Since limitless iteration is iteration without ordinal
limit, it is not too far off the mark to express the point by wondering ‘how far up the
series of ordinals it is legitimate to go’. But a better expression of the question would
be: what structure should we attribute to the series of ordinals?

Dummett (1991, 317) himself writes that the ‘principle of extendibility
constitutive of an indefinitely extensible concept is independent of how lax or
rigorous the requirement for having a [D]efinite conception of a totality is taken to
be, although that will of course affect which concepts are acknowledged to be indef-
initely extensible’. That is exactly the same concern if we take it that one has such a
Definite conception only if the ‘construction’ of the totality in question has an ordinal
limit.

The issue is critical. We can sharpen our feel for it if we consider philosophers and
mathematicians at two polar extremes. At the conservative end, Dummett evidently
sympathizes with—and in some passages seemingly adopts—Russell’s intendedly
flippant suggestion that even ω is too big to be Definite. In other words, Dum-
mett claims that the concept of being a finite ordinal is already indefinitely extens-
ible—that the finite ordinals have no ordinal limit. The structure of the ordinals—all
the Definite ordinals—is that of a (misleadingly termed!) ω-sequence. He notes that
it is common for mathematicians to concede that concepts like set and ordinal (as nor-
mally liberally understood) are indefinitely extensible, but most hold that domains
like the natural numbers and the real numbers are perfectly Definite. Dummett
argues that this last belief is ungrounded:

We have a strong conviction that we do have a clear grasp of the totality of natural num-
bers; but what we actually grasp with such clarity is the principle of extension by which, given
any natural number, we can immediately cite one greater than it by 1. A concept whose exten-
sion is intrinsically infinite is thus a particular case of an indefinitely extensible one. Assuming
its extension to constitute a [D]efinite totality . . . may not lead to inconsistency; but it neces-
sarily leads to our supposing that we have provided definite truth-conditions . . . for state-
ments that cannot legitimately be so interpreted.

(Dummett, 1991, 318, see also 1993, 442–3)

The last remark asserts a connection between the indefinite extensibility of a concept
and issues concerning determinacy of sense for certain kinds of statements concern-
ing its instances—par excellence, quantified statements; an issue which takes us to
the heart of the agenda for the present volume and to which we shall shortly turn.
But in its general outline, though not of course in respect of that claimed connection,
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Dummett’s stance belongs to the tradition initiated by Aristotle and elegantly repres-
ented by Leibniz:¹³

It could . . . well be argued that, since among any ten terms there is a last number, which is also
the greatest of those numbers, it follows that among all numbers there is a last number, which
is also the greatest of all numbers. But I think that such a number implies a contradiction . . .

When it is said that there are infinitely many terms, it is not being said that there is some
specific number of them, but that there are more than any specific number.

(Letter to Bernoulli, Leibniz 1863, III 566, translated in Levey 1998, 76–7, 87)

. . . we conclude . . . that there is no infinite multitude, from which it will follow that there
is not an infinity of things, either. Or [rather] it must be said that an infinity of things is not
one whole, or that there is no aggregate of them.

(Leibniz 1980, 6.3, 503, translated in Levey 1998, 86)

Yet M. Descartes and his followers, in making the world out to be indefinite so that we cannot
conceive of any end to it, have said that matter has no limits. They have some reason for
replacing the term ‘infinite’ by ‘indefinite’, for there is never an infinite whole in the world,
though there are always wholes greater than others ad infinitum. As I have shown elsewhere,
the universe cannot be considered to be a whole.

(Leibniz, 1996, 151)

For Leibniz, the infinite just is limitlessness; no actual infinities exist. The only
intelligible notion of infinity is that of potential infinity—the transcendence of any
limit.

For witnesses of the other polar extreme, we turn to the ultra-liberals, Cantor and
Zermelo. In a sense, Cantor accepted the conception of the true infinite as pure limit-
lessness. His achievement, for those who believe in it, was to have discovered the rich
‘paradise’ of limits beyond the finite: the realm of transfinite ordinals and cardinals.
Cantor’s belief in the actuality of the transfinite is supported by appeal to the alleged
instability of the potentialist conception, sometimes in theological terms:

the potential infinite is only an auxiliary or relative (or relational) concept, and always indicates
an underlying transfinite without which it can neither be nor be thought.

That an ‘infinite creation’ must be assumed to exist can be proved in many ways . . . One proof
stems from the concept of God. Since God is of the highest perfection one can conclude that
it is possible for Him to create a transfinitum ordinatum. Therefore, . . . we can conclude that
there actually is a created transfinitum.

(Cantor, 1887, 391, 400)

Responding to the suggestion that the actual infinite is unintelligible, ‘that we with
our restricted being are not in a position to actually conceive the infinitely many indi-
viduals . . . belonging to the set . . . in one intuition’, Cantor replies:

But I would like to see that man who, for instance, can form the idea distinctly and precisely
in one intuition of all the unities in the finite number ‘thousand million’, or some even smaller
numbers. No one alive today has this ability. And yet we have the right to acknowledge the

¹³ Thanks to Roy Cook for suggesting these references.
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finite numbers, however great, as objects of discursive human knowledge, and to investigate
their concepts scientifically. We have the same right also with respect to the transfinite numbers.

(Cantor, 1887, 402)

With these remarks, Cantor challenges his opponents to delimit a principled alternat-
ive to strict finitism—a finitism going no further than our actual practical limitations
of intuition and understanding—that does not also sanction the transfinite.¹⁴ Grasp-
ing the notion of a large finite set already requires idealization. What reason is there
to limit the idealization to the arbitrarily large but still finite?

We are invited to answer ‘none’. But if we do, where should we locate the true
infinite—as opposed to the merely transfinite? Recall Cantor’s definition (from (1883,
note 1)): ‘By a ‘‘manifold’’ or ‘‘set’’ I understand any multiplicity which can be thought
of as one, i.e., any aggregate of determinate elements which can be unified into a whole
by some law’. The idea here is that if it is (merely) consistent for some objects to be
a ‘unity’, then it is a unity—there is an actual set that contains just those objects.
This principle underlies Cantor’s entire project. Once we cast off the shackles of
potentialism,onlyconsistency is allowedtoputabrakeontheexhilarating rush beyond.

Almost half a century later, Zermelo (1930) articulates a version of second-order
ZFC with urelements, in pretty much its contemporary form, and he freely discusses
models of the axiomatization. If a model of the theory lacks urelements, then it is iso-
morphic to a rank Vκ in which κ is a strong inaccessible. He proposes (1930, 1233)
an axiom stating the existence of ‘an unbounded sequence’ of such models. Each such
model Vκ has subsets (like κ , the collection of ordinals in the model) which are not
members of the model.¹⁵ However,

[w]hat appears as an ‘ultra-finite non- or super-set’ in one model is, in the succeeding model, a
perfectly good, valid set with both a cardinal number and an ordinal type . . . To the unboun-
ded series of Cantor ordinals there corresponds a similarly unbounded . . . series of essentially
different set-theoretic models. Scientific reactionaries and anti-mathematicians have so eagerly
and lovingly appealed to the ‘ultra-finite antinomies’ in their struggle against set theory. But
these are only apparent ‘contradictions’, and depend solely on confusing set theory itself . . .

with individual models representing it . . . The two polar opposite tendencies of the thinking
spirit, the idea of creative advance and that of collection and completion, ideas which also lie
behind the Kantian ‘antinomies’, find their symbolic reconciliation in the transfinite num-
ber series based on the concept of well-ordering. This series reaches no true completion in its
unrestricted advance, but possesses only relative stopping-points, just those [strong inaccess-
ibles] which separate the higher model types from the lower. Thus the set-theoretic ‘antinom-
ies’, when correctly understood, do not lead to a cramping and mutilation of mathematical
science, but rather to an, as yet, unsurveyable unfolding and enriching of that science.

In present terms, then, Zermelo’s proposal is that the series of models of second-
order ZFC—and so the series of strongly inaccessible cardinals—is itself indefinitely

¹⁴ For an extensive, insightful, and compelling account of Cantor’s views here, see Hallett (1984),
especially §§1.2–1.3.

¹⁵ To get the idea, consider someone, say our friend Hero, whose entire universe is one of these
models (a set that we, from the outside, see as a Vκ ). For Hero, some of (what we see as) subsets
of Vκ , such as κ itself, are indefinitely extensible, non-entities, whatever. But once Hero recognizes
the next model after Vκ , she sees see that those totalities are perfectly good sets.
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extensible. Each strong inaccessible is a Definite collection, but any set of inaccessibles
gives rise to further, larger, strongly inaccessible sets, cardinals, and ordinals. So there
is no set of all such models or all such cardinals.

Zermelo proposed ‘the existence of an unbounded sequence of [inaccessible ranks]
as a new axiom of ‘‘meta-set theory’’.’ In effect, the new principle states that for each
ordinal α, there is a unique inaccessible cardinal κα. This, of course, is what the Rus-
sell conjecture (from Section 10.2 above) would predict, concerning the statement
that the strong inaccessible cardinals are themselves indefinitely extensible.

It is common for set-theorists to use language like Zermelo’s. We are not so bold as
to suggest, for even one minute, that we—or they—do not know what they mean.
Nevertheless, this is an almost literally breathtaking marginalization of the scope of
the Aristotelian infinite. Each inaccessible is an actual infinity; the only potential
infinity is the ‘collection’ of all strong inaccessibles. The ‘process’ of generating more
strong inaccessibles has absolutely no limit, not even an inaccessibly large one. (Of
course, this stretches the notion of ‘process’ even further, well beyond recognition; it
also constitutes an exception to Cantor’s second number principle.)

As we saw, Russell (1906, 154) suggested that the underlying idea is that the actual
infinite extends as far up the iterative hierarchy as it consistently can. Everything infin-
ite in the hierarchy is actually infinite. It is hardly a substantial observation that the
perspective of Cantor and Zermelo is ontologically extravagant! (Boolos, 1998b). But
the real concern is that it is, au fond, unprincipled. ‘Keep going until you run into
contradiction’ is not a principle but a refusal to be disturbed by the lack of one. The
statement is intuitively insufficient for just the same reason that it is an intuitively
insufficient response to the semantic paradoxes to claim simply that it is analytic of
the concept of truth that the Equivalence Scheme (P iff it is true that P) holds in all
cases save where it leads to contradiction. The fact is that one does run into contra-
diction unless a brake is put on proceedings somewhere, and one wants a principled
account of where—something which marks off the exceptions as an independent spe-
cies and provides an explanation of why a treatment which overlooks their distinctive
character could be expected to lead to trouble. Yet the polar opposite, thoroughgo-
ing conservative, Aristotelian view that all infinities are indefinitely extensible seems
far too restrictive—it denies us what most will find no cause to doubt to be perfectly
clear conceptions of the structures distinguished in at least the ‘early’ stages of the
Cantorian transfinite. But then where, and how, is the line to be drawn? Dummett’s
(1963) original claim that arithmetical truth is indefinitely extensible is perhaps con-
sistent with setting the ‘limit’ a bit higher than ω. We might admit computable (or
recursive) countable ordinals, for example. But Dummett’s ‘limit’ must be well short
of ω1, and thus of the real numbers. We presume that most mathematicians have
come to accept at least a few uncountable, Definite infinities—say the collection of
all real-valued functions. But how is this issue to be adjudicated? On what grounds?

To summarize: we are proposing that the Aristotelian infinite is to be understood
as the indefinitely extensible. The two polar views are then respectively that there is
no Definite infinite—the infinite is the indefinitely extensible—and that the Def-
inite infinite extends as far as it may consistently be taken to do. The first is ‘prin-
cipled’ enough—it amounts to an across-the-board repudiation of Cantor’s Second
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Principle: no collection of numbers, sets or ordinals which has no largest member has
a limit: a smallest number, set or ordinal greater than any in the original. Unbridled
liberalism, by contrast, which holds that the only exceptions to the principle are those
dictated by mere consistency, is open to the charge of casuistry. A natural stand-
point—‘natural’ at least in the anthropological sense that it seems to come naturally
to many—is to want something in between: to want to be in position to make prin-
cipled use of Cantor’s second principle, rather than simply reject it, while able to
corral and account for the exceptions.

Hitherto we have understood the Definite simply as that which is not indefinitely
extensible, that which is not limitless. But the parametric role of the concept of limit-
lessness in the characterization of indefinite extensibility means that there is no hope
of progress past the impasse latterly outlined unless we can infuse Definiteness with
some additional independent operational content, sufficient to provide a criterion for
which are the Definite infinite totalities. But how is this to be achieved? As noted,
Dummett concedes for his part that we can consistently think of ω, ω1, etc., as Def-
inite, but argues that this simply begs the question. In (1991, 317–8), he seemed
resigned to settling for a stand-off:

One reason why the philosophy of mathematics appears at present to be becalmed is that we
do not know how to accomplish the task at which Frege so lamentably failed, namely to char-
acterise the domains of the fundamental mathematical theories so as to convey what everyone,
without preconceptions, will acknowledge as a definite conception of the totality in question:
those who believe themselves already to have a firm grasp of such a totality are satisfied with
the available characterizations, while those who are sceptical of claims to have such a grasp
reject them as question-begging or unacceptably vague. An impasse is thus reached, and the
choice degenerates into one between an act of faith and an avowal of disbelief, or even between
expressions of divergent tastes. Moreover, the impasse seems intrinsically impossible of resolu-
tion; for fundamental mathematical theories, such as the theory of the natural numbers or the
theory of real numbers, are precisely those from which we initially derive our conceptions of
different infinite cardinalities, and hence no characterisation of their domains could in prin-
ciple escape the accusation of circularity

But just a couple of years later, Dummett can be found arguing that the burden of
proof lies with his opponent, one who claims that there are Definite infinite totalities:

It might be objected that no contradiction results from taking the real numbers to form a def-
inite totality. There is, however, no ground to suppose that treating an indefinitely extensible
concept as a definite one will always lead to inconsistency; it may merely lead to our supposing
ourselves to have a definite idea when we do not

The totality of natural numbers contains what, from our perspective, are enormous numbers,
and yet others [relative] to which those are minute, and so on indefinitely; do we really have a
grasp of such a totality?

A natural response is to claim that the question has been begged. In classing real number as an
indefinitely extensible concept, we have assumed that any totality of which we can have a def-
inite conception is at most denumerable; in classing natural number as one, we have assumed
that such a totality will be finite. Burden-of-proof controversies are always difficult to resolve;
but, in this instance, it is surely clear that it is the other side that has begged the question.
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It is claiming to be able to convey a conception of the totality of real numbers, without cir-
cularity, to one who does not yet have it . . . [The beginner] does not assume as a principle
that any totality of which it is possible to form a definite conception is at most denumerable:
he merely has as yet no conception of any totality of higher cardinality . . . The fact is that
a concept determining an intrinsically infinite totality—one whose infinity follows from the
concept itself—simply is an indefinitely extensible one.

(Dummett, 1993, 442–3)

Dummett’s stance in this passage is apparently that one should refuse to accept that
the natural numbers or the real numbers—let alone the power set of the continuum,
or totalities associated with inaccessible, or supercompact cardinals—are Definite
until it has been shown, without circularity and without begging any questions, that
Definite conceptions are possible of such totalities.

But Dummett here sets his opponents a task of which he has provided no adequate
characterization. What should count as accomplishing it? We have some idea, per-
haps, what is it to possess a Definite conception of a totality modulo a given assump-
tion about the extent of the ordinals: it is to possess an (adequately clear?) conception
of a totality which is either finite or only up-to-λ extensible for some ordinal λ recog-
nized by that assumption. But how does one show that one has a Definite conception
in the more robust sense now demanded—a conception, in particular, that would let
one justify assumptions about the extent of the ordinals themselves? In general, argu-
ment that a burden of proof lies with an opponent is more persuasive when accom-
panied by the courtesy of an explanation of what exactly is the content of that which
has to be proved, and what will be accepted as amounting to proof of it!¹⁶

Fortunately, there is an alternative to a resolute adherence to either of the polar
views, even without philosophical progress on the main issue: it is to think of modern
arithmetic, analysis, and set theory as exploring the consequences of a working hypo-
thesis that the natural numbers, the real numbers, and other very large, infinite totalit-
ies allow of coherent conception as Definite. We cannot—yet, and maybe never will
be able to— justify these hypotheses from first principles in the Philosophical Theory
of Understanding, but we do not have to. Since Gödel, we have become used to fly-
ing without a safety net. In this way, the mathematician can in good conscience rest
content with the theories in question, even without possessing the justification whose
want the philosopher laments. Pro tem, he may let them stand or fall on the basis of
the fruits they bear, wherever these fruits may lie.

In an insightful article on Cantor, Tait (2000, §4) writes in a similar spirit:

It was Cantor’s construction of the system of transfinite numbers . . . that opened a Pandora’s
box of foundational problems in mathematics, namely, the question of what cardinal numbers
there are. One can, in a way, understand the resistance to Cantor’s ideas on the part of the
mathematical law-and-order-types—in the same way that one can understand the Church
terrorizing the elderly Galileo: in defense of a closed, tidy universe. In that respect, Hilbert’s

¹⁶ Dummett’s claims concerning the burden-of-proof are no doubt consonant with the sometime
verificationist and foundationalist elements in his metaphysics; but one might well indeed despair
of progress, we submit, if the issue cannot be resolved without entry into the chamber of such vexed
debates.
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reference to Cantor’s ‘Paradise’ is ironic: it was the Kroneckers who wanted to stay in Paradise
and it was Cantor who lost it for us—bless him

there are many mathematicians who will accept the Garden of Eden, that is, the theory of
functions as developed in the nineteenth century, but will, if not reject, at least put aside the
theory of transfinite numbers, on the grounds that it is not needed for analysis. Of course,
on such grounds, one might also ask what analysis is needed for, and if the answer is basic
physics, one might then ask what that is needed for. When it comes to putting food in one’s
mouth, the ‘need’ for any real mathematics becomes somewhat tenuous. Cantor started us on
an intellectual journey. One can peel off at any point, but no one should make a virtue of
doing so.

Once again, it seems overly restrictive to follow Dummett and reject any Defin-
ite infinite totalities, or even any uncountable infinite totalities. Cantor’s paradise is
too enticing, and fruitful. It is ad hoc to look for a ‘boundary’ or ‘limit’ interme-
diate between the staunch conservative, ‘law-and-order’ extreme and Cantor’s and
Zermelo’s admission of everything. Any proposed place to stop the expansion of the
actual infinite, say at 2ω, ω1, or the ninth strongly inaccessible, is artificial. Why stop
there? As Tait (ibid., 284) puts it:

Pandora’s box is indeed open: Under what conditions should we admit the extension of a prop-
erty of transfinite numbers to be a set—or equivalently, what transfinite numbers are there?
No answer is final, in the sense that, given any criterion for what counts as a set of numbers,
we can relativize the definition of 
 to sets satisfying that criterion and obtain a class 
′ of
numbers. But there would be no grounds for denying that 
′ is a set: the preceding argu-
ment that 
 is not a set merely transforms in the case of 
′ into a proof that 
′ does not
satisfy the criterion in question. So . . . we can go on. In the foundations of set theory, Plato’s
dialectician, searching for the first principles, will never go out of business.

Suppose, for example, that someone—a less moderate minimalist—tries to define an
ordinal to be a well-ordering-type that is ‘accessible’ (i.e., not strongly inaccessible).
Then she can conclude that all ordinals are accessible, and be done with it. But, in
the spirit of Cantor and Zermelo, it seems better to claim that we now have a reason
to believe in an inaccessible ordinal: the ‘totality’ of our friend’s ordinals is itself an
inaccessible well-ordering type, and thus an inaccessible ordinal.

Nevertheless, we must add the annoying reminder that one must ‘peel off’ Can-
tor’s journey at some point, to use Tait’s metaphor. The laws that drive the jour-
ney—Cantor’s two principles of generation (Section 10.1 above)—cannot be excep-
tionless, on pain of paradox. But where do we stop?

10 .10 NEO-LOGICIST SET THEORY

We now return briefly to a question deferred from Section 10.8—the question
whether the diagnosis of the paradoxes as, in effect, due to a failure to exclude indef-
initely extensible concepts from within the range of legitimate set abstraction is in
any way helpful when it comes to the attempt to develop a reasonably powerful
set-theory along neo-logicist lines. ‘Reasonably powerful’, we shall take it, should
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involve provision of resources sufficient not just for the reconstruction of classical
arithmetic and analysis but for recovery of at least all the less than inaccessibly infin-
ite sets in the standard iterative hierarchy and their standard mathematical treatment.
It would be a significant coup for neo-logicism if such a theory could be based just
on second-order logic and otherwise acceptable abstraction principles—in effect, if
a neo-logicist reconstruction of ZFC could be accomplished whose epistemological
basis was in no interesting way different from that of Frege Arithmetic—arithmetic
based on second-order logic and Hume’s Principle. The purpose of this section is to
indicate why, as we believe, this prospect is no closer.

Specialized to the case where courses-of-values are extensions of concepts—or we
may as well say, sets—Frege’s inconsistent Basic Law V may be represented thus:

(∀F )(∀G)({x : Fx} = {x : Gx} ≡ (∀x)(Fx ≡ Gx)),

a principle that both encapsulates the extensionality of sets and associates every concept
with its own set. Frege’s own reaction to the paradox was to qualify extensionality:
we can still count it, he suggested, as sufficient but not necessary in order for the set
of F ’s to be identical with the set of G’s that F and G be coextensive—rather what
is necessary and sufficient is that F and G hold of exactly the same items save possibly
the respective sets themselves. Frege’s proposal is obviously philosophically hopeless
from the neo-logicist point of view: its formulation involves not just impredicative
quantification on the right hand side of the abstraction over the newly introduced
abstracts—something which is epistemologically controversial, of course, but which
neo-logicism is anyway committed to arguing can be acceptable—but explicit mention
of them using the canonical notation which the abstraction is supposed to explain.
Worse, it lets us identify a pair of objects in circumstances where one has a property
which the other lacks! Worst of all, it is also, as Frege must have rapidly realized,
technically hopeless since inconsistent in any domain of more than one object.¹⁷

If there is to be a progressive neo-logicist modification of Law V, it must come, it
would appear, from tweaking not its extensionality component, but the comprehen-
sion it affords: not all concepts can be permitted to determine (extensionally individu-
ated) sets. In his (1986), George Boolos put forward one naturally and ingeniously
conceived proposal: restrict Law V to concepts which, in keeping with the tradition
of limitation of size, are ‘small’, with the complement of smallness glossed as ‘equin-
umerous with the universe’—a restriction which may be defined using only second-
order logical restrictions.

There are two ways one can write in the restriction. One is to have it as ante-
cedent in a universally quantified conditional whose consequent is Law V less its
initial higher-order quantifiers:

(∀F )(∀G)[(smallF&smallG) → ({x : Fx} = {x : Gx} ≡ (∀x)(Fx ≡ Gx))],

but this has the drawback that one cannot decide whether a set is well-behaved—is
individuated extensionally—before one knows how big the universe is. For example,

¹⁷ See Quine (1955) and Geach (1956). The first to remark on this seems to have been Lesniewski
(see Sobocinski, 1949). A useful diagnostic discussion is Resnik (1980, 211–20).
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even if x 
= x is treated as a small concept as a matter of courtesy, as it were, one
will struggle to distinguish {x : x 
= x} from {x : x ={x : x 
= x}} by the proposed
principle unless one has it independently that the universe consists of more than one
thing.

Hence the direction which Boolos actually took:
New V

(∀F )(∀G)({x : Fx} = {x : Gx} ≡ ((non−smallF & non−smallG) ∨ (∀x)(Fx ≡ Gx)))

The right hand side is still an equivalence relation, since co-extensiveness is a con-
gruence for non-small. Every concept gets an extension, but those bijectable with the
universal concept all get the same extension, whether or not co-extensive. Accord-
ing to New V, x 
= x and x ={x : x 
= x} are assigned distinct extensions, just as they
should be, since they are not co-extensive and cannot both be non-small.

As Boolos shows, New V encompasses a surprising range of standard set-theoretic
axioms. A ‘set’ is the extension of a small concept. Extensionality, Null Set, Pairs,
Choice, Separation (Aussonderung), and Replacement hold on all sets; and Union and
Foundation hold on so-called ‘pure sets’, those built up, hereditarily, from the empty
set. New V provides for a satisfactory theory of the hereditarily finite pure sets and a
foundation for arithmetic. But as Boolos shows, it fails to provide Infinity—to ensure
that there is any well-behaved (i.e. small) infinite set—and, even if we collaterally
assume that there is such a set, New V fails to ensure that it has a well-behaved power
set. So Paradise is postponed.

Shapiro (2003a) launches an investigation of what, in general terms, may be expec-
ted foundationally from abstractions of the general pattern that New V exemplifies:

(∀F )(∀G)({x : Fx} = {x : Gx} ≡ ((badF & badG) ∨ (∀x)(Fx ≡ Gx))).

Obviously the paradoxes entailed by original Law V will now discharge themselves
into proofs that the relevant concepts—and in particular, not-a-member-of-itself, and
(subject to appropriate definitions) ordinal and cardinal —are all bad, thus harm-
lessly marginalizing the concepts concerned.

Very well. So here is the salient question: how would matters turn out if—as would
have been entirely consonant with our reflections in the early part of the preced-
ing section—Boolos had proposed not non-smallness but indefinite extensibility as the
appropriate reading of bad ?—if he had proposed what we may dub Indefinite V :

(∀F )(∀G)({x : Fx} ={x : Gx} ≡ ((indef. extensibleF & indef. extensibleG )

∨ (∀x)(Fx ≡ Gx))).

There is one immediate potential point of improvement over New V. On pain of
the Burali–Forti paradox, ordinal has to be bad under whatever reading. So if bad is
equinumerous with the universe, as with New V, then there is a bijection between the
ordinals and everything that there is, and the universe is consequently well-ordered
(see Shapiro and Weir, 1999). So the existence of a global well-ordering is a con-
sequence of New V. It follows that the non-abstracts are well-ordered, and that con-
travenes Wright’s (1997, pp. 230–3) conservativeness requirement for abstraction
principles, that—roughly—(a priori) acceptable abstractions should not entail new
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results about the old ontology. This problem will not affect Indefinite V, however,
unless it can be shown that all indefinitely extensible concepts are bijectable with each
other. The strongest result we have in the vicinity is Russell’s Conjecture, that every
indefinitely extensible concept sustains an injection of the ordinals, not a bijection.

If indefinite extensibility is a matter of ‘size’—that is, if any collection equinumer-
ous to a sub-collection of a Definite collection is itself Definite—then Separation
(Ausserondurung) and Replacement seem to follow from Indefinite V. If we grant that
finite concepts are Definite, we get Null Set and Pairs. If we restrict quantifiers to pure
sets, Foundation follows, and perhaps Choice is close to a truth of logic. Nevertheless,
there is cause to doubt the suitability of Indefinite V for the neo-logicist purpose. For
one thing, it is not clear that any purely logical characterization of indefinite extens-
ibility can be given. As the notion has been explained here, indefinite extensibility
proper stands opposed to up-to-λ extensibility and a characterization of the latter will
naturally demand, over and above the resources of higher-order logic, the ideology of
the theory of the ordinals (which would activate an objection along the lines of Clark
(2000), discussed at the close of Section 10.8 above). In this respect, then, Indefinite
V, at least on the characterization of indefinite extensibility offered here, marks a step
back from New V. (We shall return to this question in Section 10.13.)

Even if that problem can somehow be surmounted, however, the most serious fore-
seeable difficulty remains, as in the case of New V, with comprehension and, in the
first instance, with Infinity. New V had the problem that, unless it is somehow inde-
pendently given that the universe is more than countable, any infinite concept may
consistently be taken to be bad and so not at the service of the abstraction of a well-
behaved infinite set. Indefinite V looks certain to be encumbered with an exactly ana-
logous problem: unless it is somehow independently given that some infinite concept
is Definite, any infinite concept may consistently be taken to be bad, that is: indefin-
itely extensible, and so, again, not at the service of the abstraction of a well-behaved
infinite set. But that is the issue about the prospects for whose resolution we just, in
the previous section, concluded a pessimistic discussion. The idea that a strictly neo-
logicist construction of a decently strong set-theory might proceed via second-order
logic and Indefinite V comes, in effect, to the thought not merely that Dummett’s
Aristotelianism might be refuted using just those materials but more, that any posi-
tion could be similarly refuted which—from a classical standpoint—places indefin-
ite extensibility anywhere short of the inaccessible.

There is a general problem of formulating a restriction of Law V which is both
consistent and strong enough to develop a theory as strong as Zermelo–Fraenkel set
theory (perhaps together with other abstraction principles). As with other attempts
to develop a consistent (or even dialetheic) ‘naive’ set theory, that is non-trivial and
sufficiently powerful, we have to add analogues of certain of the ZF axioms explicitly.
In the case of Indefinite V, we seem to require an explicit axiom that there is a Definite
infinite concept, to get Infinity. Similarly, we have to explicitly add an axiom that if a
concept of sets is Definite, then so is its union and powerset.¹⁸ None of these follow
from the general characterization of indefinite extensibility.

¹⁸ In a sense, this is the moral of Shapiro (2003a).
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10.11 QUANTIFYING OVER INDEFINITELY EXTENSIBLE
TOTALITIES

We at last directly broach the topic of this volume. The question, simply, is whether
it is ever appropriate or intelligible to speak of all of the items that fall under a given
indefinitely extensible concept. Can we talk about all ordinals, or all cardinals, or
all sets? The discussion for this and the next section will be organized through three
closely related issues, focusing respectively on whether unrestricted quantification
over the instances of an indefinitely extensible concept is intelligible, whether it is
legitimate, and how—if it is to be both intelligible and legitimate—it requires to be
understood.

There can hardly be any question about intelligibility from the extreme liberal
point of view of Cantor and Zermelo (assuming that the viewpoint itself is intelli-
gible, of course). If each particular transfinite cardinal, ordinal, and inaccessible rank,
exists as an actual infinity, then they all do. Or so it would seem. The talk of the
‘potential’ infinity of the transfinite numbers (a la Cantor) or the inaccessible ranks
(a la Zermelo) is just a picturesque way of saying that there is no set of all such num-
bers or ranks. But they do all actually exist, even if there is no set of them all and, it
seems, we have just talked about them—all of them. Just in the very act of calling
them indefinitely extensible, we somehow quantify over all of them, don’t we? What
is the problem?

Extreme conservatism, it seems, must surely grant intelligibility too, albeit for quite
different reasons. Dummett holds that the natural numbers and certainly the real
numbers are indefinitely extensible. Someone who agrees with him but holds that we
cannot legitimately have quantifiers ranging over any indefinitely extensible totality,
would have to conclude that we can have no theory of arithmetic or analysis involving
quantification over all the natural numbers, or all the reals—so no worthwhile arith-
metic or analysis at all. That, of course, is not Dummett’s view. So he implicitly grants
that one can intelligibly quantify over at least the natural numbers and the real num-
bers—so over at least those indefinitely extensible totalities. Dummett’s view has to
be that arithmetic and analysis intelligibly and legitimately quantify over indefinitely
extensible totalities.

The picture is more complicated, however. In a well-known passage in the last
chapter of his (1991) Dummett suggests that Frege’s major ‘mistake’—what doomed
him to Russell’s paradox—consisted in ‘his supposing there to be a totality contain-
ing the extension of every concept defined over it; more generally [the mistake] lay in
his not having the glimmering of a suspicion of the existence of indefinitely extens-
ible concepts’ (Dummett, 1991, 317). So now a reader might take it that Dummett
thinks that there are at least some indefinitely extensible totalities over which one may
not quantify. At least, she might draw that conclusion if she is also mindful of the
many passages in Dummett’s writings in which he apparently endorses the idea that
objectual quantification, if it is to be determinate in sense, requires the antecedent
specification of a domain, i.e. a set of objects, over which the bound variables are to
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range.¹⁹ If quantification of determinate sense requires antecedent specification of a
domain; and if a domain is a set; and if indefinitely extensible concepts do not determ-
ine sets, then the reader will need no help to see what follows. But then what to make
of the apparent concession that the quantifiers in arithmetic and analysis are in good
standing? Is it that some legitimate quantification doesn’t require a domain? Or that
some indefinitely extensible concepts do determine domains? Or what? We’ll return
to this.

Boolos (1993, 222) takes it that the foregoing is Dummett’s line of argument:

it would seem that [Dummett] does think that there has to be a—what to call it—totality?
collection? domain? containing all of the things we take ourselves at any one time to be talking
about. He would seem to believe that whenever there are some things under discussion, being
talked about, or being quantified over, for example some or all of the ordinals, there is a set-
like item, a ‘totality’, to which they all belong. That is, he supposes that whenever we quantify,
we quantify not over all the (ordinals or) sets that exist but only over some of them . . .

I suspect that Dummett would agree . . . that whenever we use quantifiers, there must be some
domain, some totality of objects, over which our variables of quantification range; so if we
take ourselves to be quantifying over all classes, then we must assume that there is a totality
or domain containing all classes. And it may be thought that it is part of what we mean by
‘quantify over’ that there must be some such domain. Certain textbooks may reinforce this
impression by telling us that to specify an interpretation we must first specify a non-empty
set (class, collection, totality), the universe of discourse (or domain) over which our variables
range (p. 223)

In arguing for the legitimacy of unrestricted quantification, Richard Cartwright
(1994, 7) dubs this presupposition the ‘All-in-One Principle’. It is of course a staple
of contemporary model theory that each interpretation of a formal language contains
a set to serve as a domain for the variables. In effect, Cartwright argues that this is
only an artifact of the standard kind of model theory we use today, and not a regulat-
ive ideal for semantics generally. In present terms, the only conclusion to draw is that
quantification over an indefinite extensible ‘totality’ is not covered by model theory.
Boolos agrees:

If we look at the presentation of class theory found in Kelley’s General Topology (1955), we
find that the theory presented there is a full-fledged theory of classes in which variables range
over (pure) classes and in which ‘set’ is defined to mean ‘member of a class’ . . . Kelley’s axiom
of extent (extensionality) reads, ‘For each x and y it is true that x = y if and only if for each
z, z ∈ x when and only when z ∈ y.’ . . . Now, it seems to me that insofar as we have a grip
at all on the use of the phrase ‘quantify over’, we have to say that Kelley, in laying down his
axiom of extent, is quantifying over all classes (aggregates, collections). I take it that when

¹⁹ Dummett (1981, 567): ‘the one lesson of the set-theoretic paradoxes which seems quite
certain is that we cannot interpret individual variables in Frege’s way, as ranging simultaneously
over the totality of all objects which could meaningfully be referred to or quantified over. That is
. . . why modern explanations of the semantics of first-order predicate calculus always require that a
domain be specified for the individual variables . . . the one thing we may confidently say hardly any
modern logician believes in is wholly unrestricted quantification. All modern logicians are agreed
that, in order to specify an interpretation of any sentence or formula containing bound variables, it
is necessary expressly to stipulate what the range of the variables is to be.’
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Kelley says ‘each’, he means it. How else are we to understand the axiom of extent . . . except
as saying that any classes x and y are identical iff x and y have the same members?

Why should we for a moment think that therefore there must be a collection of all the things
that Kelley was using his variables to range over? If one checks the exposition of General Topo-
logy, at any rate, one will find no suggestion at all that there must exist some sort of super-class,
containing all of the classes that the theory talks about . . . [W]e can simply say: Our variables
range over all classes

Or: over all (‘absolutely’, if you insist, all) objects there (‘really’) are. If Frege thought his vari-
ables could so range, as of course he did, he was not in error. (pp. 223–4)

Cantor’s and Zermelo’s texts also seem to presuppose that quantification over
indefinitely extensible ‘totalities’: transfinite numbers or inaccessible ranks, is fully
intelligible and fully legitimate. Consider, for example, the language in which Zer-
melo describes his program and in which his theorems are proved. What are we to
make of his talk of ‘models’, ‘normal domains’ (i.e., inaccessible ranks), ‘order-types’,
and the like? As noted, he proposed ‘the existence of an unbounded sequence of [inac-
cessible ranks] as a new axiom of ‘‘meta-set theory’’.’ Again, the new principle states
that for each ordinal α, there is a unique inaccessible cardinal κα. How are we sup-
posed to interpret that except as talking about all ordinals, and all inaccessible ranks?
Zermelo’s axiom is not meant as an assertion about some particular set-sized model
but is surely intended to be taken at face value. The words in the meta-axiom are used,
and not merely mentioned in a statement of satisfaction.²⁰

Characteristically, set-theorists are not content merely to quantify in the cases in
point. Commonly, they introduce linguistic items that at least look like singular
terms that stand for indefinitely extensible ‘totalities’. Cantor himself used ‘
’ for the
transfinite numbers; nowadays this symbol is used for (the von Neumann) ordinals.
And ‘V’ is the accepted term for the pure iterative hierarchy. This much, to be sure,
need not be particularly problematic. Typical uses of these literary devices are eas-
ily paraphrased away, in terms of predicates. For example, ‘α ∈ 
’ is just shorthand
for ‘α is an ordinal’. The axiom V=L is just the statement that every set is construct-
ible. One can reject the All-in-One principle, allow quantification over indefinitely
extensible totalities, and still traffic in such apparent terms, provided they are only
apparent—provided, as seems to be so, there is no pressing reason why expressions
of the kind just noted should be conceived as standing for ‘Ones’.

