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Introduction

The mathematical study of logic, and philosophical thought about logic,
are two of the oldest and most important human undertakings. As a result,
great advances have been made. The downside of this, of course, is that
one needs to master a great deal of material, both technical and philosophi -
cal, before one is in a position to properly appreciate these advances.

This dictionary is meant to aid the reader in gaining such a mastery. It
is not a textbook, and need not be read as one. Instead, it is intended as a
reference, supplementing traditional study in the field – a place where the
student of logic, of whatever level, can look up concepts and results that
might be unfamiliar or have been forgotten.

The entries in the dictionary are extensively cross-referenced. Within
each entry, the reader will notice that some terms are in bold face. These
are terms that have their own entries elsewhere in the dictionary. Thus,
if the reader, upon reading an entry, desires more information, these
keywords provide a natural starting point. In addition, many entries are
followed by a list of additional cross-references.

In writing the dictionary a number of choices had to be made. First was
the selection of entries. In this dictionary I have tried to provide coverage,
both broad and deep, of the major viewpoints, trends, and technical tools
within philosophical logic. In doing so, however, I found it necessary to
include quite a bit more. As a result, the reader will find many entries that
do not seem to fall squarely under the heading “philosophical logic” or
even “mathematical logic.” In particular, a number of entries concern set
theory, philosophy of mathematics, mereology, philosophy of language,
and other fields connected to, but not identical with, current research
in philosophical logic. The inclusion of these additional entries seemed
natural, however, since a work intending to cover all aspects of philosophi -
cal logic should also cover those areas where the concerns of philosophical
logic blur into the concerns of other subdisciplines of philosophy.

In choosing the entries, another issue arose: what to do about
expressions that are used in more than one way in the literature. Three
distinct sorts of cases arose along these lines. 

The first is when the same exact sequence of letters is used in the
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literature to refer to two clearly distinct notions. An example is “Law
of Non-Contradiction,” which refers to both a theorem in classical
propositional logic and a semantic principle occurring in the metatheory
of classical logic. In this sort of case I created two entries, distinguished by
subscripted numerals. So the dictionary contains, in the example at hand,
entries for Law of Non-Contradiction1 and Law of Non-Contradiction2.
The reader should remember that these subscripts are nothing more than
a device for disambiguation.

The second case of this sort is when a term is used in two ways in the
literature, but instead of there being two separate notions that unfor -
tunately have the same name, there just seems to be terminological
confusion. An example of this is “Turing computable,” which is used in
the literature to refer to both functions computable by Turing machines
and to functions that are computable in the intuitive sense – i.e. those that
are effectively computable. In this case, and others like it, I chose to
provide the definition that seemed like the correct usage. So, in the present
example, a Turing computable function is one that is computable by a
Turing machine. Needless to say, such cases depend on my intuitions
regarding what “correct usage” amounts to. I am optimistic that in most
cases, however, my intuitions will square with my readers’.

Finally, there were cases where the confusion seemed so widespread
that I could not form an opinion regarding what “correct usage”
amounted to. An example is the pair of concepts “strong negation” and
“weak negation” – each of these has, in numerous places, been used to
refer to exclusion negation and to choice negation. In such cases I
contented myself with merely noting the confusion.

Related to the question of what entries to include is the question of how
to approach writing those entries. In particular, a decision needed to be
made regarding how much formal notation to include. The unavoidable
answer I arrived at is: quite a lot. While it would be nice to be able to
explain all of the concepts and views in this volume purely in everyday,
colloquial, natural language, the task proved impossible. As a result, many
entries contain formulas in the notation of various formal languages.
Nevertheless, in writing the entries I strove to provide informal glosses of
these formulas whenever possible. In places where this was not possible,
however, and readers are faced with a formula they do not understand, I
can guarantee that an explanation of the various symbols contained in the
formula is to be found elsewhere in this volume.

Regarding alphabetization, I have treated expressions beginning with,
or containing, Greek or Hebrew letters as if these letters were their Latin
equivalents. Thus, the Hebrew a occurs in the “A” section of the book,
while “κ-categorical” occurs in the “K” section. Also, numbers have been

2 i n t r o d u c t i o n
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entered according to their spelling. Thus, “S4” is alphabetized as if it were
“Sfour,” and so occurs after “set theory” and before “sharpening.”

In many cases there were concepts or views which have more than
one name in the literature. In such cases I have attempted to place the
definition under the name which is most common, cross-referencing other
names to this entry. In a very few cases, however, where I felt there were
good reasons for diverging from this practice, I placed the definition under
the heading which I felt ought to be the common one. An example of such
an instance is the entry for “Open Pair,” which is more commonly called
the “No-No paradox.” In this case I think that the former terminology is
far superior, so that is where I located the actual definition.

There are two things that the reader might expect from a work such as
this that are missing. The first of these are bibliographical entries on
famous or influential logicians. In preparing the manuscript I originally
planned to include such entries, but found that length constraints forced
these entries to be too short – in every case the corresponding entries on
internet resources such as The Stanford Encyclopedia of Philosophy, the
Internet Encyclopedia of Philosophy, or even Wikipedia ended up being far
more informative. Thus, I discarded these entries in favor of including
more entries on philosophical logic itself. The reader will find a list of
important logicians in an appendix at the end of the volume, however.

Second, the reader might wonder why each entry does not have a
suggestion for further reading. Again, space considerations played a major
role here. With well over one thousand entries, such references would have
taken up precious space that could be devoted to additional philosophi-
cal content. Instead, I have included an extensive bibliography, with
references organized by major topics within philosophical logic.

i n t r o d u c t i o n 3
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A see Abelian Logic

a The first letter of the Hebrew alphabet, a denotes the infinite
cardinal numbers. Subscripted ordinal numbers are used to
distinguish and order the as (and thus the infinite cardinal numbers
themselves). a0 is the first infinite cardinal number – that is, the
cardinal number of any countably infinite set; a1 is the second
infinite cardinal number; a2 is the third infinite cardinal number …
aω is the ωth infinite cardinal number; aω+1 is the ω + 1th infinite
cardinal number … and so on.

See also: b, c, Cantor’s Theorem, Continuum Hypothesis,
Cumulative Hierarchy, Generalized Continuum Hypoth esis

ABACUS COMPUTABLE see Register Computable

ABACUS MACHINE see Register Machine

ABDUCTION An abduction (or inference to the best explanation,
or retroduction) is an inductive argument whose premise (or
premises) constitute the available evidence, and whose conclusion is
a hypothesis regarding what best explains the evidence. Abduction
often takes the same general form as the fallacious deductive
argument affirming the consequent:

A → B
B
A

where B is the evidence at hand, and A is the hypothesis regarding
what brought about B.

See also: Cogent Inductive Argument, Fallacy, Informal
Fallacy, Strong Inductive Argument

A
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ABELIAN LOGIC Abelian logic (or A) is a relevance logic. Abelian
logic is obtained by rejecting contraction and liberalizing the
following theorem of classical propositional logic:

((A → ⊥) → ⊥) → A

to:

((A → B) → B) → A

The latter principle is the axiom of relativity.
Abelian logic is one of a very few non-standard logics which

extends classical propositional logic. Abelian logic is not a sub-logic
of classical logic; it contains theorems which are not theorems of
classical logic and which result in triviality if added to classical logic.

See also: Commutativity

ABSOLUTE CONSISTENCY see Post Consistency

ABSOLUTE INCONSISTENCY see Post Consistency

ABSOLUTE INFINITE The absolute infinite is an infinity greater
than the infinite cardinal number associated with any set. Thus,
the proper class of all sets is an instance of the absolute infinite. 

See also: Indefinite Extensibility, Iterative Conception of Set,
Limitation-of-Size Conception of Set, Universal Set

ABSORBSION Given two binary functions f and g, absorbsion holds
between f and g if and only if, for all a and b:

f(a, g(a, b)) = g(a, f(a, b)) = a

Within Boolean algebra, absorbsion holds between the meet and
join operators – that is:

A ∩ (A ∪ B) = A
A ∪ (A ∩ B) = A

In classical propositional logic, absorbsion holds between the
truth functions associated with conjunction and disjunction –
that is:

A ∧ (A v B)

and:

a b s o r b s i o n 5
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A v (A ∧ B) 

are logically equivalent to:

A

The principle of contraction:

(A → (A → B)) → (A → B) 

is also sometimes referred to as absorbsion.

See also: Distributivity, Rule of Replacement

ABSTRACT OBJECT An abstract object is any object that is not part
of the physical or material world, or alternatively any object that is
not causally efficacious. Typical examples of abstract objects include
mathematical objects such as numbers and sets, as well as objects
connected with logic such as propositions, languages, and con -
cepts. An object that is not abstract is a concrete object.

See also: Abstraction, Mathematical Abstractionism,
Nominalism, Platonism

ABSTRACTION1 The process by which we come to understand
universal representations of particular objects (that is, universals) by
attending only to those things the objects have in common.

See also: Abstract Object, Abstraction Principle, Concept

ABSTRACTION2 Abstraction is the process of obtaining knowledge
of abstract objects through the stipulation of abstraction
principles.

See also: Abstraction Operator, Bad Company Objection,
Basic Law V, Caesar Problem, Hume’s Principle, Mathe -
matical Abstractionism

ABSTRACTION OPERATOR The function implicitly defined
by an abstraction principle is an abstraction operator. For example,
the abstraction operator defined by Hume’s Principle is the
function that maps concepts to their associated cardinal number,
and the abstraction operator (intended to be) defined by the
inconsistent Basic Law V is the function that maps each concept to
the set (or extension) containing, as members, exactly the instances
of the concept in question.

6 a b s t r a c t  o b j e c t
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See also: Bad Company Objection, Caesar Problem, Mathe -
matical Abstractionism, Singular Term

ABSTRACTION PRINCIPLE An abstraction principle is any
formula of the form:

(∀α)(∀β)(Abst(α) = Abst(β) ↔ Equ(α, β))

where Abst is an abstraction operator mapping the type of entities
ranged over by α and β (typically objects, concepts, functions,
or sequences of these) to objects, and “Equ” is an equivalence
relation on the type of entities ranged over by α and β.

According to mathematical abstractionism, abstraction prin -
ciples are implicit definitions of the objects that fall in the range
of the abstraction operator “Abst,” and we gain knowledge of these
objects merely through the stipulation of appropriate abstrac tion
principles.

The most important abstraction principles are Hume’s Principle
and Basic Law V.

See also: Bad Company Objection, Caesar Problem

ABSTRACTIONISM see Mathematical Abstractionism

ABSURDITY RULE see Ex Falso Quodlibet

ACCESSIBILITY RELATION Within formal semantics for
modal logic, an accessibility relation is a relation on the set of
possible worlds in a model that indicates which worlds are
accessible from which other worlds. The validity of different
modal axioms is associated with different conditions on the
accessibility relation. For example, the axiom T:

� A → A

is valid if and only if the accessibility relation is reflexive.

See also: Actual World, Kripke Semantics, Kripke Struc ture,
Ternary Semantics

ACKERMANN FUNCTION The Ackermann function (or Acker -
mann-Péter function) is a binary recursive function defined
as:

a c k e r m a n n  f u n c t i o n 7
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A(m, n) = n + 1 if m = 0.

A(m – 1, 1) if m > 0 and n = 0.

A(m – 1, A(m, n – 1)) if m > 0 and n > 0.

The Ackermann function is a central example in recursive function
theory, since it is recursive, but not primitive recursive. It is also
an example of a function that grows rapidly – that is, the function
outputs very large numbers for relatively small inputs.

See also: Arithmetic

ACKERMANN-PÉTER FUNCTION see Ackermann Function

ACTION TABLE An action table (or transition function) is the table
of instructions governing the operation of a Turing machine.

See also: Automaton, Deterministic Turing Machine, Non-
Deterministic Turing Machine, Recursive Function Theory,
Register Machine

ACTUAL INFINITY see Complete Infinity

ACTUAL WORLD The actual world is the possible world we
actually inhabit. It has been suggested that “actual” as used within
modal logic (and thus the term “actual world”) is an indexical.
Thus, the actual world, for any reasoner in any possible world, is not
the world we inhabit, but the one that they do.

See also: Barcan Formula, Converse Barcan Formula,
Counterpart Theory, Impossible World, Mere Possibilia,
Trans-World Identity

ACTUALISM see Modal Actualism

ACZEL SET THEORY see Non-Well-Founded Set Theory

ADDITION Addition (or disjunction introduction, or or intro -
duction) is the rule of inference that allows one to infer a
disjunction from either of the disjuncts. In symbols:

A
A v B

or:

8 a c k e r m a n n - p é t e r  f u n c t i o n
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B
A v B

See also: Classical Dilemma, Constructive Dilemma, Destruc -
tive Dilemma, Disjunctive Syllogism, Intro duction Rule, Vel

AD HOMINEM Ad hominem (Latin, literally “to the man”) is an
informal fallacy which occurs when the reasoner, in attempting to
demonstrate the inadequacy of another person’s argument, attacks
the character of the person presenting the argument instead of
legitimately discrediting the evidence provided.

See also: Straw Man, Tu Quoque

ADICITY The adicity (or arity, or degree) of a function or relation
is the number of inputs (or arguments) that it takes. Thus, a unary
function is a function of adicity 1, and the adicity of a binary
relation is 2.

See also: Binary Function, N-ary Function, N-ary Relation,
Ternary Function, Ternary Relation, Unary Relation

AD IGNORANTIUM Latin for “to the point of ignorance,” the
phrase “ad ignorantium” is used to indicate an informal fallacy
which occurs when the reasoner attempts to support a conclusion
merely by pointing out that we have no evidence for the negation of
the conclusion.

AD INFINITUM Latin for “to infinity,” the phrase “ad infinitum” is
used to indicate that a process is to be continued indefinitely, or that
a particular function or operation is to be applied infinitely many
times.

See also: Complete Infinity, Cumulative Hierarchy, Hierarchy,
Iteration, Iterative Conception of Set, Potential Infinity

ADJUNCTION see Conjunction Introduction

ADMISSIBLE RULE A rule of inference is an admissible rule,
relative to a particular formal system, if and only if its addition
to the system does not allow one to prove any theorems or
demonstrate the validity of any arguments that were not already
provable using the original rules of the system. 

An admissible rule is also a derivable rule if a schema can be

a d m i s s i b l e  r u l e 9
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provided which demonstrates how to obtain the conclusion of the
derivable rule from the premises of the rule. Not every admissible
rule is derivable, however. 

See also: Cut, Cut Elimination, Derivation, Sequent Calculus

ADMISSIBLE SHARPENING see Sharpening

AFFINE LOGICS Affine logics are substructural logics within
which the structural rule contraction:

Δ, A, A ⇒ Φ
Δ, A ⇒ Φ

fails. 

See also: Abelian Logic, Sequent Calculus

AFFIRMATIVE PROPOSITION The quality of a categorical
proposition is affirmative – that is, the categorical proposition is
an affirmative proposition (or positive proposition) – if and only
if it asserts that (some or all) members of the class denoted by
the subject term are also members of the class denoted by
the predicate term. A-propositions and I-propositions are
affirmative, while E-propositions and O-propositions are not.
Categorical propositions that are not affirmative are negative.

See also: Particular Proposition, Quantity, Square of
Opposition, Universal Proposition

AFFIRMING THE ANTECEDENT see Modus Ponens

AFFIRMING THE CONSEQUENT Affirming the consequent is the
formal fallacy that occurs when one moves from a conditional,
and the consequent of that conditional, to the antecedent of that
conditional. In symbols:

P → Q
Q
P

See also: Abduction, Conditional Proof, Denying the
Antecedent, Material Conditional, Modus Ponens, Modus
Tollens

10 a d m i s s i b l e  s h a r p e n i n g

1004 02 pages 001-322:Layout 1  16/2/09  15:11  Page 10



ALETHIC MODAL LOGIC Alethic modal logic is the branch of
modal logic that deals with the modal operators “it is necessary
that Φ” and “it is possible that Φ,” typically symbolized as “▫ Φ”
and “� Φ” or “L Φ” and “M Φ,” respectively. Any modal logic
dealing with modal operators other than these, such as deontic
modal logic, doxastic modal logic, epistemic modal logic, and
temporal modal logic, are non-alethic modal logics or
analethic modal logics.

See also: Contingency, Impossibility, Kripke Semantics,
Kripke Structure, Normal Modal Logic, Possibility

ALGEBRA An algebra is a set of objects and one or more functions
or relations on that set. Within logic, important algebras include
the natural numbers, the real numbers, Boolean algebras,
lattices, and orderings of various types. One fruitful way to view a
formal system is as an algebra where the set in question contains all
well-formed formulas and the operations are the functions defined
by the formation rules (e.g. conjunction is associated with the
binary function that takes two formulas as inputs and gives their
conjunction as output).

See also: Algebraic Logic, Induction on Well-formed
Formulas, Partial Ordering

ALGEBRAIC LOGIC The branch of mathematical logic that
studies the algebraic structures – that is, algebras – associated with
particular formal systems. Algebraic logic is especially useful when
studying many-valued logics, since one can compare the algebras
generated by these systems to the Boolean algebras generated by
classical logics.

See also: Lattice, Partial Ordering

ALGORITHM see Effective Procedure

ALTERNATE DENIAL see Sheffer Stroke

ALTERNATIVE LOGIC see Non-Standard Logic

AMBIGUITY An expression displays ambiguity if it has more than one
legitimate meaning or interpretation in a given context.

a m b i g u i t y 11
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See also: Amphiboly, Equivocation, Informal Fallacy, Punc -
tuation

AMPHIBOLY A type of ambiguity, amphiboly occurs when a com -
plex expression has more than one legitimate interpretation, and the
ambiguity in question is not due to any single word having more than
one meaning. In cases of amphiboly, the multiple interpretations are
due instead to a structural, logical, or grammatical defect in the
construction of the expression.

See also: Equivocation, Informal Fallacy, Punctuation

ANALETHIC LOGIC Analethic logic is a three-valued logic where
the third truth value is the truth value gap “neither true nor
false” (typically denoted “N”), and the designated values are
“true” and “neither true nor false.” Compound sentences are
assigned truth values based on the truth tables for the strong
Kleene connectives. Analethic logic has the same proof-theoretic
behavior of the logic of paradox, without requiring the acceptance
of a truth value glut.

See also: Contradiction, Designated Value, Dialetheism,
Dialethic Logic, Ex Falso Quodlibet, Paraconsistent Logic

ANALETHIC MODAL LOGIC see Alethic Modal Logic

ANALYSIS Analysis is either the first-order theory of the real
numbers or the second-order theory of the natural numbers
(that is, second-order arithmetic). There is no ambiguity here,
since the two theories are equivalent in proof-theoretic strength.

See also: Intuitionistic Mathematics, Non-standard Analysis

ANALYTIC A statement is analytic if and only if it is true in virtue
of the meanings of the expressions contained in it. If a statement is
not analytic, then it is synthetic.

ANAPHORA Anaphora occurs when the referent of an expression
depends on the referent of another expression occurring in the same
statement or in another appropriately connected statement. For
example, in:

Bobby was tired. He said he was suffering from lack of sleep.

12 a m p h i b o ly
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“He” occurs anaphorically. Often (but not always) anaphoric terms
are pronouns such as “it,” “she,” “there,” etc.

See also: Demonstrative, Indexical

ANCESTRAL The ancestral of a relation R is the relation R* that
holds between x and y if and only if there is a chain of objects z1, z2,
… zn such that Rxz1, Rz1z2, … Rzny. Within second-order logic the
ancestral is defined as follows. First, a concept F is hereditary
relative to a relation R if and only if:

Hered(F, R) = (∀x)(∀y)( Rxy → (Fx → Fy))

Loosely, F is hereditary relative to R if and only if everything
R-related to an F is an F. We can now define the ancestral of R:

R*(x, y) = (∀F)(((∀z)(Rxz → Fz) ∧ Her(F, R)) → Fy)

See also: Frege’s Theorem, Transitive Closure

AND see Conjunction

AND ELIMINATION see Conjunction Elimination

AND INTRODUCTION see Conjunction Introduction

ANTECEDENT The antecedent of a conditional is the subformula
of the conditional occurring between the “if ” and the “then,” or,
if the conditional is not in strict “If … then …” form, then the
antecedent is the subformula occurring between “if ” and “then” in
the “if … then …” statement logically equivalent to the original
conditional.

See also: Affirming the Consequent, Consequent, Denying the
Antecedent, Modus Ponens, Modus Tollens

ANTI-EXTENSION The anti-extension of a predicate is the set of
objects that fail to satisfy the predicate. Thus, the anti-extension of
“is red” is the set of things that fail to be red. More generally, the
anti-extension of an n-ary relation is the set of n-tuples that fail to
satisfy the relation.

Typically, the anti-extension of a predicate is the complement
of the extension of the predicate. Some non-standard logics,
however, such as supervaluational semantics, allow there to be

a n t i - e x t e n s i o n 13
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objects that are in neither the extension nor the anti-extension of a
predicate.

See also: Disjoint, Exclusive, Exhaustive, Partition, Sharp -
ening

ANTI-FOUNDATION AXIOM The anti-foundation axiom is the
axiom that replaces the axiom of foundation within non-well-
founded set theory, and which allows for sets with non-well-
founded membership relations. The axiom states that, given any
directed graph, there is a function f from the universe of sets V onto
the nodes of that graph such that, for any two sets A and B, A is a
member of B if and only if there is an edge in the graph leading from
the node f(A) to the node f(B). For example, the graph:

represents the non-well-founded set Ω where Ω = {Ω}.