Boolos and Cartwright seem to be insouciant about rejecting the All-in-One prin-
ciple. However, as noted in Shapiro (2003), things are far from comfortable for a free-
wheeling acceptance of indefinitely extensible quantification. Above, we defined an

²⁰ Of course, we can profitably ask about the set-theoretic models of Zermelo’s meta-axiom. A
standard model of the meta-axiom would be a rank Vλ for which λ is a fixed-point in the series of
inaccessibles: λ = κλ. These fixed points are next (after ‘inaccessible’) in the series of so-called ‘small
large cardinals’. Zermelo’s meta-axiom does not entail the existence of such an inaccessible. The
natural next maneuver would be to postulate another axiom asserting the existence of an unbounded
sequence of such fixed points. This would be a meta-meta-axiom, stating that the fixed points in
question are themselves indefinitely extensible. Then we can inquire into the models of this axiom.
The interplay between using principles like this and then studying their models (mentioning the
principles) is rich indeed (see Drake, 1974).
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‘ordinal’ to be the order-type of a well-ordering. The problem is that the very defin-
ition of a well-ordering seems, like the brooms of the Sorcerer’s Apprentice, to give
rise to ever more well-orderings. It is, of course, routine to show that the relation of
‘less than’ on ordinals (or membership on the von Neumann ordinals) is itself a well-
ordering: any sub-totality has a least element. But, of course, there is no order-type
of the ordinals—no All-in-One in this case—on pain of contradiction. Yet is easy
to define a two-place predicate that apparently characterizes a well-ordering that is
strictly longer than 
: Let α and β be ordinals. Say that α ≺1 β if α 
= 0 and either
α < β or β = 0. That is, we make the order longer just by putting 0 at the ‘end’. A
routine trick. And why stop there? We can also define a relation that intuitively char-
acterizes a well-ordering twice as long as 
: α ≺2 β if either α is a limit ordinal and
β is a successor ordinal, or α and β are both limits and α < β, or α and β are both
successors and α < β. In ≺2, the limit ordinals come before the successors, and the
limit ordinals and the successor ordinals are each isomorphic to the ordinals (and are
thus each indefinitely extensible), according to ZFC anyway. Finally, here is a well-
order that is 
 times as long as 
 (if you can pardon the expression): let <x, y> be
the ordered pair of x and y. If α,β, γ , δ are ordinals, then let <α,β> ≺3 <γ ,δ> if
either α < γ or both α = γ and β < δ.

Notice that the constructions here are somewhat independent of how ‘many’
ordinals one thinks there are. If one goes for a strict Aristotelian account, and main-
tains that all Definite totalities are finite, then 
, the property, totality, or whatever,
of all ordinals will be what the set-theorist calls ‘ω’. The above predicate character-
izing ≺1 would thus define ω + 1, which, for the strict Aristotelian, is longer than
the ordinals. One can go on to define 2ω, ωω, etc. (although the use of limit ordin-
als will not be available). Similarly, if someone allows the existence of all but only
classically countable ordinals, then 
 will be what the classicist calls ‘ω1’, the first
uncountable ordinal, and it will then be routine to write predicates that character-
ize well-orderings corresponding to 2ω1, ω2

1, etc. In short, whether one is a staunch
conservative like Leibniz or Dummett, an ultra liberal like Cantor and Zermelo, or
something in between, one will still have his special 
, the property of being an
ordinal. This ‘totality’—the ordinals themselves—will be well ordered, and one can
seemingly define well-orderings longer than that.

On the surface, it is legitimate to do transfinite recursions and inductions over
ordinals and, presumably, only over ordinals. Nevertheless, set theorists occasionally
seem to invoke transfinite recursions and inductions whose ‘length’ is at least that of
≺2, i.e., twice as long as the well-ordering of all ordinals. For example, the concept L
of being a constructible set is defined by transfinite recursion over all ordinals (i.e., of
length 
). But set theorists go on to do transfinite recursions on L, which are also of
length 
. So, in effect, we have a transfinite recursion of length 2
. But over what
objects?

The following appears in a survey article on mouse theory:²¹

²¹ Thanks to Tim Bays for drawing our attention to some of the relevant literature here. Mouse
theory is a very technical branch of abstract set theory. As just noted, ‘L’ is the constructible
hierarchy, used in Gödel’s proof of the consistency of the axiom of choice and the generalized
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We begin by constructing L level by level. The first ω levels are exactly the hereditarily finite
sets, the next ωL

1 levels are exactly the sets that are hereditarily countable in L, and so on. Now
we ask ourselves what comes next.

(Schimmerling, 2001, 486–7)

Of course, this talk of ‘construction’ is, as usual, only a metaphor. What is literally
true is that we define the constructible sets (L) by transfinite recursion over all ordin-
als. And proofs about L invoke transfinite induction over all ordinals. This much
is captured in ordinary mathematical language with unrestricted quantification over
ordinals. But what is the literal meaning of Schimmerling’s question, ‘what comes
next’? What can possibly come after the ordinals? He continues:

For although we have climbed up to the minimal transitive proper class model of ZFC, found-
ational considerations that fall under the category of large cardinals have tempted us to adopt
certain theories that extend ZFC. These extensions are not true in L, for they imply that there
exists a non-trivial elementary embedding j:L→L, which is known to fail in L. So how do we
continue or revise the construction in a way that buys us the existence of such an embedding?
One naíve idea is to continue the construction past all the ordinals and throw in the proper
class j at stage 
 or beyond, but this approach leads to some obvious metamathematical prob-
lems that we find annoying.

What was that?—We are to go past all of the ordinals? Metaphor or not, one fears a
lapse into nonsense. If there is a ‘past all the ordinals’ to ‘go on to’, we have not gone
through all of the ordinals—through all of the well-ordering types. With ‘construc-
tions’ like these what we surely have gone beyond are the ‘limits of thought’!

Typically, the way around the ‘annoying’ meta-mathematical problems to
which Schimmerling refers is to replace the long transfinite recursions with cod-
ings. That is, the set theorist works hard to simulate the long transfinite recur-
sion within ordinary, first-order set theory. Nevertheless, it seems to us that this
grand transfinite recursion is coherent as it stands, or at least as coherent as any-
thing else in set theory. If we can indeed legitimately and intelligibly talk about
all ordinals, then, as we saw above, it is straightforward to define a predicate
that characterizes a relation of order-type 2
. The pairs of ordinals that satisfy
this predicate also satisfy the second-order predicate of being a well-ordering. So
why can’t we do transfinite recursions and inductions over them? Using vari-
ables or schematic letters, we can even do a transfinite recursion along the order-
type ≺3 above, of length 
2. And of course, this is not as far as we can go.
There is a predicate corresponding to the ‘order-type’ of any polynomial involving

, essentially reproducing what Cantor proposed with ω; 

 is not out of
reach.

Of course, one must be careful how things are put, to avoid the obvious contra-
diction. If we say that the recursion has length 2
, as in our informal gloss, then we

continuum hypothesis. The notion is defined by transfinite recursion over ordinals: L0 is the empty
set; for each ordinal α, Lα+1 is the set consisting of Lα together with all sets definable in terms of
Lα . If λ is a limit ordinal, then Lλ is the union of all Lβ , with β < λ. A set x is constructible if there
is an ordinal α such that x ∈ Lα . See any text for set theory, such as the excellent Jech (2002), for
details.
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are saying that there is a ‘past all the ordinals’. As noted, one can define a two-place
predicate in the language of (first-order) set theory whose extent is the putative well-
ordering in question (so to speak). The recursion and induction is done over that
predicate, or over the ordinals (or pairs of ordinals) that satisfy the predicate. The
‘pain’ of contradiction comes, of course, if we think of this predicate as defining an
order-type, a ‘length’, or any other sort of all-in-one. So the talk of the ‘length’ of the
procedure, (2
, 
2, etc.), is only a metaphor.²² The legitimacy of the technique is a
working hypothesis.

At this point, one might protest, paraphrasing Boolos (1998a, 35):

Wait a minute! I thought that set theory was supposed to include a theory about all, ‘abso-
lutely’ all, the well-orderings and transfinite recursions that there are and that ‘well-ordering-
type’ was synonymous with (or at least coextensive with or isomorphic to) ‘ordinal’.

Well, indeed. But the problem, to stress, is that predicates corresponding to these
‘order-types’ are definable as soon as we make the assumption that we can talk
about—have bound variables ranging over—all ordinals.

Once again, the defender of absolutely unrestricted quantification (the ‘absolutist’)
can—and presumably must—claim that there are no ‘objects’—no ordinals—that
correspond to these explicitly definable long well-ordering predicates. Just as indef-
initely extensible concepts determine no ‘Ones’, so these predicates simply have no
associated order-types. The grounds for the Boolosian rejection of proper classes,
endorsed earlier, must also preclude order-types 
, 2
, 
2, and the like, provided
that these are construed as objects.

Shapiro (2003) tentatively proposes what is, admittedly, a thin straw for the abso-
lutist to grasp. The key observation is that the definition of a property (or predicate)
being a well-order is second-order (see Shapiro, 1991, §5.1.3). So the absolutist can
avoid the issue by demurring from using second-order variables in theories whose
first-order variables range over an indefinitely extensible totality. Then the notion of
a ‘class-sized well-ordering’ cannot even be formulated—and there will be no for-
mula that expresses the seemingly patent facts that the ordinals are well-ordered, and
that the formula that expresses 2
 defines a well-ordering. Shapiro’s proposal would
block the construction of mice in the unrestricted theory of the entire range of sets,
ordinals, and models (at least if the text is taken literally).

²² An advocate of the Zermelo program can, of course, think of the definition of mice as
restricted to (or as ‘taking place within’) a fixed arbitrary model M of set theory. The ‘totality’
of von Neumann ordinals in M is, of course, not a member of M , but the ordinals in M do
constitute a set, and thus a von Neumann ordinal, in all later models in the hierarchy (thanks to the
‘meta-axiom’ above asserting that the models of set theory are themselves indefinitely extensible).
In effect, we rely on later models in the series to sanction the long transfinite recursions in M
(see note 15 above). We saw above, however, that Zermelo’s own text has variables that range
over all models of set theory, and thus, all ordinals whatsoever. That text is used to describe the
hierarchy of models and to prove things about it. We suggest, at least tentatively, that it is legitimate
to develop mouse theory on the entire hierarchy. One can write down a formula representing the
definition of mice-in-the-hierarchy, and we can do the transfinite induction needed to show that it
works.
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It is a thin straw, though. Even putting to one side the (in our view) compelling
arguments in favor of second-order languages in Shapiro (1991), Boolos’s later writ-
ings (e.g., 1984, 1985, 1985a), and elsewhere, the general point remains that denying
the existence of the long well-orderings 
, 2
, 
2 (as objects) merely seems like an
ad hoc maneuver. As noted, one can define the long well-orderings (if that is what
they are) as soon as the notion of ‘ordinal’ has been defined.

Boolos himself (e.g., 1984, 1985, 1985a) provides another way out. We can think
of the formulas defining the long well-orderings as pluralities. There is no ‘thing’ that
corresponds to, say, 2
, but we can talk about the ordinals, in the plural, that sat-
isfy the relevant defining formula. We do the transfinite recursion over them (see also
Agustín Rayo’s contribution to this volume).

But what if we just let them be? What, exactly, is wrong with the long transfinite
recursions and inductions? Why can’t we just introduce such ‘ordinals’, or names for
them, by suitably expanding our ontology? We just introduce a singular term, like
‘
’, that is to denote the order-type of all ordinals, without intending to paraphrase
it away. This gives rise to another singular term for 2
, another for 
2, and one for


, and off we go. In doing so, we are just giving genuine names to well-orderings
that we are capable of understanding and using, and treating those well-orderings
as objects. The resulting theory is consistent if standard set theory together with an
axiom asserting the existence of an inaccessible cardinal is. The envisioned theory is
thus coherent, and, moreover, it seems to be true when 
 is interpreted as the order-
type of the ordinals of ordinary set theory. So what’s wrong?

Well, again, simply that we have contradicted the understanding of 
 with which
the process starts. 
 is the series of all ordinals—all possible order-types. Not all
the ordinals except those that come after, the ‘proper’ ordinals, or higher-ordinals,
or whatever. All of them. There may be a consistent formal theory, but it does not
sustain the intended interpretation except at the cost of informal paradox—the same
old Burali–Forti paradox—and for good measure, some additional variations on the
theme—that was there all along.

Let’s stop running in circles and step back. So far as we can see, there are exactly five
possible positions (at least, for anyone inclined to accept ordinals as objects; nomin-
alism is another response, but cannot be considered in proper detail here).²³ They are
as follows:

²³ In his contribution to this volume, Geoffrey Hellman argues that considerations like those
broached here point toward nominalism. For Hellman, set theory is understood in terms of what
collections, and what well-orderings, are logically possible. For formal details, see Hellman (1989)
(and Parsons, 1977). For the usual reasons, there is no largest possible well-ordering: any possible
well-ordering can be extended. By refusing to reify possible collections and possible well-orderings,
the nominalist avoids temptation, or is at least less tempted, to postulate a (possible) order-type of
all possible well-orderings. The situation with constructions like that of mice shows that we can
study the properties of a given well-ordering by considering even longer well-orderings. No problem
with that. It is analogous to limiting the construction to a single model in Zermelo’s hierarchy. In
Hellman’s system, the definition of long well-orderings—over all possible models—is blocked by a
formation rule that does not allow free second-order variables to occur within the scope of a modal
operator. This restriction is the analogue of the above proposal, from Shapiro (2003), of not allowing
bound higher-order variables when the first-order variables range over an indefinitely extensible
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() Reject the intelligibility/legitimacy of quantification over all ordinals. In this
case, the troublesome predicates, like ‘≺1’, ‘≺2’, ‘≺3’, cannot be defined, and
so the issue of whether they have order-types does not get off the ground.
Cost: we cannot express what seem to be not only perfectly intelligible but true
thoughts about the ordinals in general. Indeed, presumably we cannot even use
plural expressions like ‘the ordinals’ (for if we could refer to them—to them
all!—what could possibly prevent legitimate quantification?)

() Allow the intelligibility/legitimacy of quantification over all ordinals but deny
oneself second-order resources (Shapiro, 2003). The predicates ‘≺1’, ‘≺2’, ‘≺3’,
can be defined, but we cannot state, much less prove, that they are well-
orderings. Cost: abrogation of what are arguably perfectly sound and legitimate
expressive resources.

() Allow the unrestricted quantifications and the definitions of the troublesome
predicates, but deny that they are associated with ordinals (order-types). Cost:
transfinite inductions and recursions of the relevant ‘lengths’ then come into
question (at least on the assumption that transfinite recursions and inductions
require an associated order-type) which are part of expert practice and seemingly
quite intelligible. Perhaps more importantly, the resulting stance is open to the
objection, stressed in Section 10.9, that it amounts to an unprincipled/casuistic
restriction on principles (that every kind of well-ordered series has an order-
type, that every initial segment of the ordinals has a limit) without which we
don’t get the ordinals, liberally conceived, to fly the first place.

() Allow the quantification and the predicates, allow the associated order-types,
but deny that they are ordinals as originally understood—rather, they are
‘higher-order’ ordinals, ‘proper’ ordinals, ‘super-ordinals’, or whatever. Cost:
Hypocrisy. Recall that 
 was supposed to encompass the ordinals in a maxim-
ally general sense of ordinal, common to all types of well-orderings. Also, the
option is unstable. If we are now saying that 
 does not encompass a maximally
general sense of ordinal, and that we need to distinguish (how many?) success-
ive orders of ordinals, then just consider all of these, and the dialectical situation
repeats itself, only without this fourth option.

() Allow the quantification and the predicates, allow the associated order-types,
allow that they are ordinals as originally understood, . . . and just accept that
there are ordinals that come later than all the ordinals. Cost: none—unless one
demurs from the acceptance of contradiction.

Frankly, we do not see a satisfying position here. It seems that every one of the
available theoretical options has difficulties which would be justly treated as decisive
against it, were it not that the others fare no better. Such situations are not unpreced-
ented in philosophy, but this one seems particularly opaque and frustrating. Since
it is impossible to advance any particular response with any degree of conviction,
any unqualified profession that unrestricted quantification—or quantification over

‘totality’. Perhaps the maneuver is less ad hoc here, since Hellman’s restriction is independently
motivated.
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indefinitely extensible totalities—is perfectly intelligible and legitimate seems to us
misplaced. Unrestricted quantification is one component in the aporetic situation lat-
terly reviewed. Like the others, it merits watchfulness.

10 .12 DUMMETT ’S ‘NEW ARGUMENT ’ AGAINST
CLASSICAL QUANTIFICATION

We return to the question of how Dummett’s attitude to indefinitely extensible quan-
tification is to be interpreted. As noted, it cannot plausibly be that quantification over
indefinitely extensible totalities is simply impermissible, or unintelligible since, as we
have several times had cause to observe, Dummett regards even the natural numbers
as indefinitely extensible and is nevertheless quite content to endorse intuitionistic
arithmetic (which of course treats exactly the same class of sentences as meaningful as
classical arithmetic does). In fact, however, there is a reasonably clear position to be
extracted from Dummett’s remarks (and which is pretty much explicit in his (1994)).
The view can be summarized in two claims: first, the Aristotelian claim that infinity
is always merely potential (though perhaps with some modest degree of relaxation to
allow at least some Definite countably infinite totalities); second, the claim that where
quantification over an indefinitely extensible totality takes place, it cannot legitim-
ately be understood classically. The relevant aspect of the classical understanding of
the quantifiers is that they are in effect conceived as truth-functions, logical product
and sum, issuing in statements which are determinate in truth value whenever all their
instances are. In Dummett’s view, the appropriateness of such a conception of the
meaning of quantified statements lapses as soon as their range becomes indefinitely
extensible. In such cases, we do better to work with the broad model of the content
of quantified statements proposed by the intuitionists—in effect, the inferentialist
model pioneered in the work of Gentzen and refined by Prawitz—against a back-
ground in which the principle of bivalence is dropped.

Here we shall have nothing more to say about the generally intuitionistic direction
which Dummett proposes. Our concern is purely with the first step towards it, the
claim that classical quantification misconstrues the legitimate content of quantific-
ation where indefinitely extensible totalities are concerned. The matter has received
much discussion, and requires more, but we shall here attempt no more than to
exclude a natural line of misinterpretation and to offer a suggestion about how, we
believe, Dummett’s position may be better understood.

Consider the following set-up. We construct a long strip of paper—perhaps as
much as twenty meters in length—whose color starts out scarlet at one end but then
fades very gradually and seemingly continuously to a yellowish-orange at the other. It
is a Sorites strip, if you will. On it are inscribed a series of randomly selected decimal
numerals, in Times 10 point font, as close together as they can be consistently with
their ready distinguishability one from the next. Consider the statement (A) ‘All the
numerals on a red background denote multiples of 7.’ Each instance of (A) is decid-
able and determinate in truth-value. But that is, plausibly, totally insufficient for the
conclusion that (A) itself has to be determinate in truth-value. It is insufficient for
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the obvious reason that it is not fully determinate which the instances are. The phrase
‘numeral on a red background’ is vague.

That this, or something like it, might approximate Dummett’s thought is encour-
aged by his apparent adherence to the All-in-One principle, at least for quantification
as classically understood. To require, it might be suggested, that quantification have
the back-drop of a specified domain—a specified set of objects to constitute the range
of the quantifiers—is tantamount to the requirement that it be Definite to what pop-
ulation of objects the quantified statements in question are to be accountable. If no
domain is specified, we run the risk of indeterminacy in the range of admissible wit-
nesses, and thereby indeterminacy in the truth-conditions of what we say. This is
what happens in the case of the Sorites strip. ‘Numeral on a red background’ exactly
fails to specify any determinate set of inscribed numerals, with indeterminacy in the
truth-conditions of quantifications over them the immediate result.

Dummett does, it is true, sometimes speak of indefinite extensibility as a kind of
vagueness (e.g., Dummett, 1963, passim). But the foregoing rather simple-minded
proposal had better not be the intended argument. What is vague in the Sorites strip
is where the numerals-on-red stop and the others begin. The quantified statement
(A) is vague because there is no sharp cut-off between the numerals that satisfy its
antecedent and those which do not. But nothing like that is true of the ordinals, to
stay with our paradigm, however liberal or conservative one may be—not unless we
really do think we can attach a sense to the idea of ‘going past’ all the ordinals. Even
then the analogy limps, since there will be a determinate first element of whatever
other sort of thing we are pleased to postulate—a first ‘proper’ ordinal, or whatever.
The key component in the analogy of the Sorites strip is that the numerals on red are
indeterminate in extent within a wider population of numerals on the strip. No coun-
terpart of that features in anyone’s conception of the ordinals (even someone tempted
by the prospect of ‘proper’ ordinals)—and in particular not in Dummett’s.

Is that feature, though—indeterminacy of extent within a wider popula-
tion—essential to the intended point? Dummett (1991, p. 316–17) writes:

Better than describing the intuitive concept of ordinal number as having a hazy extension is
to describe it as having an increasing sequence of extensions: what is hazy is the length of the
sequence, which vanishes in the indiscernible distance.

It is true that it is indeterminate how far the numerals-on-red extend within the
Sorites strip of numerals, and that that is not the way to describe the indeterminacy of
the extent of the ordinals—there is no ‘larger strip’ on which they peter out. But still,
it may be suggested, they are indeterminate in extent. Hence the stand-off between
conservative and liberal positions. It is conceptually open whether to regard them as
confined to the finite, or the recursive, or the countable, or the accessible, or . . . , or
whether we let them rip, stopping only when the apparatus buckles on Burali–Forti.
And if this matter is conceptually open, then there is still going to be potential inde-
terminacy in the truth-conditions of quantifications over all ordinals, when conceived
classically as functions from aggregates of truth-values to truth-values. There will be
such indeterminacy because it is indeterminate what goes into the argument pool.
All we can legitimately say is that such statements may be counted true provided it
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is guaranteed they will hold no matter how far the series is legitimately taken to extend ;
and false if exceptions are guaranteed under the same hypothesis.

Yet this interpretation too—however much his own remarks may encourage
it—cannot be true to Dummett’s intent. It cannot be true to his intent because he
himself has a position on the issue in question—the position of Aristotelianism (or
something close to it). The train of thought outlined is at best impressive for a the-
orist who lacks a position, who views the extent of the ordinals as open. A theorist
who, for good reasons or bad, takes the view that Cantor’s second principle fails for
the totality of ordinals of such-and-such a kind, has no motive to sympathize with
the argument, even though he may allow that the totality in question is indefinitely
extensible. So the connection we seek has still to be made out.

We do not suggest that Dummett is confused on the matter. But we do suggest that
the comparison between indefinite extensibility and forms of vagueness, or indeterm-
inacy, is badly conceived. More accurately, the comparison is misleading when taken
as an invitation to think about the alleged counter-classical implications of indefinite
extensibility on the model of (what would be widely accepted as) the counter-classical
implications of (one or another form of ) vagueness. The right comparison is only in
the effect: both indefinite extensibility and vagueness may be held to call into ques-
tion the validity of the principle of bivalence for a relevant range of statements. So
the question still remains: why (might it be supposed that) indefinite extensibility has
that effect?

We have no answer to offer which effectively clarifies whether Dummett is right or
wrong, but we think we know where to look. The key to understanding his argument
has to be found in the implicit comparison between the operation of set-formation
and the operation of universal quantification (for example) as classically conceived.
Think of a set as the value of a many-one function that takes exactly the elements
of the set as argument. If the objects of some kind are indefinitely extensible, the
set-function cannot generate a set of them all—for any value it can give will imme-
diately be at the service of the definition of a new object of the appropriate kind,
demonstrably excluded from the set in question. Now think of quantification in sim-
ilar terms, as a many-one function that yields a truth-value when given a range of
instances as argument. If the elements which the instances concern are indefinitely
extensible, then no application of the function can embrace them all—for any col-
lection of the instances to which it is applied will immediately be at the service of the
definition of a new instance, so far unreckoned with.

The crucial thought is thus that a function requires a stable range of arguments if
it is to take a determinate value. Any vagueness, then, in the extent of an indefinitely
extensible concept is not really the point. The operation of classical quantification on
indefinitely extensible totalities is frustrated not because it is vague what the argu-
ments are, but because any attempt to specify them subserves the construction of a
new case, potentially generating a new value. The reason why quantification, classic-
ally conceived, requires a domain—a Definite totality— to operate over is just that.

As stated, our purpose here is only to try to locate the real issue at stake
in Dummett’s ‘new argument’, not to take sides. It certainly is robustly part of
the classical, model-theoretic semantics of quantification to see it as a function,
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standardly set-theoretically conceived, whose argument- and value-ranges are accord-
ingly likewise sets. Since indefinitely extensible concepts do not determine sets, that
much of classical semantics is certainly in jeopardy in the present context (as noted
already, in Section 10.11 above). But the question whether quantification over the
instances of such concepts may legitimately be viewed nonetheless as determinate is
still open. Whether the last line of argument proposed can be developed strongly
enough to force the issue is left for another occasion.

10 .13 INDEFINITE EXTENSIBILITY AND REFLECTION

The passage quoted from Tait (2000, 284) at the end of Section 10.9 above captures
a widely held conviction that the iterative hierarchy in its entirety is ineffable. Any
attempt to characterize it uniquely not only fails, but provides us with the resources
to characterize more sets. This suggests a reflection principle: for any formula � in the
language of set theory, if � is true (in V, so to speak) then there is a set that satisfies
� —anything true of all the sets is true of the elements of some set. If the variable x
does not occur in �, then let � [x] be the result of restricting the first-order variables
in � to x, restricting the monadic second-order variables to subsets of x, etc. If � does
not contain the variable x, then the following is an instance of the reflection principle:

� → ∃x� [x].

Each instance of the reflection principle in which � is first-order is already a theorem
of ZFC. Instances of the reflection principle in which � is higher-order entail the
existence of so-called small large cardinals. For example, we note that the conjunc-
tion of the axioms of second-order set theory are true, and so, by reflection, there is a
set that satisfies these axioms. The set or ordinals contained in such a set is a strongly
inaccessible cardinal. Thus, the principle entails the existence of an inaccessible car-
dinal (see Lévy (1960 and 1960a); Shapiro (1987 and 1991, Chapter 6)).²⁴

So the reflection principle is a substantial set-theoretic thesis. Bernays (1961) shows
how many of the axioms of set theory, plus some small large cardinal principles, can
themselves be deduced from a strong version of the reflection principle, and hence
that it can play a unifying role in axiomatic set theory (see Burgess, 2004).

Now, the reflection principle has impressed a number of theorists as of-a-piece
with, or at least implicated in, the indefinite extensibility of the iterative hierarchy, at
least intuitively. This suggests a different way in which indefinite extensibility might

²⁴ Note that this argument presupposes the legitimacy of second-order statements as applied to
the entire iterative hierarchy (V), contrary to the tentative proposal in Shapiro (2003) noted above.
We have also had occasion to note that ordinary model theory does not allow for interpretations
in which the bound variables range over an indefinitely extensible ‘totality’. Shapiro (1987) shows
that with a reflection principle, the restriction does not change the extension of validity. The idea
is that if an indefinitely extensible ‘totality’ shows an argument to be invalid (i.e., true premises,
false conclusion), then, by reflection, there is a set that also shows that argument to be invalid. So,
in a sense, a reflection principle is a presupposition of the use of set-theoretic model theory as the
semantics of higher-order languages.
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have a bearing on the construction of foundations for a strong set-theory. Rather than
seek an appropriate abstraction principle, or principles, to reflect the indefinite extens-
ibility of the sets, in the fashion under scrutiny in Section 10.10 above, perhaps one
can appeal to indefinite extensibility to ground the reflection principle as a special
axiom to be used alongside whatever other foundational principles—they can as well
be abstraction principles—are motivated by one’s theoretical standpoint. This is a
strategy explored by John Burgess in his (2005).

However the connection between reflection and indefinite extensibility seems to
us fugitive on closer scrutiny. Burgess (2004, 2005) proposes the following heuristic
train of inter-connections leading from one to the other:²⁵

(1) . . . the sets are indeterminately or indefinitely many. (Indefinite Extensibility)

(2) . . . the sets are indefinably or indescribably many.

(3) . . . any statement � that holds of them fails to describe how many they are.

(4) . . . any statement � that holds of them continues to hold if reinterpreted to be
not about all of them but just about some of them, fewer than all of them.

(5) . . . any statement � that holds of them continues to hold if reinterpreted to be
not about all of them but just some of them, few enough to form a set. (Reflection)

Burgess is, of course, fully aware that these transitions are not immune to challenge.
It seems to us that the move from (1) to (2) in particular needs more motivation. The
idea that the pure sets or the ordinals are indefinitely extensible does not entail, or
even suggest, that they cannot be described distinctively. As above, indefinite extens-
ibility only says that any Definite collection of sets or ordinals can be extended. To
make the connection from (1) to (2) one might try to argue for the contrapositive:
that if a given sentence is true of the B’s, and of no proper sub-collection of them,
then the B’s are Definite. But, right now, we do not see how to construct a plausible
such argument.

The statement (3) seems problematic. As noted above, the very notion of indefinite
extensibility, and the statement that the sets are indefinitely extensible, is itself neutral
on the matter of how conservative or liberal one is on the question of ‘how many’
ordinals (etc.) there are, so to speak. It is not part of the meaning of ‘ordinal’, nor is
it part of indefinite extensibility as such that one cannot describe the totality of the
ordinals. A staunch Aristotelian or one who thinks that all sets are accessible can hold
that the sets are indefinitely extensible, and have no trouble describing ‘how many’ of
them there are. The former gives a second-order formula that is satisfied by all and
only countably infinite properties; the latter uses a formula that holds of all and only
properties the size of the first inaccessible (see Shapiro, 1991, §5.1.2).

It seems to us that the putative connection with reflection is best made under the
aegis of the ultra-liberal view of Cantor, Zermelo, and most practicing set theorists,
namely, the view that only inconsistency will be allowed to keep us from going on. In

²⁵ The reader should be aware that Burgess goes on to state that he, ‘like Boolos, [has] no use
for Michael Dummett’s notion of indefinite extensibility’. The sketch he offers is for those who do
have some use for the notion.
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keeping with the above passage from Tait (2000, 284), our liberal might claim that
any non-trivial criterion C for, say, being an ordinal, would not show that all and
only ordinals have C . Instead, she takes the criterion to show that there are ordinals
that lack C . For example, an opponent might suggest, with the staunch conservative,
that being finite is a criterion for being an ordinal. No, says the ultra-liberal. This
shows that there are ordinals that are not finite. The semi-conservative suggests that
being accessible is a criterion for being an ordinal. After all, every ordinal we have
defined so far is accessible. No, says the liberal. This shows that there are ordinals
with inaccessibly many predecessors.

It is straightforward to interpret the liberal as appealing to reflection at each
attempt of a conservative opponent to corral the ordinals and the sets. When the
staunch conservative claims that being finite is a criterion for being an ordinal, the lib-
eral notes that there are infinitely many (finite) ordinals. So, by reflection, there exists
an infinite set and thus an infinite ordinal. The semi-conservative concedes this, but
then claims that every ordinal is accessible. The liberal notes that there are inaccess-
ibly many ordinals thus conceded. So, by reflection, there is an inaccessible set and
thus an ordinal with inaccessibly many predecessors.

The reflection principle itself has an extensibility that is of a piece with the liberal
perspective. We noted just above that the reflection principle entails the existence of
an inaccessible cardinal. We apply the reflection principle to the statement that there
is an inaccessible cardinal. This gives us the existence of a standard model m of set
theory that itself satisfies this statement. The set of ordinals in m is an inaccessible
that contains an inaccessible as a member. Thus we have the existence of two inac-
cessibles. Similar repeated applications of the reflection principle yield the existence
of 2, 3, . . . inaccessibles. Then, repeating in the transfinite (so to speak), we show that
there is an ωth inaccessible, a fixed point in the hierarchy of inaccessibles, and so on
through small large cardinals (short of the so-called indescribable cardinals, which are
the smallest models of the reflection principle, see Shapiro 1987).²⁶

As Tait says, one can peel off Cantor’s journey at any point. In a sense, the reflec-
tion principle expresses our intent to not do so unless consistency demands that we
do. Any attempt to ‘peel off’ too early just gives rise to more, previously unheard of,
ordinals. The principle represents another of Priest’s (2002) ‘limits of thought’: the
limit of the expressible.

In any case, even if indefinite extensibility (with or without the liberal orientation)
neither entails nor is entailed by reflection, there are interesting connections bearing
on matters discussed earlier. One concerns the prospects for neo-logicist set-theory
based on Indefinite V discussed in Section 10.10. Noting the role of limitlessness in
the concept of indefinite extensibility, and the seemingly unavoidable need to invoke
the ideology of the ordinals in characterizing that, we expressed scepticism about the
logical definability of indefinite extensibility, prerequisite for the logicism in ‘neo-
logicism’. But the reflection principle enforces a stronger pessimism: that one can-
not characterize the notion of indefinite extensibility even given all the expressive

²⁶ The play with Zermelo-type meta-axioms in note 20 above can also be seen as applications of
reflection.
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resources provided by set theory. For if we assume that each pure set is Definite and
that the sets themselves are indefinitely extensible, then it follows from the reflection
principle that there is no formula �(X ) in the language of set theory in which all
quantifiers of � are restricted to X , such that for each concept P, �(P) holds if and
only if the P’s are indefinitely extensible. Let � be the result of instantiating X with
the universal concept in � (e.g., replace any subformula of the form Pt with t = t).
Then � is true of the sets. Thus, by the reflection principle, there is a set v that satis-
fies �. So �(P) holds when P is the concept of being a member of v. But this concept
is Definite.

The reflection principle also gives a surprising alternative resolution to the main
matter treated in Section 10.8, concerning Hume’s Principle and ‘anti-zero’. Recall
that in responding to one objection made in Boolos (1997), Wright (1999) accepted
‘the plausible principle . . . that there is a determinate number of F ’s just provided
that the F ’s compose a set’, and so ‘there is no number of sets’, no number of cardinal
numbers and no number of ordinals. Wright’s proposal was that the variables in HP
be restricted to Definite (sortal) concepts.

But wait. It follows from the reflection principle that there is a global well-ordering
of the set-theoretic hierarchy. For suppose that there is no such well-ordering. Then
the second-order statement stating the existence of such an ordering (see Shapiro,
1991, ch. 5, §5.1.3) is false. So, by reflection, there is a set that lacks a well-ordering.
This contradicts Zermelo’s well-ordering theorem. In sum, with the reflection prin-
ciple, the usual axiom of local choice (the ‘C’ in ‘ZFC’) entails Global Choice, and
(with Foundation) Global Choice entails the existence of a global well-ordering.

It follows from this that if P is a concept of (pure) sets, then if there is no set that
contains all of the P’s, then the P’s are equinumerous with the von Neumann ordin-
als. That is, in the presence of the reflection principle, any two indefinitely extensible
‘totalities’ of sets are equinumerous to each other.²⁷

So it follows from the foregoing principles that the unrestricted HP is satisfiable
on the pure sets. Each set has an aleph as its cardinality, as normal, and there is in
addition one (and only one) more cardinality for the indefinitely extensible totalities.
Any non-aleph will do. Let’s call it ‘∞’. So, after all, we can—correctly and intelli-
gibly—say that there is a cardinal of all cardinals, and a cardinal of all ordinals, and
a cardinal of all sets. It is just ∞. And if we can say this, then why shouldn’t we?
Since all indefinitely extensible concepts of sets are equinumerous (as above), then
why shouldn’t we associate them with a ‘size’, a size bigger than any set-size? If it is
felt that ‘size’ should be restricted to sets, we can just use another name. We hereby
introduce a new concept: the schmize of a set is the aleph that is equinumerous with
it; and the schmize of an indefinitely extensible collection of sets is ∞. HP is then
satisfied if we interpret ‘Nx:Fx’ as the schmize of the F ’s.

²⁷ There is a similarity between the derivation of the existence of a global well-ordering here
and that in Section 10.10 above, on neo-logicist set theory. Here the conclusion follows from
reflection and the (local) axiom of choice, whereas the previous conclusion follows from New V
alone, without local choice. Indeed, local choice also follows from New V, from global choice. So
we have no immediate reason to think that the reflection principle runs afoul of Wright’s principles
of conservation.
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But what of the above claim, common to Wright and Boolos, that there is no
cardinal of all cardinals? Well, one question, of course, is whether there is indeed com-
pelling philosophical mandate for the reflection principle. Even if there is, there may
still also be good philosophical reason—as Wright suggests—why the concept of car-
dinal number should be restricted to Definite concepts. But if so, the point can be
accommodated by regarding HP as characteristic of cardinality only for the Definite
case. So regarding it does not require that we limit the application of the N-operator
to Definite concepts: we merely cease to regard it as connoting cardinality or ‘size’
when applied to the indefinitely extensible, secure in the knowledge that, given reflec-
tion, Hume’s Principle is satisfiable in any case.