See also: Iterative Conception of Set, Non-Well-Founded Set
Theory

ANTILOGISM An antilogism (or inconsistent triad) is any triple of
statements such that the truth of any two of them guarantees the
falsity of the third. Antilogisms were used as a tool for testing the
validity of categorical syllogisms, since a categorical syllogism
will be valid if and only if the triple containing the two premises and
the contradictory of the conclusion is an antilogism.

See also: Term Logic, Venn Diagram

ANTINOMY An antinomy occurs when two laws, or two conclusions
of apparently acceptable arguments, are incompatible with each
other. The term “antinomy” is also sometimes used more loosely as a
synonym for “paradox.”

See also: Insolubilia, Sophism, Sophisma

ANTIREALISM see Logical Antirealism

ANTISYMMETRY A relation R is antisymmetric if and only if, for
any a and b, if:

�

14 a n t i - f o u n d a t i o n  a x i o m
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Rab 

and:

Rba

then:

a = b.

See also: Asymmetry, Linear Ordering, Partial Ordering,
Strict Ordering, Symmetry, Well-Ordering

A POSTERIORI see A Priori

A PRIORI A statement is a priori if and only if it can be known to be
true independent of any empirical experience (other than those
experiences that might be necessary in order to understand the
statement). A statement that is not a priori is a posteriori.

A-PROPOSITION An A-proposition is a categorical proposition
asserting that all objects which are members of the class
designated by the subject term are members of the class
designated by the predicate term. In other words, an A-proposition
is a categorical proposition whose logical form is:

All P are Q.

The quality of an A-proposition is affirmative and its quantity is
universal. An A-proposition distributes its subject term, but not
its predicate term.

See also: E-Proposition, I-Proposition, O-Proposition, Square
of Opposition

ARGUMENT1 An argument is a sequence of statements where all
but one of the statements (the premises) are intended to provide
evidence, or support, for the remaining statement (the conclusion). 

Sometimes, in technical contexts such as the sequent calculus,
an argument can have more than one conclusion.

See also: Conditionalization, Deductive Argument, Formal
Fallacy, Inductive Argument, Inference, Informal Fallacy

ARGUMENT2 An argument of a function or relation is any value that
can be input into the function or relation.
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See also: Domain, Field, Range

ARISTOTELIAN COMPREHENSION SCHEMA The Aristotelian
comprehension schema is the following formula in second-order
logic (for any formula Φ not containing Y free):

(∃x)Φ → (∃Y)(∀x)(Yx ↔ Φ)

The Aristotelian comprehension schema guarantees there is a
concept holding of exactly the objects satisfying Φ, as long as
at least one object satisfies Φ. Unlike the standard comprehension
schema, the Aristotelian comprehension schema does not guarantee
the existence of an empty concept.

See also: Aristotelian Second-order Logic, Empty Set, Schema

ARISTOTELIAN LOGIC see Categorical Logic

ARISTOTELIAN SECOND-ORDER LOGIC Aristotelian second-
order logic is a variant of second-order logic where the
comprehension schema is replaced by the weaker Aristotelian
comprehension schema. The main difference between standard
second-order logic and Aristotelian second-order logic is that in
Aristotelian second-order logic there is no guarantee that the empty
concept exists.

See also: Empty Set, Schema

ARISTOTLE’S SEA BATTLE Aristotle’s sea battle example is meant
to challenge what we now call classical logic. Aristotle has us
consider two statements:

(1) There will be a sea battle tomorrow.

(2) There will not be a sea battle tomorrow.

According to classical reasoning, one of these is true and the other
false. But if that is the case, then we have no control over whether
there will be a sea battle tomorrow or not – the facts of the matter
have already been determined. Since the argument generalizes to
any statement, we are left with an uncomfortable determinism
regarding the future. 

See also: Bivalence, Law of Excluded Middle, Non-Standard
Logic

16 a r i s t o t e l i a n  c o m p r e h e n s i o n  s c h e m a

1004 02 pages 001-322:Layout 1  16/2/09  15:11  Page 16



ARISTOTLE’S THESIS Aristotle’s thesis is the following formula
on propositional logic:

~ (~ A → A)

This formula is a theorem in connexive logic, yet it is not a theorem
within classical logic – in the classical context Aristotle’s thesis is
equivalent to ~ A.

See also: Boethius’ Theses

ARITHMETIC Any theory regarding the natural numbers is an
arithmetic. Within logic, there are a number of important arithmetic
theories, including Robinson arithmetic, Peano arithmetic, and
non-standard arithmetic.

See also: Finitary Arithmetic, Gödel’s First Incompleteness
Theorem, Gödel’s Second Incompleteness Theorem, Hume’s
Principle, Inconsistent Arithmetic, Intuitionistic Arithmetic

ARITHMETIC HIERARCHY The arithmetic hierarchy (or Kleene
hierarchy) is a classification of the formulas of first-order
arithmetic based on their complexity. A formula is designated a
Π0 (or Σ0) formula if it is, or is equivalent to, a formula containing
only bounded quantifiers. Πn and Σn formulas, for any natural
number greater than 0, are defined recursively as follows:

Φ is Πn+1 if and only if Φ is logically equivalent to some
formula of the form:

(∀x1)(∀x2) … (∀xm)Ψ where Ψ is a Σn formula.

Φ is Σn+1 if and only if Φ is logically equivalent to some formula
of the form:

(∃x1)(∃x2) … (∃xm)Ψ where Ψ is a Πn formula.

Every formula of first-order arithmetic is equivalent to a formula in
prenex normal form, guaranteeing that this definition assigns
every formula of arithmetic a rank in the arithmetic hierarchy.

See also: Hierarchy, Π-Formula, Π-Sentence, Σ-Formula,
Σ-Sentence, Skolem Normal Form

ARITHMETIC PREDECESSOR see Arithmetic Successor

ARITHMETIC SUCCESSOR The arithmetic successor of a natural
number is the next natural number. In other words, the arithmetic
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successor of n is n + 1. If n is the arithmetic successor of m, then m
is the arithmetic predecessor of n.

See also: Axiom of Infinity, Cardinal Successor, Inductive Set,
Ordinal Successor, Successor Function

ARITHMETIZATION Arithmetization is the method by which
numerals in formalized arithmetic are assigned to symbols,
formulas, and sequences of formulas within that system of
arithmetic. Various claims about the syntax, proof theory, etc. of
the arithmetical theory can be formulated and studied within that
same theory by using the numerals assigned to expressions by the
arithmetization process as proxies for the expressions themselves.
Gödel’s first incompleteness theorem and Gödel’s second
incompleteness theorem are the paradigm instances of using
arithmetization in order to study characteristics of formal systems.

See also: Diagonalization, Diagonalization Lemma, Gödel
Numbering, Gödel Sentence, Peano Arithmetic

ARITY see Adicity

ASSERTION Assertion (or pseudo modus ponens) is the following
principle of propositional logic:

(A ∧ (A → B)) → B

Assertion is the conditionalization of the valid argument form
modus ponens. 

ASSOCIATIVE LAW see Associativity

ASSOCIATIVITY1 A function f is associative if and only if the
following holds for any a, b, and c:

f(a, f(b, c)) = f(f(a, b), c)

Any function that satisfies the above formula is said to satisfy the
associative law. 

See also: Absorbsion, Boolean Algebra, Join, Lattice, Meet

ASSOCIATIVITY2 Within propositional logic, associativity is the
rule of replacement that allows one to replace a formula of the
form:
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(A ∧ (B ∧ C))

with:

((A ∧ B) ∧ C),

or to replace a formula of the form:

(A ∨ (B ∨ C))

with:

((A ∨ B) ∨ C)

Multiple applications of associativity allow one to rearrange the
parentheses in long sequences of conjunctions or in long
sequences of disjunctions.

See also: Commutativity, Distributivity

ASYMMETRY A relation R is asymmetric if and only if it is not
symmetric – that is, if there exist an a and b such that:

Rab

but not:

Rba.

In some contexts asymmetry is understood more strictly, however, so
that a relation R is asymmetric if and only if it is nowhere symmetric
– that is, if for any x and y, if:

Rxy

then:

~ Ryx

See also: Antisymmetry, Strict Ordering

ATOM1 Within mereology, an atom is any object that has no proper
parts, that is, no parts other than itself. Formally, we can define this
notion as (where P is the part relation):

Ax = ~ (∃y)(Pyx ∧ y =/ x)

See also: Gunk, Mereological Nihilism

ATOM2 see Atomic Formula, Atomic Sentence, Propositional
Letter
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ATOMIC FORMULA An atomic formula (or atom, or simple
formula) is a formula that consists of a single n-ary predicate
followed by n singular terms. Note that the terms might be simple
or complex, and might be, or contain, either constants or
variables.

See also: Atomic Sentence, Compound Formula, Compound
Statement, Formation Rules, Propositional Letter, Singular
Proposition

ATOMIC LETTER see Propositional Letter

ATOMIC SENTENCE Within first-order logic, an atomic sentence
(or atom, or simple sentence) is a formula that consists of a single
n-ary predicate followed by n singular terms where none of the
terms contains any variables. In other words, an atomic sentence is
an atomic formula where all the terms are constants, or are
complex terms containing only constants.

See also: Compound Formula, Compound Statement,
Formation Rules, Propositional Letter, Singular Proposition,
Well-Formed Formula

ATOMLESS GUNK see Gunk

ATTRIBUTE see Concept

AUSSUNDERONG see Axiom(s) of Separation

AUSSONDERONG AXIOM see Axiom(s) of Separation

AUTOLOGICAL A predicate is autological if and only if it applies to
itself. For example, “polysyllabic” is autological, since “polysyllabic”
is polysyllabic, but “unpronounceable” is not autological, since “un -
pronounceable” is pronounceable. A predicate that is not autological
is heterological. The Grelling paradox arises when one considers
whether “heterological” is heterological.

See also: Liar Paradox, Liar Sentence, Russell Paradox, Russell
Set

AUTOMATON An automaton is a finitely describable abstract
machine or computing device. The study of automata is central to
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computability theory. Examples of automata include Turing
machines and register machines.

See also: Church-Turing Thesis, Deterministic Turing
Machine, Non-Deterministic Turing Machine, Recursive
Function Theory, Turing Test

AUTOMORPHISM An automorphism is an isomorphism between a
structure and itself.

See also: Endomorphism, Epimorphism, Homomorph ism,
Monomorphism

AXIOLOGICAL LOGIC Axiological logic is the logic of “good,”
“bad,” and “better than.” Typically, axiological logics contain a
binary relation P where “Pxy” represents “x is preferred to y”
or “x is better than y.” This relation is usually assumed to be
asymmetric and transitive.

See also: Modal Logic, Partial Ordering

AXIOM An axiom is a formula used as a starting assumption and from
which other statements – theorems – are derived. Thus, many
statements are proved using axioms, but axioms need not, and given
their definition cannot, be proved. In the past, axioms were meant to
be self-evident and thus in need of no additional support or evidence.
Now, however, an axiom is any principle that is assumed without
proof. 

See also: Axiom Schema, Axiomatized Theory, Finitely
Axiomatizable, Recursively Axiomatizable Theory

AXIOM OF AUSSONDERONG see Axiom(s) of Separation

AXIOM OF CHOICE The axiom of choice (or multiplicative
axiom) asserts that, given a set containing one or more pairwise
disjoint sets, there exists a second set containing exactly one
member of each of the sets contained in the original set – in other
words, given a set of non-overlapping sets, the axiom of choice tells
us that we can “select” one member from each of the non-
overlapping sets and form these into a “new” set. In first-order
logic supple mented with the membership symbol “∈,” this can be
formulated as:
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(∀x)(((∀y)(y ∈ x → (∃z)(z ∈ y)) ∧ (∀y)(∀z)((y ∈ x ∧ z ∈ x) →
~ (∃w)(w ∈ y ∧ w ∈ z))) → (∃y)(∀z)(z ∈ x → (∃!t)(t ∈ z ∧ t ∈
y)))

The axiom of choice is equivalent to Zorn’s lemma, the well-
ordering principle, and the trichotomy law.

See also: Axiom of Countable Choice, Axiom of Dependent
Choice, Choice Function, Choice Set, Global Choice, Zermelo
Fraenkel Set Theory

AXIOM OF CONSTRUCTIBILITY The axiom of constructibility is
a set-theoretic principle that states that the universe of sets (V) is
identical to the constructible sets (L). Thus, the axiom can be
succinctly stated as:

V = L

The axiom of constructibility is independent of Zermelo
Fraenkel set theory, and Kurt Gödel proved that both the axiom
of choice and the continuum hypothesis are consistent with
Zermelo Fraenkel set theory by showing that both follow from the
axiom of constructibility (which is itself consistent with Zermelo
Fraenkel set theory).

See also: Independence Result, Inner Model

AXIOM OF COUNTABLE CHOICE The axiom of countable choice
(or axiom of denumerable choice) is a weak version of the axiom
of choice. It states that, given a countable set containing one or
more pairwise disjoint sets, there exists a set containing exactly
one member of each of the sets contained in the original set.

The axiom of countable choice is implied by both the full axiom of
choice and the axiom of dependent choice.

See also: Choice Function, Choice Set, Global Choice,
Trichotomy Law, Well-Ordering Principle, Zorn’s Lemma

AXIOM OF DENUMERABLE CHOICE see Axiom of Countable
Choice

AXIOM OF DEPENDENT CHOICE The axiom of dependent
choice is a weak version of the axiom of choice. It states that, given: 

(1) Any non-empty set X.
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and:

(2) Any relation R on X such that, for any member a of X,
there is a member b of X such that Rab (that is, for any
serial relation R on X).

there is a sequence x1, x2, … such that, for all n, xn is in X, and
Rxnxn+1.

The axiom of dependent choice is implied by the full axiom of
choice and implies the axiom of countable choice.

See also: Choice Function, Choice Set, Global Choice,
Trichotomy Law, Well-Ordering Principle, Zorn’s Lemma

AXIOM OF DETERMINATENESS see Axiom of Extensionality

AXIOM OF EMPTY SET The axiom of empty set (or axiom of null
set, or empty set axiom, or null set axiom) asserts that there
exists a set containing no members. In first-order logic supple -
mented with the membership symbol “∈,” this can be formulated as:

(∃x)(∀y)(y ∉ x)

or:

(∃x)(∀y)(y ∈ x ↔ y =/ y)

The empty set, the set whose existence is asserted by this axiom, is
typically denoted by “�.”

See also: Axiom of Infinity, Zermelo Fraenkel Set Theory

AXIOM OF EXTENSIONALITY The axiom of extensionality (or
axiom of determinateness, or extensionality axiom) asserts
that two sets are identical if and only if they have exactly the same
members. In first-order logic supplemented with the membership
symbol “∈,” this can be formulated as:

(∀x)(∀y)(x = y ↔ (∀z)(z ∈ x ↔ z ∈ y))

Satisfaction of the axiom of extensionality is often thought to be
constitutive of the concept of set – in other words, something cannot
be a set unless it satisfies this axiom, regardless of which other set-
theoretic axioms are true. 

See also: Zermelo Fraenkel Set Theory
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AXIOM OF FOUNDATION The axiom of foundation (or the axiom
of regularity, or the axiom of restriction, or foundation axiom,
or regularity axiom, or restriction axiom), asserts that, given any
non-empty set A, there is a member of A that is disjoint from A –
in other words, any set that has any members at all has a member
that shares no members with the original set. In first-order logic
supplemented with the membership symbol “∈,” this can be
formulated as:

(∀x)((∃y)(y ∈ x) → (∃z)(z ∈ x ∧ ~(∃w)(w ∈ z ∧ w ∈ x)))

Although the exact import of the axiom of foundation is difficult to
summarize, its main role is to rule out the existence of non-well-
founded sets.

See also: Anti-Foundation Axiom, Non-Well-Founded Set
Theory, Zermelo Fraenkel Set Theory

AXIOM OF INFINITY The axiom of infinity asserts that there exists
a set A such that (1) the empty set is a member of A, and (2) for
any set that is a member of A, its ordinal successor is also a member
of A. In first-order logic supplemented with the membership
symbol “∈” and standard abbreviations, this can be formulated as:

(∃x)(� ∈ x ∧ (∀y)(y ∈ x → y ∪ {y} ∈ x))

The set whose existence is asserted by this axiom can easily be shown
to contain infinitely many members.

The set-theoretic axiom of infinity should be clearly distinguished
from the infinity axiom, which merely states that infinitely many
objects exist.

See also: Axiom of Zermelo Infinity, ω, Singleton, Successor,
Union, Zermelo Fraenkel Set Theory

AXIOM OF NULL SET see Axiom of Empty Set

AXIOM OF PAIRING The axiom of pairing (or pairing axiom)
asserts that, for any two objects A and B, there is a set whose
members are exactly A and B – in other words, for any two objects,
the unordered pair containing just those two objects as members
exists. In first-order logic supplemented with the membership
symbol “∈,” this can be formulated as:

(∀x)(∀y)(∃z)(∀w)(w ∈ z ↔ (w = x ∨ w = y))
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The axiom of pairing implies that the singleton of every set exists,
and it also provides the resources to construct ordered pairs and,
more generally, ordered n-tuples.

See also: Pairing Function, Zermelo Fraenkel Set Theory

AXIOM OF POWERSET The axiom of powerset (or powerset
axiom) asserts that, given any set A, there exists a second set B such
that the members of B are exactly the subsets of A (including the
empty set, and A itself). B is the powerset of A. In first-order
logic supplemented with the membership symbol “∈,” this can be
formulated as:

(∀x)(∃y)(∀z)(z ∈ y ↔ (∀w)(w ∈ z → w ∈ x))

See also: Cantor’s Theorem, Continuum Hypothesis,
Generalized Continuum Hypothesis, Zermelo Fraenkel Set
Theory

AXIOM OF REDUCIBILITY In ramified type theories, the axiom
of reducibility states that, for any concept (of any type) of order n,
there is a concept of order 0 (of the same type) that has the same
extension – that is, that holds of exactly the same entities. The axiom
of reducibility is often formalized as:

(∀Xn)(∃Y0)(∀z)(Xnz ↔ Y0z)

The axiom of reducibility in effect reduces the ramified theory of
types to the simple theory of types.

AXIOM OF REGULARITY see Axiom of Foundation

AXIOM OF RELATIVITY The axiom of relativity is the following
theorem of Abelian logic:

((A → B) → B) → A

This axiom is notable since its addition to most logics renders the
logic trivial. One can see this quite simply in the case of classical
logic, since consequential mirabilis:

(~ A → A) → A

is a theorem of classical logic.

See also: Paraconsistent Logic, Relevance Logic
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AXIOM OF REPLACEMENT see Axiom(s) of Replacement

AXIOM OF RESTRICTION see Axiom of Foundation

AXIOM OF SEPARATION see Axiom(s) of Separation

AXIOM OF SUMSET see Axiom of Union

AXIOM OF TRICHOTOMY see Trichotomy Law

AXIOM OF UNION The axiom of union (or axiom of sumset, or
sumset axiom, or union axiom) asserts that, given any set of sets
A, there exists a set B such that B contains all of the members of the
members of A. B is the union of A. In first-order logic supple -
mented with the membership symbol “∈,” this can be formulated as:

(∀x)(∃y)(∀z)(z ∈ y ↔ (∃w)(z ∈ w ∧ w ∈ x))

The union of a set A is typically denoted by “∪A.”

See also: Intersection, Zermelo Fraenkel Set Theory

AXIOM OF ZERMELO INFINITY The axiom of Zermelo infinity
asserts that there exists a set A such that (1) the empty set is a
member of A, and (2) for any set that is a member of A, its
singleton is also a member of A. In first-order logic supplemented
with the membership symbol “∈” and standard abbreviations, this
can be formulated as:

(∃x)(� ∈ x ∧ (∀y)(y ∈ x → {y} ∈ x))

This axiom should be clearly distinguished from both the set-
theoretic axiom of infinity and the infinity axiom.

See also: Ordinal Successor, Zermelo Fraenkel Set Theory

AXIOM SCHEMA An axiom schema is a formula in the metatheory
within which one or more metalinguistic schematic variables
occur. Given an axiom schema, one obtains an axiom by
systematically replacing each schematic variable with an object
language formula of the appropriate type. Since there are usually
infinitely many different object language formulas of the type in
question, an axiom schema provides a finite formulation of an
infinite list of axioms that are similar in structure.

See also: Axiom(s) of Replacement, Axiom(s) of Separation,
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Comprehension Schema, Mathematical Induction, Substi -
tution Instance, T-schema

AXIOM(S) OF REPLACEMENT The axiom(s) of replacement (or
axiom of substitution, or replacement axiom) assert that, given
any set A and any function f, there exists a second set B such that the
members of B are exactly the image of the set A under the function
f. In other words, an object is a member of B if and only if it is the
result of applying the function f to a member of the original set A.

The full import of the axiom(s) of replacement cannot be captured
within first-order logic by a single formula. Instead, in first-order
logic supplemented with the membership symbol “∈,” we can
provide the following axiom schema, which provides a particular
instance of the axiom of replacement for each individual function f:

(∀x)(∃y)(∀z)(z ∈ y ↔ (∃w)(w ∈ x ∧ z = f(w)))

Within second-order logic, however, we can formulate the axiom(s)
of replacement as a single axiom:

(∀f)(∀x)(∃y)(∀z)(z ∈ y ↔ (∃w)(w ∈ x ∧ z = f(w)))

See also: Zermelo Fraenkel Set Theory

AXIOM(S) OF SEPARATION The axiom(s) of separation (or
aussonderong, or aussonderong axiom, or axiom of
aussonderong, or separation axiom) asserts that, given any set A
and any condition Φ(x), there exists a second set B such that the
members of B are exactly the members of A that also satisfy the
condition Φ(x). The axiom(s) of separation allows us to form
arbitrary subsets of any given set, so long as we have to hand some
condition that picks out the subset in question.