Boolos’s charge was that HP is false on the pure sets. As we noted earlier, the
way he presented the charge left some scope for maneuvering about its force. But
Wright’s response was concessive, granting that there was philosophical reason to
restrict the principle in any case. What we have just seen is that, given reflection, there
is a response to the objection that avoids any such concession. Hume’s principle, to
repeat, is satisfiable in the iterative hierarchy if reflection holds. The only philosoph-
ical issue is the proper interpretation of the N operator. But we shall take matters no
further here.
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Abstraction, University of St Andrews.
Drake, F. (1974) Set Theory: An Introduction to Large Cardinals, Amsterdam: North Holland

Publishing Company.
Dummett, M. (1963) ‘The Philosophical Significance of Gödel’s Theorem’, Ratio, 5, 140–55.
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11
Unrestricted Unrestricted Quantification: The

Cardinal Problem of Absolute Generality

Gabriel Uzquiano

Philosophical inquiry abounds with putative examples of absolute generalizations.
When a philosopher utters the sentence ‘There are no merely possible objects’, we
generally take the domain of her inquiry to be absolutely unrestricted. And yet,
it remains highly controversial whether we should take the appearance of absolute
generality of such utterances at face value. Some have casted doubt upon the implicit
assumption that there is an all-inclusive domain to begin with. Others have granted
the assumption of an all-inclusive domain but have nonetheless questioned that
our quantifiers ever manage to unequivocally range over the most comprehensive
domain.

It is not my intention to confront this difficult question directly but rather to dis-
cuss an internal problem for absolutism, by which I mean the thesis that we should
indeed take the appearance of absolute generality of some of our utterances at face
value and, more generally, agree that there is no principled obstacle for the formula-
tion of absolutely general statements in our theorizing. When we help ourselves, in
addition, to absolutely unrestricted plural or, otherwise, higher-order quantification
in the formulation of absolutely general statements we accept, we risk imposing non-
trivial constraints on the size of the universe of all objects. The problem I would like
to discuss arises when we notice that plausible formulations of absolutely general the-
ories may unexpectedly come into conflict by imposing incompatible constraints on
the size of the universe.¹ What makes some of the conflicts particularly unexpected
is they involve absolutely general theories with not only different but even disjoint
non-logical vocabularies. Specific instances of this phenomenon will raise difficult

This chapter emerged as an attempt to both generalize and explore the implications of a difficulty
originally discussed in Uzquiano (2006) for the problem of absolute generality. Many thanks to all
who helped me with that paper. In addition, I am grateful to Matti Eklund, Kit Fine, Geoffrey
Hellman, Paul Hovda, Vann McGee, Stewart Shapiro, Stephen Yablo, and audiences at MIT’s
2005 Meeting of the Minds in Metaphysics, Macalester College and the University of Manitoba.

¹ By an absolutely general theory, I mean a theory some of whose statements are absolutely general.
The problem may still arise in the presence of more modest resources such as schematic second-order
logic. Schematic second-order logic is discussed for example in Shapiro (1991), McGee (1997) and
Lavine (1994). I owe this observation to Kit Fine.
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methodological questions and suggest to some that there is a potential obstacle for
the unrestricted use of absolute generality in our theorizing.

11 .1 PRELIMINARIES

I would like to begin by making explicit three background assumptions required to
generate the problem. Because I will assume them without argument, some may be
tempted to revisit them in the face of the difficulty. I will consider this move in the
final section of the paper.

First, I will assume that there is an all-inclusive domain that comprises absolutely
all there is. This is the most comprehensive domain. To assume that there is an all-
inclusive domain doesn’t by itself commit us to one or another answer to the question
of whether there are, for example, past and future objects or whether there are merely
possible objects in addition to actual ones. The question of whether there are past
and future objects, like the question of whether there are merely possible objects in
addition to actual ones, should be settled with the help of separate metaphysical con-
siderations. But at least this much is true: If there are past and future objects, then
they lie in the most comprehensive domain; likewise, if there are possible objects that
are not actual, then they lie in the most comprehensive domain.

Next, I will assume that there is no difficulty in principle for our quantifiers to
unequivocally range over an all-inclusive domain. This is an additional assumption;
some non-absolutists have no quarrel with the existence of an all-inclusive domain
but suggest that other factors stand in the way for our quantifiers to range unres-
trictedly over absolutely all there is. Two broad grounds are generally cited against the
availability of unrestricted quantification over an all-inclusive domain. One begins
with the observation that our quantifiers are generally subject to explicit or contex-
tual restrictions that vary from context to context. Not only is there no reason to
think there is a context in which our quantifiers unrestrictedly range over absolutely
all there is, familiar Russellian paradoxes suggest our quantifiers could never manage
to accomplish this feat.² The other broad concern questions the presumption that
our quantifiers may unequivocally range over an all-inclusive domain.³ In contrast,
it is suggested that our quantifiers are systematically ambiguous and deny we have
the resources to distinguish absolutely unrestricted quantification from quantifica-
tion over a less-than-all-inclusive domain. For present purposes, I will assume that
both concerns are unfounded. There are contexts in which our quantifiers are, in fact,
unrestricted and manage unequivocally to range over an all-inclusive domain.

Finally, I will assume that plural quantification or, otherwise, second-order quan-
tification over an all-inclusive domain is available for the formulation of absolutely

² This view is discussed, for example, in Parsons (1974), Parsons (1977), Glanzberg (2004),
Williamson (2003) and Hellman, Lavine and Glanzberg’s contributions to this volume.

³ What is probably the most influential argument for the semantic indeterminacy of the
quantifiers comes originally from Quine (1968) and Putnam (1980). Field (1998) contains another
recent discussion of the argument. McGee and Lavine’s contributions to this volume discuss similar
arguments.
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general theories. We have known that the two are closely related since George Boolos
taught us in Boolos (1984) that plural quantification is interdefinable with mon-
adic second-order quantification. But the availability of absolutely general plural
or, otherwise, second-order quantification is not forced upon us by our adherence
to absolutism. One might tolerate absolutely general first-order quantification and
yet regard absolutely general plural or, otherwise, second-order quantification as
unintelligible. Indeed, such a view has been recently explored in Shapiro (2003) in
connection to Ernst Zermelo’s open-ended conception of the universe of set theory.
In what follows, I would like to suggest that this combination of views is less than
optimal.

Once one incurs in the commitment to absolutely general first-order quantifica-
tion, the model theory for absolutely general languages provides one with a motive to
embrace absolutely general plural or, otherwise, second-order quantification. When
we indulge in first-order quantification over an all-inclusive domain, we soon find
ourselves in a quandary. Orthodoxy tells us that an interpretation for a first-order
language is an ordered pair 〈D, I 〉, where D is a non-empty set and I is a function spe-
cifying semantic values for all the non-logical terms of the language. Unfortunately,
there is, in standard treatments of set theory, no set of all objects, and, in particu-
lar, no structured set whose domain consists of all objects there are. Nor will there
be interpretations of predicate letters to which no set corresponds. This is unfortu-
nate because it reveals that no model-theoretic interpretation manages to capture the
intended interpretation of a first-order language equipped with absolutely unrestric-
ted quantification. As Timothy Williamson has recently reminded us in Williamson
(2003), we must increase the expressive resources of first-order languages if we want
to expand standard model theory to allow for models of first-order languages with an
all-inclusive domain as well as for interpretations of predicates to which no set cor-
responds. To that purpose, we must either ascent to second-order logic and make use
of second-order quantification over predicate position or, alternatively, help ourselves
to devices of plural quantification.⁴ This suggests that the ascent to absolutely general
plural quantification or, otherwise, second-order quantification may be motivated by

⁴ In Williamson (2003) Williamson defended the flight to higher-order quantification, but
the resources of plural quantification are presumably enough for the purpose of accommodating
interpretations where the quantifiers range over an all-inclusive domain in the model theory for
first-order languages. We could, for example, conceive of an interpretation as given by some ordered
pairs satisfying certain constraints. Some ordered pairs in the interpretation would encode the
domain of discourse while others would encode the interpretation of the non-logical symbols of the
language. One implementation of the proposal would, for example, code the universe of discourse
of the interpretation by the second components of the ordered pairs of the form 〈∀, x〉. The
interpretation of an n-place predicate letter Pn would likewise be coded by the ordered n-tuples
of individuals that figure as a second component in ordered pairs of the form 〈P, 〈x1, . . . , xn〉〉.
Finally, the interpretation of an individual constant c would be coded by the unique individual
x that figures as a second component in ordered pairs of the form 〈c, x〉. This model theory has
been developed in Rayo and Uzquiano (1999). More recently, in Rayo and Williamson (2003)
Agustín Rayo and Timothy Williamson have proved a completeness theorem for first-order logic
with genuinely unrestricted quantification based on a similar semantics formulated with the help of
second-order quantification.
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the needs of a model theory for first-order languages equipped with absolutely general
quantifiers.

But once absolutely unrestricted plural quantification or, otherwise, second-order
quantification is on board, we may as well use it in the formulation of absolutely
general theories. Our problem precisely arises when we notice that, when formulated
with the help of plural or, otherwise, second-order quantification over an all-inclusive
domain, different absolutely general theories may place incompatible constraints on
the size of the universe. How urgent this problem turns out to be will largely depend
on whether such a conflict ever arises between two absolutely general theories for
which one has independent motivation. The purpose of this paper is threefold. First
I would like to suggest that some such conflicts may sometimes arise between inde-
pendently motivated absolutely general theories. Second, I would like to express some
pessimism for the prospects of a unified systematic solution for all such conflicts.
Finally, I would like to suggest that in some cases at least, the best solution to such
a conflict may involve abandoning the claim to absolute generality for at least one of
the purported absolutely general theories.

The plan of the chapter is as follows. In Section 11.2, I will outline two conflicts
between absolutely general theories for which philosophers and mathematicians have
provided independent motivation. In both cases, one of the parties involved in the
conflict will be an absolutely general formulation of set theory with individuals. In
Section 11.3, I will suggest that absolutely general set theory with individuals is not
to be blamed for the conflicts and that there is no reason to expect a unified solution
for the two conflicts. Sections 11.4 and 11.5 will argue that, in some cases, the conflict
between two absolutely general theories is best resolved by restricting the scope of at
least one of the theories involved. Finally, Section 11.6 will discuss the question of
whether our problem gives us reason to ultimately reject one or more of the three
background assumptions required to generate the problem.

11.2 CONFLICTS

The purpose of this section is to illustrate the general risk of conflict between abso-
lutely general theories.

Before I do, let me stress that since my present aim is merely to illustrate the risk of
conflict between two absolutely general theories, my choice of examples should not
automatically be taken to indicate endorsement. How urgent the conflict is, to be
sure, will depend to a large extent on whether there is independent reason to accept
each absolutely general theory. But all I need for my purposes is to make sure that the
two absolutely general theories involved in the conflict may plausibly thought to have
exerted a considerably pull on a great variety of philosophers. If you find yourself to
have independent reasons to accept each of the absolutely general theories involved
in the conflict, then you will face a difficult predicament. But even if you remain
unmoved by one or more of the absolutely general theories involved, I hope the con-
flict will at least provide you with some reason to watch for the possibility of conflict
between pairs of absolutely general theories you may be more inclined to accept.
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11.2.1 ZFCSU vs Atomistic Extensional Mereology

First, I would like to sketch a conflict between two absolutely general theories con-
cerned with membership and the relation of part to whole, respectively. Not only will
the two absolutely general theories differ with respect to their non-logical vocabular-
ies, their vocabularies will not even overlap.

The first contender is an absolutely general formulation of Zermelo–Fraenkel set
theory, including choice, with individuals (ZFCU) supplemented with an axiom stat-
ing that the individuals form a set.⁵ Call this theory ZFCSU. I will assume ZFCSU
has been formulated in an absolutely general first-order language supplemented with
devices of plural quantification. Its language contains two primitive predicates: ∈ and
Set. As I mentioned above, the appeal to plural quantification is not a needless extra-
vagance. As formulated in a first-order language, ZFCSU is an infinitely axiomatized
theory, some of whose axioms are instances of the Replacement Axiom Schema:

Replacement Axiom Schema: ∀x∀y∀(z(φ(x, y) ∧ φ(x, z)) → ∀x(Set(x) → y = z) → ∃y(Set(y)
∧ ∀z(z ∈ y ↔ ∃w(w ∈ x ∧ φ(w, z)))

But this is merely a schema that gives partial expression to a perfectly general principle
set theorists believe. We improve considerably on the Replacement Axiom Schema
when we help ourselves to plural quantification. Call some ordered pairs functional if
they pair each of their first components with exactly one object. We are now in a pos-
ition to replace the Replacement Axiom Schema with a single Replacement Axiom
which would be the formalization of the following principle into the first-order lan-
guage of ZFCU supplemented with plural quantifiers;

Replacement Axiom: If some ordered pairs are functional, then if x is a set, then there is a set
y such that a set z is a member of x just in case z is paired with a member of x by one of the
ordered pairs.⁶

The result is a finitely axiomatized theory whose formulation of replacement gives
faithful expression to a perfectly general principle set theorists seem to believe.

While ZFCU doesn’t pronounce on whether the individuals form a set, ZFCSU
includes an axiom explicitly stating that they do. Two broad lines of motivation have
been offered in the literature in support of this axiom. Some have suggested the axiom
that the individuals form a set is implicit in the iterative conception of set, which is
thought to motivate some of the axioms of ZFCU.⁷ This is a view of sets on which
sets are formed in stages of a certain cumulative hierarchy. We begin with individu-
als. Stage 0 consists of all individuals, which are assumed to be given prior to sets.
The sets formed at stage 1 are all sets of individuals. Stage 2 consists of individuals

⁵ Mathematicians generally prefer formulations of set theory that make no room for individuals
that fail to be sets. Nevertheless, philosophers and mathematicians interested in a broad range of
applications have preferred ZFCU to more standard formulations of set theory. For some recent
examples, consider McGee (1997), Potter (2004) and Burgess (2004).

⁶ The other axiom that is sometimes formulated with the help of plural quantification is the
axiom of separation, but, in the presence of replacement, the latter is redundant.

⁷ Boolos (1989) expresses some doubt about whether the iterative conception is by itself able to
motivate the axioms of choice and replacement.
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and sets of items available at stages 0 and 1. The sets formed at stage 2 are all sets of
individuals, sets of sets of individuals and sets of individuals and sets of individuals.
After stage 2 comes stage 3 consisting of all individuals and sets of items available at
earlier stages, etc. Immediately after all finite stages 0, 1, 2, . . . , there is a stage, stage
ω. The sets formed at stage ω are all sets of items formed at finite stages earlier than
ω. After stage ω comes stage ω + 1 where all sets of sets formed at stage ω are formed,
etc. In general, stage α consists of individuals and sets of items formed at stages earlier
than α.⁸

On this description of the cumulative hierarchy of sets, if given prior to sets, indi-
viduals are available at stage 0 in which case a set of them is formed at stage 1.⁹ Unfor-
tunately, one might question the assumption that individuals are given prior to sets.¹⁰
Perhaps some individuals are generated in tandem with sets. For a concrete example,
consider the view that ordinals, though formed alongside well-order sets of increas-
ingly higher order-type, are themselves not sets. If ordinals are not sets, they will be
individuals. Yet, they will never form a set because no stage will be one in which all
ordinals have become available.

What may strike one as a better consideration in support of the axiom appeals to
the universal applicability of mathematics. Mathematics is generally understood to
investigate structures presented with by the other sciences. But it is not uncommon
to think of set theory as a foundation for mathematics and to conceive of all math-
ematical objects as sets. Thus the universal applicability of mathematics would seem
to require the universe of sets to be sufficiently rich and varied to be able to repres-
ent any structure whatever presented to us by other sciences. But what if the need
arises to consider a structure whose domain includes all individuals there are? Modulo
ZFCU, the existence of a set-theoretic surrogate for any such structure is guaranteed
by the existence of a set of individuals. Not only this, but, in the context of ZFCU,
the axiom that the individuals form a set guarantees that the universe of pure sets is,
in fact, sufficiently rich and varied to guarantee the existence of isomorphic copies of
any structure presented by any other discipline.¹¹

Whatever its motivation, I would like to call attention to ZFCSU partly because,
when formulated in a first-order language supplemented with devices of plural quan-
tification, ZFCSU places serious constraints on the size of the universe. In particular,

⁸ When we begin with a set of individuals, the result is a transfinite sequence of stages, which
provides us with a map of the set-theoretic universe. If U is the set of individuals:

U0 = U ;
Uα+1 = U ∪ P(Uα);
Uλ =

⋃

α<λ Uα , for λ a limit.

⁹ This consideration has been suggested in McGee (1997) and Uzquiano (2002).
¹⁰ Thanks to Kit Fine for pressing this point.
¹¹ This consideration has been independently advanced, for example, by Allen Hazen and Vann

McGee, respectively, in Hazen (2004) and McGee (1997). As Matti Eklund reminded me, however,
it should be noticed that this is not a genuinely mathematical consideration for the axiom but rather
one philosophers and mathematicians may entertain when they engage in the philosophy of set
theory.
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the universe of all objects is the domain of an interpretation satisfying the axioms of
ZFCSU only if the size of the entire universe is strongly inaccessible.

Notice that the axiom that the individuals form a set is not crucial for the develop-
ment of the problem. The problem will arise even for theorists who remain unmoved
by the attempts to motivate the axiom that the individuals form a set. At the end of
the day, this axiom is not strictly required to make sure the size of the universe is
strongly inaccessible. The hypothesis that the pure sets are in 1–1 correspondence
with all there is would have done just as well.¹² If I have chosen ZFCSU for present
purposes it is only because it is a particularly simple axiomatization of set theory with
individuals whose axioms have generally been accepted by philosophers and mathem-
aticians who have allowed for individuals in the formulation of set theory.¹³

A word of clarification. When I speak of the size of the universe of all objects, it
is not my intention to suggest that there is a set-theoretic cardinal that measures its
size.¹⁴ Instead, we should understand talk of size of a domain that doesn’t form a set
in (conveniently pluralized) second-order terms as outlined in Shapiro (1991). Like
this: D is strongly inaccessible if and only if: (i) D is not denumerable in size; (ii) D
cannot be reached from below by taking powers: the power domain of size less than
D still has size less than D; (iii) D cannot be reached from below by taking unions:
the union of fewer (than the size of D) domains of size less than D still has size less
than D.¹⁵ The official plural translation of clauses (ii) and (iii) will have to be devious
in order to paraphrase apparent talk of domains of domains, but the details have been
carefully developed in Shapiro (1991).

When I say that ZFCSU requires the universe to be strongly inaccessible, I mean
that ZFCSU is satisfied in a model whose domain comprises all there is only if the
domain of all objects satisfies clauses (i), (ii) and (iii) above. This is because the axioms
of ZFCSU guarantee that the domain of pure sets is strongly inaccessible. But it is a
deductive consequence of ZFCSU that the pure sets are in 1–1 correspondence with
all there is.¹⁶ It follows that the domain of all objects should be strongly inaccess-
ible.

The second contender is an absolutely general formulation of what I will call atom-
istic extensional mereology. I will take the language of atomistic extensional mere-
ology to be a first-order language supplemented with devices of plural reference and

¹² I have discussed the hypothesis that the pure sets are in 1–1 correspondence with all the objects
there are in Uzquiano (2006). One motivation for it comes from the fact that it is a consequence of
von Neumann’s limitation of size principle according to which some objects form a set if and only
if they are not in 1–1 correspondence with the universe.

¹³ For some examples, consider again Hazen (2004), McGee (1997) and Potter (2004).
¹⁴ A set-theoretic cardinal κ is strongly inaccessible just in case:

(i) κ is not denumerable,
(ii) For any λ < κ, 2λ < κ, and

(iii) κ cannot be represented as the supremum of fewer than κ smaller ordinals.

In sum, κ cannot be reached from lower cardinalities through applications of the operations used
in (ii) and (iii).

¹⁵ D is a monadic predicate.
¹⁶ This is proved, for example, in McGee (1997).
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quantification. David Lewis is the author of a succinct presentation of the classical
extensional mereology that has made extensive use of plurals in Lewis (1991). It con-
tains a single primitive non-logical predicate ‘overlaps’ and standard definitions of
‘part’, ‘discrete’, and ‘sum’.¹⁷ When formulated with the help of plural quantification,
the axioms of atomistic extensional mereology read:

Transitivity: If x is part of some part of y, then x is part of y.

Unrestricted Composition: No matter what some objects are, there is a sum of them.

Uniqueness of Composition: It never happens that the same things have two different
sums.

Alfred Tarski observed in Tarski (1935) that the axioms of classical extensional
mereology make sure that the part–whole relation has the structure of a complete
Boolean algebra without a zero element.¹⁸

Atomistic extensional mereology is the theory that results when the axioms of clas-
sical extensional mereology are supplemented with Atomicity:

Atomicity: There are no objects whose parts all have further proper parts.¹⁹

One may wonder whether an absolutely general formulation of classical extensional
mereology will not do for our purposes. After all, one soon finds oneself in trouble
when one couples this absolutely general theory with a simple absolutely general con-
sequence of ZFCU:

Singletons: Every object has a singleton.

Trouble arises when we take singletons to express an absolute generalization. For
the combination of singletons with classical extensional mereology is incompatible
with a certain attractive hypothesis about the interaction of the part–whole relation
and membership:

¹⁷ In particular, I will assume the following definitions:

x is part of y iff for every z, if z overlaps x, then z overlaps y.
x and y are discrete iff x and y do not overlap.
x is a sum of some objects iff x has all of them as parts and has no part discrete from each of
them.

This axiomatization of classical extensional mereology traces back to Tarski (1929).
¹⁸ Tarski’s formulation of classical extensional mereology in Tarski (1935) included in addition:

Reflexivity: x is part of x
Anti-Symmetry: If x is part of y and y is part of x, then x = y
Strong Supplementation: If x is not part of y, then some part of x doesn’t overlap y.

But there are straightforward derivations of Reflexivity and Anti-symmetry from Lewis’s axioms.
What follows is a derivation of Strong Supplementation for which I’m indebted to Paul Hovda.
Suppose every part of x overlaps y, i.e., the negation of the consequent of Strong Supplementation.
By Unrestricted Composition, there is a sum of x and y, call it z. But z is a sum of y: y is part of z,
and every part of z overlaps either x or y—since z is a sum of x and y. Therefore z is a sum of y.
Since, by Reflexivity and the definition of ‘sum’, y is a sum of y, by Uniqueness of Composition, we
have that y = z. But since x is part of z, we conclude that x is part of y.

¹⁹ Notice the use of plural quantification in the formulation of the axiom.
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Unique Decomposition: A singleton is part of a sum of singletons if and only if it is
one of them.

A Cantorian argument will do for our purposes.²⁰ Singletons being an abso-
lute generalization makes sure the singleton operation provides us with a 1–1 map
between the singletons and all the objects there are. Unfortunately, the operation tak-
ing a sum of singletons to its singleton provides us, in effect, with a 1–1 map of the
domain of all sums of singletons into the domain of all singletons. But a generaliz-
ation of Cantor’s theorem shows that no such map exists on pain of contradiction.
This is because classical extensional mereology entails that (i) no matter what some
singletons the xxs may be, there is a unique sum of them. By Unique Decomposi-
tion, (ii) the sum of some singletons xxs is identical with the sum of some singletons
yys just in case the xxs are the yys. The relevant generalization of Cantor’s theorem
entails that (i) and (ii) hold only if there are strictly more sums of singletons than
there are singletons.

Philosophers have generally been disturbed by this conflict, and, in response, one
might suggest that we take ZFCSU to be concerned with a restricted domain that
leaves out arbitrary sums of sets, some of which are to be thought of as proper classes.²¹
Yet, as plausible as it may seem, Unique Decomposition is primarily concerned with
the interaction of the part–whole relation and membership. So one may still try to
attack the present difficulty not by questioning absolutely general formulations of
ZFCSU or classical extensional mereology but rather by denying Unique Decompos-
ition and suggesting that the interaction between the part–whole relation and mem-
bership is subtler than one might have initially thought. Unfortunately, this move
would do nothing to assuage a conflict between absolutely general formulations of
ZFCSU and atomistic extensional mereology.

Atomicity is a thesis many philosophers have found congenial. But when formu-
lated as an absolutely general theory formulated with the help of plurals, atomistic
extensional mereology places serious constraints on the size of the universe. Since
atomistic extensional mereology ensures the universe exemplifies the structure of a
complete atomic Boolean algebra, it requires the size of the universe to be identical to
the size of the power domain of the domain of mereological atoms.

Atomicity almost immediately spells trouble for theorists who take sets to enter
into the part–whole relation. One difficulty, though not the one I want to raise, has
to do again with the interaction of the part–whole relation and membership and
is motivated by the thought that atomistic extensional mereology is concerned with
all objects in general and with all sets in particular. This problem doesn’t, however,
require us to suppose set theory is concerned with all there is. Four theses are incom-
patible:

(a) All sets are parts.

²⁰ I have discussed other ways in which the conflict may be manifested in Uzquiano (2006).
²¹ David Lewis has suggested a similar view in Lewis (1991) in response to a different, but related

problem.
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(b) The domain of all sets is closed under the part–whole relation.²²
(c) When formulated with the help of plural quantification, the axioms of ZFCSU

are true of membership.
(d) When formulated with the help of plural quantification, the axioms of atomistic

extensional mereology are true of the part–whole relation.

The combination of (a), (b), and (d) requires the universe of pure sets to be a model of
atomistic extensional mereology. But we know that a model of atomistic extensional
mereology is a complete atomic Boolean algebra (without a zero element). Now, the
domain of a complete atomic Boolean algebra must be in 1–1 correspondence with
the power domain of the domain of mereological atoms. Unfortunately, (c) ensures
that the universe of pure sets is strongly inaccessible in size, which tells us that it is not
of the size of a power domain.

This conflict still requires us to move beyond classical extensional mereology
because there are models of classical extensional mereology of strongly inaccessible
size. This is because a model of classical extensional mereology is a complete Boolean
algebra and we know there are complete Boolean algebras of strongly inaccessible
size.²³ This tells us that there are formal models of classical extensional mereology
whose domain is the universe of pure sets. The trouble with such models is that the
relation that interprets the part–whole predicate is by no means one we would ordin-
arily recognize as the part–whole relation on pure sets.

One may well be tempted to fault (b) for the problem. Why think the universe of
sets should be closed under the part–whole relation? Why think, in particular, that a
mereological sum of sets must itself be a set? To be sure, each of (a), (c) and (d) rest on
much firmer ground than (b). (a) is an immediate consequence of the assumption that
the axioms of atomistic extensional mereology are absolutely general principles con-
cerned with all the objects there are. And it would be highly revisionary to question
(c), which still remains neutral with respect to the question of whether the individu-
als form a set. A similar consideration applies to (d). In fact, for the rejection of (d) to
help with our puzzle, it would have to be accompanied by an account of how sets
enter into the part–whole relation on which some pure sets qualify themselves as
composed of atomless gunk. Unfortunately, no such account seems forthcoming. In
view of this, one may be led to infer that perhaps the lesson to be learned from this
conflict is just that the universe of pure sets is not closed under mereological compos-
ition and hence not a model of atomistic extensional mereology.

Unfortunately, the problem persists even when we surrender the thesis that the
domain of all sets are closed under the part–whole relation, which is admittedly
a ‘mixed’ principle concerned with the interaction of the part–whole relation and
membership, provided, that is, that we insist that ZFCSU is an absolutely general
theory. This is in fact the problem I want to raise. Unlike the conflict between (a),

²² This amounts to the conjunction of two claims: (i) Sets have only sets as parts, and (ii) sets are
only parts of sets, whence a mereological sum of sets must itself a set.

²³ More precisely, we know there are complete Boolean algebras of infinite cardinality κ if and
only if κℵ0 = κ as shown in Koppelberg (1981).
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(b), (c) and (d), our final predicament will not prejudge the interaction between the
part–whole relation and membership. The final problem arises when we notice that
four theses are incompatible:

(1) When formulated with the help of plural quantification, the axioms of ZFCSU
are true of membership.

(2) The quantifiers of ZFCSU range over an all-inclusive domain.²⁴
(3) When formulated with the help of plural quantification, the axioms of atomistic

extensional mereology are true of the part–whole relation.
(4) The quantifiers of atomistic extensional mereology range over an all-inclusive

domain.²⁵

The problem is this.²⁶ The combination of (1) and (2) requires the universe of all
objects to be strongly inaccessible. But the combination of (3) and (4) requires the
universe of all objects to have the structure of a complete atomic Boolean algebra
(without a zero element). But the domain of a complete atomic Boolean algebra must
be in 1–1 correspondence with the power domain of the domain of mereological
atoms. Therefore the size of the universe of all objects can indeed be reached from
below by taking powers and is thus not strongly inaccessible.²⁷

The predicament doesn’t quite require the full strength of Atomicity; all that is
required is some guarantee that whatever atomless sums there exist, they are not
strongly inaccessible in number.²⁸ I have chosen Atomicity over the weaker thesis

²⁴ To make (2) perfectly explicit, notice that it amounts to the conjunction of two theses:

(2a) The singular quantifiers of ZFCSU range over an all-inclusive domain.
(2b) No matter what some objects are, they lie in the range of the plural quantifiers of ZFCSU.

Notice that (2b) is not a trivial thesis. Just as some have suggested our singular quantifiers are
hopelessly ambiguous and denied we have the resources to distinguish genuinely unrestricted
quantification from quantification over a less than all-inclusive domain, one might object to the
present thesis that our plural quantifiers are themselves ambiguous and deny that we are in a position
to distinguish between the situation described by (2b) and one in which at least some objects fail to
lie in the range of our plural quantifiers. Both concerns have recently been discussed in Rayo (2003).

²⁵ This again amounts to the conjunction of two different but related theses:

(4a) The singular quantifiers of atomistic extensional mereology range over an all-inclusive domain.
(4b) No matter what some objects are, they lie in the range of the plural quantifiers of atomistic

extensional mereology.

²⁶ Thanks to Agustín Rayo for first calling this kind of problem to my attention.
²⁷ The conveniently pluralized official translation of all these claims should be kept in mind.
²⁸ Thanks to Daniel Nolan here. The main reason for this is that it takes a strongly inaccessible

number of atomless sums to make sure that the entire domain of a model of classical extensional
mereology is strongly inaccessible. If there is atomless gunk, then there are at least continuum-many
atomless sums. This is because if there is an atomless sum, then there is an infinite set A of pairwise
distinct atomless sums. And any two subsets of A give rise to distinct atomless sums by the axioms
of classical extensional mereology.

There are three cases: (i) the number of mereological atoms is strictly less than the number of
atomless objects. Distinguish two subcases: (ia) the power domain of the domain of atoms is strictly
larger than the domain of atomless sums, in which case the universe will be of the size of the former;
(ib) the power domain of the domain of atoms has less or equal size to the domain of atomless sums,
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because it seems difficult to think of principled reasons why one should believe that
there may be atomless sums in great abundance, just not a strongly inaccessible num-
ber of them. Atomicity, by contrast, is a thesis with a distinguished history and whose
acceptance is both relatively widespread and based on reasons of principle.

Unless one is prepared to question one or more of the background assumptions
used in generating the problem, one has a limited range of options:

• reject (1) and make radical changes in the axioms of ZFCSU.

• reject (2) and restrict the quantifiers of ZFCSU to range over a less-than-all-
inclusive domain.

• reject (3) and make radical changes in the axioms of atomistic extensional mere-
ology.

• reject (4) and restrict the quantifiers of atomistic extensional mereology to range
over a less-than-all-inclusive domain.

Of the four, the first two may be particularly tempting in view of the fact that abso-
lutely general formulations of ZFCSU are in conflict with other absolutely general
theories as well.

11.2.2 ZFCSU vs The General Theory of Abstraction

Far from being an isolated phenomenon, the conflict between ZFCSU and atomistic
extensional mereology is an instance of a more general problem. This time the con-
flict will arise between an absolutely general version of ZFCSU as formulated either in
language equipped with plural quantifiers or, otherwise, in a second-order language
and an absolutely general theory of abstraction naturally formulated in a third-order
language or, with axiom schemata, in a second-order language with quantification
over polyadic relations. This will eventually raise the question of whether the role of
absolutely general formulations of ZFCSU in more than one conflict provides us with
cumulative evidence against such formulations of ZFCSU.

The general theory of abstraction I would like to consider has recently been
developed by Kit Fine in Fine (2002). In his study, Fine is concerned with abstraction
principles of the form:

∀F ∀G(§F = §G ↔ �(F , G)),

where F and G are monadic second-order variables, § denotes a function from the
values of second-order variables to objects, and � is a formula with two free variables
of the given type which gives expression to some binary equivalence relation. For a

which, we have assumed, is not inaccessible. In either case, the universe will not be inaccessible; (ii)
the number of atoms equals the number of atomless sums. In this case, the universe will have the size
of the power domain of the joint domain of atoms and sums objects and will not have inaccessible
size; (iii) the number of mereological atoms is strictly larger than the number of atomless sums. In
this case, the universe will have the size of the power domain of the domain of atoms and will not
have inaccessible size either.
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typical example of a binary equivalence relation on the values of second-order vari-
ables, consider the relation of equinumerosity. Hume’s principle is the abstraction
principle correlated to this equivalence relation:

∀F ∀G((F ) = (G) ↔ F ∼ G)

But not all abstraction principles are acceptable. Some are inconsistent like Frege’s
Axiom V:

∀F ∀G((F ) = (G) ↔ ∀x(Fx ↔ Gx))

Other abstraction principles are not inconsistent when considered in isolation but
they are jointly incompatible with other abstraction principles. The goal of Fine’s
general theory of abstraction is to provide a general criterion that might help us show,
once and for all, what principles of abstraction are acceptable.

One necessary condition for the acceptability of an abstraction principle is that the
relevant equivalence relation should not give rise to more equivalence classes than
there are objects in the domain of the first-order variables. An equivalence relation
that satisfies this condition is called non-inflationary. This is precisely the problem
with Frege’s Axiom V. No matter what the size of the first-order domain is, Axiom
V requires more extensions than there are objects in that domain.

A criterion for the acceptability of abstraction principles should deal with the ques-
tion of how to combine into different systems of abstraction principles. Fine’s gen-
eral theory of abstraction first assumes that two abstracts from different abstraction
principles are identical only if they correspond to the same equivalence classes. But
the concern remains that there might be a system of abstraction principles such that
each of them is non-inflationary but such that they are jointly inflationary. That
is, they jointly entail the existence of more abstracts than there are objects in the
first-order domain. This is called hyperinflation. In response to this threat, Fine con-
siders the requirement that each equivalence relation expressed by � be predominantly
logical which he formally defines in terms of the invariance of the relation expressed
by � under certain permutations. He then proves that systems of abstraction prin-
ciples whose equivalence relations are predominantly logical and non-inflationary are
immune to hyper-inflation provided the size of the domain is unsurpassable. For each
cardinal κ , let cp(κ) be the number of cardinals less than κ . A cardinal κ is unsurpass-
able if 2cp(κ) ≤ κ .

Very roughly, as developed in Fine (2002), the general theory of abstraction con-
tains two basic principles:

Identity Principle: Abstracts from different abstraction principles are identical only
if the associated equivalence classes are the same.

Existence Principle: If an equivalence relation on concepts is non-inflationary and
predominantly logical, then the corresponding abstraction principle will give rise
to abstracts.

But not surprisingly, the general theory of abstraction turns out to place serious
constraints on the size of the first-order domain. When we assume second-order
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definitions of ‘predominantly logical’, ‘non-inflationary’, and ‘unsurpassable’, we
infer that the general theory of abstraction is true in a model if and only if its domain
is unsurpassable.²⁹ Unfortunately, no strongly inaccessible domain is unsurpassable.
Indeed, if a domain is strongly inaccessible, then its cofinality is the size of the domain
itself. By (a suitable generalization of) Cantor’s theorem, the power domain of a
domain must be strictly larger than the initial domain.

Trouble arises for a theorist who accepts (1§) and (2§) below, yet takes the prin-
ciples of Identity and Existence to be absolutely generalizations that provide us with
an accurate account of the true abstraction principles. For the following are incom-
patible:

(1§) The axioms of second-order ZFCSU are true of membership.
(2§) The quantifiers of second-order ZFCSU range over an all-inclusive domain.
(3§) The axioms of the general theory of abstraction are true of abstraction opera-

tions.
(4§) The quantifiers of the general theory of abstraction range over an all-inclusive

domain.³⁰

The problem should be familiar by now. For reasons completely analogous to the case
of (1) and (2), the combination of (1§) and (2§) requires the universe to be strongly
inaccessible. But the combination of (3§) and (4§) makes sure that the universe has
unsurpassable size. Unfortunately, no unsurpassable domain is inaccessible.³¹

At this point, it is very tempting to take subsections 11.2.1 and 11.2.2 to provide
us with cumulative evidence against the combination (1) and (2). The rejection of (1)
or (2) or both we would seem to solve both conflicts at once. Surely the prospect of a
systematic and unified solution of the two conflicts will appeal to many.

11 .3 A UNIFIED SOLUTION?

But what reason is there to expect a systematic and unified solution of all potential
conflict between absolutely general theories? What we found is that two absolutely
general theories with disjoint non-logical vocabularies sometimes impose incompat-
ible constraints on the size of the universe of all objects. For all we know, different
conflicts call for different measures.