The full import of the axiom(s) of separation cannot be captured
within first-order logic by a single formula. Instead, in first-order
logic supplemented with the membership symbol “∈,” we can
provide the following axiom schema, which provides a particular
instance of the axiom of separation for each individual predicate
Φ(x):

(∀x)(∃y)(∀z)(z ∈ y ↔ (z ∈ x ∧ Φ(z)))

Within second-order logic, however, we can formulate the axiom(s)
of separation as a single axiom:

(∀P)(∀x)(∃y)(∀z)(z ∈ y ↔ (z ∈ x ∧ P(z)))
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See also: Russell’s Paradox, Zermelo Fraenkel Set Theory

AXIOMATIC THEORY see Axiomatized Theory

AXIOMATIZATION see Axiomatized Theory

AXIOMATIZED THEORY A theory is an axiomatized theory if and
only if it is the transitive closure of some set of axioms or axiom
schemata. Since any theory is axiomatizable in this sense (since we
can just take all principles contained in the theory as axioms),
logicians are typically interested in theories that can be axiomatized
in some convenient manner, such as finitely axiomatizable
theories or recursively axiomatizable theories. A particular set
of axioms for an axiomatized theory is (one of) that theory’s
axiomatizations.

B B (or Brouwerian Modal Logic) is the normal modal logic whose
additional axioms are:

T: � P → P
B: P → � �P

In possible worlds semantics, the modal logic B is valid on any
frame in which the accessibility relation is symmetric and
reflexive.

B also refers to the axiom that is characteristic of the modal logic
B (or the Brouwerian Axiom). The axiom B is satisfied on any
frame in which the accessibility relation is symmetric.

See also: Kripke Semantics, Kripke Structure, Modality

b The second letter of the Hebrew alphabet, b is used to denote a
particular type of infinite cardinal number. Subscripted ordinal
numbers are used to distinguish, and order, the b’s. b0 is identical
to a0, the first infinite cardinal. b1 is identical to 2

b0. b2 is identical to
2

b1 … and generally:

b i+1 = 2
b i

B
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With the b notation in place, we can succinctly express both the
continuum hypothesis and the generalized continuum
hypothesis. The continuum hypothesis is the claim that:

a1 = b1

The generalized continuum hypothesis is the claim that:

(∀i)(ai = bi)

See also: c, Cantor’s Theorem, Continuum, Cumulative
Hierarchy, Rank

BAD COMPANY OBJECTION The bad company objection is an
objection to mathematical abstractionism. According to the bad
company objection, the mathematical abstractionist has no reasons
for believing that some abstraction principles, such as Hume’s
Principle, can play the privileged foundational and epistemological
role ascribed to them, since other abstraction principles, such as
Basic Law V, patently cannot play such a role, being inconsistent
or otherwise incompatible with Hume’s Principle.

See also: Abstraction, Caesar Problem

BAG see Multiset

BARBARA A categorical syllogism whose premises and con -
clusion are all A-propositions – that is, whose syllogistic mood is
AAA – and which is in the first syllogistic figure is a “Barbara”
syllogism. 

The designation comes from a medieval poem which lists all the
valid syllogistic argument forms in categorical logic:

Barbara, Celerent, Darii, Ferioque, prioris;
Cesare, Camestres, Festino, Baroco, secundae;
Tertia, Darapti, Disamis, Datisi, Felapton,
Bocardo, Ferison, habet: quarta insuper addit
Bramantip, Camenes, Dimaris, Fesapo, Fresison.

Each name represents a valid form. The vowels in the name represent
the syllogistic mood, so Festino is an EIO syllogism, and the
syllogistic figure is indicated in Latin (i.e. “prioris,” “secundae,”
“tertia,” and “quarta”).

See also: Categorical Proposition, Term Logic, Venn Diagram
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BARCAN FORMULA The Barcan formula is the following formula of
quantified modal logic:

(∀x)�Φ → �(∀x)Φ

The Barcan formula implies that any object that exists in any
possible world accessible from the actual world exists in the
actual world – in other words, any object that can possibly exist
actually exists.

See also: Converse Barcan Formula, Mere Possibilia, Normal
Modal Logic

BASIC LAW V Basic Law V is the abstraction principle: 

(∀X)(∀Y)(Ext(X) = Ext(Y) ↔ (∀z)(X(z) ↔ Y(z)))

Basic Law V states that every concept has a unique object associated
with it, its extension (what we would call a set). Gottlob Frege used
Basic Law V to derive Hume’s Principle, which can then be used
to derive the Peano axioms for arithmetic. The theory that one
obtains from Basic Law V is a form of naïve set theory, and, as
a result, the Russell paradox can be constructed in the theory,
showing it to be inconsistent.

See also: Abstraction Operator, Bad Company Objection,
Caesar Problem, Frege’s Theorem, Mathematical Abstrac -
tionism

BASIS In a proof by induction, the basis is the step in the proof
where one demonstrates that the property in question holds of
some initial case(s). For example, if the proof is a mathematical
induction, then the basis step shows that the property holds of 0, or
of some initial segment of the natural numbers. In an induction
on the length of well-formed formulas the basis step typically
amounts to demonstrating that the property in question holds of all
atomic formulas or propositional letters.

See also: Inductive Argument, Transfinite Induction

BAYES’ THEOREM Within probability theory, Bayes’ theorem
allows us to derive the probability of an event occurring in light of
new evidence. The theorem states that:

Pr(A/B) = (Pr(B/A) × Pr(A))/Pr(B)
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In other words, the probability of some event A occurring, in light of
evidence B, is the probability of the evidence B occurring if A occurs,
multiplied by the probability of A occurring simpliciter, and then
divided by the probability of B occurring simpliciter.

See also: Conditional Probability, Probability Calculus, Prob -
ability Logic, Ramsey Test

BEGGING THE QUESTION Begging the question is an informal
fallacy that occurs when a reasoner presents an argument for a
conclusion but omits a crucial premise, one whose acceptance
would entail prior acceptance of the conclusion.

More generally, the term begging the question (or petitio
principii) is used for any fallacious argument where the truth of the
conclusion is already implicit in one or more of the premises.

BERNAYS-GÖDEL SET THEORY see Von Neumann Bernays
Gödel Set Theory

BERRY PARADOX The Berry paradox (or Berry’s Paradox) is the
paradox of denotation that arises from consideration of the
expression:

The smallest positive integer that cannot be uniquely specified
in less than 100 characters.

Since there is only a finite number of expressions containing no
more than 100 characters, there must be a first positive integer which
is not denoted by such an expression. Call that integer B. Thus, the
offset expression above denotes B. But the expression above contains
fewer than 100 characters, so it is, in fact, an expression of fewer than
100 characters that picks out B. Contradiction.

Variants of the reasoning underlying the Berry paradox carried out
within first-order arithmetic have been shown to be intimately
connected to Gödel’s first and second incompleteness
theorems. 

See also: König Paradox, Richard Paradox

BERRY’S PARADOX see Berry Paradox

BEW see Provability Predicate

BHK-INTERPRETATION On the BHK-interpretation (or Brouwer-
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Heyting-Kolmogorov interpretation) of the logical connec -
tives and quantifiers, truth conditional clauses are replaced by
proof-theoretic clauses. The following clauses provide the meaning
of the connectives and quantifiers on the BHK interpretation:

A proof of A ∧ B is a proof of A and a proof of B.

A proof of A v B is either a proof of A or a proof of B.

A proof of A → B is a construction or procedure which trans -
forms a proof of A into a proof of B.

A proof of ~A is a construction or procedure which transforms
a proof of A into a proof of falsum (that is, ⊥, which by
definition has no proof).

A proof of (∃x)Φ(x) is a proof of Φ(a) for some a.

A proof of (∀x)Φ(x) is a construction or procedure that
provides a proof of Φ(a) for any a.

The BHK-interpretation of the connectives is often used to motivate
intuitionistic logic or other constructive logics. 

See also: Bivalence, Constructive Proof, Excluded Middle,
Intuitionism, Logical Antirealism

BIAS Any factor that prevents a sample from being representative of
the population in question is a bias. More generally, a bias can be
any factor that gives preference to a particular outcome or belief
independently of any evidence for or against that outcome or belief.

See also: Gambler’s Fallacy, Hasty Generalization, Informal
Fallacy, Probability Calculus, Probability Theory

BICONDITIONAL A biconditional is a statement of the form:

A if and only if B

Within propositional logic, biconditionals are usually represented
as:

A ↔ B

Or as:

A ≡ B

Within classical logic the biconditional has the following truth
table:
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See also: Deductive Equivalence, Iff, Logical Equivalence,
Material Biconditional, Materially Equivalent, T-schema

BIJECTION A bijection is a bijective function.

See also: Injection, One-to-One, Onto, Surjection

BIJECTIVE A function f from a domain D to a range R is bijective
(or one-to-one onto) if and only if, for any two distinct members
of the domain x and y, f(x) ≠ f(y) and for any member x of the range
there is a y in the domain such that f(y) = x. More intuitively, a
bijective function maps each member of the domain to exactly one
member of the range, and vice versa.

See also: Injective, Surjective

BINARY FUNCTION A binary function (or dyadic function) is a
function that takes two arguments, such as “the midpoint between
x and y.”

See also: Adicity, Binary Relation

BINARY RELATION A binary relation (or dyadic relation) is a
relation that takes two arguments, such as “x loves y” or “x is
greater than y.”

See also: Adicity, Binary Function

BIVALENCE Bivalence (or the law of bivalence, or the principle of
bivalence) is the metatheoretic claim that every statement is
either true or false. If one is working in a language with a truth
predicate, bivalence can be expressed in the metatheory as:

(∀P)(T(P) v T(~P))

(assuming we read “T(~P),” that is, “the negation of P is true,” as
equivalent to “P is false”). Bivalence should not be confused with
the object language principle of excluded middle, although the
two are intimately connected.

P Q P ≡ Q
T T T
T F F
F T F
F F T
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See also: Classical Logic, Law of Non-Contradiction,
Semantically Closed Language, Weak Excluded Middle

BOETHIUS’ THESES The following formulas in propositional
logic are Boethius’ theses:

(A → B) → ~ (A → ~ B)

(A → ~ B) → ~ (A → B)

These formulas are theorems of connexive logic, yet are not
theorems within classical logic – in the classical context Boethius’
theses are both equivalent to A.

See also: Aristotle’s Thesis

BOOLEAN ALGEBRA A Boolean algebra is a type of lattice
consisting of a set of objects A which contains two distinguished
members (typically represented by 1 and 0) along with two binary
functions on A (typically represented by ∩ and ∪) and a unary
function on A (typically represented by ~) which satisfy the
following axioms:

Associativity: A ∩ (B ∩ C) = (A ∩ B) ∩ C

A ∪ (B ∪ C) = (A ∪ B) ∪ C

Commutativity: A ∩ B = B ∩ A

A ∪ B = B ∪ A

Absorbsion: A ∩ (A ∪ B) = A

A ∪ (A ∩ B) = A

Distributivity: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Complement: A ∪ ~ A = 1

A ∩ ~ A = 0

The function ∩ is meet, the function ∪ is join, the function ~ is
complement, 0 is the minimal element, or the bottom, and 1 is the
maximal element, or the top. The top and bottom of a Boolean
algebra are also sometimes represented as T and ⊥ respectively.