But we should nevertheless look at the prospects of solving the two conflicts
presented above by questioning (1) or (2) or both. I would like to suggest there is a

²⁹ Shapiro (1991) has a discussion of the techniques necessary for such formulations.
³⁰ Since the general theory of abstraction is a second-order theory, (4§) becomes again the

conjunction of two theses:

(4§a) The first-order quantifiers of the general theory of abstraction range over an all-inclusive
domain.

(4§b) The higher-order quantifiers of the general theory of abstraction take absolutely unrestricted
range.

³¹ See Fine (2002) for a thorough discussion of this problem.
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high cost associated to the rejection of each (1) and (2), a cost that is better avoided in
the presence of a better solution.³² Let me begin with (1). There is no question that
to reject one or more of the axioms of ZFCU would be highly revisionary. ZFCU
is an incredibly successful mathematical theory with an impressive track record. The
apparent incompatibility between ZFCSU and either atomistic extensional mere-
ology or the general theory of abstraction will (and should) not move mathematicians
to amend their ways and give up one or more of the axioms of ZFCU.

At this point one might suggest that what we learn from the conflicts is that we
should not assume that the individuals form a set. This is precisely Kit Fine’s response
to the conflict between ZFCSU and the general theory of abstraction in Fine (2002).
After all, the suggestion the individuals fail to form a set is far less revisionary than
the rejection of one or more of the axioms of ZFCU. However, whatever its merits
and drawbacks, one would have thought that the fate of the axiom that the individu-
als form a set should be decided primarily on the basis of considerations internal to
mathematical practice and not on the basis of the apparent incompatibility between
an absolutely general formulation of ZFCSU and other absolutely general theories.

Alas, a friend of ZFCSU might reply that the universal applicability of mathem-
atics provides independent support for the addition of the axiom to ZFCU. And,
regardless, for the retreat from ZFCSU to ZFCU to be effective, it would have to
be accompanied with the hypothesis that there are far more individuals than there are
pure sets. But this is not a very plausible hypothesis, or at least not very plausible in
the absence of independent considerations.³³

It might seem more promising to reject (2) and, in particular, the assumption that
absolutely all objects enter into the membership relation. It is not that all objects
there are are in fact sets, but rather that the truth of singletons, whose quantifiers had
been thought to range over absolutely all objects, requires that absolutely every object
have a singleton. To question this assumption would be to suggest that at least some
objects are not members themselves; they lie outside the scope of the singleton opera-
tion. David Lewis has made a similar point in Lewis (1991). According to Lewis there
are, in addition to individuals and sets, proper classes that are not sets. Sets are some
but not all of the classes there are. The distinction is this. Whereas sets are classes that
are members of some classes, proper classes never are members. Not only are proper
classes not sets, they are not individuals either. And they lie outside of the domain
of ZFCSU, which, despites appearances to the contrary, turns out not be the most
comprehensive theory of collections after all.

The main problem with this move is that it saddles us with a mysterious distinction
between individuals and sets, which are all members of other sets and thus lie in the

³² I have looked at the question of whether the conflict between set theory and atomistic
extensional mereology provides us with a reason to abandon (1) or (2) in Uzquiano (2006).

³³ One view of sets often cited in support of some of the axioms of ZFC is the limitation
of size doctrine according to which some objects form a set if and only if they are not in 1–1
correspondence with all the objects there are. One immediate consequence of this principle is that
there is only one size a domain that fail to form a set may be. It follows, in particular, that if the
individuals fail to form a set, then they must be in correspondence with the pure sets, which also
fail to form a set.
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domain of membership, and other items (classes, presumably), which for some utterly
mysterious reason fail to be members, not even members of a singleton set. Perhaps
we should not be surprised by the mystery on account of the fact that, as David Lewis
has claimed in Lewis (1991), the making of singletons is ill-understood to begin with.
But that would do little, it seems to me, to alleviate our perplexity.

Perhaps we should look elsewhere for a resolution of the conflicts outlined above.
The purpose of the next two sections is to look at other options and to argue that, at
least in some cases, the proper response to a conflict between two absolutely general
theories might require us to give up the claim to absolute generality for one of them.

11.4 THE GENERAL THEORY OF ABSTRACTION

It may be that some conflicts between absolutely general theories will move us to take
back the claim to absolute generality for one of them, but, unfortunately, the conflict
between (1§) and (2§) and (3§) and (4§) is hardly an example. To appreciate this,
notice that when we fix (1§) and (2§), two options remain as responses to the conflict
between (1§) and (2§) and (3§) and (4§):

• reject (3§) and make radical changes in the axioms of the general theory of abstrac-
tion.

• reject (4§) and restrict the quantifiers of the general theory of abstraction to range
over a less-than-all-inclusive domain.

Without adjudicating the question of how to best to respond to the conflict, we can
presumably discard a restriction of the first-order quantifiers of the general theory of
abstraction as a plausible response to the conflict. The general theory of abstraction
had been advanced as a perfectly general answer to the question of what equivalence
relations, whatever their field, give rise to abstraction operations on the values of the
second-order variables. To restrict the range of the first-order quantifiers of the gen-
eral theory of abstraction would be to renounce to this goal in exchange for an answer
to the less interesting question of what equivalence relations on a certain restricted
domain give rise to abstraction operations on that domain.

Two options remain. To restrict the range of the second-order quantifiers of the
general theory of abstraction or to make radical changes in the axioms of the general
theory of abstraction. The restriction of the second-order quantifiers of the general
theory of abstraction would still fall under the rejection of (4§) and has been sugges-
ted by Stewart Shapiro in Shapiro (2005). The restriction of the second-order quanti-
fiers of the general theory of abstraction to range over set-sized concepts would make
sure that the generated abstracts in each case amount to equivalence classes that are
themselves sets and fall under the scope of ZFCSU. Notice, however, that the motiva-
tion for this had better not be that absolutely unrestricted higher-order quantification
over an all-inclusive domain is unintelligible, for we have seen that the combination
of this claim with the claim that absolutely unrestricted first-order quantification over
an all-inclusive domain is fine is unstable. But it is doubtful that some independent
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motivation for the restriction is available that doesn’t compromise the goals of the
general theory of abstraction.³⁴ And, relatedly, it is unclear whether this move would
have much to recommend over explicit modifications of the theory to the effect that
only set-sized equivalence relations, for example, give rise to abstracts.

This is in fact the other alternative to consider, which would fall under the rejection
of (3§). This move has recently been hinted by Kit Fine in Fine (2005) and amounts
to making explicit changes in the axioms of the general theory of abstraction to make
sure that only set-sized equivalence relations generate abstracts. The challenge again
is to provide some motivation for this changes, which, ideally, would have to be inde-
pendent from the conflict with absolutely general ZFCSU. If no independent reasons
are forthcoming, then the conflict between ZFCSU and the general theory of abstrac-
tion has a remarkable moral. We should watch for potential conflicts between abso-
lutely general theories we endorse even if their non-logical vocabularies have nothing
in common. For such conflicts may require us to revise commitments for which we
thought we had independent motivation.

11 .5 ATOMISTIC EXTENSIONAL MEREOLOGY

The situation strikes me as different in the case of the conflict between (1) and (2)
and (3) and (4). If we leave (1) and (2) fixed again, two options remain:

• reject (3) and make radical changes in the axioms of atomistic extensional mere-
ology.

• reject (4) and restrict the quantifiers of atomistic extensional mereology to range
over an less-than-all-inclusive domain.

There is a cost associated with each of the two options, but I would like to suggest we
would do better to take the second route and give up the claim to absolute generality
for atomistic extensional mereology. If this is indeed the case, then there is no hope
for a unified solution to all conflicts between absolutely general theories.

11.5.1 Reforming Atomistic Extensional Mereology

It is time to look at the cost associated with the rejection of (3) above. Although this
option doesn’t by itself adjudicate the issue of what axiom to question, two axioms
of atomistic extensional mereology immediately stand out as salient candidates for
eviction: Atomicity and Unrestricted Composition.³⁵

Unfortunately, the rejection of Atomicity will not suit present purposes. Although
philosophers have sometimes contemplated violations of Atomicity in the domain
of material objects, no one has suggested that there may be atomless sums in the

³⁴ Shapiro (2005) mentions some reasons for pessimism.
³⁵ There are other axioms one might abandon in order to evade the problem. I make no claim

to offer an exhaustive list of options under (3); instead, I have chosen to focus on two of the most
salient alternatives.
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extravagant abundance that is required to circumvent our problem.³⁶ The problem
is that fewer than a strongly inaccessible number of atomless sums will do nothing to
alleviate the conflict.³⁷ But the prospects for an independent motivation of this claim
are not too bright.

One might perhaps try to overcome this problem by claiming that sets themselves
lack a decomposition into mereological atoms and provide us with sufficient atomless
sums to fit the bill. The problem with this move is that unless it is accompanied with
an account of how sets enter into the part–whole relation on which they all lack a
decomposition into atoms, it will remain largely ad hoc and unmotivated. But if there
is a contender to play the role of the part–whole relation on sets, this is the subset
relation.³⁸ Unfortunately, this account will not justify the claim that sets provide us
with a widespread violation of Atomicity.³⁹

Unrestricted Composition now comes to the fore as the prime candidate for evic-
tion. But this move will only be plausible if it is supplemented by some independent
rationale.⁴⁰ Maybe one is not difficult to come by when we assume sets themselves
enter into the part–whole relation. For a little thought on this assumption might lead
us to rethink the justification for Unrestricted Composition. Kit Fine has recently
made just this sort of suggestion in Fine (2005).⁴¹ Much of what follows is inspired
by his discussion.

One might perhaps take a cue from standard presentations of the iterative con-
ception of set as a view on which sets are formed in stages of a certain cumulative
hierarchy. Typical presentations of the iterative conception are often accompanied
with the disclaimer that talk of set formation is metaphorical and should not be taken
seriously. We should not think of sets as being literally formed or constructed in stages
of the hierarchy. But this of course only raises the question of what lies behind the
metaphor. It is not uncommon to explain the metaphor in terms of the ontological
priority of members to the set.⁴² The crucial difference between individuals and sets
of individuals, the suggestion continues, is that while individuals need not depend for
their existence on the prior existence of another individual, sets of individuals depend
for their existence on the existence of the individuals that are their members. More
generally, sets depend for their existence on the existence of their members.

Now ask whether the parts of a mereological sum are likewise ontologically prior
to the sum. If they are, then we should presumably conceive of sums as similarly

³⁶ Zimmerman (1996) develops an argument for the thesis that material objects are made of
atomless gunk.

³⁷ As explained in footnote 29.
³⁸ There is a qualification often made to restrict the subset relation to non-empty sets.
³⁹ This point is made in more detail in Uzquiano (2006).
⁴⁰ Otherwise, the following principle would do fine for our purposes: ‘Limitation of Com-

position: Some objects have a mereological sum if and only if their atomic parts are not in 1–1
correspondence with all the objects there are.’

David Lewis and Gideon Rosen have considered this principle in Lewis (1991) and Rosen
(1995), respectively, in response to a similar problem. The problem with this principle is that it too
seems largely ad hoc and unmotivated.

⁴¹ I learned of this suggestion only after I had completed Uzquiano (2006). What follows is
meant to address it.

⁴² Michael Potter, for example, does this in Potter (2004).
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formed in stages of a certain cumulative hierarchy. This observation, by itself, doesn’t
yet provide a reason to doubt Unrestricted Composition. When considered in isol-
ation, we may have reason to think that there will be some stage at which all sums
will have been generated. It is not that we could not proceed further to a new stage, if
we wanted to, but rather that there is no point since no more sums would thereby be
generated.⁴³

The situation changes drastically when we allow sets to enter into the part–whole
relation. For in that case, we have little choice but to consider the formation of mere-
ological sums in tandem with the formation of sets in the cumulative hierarchy. The
picture that emerges is this. We begin with atoms. Stage 0 consists of atoms, which are
the objects that exist independently. At stage 1 all sets and sums of atoms are formed.
That is, stage 1 consists of all sets and sums which presuppose items available at stage
0. Stage 2 consists of atoms, sets of items available at stage 0 and 1, and sums of items
available at stages 0 and 1.⁴⁴ After stage 2 comes stage 3 consisting of all atoms, sets,
and sums of items available at earlier stages, etc.

Immediately after all stages 0, 1, 2, . . . , there is a stage, stage ω. The sets formed at
stage ω are all sets of items formed at finite stages earlier than ω. The sums formed at
stage ω are all sums of items formed at finite stages earlier than ω. After stage ω comes
stage ω + 1 where all sets and sums of items formed at stage ω are formed, etc. In gen-
eral, stage α consists of atoms, sets, and sums of items formed at stages earlier than α.

Because there is no last stage at which all sets become available, there is no terminal
stage at which all mereological sums have been formed. Each stage of the cumulative
hierarchy will provide new sets, which, in turn, will generate new mereological sums
at the next stage. The problem with Unrestricted Composition is this. Some objects
may not be available at any stage of the cumulative hierarchy, in which case there
would be a real obstacle for the formation of their mereological sum. There is, for
example, no stage at which all sets have been formed, and hence there will not be a
mereological sum of all sets.⁴⁵

Our discussion suggests the following restriction on composition:

Iterative Composition. Some objects have a mereological sum if and only there is
some stage of the cumulative hierarchy in which they all appear.

What should a proponent of ZFCSU make of the present proposal? Unless sets
are themselves sums, Iterative Composition is incompatible with the axiom that the

⁴³ If we started with some atoms at stage 0, we would obtain all mereological sums of atoms at
stage 1. We could then proceed to stage 2 if we wanted to in which case we would obtain sums of
sums available at stage 1. But nothing in the picture provided thus far guarantees the formation of
new mereological sums not formed in the preceding stage. Or, in other words, for all we have said,
it may well be that every mereological sum of sums of atoms is already a mereological sum of atoms
and thus available in the preceding stage.

⁴⁴ For example, if a and b are atoms available at stage 0, then both their set, {a, b}, and their sum,
a+ b, are formed at stage 1. But neither the set {{a}, {b}} nor the sum {a} + {b} become available
before stage 2.

⁴⁵ This cuts both ways. Because there is no stage at which all mereological sums have been
formed, there is no set whose members include all mereological sums. But we now know better than
to expect the existence of such a set.
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individuals form a set, and, a fortiori, with ZFCSU. Since there is no stage at which all
mereological sums are available, and all mereological sums are individuals, there is no
stage at which all individuals are available. Therefore, there is never an opportunity
to form a set of all individuals.⁴⁶ It might be tempting to turn this into an argument
against the axiom that the individuals form a set, in which case the proper response
to our problem would combine the rejection of Unrestricted Composition with the
retreat from ZFCSU to ZFCU. Unfortunately, there are two other reasons for con-
cern with the present strategy.

There is first the presumption that the iterative conception of set requires us to
understand the members of a set as ontologically prior to the set. While the fact that
some sets are cited before others in the description of the iterative conception might
be (mistakenly) assumed to turn on the ontological priority of individuals and sets
over sets thereof, it may be better explained merely by appeal to a certain narrat-
ive convention. This is a convention that requires to mention first items that appear
earlier in a certain salient ordering. As George Boolos explained in Boolos (1989),
the iterative conception is primarily a picture of the universe of all sets as ordered by
the relation having lower rank than. This relation is a salient partial ordering of the
universe, and the description supplied by the iterative conception respects a certain
narrative convention by mentioning first sets that come earlier in the order. But then
the iterative conception need not turn on the ontological priority of the members to
the set.

The other line of opposition has to do with the view that the parts are ontolo-
gically prior to their sum. This, as it happens, is in tension with an attractive and
influential picture of mereological composition as akin to identity. It is not uncom-
mon to hear that the mereological sum of some parts is nothing ‘over and above’
the parts. Or that once you are committed to the parts, you are committed to the
sum. Or that a sum is ‘exhausted’ by the parts. What lies behind all these suggest-
ive (albeit obscure) slogans is the doctrine of composition as identity.⁴⁷ The doctrine
comes in at least two versions. On a stronger version, the parts of a sum are strictly
speaking identical with the sum. On a weaker, the relation between a sum and its
parts is merely analogous to identity in various respects. Only the weaker version of
composition as identity is compatible with the view that identity is a one-one rela-
tion. The problem is that this picture of composition is oftentimes taken to underlie
the plausibility of the axioms of classical extensional mereology. So a friend of atom-
istic extensional mereology tempted by the ontological priority of the parts to their
sum may be forced to abandon the very picture of composition that motivates her
acceptance of the axioms.⁴⁸

⁴⁶ We avoid this conclusion if we follow David Lewis in identifying sets with mereological sums
of singletons. For then there is no guarantee that an individual that is not a set is ever formed after
the first stage of the cumulative hierarchy.

⁴⁷ The doctrine of composition as identity has been discussed, for example, in Lewis (1991) and
Sider (forthcoming).

⁴⁸ It is an interesting question whether Composition as Identity may be used to provide a
more direct motivation of Unrestricted Composition. Ted Sider discusses this question in Sider
(forthcoming).
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Not all versions of composition as identity are equally viable, but the success of
modest versions of composition as identity would seem to undermine the thought
that the parts are ontologically prior to the sum they compose. The point of weak
composition as identity is to capture the special intimacy of the part–whole rela-
tion, which would seem to place it at variance with membership. Unlike sets, which
are formed in stages of the cumulative hierarchy, sums emerge from the hierarchy
without having been formed at any stage. To repeat some of the slogans, the sum of
all sets would be nothing ‘over and above’ them. Once you are committed to the sets,
you are committed to their sum, regardless of whether the sets occur together at some
stage of the hierarchy. This is probably not the place to assess the prospects of weak
composition as identity.⁴⁹ Suffice it to say that composition as identity has motiv-
ated some of the axioms of atomistic extensional mereology and its rejection would
presumably come at a cost.

11.5.2 Restricting the Domain of Atomistic Extensional Mereology

The last option in the menu is the restriction of the quantifiers of atomistic exten-
sional mereology. We have a choice at this point. We may restrict the range of the
singular quantifiers to range over a less-than-all-inclusive domain or, alternatively, we
may restrict the range of the plural quantifiers by insisting, for example, that some
objects lie in the range of our plural quantifiers if and only if they form a set. Of the
two, the first move is more radical since it requires us to deny that some objects are
not in the field of the part–whole relation and thus are not part of themselves.

Unrestricted Composition would have a dramatically different effect if we insisted
that some objects lie in the range of the plural quantifiers if and only if they form
a set. Some objects (on the unrestricted interpretation) would have a mereological
sum if and only if they formed a set, in which case atomistic extensional mereology
would indeed be satisfied in strongly inaccessible models. The trouble with this move
is that it is largely ad hoc and unmotivated. What is more important, this move has
nothing to recommend over more explicit restrictions on mereological composition
of the kind considered above.

What I would like to suggest now is that we would do better to restrict the singular
quantifiers of atomistic extensional mereology to range over a less-than-all-inclusive
domain. This move is not unmotivated. If there is a lesson to be learned from our
predicament is that absolutely general inquiry is an audacious enterprise. We have
learned that absolutely general theories sometimes impose serious demands on the
size of the universe. This consideration alone suggests we take a risk when we present
atomistic extensional mereology as an absolutely general theory. Perhaps we should
limit the subject matter of atomistic extensional mereology to a less-than-all-inclusive
domain.

For this move not to be ad hoc and unmotivated, we should provide some inde-
pendent reason to restrict the subject matter of atomistic extensional mereology.

⁴⁹ Ted Sider has offered an optimistic assessment of such prospects in Sider (forthcoming).
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Most proponents of atomistic extensional mereology think that material objects enter
into the part–whole relation. Often they think this because they think there is a rela-
tion over the domain of material objects that obeys the axioms of classical extensional
mereology: If x and y are material objects, x is part of y just in case every spacetime
point occupied by x is a spacetime point occupied by y. So they have an account
of how material objects enter into the part–whole relation and think that all of the
axioms are true when we restrict the domain to include all and only material objects.
This is how it should be. It is fine to suggest that material objects stand into the
part–whole relation to other sorts of objects. Or to suggest that other sorts of objects
enter into the part–whole relation as well. But each suggestion, it seems to me, must
be accompanied by an account of how the relevant objects enter into the part–whole
relation.

I would like to suggest that in considering the question of whether objects of a
certain sort enter into the part–whole relation, the burden of argument should be
on whoever thinks they must. Unless they provide an account of how the relevant
objects enter into the part–whole relation, our presumption should be that they do
not. From this stance, there may be a real obstacle for objects of a certain sort to enter
into the part–whole relation. This will happen, in particular, when we find ourselves
incapable to identify a suitable relation suitable to play the role of the part–whole
relation on the relevant objects. When this happens, I would like to suggest, we should
be reluctant to grant that the objects in question lie within the scope of atomistic
extensional mereology. For it is unclear what would entitle us to assume that they do.

Sets illustrate this difficulty exemplarily. If one thinks that sets enter into the
part–whole relation, then one must explain what it is for a set to be part of another.
One attractive hypothesis at this point is that at least when restricted to non-empty
sets, the part–whole relation coincides with the subset relation. One may perhaps
motivate the restriction to non-empty sets by treating the empty set as an individual
on the grounds that, like the rest of individuals, the empty set has no members.⁵⁰
What is important is that, on the present suggestion, sets have their subsets as parts:

Main Thesis: The parts of a set are all and only its subsets.⁵¹

The Main Thesis seems to conform well with ordinary speech. For as David Lewis
reminds us in Lewis (1991) we often speak of the set of even integers, for example, as
part of the set of integers. Or the set of women as part of the set of human beings. And
in fact a cursory look at the history of the subject shows it is not uncommon for Georg
Cantor, Ernst Zermelo and others to talk of sets as composed of parts and refer to
the subsets of a set as parts of the set. Indeed, German still translates ‘subset’ as ‘Teil’
or ‘Teilmenge’, which are literal translations for ‘part’ and ‘set part’, respectively.⁵²
Unfortunately, this leads to violations of Unrestricted Composition. This is partly

⁵⁰ This is just David Lewis’s treatment of the empty set in Lewis (1991).
⁵¹ This is parallel to the Main Thesis stated in Lewis (1991), but, unlike Lewis, we need not

make room for classes that are not sets. The restriction to non-empty sets is important because it
helps Lewis block the consequence that singletons have parts.

⁵² Thanks to Ignacio Jané here. Georg Cantor writes in Cantor (1955): ‘By a ‘part’ or ‘partial
set’ of a set M we mean any other set M1 whose elements are also elements of M .’ And, perhaps
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because no set is the sum of all singletons. It is, after all, a theorem of ZFCSU that
there is no universal set. One may reply that all this shows is that some singletons fail
to have a set as their mereological sum. No matter, they still have a proper class, i.e.,
a class that fails to form a set, as their sum. Some sets, e.g., all singleton sets, have
proper classes as their mereological sum. But the singletons are subclasses of the class
of all singletons. Hence we should have phrased the Main Thesis in terms not of the
subset relation but rather of the subclass relation, which is the relevant relation over
the domain of classes, whether proper or improper.

The singletons are of course not alone in their failure to compose a set. If there are
proper classes of the sort required to vindicate Unrestricted Composition, then they
are of the size of the power domain of all sets. Unfortunately, orthodoxy tells us that
there are no proper classes, and, ZFCSU, in particular, certainly makes no room for
objects to play the role of the mereological sum of some singletons, which, in turn,
fail to form a set.

There is a real obstacle to take sets to enter into the part–whole relation. But what
should be made of our ordinary talk of some sets as part of other sets? It seems to me
we speak metaphorically when we speak of subsets of a set as parts of the set. Even if
the subset relation fails to satisfy all of the axioms of atomistic extensional mereology,
the fact remains that there is a close analogy between its structure and the structure
of the part–whole relation as governed by the axioms of mereology. This analogy is
presumably what guides the metaphor. But we should not read too much into a mere
analogy between the two relations, no matter how suggestive it may seem.

An important disanalogy between the part–whole relation and identity has now
emerged. While all objects are self-identical and thus lie in the field of identity, not
all objects lie in the field of the part–whole relation. I have suggested that sets, in par-
ticular, have no parts. Nor are they parts of themselves. So sets lie outside the field
of the part–whole relation. Be as it may, this acknowledgment is no reason to dis-
count all the other respects in which the part–whole relation may be analogous to
identity, and, in particular, no reason to abandon moderate versions of Composition
as Identity.

11 .6 LAST RESORT OPTIONS

There is no denying that all of the options we have discussed are very costly. One
might be tempted to avoid those costs by questioning one or more of the three back-
ground assumptions highlighted at the outset. One might (i) deny that there is an
all-inclusive domain of all objects to begin with. Or one might (ii) deny that unres-
tricted quantification over an all-inclusive domain is ever available for purposes of
absolutely general inquiry. Or, alternatively, one might (iii) question the legitimacy
of plural or, otherwise, second-order quantification over an all-inclusive domain. The

more interestingly, Ernst Zermelo writes in Zermelo (1908): ‘A subset of M that differs from 0 and
M is called a part of M . The sets 0 and {a} do not have parts.’
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purpose of this section is to make explicit what would be required of such a response
and to suggest it would be far more costly that the options considered above.

Let me begin with the first option. One might (i) deny that there is an all-inclusive
domain of all objects to begin with. Without this assumption, the problem never
gets off the ground. The difficulty with this move of course is that in the absence of
independent support for the skeptical claim, the move will remain ad hoc and unmo-
tivated.

There are in the literature two familiar motivations for the thought that there is no
all-inclusive domain of all objects. One claims that the question of what objects there
are and how they are individuated is relative to a conceptual scheme. One who asks
what exactly is the cardinality of the universe is often under the spell of ‘metaphys-
ical realism’ and thinks that the question makes sense even from an ‘external’ vantage
point from which to assess her own conceptual scheme. Once one realizes the error,
one is supposed to acknowledge that the question of what exactly is the cardinality
of the universe is relative to a conceptual scheme. The answer ‘a strongly inaccess-
ible cardinal’ is perfectly fine relative to the conceptual scheme of a proponent of
ZFCSU; likewise, the answer ‘a power-of-some cardinal κ ’ is fine relative to the con-
ceptual scheme of a proponent of atomistic extensional mereology. From the fact that
the two answers are incompatible, we might perhaps infer that the two conceptual
schemes provide rival descriptions of the world. But since there is no conceptual-
scheme-independent answer to the question of what exactly is the cardinality of the
universe, none of them have more claim to be true than the other. And the existence
of rival descriptions of the world is not, the suggestion ends, much of a reason to be
alarmed.

Unfortunately, this will not do as a general response to our problem. For the
difficulty arises only for a theorist who is tempted to adopt atomistic extensional
mereology and ZFCSU. In the scenario under consideration, atomistic extensional
mereology has as much right to be considered part of the theorist’s conceptual scheme
as ZFCSU. When she assesses the claim implied by ZFCSU that the universe is
strongly inaccessible in size, she is not evaluating the answer to the question of what
is the cardinality of the universe from an ‘external’ vantage point but rather from a
conflicting theory which happens to be part of her conceptual scheme. Perhaps one
will want to conclude that the combination of the two packages, atomistic exten-
sional mereology and ZFCSU, is incoherent and may never be part of a legitimate
conceptual framework. The realization of the incompatibility of the two still calls for
a decision as to which package to abandon. But it is doubtful that one would then be
better off than the ‘metaphysical realist’.

The other line of response appeals to considerations of indefinite extensibility. The
existence of an all-inclusive domain is now questioned on the grounds that some
concepts are indefinitely extensible and thus yield a hierarchy of ever more inclus-
ive extensions. The concept of set, in particular, is supposed to be a case in point.
Because there is no maximal extension of the concept set, we are, the suggestion con-
tinues, not entitled to the claim that the cardinality of the universe of set theory is
strongly inaccessible. Talk of the cardinality of the universe of set theory is misguided
at best and, according to some friends of indefinite extensibility, outright incoherent.
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If sets enter into the part–whole relation, the universe of atomistic extensional mere-
ology, if it exists, will encompass the universe of set theory. Hence if we have reason
to think there is no universe of set theory, we will have reason to think that there is
no universe of atomistic extensional mereology and the question of what exactly is its
cardinality will again be dismissed as incoherent.

But this will not help one unless one already has a use for indefinite extensibility,
and it would seem unwarranted to take our problem to show, by itself, that there are
indefinite extensible concepts. It seems to me that the question of whether there are
indefinitely extensible concepts should be settled by independent considerations. But
unless such considerations are in place, indefinite extensibility will not be of much
help for present purposes.

Alternatively, one may choose to question either the assumption that (ii) unres-
tricted quantification is ever available for purposes of absolutely general inquiry or
(iii) the legitimacy of plural or, otherwise, second-order quantification over an all-
inclusive domain. But if it comes down to a choice between (ii) or (iii), one should
probably prefer the first over the second. One had better, I think, to question the
availability of unrestricted quantification over an all-inclusive domain. Since the
development of a complete semantics for unrestricted quantification requires the
flight into plural or, otherwise, second-order quantification, to question the avail-
ability of such resources without thereby questioning the availability of unrestricted
quantification over an all-inclusive domain would place one into a very uncomfort-
able position. A philosopher in this position would acknowledge the phenomenon
of unrestricted quantification without the benefit of semantic reflection on our
language.

We are left with (ii) or the rejection of the availability of unrestricted quantification
over an all-inclusive domain. This availability could be questioned on at least two dif-
ferent grounds. One might suggest that our quantifiers are invariably subject to subtle
contextual restrictions which prevent them from ranging over an all-inclusive domain
of all objects. Or, alternatively, one might hold that our quantifiers are semantic-
ally ambiguous and thus subject to some sort of systematic ambiguity akin to Rus-
sell’s typical ambiguity. Unfortunately, by itself, (ii) will not do as a response to our
conflicts.⁵³ What we learn from the argument used to establish the incompatibility of
(1) and (2) and (3) and (4) is that there is no single domain over which the quantifiers
used in the formulation of ZFCSU and atomistic extensional mereology range. For
such a domain would have to be both strongly inaccessible and power-of-and-strongly
inaccessible, which is impossible. This will remain the case even if all our quantifiers
are systematically restricted by context or otherwise. And the point will remain even
if our quantifiers happen to be systematically ambiguous. So for the strategy under
consideration to succeed it must be accompanied by some guarantee that the quan-
tifiers used in the formulation of each package never range over one and the same
domain.

But how is such a guarantee to be provided? Perhaps one might argue that, by some
very subtle mechanism, context invariably manages to enforce different restrictions

⁵³ I am indebted to Daniel Nolan and Stephen Yablo here.



330 Gabriel Uzquiano

on the quantifiers used in the formulation of each package. But unless some account
of the relevant mechanism is provided, the present response will be incomplete at
best. Moreover, one would in addition face very difficult questions when pressed on
the question of what to make of contexts or sentences in which our quantifiers are
explicitly required to range over both sets and parts as with the sentence ‘All sets have
sets as parts.’

More promising, it seems to me, would be to suggest that, despite appearances to
the contrary, the quantifiers used in each case are hopelessly ambiguous. We might
begin with Zermelo’s observation in Zermelo (1930) that there is a well-ordered
sequence of universes of ZFCSU, where each universe is strictly more inclusive than
its predecessor. But no matter how much we insist on the absence of explicit or other-
wise contextual restrictions, we find that nothing in the semantic value of our quan-
tifiers permits us to single out one universe over the others as the intended universe
of set theory. A similar suggestion might be made on behalf of atomistic extensional
mereology. We know this. No model of ZFCSU is a model of atomistic extensional
mereology. But we may take advantage of the fact that the models of ZFCSU are lined
up in a well-ordered progression of ever more inclusive universes in order to specify
a procedure that will take us from certain models of ZFCSU to models of atom-
istic extensional mereology. The result will be a progression of ever more inclusive
models of atomistic extensional mereology. Our procedure will begin with a model
of ZFCSU whose individuals make up a model of atomistic extensional mereology
and leave the interpretation of the part–whole relation on individuals unchanged.
Then extend the universe of ZFCSU to include all proper classes of items in the ini-
tial universe. The proper classes in question are, in fact, sets in the next model in the
progression of models of ZFCSU. To obtain a model of atomistic extensional mere-
ology, we will now have to interpret the part–whole relation on sets to apply to a
pair of non-empty sets just in case the first is a subset of the second. We may, if we
want, follow David Lewis in Lewis (1991) and treat the empty set as the mereological
sum of all individuals. The result will be a model of atomistic extensional mereology,
albeit not of ZFCSU. We are left with a progression of models of atomistic exten-
sional mereology that mirrors the progression of models of ZFCSU whose individuals
make up a model of atomistic extensional mereology. But the suggestion continues,
that nothing in the semantic value of our quantifier allows us to single out one uni-
verse over the others as the intended universe of atomistic extensional mereology. All
we know for sure is that the quantifiers used in the formulation of each package may
not simultaneously range over a single domain. That, however, should not be a reason
for concern.

But much like before, by itself, the present conflict is not enough to motivate the
view that our quantifiers are hopelessly ambiguous. It seems to me that the question
of whether they are should be settled by independent considerations. But unless such
considerations are in place, typical ambiguity will not be of much help for present
purposes.

There is one additional respect on which the responses discussed in this last section
are very costly. For they all force us to deny that absolute generality is ever attainable.
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But most philosophical inquiry and ontology, in particular, would seem to aim for
absolute generality. If our quantifiers are semantically ambiguous, for example, then
we will never in a position to unequivocally state an ontological hypothesis such as
the view that there are no merely possible objects. One would have expected the truth
value of this hypothesis to be settled once and for all. But to declare unrestricted quan-
tification semantically indeterminate undermines this expectation.

Other responses mentioned in this section undermine the prospects of absolute
generality in other ways. But my own inclination is to pay some of the costs incurred
in by other solutions to our problem in exchange for absolute generality. I am
inclined, in particular, to take the conflicts discussed in this paper to show that we
must proceed with caution in the formulation of absolutely general theories. We
should be aware of the fact that they may impose serious constraints on the size of
the universe and, when a conflict arises, be prepared to either modify some of the
absolutely general theories we are tempted to accept or, in some cases, abandon the
presumption of absolute generality for some of them.
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12
Is it too much to Ask, to Ask for Everything?

Alan Weir

Most of the time our quantifications generalize over a restricted domain. Thus in the
last sentence, ‘most of the time’ is arguably not a generalization over all times in the
history of the universe but is restricted to a sub-group of times, those at which humans
exist and utter quantified phrases and sentences, say. Indeed the example illustrates
the point that quantificational phrases often carry an explicit restriction with them:
‘some people’, ‘all dogs’. Even then, context usually restricts to a sub-domain of the
class specified by the count noun. Although teenagers like to have fun by being, they
mistakenly think, overly literal—‘Everyone is tired, let’s get to bed’: ‘everyone: you
mean every person in the entire universe?’—competent language users have to be
sensitive to context virtually all the time.

But is it always the case that generalization is over a restricted domain? On the face
of it, to claim this is paradoxical. If we say:

(1) For every generalization and every domain D, if D is a domain over which the generaliza-
tion ranges, D is restricted; that is, there are some things x which do not belong to D.

what do the quantifiers in (1) range over? Not everything, if (1) is correct. But if
‘every generalization’ does not include in its scope all generalizations then (1) is com-
patible with some generalizations being unrestricted. If the variable D does not range
over all domains, then perhaps some domains are unrestricted, notwithstanding what
(1) says. If these two quantifiers range over all generalizations and all domains, respec-
tively, consider the union of the domain range which, by assumption, contains all the
domains. This certainly seems to be a totality we can consider. If we substitute this
totality, call it

⋃

D, for D then we get ‘there are some things x which do not belong
to

⋃

D’ which is false because the quantifier ‘there are some things x’ ranges over
items in

⋃

D and there is nothing in
⋃

D which does not belong to it.¹
Like others in this debate, I will call the proponent of the problematic sentence

(1) the ‘relativist’, because she believes all generalization is relative to a non-universal
domain or context, and I will call her opponent the absolutist. The most popular
response by relativists to the problem just adumbrated (indeed it is hard to think

Thanks for advice and comments on an earlier draft to the editors, to Kit Fine, Christopher
McKnight, and Stewart Shapiro, with especial thanks for detailed comments which forced some
needed clarification to Agustín Rayo.

¹ Cf. David Lewis (1991), p. 20, Vann McGee (1997), p. 48, Timothy Williamson (2003).
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of any other plausible alternatives) is to appeal to some sort of schematic generality
or systematic ambiguity.² How does this help? If, in a sentence such as ϕx → ψx,
the variable x is interpreted schematically then, so ‘schemers’ tell us, it must not be
thought of as elliptical for a generalization of the form ∀x(ϕx → ψx) read as, [all ϕs
are ψs]. The sentence on its own cannot be used to make any assertion but should be
thought of as essentially gappy. A notation such as ϕ( ) → ψ( ) perhaps brings out
the point better. We interpret a schema by specifying a class of substitution instances
for a language L for which we have already given a full interpretation. The schema is
correct in a given interpretation of L iff all sentences of the form ϕ(t) → ψ(t) are true
in L, where t belongs to the appropriate substitution class. Thus the axiom schema of
separation (or subsets schema) of set theory:

∀x∃y∀z(z ∈ y ↔ (z ∈ x & ( )z))

is correct just in case for all one-place formulae with free variable z in our set-theoretic
language, the result of substituting any such formula for ( )z in the above is true in L.