Boolean algebras are used to provide formal semantics for
various logics and are used in the set theoretic method of forcing.
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See also: Algebraic Logic, Boolean Operator, Logic Gate,
Partial Order

BOOLEAN NEGATION Boolean negation is the negation operator
characterized by the following rules:

~A is true if and only if A is not true.

~A is false if and only if A is not false.

Boolean negation is equivalent to other versions of negation (such
as DeMorgan negation) in the context of classical semantics, but
these negations are non-equivalent in many-valued logics such as
first-degree entailment.

See also: Boolean Operator, Choice Negation, Exclusion
Negation

BOOLEAN OPERATOR A Boolean operator is any function
mapping n-tuples of members of a Boolean algebra onto
members of the Boolean algebra. Often within logic we are interested
in the 2 element Boolean algebra. In this case we can interpret the
top element as true, the bottom element as false, and the Boolean
operations meet (∩), join (∪), and complement (~) correspond to
the classical truth functions for conjunction, disjunction, and
negation. 

See also: Boolean Negation, Dagger, Sheffer Stroke

BORDERLINE CASE An object x is a borderline case of a predicate
Φ if and only if x is not a clear case of Φ and x is not a clear case of ~
Φ. Borderline cases are often associated with vagueness.

See also: Forced March Sorites, Higher-Order Vagueness, In
Rebus Vagueness, Semantic Vagueness, Sorites Paradox,
Sorites Series

BOTTOM The minimal element in a lattice or Boolean algebra is
the bottom, and is usually symbolized as “0” or “⊥.”

See also: Falsum, Partial Ordering, Top, Verum

BOUND VARIABLE In a formula of first-, second-, or higher-
order logic, a variable x is a bound variable if it occurs within the
scope of a quantifier. A variable that is not bound by a quantifier is
a free variable.
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See also: Existential Quantifier, Generalized Quantifier,
Universal Quantifier

BOUNDED QUANTIFIER In arithmetic, a bounded quantifier is a
quantifier whose instances are restricted to some initial segment
of the natural numbers. Thus, while a statement beginning with
the standard universal quantifier:

(∀x)Φx

says that all natural numbers satisfy Φ, a statement beginning with
a bounded universal quantifier:

(∀x < n)Φx

says that all natural numbers less than n satisfy Φ.

See also: Finitary Arithmetic, Π-formula, Π-sentence,
Σ-formula, Σ-sentence

BRANCHING QUANTIFIER A branching quantifier (or Henkin
quantifier) is a matrix of first-order quantifiers that allows for
variable dependencies that cannot be expressed in standard first-
order logic, which is written with a linear notation. For example, in
the branching quantifier:

⎛(∀x)(∃y) ⎞
⎢ ⎢Φ
⎝(∀z)(∃w)⎠

the existential variable y depends on the universal variable x,
but not on the universal variable z, and the existential variable w
depends on the universal variable z, but not on the universal variable x.

A logic which allows branching quantifiers is expressively
stronger than standard first-order logic, but expressively weaker than
second-order logic. Certain statements in natural language,
such as the Geach-Kaplan sentence, cannot be adequately
formalized using first-order logic, but can be formalized using
branching quantifiers. Independence-friendly logic provides a
linear notation for branching quantifiers.

See also: Geach-Kaplan Sentence, Generalized Quantifier,
Higher-order Logic, Higher-order Quantifier, Higher-order
Variable, Independence-Friendly Logic, Plural Quantifi -
cation, Second-order Logic
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BROUWER-HEYTING-KOLMOGOROV INTERPRETATION see
BHK-Interpretation

BROUWERIAN AXIOM see B

BROUWERIAN MODAL LOGIC see B

BURALI-FORTI PARADOX The Burali-Forti paradox (or Burali-
Forti’s paradox) shows that the order-type of all ordinal
numbers cannot be an ordinal number or, equivalently, there can be
no set of all ordinal numbers. The paradox can be easily derived
once we have the following principle, which is provable in most
formulations of set theory:

(1) For any ordinal number γ, the order-type of the ordinal
numbers less than γ, on the standard ordering, is γ.

To derive the paradox, assume that there was an order-type of all
ordinal numbers, that is, an ordinal number corresponding to the
standard ordering on the collection of all ordinal numbers. Call this
order-type Γ. Then, by the principle above, the order-type of the
ordinal numbers less than Γ is Γ. So the order-type of the ordinal
numbers less than or equal to Γ, that is, the order-type of all the
ordinal numbers, is Γ+1. But this contradicts our assumption that the
order-type of all the ordinal numbers is Γ, since Γ ≠ Γ+1.

See also: Iterative Conception of Set, Limitation-of-Size
Conception of Set, Russell Paradox, Set-Theoretic Paradox

BURALI-FORTI’S PARADOX see Burali-Forti Paradox

BURIDAN’S SOPHISMATA Burdian’s sophismata is a series of
puzzles involving self-reference posed by the medieval logician
John Buridan. Notable among them is a second sophisma:

No proposition is negative, thus some proposition is negative.

which seems both valid and invalid at the same time, and his ninth
sophisma:

Plato says: “What Socrates is saying is true.”
Socrates says: “What Plato is saying is false.”

which demonstrates that direct self-reference, of the sort found in
the Liar paradox, is not necessary in order to generate semantic
paradoxes.
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BUSY BEAVER FUNCTION see Busy Beaver Problem

BUSY BEAVER MACHINE see Busy Beaver Problem

BUSY BEAVER PROBLEM The busy beaver problem concerns
Turing machines, which carry out complex computations and
then halt. Consider Turing machines that begin on a blank tape and
eventually halt while scanning the leftmost cell in an unbroken
sequence of “1”s. For any natural number n, let p(n) be the
longest such sequence that can be generated by such a Turing
machine consisting of n distinct states. (Note that the machine must
halt at the end of the sequence of “1”s and, since there are only
finitely many distinct Turing machines with n states, p(n) must be
finite.) The question is, can we design a Turing machine that can
compute p(n) (given n as input)? Computing p(n) is the busy beaver
function, and the hypothetical Turing machine that computes p(n)
would be the busy beaver machine.

The answer to our question, however, is “no.” The busy beaver
function p(n) is not computable by a Turing machine, and thus is
not recursive.

See also: Automaton, Deterministic Turing Machine,
Effectively Computable Function, Halting Problem, Non-
Deterministic Turing Machine

c c is sometimes used to denote the cardinality of the continuum –
that is, the cardinality of the set of real numbers. Thus:

c = 2
a0

See also: b, Cantor’s Theorem, Continuum Hypothesis,
Generalized Continuum Hypothesis

CAESAR PROBLEM The Caesar problem is an objection to
mathematical abstractionism. The mathematical abstractionist
wishes to use Hume’s Principle:

(∀P)(∀Q)(NUM(P) = NUM(Q) ↔ P ≈ Q)

C
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as an implicit definition of the concept “cardinal number.” If
Hume’s Principle is a definition of number, however, then it should
tell us which objects in particular the cardinal numbers are. Hume’s
Principle alone fails to achieve this; although it provides a test for
determining whether or not two cardinal numbers are identical, it is
silent on the issue of whether the numbers might be identical to other
familiar objects. In particular, Hume’s Principle is consistent with
the claim that one of the numbers is identical to Julius Caesar.

See also: Abstraction, Abstraction Operator, Abstraction
Principle, Bad Company Objection

CALCULUS see Formal System

CALCULUS OF INDIVIDUALS The calculus of individuals is
theory of mereology developed by Nelson Goodman and Henry
Leonard. The theory was intended to replace set theory within
science and philosophy, providing these disciplines with a
nominalistically respectable foundation.

See also: Atom, Classical Mereology, Individual, Parthood

CANTOR PARADOX The Cantor paradox shows that there cannot be
a set of all sets – a universal set – and depends on Cantor’s
theorem, which demonstrates that the powerset of a set cannot be
placed into one-to-one correspondence with that set itself. To derive
the paradox, assume that there is a set of all sets. Then that set must
contain, as members, all of its subsets. The identity function,
mapping each set to itself, would then provide a one-to-one mapping
from the members of the powerset of the universal set to the
members of the universal set itself, violating Cantor’s theorem.
Contradiction.

See also: Burali-Forti Paradox, New Foundations, Russell
Paradox

CANTOR’S DIAGONALIZATION THEOREM see Cantor’s
Theorem

CANTOR’S PARADOX see Cantor Paradox

CANTOR’S THEOREM Cantor’s theorem (or Cantor’s Diagonal -
ization Theorem) states that the cardinal number of the
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powerset of a set is strictly greater than the cardinal number of the
set itself. The theorem can be proved as follows. First, the cardinal
number of the powerset of a set A is clearly greater than, or equal to,
the cardinal number of A itself, since there is a one-to-one function
from the powerset of A to A – merely map each object onto its
singleton. We can show that no function can map A onto the
powerset of A, and that the cardinal number of the powerset of A is
not equal to the cardinal number of A.

Let f be any function from A to the powerset of A. Consider the
following set B:

B = {x ∈ A : x ∉ f(x)}

that is, the set of all objects in A that are not members of their
image under the function f. The function f cannot “hit” B. Assume
that it did, that is, that there is some m in A such that f(m) = B. Now,
by the definition of B, m is a member of B if and only if m is a
member of A and m is not a member of f(m). We know m is a member
of A, so this simplifies to: m is a member of B if and only if m is not
a member of f(m). Since f(m) = B, this is then equivalent to m is a
member of B if and only if m is not a member of B. This is a
contradiction, so by reductio ad absurdum we know that there is
no m such that f(m) = B. In other words, f “misses” B, and is not
onto. Since f was completely arbitrary, this shows that there can be
no onto function from A to the powerset of A. Thus, the cardinal
number of the powerset of A is greater than the cardinal number
of A.

This proof is an example of a diagonalization proof.

See also: c, Continuum Hypothesis, Fixed Point, Generalized
Continuum Hypothesis

CARDINAL see Cardinal Number

CARDINAL ARITHMETIC Cardinal arithmetic is the theory
governing the extension of the standard functions of arithmetic,
such as addition and multiplication, to infinite cardinal numbers.

See also: König’s Lemma, Ordinal Arithmetic

CARDINAL NUMBER A cardinal number (or cardinal) is the
number assigned to a set. For finite sets, the cardinal number will
be the same as the ordinal number and is just a natural number.
For example, the cardinal number of the set {a, b, c} is 3. 
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Infinite sets receive cardinal numbers as well. The cardinal
number of the set of natural numbers (i.e. {0, 1, 2, 3 …}) is a0, and
is the first infinite cardinal number. The cardinal number of the set
of countable ordinal numbers is  a1, and is the next cardinal
number. The next cardinal number after that is a2, and so on. 

See also: a, Cardinal Successor, Large Cardinal, Limit
Cardinal, Regular Cardinal

CARDINAL PREDECESSOR see Cardinal Successor

CARDINAL SUCCESSOR The cardinal successor of a cardinal
number is the next greater cardinal number. In “a” notation, the
cardinal successor of a γ is a γ+1. Given an arbitrary cardinal number
κ, the cardinal successor of κ can also be written κ+. If n is the
cardinal successor of m, then m is the cardinal predecessor of n.

See also: Limit Cardinal, Ordinal Successor, Transfinite
Induction, Transfinite Recursion

CARDINALITY The cardinality (or power) of a set is the cardinal
number associated with that set. Two sets have the same cardinality
if and only if they receive the same cardinal number – that is, if they
have the same number of members.

See also: a, b, c, Cardinal Successor, Large Cardinal, Limit
Cardinal

CARNAP-RAMSEY SENTENCE see Ramsey Sentence

CARTESIAN PRODUCT The Cartesian product (or product) of two
sets A and B is the set of all ordered pairs <x, y> such that x is a
member of A and y is a member of B. The cardinal number of the
Cartesian product of A and B is the product (that is, multiplication)
of the cardinal numbers of A and B. The Cartesian product of A and
B is usually denoted A × B.

See also: Cardinal Arithmetic, Ordered N-tuple, Unordered
Pair

CATEGOREMATIC TERM see Syncategorematic Term

CATEGORICAL A theory is categorical if all of its models are
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isomorphic. In other words, a categorical theory is one such that any
two of its models have the same structure.
See also: Downward Lowenheim-Skolem Theorem,
κ-Categorical, Non-Standard Arithmetic, Non-Standard
Analysis, Non-Standard Model, Upward Lowenheim-Skolem
Theorem

CATEGORICAL IN κ see κ-Categorical

CATEGORICAL LOGIC1 Categorical logic (or Aristotelian logic)
is a formal system developed by Aristotle in ancient Greece.
Categorical logic studies the valid and invalid syllogisms, or
two-premise arguments, formed out of various combinations
of the four types of categorical proposition: A-propositions,
E-propositions, I-propositions, and O-propositions. Categorical
logic was the main focus within logic until the introduction of
quantificational logic in the late nineteenth century.

See also: Square of Opposition, Term Logic, Venn Diagram

CATEGORICAL LOGIC2 Categorical logic is a non-standard logic
developed by treating both the semantics and the deductive
system of the logic as categories (in particular, as topoi). There are
fundamental connections between categorical logic and intuition -
istic logic.

See also: Category Theory, Constructive Logic, Constructive
Proof, Topos Theory

CATEGORICAL PROPOSITION A categorical proposition is any
statement of the form:

[quantifier] P [copula-phrase] Q

where P and Q are predicates, and where the quantifier is either
“all” or “some,” and the copula-phrase is either “are” or “are not.”
If the quantifier is “all,” then the proposition is universal, and if
the quantifier is “some,” then the proposition is particular. If the
copula-phrase is “are,” then the proposition is affirmative, and if
the copula-phrase is “are not,” then the proposition is negative. The
first predicate (P) is the subject term of the proposition and the
second predicate (Q) is the predicate term.

The logical form of a categorical proposition is denoted by a
vowel:
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A-Proposition: All P are Q.

E-proposition: All P are not Q.

I-proposition: Some P are not Q.

O-proposition: Some P are not Q.

E-propositions are often written as “No P are Q.”

See also: Distribution, Existential Import, Quality, Quantity,
Square of Opposition

CATEGORICAL SYLLOGISM A categorical syllogism is an
argument in categorical logic which has two premises, and
where each term occurs twice. Categorical syllogisms are
characterized in terms of syllogistic figure and syllogistic mood.
The mood of a categorical syllogism is determined by which type
of categorical proposition (A-proposition, E-proposition,
I-proposition, or O-proposition) occurs as first premise, second
premise, and conclusion. The figure of a categorical syllogism is
determined by how the three terms are distributed within the
argument. 

See also: Fallacy of Four Terms, Major Premise, Major Term,
Middle Term, Minor Premise, Minor Term

CATEGORY A category is one of the structures or classes of
structures studied by category theory. There are different
presentations of category theory, but the most common one defines
a category to be a set of objects C, supplemented with a binary
operation Hom(X, Y) where:

(1) For any X, Y in C, Hom(X, Y), the morphisms from X to Y
is a set of mappings (or functions) from X to Y. If f is a
morphism from X to Y, then we write f: X → Y.

(2) For any X, Y, and Z in C, and any f: X → Y in Hom(X, Y)
and g: Y → Z in Hom(Y, Z), the composition of f and g
exists; that is, there is a binary mapping º from Hom(X, Y)
× Hom (Y, Z) to Hom(X, Z). The composition of f and g is
g º f, and is in Hom(X, Z).

(3) For any object X in C, there is a morphism idX in Hom(X,
X), the identity on X, such that idX º f = f = f º idX.

(4) Composition of morphisms is associative: For any f: X →
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Y, g: Y → Z, and h: Z → W, we have:
h º (g º h) = (f º g) º h.

Two of the most important categories are the category of sets and the
category of categories.

See also: Categorical Logic, Set Theory, Topos, Topos Theory

CATEGORY THEORY Category theory is the mathematical study
of structures, systems of structures, and their interrelations – all
of which are categories. Thus, category theory is the study of
categories. Category theory has been suggested as an alternative to
set theory as the appropriate framework within which to study the
foundations of mathematics and logic. 

See also: Categorical Logic, Topos, Topos Theory

CAUSAL LOGIC see Causal Modal Logic

CAUSAL MODAL LOGIC Causal modal logic (or causal logic) is
the branch of modal logic that studies the unary modal operator
“it is casually necessary that …,” which is usually formalized as
“�c .”

See also: Alethic Modal Logic, Kripke Semantics, Kripke
Structure, Normal Modal Logic

CHARACTERISTIC FUNCTION1 Given a set A, the characteristic
function of A is the unary function f such that f(x) = 1 if x is a
member of A, and f(x) = 0 if x is not a member of A.

See also: Primitive Recursive Set, Recursive Set

CHARACTERISTIC FUNCTION2 Given a n-ary relation R, the
characteristic function of R is the n-ary function f such that f(x1, x2,
… xn) = 1 if Rx1, x2, … xn is true, and f(x1, x2, … xn) = 0 if R x1, x2, …
xn is false.

See also: Primitive Recursive Relation, Recursive Function
Theory, Recursive Relation, Recursive Set

CHOICE see Axiom of Choice, Choice Function, Choice Set

CHOICE FUNCTION A choice function on a set S is a function
mapping S to the union of S such that, for any x in S, f(x) is a
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member of x. Essentially, given a set of sets, a choice function maps
each set to one of its members. The axiom of choice can be
understood as asserting that for every non-empty set of sets S there
is a choice function on S.

See also: Axiom of Countable Choice, Axiom of Dependent
Choice, Choice Set, Global Choice, Zorn’s Lemma

CHOICE NEGATION Within three-valued logic, choice negation
(or internal negation) is the unary logical connective whose
associated truth function outputs true if the statement being
negated is false, outputs false if the statement being negated is true,
and outputs the third value (whatever that is – for example, a truth
value gap or truth value glut) whenever the sentence being
negated takes the third value. Thus, the truth table for choice
negation (where N is the third value) is:

See also: Boolean Negation, Bottom, DeMorgan Negation,
Exclusion Negation, Falsum

CHOICE SEQUENCE see Free Choice Sequence

CHOICE SET A choice set for a set S is a set containing exactly one
member from each set contained in S. The axiom of choice can be
understood as asserting that for each non-empty set of sets S there is
a choice set for S.

See also: Axiom of Countable Choice, Axiom of Dependent
Choice, Choice Function, Global Choice, Zorn’s Lemma

CHRONOLOGICAL LOGIC see Temporal Modal Logic

CHURCH’S THEOREM Church’s Theorem states that validity in
first-order logic is not decidable – that is, there is no decision
procedure for determining, of an arbitrary formula from a first-
order language, whether or not it is a logical truth.

See also: Entscheidungsproblem, Limitation Result, Meta -

A ~ A
T F
N N
F T
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theorem, Recursively Axiomatizable Theory, Semi-Decidable
Theory

CHURCH’S THESIS see Church-Turing Thesis

CHURCH-TURING THESIS The Church-Turing thesis (or
Church’s thesis, or Turing’s thesis) is the hypothesis that any
effectively computable function can be computed by a Turing
machine. Later results showed that this is equivalent to the claims
that: (i) any effectively computable function is a recursive function,
(ii) any effectively computable function is definable in the
λ-calculus, and (iii) any effectively computable function is register
computable.

See also: Decision Procedure, Deterministic Turing Machine,
Effective Procedure, Non-Deterministic Turing Machine,
Recursive Function Theory, Turing Computable Function

CLASS A class is any collection of objects. Some classes correspond to
sets (that is, they are collections that can be coherently treated as
objects, and thus can be members of other classes and sets), but the
Russell paradox shows that not all classes can be sets. Those classes
that are too large, or otherwise too ill-behaved, to be treated as sets are
proper classes.

See also: Absolute Infinite, Element, Von Neumann Bernays
Gödel Set Theory

CLASS COMPREHENSION SCHEMA Within Von Neuman
Bernays Gödel Set Theory, the class comprehension schema is the
following axiom schema guaranteeing the existence of proper
classes:

If Φ is a formula with all quantifiers restricted to sets, and Φ
contains x as a free variable, then:

(∃y)(∀x)(x ∈ y ↔ Φ)

is an axiom.

One obtains Morse-Kelley set theory by lifting the restriction on
the type of formulas that can occur in the class comprehension
schema.

See also: Kripke-Platek Set Theory, New Foundations, Positive
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Set Theory, Ramified Type Theory, Simple Type Theory,
Zermelo Fraenkel Set Theory

CLASSICAL DILEMMA Classical dilemma (or proof by cases) is
the rule of inference that allows one to move from a proof that A
entails B and a second proof that ~ A entails B to concluding that
B is the case. In symbols, we have:

A ~ A
: :
: :
B B
B

where the horizontal lines above A and ~ A indicate that these
assumptions have been discharged – that is, that the proof no longer
depends on them.

See also: Classical Reductio ad Abusurdum, Conditional
Proof, Excluded Middle, Natural Deduction, Reductio ad
Absurdum

CLASSICAL LOGIC Classical logic contains all of the following
theorems and rules of inference:

Double Negation: A ↔ (~ ~ A)

Excluded Middle: (A v ~ A)

Non-Contradiction: ~ (A ∧ ~ A)

DeMorgan’s Laws: ~ (A ∧ B) ↔ (~ A v ~ B)

~ (A v B) ↔ (~ A ∧ ~ B)

Explosion: (B ∧ ~ B) → A

Monotonicity: If Δ entails A, then Δ, Φ entails A.