The idea then is that we interpret D in (1) as a schematic variable. But if we ima-
gine our informal metalanguage has been formalized as a language ML we run back
into the same problems. To claim that (1) is correct is to claim that every appropriate
substitution for D in (1) is true in ML. But when the relativist steps back and inter-
prets the metalanguage ML in which she makes her claims, the range R of its variables
will include all domains, including R itself, and when we substitute R for D we get the
claim that

there are some things x which do not belong to R

which is false in ML.
The relativist is well aware that it is a fatal mistake to try to interpret schem-

atic readings of claims such as (1) in a non-schematic metalanguage: we must go
schematic ‘all the way up’. When we take the scare-quotes away and try to be more
literal, appeal will be made to some hierarchies: an ‘open-ended sequence’ of substi-
tution classes and a hierarchy of metalanguages generated by the expansion of the
class of substitution terms for the schematic variable. What manner of beasts are the
‘sequence’ of substitution classes and the ‘hierarchy’? Are they set-theoretic animals?
Surely not, else it seems inevitable we could give a non-schematic account of them
which would yield a non-schematic generalization over all domains. But if not, we
need to know more about them. Moreover if the relativist really does go schematic
‘all the way up’ then she will never say anything assessable as true or false. She will be
in the position of someone always making utterances like ϕ( )→ ψ( ) but counselling
us never to take these as elliptical for [every ϕ is a ψ].

² Cf. Geoffrey Hellman, ‘Against ‘‘Absolutely Everything’’!’ and Shaughan Lavine, ‘Something
about Everything’, both in this volume. This tradition goes back to Charles Parsons (1974) and a
similar line is also pursued re. semantic paradoxes by Tyler Burge (1979). However a very different
and original relativist response is developed by Kit Fine in this volume; in my view, his response
presupposes a radically anti-realist interpretation of the ontology of mathematics but I cannot
expand on this here.
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But I will not follow the dialectic with the relativist any further. In my view,
Timothy Williamson in his ‘Everything’ (2003) has already given us a very detailed
and powerful critique of relativism. If nothing else, Williamson shows us that it is a
highly problematic and paradoxical, if not downright incoherent, position. Why on
earth, then, would any philosopher want to adopt it? Why make such a paradoxical
claim? As so often, philosophers have been driven from one paradox into the arms of
another. Because of its great simplicity and power, set theory has been the preferred
way to do formal semantics. The idealized languages which some theorists investig-
ate with a view to shedding light on natural languages are interpreted by set-theoretic
models in which generalization is over a domain (or domains) and each such domain
is in turn a set. Thus we might interpret a formalized version of set theory itself, say
first-order ZFC, by taking its variables to range over a domain which consists of inac-
cessibly many objects which are, or are to play the role of, the sets. But it is a theorem
of ZFC and related set theories that there is no universal set. If there were a set u with
∀y(y ∈ u) then by the following instantiation of the subsets axiom scheme:

∃y∀z(z ∈ y ↔ (z ∈ u & z /∈ z))

we would quickly prove the existence of the Russell set r with r ∈ r ↔ r /∈ r and just
as quickly prove, in classical and many other logics, a contradiction.³ So there cannot
be a universal domain, if domains are sets.

Although one might not adopt set-theory as a framework for formal
semantics—category theory or a theory of properties might be pressed into
service instead, among other alternatives—the problem seems quite general. There is
no universal domain, no object which can play the role of a range for quantifiers in a
systematic semantic theory and to which everything belongs, including the universal
domain itself.⁴

We seem to be in Kantian territory here: we have highly plausible arguments in
favour, on the one hand, of the proposition that there can be no unrestricted quan-
tification and, on the other, of the proposition that there must be such quantifica-
tion. Perhaps a presupposition common to both opposing sides is false; abandon it
and a solution to the antinomy will emerge. I am going to suggest that something
along those lines might indeed be what is going on. In the next two sections I look
at some extant forms of absolutism, first what I will call ‘domain-free’ absolutism,
next domain-based absolutism. I reject both but come down in favour of a heterodox
domain-based absolutism; the remaining sections sketch the main elements of it.

12 .1 ABSOLUTISM: DOMAIN-FREE SEMANTICS

There is a strong and well-argued tradition—Richard Cartwright’s ‘Speaking of
Everything’ (1994) provides an early and influential statement—which argues that

³ So quickly that many writers treat a biconditional of the form p ↔∼ p as itself a contradiction.
⁴ See Williamson’s generalization (2003, p. 426) of Russell’s paradox which makes no appeal to

set theory but rests mainly on the assumption that interpretations are objects.
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interpretations, including interpretations of quantificational languages with unres-
tricted quantification, need not be based on domains. I will understand, in what
follows, ‘domains’ to be objects, indeed objects which satisfy a principle of compre-
hension. That is, for each domain D there is some predicate ϕ of current English (or
‘scientific English’) such that something belongs to D iff it satisfies the predicate ϕ. In
Cartwright’s view, there need be no ‘domain’, no ‘range’, no ‘totality’ over which the
variables generalize. How can this be? Do we not need domains in order to achieve
the goals for which the formalization of language is a means?

What goals are these? One aim is to give a rigorous account of logical consequence
so that we can investigate its properties (and, as it happens, turn up interesting and
surprising facts about expressibility, computability and so on). Our informal notion
of consequence is that premises 	 entail a conclusion C just in case there is no pos-
sibility of all the premises being true but C false; in any possible situation in which
all the premises are true, the conclusion is. In pursuit of rigor, we replace the murky
notion of possibility with that of a model and say that in all models in which all of 	

are true, C is true (equivalently, in classical bivalent semantics, in any model in which
C is false, one of 	 is false). But models are set-theoretic entities containing domains
and so, in generalizing over models, we generalize over domains.

Another goal is to give a systematic account of the meaning of important logical
notions such as ‘every’. We semi-formalize some mathematical English into a sen-
tence such as ‘for every number x there is some number y with x < y’. Our account
of truth for generalizations entails that this universal generalization is true relative to
an assignment σ to variables just in case for every x-variant assignment σ (x/α) like σ

except, at most, that it assigns α from the domain D to x, the open sentence �there is
some number y such that x < y� is true relative to σ (x/α). How can we give such an
account unless the definition of truth generalizes to truth relative to all variant assign-
ments? Can we do this without domains?

The answer seems to be yes. George Boolos (1985) developed an ingenious altern-
ative.⁵ A slight variant of his idea is that of an interpretative relation R. This relates pre-
dicate and variable terms to objects subject to the requirement that the relation must
be a function when restricted to singular terms. For a singular term t, we never have
R(t, α) and R(t,β) holding with α 
= β. Boolos showed how to define a notion of
truth for a sentence P relative to the relation R–True(R, P)–without any substantive
use of set-theory. For particular sub-languages we can reinstate our old set-theoretic
ways of looking at things: the range of the relation R is just the domain of the model,
the set {x: R(F,x)} is just the extension of the predicate term F. But there is no reason
to think we can, or need to, do this in general. In particular, when we interpret a
language with unrestricted quantification, the interpretative relation R will have no
range. There is no domain. Yet we can still define consequence, e.g. by something
like

∀R(∀s(s ∈ 	 → True(R, s)) → True(R, C)).

⁵ For further elaboration see e.g. Rayo and Uzquiano (1999), Rayo and Williamson (2003),
and Williamson (2003).
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An obvious problem arises. Thus far I have been assuming languages are first-order
but now we are utilizing higher-order quantification to give a semantics for first-order
language. Yet higher-order logic is still under a cloud in some quarters; and even if we
accept it we have now incurred an obligation to explain its semantics.⁶

Two different types of worry about higher-order quantification must be distin-
guished. One concerns the expressive power of second-order languages. On ‘standard’
interpretations, second-order logical consequence, semantically defined, is not recurs-
ively axiomatizable; no program will churn out all and only the sequents in which the
antecedent set logically entails the conclusion. But I have no worries about this recurs-
ive unmanageability, which after all is shared by many systems other than second-
order logic. The distinctive worry, relevant to our current concerns, is as follows. A
natural way to explain what

∀R(∀s(s ∈ 	 → True(R, s)) → True(R, C))

means is that it means that for all relations R, if all sentences s in 	 are such that
True(R,s) then True(R, C). Similarly second-order mathematical induction:

∀X∀x((X 0 & ∀y(Xy → X (Sy))) → Xx)

might be glossed, in the context of a first-order domain of numbers as: for all proper-
ties P, if zero has P and the successor of any number which has P also instantiates P
then every number instantiates P. But a generalization of the form

all properties P such that . . . P . . . are such that P

is grammatically of the same type as

all numbers n such that . . . n . . . are such that n .

Higher-order quantification seems to be just quantification over a restricted sub-
domain, a subset of a universal domain of ‘entities’; this universal domain
includes relations, properties and objects (that is, particulars–entities which have no
instances). The denial that this all-inclusive, cross-categorical domain exists would
seem to be just a special case of the relativist denial of unrestricted quantification, with
the same paradoxical consequences. Thus:

⁶ Boolos interpreted the higher-order quantification as plural quantification (1984). It may be
contested whether plural quantification really is higher-order but all that really matters for current
purposes is that it is not first-order quantification and that, in the hierarchy of metalanguages to
be considered below, plural quantification has to be explicated in turn by locutions which cannot
be glossed as English plural quantification. For more on the limitations of plural quantification see
Weir (1998a), §6 and Williamson (2003), §9, pp. 455ff. My own view is that ordinary English
plural quantification—‘some dogs are black’—is a pre-theoretical, vague version of ‘at least n dogs
are black’ where the lower-bound cut-off point for n which turns the plural generalization from
false to borderline true varies with context but is always greater than one. The readings which do
the work for Boolos—‘some critics admire only each other’ etc.—seem to me most naturally read
as quantification over ‘Aristotelian’ properties, i.e. instantiated properties. But nothing hinges on
whether I am right on this point.
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A property like having mass one gram and an object like the moon stand in no relation Rxy
whatsoever; thus they do not both belong to the same domain which variables x and y range
over.

seems to be a self-stultifying claim in much the same way that the claim that all quan-
tification is restricted is.⁷

If we accept, however, that higher-order quantification is just one sort in a multi-
sorted system of quantification, one sub-domain of a wider overall domain, then,
however construed, it is not going to enable us to interpret languages as having unres-
tricted quantification. Not unless we make some highly unorthodox moves in logic
and set theory, at any rate. For Cantor’s theorem, which is provable in pure second-
order logic,⁸ shows us that if, for every subset of the domain of individuals U, there
corresponds an element in the range of the second-order quantifiers (and no two sub-
sets of U correspond to the same element of the quantifier range) then U cannot be
the entire universe. This assumption about the range of the second-order quantifiers
is standard, for ‘standard’ second-order logic. Hence our individual quantifiers do not
range over absolutely everything; at least some of the ‘properties’ cannot also be in the
first-order domain so it does not cover all the entities one can generalize over.

Williamson’s answer is not to cling to the anchor in a shipwreck but rather to hold
his higher-order nerve (2003, p. 455). He does not seek to explicate higher-order
quantification metalinguistically by using first-order quantification but instead treats
it as sui generis. Or rather he treats it as belonging to a hierarchy of kinds, second-order
quantification interpreted by third-order, third-order by fourth-order and so on. I
have raised qualms about the conceptual framework in terms of which one develops
this hierarchy elsewhere (1998a, §8).

But suppose we rest content for the moment with a broadly hierarchical posi-
tion. Williamson still has the problem of explaining what higher-order quantification
means, if we are not to gloss it as first-order multi-sorted quantification over sub-
domains of the domain of individuals. His answer⁹ is firstly to adopt a fragmented
Fregean ontology, with mutually exclusive categories of property and object¹⁰ and
then to argue that

It is quite within the spirit of Frege’s philosophy to insist that one can state matters perspicu-
ously only in a formal language such as his begriffsschrift. In that notation (without Basic Law
V), quantification into predicate position is simply incommensurable with quantification into
name position; (p. 458)

continuing (p. 459):

⁷ Frege’s notorious troubles with ‘the concept horse’ spring to mind here but bring in
additional issues, concerning whether the property/object distinction can be given a purely syntactic
formulation, which I do not intend to address.

⁸ Shapiro (1991), pp. 103–4.
⁹ For a similar answer, see also Rayo (this volume), especially Section 9.5.

¹⁰ Frege’s division was actually between functions and objects; the semantic value of predicates
being special functions which map objects to truth values. The choice of Begriff, ‘concept’, as the
term for such functions is unfortunate for anyone who is a realist about properties, that is, who
sharply distinguishes mind-independent properties from linguistic and psycho-semantic items such
as predicates and concepts.
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Perhaps no reading in a natural language of quantification into predicate position is wholly
satisfactory. If so, that does not show that something is wrong with quantification into pre-
dicate position, for it may reflect an expressive inadequacy in natural languages. We may have
to learn second-order languages by the direct method, not by translating them into a language
with which we are already familiar.

Now it is certainly true that we can expand natural language by the incorpora-
tion of concepts and locutions which had been deliberately introduced into artificial
languages. If one looks at proofs in mathematics books, for example, (as opposed
to print-outs of computer-generated proofs) they are very rarely fully formal but are
written in natural language with a sprinkling not only of logical symbols but also of
logical syntax:

∀x, if x is such that ∃y, x ∈ y then . . .

and so on. Proofs are written in ‘Loglish’, as Montague put it; the formal ideas aug-
ment English.

Of course when introducing tyros to notions such as the universal quantifier, we
explain its meaning in a natural language such as English or some other. We might,
for example, explain the role of bound variables by noting the functional similarit-
ies with anaphoric pronouns and have a stab at explaining multiple quantification
using those more unnatural parts of English (e.g. lawyers’ English, spoken as it is
by unnatural people) where something like it is needed.¹¹ But even in this case the
formal symbols are no mere codes or abbreviations for pre-existing natural language
locutions.

But although Williamson is clearly right on this in the general case, we do, non-
etheless, gloss a sentence such as ∀x(x ∈ ω → ∃y(y ∈ ω & x ∈ y)) by �for all sets x,
if x belongs to ω then there is a set y in ω to which x belongs� or something similar.
It is essential to the role which ∀ plays when it is used in informal natural language
proofs that it gets that gloss.¹² The conceptual innovation Frege, Peirce and Schröder
made was to extract from arbitrary sentences multiple-gap open sentences; to see in
(m ∈ ω & n ∈ m) a pattern which would come to be represented in lambda notation
as λxy(y ∈ ω & x ∈ y), thus as a closed relational predicate; or by λy(y ∈ ω & x ∈ y)
hence as an open one-place predicate to which a quantifier such as ∃ can be applied
to yield ∃[λy(y ∈ ω & x ∈ y)].

But if we are not to interpret higher-order quantification by glosses such as ‘for
all properties P’, can they play the role we wish them to play in semantics? If, for
example:

�R(∀s(s ∈ 	 → True(R, s)) → True(R, C))

is offered as a formal surrogate for ‘in any possible situation in which all of 	 are
true, C is true’, how can it play this role if we are explicitly warned not to construe
�R as [for any relation R] or anything along those lines. One might look to analogy,

¹¹ Cf. George Boolos (1985), pp. 165–6.
¹² Some may reject the gloss of ∀ as ‘for all’ and ∃ as ‘for some’ on free logic grounds; if so,

assume the rules which govern the quantifiers are amended in your favoured free logic fashion.
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as theists often do when they tell us that ‘good’ is correctly applicable to God not in
a univocal way, as applied to a good human, nor in an equivocal way, as a pun in
bad taste, but rather analogically. The formal analogies, however, between the proof
theory for � and the proof theory for first-order ∀ are not sufficient. We often teach
the meaning of ∀ by exploiting the formal analogies between, on the one hand, ∀I
and ∀E and, on the other, n-ary &I and &E for multiple conjunction (P1 & P2 . . . &
Pn) but these analogies do not mean that finite conjunction can play the role of the
universal quantifier in formalising ideas like ‘all numbers have a unique prime fac-
torization’. The matter does not admit of conclusive adjudication but I submit that
if higher-order quantification is definitely not to be construed along the lines of ‘for
all properties P’ and so on then it is very unclear how it can play a role in explicat-
ing logical consequence and the semantics for ordinary quantification in which we
generalize over interpretative relations.

12 .2 ABSOLUTISM: DOMAIN-BASED SEMANTICS

What has motivated domain-free semantics is surely the feeling that the set-theoretic
paradoxes render impossible a domain-based account of unrestricted quantification.
True, there are set theories which admit a universal set: Quine’s NF and ML, the the-
ories of Church, Mitchell and Oberschelp (1973),¹³ for example—all theories which
can be developed within classical logic. But they block paradox by restricting the sub-
sets axiom. As Williamson points out (2003, pp. 425–6), thus crippled the theories
seem incapable of providing an adequate account of ordinary restricted quantification
which can be over domains specified by any arbitrary condition expressible in our lan-
guage, or of logical consequence interpreted as truth under arbitrary substitutions of
meaningful terms for simple terms. One could reply that the subsets axioms itself is
incoherent or mathematically impossible but this is hugely implausible.

Perhaps the only domain-based picture which has been taken seriously as a found-
ation for a semantics of unrestricted quantification is the Dummettian notion,
developed from ideas of Russell, of indefinite extensibility.¹⁴ An interpreted predic-
ate—‘set’, ‘ordinal’, ‘object’, as used in English, say—is indefinitely extensible iff
given any definite totality of items satisfying the predicate, a new object not in that
totality but satisfying the predicate can be generated. Clearly the theory of sets presup-
posed here is not naïve set theory, for according to naïve set theory, for any predicate
P there is a set S = {x : Px} whose members are all and only the individuals which
satisfy the predicate.

I have expressed the doctrine in terms of definite totalities but Dummett often
talks also of indefinite ones.¹⁵ It seems that to every predicate P (including indefin-
itely extensible ones) there corresponds a unique indefinite totality. For indefinitely

¹³ For Church and Mitchell, see T. E. Forster (1992), especially chapter 4.
¹⁴ For indefinite extensibility see Dummett (1991), p. 317 especially footnote 5. See also

‘The Philosophical Significance of Gödel’s Theorem’, in Dummett (1978) especially pp. 194–7
and Dummett (1981), pp. 531–3; (1993), pp. 441–3, 454–5.

¹⁵ Dummett (1981), p. 516; (1991), p. 316.
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extensible P, we may associate a growing sequence of definite totalities, each a more
accurate approximation to the predicate’s extension but none fully adequate; the limit
point of this sequence, the extension itself, is an indefinite totality. According to
Dummett, intuitionist, not classical logic is the right logic to use when quantifying
over such domains.

What, though, are such limits of the sequence of ever more closely approximating
partial extensions but naïve sets, or perhaps naïve properties, satisfying naïve com-
prehension: x belongs to the indefinite totality corresponding to property P iff x is
a P? If so, then a move merely to intuitionist logic is not radical enough since naïve
comprehension is inconsistent in intuitionist as well as in classical logic. Alternatively
when Dummett describes indefinite totalities as ‘illegitimate totalities’ (1981, p. 529)
he may mean that there is no such totality, no such object at all; what is indefin-
itely extensible is the concept or interpreted predicate and the only extensions which
are assigned to it are ‘definite’ sets, albeit in a sequence of ‘hazy’ length (cf. 1991,
pp. 316–17, see also 1994, p. 248). Leaving aside worries about what the singular
term ‘length’ can refer to here, other than a naïve, universe-sized ordinal,¹⁶ develop-
ment of Dummett’s idea in this direction would seem to involve eschewing domain-
based semantics for the domain-free version we have just been discussing.

12 .3 RESOLUTION: GOING NAÏVE

Relativist and absolutist approaches to quantification, whether domain-free or else
based on domains seem each and all to run into contradictions or become self-
stultifying. The only approach scouted which has not done so is a domain-based
approach in which domains are naïve or ‘indefinite’ totalities. An assumption under-
lying virtually all the recent discussions, however, is that this approach is definitely
ruled out since it, most clearly of all, runs into contradiction; doesn’t the Russell para-
dox show this? This is the assumption which I believe must be challenged. Of course
the package of classical logic, which we can divide into classical operational rules and
classical structural rules, taken together with naïve set theory is, as Russell (and Zer-
melo) showed, inconsistent and trivial. To be more precise, then, the assumption
which should be challenged is that the fault lies with the set theory rather than with
the logic. Given the intuitive plausibility of the classical operational rules, the most
likely other culprit is the classical structural rules. ¹⁷

This radical line has thus far only been developed to any significant extent
by Graham Priest (1987), and other dialetheists. Priest believes that some

¹⁶ For this point see my (1998b), §i.
¹⁷ It is true that the distinction between operational and structural rules is not clear-cut and can

be effected in different ways in different proof architectures but it is, I would argue, clear enough for
the purposes to which I wish to put it here. Thus in Gentzen–Prawitz natural deduction systems,
one-step moves such as &I and &E are operational rules; by contrast, Cut or Transitivity, is a
structural rule. This is a rule which says, for example, that a structure which consists of proof of A
from 	 and one B from Ŵ and finishes with an extension to A&B by &I is itself also a proof from
premises 	 ∪ Ŵ.
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contradictions are true and in some cases is prepared to embrace contradictory
theories, such as he believes naïve set theory to be. He has, of course, to work with a
paraconsistent logic in which contradictions do not trivialise the theory. Dialetheists
seek to gain converts by speaking to the unconverted in a gentile tongue, for example
ZFC in a background of classical logic, showing from within that background that
naïve set theory in a paraconsistent logic such as LP is not trivial. But despite rising
interest in dialetheism most philosophers remain unconverted, refusing to accept
that there can be true contradictions. Now I too am of that number, though I think
dialetheism is a thought-provoking position which deserves serious consideration.¹⁸
Given the choice between the difficulties which relativism, domain-free absolutism
and ‘non-naïve’ domain-based absolutism run into on the one hand, and embracing
true contradictions on the other, most philosophers, myself included, would settle
for one of the former three options. What I will attempt to do in the remainder
of this piece is sketch a different way to ‘go naïve’, a way which does not involve
embracing true contradictions.

How should we compare the different approaches in this area, for example domain-
free with domain-based absolutism? Among the desiderata for a comprehensive
semantics of quantification for a language L, I would include the following:

(i) an account of logical consequence for L inside L;

(ii) a naïve satisfaction predicate L expressible within L;

(iii) a soundness proof for L from within L;

(iv) a recursive explication of how the semantic value of complex expressions, such as
quantifications, depends on those of their parts;

(v) a conditional, in terms of which key equivalences can be expressed, which satis-
fies the deduction theorem: if 	, A |= B then 	 |= A→ B;

(vi) accommodation of a universal domain—this being an object in the universal
domain to which all members of the domain, including itself, belong to;

(vii) a reassuring validation that the whole package is coherent via the provision of a
model from within some comfortable, familiar theory such as ZFC.

The main motivation for the first three criteria is idea that hierarchical
approaches to the paradoxes merely engender super-paradoxes at a different level (see
Weir, 1998a, Priest, 1987). Clause (iv) is what we would expect from any composi-
tional semantics whilst (v), in my view, has strong independent motivation. The sixth
clause is motivated by the severe problems I have urged attend both relativism and
domain-free absolutism whilst the seventh seems to speak for itself.

But perhaps not. Certainly it is too much to ask, if we ask for all of (i) to (vii).
Moreover I would target (vii) as first to be thrown out the balloon. If one is con-
vinced by the anti-hierarchical considerations and thinks there is something rotten
in the foundations of ZF-type theories, why expect them to cohere with a proposed
alternative? But if that is right, the only fully satisfactory way to go is to adopt the

¹⁸ See my ‘There are no true contradictions’ (2004).
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proposed non-classical logic and naïve set theory in the informal metatheory. Since,
however, that would be a task way beyond the confines of this paper I will also try
to speak to the Gentiles. I will develop an approximation to a fully satisfactory pos-
ition, working with a naïve theory of properties to play the role of domains, rather
than full naïve set theory, and show it consistent from within a conventional classical
background.

As one ought to expect, this ‘naïve recapture’, this attempt to get at a naïve per-
spective from within the jaded classical framework, will not in the final result give
us all of (i) to (vi). I will return at the end to consideration of how much we have
achieved, how it compares with rival perspectives, especially domain-free absolutism,
and what this all says about the Kantian predicament we seem to find ourselves in.

12 .4 SYNTAX AND SOME SEMANTICS

The obvious direction to look, if one is wanting to approximate naïve semantics in
a framework of standard set theory and classical logic, is towards inductive theories
of truth as found in Kripke (1975) and in Martin and Woodruff (1975). The first
task is to develop a naïve theory of properties.¹⁹ Probably the most natural approach
for an anti-hierarchical, domain-based absolutism is multi-sorted first-order logic in
which properties are a sub-category of the domain of individuals. However I will work
here in second-order logic in order to facilitate comparison with what I take to be
the most promising extant absolutism, the domain-free approach of theorists such as
Rayo, Uzquiano, and Williamson.²⁰

I will develop this approach starting from a second-order base language L0 which
has countably many singular and first-order relational constants and countably many
first and second-order variables. L0 is to have the usual bivalent semantics with the
second-order variables ranging over what I will call the ‘attributes’ of the individuals.
I will, for convenience only, identify them with sets of individuals. For reasons which
will become clear, I will adopt a Henkin semantics: that is the class of attributes in a
model need not be the full power set of the set of individuals; models will, however,
be ‘faithful’ that is satisfy the second-order Axiom of Comprehension.²¹

It will be convenient to assume that theories in L0 all contain a standard set the-
ory; I will choose second-order ZFCU, that is second-order ZFC amended to allow
for atoms or urelements in the object language.²² L0 contains, then, the member-
ship predicate ∈ and the identity predicate = and also a distinguished predicate S to
pick out the sets. Since we can model sequences of elements, including urelements, in
ZFCU we can dispense with n-ary relational variables for n > 1 and simulate them

¹⁹ Hartry Field (2003a, 2003b, 2004) has developed a naïve theory of properties but using a
different conditional from my own. I am indebted to Field for some points made in conversation
and correspondence which saved me from going down a blind alley.

²⁰ Rayo and Uzquiano (1999), Rayo and Williamson (2003), and Williamson (2003), Rayo this
volume and Uzquiano this volume.

²¹ Cf. the slightly different definition in Shapiro (1991), p. 89.
²² So I assume a stronger set theory in the informal metatheory.
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by attributes true of n-ary sequences.²³ For future use I will distinguish also another
predicate NP which is to pick out, among the urelements, the naïve properties.

A model for language L0 is, therefore, a pair 〈D, I 〉 with the domain D divided
firstly into a domain of individuals in turn divided into two infinite, exclusive and
exhaustive sub-domains, the Sets and the Urelements, and secondly into a domain
of attributes each a subset of the individuals. The interpretation I assigns to the dis-
tinguished predicate constant S the members of Sets as its extension and assigns to
the binary predicate ∈ a relation with Sets as its range (identity is interpreted stand-
ardly). For any individual α in Sets, the diagram of I(∈) determines the ‘members’ of
α, all those members β of D such that 〈β, α〉 belongs to I(∈). Given an adequate set-
theoretic definition of ordered pairs, this in turn determines which members of Sets
are functions, that is satisfy the usual definition of function, which members are in
the domain of a particular function, what the image of the function is for a particular
individual as argument and so on. I assigns to each constant an item of the appropri-
ate type: an element of the domain for singular constants, attributes—subsets of the
domain—for predicate constants.

Now it will be useful proof-theoretically to have a two-place function term, which I
will write x〈y〉. The intended interpretation here is that if, in a meta-theoretic assign-
ment µ, we assign to x a function and to y an item in the domain of that func-
tion, then µ(x〈y〉) is the image of µ(y) under µ(x). In all other cases we choose some
dummy object as the referent. What we want, in particular, is that the following rule
be sound:

∃!z〈y, z〉 ∈ x

x〈y〉 = z

Hence we stipulate that I interprets the application operator x〈y〉 so that the applica-
tion rule above is sound:–if α is a function with β in its domain and γ the image of
β under α, the application function maps 〈α, β〉 to γ .

It will also simplify proofs if we admit class brackets {x : ϕx} and λ terms λxϕx; for
future use we also add property terms [x : ϕx]. To do this, recursively define a count-
able hierarchy of languages by expanding the singular terms of Ln+1 to include those
of Ln augmented by terms {x : ϕx} and [x : ϕx], with ϕ a one-place open sentence of
Ln and expand the atomic predicates so that Ln+1 includes λxϕx; inductively define
the rest of the wffs of Ln+1 as normal. The language L is the union of all the languages
of this hierarchy.

Semantically, the intended interpretation of {x : ϕx} is that it stands for the set of
all those objects which satisfy ϕ, if such a set exists in the domain. That is, if there is
an element of the domain to which all and only the objects which satisfy ϕ bear the
relation we assign to ‘∈’ then this is the referent of the class term. What if there is no
such object? Empty terms do not gel well with inductive semantics so I will work with
a non-free logic and stipulate that in this case the class term picks out an urelement.
This ensures that all instances of the schema:

∼ ∃x∀y(y ∈ x ≡ ϕy) ⊃∼ S{x : ϕx}

²³ See Shapiro (1991), §9.1.1.
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are true. The logical constant ⊃ is a defined constant, defined by A ⊃ B =df .∼ A ∨
B with A ≡ B =df .(A ⊃ B) & (B ⊃ A). We also distinguish one special individual
among the individuals with no members as the empty set, the sole member-less object
which is a set:

S{x : x 
= x}.²⁴

Thus at Ln+1 the semantic clauses for the term-forming operators are that the ref-
erent of {x : ϕx}, relative to an assignment µ to free variables, is the item α in Sets
such that the class of all β such that 〈β, α〉 belongs to I(∈) is just the extension of ϕ

in Ln relative to µ, if, that is, there is such an α. If not, the referent is some designated
dummy item in Urelements. For λ terms, the attribute assigned to λxϕx in Ln+1 is
simply the extension of ϕx in Ln. Hence λ conversion is sound for our semantics:
from the formula ϕx/t we can conclude to the atomic predication λx(ϕx)t and vice
versa. For our second-order quantifier rules, then, we can specify ∀I and ∃E as in
standard first-order natural deduction with the appropriate restrictions on free vari-
ables whereas generalization in second-order ∃I and instantiation in second-order ∀E
only allows replacement of the quantified variable for atomic predicates, a category
which includes λ terms.²⁵

A proof by induction shows us that the semantic value of an expression remains
constant in every language Li to which it belongs so that L =

⋃

i∈ω

Li has a well-defined

semantics. What of the semantics for property terms? Referents for these terms are
defined outright independently of the hierarchy of languages, in a way I will specify
below, and exhaust the sub-domain NP.

The admissible models of L are those models which satisfy the axioms and rules,
that is the axioms and rules of second-order logic (including comprehension) the
axioms of second-order ZFCU and the application rule (call this system ZFCU+).
With set brackets in play, our axioms can take such forms as

∀xS({y : ∀z(z ∈ y ⊃ z ∈ x)});

this is the power set axiom, saying that for any individual the subsets of that individual
form a set. Sets, non-urelements, then satisfy the comprehension axiom:

∀Y (S({x : Yx}) ⊃ ∀x(x ∈ {x : Yx} ≡ Yx))

Since we want to be able to carry out formal syntax inside our object language, we
assume that arithmetic is developed inside ZFCU in a way which allows for that. In
this development, certain set-theoretic terms will be designated standard numerals of
the numbers and one term will be the canonical name S of the successor function.
Given a coding of the simple expressions of syntax as numbers (or an identification
of them with numbers), expression strings, construed as sequences of numbers, are
part of the ontology of our theory. Using Gödelian techniques, we can further code

²⁴ In ZFCU, of course, the extensionality axiom has to be weakened to (Sx & Sy) ⊃ (∀z(z ∈ x
≡ z ∈ y) ⊃ x = y).

²⁵ I assume standard classical first-order proof theory for L.
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these strings as numbers, and show that key syntactic and proof-theoretic categories
are definable as recursive sets of numbers. In particular, we can prove the represent-
ability of the provability relation and prove Gödel’s diagonalization lemma: for any
one-place predicate ϕx of L there is a sentence δ such that

ZFCU+ |= δ ≡ ϕ|δ|

Here |ϕ| is a metalinguistic parameter whose interpretation is as follows: if metalin-
guistic parameter ϕ is assigned as referent an object language expression with Gödel
code n, |ϕ| is assigned the object language numeral Sn0 (i.e. 0 preceded by n occur-
rences of S), that is, it is assigned the canonical name of that expression (under the
coding). The arithmetization of syntax in our precise language L means that we have
all the formal mechanisms in place to develop a semantical theory in ZFCU+ itself.

12 .5 NAÏVE PROPERTIES

But to do this we need to loosen up a little and get a bit fuzzy by expanding from L
to a language L+ for which bivalence fails and for which we will provide an induct-
ive semantics. We add to the vocabulary of L a new relational predication which is
to express instantiation. I will use a different style of epsilon–ε–for this. We can also
add countably many new predicate constants. As is common, I will approximate inde-
terminacy, in this classical framework, by introducing a third truth value 1/2 in addi-
tion to truth (1) and falsity (0). I will interpret the logical operators by the strong
Kleene rules; that is, negation flips 1 and 0 and maps 1/2 to itself whilst conjunc-
tions are true only if both conjuncts are true, false if one conjunct is and otherwise
take value 1/2. The clause for disjunction is dual to the conjunction clause while the
quantifiers simply generalize the conjunction and disjunction rules. That is, keeping a
fixed domain D implicit and letting µ[x/α] be the assignment function which agrees
with µ except, at most, on variable x to which it assigns α ∈ D, an existential gener-
alization ∃xϕx is true according to µ (write this as µ(∃xϕx) = 1) if there is an α ∈
D such that µ[x/α](ϕx) = 1, µ(∃xϕx) = 0 if for every α ∈ D, µ[x/α](ϕx) = 0, oth-
erwise µ(∃xϕx) = 1/2. The clause for ∀ is dual and the second-order clauses are the
same except that second-order X is assigned an attribute from the domain of attrib-
utes. For L+ this is a set of pairs, each pair e consisting of two mutually exclusive
subsets of D, positive e+ and negative e− extensions. Predicate constants belonging
to L are always assigned a pair whose terms exhaust D.

The atomic clause in the definition of satisfaction is the obvious one:

Y (x1, . . . xn) takes value 1 relative to µ if 〈µ(x1), . . . µ(xn)〉 ∈ µ(Y )+, takes value 0 if 〈µ(x1),
. . . µ(xn)〉 ∈ µ(Y )−, otherwise takes value 1/2. (Where one of the terms in the atom is a con-
stant, it receives in every assignment the value assigned by I.)

L+ is formed by accumulating a hierarchy of languages L+n+1 just as with L with
the same recursive clauses for class and λ terms but with the proviso that {x : ϕx} is
assigned the dummy non-set individual if the extension of ϕ in L+n is not bivalent.
The λ terms are assigned the same extensions as the embedded open formulae, as
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before, only this time the extensions are positive and negative pairs, not always
exhaustive. An inductive proof shows that no sentence of the sub-language L of L+

has an indeterminate value.
The central idea in inductive theories is that we start from the valuation v0 given by

model 〈D, I 〉 and proceed to generate a hierarchy of richer valuations v1, v2, . . . , vω,
vω+1, . . . . with earlier and later valuations related by v ≪ v′, which is to be read:
if v(P) = 1 then v′(P) = 1 and if v(P) = 0 then v′(P) = 0. That is v′ may render
determinate a sentence indeterminate in v but never change the value of a sentence
determinate in v. We then add a ‘jump operator’ J(x). This is what takes us from one
valuation to its successor–v1 is J(v0)–(plus a further rule for limit ordinals). The cru-
cial property required of the jump operator is monotonicity, the preservation of the
≪ relation, that is if v ≪ v′ then J(v) ≪ J(v′). Not every semantics for the logical
operators is compatible with monotonicity, but the Kleene semantics is. Under this
semantics, a complex sentence never ‘loses’ determinate value, when the value of an
immediate constituent changes, so long as the change in the constituent is merely
from indeterminate to determinate.

Now as Kripke noted in his account of truth (Kripke, 1975, p. 70), he could have
given an inductive theory of a satisfaction relation, a relation holding between assign-
ments and open formulae, rather than a truth predicate applied to sentences. But the
technique which works for �σ (x) satisfies |ϕx|� will also work for t ε [x : ϕx].

First of all we need to define the reference relation for property terms. Consider
‘unrestricted’ inductive models 〈D, I 〉 in which referents may be assigned completely
freely to property terms: though syntactically complex they are treated in such models
as semantically unstructured. Define ϕ ∼= ψ by: in every unrestricted model, and for
every assignment to free variables, the value of ϕ is the same as the value of ψ. Partition
the class of predicate terms by the relation ∼=. Expand the notion of a model to that
of a triple 〈D, I , N 〉 where N bijects the partition onto NP. The referent of [x : ϕx]
is then N (||[x : ϕx]||) where ||[x : ϕx]|| is the equivalence class to which ϕx belongs.

Having fixed the reference of each property term, we must now characterize induct-
ively the extension of ε. We stipulate that every admissible model assigns a completely
empty extension to ε, i.e. 〈∅, ∅〉. The J rule is very simple: at J(v) the value of t εy, rel-
ative to an assignment µ to free variables, is exactly the value at v of ϕx/t, relative to
the same assignment µ where µ(y) ∈NP and N –1(µ(y)) is ||[x : ϕx]||, 0 where µ(y) /∈
NP. For this definition to be sound, ψx/t and θx/t must take exactly the same value
at v, where both ψx and θx belong to ||[x : ϕx]||. But this follows since ψx ∼= θx and
v is a special case of an unrestricted inductive model.

At limit stages of the sequence of valuations generated from v0 by the jump rule
we set the positive extension of ε, the set of all pairs on which ε takes value 1, to
be the union of the positive extensions at each earlier valuation. Similarly, the neg-
ative extension at vλ is the union of the negative extensions at all earlier valuations vα ,
α < λ.

The jump operator is indeed monotonic, under this interpretation of ε.²⁶ The proof
is by induction on formulae complexity. The key clause is the atomic clause for ε:

²⁶ I leave the relativity to an assignment µ implicit.
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Suppose v ≪ u but it is not the case that J(v) ≪ J(u), in particular

(i) J(v)(t ε [x : ϕx]) = 1 but

(ii) J(u)(t ε [x : ϕx]) = 0. (The case with 1 and 0 reversed is symmetrical, the extrapolation
to cases in which the right-hand term of the relation is not a property term being straight-
forward).

From (i) and (ii), the jump rule gives us v(ϕx/t) = 1 and u(ϕx/t) = 0. But this contradicts
v ≪ u.

A similar proof for limit ordinals shows that, in our hierarchy of valuations, for
α < β, vα ≪ vβ . The positive and negative extension of ε ‘grow’ as we ascend the
hierarchy, nothing ever drops out of one or other. But simple cardinality considera-
tions show that, just as in the natural and economic worlds, this growth cannot go
on for ever. Let the domain D of individuals of our base model be of cardinality
ℵα. Then the maximum size of the positive extension of ε is (ℵα × ℵ0) = (gran-
ted the axiom of choice) ℵα, likewise for the negative extension. Hence the hierarchy
must reach a fixed point vκ , with vκ+1 = J(vκ ) = vκ , for some ordinal κ of cardin-
ality ≤ ℵα . It cannot extend, adding new pairs at each stage, into larger ordinals for
there are not enough pairs to provide fuel for the growth.

It follows that

vκ (t ε[x : ϕx]) = vκ+1(t ε[x : ϕx]) = vκ (ϕx/t).

At the fixed points of the construction, in other words, we ‘equalize’ the two sentences
t ε [x : ϕx] and ϕx/t–they must take the same value, 1, 1/2 or 0. The semantic value
of a wff of L+ for a model M = 〈D, I 〉 can therefore be defined as its value at the
fixed point generated from its base valuation v0 which starts from the empty extension
assigned to ε.

Thus the following two rules:

X (1) ϕx/t Given X t ε [x : ϕx] Given
X (2) t ε [x : ϕx] 1, εI X ϕx/t 1, εE

are sound under any sane definition of soundness. When ϕx/t is true so is t ε[x :
ϕx] and vice versa, when one is false so is the other.

What are the relations between attributes and properties in this theory?²⁷ Well, for
every attribute there is a unique corresponding property:

|∀X∃!y(y = [x : Xx])

For every assignment of an attribute, a subset of the domain, to X , the assignment of
the referent of [x: Xx] to y, and of it alone, renders y= [x: Xx] true. Oddly, though, it
is not the case that to every property there corresponds an attribute; thus ∃Y ([x : x 
=
x]= [z : Yz]) ) is false in every model since [x : x 
= x]= [z : Yz] is false in every model

²⁷ I have chosen these two expressions simply to reflect the categorical distinction between the
two–second-order versus first-order–in the system, with no thought at all to traditional metaphysical
usages of the terms.
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relative to every assignment to Y , the two predicate terms belong to distinct equival-
ence classes under ∼= (the introduction of substitutional quantifiers would get round
this problem). Moreover although:

∀X ∀y(Xy ≡ y ε[x : Xx])

is never false, the vagaries of the material bi-conditional ≡ mean that it is not true
either: no instance in which we assign a non-bivalent extension to X is true (see ahead
Section 12.9). Nonetheless, in the special case of the ε rules in which ϕ is a predicate
variable X we have the interderivability of X t with t ε [x: Xx] no matter what attribute
we assign to X (or what object we assign to t). This is true, moreover, in all models
including full standard models in which the attribute domain is the power set of the
domain of individuals, which itself may be of any cardinality we like.

How can that be since we know ‘from the outside’ that there are only countably
many properties? What turns the trick is the coordinated flexibility, via the inductive
clause for ε, of the free variable sentences X t and t ε [x: Xx] which can do duty simul-
taneously for any and every claim concerning which members of D belong to which
subsets of D. Moreover when we come to one-place open sentences, with only one
individual variable free, there are only as many of those as the size of the language.

Nonetheless, because the informal metatheory is standard model theory, familiar
limitations re-surface. Our domain D contains as one among the other objects a uni-
versal property [x : x = x] which is to serve as a universal domain. But it is not really a
universal domain. Though every member of D bears the instantiation relation of the
model to [x : x = x], we know ‘from the outside’ that D is only a mere (representation
of a) set, not a universal domain. Does this not represent capitulation to the relativ-
ists? Compare the domain-free absolutist who can give a metatheoretic semantics for
object theories L without, it seems, any ontological contraction: the variables of L are
interpreted as ranging over everything.²⁸

The difference with relativism is this: convinced, as I hope everyone will be, by
the coherence of the naïve theory of properties (and the ‘naïve’ account of interpret-
ations I will base on it) we can expand the resources of our informal metatheory to
include the naïve theory and carry out the semantics not using Kripkean inductive
methods but the naïve theory of interpretation. Having promoted naïve properties to
our actual language, we take them at face value. The property of being self-identical
really is universal: everything instantiates it, and since it is an ‘it’, it is an object which
can function as a universal domain.

One obvious objection is that no one in their right mind will be convinced of the
coherence of the naïve theory of properties. Even without extensionality, the theory
falls to a version of Russell’s paradox, namely the heterologicality paradox. Here we
make trouble with the property h: [x : ∼(x ε x)], the property of not instantiating
oneself:

²⁸ But if the argument of Section 12.1 is right, this is an illusion. The domain-free absolutists
apparent generalization over everything contains an explicit restriction to a sub-domain of particulars
thus excluding some entities, namely properties.
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1 (1) [x : ∼ (x ε x)] ε [x : ∼ (x ε x)] H²⁹

1 (2) ∼([x : ∼ (x ε x)] ε [x : ∼ (x ε x)] 1εE
1 (3) ⊥ 1,2, ∼E
— (4) ∼([x : ∼ (x ε x)] ε [x : ∼ (x ε x)] 3,∼I
— (5) [x : ∼ (x ε x)] ε [x : ∼ (x ε x)] 4 εI
— (6) C 4,5 ∼E

where C is any sentence whatsoever. (I take the∼E rule to have as its conclusion any
sentence one likes, including the absurdity constant ⊥ which features in the (clas-
sical and intuitionist) ∼I reductio rules.) Line (6) thus shows us that C is a theorem,
whatever C is, of classical logic augmented by the ε rules. Clearly we cannot work in
classical logic.

12 .6 LOGIC

This illustrates the important moral that giving a definition of truth in a model is only
one part of formal semantics. We also need a non-classical definition of logical con-
sequence. In (1998b), I developed a ‘neo-classical’ restriction, one which I claimed
achieved a pleasing ‘classical recapture’, that is validated full classical logic in the spe-
cial case of sub-languages (such as L) where every sentence has a determinate truth
value. The idea is to retain classical operational rules but to hold that the structural
principles of classical logic which we use to build longer proofs out of individual infer-
ence steps are technical artefacts which are not embedded in the very meanings of the
logical operators. These structural principles are entirely sensible in the contexts for
which classical logic was developed, namely the formalization of standard mathemat-
ics, but it is very rash to suppose that they hold sway for reasoning in general, in vague
contexts, for example, or in semantics.

The Sorites perhaps illustrates this most clearly. We are faced with a series of steps
each of which is intuitively compelling leading us from premises which seem obvi-
ously true to a conclusion which seems obviously false. There is a clash between clas-
sical operational rules, classical structural rules, the assumption that all the sentences
have determinate truth values, and the evident non-falsity of the premises and non-
truth of the conclusion. A natural pre-theoretical response is to say that the argument
as a whole is not valid even though each step seems acceptable. A further natural
intuition is that the vague predicates in Sorites arguments have many instances inter-
mediate, in obvious senses, between the true premise and false conclusion, instances
which are neither determinately true nor false. To hold that it is this intuition, that
some of the sentences lack a determinate truth value, which must go in order to pre-
serve principles of proof architecture devised by mathematical logicians for use in the
precise and determinate world of standard mathematics seems to me bizarre.

Now it is incontestable that for singular arguments–one premise, one conclu-
sion–P entails Q only if the transition is truth-preserving. Cashing this out in formal

²⁹ This is the rule of hypothesis or rule of assumptions reflecting the reflexivity of ⊢.



Is it too much to Ask, to Ask for Everything? 351

semantics means that in no admissible model is P true and Q not true. But it is equally
essential that a valid singular inference be upwards falsity-preserving: in no model is Q
false but P not false. This direction is often forgotten about in classical bivalent con-
texts, where it follows directly from the truth-preservation clause, but in non-bivalent
frameworks in which it does not follow this clause should be added on; the refuta-
tion of hypotheses by valid derivation of false consequences is as much part of logic as
teasing out of (potentially) new truths by valid derivation from a true premise.

But how do we generalize this twin, bi-directional notion of entailment to multiple
premise arguments? In 1998b I argued for the following ‘neo-classical’ definition of
entailment:
a set of wffs X neo-classically entails a set Y (from now on I will use |= to represent
neo-classical entailment) iff :

(a) For any wff C in Y, in any model M in which all wffs in X are true³⁰ but all in Y
but C are false, C is true in M.

(b) For any wff P in X, in any model M in which all wffs in Y are false but all in X
but P are true, P is false in M.

For single conclusion logics, and I will largely neglect multiple conclusion logics in
what follows, this amounts to:

X |= C iff in all models M if all of X are true in M then C is true and if C
is false and all of X but P are true, then P is false.

There are two stronger, more classical notions of entailment. One requires a true con-
clusion, if all premises are true and also a false premise if all premises are false. The
second merely rules out having all premises true but all conclusions false. But the first
rules out the highly intuitive (at least to those uncorrupted by relevantism) rule of
disjunctive syllogism P, ∼P ∨ Q ⊢ Q whilst the second would permit one to move
from a clear logical truth to a necessarily indeterminate sentence, the Liar say, and
also from the latter to a clear logical falsehood, thus blocking the most simple form of
transitivity of entailment: if P |=Q and Q |= R then P |= R.

The neo-classical account, I argued, matches our linguistic behaviour towards mul-
tiple premise inferences such as &I: A, B ⊢ A&B. If we accept A but reject A&B, we
will also reject B. Generalizing this idea, if one rejects the conclusion of an inference
but accepts all premises but P, it is incumbent on one to reject P, mere agnosticism is
insufficient. The neo-classical account of entailment matches this nicely.

On the neo-classical account of entailment, X |= Y if, in every model, the min-
imum value of X is no greater than the maximum value of Y–call this the minimax
condition. In the single conclusion case (in propositional logic) this means that any

³⁰ When discussing ‘true’ and ‘false’ in connection with model-theoretic semantics I am talking
of truth-in-a-model or valuation and likewise falsity (that is truth of negation) in a valuation
or model, and not ordinary disquotational truth. The notion of ‘truth in a model’ is closer to
‘determinate truth’, a notion which certainly comes apart from that of truth. But rather than write
‘true in model M’ each time, I will leave this relativization implicit.
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rule allowing us to go from the sequent X:A to X:B, where A minimax entails B, pre-
serves neo-classical correctness. We can give a complete set of rules for this minimax
transition—de Morgan rules, associativity, commutativity, distributivity, double
negation rules plus the rule allowing us to go from A of the form (C & ∼C) to B
of the form (D ∨ ∼D). But there are non-minimax rules which are sound as single
inference steps yet chaining them together by the usual structural principles of (gen-
eralized) transitivity leads to unsoundness. Thus∼E:

P ∼P
C

is neo-classically correct. The truth-preservation direction is standard; in the other
direction if C is false in a model but one premise true then, by the semantics for
negation, the other is false. Yet a couple of quick steps applying ∼E to the minimax
correct &E can lead us to neo-classical incorrectness, from P&∼P to C, where P and
so P&∼P is gappy and C false:

P & ∼ P

P

P & ∼ P

∼ P
C

Neo-classically, then we can have A, B |= C but not A&B |= C. How can we imple-
ment this proof-theoretically? We need to add a determinacy restriction to the ∼E
rule requiring that any assumption on which both major and minor premise of the
rule are based has to be determinate, that is have a value 0 or 1. Where Det P expresses
the claim that P is determinate the restriction, in Gentzen-Prawitz proof architec-
ture³¹ is:

X Y Z1 . . . Zn

. . . . . . . . . . . .

P ∼P Det Q1 — Det Qn

- - - - - - - - - - - - - - - -
C

where the italicized premises are required for any Qi ∈ X ∩ Y.
This format makes it clear that the restriction is a global, structural one and that

the basic inference step, from P, ∼P to C is legitimate. For reasons of convenience
in presenting proofs I will use, instead of this natural deduction format, the sequent
version in the familiar Lemmon format, though this obscures somewhat the fact that
the restrictions are on the structural not operational rules:

X (1) P Given
Y (2)∼P Given
Zi, i ∈ I (3.i) Det Q Given, ∀Q ∈ X ∩ Y
X,Y,

⋃

i∈I
Zi (3) C 1,2, [3.i, i ∈ I ],∼E

³¹ For a very clear presentation of Gentzen’s system as developed by Prawitz, see Tennant (1978).
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where it is required that
⋃

i∈I
Zi∩ (X ∪ Y) = ∅. In general I will omit the index set I

where it is clear from the context what it is and bracket the determinacy premise line
numbers (i.e. in this example the premises 3.i) by ‘[‘ and ‘]’ as above.

The only other neo-classical restrictions, on the language with operators &, ∨, ∼,
∀ and ∃, are restrictions on ∨E–any assumption on which both the major premise P
∨ Q depends and on which also one or other of the minor premise depends must be
determinate–with an analogous restriction for first and second-order ∃E.³²

But there is a problem in the inductive framework. How do we define determinacy,
Det P? Surely we should want, for determinate determinacy, that Det P takes value
0 if P takes value 1/2, 1 otherwise.³³ But we cannot incorporate such a determinacy
operator in a monotonic framework. For if P went from value 1/2 in valuation v to
value 1 in J(v) Det P would flip from 0 to 1, contrary to monotonicity. The next
best thing is to use instances of the law of excluded middle (LEM) as surrogates for
determinacy. So Det Q, in the above, is just Q∨ ∼Q which at least has the advantage
of being true when Q takes value 0 or 1, even though it is only gappy, not false, when
Q is gappy. The rules, with the determinacy restrictions expressed in this way, are still
sound.

We augment the logic with axioms of the form Det P for every sentence P which is
determinate in every admissible model. Thus Det t = u is an axiom for every pair of
singular terms since we have chosen to interpret the identity relation as determinate.
Similarly, since every sentence of L is determinate in every admissible model, Det P,
for P ∈ L, is an axiom. This gives us our classical recapture. We can reason in wholly
classical fashion inside L since the extra determinacy clauses required in applications
of∼E, ∨E and ∃E are axiomatic.

Since the system is sound, paradox cannot emerge in it. For example, the proof of
the heterologicality paradox is blocked in the following way (h, remember, is [x : ∼
(x ε x)]):

1 (1) h ε h H
1 (2)∼(h ε h) 1 ε E
3 (3) h ε h ∨ ∼(h ε h) H
1,3 (4) ⊥ 1,2,∼E [3]
3 (5)∼(h ε h) 4,∼I
3 (6) h ε h 5 ε I
7 (7) (h ε h ∨ ∼(h ε h)) ∨ ∼((h ε h ∨ ∼(h ε h))) H
3,7 (8) ⊥ 5,6 ∼E [7]

We can go on from here to discharge line (3) and prove ∼(h ε h ∨ ∼(h ε h)), a sen-
tence which entails by minimax moves h ε h & ∼(h ε h). But we can only prove
it from line (7) as assumption. We have 7⊢ ∼ 3 and, indeed, 3⊢ ∼ 7 but this is

³² For soundness see Weir (1998c).
³³ We also need some Det P sentences to be themselves indeterminate if we want to incorporate

higher-order indeterminacy as, in fact, we need to if we want to handle paradoxes such as the Curry
paradox; but I will leave this complication out. See Weir (1999).
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unproblematic as the succeedent formulae at lines 3 and 7 both take value 1/2 in every
admissible model.

12 .7 HOW TO GET SATISFACTION

Now to move to interpretations in domains, including our universal domain [x : x =
x]. For this we need a satisfaction predicate. Let us assume, then, that L+, as well as
adding the instantiation relation ε to L, also adds a three-place predicate Sat(x, y, z).
Our goal is to validate these rules:

X (1) {ψ(σ 〈|vi|〉, . . ., λx(x εσ 〈|Vj|〉) , . . .) }[x : ϕx] Given
Y (2) NA(σ ) Given
X,Y (3) Sat([x : ϕx], σ , |ψ(vi , . . . , Vj , . . .) |) 1,2 SatI

X (1) Sat([x : ϕx], σ , |ψ(vi , . . . , Vj , . . .) |) Given
X (2) {ψ(σ 〈|vi|〉, . . ., λx(x ε σ 〈|Vj|〉) , . . .) }[x : ϕx] 1, SatE1

X (1) Sat([x : ϕx], σ , |ψ(vi , . . . , Vj , . . .) |) Given
X (2) NA(σ ) 1 SatE2

Some explanation is in order. In the application of the rules, the three terms of the
predicate Sat must be filled appropriately. In the first argument place there must
occur a property expression [x : ϕx]. The second argument place can contain any
term, but we shall stipulate shortly that for the predication to be true in a model
the term must stand for a ‘naïve assignment’. This is a function from the variables
of L (and hence L+) which maps all second-order variables into the properties,
the members of the extension of NP. Thus the notion of a naïve assignment
function can be defined in L in ZFCU, NA abbreviates this definition. The final
argument place is to be filled with a numeral whose referent codes for an n-place
predicate.

In the introduction rule SatI, then, the second premise requires that the second
argument place name a naïve assignment to the variables. In the first premise

{ψ(σ 〈|vi|〉, . . . , λx(x εσ 〈|Vj|〉), . . .)}
[x : ϕx]

is the open sentence which results from ψ(vi, . . . , Vj , . . .) (where the vi are the free
individual variables and the Vj the free predicate variables) by replacing each indi-
vidual free variable vk by σ 〈|vk|〉 and each free predicate variable Vm by λx(x ε

σ 〈|Vm|〉) and finally by restricting all quantified variables to the property [x : ϕx] by
the usual sort of relativization operation *:

*∀vθv is ∀v(v ε [x : ϕx]⊃ *θv);

*∃vθv is ∃v(v ε [x : ϕx] & *θv);

*∀V ϕV is ∀V (∀v(Vv ⊃ v ε [x : ϕx])⊃ *θv) and

*∃V θV is ∃V (∀v(Vv ⊃ v ε [x : ϕx]) & *θv);
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How does the inductive semantics validate these rules? We start at the base
valuation v0 (with ε assigned the empty extension as before). Sat(t1, t2, t3) is false
at v0 (generated by underlying model M = 〈D, I , N 〉) relative to a (meta-theoretic)
assignment µ if either of these conditions holds:

(a) µ(t1) is not a member of the extension of NP in M;

(b) µ(t2) is not a naïve assignment function in D (whether it is or not is determined
by the bivalent classical sub-model of M for L);

(c) µ(t3) is not the code of an n-place open sentence;

and we add

(d) in all other cases, the sentence has value 1/2.

Now we must expand the rule for the jump operator J to cater for Sat. We take
over the same clauses (a) to (c) above but change (d) to:

Otherwise Sat(t1, t2, t3) takes the same value in J(v) as

{ψ(σ 〈|vi|〉, . . . , λx(x ε σ 〈|Vj|〉), . . .)}
[x : ϕx] has in v.

where the equivalence class to which ϕx belongs is mapped to µ(t1) by N , where
µ(σ ) = µ(t2), and where µ(t3) codes for ψ(vi, . . . , Vj , . . .).

For this definition to be sound it has to be the case that

{ψ(σ 〈|vi|〉, . . . , λx(x ε σ 〈|Vj|〉), . . .)}
[x : ϕx] has the same value in v as

{ψ(σ 〈|vi|〉, . . . , λx(x ε σ 〈|Vj|〉), . . .)}
[x : ψx]

where ϕx ∼= ψx, but this is easily seen.
These clauses determine the valuation vα+1 = J(vα) given vα . For valuations vλ, λ

a limit ordinal, the rule is that the positive extension of Sat, the set of all triples under
which Sat takes value 1 when the ith component of the triple is assigned to the ith
term of the relation, is the union of the positive extensions at each earlier valuation.
Similarly, the negative extension at vλ is the union of the negative extensions at all
earlier valuations vα , α < λ.

Monotonicity still holds for the augmented jump operation. The argument in the
key atomic case now goes:

Suppose v ≪ u but it is not the case that J(v) ≪ J(u), in particular³⁴

J(v)(Sat([x : ϕx], σ , |ψ(vi, . . . , Vj, . . .)|)) = 1 but

J(u)(Sat([x : ϕx], σ , |ψ(vi, . . . , Vj , . . .)|)) = 0. (The case with 1 and 0 reversed is

symmetrical).

Given Sat has value 1 in J (v), neither of clauses a) to c) is satisfied. Hence

v({ψ(σ 〈|vi|〉, . . . , λx(x ε σ 〈|Vj|〉), . . .)}
[x : ϕx]) = 1 and u({ψ(σ 〈|vi|〉, . . . ,

λx(x ε σ 〈|Vj|〉), . . .)}
[x : ϕx]) = 0. But this contradicts v ≪ u.θ �

and proceeds as before in limit cases and in showing the existence of fixed points.
The fixed point generated from the base interpretation of ε and Sat and with Sat and

³⁴ Again the cases where the terms in Sat are not of the displayed forms are easily extrapolated
from this one.
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ε characterized by their respective inductive clauses provides the semantic valuation
of all wffs in the model M from which it is generated.

The Sat rules are neo-classically sound. It is a condition of correct application of
the rules that clauses (a) and (c) in the semantics for Sat are met. Thus if it is true in
model M that σ stands for a naïve assignment then the truth values of

Sat([x : ϕx], σ , |ψ(vi, . . . , Vj , . . .)|) and

{ψ(σ 〈|vi|〉, . . . , λx(x ε σ 〈|Vj|〉), . . .)}
[x : ϕx]

are the same. If all the antecedent wffs of the conclusion sequent of SatI are true in M
then, by the correctness of the premises, both premise succeedents {ψ(σ 〈|vi|〉, . . . ,
λx(x ε σ 〈|Vj|〉) , . . .) }[x : ϕx] and NA(σ ) are true hence Sat([x : ϕx], σ ,|ψ(vi, . . . , Vj ,
. . .) |) is true in M. Suppose, in the other direction, the latter is false and all members
of X, Y but P are true. It may be that NA(σ ) is false in M in which case P ∈ Y, and is
false by the correctness of the second premise. If NA(σ ) is not false in M, hence true
then {ψ(σ 〈|vi|〉, . . . , λx(x ε σ 〈|Vj|〉), . . .)}[x : ϕx] must be false in M, so P ∈ X and is
false. The soundness of the two Sat elimination rules is also straightforward.

12 .8 UNRESTRICTED QUANTIFICATION IN THE
NEO-CLASSICAL FRAMEWORK

How do naïve properties and naïve satisfaction help us provide a domain-based
semantics for unrestricted quantification? We let our domains be naïve properties,
so that we do indeed have a universal domain, namely [x : x = x]. The combination
of naïve comprehension for domains together with the characteristics of the satisfac-
tion predicate enables us to get a great deal of what we want, semantically speaking,
even given the determinacy restrictions placed on the logic. We have a naïve satisfac-
tion predicate for our language expressible in that language itself. We have a universal
domain which includes every member of the domain and thereby every property of
members of the domain; moreover to every attribute there corresponds a property
in the domain of individuals, as explained above. Hence interpreting second-order
variables by naïve assignments, as is done ‘inside’ L+, rather than by subsets of the
domain, as is done ‘from the outside’, is perfectly reasonable. In our semantic the-
ory as given by the Sat predicate, we can interpret an arbitrary predicate variable by
any property we like, since for arbitrary σ and property P, σ (X /|[x : ϕx]|) is also a
naïve assignment, where N (|[x : ϕx]|) = P. Any condition stateable in the language
determines a property which can function as a domain of interpretation.

Furthermore, we can give, inside L+, what is arguably a complete recursive account
of the meaning of quantification in L+, at least insofar as the quantification is over
determinate domains. By a determinate domain I mean a property [x : ϕx] such that
ϕx/a ∨ ∼ ϕx/a is an axiom, where a is any singular term. That is, in every admiss-
ible model and for every assignment µ to ϕx/a, µ(ϕx/a) takes value 1 or 0. There are
determinate domains: any predicate ψ of L yields one as does the universal domain
[x : x = x] (so determinate domains do not correspond to sets of ZFCU). A complete
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account should tell us that, granted a universal generalization ∀vϕv is true, relative to
such a domain and an assignment σ to its free variables, it follows that every assign-
ment σ (v/α) like σ except that it assigns a member of the domain α to v is true.
Likewise from the latter assumption we should be able to prove (neo-classically) that
∀vϕv is true, relative to σ . Similar proofs should be given for existential generalization
and for (almost all) second-order quantifications. (Appendix.)

In particular, upon assuming that a universal generalization ∀xϕx (or ∀X ϕX ) is
absolutely true, true relative to [x : x = x], it follows that if we take absolutely any-
thing we like in the entire universe (or, more narrowly, any property in the universe),
it satisfies ϕx(ϕX ); similarly if we assume everything whatsoever (or just every prop-
erty) satisfies ϕx(ϕX ) then it follows that the respective generalizations are true. The
noun phrase ‘the universe’ in this explanation looks, walks and quacks like a singular
term and that is exactly what its formalized version [x : x = x] is: another item in the
universe, for of course [x : x = x] ε [x : x = x].

Now, as already acknowledged, our semantics for [x : x = x] does not really assign
it the real universe, the entire shebang, in our formal models. The extension of
[x : x = x], in the sense of the class of all those items in D which bear to N (|[x : x =
x]|) the relation assigned to ‘ε’, is just the domain D itself and this, in the metathe-
ory, is a ZFCU set. But, as I emphasized in Section 12.5, this does not represent a
betrayal of absolutism. L+ is a mathematical construct, a formal system designed to
shed light on, and perhaps extend or modify, the conceptual and logical resources
of natural language. If we are confident that the modelling of naïve properties and
the Satisfaction relation in the formal language shows the coherence of those notions
then we can add those notions to our metatheoretic repertoire and reason with them
providing we are prepared to abide by the determinacy restrictions on ∼E, ∨E and
∃E. Thus (if our confidence is reasonable) we are justified, in the metatheory, in gen-
eralizing over interpretations and domains, in saying that a universal domain exists
and in concluding that, for example, ‘everything has spatio-temporal location’ is true
granted that every object in the universal domain, every object whatsoever that is, has
spatio-temporal location.

Hence of the desiderata set out in Section 12.3, (vi)—accommodation of a uni-
versal domain, (iv)—a recursive explication of how the semantic value of a quantifier
depends on that of its parts and (ii) a naïve satisfaction predication for the L+ inside
L+ have all been met. What of goal (i), an account of logical consequence for L+

inside L+?
We already have relativization of satisfaction to different ‘models’, that is domains.³⁵

We can go further if we appeal Bolzano-style to substitution functions. A substitution
function is a finite function, thus a finite set of ordered pairs, the first constituent in
each being a code for a simple singular or predicate constant whilst the second codes a

³⁵ We could further complicate the Sat rules by requiring, of each constant in the quoted sentence,
that ϕt, in the singular case, and that ∀x(Fx → ϕx) for a predicate constant F, furthermore that
the range of the naïve assignment be a subset of the extension of ϕ in the model. That way, the
relativization of satisfaction to the domain of ϕ is essentially a relativization to a sub-model. Since
our main interest, however, is in the utterly unrestricted universal domain I will eschew such further
complication.
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well-formed expression (with no free variables) of the same category as the first, simple
or complex. Since admissible models are each to contain a model of ZFCU we exclude
∈ from the domain of substitution functions, we treat it as a logical constant. We
can define each substitution function in ZFCU and, using Gödelian techniques, code
each such substitution function by a number. We can define, in turn, a four-place
satisfaction predicate Sat+(x, y, s, z) by ∃wSb(z, w, s) & Sat(x, y, w), where Sb(z, w, s)
is a ZFCU expression which is true in a model just in case the value σ of s is a
substitution function and the value of w is the image of the value of z under σ .

Granted this, logical consequence can be defined as truth and falsity preserva-
tion under all substitution functions. Specifically, neo-classical logical consequence
is definable in L+ by:

C(X , P) ≡df . ∀x∀y∀z((NP(x) & NA(y) & Sub (z) & Wff( X, P)) ⊃

(∼(∀Q(Q ∈ X ⊃ Sat+(x, y, z, Q))& ∼ Sat+(x, y, z, P)) & ∼ ( Sat+(x, y, z,

∼P)&∃Q ∈ X (∼Sat+(x, y, z, Q) & ∀R((R ∈ X & R 
= Q) ⊃ Sat+(x, y, z, R)))))).

Here Sub(z) is the ZFCU expression representing �z is a substitution function�.
Thus the definition says that where X is a set of codes of formulae, and P a code of
a formula (formalized by Wff(X, P)), the Xs entail P just in case for every property as
domain, every naïve assignment to variables and every substitution function, (a) if all
the substitution instances of the Xs are true relativized to the domain and assignment
in question, the substitution instance of P is true and (b) if the latter is false and all
other premises but Q are true then Q is false.

This definition is adequate in the following sense. If the metatheoretic claim that
	 neo-classically entails θ (	 |= θ) is untrue (and hence false) then it can be shown
that C(X , P) is not true in any model, with X assigned, (under the interpretation of
∈ in N) the set of codes of the 	 sentences and P the code of θ. Conversely if C(X , P)
is not true, in some model M and on those assignments, then 	 |= θ is not true, and
thus false.

While untruth matches untruth, we do not get the ‘internal’ falsity of C(X , P)
matching external falsity of 	 |= θ. This is because while |= is bivalent, C(X , P)
is not. For example, if ∼Sat(x, y, z, P) takes value 1/2 in N but ∀Q(Q ∈ X ⊃
Sat(x, y, z, Q)) takes value 1 then the truth-preservation direction of C(X , P) is itself
gappy. That an entailment claim can be indeterminate is not, in my view, objection-
able. If one accepts genuine indeterminacy of truth it is not clear on what grounds
one can exclude lack of truth value for entailment claims. The problem is that the
internal entailment claim is gappy when it should not be: when we have all premises
determinately true and the conclusion determinately gappy, for example.

One response would be to introduce a determinate satisfaction predicate. Set aside
a three-place monadic predicate of L+ to play this role, call it DetSat. Let the language
L± be the language whose primitives are those of L+ minus DetSat and consider an
arbitrary model M of L+. Starting with the same domains and interpretation as M,
modify the jump rule for Sat by changing clause (d) from

(c) µ(t3) is not the code of an n-place open sentence
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to

(c) µ(t3) is not the code of an n-place open sentence of L±

so that we treat sentences of L+ − L± as, in effect, non-sentences. On the new jump
rule Sat is false of all sentences of L+ − L±, relative to all assignments to variables,
from v0 on. Expand to a fixed point as before to get a variant M*. In this variant
we get equalization between a sentence θ and the application of Sat to (a code for)
a relativized substitution instance of θ only when θ is in L±. Now construct from M
a further variant M** which differs only in that the positive extension of DetSat con-
sists of all sentences of L± which are true in M* (relative to the given domain and
assignment) and whose negative extension is the rest of D. DetSat is thus a bivalent
predicate. Expand to a fixed point using the usual jump rule so that we get equaliza-
tion across all of L+ for Sat in M**; an inductive proof shows that M**, M*, and M
agree on L±.

DetSat(x) therefore gives us a determinate truth predicate for the proper sublan-
guage L±, DetSat(negx) a determinate falsity predicate, where ‘neg’ expresses the syn-
tactic negation-forming operator. If a sentence P ∈ L± is true in M** hence in M* and
M, DetSat(|P|) is true in M**; if P is not true in M**, DetSat(|P|) is false there. Thus
the analogues of SatE1 and SatE2 hold for DetSat restricted to L± but the analogue of
SatI does not hold for DetSat, even thus restricted. We cannot conclude DetSat(|P|)
from P since if the latter is gappy, the former is false; falsity-preservation upwards
fails.

DetSat does indeed enable us to express determinate truth and determinate falsity,
and to regiment inside L+ the metatheoretic proof of soundness; ZFCU gives us all
the resources we need for carrying out the usual inductive proof. But only determ-
inate truth and soundness for the proper sublanguage L±. Similarly, changing ‘Sat’
to ‘DetSat’ in the definition of C(X ,P) gives us a bivalent, determinate and accurate
definition of neo-classical entailment inside L+: but only for the proper sub-language
L±. The ghosts of metalanguages have not been exorcised and clearly not all the desid-
erata can be met.

12 .9 PROBLEMS

So close—but no cigar. Which desiderata are not met? Certainly goal (v), incorpor-
ating a conditional which satisfies the Deduction Theorem, cannot be met. For the
deduction theorem for ⊃ fails neo-classically because ⊃I is not unrestrictedly sound.
We do have the special case where the antecedent is axiomatically determinate:

	, A (1) B Given
— (2) A ∨ ∼A Given
	, A (3) A⊃ B 1, ∨I
4 (4) ∼A H
4 (5) A⊃ B 4, ∨I
	 (6) A⊃ B 2,3,5∨E
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But for indeterminate A we can have 	, A |= B, all of 	 true yet A ⊃ B gappy (e.g.
where 	 = Ø and A and B both take value ½ in every model; this will be the case
when A = B = the Liar, for example).

This is not great news. For example, if we assume, for closed P, ∀σ (Sat([x : x = x],
σ , |P|)),—abbreviate the formula as True |P|—then we can conclude from this P
and vice versa. Therefore it is very natural to put this the following way: if True |P|
then P and if P then True |P|. But that cannot be done in L+. If we had the Deduc-
tion Theorem, for⊃ in L+ then from the interderivability of the truth claim and the
disquoted sentence itself we could, indeed conclude:

|= True |P| ≡ P.

But this we cannot do; similarly we cannot prove t ε [x : ϕx]≡ ϕx/t.
It is possible to introduce a conditional → for which the Deduction Theorem

holds neo-classically but if the conditional is extensional, it must have the
Lukasiewiczian property that A→ B is true when both A and B take value ½ so that
A↔∼A is true when A is gappy. See Weir (1998c) where I take∼(A↔∼A) to define
determinacy. This is a more adequate definition of determinacy than A ∨∼A but for
that very reason such a conditional cannot feature in inductive semantics. Monoton-
icity fails just as with any attempt to give a fully adequate expression of determinacy in
the inductive framework because if A and B are gappy in valuation v but A is true, B
false in J(v) then A→ B flips from value 1 to 0. Similarly it would be natural, when
attempting to formalize domain-restricted quantification, to consider non-standard
formalizations such as binary quantification: ∀x(ϕx, ψx) read as [all ϕs are ψs]. But
we would want ∀x(ϕx, ϕx) always to be true: all bald men are bald men. Again such
an operator would violate monotonicity, indeed we could define→ by it:

A → B ≡df . ∀x(x = x & A, x = x & B) (x not in A or B).

This problem is not insuperable. In Weir (2005) I show how to introduce a non-
extensional conditional into inductive semantics in such a way that A→ B and so A
↔∼A comes out true when A and B are gappy and where, indeed, all Tarskian bicon-
ditionals for a semantically closed notion of truth come out as true. Moreover, unlike
Hartry Field’s conditional,³⁶ which also validates unrestricted Tarskian bicondition-
als, the rule→I, in the form

A (1) B Given
— (2) A→ B 1 →I

holds for my conditional.
The structural rules for the resulting logic are more restricted and convoluted

than for the neo-classical logic for non-inductive, as it were, → but this is no seri-
ous problem, if I am right in thinking that we have no reason to suppose that clas-
sical proof-architecture should hold sway in the realm of the indeterminate. But the
restricted logic of this framework just exacerbates a deep problem with the current

³⁶ See again the references in footnote 19.
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one. Although we can do a lot of semantics for L+ inside L+, thus far we have only
sketched how to demonstrate soundness for the proper sub-fragment L±.

Can we do any better? For some limited cases this can be done: thus for ‘minimax’
rules such as ∼I we can show in L+ that this rule, as applied to arbitrary arguments
in L+, is truth-preserving. But we cannot hope to carry this rule for all steps. There
are a number of problems, such as extending mathematical induction to the full non-
bivalent language and handling falsity-preservation upwards and, most critically, the
fact that the determinacy restrictions in the rules ∨E, ∼E and ∃E (and in the →
rules), when they recur metatheoretically, block a boot-strapping proof of soundness
of those very rules (see Weir, 1999).

So goal (iii)—a semantically closed soundness proof—is not available either; and
since not all of the package is available, the final goal, validation of the whole set inside
a familiar theory, fails too.

12 .10 COMPARISONS AND CONCLUSIONS

What is the upshot then? It has been shown, from within a standard, classical meta-
theoretic framework, that there are coherent object languages L+ which contain a
naïve satisfaction predicate together with a theory of naïve properties and can thereby
express a good deal of their own semantics. Specifically, our L+ theory T, that is
ZFCU+ together with naïve property theory, can explicate, at least in rule form, the
recursive determination of the truth-conditions of first and second-order quantifi-
ers as relativised to arbitrary domains including a universal domain, a domain whose
instances are all the members of the individual domain of L. Moreover, it is provable
inside the theory that to every attribute, every member of the range of the second-
order quantifiers, there corresponds a property in the domain of individuals.

I suggested that the coherence of an object language theory with these properties
makes it reasonable to assume that the metalanguage in which we carry out these sys-
tematic philosophical reflections has these characteristics too, though of course we
can never have an absolute guarantee of freedom from contradiction. That is, we can
assume a naïve satisfaction theory and naïve theory of properties in the metatheory,
providing we are willing to accept the neo-classical determinacy restrictions. If so then
in the context of the background framework the universal domain, the property of
self-identity, really is universal. Everything belongs to the universal domain, includ-
ing every property. In this framework, there is no real need to distinguish attributes
from properties or to think of second-order quantification as categorically differ-
ent from first-order. We can take over from L+ the semantic account of the truth-
conditions of generalizations relativized to contexts; when the context is the universal
domain, we have an intuitive account of a truly unrestricted generalization.

On the negative side, we have seen that though a notion of logical consequence
can also be expressed inside L+ it does not correspond exactly with the meta-theoretic
notion. This last difficulty is one of a number of less than optimal features, including
the absence of a conditional answering to the Deduction Theorem and the inability
to prove soundness for the language as a whole, though a few special cases are possible.
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How does this compare with domain-free absolutism? In the latter framework,
there is no need to restrict the familiar classical logic. Moreover we seem to get a pleas-
ing ontological stability; we can interpret an object language L in such a way that its
ontology is exactly the same as that of the informal metalanguage, which is assumed
to be utterly unrestricted; there is no ontological contraction as there is in inductive
semantics where the ‘universal domain’ of our formal object language L+ is merely a
(non-naïve) set.

However it is noteworthy that domain-free theorists in fact find it very difficult to
avoid ontological expansion, Rayo and Williamson use second-order predicates, pre-
dicates taking first-order predicates as arguments, in order to provide a semantics for
ordinary second-order logic which generalizes over ‘collections’ of individuals. But

the semantic value of a second-order predicate might consist of any ‘supercollection’ of col-
lections of individuals . . . there are ‘more’ supercollections of individuals than there are col-
lections of individuals . . . So there are semantic values a second-level predicate might take
which are not captured by any S[econd]O[rder]-interpretation. Again, this informal explan-
ation is strictly nonsense, since ‘is a collection’ and ‘is a supercollection’ take the position of
first-level predicates in sentences of natural language, even though they are intended to cap-
ture higher-order notions; nonetheless, it draws attention to a helpful analogy between first
and higher-order notions.

Rayo and Williamson (2003, p. 353).

What does it mean to say that such locutions are nonsensical ladders to be thrown
away? If this is read in a very resolute sense—the domain-free theory contains an
essential core of absolute nonsense—then I see no reason why we should spend any
time considering the theory further. But the last comments indicate something dif-
ferent is meant: the phrases in current English are nonsense but they point to a con-
ceptual expansion of the language in which analogous claims make determinate and
illuminating sense.

This returns us to the argument in Section 12.5: it is not at all clear that the
domain-free theorist really does achieve ontological stability. Specifically, the need to
ascend to higher-order logic, in particular the need to interpret first-order languages
using second-order (or plural) quantification prima facie shows that the supposedly
unrestricted quantification being read into the object language L is in fact restric-
ted: to non-properties. If the arguments of Rayo and Williamson in favor of a non-
ontological reading of higher-order quantification (which nonetheless suffices for its
applications in e.g. expressing logical consequence) fail, ascent to higher-order lan-
guages involves ontological as well as ideological expansion.

Moreover the ideological expansion to stronger semantic notions in the non-naïve
case means that the soundness of the rules of the language is not even supposed to be
thinkable, far less provable, even in special cases. True we can conceive of, and prove,
soundness for e.g.∼I, for restricted sub-languages, say for the language of arithmetic.
But in the application of metatheoretic∼I or similar rules in that proof, we are sup-
posed to pretend that we cannot even conceive of what it means for the rules on which



Is it too much to Ask, to Ask for Everything? 363

our demonstration of soundness is based to be themselves sound—we lack the requis-
ite semantic notions. We should smell a rat here.³⁷

Standing back from the specific contrast between domain-based and domain-free
absolutism, what of the claim that the paradoxical elements here point to a Kan-
tian antinomy? What is the presupposition which generates antinomy? I suggest it
is the rejection of naïve comprehension and more generally the rejection of naïve,
closed semantics. It is true that the issue of unrestricted quantification is relatively
independent of that of the coherence of naïve semantics. One could, for example,
espouse unrestricted quantification and be sceptical of the very existence of a system-
atic semantic theory, naïve or ‘jaded’.

Nonetheless there are structural connections. A naïve semantics for language L,
a systematic theory in L of the workings of L, seems to be blocked by the Liar, by
Tarski’s undefinability result on truth. Unrestricted quantification over a domain,
conceived of as an object, seems to be blocked by Russell’s paradox, or Williamson’s
variant. Though the connection between the semantic and the set-theoretic paradoxes
is controversial there are certainly parallels in the standard proofs of antinomy in each
case (and in the ways these are blocked in the neo-classical system). Moreover when
we consider in particular a naïve semantics for a language with a universal domain
the connection seems even closer; Cantor’s powerset theorem and the theorem on
the non-existence of a universal set, both with close connections to Russell’s paradox,
seem to block the possibility of a naïve semantics.

Thus my suggestion that we abandon the view that naïve semantics and univer-
sal domains are impossible and look to revision of the structural rules of logic to
block contradiction. Clearly, given the partial nature of the results in this paper, I
cannot do much more than raise the standard for the naïve approach. What I have
tried to establish, however, is, firstly, that the costs of adopting a naïve absolutist
approach are nothing like as high as ordinarily supposed; less, I would argue, than the
costs of persevering with classical logic and being driven through all the minefields
which await relativist and conventional absolutist theories. Secondly that, whatever
the final prospects for naïve semantics, the idea of a universal domain is perfectly
coherent and should be taken seriously by absolutists. As for relativism, insofar as it
is primarily motivated by fear, if not loathing, of a universal domain, it lacks rational
grounds.

It’s not too much to ask for everything; not too much at all.

³⁷ I am not suggesting that we should doubt ∼I as applied to arithmetic. The function of a
genuine soundness proof is similar to that of a demonstration within naturalized epistemology of
the reliability of, say, our perceptual belief in the table in front of us. If successful, the demonstration
does not strengthen our belief in the table, if unsuccessful it threatens not our belief in the table but
our belief in the psychological and philosophical theories we used in an attempt to account for that
belief. Similar remarks apply to semantic and philosophical theories of the nature of logical particles
and the workings of our language.
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APPENDIX

A recursive account of the dependence of the semantic value of an individual uni-
versal quantifier on those of all its instances can be given in the following rule form,
as restricted to any determinate domain. These proofs are schematic: the terms ϕ, σ ,
and ψ can be replaced by any expressions of appropriate category in L+ and the result
will be proofs. I will simplify, though, in one respect, namely by considering the case
of a generalization with one free variable, an individual free variable v1:

1 (1) Sat([x : ϕx], σ , |∀v0ψ(v0, v1)|) H
1 (2) {∀v0ψ(v0, σ 〈|v1|〉)}[x : ϕx]) 1 SatE1

1 (3) ∀v0(v0ε [x : ϕx]⊃ {ψ(v0, σ 〈|v1|〉)}[x : ϕx]) 2 Def
1 (4) (a ε [x : ϕx]⊃ {ψ(a, σ 〈|v1|〉)}[x : ϕx] 3 ∀E
5 (5) ∼(a ε [x : ϕx]) H
6 (6) a ε [x : ϕx] H
5,6 (7) {ψ(a, σ 〈|v1|〉)}[x : ϕx] 5,6 ∼E
8 (8) {ψ(a, σ 〈|v1|〉)}[x : ϕx] H
1,6 (9) {ψ(a, σ 〈|v1|〉)}[x : ϕx] 4,7, 8∨E
1 (10) NA(σ ) 1 SatE2

1,6 (11) {ψ(σ (v0/a)〈|vo|〉, σ (v0/a)〈|v1|〉)}[x : ϕx] 9, 10 ZFCU+

1,6 (12) NA(σ )(v0/a) 10 ZFCU+

1,6 (13) Sat([x : ϕx], σ (v0/a), |ψ(v0, v1)|) 10,12 SatI
1,6 (14) a ε [x : ϕx]⊃ Sat([x : ϕx], σ (v0/a), |ψ(v0, v1)|) 13 ∨I
5 (15) a ε [x : ϕx]⊃ Sat([x : ϕx], σ (v0/a), |ψ(v0, v1)|) 5 ∨I
— (16) a ε [x : ϕx] ∨ ∼a ε [x : ϕx] Axiom
1 (17) a ε [x : ϕx]⊃ Sat([x : ϕx], σ (v0/a), |ψ(v0, v1)|) 16, 14, 15, ∨E
1 (18) ∀x(xε [x : ϕx]⊃ Sat([x : ϕx], σ (v0/x), |ψ(v0, v1)|)) 17 ∀I

Lines 4:9 illustrate how disjunctive syllogism (DS), i.e. modus ponens for ⊃, is neo-
classically derivable in the form [from C:A and D: ∼A ∨ B conclude C,D: B] where
C and D are two distinct sentences. Similarly ZFCU+ at lines 11 and 12 indicates
that we can derive these intermediate conclusions from their premises by purely clas-
sical reasoning from ZFCU+ because all determinacy clauses are axiomatically true;
we are reasoning about determinate set-theoretic objects, namely assignment func-
tions. Here

σ (v0/a) =df . {〈x, y〉 : (〈x, y〉 ∈ σ & x 
= v0) ∨ (x = v0 & y = a)}

In the other direction we have:

1 (1) ∀x(xε [x : ϕx]⊃ Sat([x : ϕx], σ (v0/x), |ψ(v0, v1)|)) H
2 (2) a ε [x : ϕx] H
1 (3) a ε [x : ϕx]⊃ Sat([x : ϕx], σ (v0/a), |ψ(v0, v1)|) 1 ∀E
1,2 (4) Sat([x : ϕx], σ (v0/a), |ψ(v0, v1)|) 2,3 DS
1,2 (5) {ψ(σ (v0/a)〈|v0|〉, σ (v0/a)〈|v1|〉)}[x : ϕx] 4 SatE1

1,2 (6) NA(σ ) 4, SatE2

1,2 (7) {ψ(a, σ 〈|v1|〉)}[x : ϕx] 5,6 ZFCU+
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— (8) a ε [x : ϕx] ∨ ∼(a ε [x : ϕx]) Given
1 (9) a ε [x : ϕx]⊃ ψ(a, σ 〈|v1|〉 }

[x : ϕx] 7 [8] ⊃I
1 (10) ∀v0(v0 ε [x : ϕx] ⊃ {ψ(v0, σ 〈|v1|〉)}[x : ϕx]) 9∀I
1 (11) {∀v0ψ(v0, σ 〈|v1|〉)}[x : ϕx] 10 Def.
12 (12) NA(σ ) H
1, 12 (12) Sat([x : ϕx], σ , |∀v0ψ(v0, v1)|) 11,12 SatI

Here the disjunctive syllogism or modus ponens at line 4 is provable in the same
way as in the previous proof. At line (6) the reasoning is again purely classical reason-
ing inside ZFCU+ where we show that the result of applying the assignment which
assigns a to v0 to v0 is indeed a and the result of applying σ (v0/a), which is like
σ except on v0, to the distinct variable v1 is just σ 〈v1〉. The ⊃I at line 8 is legit-
imate because the antecedent is determinate: see the discussion at the beginning of
Section 12.9.

A recursive account of the truth conditions of individual existential quantification
can be given in similar fashion. What about second-order quantification? We can give
a nearly complete account, in rule form. The qualification is that we cannot give a
recursive semantics, using properties instead of attributes, for second-order quanti-
fication into property terms [x : θx]. The proofs in the existential case are as follows
(again I exemplify, for simplicity, a case with two free variables, an individual vari-
able v1 and a predicate variable V1 each provably distinct from V0 not in the scope of
[x : θx]):

1 (1) Sat([x : ϕx], σ , |∃V0ψ(V0, v1, V1)|) H
— (2) NA(σ ) ∨ ∼NA(σ ) Axiom³⁸

3 (3) NA(σ ) H
1 (4) {∃V0ψ(V0,σ 〈|v1|〉, λx(x ε σ 〈|V1|〉))}[x : ϕx]) 1 SatE1

1 (5) ∃V0(∀v2(V0(v2) ⊃ v2ε [x : ϕx]) & 4 Def
{ψ(V0, σ 〈|v1|〉, λx(x ε σ 〈|V1|〉))}[x : ϕx])

6 (6) ∀v2(A(v2) ⊃ v2ε [x : ϕx]) & H
{ψ(A, σ 〈|v1|〉, λx(x ε σ 〈|V1|〉))}[x : ϕx]

6 (7) {ψ(A, σ 〈|v1|〉, λx(x ε σ 〈|V1|〉))}[x : ϕx] 6 &E
6 (8) ψ;(A, σ ) 7 Def.³⁹
6 (9) ψ;(A, σ (V0/[x: Ax]) 8 ZFCU+

6 (10) ψ;(λx(x ε [x: Ax]), σ (V0/[x: Ax]) 9 Lemma⁴⁰

6 (11) ψ;(λx(x ε σ (V0/[x: Ax])〈|V0|〉) , σ (V0/[x: Ax]) 10 ZFCU+

6 (12) ∀v2(A(v2) ⊃ v2ε [x : ϕx]) 6 &E
3,6 (13) Sat([x : ϕx], σ (V0/[x : Ax]), |ψ(V0, v1, V1)|) 3,11 SatI

³⁸ Since NA(σ ) is a wff in L.
³⁹ I introduce this as a definitional abbreviation for the formula on line 7; substitutions henceforth

on formulae containing ‘;’ are to be understood as abbreviations for the results of substitutions
corresponding to those on line 7.

⁴⁰ Here we need the substitution lemma, provable by induction, that x ε [x : ϕx] is inter-
substitutable with ϕx everywhere except in the scope of [x : θx].
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3,6 (14) ∀v2(A(v2) ⊃ v2ε [x : ϕx]) & 12,13 &I
Sat([x : ϕx], σ (V0/[x: Ax]), |ψ(V0, v1, V1)|)

3,6 (15) ∃X (∀v2(X (v2) ⊃ v2ε [x : ϕx]) & 14 ∃I
Sat([x : ϕx], σ (V0/[x: Xx]), |ψ(V0, v1, V1)|))

1,3 (16) ∃X (∀v2(X (v2) ⊃ v2ε [x : ϕx]) & 5,15, ∃E
Sat([x : ϕx], σ (V0/[x: Xx]), |ψ(V0, v1, V1)|))

17 (17)∼NA(σ ) H
1 (18) NA(σ ) 1 SatE2

1,17 (19) ∃X (∀v2(X (v2) ⊃ v2ε [x : ϕx]) & 17, 18,∼E
Sat([x : ϕx], σ (V0/[x: Xx]), |ψ(V0, v1, V1)|))

1 (20) ∃X (∀v2(X (v2) ⊃ v2ε [x : ϕx]) & 2, 16, 19∨E
Sat([x : ϕx], σ (V0/[x: Xx]), |ψ(V0, v1, V1)|))

In the other direction we have:

1 (1) ∃X (∀v2(X (v2) ⊃ v2ε [x : ϕx]) & H
Sat([x : ϕx], σ (V0/[x: Xx]), |ψ(V0, v1, V1)|))

2 (2) ∀v2(A(v2) ⊃ v2ε [x : ϕx]) & H
Sat([x : ϕx], σ (V0/[x: Ax]), |ψ(V0, v1, V1)|)

2 (3) Sat([x : ϕx], σ (V0/[x: Ax]), |ψ(V0, v1, V1)|) 2 &E
2 (4) ∀v2(A(v2) ⊃ v2ε [x : ϕx]) 2 &E
2 (5) {ψ(λx(x ε σ (V0/[x: Ax])〈|V0|〉) , σ (V0/[x: Ax])〈|v1|〉,

λx(x ε σ (V0/[x: Ax]〈|V1|〉))}[x : ϕx]) 3 SatE1

2 (6) NA(σ (V0/[x: Ax])) 3 SatE2

2 (7) {ψ(A, σ 〈|v1|〉, λx(x ε σ 〈|V1|〉))}[x : ϕx] 5, 6⁴¹ZFCU+

2 (8) ∀v2(A(v2) ⊃ v2ε [x : ϕx]) & 4, 7 &I
{ψ(A, σ 〈|v1|〉, λx(x ε σ 〈|V1|〉))}[x : ϕx]

2 (9) ∃X (∀v2(X (v2) ⊃ v2ε [x : ϕx]) & 8∃I
{ψ(X , σ 〈|v1|〉, λx(x ε σ 〈|V1|〉))}[x : ϕx])

2 (10) {∃X ψ(X , σ 〈|v1|〉, λx(x ε σ 〈|V1|〉))}[x : ϕx]) 9 Def.
2 (11) NA(σ ) 10 ZFCU+

2 (12) Sat([x : ϕx], σ , |∃V0ψ(V0, v1, V1)|) 9,11, SatI
1 (13) Sat([x : ϕx], σ , |∃V0ψ(V0, v1, V1)|) 1,2, 12∃E
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13
Absolute Identity and Absolute Generality

Timothy Williamson

The aim of this chapter is to tighten our grip on some issues about quantification by
analogy with corresponding issues about identity on which our grip is tighter. We
start with the issues about identity.

13 .1

In conversations between native speakers, words such as ‘same’ and ‘identical’ do not
usually cause much difficulty. We take it for granted that others use them with the
same sense as we do. If it is unclear whether numerical or qualitative identity is intend-
ed, a brief gloss such as ‘one thing not two’ for the former or ‘exactly alike’ for the lat-
ter removes the unclarity. In this paper, numerical identity is intended. A particularly
conscientious and logically aware speaker might explain what ‘identical’ means in her
mouth by saying: ‘Everything is identical with itself. If something is identical with
something, then whatever applies to the former also applies to the latter.’ It seems
perverse to continue doubting whether ‘identical’ in her mouth means identical (in
our sense). Yet other interpretations are conceivable. For instance, she might have
been speaking an odd idiolect in which ‘identical’ means in love, under the misap-
prehension that everything is in love with itself and with nothing else (narcissism as a
universal theory).

Let us stick to interpretations on which she spoke truly. Let us also assume for
the time being that we can interpret her use of the other words homophonically. We
will make no assumption at this stage as to whether ‘everything’ and ‘something’ are
restricted to a domain of contextually relevant objects. We can argue that ‘identical’
in her mouth is coextensive with ‘identical’ in ours. For suppose that an object x is
identical in her sense with an object y. By our interpretative hypotheses, if some-
thing is identical in her sense with something, then whatever applies to the former
also applies to the latter. Thus whatever applies to x also applies to y. By the logic
of identity in our sense (in particular, reflexivity), everything is identical in our sense

Thanks to Kit Fine, Øystein Linnebo, Agustín Rayo, and Gabriel Uzquiano for helpful comments
on a draft of this chapter. A version of the material was presented at the conference at the Central
European University in Budapert; thanks also to the audience there, especially the commentator
Katalin Forkas, for useful discussion.
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with itself, so x is identical in our sense with x. Thus being such that x is identical
in our sense with it applies to x. Consequently, being such that x is identical in our
sense with it applies to y. Therefore, x is identical in our sense with y. Generaliz-
ing: whatever things are identical in her sense are identical in ours. Conversely, sup-
pose that x is identical in our sense with y. By the logic of identity in our sense (in
particular, Leibniz’s Law), if something is identical in our sense with something, then
whatever applies to the former also applies to the latter. Thus whatever applies to x
also applies to y. By our interpretative hypotheses, everything is identical in her sense
with itself, so x is identical in her sense with x. Thus being such that x is identical
in her sense with it applies to x. Consequently, being such that x is identical in her
sense with it applies to y. Therefore, x is identical in her sense with y. Generalizing:
whatever things are identical in our sense are identical in hers. Conclusion: identity
in her sense is coextensive with identity in our sense.¹

Of course, coextensiveness does not imply synonymy or even necessary coextens-
iveness. Thus we have not yet ruled out finer-grained differences in meaning between
her use of ‘identical’ and ours. If we can interpret her explanation as consisting of
logical truths, then, given that the argument invoked about identity in our sense
(reflexivity and Leibniz’s Law) are also logical truths, we can show that the universally
quantified biconditional linking identity in her sense with identity in ours is a logical
truth, so that coextensiveness is logically guaranteed. If the relevant kind of logical
truth is closed under the rule of necessitation from modal logic, then the necessitated
universally quantified biconditional too is a logical truth, so that necessary coextens-
iveness is also logically guaranteed.² But not even a logical guarantee of necessary
coextensiveness suffices for synonymy: we have such a guarantee for ‘cat who licks
all and only those cats who do not lick themselves’ and ‘mouse who is not a mouse’,
but they are not synonymous. Nevertheless, even simple coextensiveness excludes by
far the worst forms of misunderstanding.

But now we must reconsider our homophonic interpretation of all our speaker’s
other words. In her second claim, ‘If something is identical with something, then
whatever applies to the former also applies to the latter’, how much did ‘whatever’
cover? We can regiment her utterance as the schema (2) of first-order logic (for the
record, we also formalize her first claim as (1)):

(1) ∀x xIx

(2) ∀x ∀y (xIy → (A(x) → A(y))

Here ‘I ’ symbolizes identity in her sense; A(y) differs from A(x) at most in having
the variable y in some or all places where A(x) has the variable x. Our speaker will
instantiate (2) only by formulas A(x) and A(y) of her language. But our argument for
coextensiveness in effect involved the inference from xIy and x = x to x = y, where
‘=’ symbolizes identity in our sense. To use (2) for that purpose, we must take A(x)
and A(y) to be x = x and x = y respectively. By what right did we treat x = x and
x = y as formulas of her language, not merely of ours? Perhaps her language has no

¹ The argument goes back to Quine (1961); see the reprinted version in Quine (1966) at 178.
² The logic of indexicals is arguably not closed under the rule of necessitation (Kaplan 1989).

Such problems do not seem to arise for (1) and (2).
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equivalent formulas, and both (1) and all instances of (2) in her language are true even
though ‘I ’ does not have the extension of identity in our sense.

We can be more precise. Let M be an ordinary model with a nonempty domain
D for a first-order language L. Define a new model M* for L as follows. The domain
D* of M* contains all and only ordered pairs 〈d , j〉, where d is a member of D and j
is a member of some fixed index set J of finite cardinality | J| greater than one; pick
a member # of J. If R is an n-adic atomic predicate of L, the extension of R in M*
contains the n-tuple 〈〈d1, j1〉, . . . , 〈dn, jn〉〉 if and only if the extension of R in M con-
tains the n-tuple 〈d1, . . . , dn〉. If the constant c denotes d in M, c denotes 〈d , #〉 in
M*. More generally, if the n-place function symbol f of L denotes a function ϕ in M,
f denotes the function ϕ* in M*, where ϕ*(〈d1, j1〉, . . . , 〈dn, jn〉) is 〈ϕ(d1, . . . , dn), #〉.
Given this definition of M*, it is routine to prove that exactly the same formulas of L
are true in M* as in M.³ Now suppose that the dyadic atomic predicate I of L is inter-
preted by identity in M; its extension there consists of all pairs 〈d , d〉, where d is in
D. Thus (1) and all instances of (2) are true in M. Consequently, (1) and all instances
of (2) are true in M*. Nevertheless, I is not interpreted by identity in M*, for the
extension of I in M* contains the pair 〈〈d , j〉, 〈d , k〉〉 for any member d of D and
members j and k of J. Thus in M* everything has the relation for which I stands to |J|
things, and therefore to |J|−1 things distinct from itself, although one cannot express
that fact in L. Nor does any formula, simple or complex, of L express identity in M*,
whether or not identity is expressed in M by some formula.⁴ We cannot rule out M*

³ Sketch of proof: Let a be any assignment of values in D* to variables. Let a∧ be the assignment
of values in D to variables such that for any variable v, if a(v) is 〈d , j〉 then a∧(v) is d . It is routine
to prove that for any term t, if t denotes 〈d , j〉 in M* relative to a then t denotes d in M under a∧

(by induction on the complexity of t). Thus any atomic formula Rt1 . . . , tn is true in M* under an
assignment a if and only if it is true in M under a∧, by definition of the extension of R in M*. We
show that any formula A of L is true in M* under an assignment a if and only if it is true in M under
a∧ by induction on the complexity of A. The induction step for the truth-functors is trivial. For the
universal quantifier, the induction hypothesis is this: for every assignment b of values in D*, A is
true in M* under b if and only if it is true in M under b∧. Suppose that ∀x A is not true in M* under
an assignment a. Then, under some assignment b of values in D* that differs from a at most over
x, A is not true in M*. By the induction hypothesis, A is not true in M under b∧ . By construction,
b∧ differs from a∧ at most over x. Thus ∀x A is not true in M under a∧. Conversely, suppose that
∀x A is not true in M under a∧. Then, under some assignment a∧! of values in D that differs from
a∧ at most over x, A is not true in M. Let b be the assignment of values in D* like a except that b(x)
is 〈a∧!(x), #〉. Thus b∧ is a∧!, so A is not true in M under b∧. By induction hypothesis, A is not
true in M* under b. Since b differs from a at most over x, ∀x A is not true in M* under a. Thus
any formula A is true in M* under an assignment a if and only if it is true in M under a∧. Finally,
we show that a formula is true in M* iff it is true in M. If A is not true in M*, then, under some
assignment a of values in D*, A is not true in M*, so A is not true in M under a∧, so A is not true
in M. Conversely, if A is not true in M, then, under some assignment $ of values in D, A is not true
in M; but $ is a∧ for some assignment a of values in D* (since we can set a(v) to be 〈$(v), #〉), so
A is not true in M* under a, so A is not true under a. The whole construction is adapted from the
standard proof of the upward Löwenheim–Skolem theorem for first-order logic without identity.
All it really requires is a homomorphism in a suitable sense from M* onto M; thus it is inessential
that an equal and finite number of members of D* are mapped to each member of D.

⁴ Proof: Suppose that A(x, y) expresses identity in M*: for every assignment a of values in D*,
A(x, y) is true in M* under a if and only if a(x) is a(y). For some member d of D, let a be an
assignment of values in D* such that both a(x) and a(y) are 〈d , #〉. By hypothesis, A(x, y) is true in
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by adding a sentence of L that is false in M* to our theory of identity ((1) and (2)),
for any such sentence will also be false in M, the ‘intended’ model.

We may object that M* is not a model for a first-order language with identity,
precisely because it does not interpret any atomic predicate of the language by iden-
tity. What distinguishes first-order logic with identity from first-order logic without
identity is that the former treats an atomic identity predicate as a logical constant.
In standard first-order logic with identity, logical consequence is defined as truth-
preservation in all models, and all models are stipulated to interpret that predicate
by identity. Unintended interpretations of some basic mathematical terms can be
excluded in first-order logic with identity but not in first-order logic without identity.

An example is the concept of linear (total) ordering. In first-order logic with iden-
tity, we standardly axiomatize the theory of (reflexive) linear orders (such as ≤ on the
real numbers) by (3), (4) and (5):

(3) ∀x ∀y ∀z((xRy&yRz) → xRz) (transitivity)
(4) ∀x ∀y (xRy ∨ yRx) (connectedness)
(5) ∀x ∀y ((xRy&yRx) → x = y) (anti-symmetry)

The models of this little theory are exactly those in which R is interpreted by a reflex-
ive linear order (over the relevant domain). The use of the identity predicate in the
anti-symmetry axiom (5) is essential. For if R is interpreted by a reflexive linear order,
then the open formula Rxy & Ryx must express identity (over the relevant domain).
But we have seen that in first-order logic without identity any theory with a model M
has a model M* as above in which no formula expresses identity, therefore in which
R is not interpreted by a reflexive linear order. Consequently, no theory in first-order
logic without identity has as models exactly those in which R is interpreted by a reflex-
ive linear order. Since the models of first-oder logic with and without identity differ
only over the interpretation of the identity predicate, even in first-order logic with
identity no theory axiomated purely by sentences without the identity predicate has
as models exactly those in which R is interpreted by a reflexive linear order.

The position is substantially the same for irreflexive linear orders. To axiomatize
the theory of irreflexive linear orders (such as < on the real numbers), we standardly
retain axiom (3) but replace (4) and (5) by (6) and (7):

(6) ∀x ∀y (xRy ∨ yRx ∨ x = y) (linearity)
(7) ∀x ∀y (xRy →∼ yRx) (asymmetry)

The use of the identity predicate in the linearity axiom (6) is essential. For if R is
interpreted by an irreflexive linear order, then the open formula∼xRy &∼yRx must
express identity (over the relevant domain). In first-order logic without identity, any
theory with a model has a model in which no formula expresses identity, therefore

M* under a. Let b be an assignment of values like a except that b(y) is 〈d , ##〉 for some member ##
of J distinct from #. By hypothesis, A(x, y) is not true in M* under b, since b(x) is not b(y). By the
argument of the previous footnote and in its notation: A(x, y) is true in M* under a if and only if it
is true in M under a∧; A(x, y) is true in M* under b if and only if it is true in M under b∧. But a∧ is
b∧. Thus A(x, y) is true in M* under a if and only if it is true in M* under b. Contradiction.
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in which R is not interpreted by an irreflexive linear order. Consequently, no theory
in first-order logic without identity has as models exactly those in which R is inter-
preted by an irreflexive linear order. Even in first-order logic with identity, no theory
axiomatized purely by sentences without the identity predicate has as models exactly
those in which R is interpreted by an irreflexive linear order.

First-order logic with identity is superior in expressive power to first-order logic
without identity in mathematically central ways.⁵

Nevertheless, the appeal to first-order logic with identity may not resolve the
doubts of those who take the problem of interpretation seriously. Indeed, it may
strike them as cheating. For how do we know that the speaker whom we are trying
to interpret is using a first-order language with identity at all? For example, how do
we know that she is trying to talk about linear ordering? To pose the problem in less
epistemic terms: what makes it the case that the speaker is using a first-order language
with identity?

Quine has a short way with bloated models such as M*. He excludes them by his
methodology of interpretation, which requires us to interpret the language in such a
way that the strongest indiscernibility relation expressible in it is identity. Roughly
speaking, he applies a priori the inverse of the operation that took M to M*. As he
says, we thereby ‘impose a certain identification of indiscernibles’, adding ‘but only
in a mild way’ (1960, 230). The ‘mildness’ consists in this: indiscernibility in the rel-
evant sense is the negation of weak discernibility, not of strong discernibility. Objects
d and d* in the domain of the interpretation are strongly discernible if and only if,
for some open formula A(x) of L with one free variable (x) and assignments a and a*
to variables of values in the domain, a* is like a except that a(x) is d while a*(x) is d*,
and the truth-value of A(x) under a differs from its truth-value under a*. The defini-
tion of weak discernibility is the same except that variables other than x are allowed to
occur free in A(x). For example, consider a language with just one atomic predicate,
a dyadic one I , without constants or function symbols, and an interpretation with
an infinite domain, over which I is interpreted by identity. Let d and d* be distinct
members of the domain. Then d and d* are not strongly discernible, but they are
weakly discernible by the formula xIy and assignments a and a*, where a(x) is d , a(y)
is d* and a* is like a except that a(x) is d*. In this case, Quine’s methodology does not
erase distinctions between members of the domain: doing so here would involve col-
lapsing the domain to a single object and so switching the formula ∀x ∀y (xIx → xIy)
from false to true. The identification of indiscernibles as he apparently intends it has
the hermeneutically appealing feature that it does not alter the truth-value of any
formula.⁶

⁵ For the view that identity is not a logical constant, which puts first-order logic with identity in
an anomalous position, see Peacocke (1976).

⁶ The text does not follow Quine in inessential details. He speaks of the satisfaction of a formula
with a given number of free variables by that number of objects in a given order, rather than of the
truth of a formula under an assignment of objects to all variables. Quine (1960, 230) incorrectly
claims that the relevant kind of discernibility is relative discernibility: satisfaction of an open formula
with two free variables by the objects in only one order. Quine (1976) implicitly corrects the mistake.
In the example in the text (taken from that article), no two objects are even relatively discernible.
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In other examples, Quine’s methodology has more radical effects on the model. For
instance, consider another language with just two atomic predicates, the monadic F
and G, without constants or function symbols, and an interpretation on which 1,000
members of the domain are in the intersection of the extensions of F and G, just one
is in the extension of F but not of G, 1,000,000 are in the extension of G but not of
F , and just one in the extension of neither. Objects are weakly discernible if and only
if either one is in the extension of F while the other is not or one is in the extension of
G while the other is not. Thus Quine’s ‘mild’ identification of indiscernibles collapses
the 1,000 objects in the intersection of the extensions of F and G into a single object,
and the 1,000,000 objects in the extension of G but not F into another single object.⁷

Moreover, Quine’s methodology does not preserve the truth-values of all formulas
once we add generalized quantifiers to the language. For instance, let us add a binary
quantifier M for ‘most’ to the language in the last example, where Mx (A(x);B(x))
is true under an assignment a if and only if most (more than half) of the members
d of the domain such that A(x) is true under a[d/x] are such that B(x) is true under
a[d/x], where the assignment a[d/x] is like a except that a[d/x](x) is d . The addi-
tion of M to the language makes no difference to weak discernibility. On the original
interpretation, the sentence Mx (Fx; Gx) is true, because 1,000 of the 1,001 objects
in the extension of F are in the extension of G, while Mx (Gx; Fx) is false, because
only 1,000 of the 1,001,000 objects in the extension of G are in the extension of F .
By contrast, after the identification of indiscernibles, both sentences are false, because
exactly one of the two objects in the extension of F is in the extension of G and exactly
one of the two objects in the extension of G is in the extension of F . Moreover, no
attempt to reinterpret ‘M’ as a logical quantifier other than ‘most’ in line with the
identification of indiscernibles would preserve the truth-values of all formulas. For the
collapsed model is symmetrical between F and G: each applies to exactly one thing to
which the other does not. Thus on any interpretation of ‘M’ as a logical quantifier
Mx (Fx;Gx) and Mx (Gx; Fx) will receive the same truth-value in the collapsed
model, whereas they have different truth-values in the new model (see Westerstähl
(1989) for logical quantifiers).

Thus the ability of Quine’s identification of indiscernibles to preserve the truth-
values of all formulas depends on an unwarranted restriction of the language to
the usual quantifiers ∀ and ∃.⁸ In the presence of other quantifiers, his identification
of indiscernibles does not preserve truth-values, and so is hermeneutically unappeal-
ing. Of course, the example was a toy one; the expressive resources of the language
were radically impoverished by comparison with any natural human language.

The text attributes a domain to the interpretation, perhaps contrary to Quine’s intentions, in order
to make it clear that the argument here does not rely on contentious premises about unrestricted
quantification.

⁷ See Wiggins (2001, 185) for discussion of a related example, attributed to Wallace (1964).
⁸ The addition of generalized quantifiers impacts on the ‘bloated’ model M*. No problem arises

for ‘most’, since the construction preserves the ratios between the cardinalities of the extensions
of predicates (for the index set J was stipulated to be finite), but numerical quantifiers must be
reinterpreted in order to give all formulas the same truth-values as in M: ‘at least m’ is interpreted
as ‘at least m|J|’.
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Nevertheless, it shows that Quine’s methodology does not provide an adequate solu-
tion to the problem of interpreting an identity predicate. For if independent consider-
ations have not eliminated interpretations of a natural language on which its domain
contains distinct indiscernibles, the use of Quine’s methodology to do so risks impos-
ing on the language an interpretation far less charitable to its speakers than some of
the ‘bloated’ interpretations are.

An alternative, anti-Quinean, proposal is to move from first-order to second-order
logic. We could then replace the first-order schema (2) with a single second-order
axiom:

(2+) ∀x ∀y(xIy → ∀P (Px → Py))

In the usual models for higher-order logic, the second-order quantifier ∀P is required
to range in effect over all subsets of the first-order domain. Given any two objects d
and d*, some subset of the domain (for example, {d}) contains d but not d*. Simil-
arly, if one interprets ∀P as a plural quantifier, there are some objects of which d is one
and of which d* is not one. Thus (2+), conjoined with (1), forces the predicate I to
have the extension of identity over the domain. For practical purposes, one could even
use the open formula ∀P (Px → Py) simply to define identity, although it is unlikely
that second-order quantification is conceptually more basic than identity in any deep
sense.⁹ But the appeal to second-order quantification may not satisfy those who are
seriously worried about the problem of interpreting the identity predicate. For how
do we know, or what makes it the case, that the second-order quantifier ∀P should
be interpreted in the standard way? Consider an interpretation of the first-order frag-
ment of the language (with I as an atomic predicate) on which not all pairs of distinct
members of the domain are weakly discernible, and the extension of I contains exactly
those pairs of members of the domain that are not weakly discernible. We can now
construct a non-standard interpretation of the full second-order language by stipulat-
ing that the range of the second-order quantifiers is to be restricted to those subsets of
the domain with the property that if d is a member and d* is not weakly discernible
from d with respect to the first-order fragment then d* is also a member (a similar
stipulation is available for the plural interpretation).¹⁰ It can then be shown that, on
this interpretation, objects are weakly discernible with respect to the full second-order
language if and only if they are weakly discernible with respect to the first-order frag-
ment. Consequently, not all distinct pairs of members of the first-order domain are
weakly discernible with respect to the full second-order language. Nevertheless, (1)
and (2+) come out true on such an interpretation even though I is not interpreted by
identity over the domain. Thus invoking second-order logic only pushes the problem
back to that of interpreting higher-order languages.¹¹

⁹ See also Shapiro (1991, 63). Since the values over which the second-order quantifier ranges
are closed under complementation relative to the individual domain, strengthening the conditional
in the definiens to a biconditional would make no difference.

¹⁰ The construction can be generalized to polyadic predicate variables and to orders greater than
two, if desired.

¹¹ Such non-standard models are models in the sense of the non-standard semantics with respect
to which Henkin (1950) proves the completeness of higher-order logic. As Shapiro (1991, 76)



376 Timothy Williamson

If we conceive the hermeneutic problem as purely epistemic—how do we know
whether another means identical ?—then we may suppose that it does not arise in
the first-person case: how can I be mistaken in thinking that by ‘identical’ I mean
identical ? But if the problem is constitutive—in virtue of what does another mean
identical by ‘identical’?—then it presumably arises just as much in the first-person
case: in virtue of what do I mean identical by ‘identical’? Despairing of an answer,
someone might doubt the very conception of identity that underlies the question.
One might even become a relativist about identity in the manner of Peter Geach,
with a conception of a predicate’s playing the role of I relative to a given language,
by verifying (1) and all instances of (2) in that language, but reject any conception of
its playing the role absolutely, by verifying (1) and all instances of (2) in all possible
extensions of the language.¹²

Such a reaction would be grossly premature, resting on no properly worked out,
plausible account of interpretation. Questions of the form ‘In virtue of what do we
mean X by ‘‘X’’?’ are notoriously hard to answer satisfactorily, no matter what is sub-
stituted for ‘X’ (Kripke 1982). It is therefore methodologically misguided to treat a
particular expression (for instance, ‘identical’) as problematic merely on the grounds
that the question is hard to answer satisfactorily for it.¹³ Of course, the details of
the alternative interpretations and surrounding arguments depend on the nature of
the expression at issue, but that should not cause us to overlook the generality of the
underlying problem. It is extremely doubtful that the skeptical reaction yields any-
thing coherent when generalized. In the particular case of identity, few have found
Geach’s arguments for his local skepticism convincing or his relativism plausible. In
any case, let us suppose that we do use ‘identical’ in an absolute way, and ask in virtue
of what we do so. Given what has just been said, we should not expect more than a
sketchy answer.

Somehow or other, ‘identical’ means what it does because we use it in the way
that we do. A central part of that use concerns our inferential practice with the term,
as summarized by (1) and (2) or (2+). What is crucial in our use of the first-order
schema (2) (or a corresponding first-order inference rule) is that we do not treat it as
exhausted by its instances in our current language. Rather, we have a general dispos-
ition to accept instances of (2) in extensions of our current language. That is not to
say that in all circumstances in which we are or could be presented with an instance

remarks, ‘Henkin semantics and first-order semantics are pretty much the same’. It is therefore
no surprise that, once Henkin models are allowed, higher-order logic is no advance on first-order
logic in solving the interpretation problem. Similarly, the substitution of Henkin semantics for
the standard semantics throws away the advantages of second-order logic over first-order logic as a
setting for mathematical theories. For example, the result that all models of second-order arithmetic
are mutually isomorphic holds only for the standard semantics; non-standard models of first-order
arithmetic can be simulated by appropriate Henkin models of second-order arithmetic.

¹² Geach gives his views on identity in his (1967), (1972), (1980), (1991) and elsewhere.
For critical discussion of them see Dummett (1981, 547–83) and (1993), Noonan (1997) and
Hawthorne (2003, 111–23). See also Wiggins (2001, 21–54).

¹³ Geach can allow that in a suitable context ‘identical’ may means same F, understood as identity
relative to the informative sortal expression F ; the question concerns the use of ‘identical’ in contexts
that supply no such sortal.
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of (2) in an extension of our current language, we accept it. Obviously, we may reject
it as a result of computational error, or die of shock at the sight of it, or roll our eyes as
a protest against pedantry; some instances may be too long or complex to be presen-
ted to us at all. But the existence of a large gap of that kind between the disposition
and the conditionals is the normal case for dispositions, including ordinary physical
dispositions such as fragility and toxicity: external factors of all sorts (such as anti-
dotes) can intervene between them and their manifestations. The link between the
disposition to D if C and conditionals of the form ‘If C, it Ds’ is of a much looser
sort. The failure of some of the associated conditionals does not show the absence of
the disposition.¹⁴ We have the general disposition because we respond, when we do,
to the general form of the schema (2) (or of a corresponding inference rule) rather
than treating each of its instances as an independent problem. Our non-intentionally
described behaviour alone does not explain why we count as responding to the actual
form of (2) and not to some gerrymandered variant on it with ad hoc restrictions for
cases beyond our ken: it is also relevant that the actual form is more natural than the
gerrymandered one in a way that fits it for being meant (it is a ‘reference magnet’).¹⁵

Our understanding of (2) as transcending the bounds of our current language is
already suggested by our use of the phrase ‘Leibniz’s Law’ for a single principle. We do
not usually think of the phrase as ambiguously denoting lots of different principles,
one for each language.

In the case of the second-order axiom (2+), what is crucial is that we do not treat
the rule of universal instantiation for the second-order quantifier as exhausted by its
instances in our current language. Rather, we have a general disposition to accept
instances of universal instantiation for the second-order quantifier in extensions of
our current language. Again, the presence of the disposition is consistent with the fail-
ure of some of the associated conditionals. We have the general disposition because
we respond to the general form of universal instantiation rather than treating each of
its instances as a separate problem.

The sort of open-ended commitment just described is typical of our commitment
to rules of inference. For example, my commitment to reasoning by disjunctive syl-
logism is not exhausted by my commitment to its instances in my current language;
when I learn a new word, I am not faced with an open question concerning whether to
apply disjunctive syllogism to sentences in which it occurs. Indeed, open-ended com-
mitment may well be the default sort of commitment: one’s commitment is open-
ended unless one does something special to restrict it.

Open-ended commitment is just what is needed to reinstate the argument given
at the beginning for a homophonic interpretation of another’s use of the word

¹⁴ On the relation between dispositions and conditionals see Martin (1994), Lewis (1997), Bird
(1998), and Mumford (1998). For the specific application to rule-following see Martin and Heil
(1998).

¹⁵ On the role of naturalness in the constitution of meaning see Lewis (1983). Of course, we
may have to check putative instances of (2) to ensure that they really have the form that they appear
to have and do not involve intensional or quotational contexts, shifts of reference in indexicals and
so on. But such problems are not at the heart of the dispute between absolutists and relativists about
identity.
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‘identical’, given her commitment to (in effect) (1) and (2). We reason as follows. Let
agents S and S* speak distinct first-order languages L and L* respectively. For sim-
plicity, assume that S and S* coincide in their logical vocabulary, with the possible
exception of an identity predicate. Their interpretation of the other logical vocabulary
is assumed to be standard; although the present style of argument can be extended to
the other logical vocabulary, that is not our present concern. Let I be a predicate of
L but not of L* and I* a predicate of L* but not of L. Suppose that S has an open-
ended commitment to (1) and (2), while S* has an open-ended commitment to (1*)
and (2*), the results of substituting I* for I in (1) and (2):

(1∗) ∀x xI∗x

(2∗) ∀x ∀y (xI∗y → (A(x) → A(y))

Now merge L and L* into a single first-order language L+L* whose primitive vocab-
ulary is the union of the primitive vocabularies of L and L*. Thus we can treat (1) and
(1*) as sentences of L+L* and (2) and (2*) as schemas of L+L*. The interpretation
of the logical vocabulary of L+L* is assumed to be standard, like that of L and L*,
again with the possible exception of an identity predicate. The quantifiers of L+L*
are interpreted as ranging over the intersection of the domains of the quantifiers of L
and of L*, for our present question is in effect whether I and I* can diverge for objects
over which both are defined. By the open-endedness of their commitments, S is com-
mitted to (1) as a sentence of L+L* and to all instances of (2) in L+L*, while S* is
committed to (1*) as a sentence of L+L* and to all instances of (2*) in L+L*. Here
are instances of (2) and (2*) respectively in L+L*:

(8) ∀x ∀y(xIy → (xI∗x → xI∗y)

(8∗) ∀x ∀y(xI∗y → (xIx → xIy)

Reasoning in L+L*, we deduce (9) from (1*) and (8) and (9*) from (1) and (8*):

(9) ∀x ∀y(xIy → xI∗y)

(9∗) ∀x ∀y(xI∗y → xIy)

Thus, given the pooled commitments of S and S*, I and I* are coextensive over the
common domain. The result should not be interpreted as concerning only the exten-
sions of I and I* in a new context created by the fusion of L and L*. For the open-
ended commitments in play were incurred by S and S* in using I and I* in the ori-
ginal contexts for L and L* respectively; that is the nature of open-endedness. Thus
the result concerns the extensions of I and I* in the original contexts for L and L* too.

In the way just seen, (1) and the open-ended schema uniquely characterize iden-
tity (recall that the other logical vocabulary in (9) and (9*) is being given its standard
interpretation). A similar argument can be given for the second-order analogue of (2).
The arguments are in fact a special case of a more general pattern of reasoning that
shows all the usual logical constants to be uniquely characterized by the classical prin-
ciples of logic for them.¹⁶

¹⁶ For further discussion and references see Harris (1982), Williamson (1987/8) and McGee
(2000).
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Of course, these remarks fall far short of a fully satisfying account of what makes
‘identical’ mean identical. The connection between which logical principles a speaker
accepts for a given expression and which logical principles are correct (true or truth-
preserving) for that expression is quite loose; no reasonable principle of charity in
interpretation guarantees freedom from logical error. Misguided philosophers who
reject standard logical principles for ‘identical’ probably still mean identical by the
word, because they continue to use it as a word of the common language.¹⁷ It is a
fallacy to reason from the premise that someone has a wildly deviant theory to the
conclusion that they speak a deviant language. Perhaps even more misguided philo-
sophers could argue themselves into the view that the logic of the phrase ‘in love’
comprises analogues of the standard logical principles for ‘identical’, while still mean-
ing in love rather than identical by the phrase, because they continue to use it as a
phrase of the common language. Nevertheless, such examples do not suggest that the
account above of how ‘identical’ means identical does not at least point in the right
direction, for they may still be parasitic on a loose underlying connection between
inferential practice and meaning.

Naturally, the account will not help if it is incoherent, as Geach would claim it
to be. According to him, generalizing over all predicates in all possible extensions of
the language generates semantic paradoxes (1972, 240; 1991, 297). Now the fore-
going account does not assume that speakers who reason with (1) and (2) or (2+)
must themselves have a conception of all predicates in all possible extensions of the
language. For the sentences involved in such reasoning need not be metalinguistic.
If speakers already have metalinguistic vocabulary in the language, they can use it in
what they substitute for A(x) and A(y) in (2), but that does not imply that the schema
itself is distinctively metalinguistic. Agents may lack the conceptual apparatus neces-
sary to give a reflective account of their own practices. However, the foregoing theor-
etical account does deploy something reminiscent of the conception of all predicates
in all possible extensions of the language on its own behalf, in explaining the nature
of speakers’ open-ended commitments. Thus Geach’s charge is at least relevant.

Unfortunately, Geach does not bother to argue in detail that the theorist of
absolute identity really requires conceptual resources powerful enough to generate
semantic paradoxes. In fact, when we consider identity over a given set domain,
we need only generalize over all subsets of that domain, or over all subsets of the
Cartesian product of the domain with itself.¹⁸ For the unique characterization argu-
ment above, we need merely consider expansions of the language by a single dyadic
atomic predicate I*, whose extension is a subset of the Cartesian product of the
original domain with itself. Similarly, schema (2) forces I to have the extension of
identity over the domain as soon as we consider its instances in expansions of the
language by a single monadic atomic predicate, whose extension is a subset of the ori-
ginal domain. In standard (Zermelo–Fraenkel) set theory, sets are closed under the
power set operation and the formation of Cartesian products. Thus quantification

¹⁷ See Williamson (2003b) for arguments of this type.
¹⁸ The Cartesian product of sets X and Y is the set of all ordered pairs whose first member

belongs to X and second member belongs to Y.
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over subsets of the original set domain or of its Cartesian product with itself is quan-
tification over another set domain. Consequently, the kind of generalization required
for the theorist of absolute identity over a given set domain is of a quite harmless sort.
It poses no serious threat of semantic or set-theoretic paradox. Some mysteries about
the power set operation remain unsolved, notably Cantor’s continuum problem (how
many subsets has the set of natural numbers?), but they are not paradoxes. In any case,
they are largely independent of the application to identity, for they concern the size
of the whole power set, whereas in order to characterize identity it suffices to have just
the singleton sets of members of the original domain; there are no more singletons of
members than members. Geach’s argument for the incoherence of absolute identity
theory does not withstand attention.

Suppose that the foregoing account of our grasp of absolute identity is correct, as
far as it goes. What does it suggest about our grasp of absolute generality, generality
over absolutely everything, without any explicit or implicit restrictions whatsoever?

13 .2

Sympathetic readers will have felt little difficulty in understanding the words ‘abso-
lute generality, generality over absolutely everything, without any explicit or implicit
restrictions whatsoever’: but in principle those words are open to alternative inter-
pretations. ‘Absolute’ might be read as itself relative to a background contextually
supplied standard, and the quantifiers ‘any’ and ‘whatsoever’ over restrictions as them-
selves contextually restricted. One can find oneself saying ‘By ‘‘everything’’ I mean
everything’ with the same desperate intensity with which one may say ‘By ‘‘identical’’
I mean identical ’. How deep does the similarity of the interpretative challenges go?

Let us start with the question of unique characterization. Here are standard rules
for a (first-order) universal quantifier:¹⁹

∀-Introduction Given a deduction of A from some premises, one may deduce
∀vA(v/t) from the same premises, where A(v/t) is the result of repla-
cing all occurences of the individual constant t in the formula A by the
individual variable v, provided that no such occurence of v is bound
in A(v/t) and that t occurs in none of the premises.

∀-Elimination From ∀vA one may deduce A(t/v), where A(t/v) is the result of repla-
cing all free occurences of the individual variable v in the formula A
by the individual constant t.

Consider a universal quantifier ∀ in a language L governed by those rules, and
another universal quantifier ∀* in a language L* governed by exactly parallel rules,
∀*-Introduction and ∀*-Elimination. Suppose that the commitment of speakers of
L and L* to their principles is open-ended in the way discussed above for the case
of the identity rules. Merge L and L* into a single language L+L*, whose primitive
vocabulary is the union of the primitive vocabularies of L and L*. Let A be a formula

¹⁹ For simplicity, functional terms are ignored. To qualify a variable or constant as ‘individual’
is just to say that it occupies singular term position.
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of L+L* in which the individual constant t does not occur and no variable except v
occurs free. We reason in L+L*. From ∀vA we can deduce A(t/v) by ∀-Elimination.
Therefore, since t does not occur in the premise and A is the result of replacing all
occurences of t in A(t/v) by v, and no such occurrence of v thereby becomes bound
in A, from ∀vA we can deduce ∀*vA by ∀*-Introduction. Conversely, from ∀*vA we
can deduce A(t/v) by ∀*-Elimination, and therefore ∀vA by ∀-Introduction. Thus,
given the pooled commitments of speakers of L and L*, the two quantifiers are logic-
ally equivalent.²⁰

The result should not be interpreted as concerning only the reference of ∀ and ∀*
in a new context created by the fusion of L and L*. For the open-ended commitments
in play were incurred by S and S* in using ∀ and ∀* in the original contexts for L and
L* respectively; that is the nature of open-endedness. Thus the result concerns the
reference of ∀ and ∀* in the original contexts for L and L* too.

Observe that the argument for unique characterization did not proceed by
semantic analysis of the quantifier. It did not invoke the idea of unrestricted gener-
ality. In particular, the argument was not that only an unrestricted interpretation of
∀ validates ∀-Introduction and ∀-Elimination. Rather, it was a syntactic argument
for interderivability. Thus it is not circular to use the unique characterization result
to support the claim that we have an idea of unrestricted generality.

Nevertheless, it is tempting to suspect the argument for unique characterization
of sophistry. For ∀-Introduction and ∀-Elimination are standard rules for a universal
quantifier in standard first-order logic, for which the standard model theory interprets
the quantifier as restricted to the domain of a model. It may therefore look as though
the argument must prove too much, since ∀-Introduction and ∀-Elimination are
valid if ∀ is interpreted over a domain D, while ∀*-Introduction and ∀*-Elimination
are valid even if ∀* is interpreted over a distinct domain D*.

In that form, the objection is unthreatening, for it neglects the stipulation that the
commitment of speakers of L and of L* to the respective quantifier rules is open-
ended in the sense explained in Section 13.1. If ∀ is restricted to a domain D, then
speakers of L do not have an open-ended commitment to ∀-Elimination, even if the
latter has no counter-instance in L, since it has the potential for a counter-instance
with a new term t that denotes something outside D in a language such as L+L*.
In the setting of L+L*, ∀-Elimination would require an extra premise involving t to
the effect, concerning what t denotes, that it belongs to D. Then t would occur in
one of the premises from which A(t/v) was deduced, so the condition for the applic-
ation of ∀*-Introduction would not be met. Of course, if ∀* were restricted too, to
a domain D*, then one might modify ∀*-Introduction accordingly, by allowing t to
occur in one extra premise of the envisaged deduction of A to the effect, concern-
ing what t denotes, that it belongs to D*. With no guarantee that D includes D*,
however, the deduction of ∀*vA from ∀vA could not be carried through. The con-
verse deduction faces an exactly analogous problem. It may sometimes be hard to
know whether a given speaker’s commitment is open-ended, but the considerations

²⁰ See McGee (2000) and Rayo (2003) for related discussion. For opposed views see Dummett
(1981) and Glanzberg (2004).
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of Section 13.1 indicated that open-ended commitment to a rule is a genuine, recog-
nizable phenomenon, and no reason has emerged to view the quantifier rules as excep-
tional in that respect. Indeed, as before, open-ended commitment may be the default
sort of commitment to ∀-Introduction and ∀-Elimination; it would be implausible to
suggest that all speakers are always doing something special to override the default.

The pertinent objection is not to the argument for unique characterization from
the open-ended understanding of the quantifier rules. Rather, it is to the open-ended
understanding of the quantifier rules itself. More precisely: it is not straightforward
that the open-ended versions ∀-Introduction and ∀-Elimination are really valid on
the unrestricted reading of the quantifier.

Let us take ∀-Elimination first. Free logicians will object to it that, even if ∀ is sup-
posed to be unrestricted, the rule is too strong because the individual constant t may
be an empty name. For example, ∀-Elimination enables us to derive from the logically
true premise ∀y∃x x = y the conclusion ∃x x = t, which is false on the unrestricted
reading of the quantifier if t denotes nothing whatsoever.

One response to that objection to ∀-Elimination is that the only role of t in the
unique characterization argument is as an arbitrary name, which functions like a free
variable. The success of any empirical or conceptual process of reference-fixing for
t is irrelevant to the argument. Thus, if one shares the free logicians’ qualms, one
can replace ‘individual constant’ by ‘arbitrary name’ or ‘free variable’ throughout
∀-Introduction and ∀-Elimination, and envisage t as denoting merely relative to an
assignment.

A less concessive response can also be made. In assessing validity, our concern is
with truth-preservation only when the relevant formulas are fully interpreted. For a
sentence to be fully interpreted, it is not enough that it is a meaningful formula of
the language; it must also express a proposition as used in the relevant context. For
example, although ‘This is that’ is a meaningful sentence of English, it fails to express
a proposition in a context in which no reference has been assigned to the demon-
stratives ‘this’ and ‘that’. It would be foolish to object to the usual introduction rule
for disjunction (deduce a disjunction from any of its disjuncts) that it takes one from
the true premise ‘2+ 2 = 4’ to the conclusion ‘2+ 2 = 4 or this is that’, which is
not true when no reference has been assigned to ‘this’ and ‘that’ because it expresses
no proposition (plausibly, a disjunction expresses a proposition only if each of its
disjuncts does). Truth-preservation is required only once any singular terms in the
argument have been assigned a reference. Consequently, the free-logical objection to
∀-Elimination fails. Let us adopt this conception of validity and therefore leave ∀-
Elimination unmodified.

‘Inclusive’ logicians object to ∀-Elimination because it does not allow for the empty
domain: given axiom (1) for identity, one can prove ∃x x = x (as an abbreviation
of ∼∀x∼x = x), which is false in that domain.²¹ But once the language contains
unbound singular terms, as ours does, then it cannot be fully interpreted in the sense
just sketched over the empty domain. For such languages, our notion of validity

²¹ Logic for the empty domain is somewhat trickier than the remark in the text indicates; see
Williamson (1999b).
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excludes the empty domain. More controversially, one can argue that ∃x x = x is a
logical truth on the unrestricted interpretation of the quantifiers, by appeal to Tarski’s
model-theoretic account of logical truth: it is true on all models (interpretations) that
preserve the intended interpretations of the logical constants in it, for it is true and
it contains no nonlogical constituents.²² Since Tarski (1936) understood a model as
an assignment of reference to the nonlogical atoms of the language (more exactly,
as an assignment of values to variables, which replace those atoms), his treatment of
interpretation is consistent with the notion above of a fully interpreted formula. The
relevance of Tarski’s conception of logical truth and logical consequence to the logic
of unrestricted quantification will be discussed more fully below.

Given an appropriate notion of validity, open-ended ∀-Elimination is valid on the
unrestricted reading of the quantifier. What of ∀-Introduction? The obvious worry is
this. Suppose that ∀ is unrestricted while ∀* is restricted to a domain D*, and that the
term t is constrained by a ‘meaning postulate’ to be in D*. Thus from ∀*x x∈D* alone
we can infer t∈D* by the restricted elimination rule for ∀*; since t does not occur
in the premise, ∀-Introduction therefore permits us to infer ∀x x∈D*, which is false
because D* does not contain absolutely everything, from the true ∀*x x∈D*. What
has gone wrong here is that t∈D* was not freely deduced from ∀*x x∈D*, in a sense
of ‘free’ that has nothing to do with free logic. The deduction was unfree in the sense
that it invoked special rules that required t to satisfy constraints beyond simply being
a singular term that occurs in none of the premises. That is still a syntactic feature
of the deduction. Let us therefore read ‘deduction’ in ∀-Introduction as ‘free deduc-
tion’, and ‘deduced’ in both ∀-Introduction and ∀-Elimination as ‘freely deduced’.
With that understanding, both ∀-Introduction and ∀-Elimination are valid on the
unrestricted reading of the quantifier.

Given that the two rules are materially valid on the unrestricted reading, someone
might still worry that they are not strictly logically valid, because the unrestricted
reading of the quantifier is not part of its logic. The discussion so far has been framed
in terms of the background assumption that the unrestricted universal quantifier as
such should be classified as a logical constant, subject to rules of inference that exploit
its unrestrictedness. For those who admit the coherence of unrestricted quantifica-
tion, the salient alternative is to have as a logical constant a universal quantifier such
that, for any things whatsoever, for purposes of defining logical truth and logical con-
sequence the quantifier can be interpreted as ranging over those things and nothing
else (interpretations here play the role of models). It does not matter whether there
are too many of those things to form a set or set-like domain. The quantifier can be
legitimately interpreted as ranging over all things whatsoever, or over all sets whatso-
ever, but it can also be legitimately interpreted as ranging over just the books on my
shelves. A conclusion is a logical consequence of some premises only if, however they
are legitimately interpreted, the conclusion is true if the premises are.²³ On this view,

²² See Williamson (1999a) and Rayo and Williamson (2003) for this approach to the logic of
unrestricted quantification. For reasons explained in the latter, the first-order quantification over
interpretations in the text is a loose rendering of the higher-order quantification that is needed for
an accurate metalogic of unrestricted quantification.

²³ Cartwright (1994) takes this view.
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open-ended ∀-Elimination is invalid, since in a language such as L+L* with different
sorts of quantifier a term t may denote something in the domain of one of those other
quantifiers that is not in the domain of ∀ on some unintended interpretation. Let the
constant account be that on which the quantifier is mandatorily interpreted as unre-
stricted and the variable account be that on which, for any things, it can legitimately
be interpreted as ranging over just those things. Both accounts are framed within a
broadly Tarskian approach to the concept of logical consequence.

The difference between the two accounts has dramatic implications for first-order
logic. Let ∃n be the usual first-order formalization of the claim that there are at least
n things, where n > 1. On the variable account, ∃n is not a logical truth, because the
quantifier can legitimately be interpreted as ranging over fewer than n things. On the
constant account, ∃n is a logical truth, because the quantifier must be interpreted as
ranging over absolutely everything and there are in fact at least n things: for example,
at least n symbols occur in ∃n itself. The sentences ∃n for all natural numbers n turn
out to exhaust the extra logical consequences generated by the constant account, in
the sense that the result of adding them as extra axioms to first-order logic can be
proved complete as well as sound on the constant account.²⁴ By contrast, the variable
account is logically conservative: it delivers exactly the same logical consequence rela-
tion for first-order logic as does the standard model theory with set domains.²⁵

The difference between the two accounts is robust. Even if we relativize interpreta-
tions to various parameters for the context of utterance or circumstance of evaluation,
the sentences ∃n still all come out as logical truths on the constant account, because
the unrestricted reading of the quantifier forbids us to interpret it as ranging only
over a domain associated with the context of utterance or circumstance. Someone

²⁴ See Friedman (1999), Williamson (1999a) and Rayo and Williamson (2003) . The result
depends on a global choice assumption; Friedman discusses non-theorems of this logic that are
logically true on some anti-choice assumptions. As an alternative to axioms of the form ∃n, the
proponent of the constant account can use the following structural Rule of Atomic Freedom. Let
Ŵ∪{γ } be a set of sentences, and 	∪{δ} (δ /∈ 	) a set of atomic sentences each consisting of a
non-logical predicate that does not occur in Ŵ and individual non-logical constants that do not
occur in Ŵ such that Ŵ, 	⊢δ; then Ŵ⊢γ (Ŵ is inconsistent; it entails everything). To see why this
rule preserves validity on the constant account, suppose that all members of Ŵ are true on some
interpretation. Then all members of Ŵ ∪	∪{∼ δ} are also true on some interpretation, for we
can stipulate that each constant in 	∪{∼ δ } denotes itself and that the extension of each n-place
predicate in 	∪{∼ δ} is the set of n-tuples of singular terms with which it is concatenated in 	;
thus every member of 	 is true, and δ is false because δ /∈ 	 (a simplified Henkin construction,
which does not itself assume the existence of infinitely many things). Since the vocabulary of Ŵ
is disjoint from that of 	∪{∼ δ}, it can be interpreted as originally; thus every member of Ŵ is
true on the new interpretation too (this part of the argument would not work on the variable
account, since there may be more constants in 	∪{∼ δ} than things quantified over on the original
interpretation). By contraposition, Atomic Freedom preserves validity. To see how to use Atomic
Freedom to derive all sentences of the form ∃n, it suffices to look at the case n = 3. Let R be a triadic
predicate, a, b and c distinct constants, Ŵ = {∼ ∃ 3}, 	 = {Raac, Raba, Rabb} and δ = Rabc. By
ordinary first-order reasoning, ∼ ∃ 3, Raac, Raba, Rabb⊢Rabc (unless there are at least three things,
the three constants cannot all have distinct denotations); therefore, by Atomic Freedom, ∼ ∃3⊢⊥,
so ⊢∃3. Note that the rule of Atomic Freedom is formulated without reference to any particular
logical constant (contrast axioms of the form ∃n). Another way to think of the constant account is
therefore as freeing up the interpretation of atomic formulas.

²⁵ See Cartwright (1994); the argument goes back to Kreisel (1967).
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might reply that if the domain contains everything that exists in the relevant possible
world then the restriction is merely apparent, because in that world there is nothing
else to quantify over. But that objection in effect treats the semantic clause for ∀ as
though it were a misleading approximate translation of a more fundamental semantic
clause in which an unrestricted universal quantifier of a more fundamental modal
meta-language occurs within the scope of a modal operator. But the Tarskian frame-
work for the theory of logical consequence is not a modal one. It defines logical con-
sequence without using modal operators, interpreted metaphysically or epistemically.
The non-modal meta-language should therefore be taken at face value: a semantic
clause according to which ∀ ranges only over the domain of some world is inconsist-
ent with the unrestricted reading, just as it appears to be. Indeed, it is part of Tarski’s
great achievement to have cleanly separated the concept of logical consequence from
metaphysical and epistemic clutter. Not that there is anything wrong with metaphys-
ical and epistemic modalities in their place: but it is methodologically wrong-headed
to mix them up with the simple but powerful non-modal concept of logical con-
sequence that Tarski painstakingly isolated, which compels and rewards investigation
in its own right. This chapter works within the Tarskian paradigm.

The dispute between the variable and constant accounts raises deep questions
about the metaphysical and epistemological status of logic that we cannot hope to
answer here. But the analogy with identity does help us to see what is wrong with
one argument against the constant account. It is sometimes urged that the variable
account is preferable because it has greater generality, since every legitimate inter-
pretation on the constant account is also legitimate on the variable account (for it
allows us to interpret the quantifier as ranging over absolutely everything), but not
vice versa. However, there is an analogous argument against first-order logic with
identity, according to which first-order logic without identity is preferable because
it has greater generality, since every legitimate interpretation in first-order logic with
identity is also legitimate in first-order logic without identity (for it allows us to inter-
pret a dyadic predicate by identity), but not vice versa. The latter argument clearly
fails, because the point of making identity a logical constant is to capture its dis-
tinctive logic by excluding unintended interpretations. No significant generality is
thereby lost, because all the other interpretations can be shifted to other dyadic pre-
dicates. The former argument against the constant account fails similarly, because the
point of making the unrestricted universal quantifier a logical constant is to capture
its distinctive logic by excluding unintended interpretations. No significant general-
ity is thereby lost, because all the other interpretations can be captured by complex
restricted quantifiers consisting of the simple unrestricted quantifier and a restricting
predicate.

Of course, we have some sense of which expressions deserve to be treated as logical
constants: very roughly, those whose meaning is ‘purely structural’.²⁶ By that stand-
ard, the unrestricted universal quantifier is at least as good a candidate as identity is.
Moreover, like identity, the unrestricted quantifier has the kind of stark simplicity in

²⁶ Tarski (1986) proposes the more precise criterion of invariance under all permutations of
individuals in this spirit.
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meaning that we seek in a logical constant that is to be treated as basic (some purely
structural meanings are very complicated). Although unrestricted quantification is
less central to mathematical reasoning than identity is, it does enable us to capture
the generality that principles of a set theory with ur-elements (non-sets) such as ZFU
need if mathematics is to have its full range of applications: for absolutely any objects
x and y, there is a set of which x and y are members, for example.

In using absolute identity to support absolute generality, we must be careful to
check that the latter does not squash the former. For Geach’s arguments against the
coherence of absolute identity look superficially more formidable in the context of
absolute generality. The previous section considered absolute identity over a set-sized
domain; despite Geach’s threats, no danger of paradox arises in characterizing it by
quantifying over subsets of the domain, or plurally over members of the domain, or
the like.²⁷ But if our first-order quantifiers are absolutely unrestricted, then the inter-
pretation of the corresponding second-order quantifiers is a much trickier business.
There is no set domain over whose subsets they could range. Indeed, any attempt
to interpret them in terms of values of the second-order variables will generate a
version of Russell’s paradox, given an adequately strong comprehension principle
concerning the existence of such values, since an absolutely unrestricted first-order
quantifier must range over them too. But not even considerations of this kind can
rescue the charge of incoherence against absolute identity. First, the paradox results
from the attempt to interpret the second-order quantifiers of the object-language in
a first-order meta-language, by first-order quantification over sets. If one interprets
the second-order quantifiers more faithfully, in a second-order meta-language, by
second-order quantification read plurally or in some other non-first-order way, then
no paradox results. Second, even if one interprets the second-order quantifiers as ran-
ging over ‘small’ sets, with an appropriately qualified comprehension principle, that
suffices for characterizing identity, although not for all other purposes. Third, if abso-
lute identity is coherent for each set-sized domain, then it is simply coherent: for any
objects o and o*, absolute identity is coherent over the set-sized domain {o, o∗} by
hypothesis, which is all that we need coherently to ask whether o and o* are absolutely
identical.

If there is a threat of paradox, it comes from the idea of absolute generality, not
from that of absolute identity. A ‘paradox’ here is a proof of an explicit contradiction
from premises to which generality absolutists are committed by rules of inference to
which they are also committed, something like the Russell or Burali–Forti paradox.
The greatest strength of generality relativism is the suspicion that generality absolut-
ism is ultimately inconsistent because it leads to such a paradox.

Generality relativists also tend to use a second sort of argument: that generality
absolutism is inarticulate, in the sense that whatever utterances generality absolutists
assent to or dissent from in trying to articulate their position, on some generality relat-
ivist interpretations all the assents were to truths and all the dissents from falsehoods

²⁷ For the plural interpretation see several of the essays in Boolos (1998) (and 48–9 and 54 for
brief remarks on the logic of identity). Williamson (2003a) argues in favor of an interpretation that
takes more seriously the idea of quantification into predicate position.
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(according to the generality relativist). In that sense, absolutism about identity is
also inarticulate: whatever utterances identity absolutists assent to or dissent from in
trying to articulate their position, on some identity relativist interpretations all the
assents were to truths and all the dissents from falsehoods (according to the iden-
tity relativist). It does not follow that absolute identity is inexpressible, for all those
interpretations were incorrect: as explained in Section 13.1, they misidentified our
dispositions to make inferences using the identity predicate. Similarly, if generality
absolutism is inarticulate, it does not follow that absolute generality is inexpressible,
for the generality absolutist can argue that all the generality relativist interpretations
were incorrect, because they misidentified our dispositions to make inferences using
the universal quantifier. The generality absolutist may endorse a reflection principle
to the effect that any quantified sentence true on the intended unrestricted interpret-
ation of the quantifier is also true on some unintended restricted interpretation of
the quantifier. Nevertheless, such a result does make the generality absolutism and its
negation somewhat elusive for purposes of theoretical dispute.

It may be less widely appreciated than it should be that the generality relativist
cannot combine the two objections to generality absolutism, by charging that it is
both inconsistent and inarticulate. For suppose that generality absolutism is both
inconsistent and inarticulate. Since it is inconsistent, there is a proof of an explicit
contradiction from premises to which generality absolutists are committed by rules
of inference to which they are committed. By hypothesis, generality absolutism is
also inarticulate, so on some generality relativist interpretation the premises of the
proof are true (according to the generality relativist) and the rules of inference are
truth-preserving (according to the generality relativist). Thus the generality relativ-
ist is committed to the truth of the conclusion of the proof on the generality relativist
interpretation. But the conclusion is a contradiction, and so is not true even on that
interpretation (according to the generality relativism). Thus generality relativism is
inconsistent. To sum up: if generality absolutism is inarticulate, then it is inconsistent
only if generality relativism is also inconsistent. Therefore, the generality relativist is
ill-advised to accuse generality absolutism of being both inconsistent and inarticulate.
In effect, the assumption that generality absolutism is inarticulate yields a consistency
proof for generality absolutism relative to generality relativism.

Perhaps we can generalize the result. Given any argument against generality abso-
lutism, why can’t it be reinterpreted as an argument against something that the gen-
erality relativist accepts, if generality absolutism really is inarticulate?

Generality relativists seem to be faced with a choice. They can drop the charge of
inarticulacy, try to explain why it seemed compelling, and then, treating generality
absolutism as an articulated theory, try to prove a contradiction in it. If they succeed
in that, they win (dialetheism is a fate worse than death). But if they cannot produce
such a proof, then they had better drop the charge of inconsistency: put up or shut
up. Alternatively, they can drop the charge of inconsistency right away, and press the
charge of inarticulacy. But that charge is hardly damaging to absolutism about gener-
ality, for it applies equally to absolutism about identity.
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