While the above list is not sufficient to pick out exactly one formal
logic, the vast majority of non-classical logics of interest to
logicians reject one or more of the above principles.

From a semantic perspective, classical logic accepts both
bivalence and the law of non-contradiction – that is, classical
logic assumes that each statement receives exactly one of the true and
the false as its semantic value. Classical logic also requires truth
functionality – that is, that each compound statement receives its
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semantic value as a function of the semantic values of its constituent
statements.

Typically, when the term “classical logic” is used without
modification it is classical propositional or classical first-order
logic that is being referred to. Extensions of classical logic, such as
normal modal logics, are also sometimes referred to as classical
logics (e.g. classical modal logic) in order to distinguish them from
logics obtained by similarly extending non-classical logics (e.g.
intuitionistic modal logic).

See also: Classical Dilemma, Classical Reductio ad Absur -
dum, Model Theory, Truth Tables

CLASSICAL MEREOLOGY Classical mereology (or general
mereology) is the mereological theory obtained by assuming that
the parthood relation is a partial ordering:

Reflexive: (∀x)(Pxx)

Transitive: (∀x)(∀y)(∀z)((Pxy ∧ Pyz) → Pxz)

Antisymmetric: (∀x)(∀y)((Pxy∧ Pyx) → x = y)

and that the unrestricted fusion principle (where O is the defined
overlap relation):

(∃x)Φ(x) → (∃y)(∀z)(Ozy → (∃w)(Φ(w) ∧ Ozw))

holds.

See also: Composition, Mereological Extensionality, Mereo -
logical Fusion, Proper Parthood, Underlap

CLASSICAL REDUCTIO see Classical Reductio ad Absurdum

CLASSICAL REDUCTIO AD ABSURDUM Classical reductio ad
absurdum (or classical reductio) is the rule of inference that
allows one to infer a formula from a derivation whose assumption is
the negation of the formula in question, and which terminates in a
contradiction. In symbols we have:

~ P
:
:
Q ∧ ~ Q
P
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where the horizontal line above ~ P indicates that this assumptions
has been discharged – that is, that the proof no longer depends on
it. Classical reductio ad absurdum should be distinguished from the
weaker rule of inference known merely as reductio ad absurdum.

See also: Classical Dilemma, Double Negation, Double
Negation Elimination, Double Negation Introduction

CLAVIUS’ LAW see Consequentia Miribilis

CLOSED FORMULA see Open Formula

CLOSED TERM see Open Term

CLOSURE see Transitive Closure

CO-DOMAIN see Range

CO-EXTENSIVE Two sets are co-extensive if and only if they contain
exactly the same objects as members. Given the axiom of
extensionality, this amounts to saying that two sets are co-extensive
if and only if they are identical.

See also: Extension

COFINALITY The cofinality of an ordinal number γ (written as
co(γ)) is the least ordinal number that can be mapped unboundedly
into γ – in other words, the cofinality of γ is the least ordinal number
δ such that there is a function f from δ to γ such that, for any α that
is a member of γ, there is a β in δ such that f(β) is greater than or equal
to α.

See also: Axiom of Replacement, Regular Cardinal, Regular
Ordinal, Strongly Inaccessible Cardinal, Weakly Inaccessible
Cardinal

COFINITE A set is cofinite if and only if the collection of objects not
in the set (its complement) is finite.

See also: Relative Complement, Symmetric Difference

COGENT INDUCTIVE ARGUMENT A cogent inductive argument
is a strong inductive argument where all of the premises are
true.
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See also: Abduction, Fallacy, Informal Fallacy, Strong
Inductive Argument

COHERENCE THEORY OF TRUTH The coherence theory of
truth is the view that a statement is true if and only if it coheres
with the set of all truths. Thus, on this view, the statement “The cat
is on the mat” is true if and only if it coheres (better than its
negation, at least) with the set of all other truths (which themselves
are true in virtue of coherence). Unlike the correspondence theory
of truth, which treats truth as a relation between individual
statements and the world, the coherence theory of truth is best
understood as attributing truth, not to individual sentences, but to
theories as a whole.

See also: Deflationism, Disquotationalism, Minimalism,
Prosentential Theory of Truth, Redundancy Theory of Truth

COLLECTIVE PREDICATION see Distributive Predication

COMBINATOR A combinator is a higher-order functional
expression which contains no free variables. Within combinatory
logic, combinatory terms are formed by applying combinators to
previously defined combinatory terms (which include unbound
variables and primitive combinators). 

See also: Function, λ-Calculus, Singular Term

COMBINATORIAL SET THEORY Combinatorial set theory is the
branch of set theory dealing with combinatorial problems and
methods. Of particular interest within combinatorial set theory is the
study of trees and of partitions on infinite sets.

See also: Axiom of Constructibility, Axiom of Powerset,
Axiom of Replacement, Descriptive Set Theory, König’s
Lemma, Zorn’s Lemma

COMBINATORIALISM Combinatorialism is the view that any
arbitrary combination of elements constitutes a legitimate
mathematical structure, whether that structure is definable or not
– in other words, combinatorialists accept the existence of absolutely
arbitrary functions, sets, etc. Combinatorialism is contrasted with
definibilism, where all mathematical objects are definable.
Definibilism was the default view throughout much of the history of
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mathematics, although in the last century and a half there has been a
decided turn in favor of combinatorialism.

See also: Axiom of Constructibility, Combinatorial Set
Theory, Constructible Set, Definable Set, Hierarchy

COMBINATORY LOGIC Combinatory logic is a logic which
eliminates the need for bound variables by making use of a special
sort of functional expression called a combinator. Combinatory
logics are expressively and deductively stronger than standard
first-order logic, and the standard presentation of combinatory
logic is equivalent in strength to the λ-calculus.

COMBINATORY TERMS see Combinator

COMMUTATIVITY A binary relation R is commutative if and only
if, for all a and b:

R(a, b)

holds if and only if:

R(b, a) 

holds. Similarly, a two-place function f is commutative if and only if,
for all a and b, we have:

f(a, b) = f(b, a)

See also: Associativity, Boolean Algebra, Distributivity, Join,
Lattice, Meet

COMMUTATIVITY2 Within propositional logic, a connective * is
commutative if and only if:

A * B 

and:

B * A

are logically equivalent. Conjunction and disjunction are
typically commutative, while the conditional is not.

See also: Abelian Logic, Classical Logic, Non-Commutative
Logic, Permutation
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COMPACT CARDINAL A compact cardinal is type of large
cardinal number.

See also: Large Cardinal Axiom, Strongly Inaccessible
Cardinal, Weakly Inaccessible Cardinal

COMPACTNESS A logic is compact if and only if, whenever there is
a set of premises Δ and a conclusion Φ such that Φ is a logical
consequence of Δ, there is a finite subset Δ* of Δ such that Φ is a
logical consequence of Δ*. The term “compactness” has its origin in
the idea of treating the collection of sets of logical formulas as a
topological space, in which case the logical notion of compactness is
a specific instance of the more general topological notion.

See also: Categorical, Downward Lowenheim-Skolem
Theorem, Limitation Result, Metatheorem, Model Theory,
Upward Lowenheim-Skolem Theorem

COMPARABILITY see Trichotomy

COMPLEMENT1 The complement of a set A is the set that contains,
as members, exactly the objects that are not members of A. In other
words, the complement of A is:

{x : x ∉ A}

In most familiar formulations of set theory if a set exists, then its
complement does not.

See also: Anti-extension, Disjoint, Exclusive, Exhaustive,
Relative Complement, Symmetric Difference

COMPLEMENT2 Within Boolean algebra or the theory of lattices,
complement is the unary function “~” which satisfies:

A ∪ ~ A = 1

A ∩ ~ A = 0

See also: Absorbsion, Associativity, Commutativity, Dis -
tributivity, Join, Meet

COMPLETE INDUCTION see Strong Mathematical Induction

COMPLETE INFINITY A complete infinity (or actual infinity) is
an infinite collection that exists as a finished totality. Complete
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infinities are contrasted with potentially infinite collections, which
are always finite (at a time), but which can be extended without limit.
The distinction, attributed to Aristotle, was intended to help clear up
confusions about infinity brought about by puzzles such as the Zeno
paradoxes. 

See also: Absolute Infinite, Dedekind Infinite, Indefinite Exten -
sibility, Simply Infinite

COMPLETE SET OF CONNECTIVES see Expressive Com -
pleteness

COMPLETE THEORY see Negation Completeness, Strong Com -
pleteness, Weak Completeness

COMPLETENESS1 see Expressive Completeness, Negation Com -
pleteness, Strong Completeness, Weak Completeness

COMPLETENESS2 A partial ordering is complete if and only if
every set of elements in the order that has an upper bound has a
least upper bound, and every set of elements that has a lower
bound has a greatest lower bound.

See also: Boolean Algebra, Join, Lattice, Meet

COMPLETENESS3 see Connected

COMPLEX EXPRESSION see Compound Statement

COMPLEX STATEMENT see Compound Statement

COMPLEXITY CLASS Recursive functions are categorized into
complexity classes based on the relative difficulty of computing
values of those functions. The most important complexity classes
are P, NP, and NP-complete.

See also: Automaton, Deterministic Polynomial Time, Non-
Deterministic Polynomial Time, Recursive Function Theory

COMPLEXITY THEORY Complexity theory is the mathematical
study of the relative computational difficulty of computing values
of recursive functions. Recursive functions are organized into
complexity classes, the most important of which are P, NP, and
NP-complete. In addition to categorizing classes of functions into
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complexity classes, complexity theory also analyzes the relations
between these classes. 

See also: Automaton, Deterministic Polynomial Time, Non-
Deterministic Polynomial Time, Recursive Function Theory

COMPOSITION1 The composition of two functions f and g is the
function h such that, for all inputs x:

h(x) = g(f(x))

In other words, the composition of f and g is the function resulting
from applying f and then g to an argument. The composition of f
and g is usually written as:

(g ° f )

See also: Domain, Field, Image, Inverse, Range

COMPOSITION2 Composition is one of the simple function-
building operations of recursive function theory. Given a
computable n-ary function f and a series of n computable m-ary
functions g1, g2, … gn, the composition of f and the gi’s is the function
h such that:

h(x1, x2, … xm) = f(g1(x1, x2, … xm), g2(x1, x2, … xm), … gn(x1, x2,
… xm))

See also: Identity Function, Minimization, Primitive
Recursion, Successor Function, Zero Function

COMPOSITION3 Composition is the relation that holds between an
object and its parts. If a1, a2, a3 … are all of the parts of object d, then
d is composed of a1, a2, a3 … (or d is composed of some suitably
comprehensive sub-collection of a1, a2, a3 … ).

See also: Calculus of Individuals, Fallacy of Composition,
Fallacy of Division, Mereological Extensionality, Mereology,
Proper Parthood

COMPOSITION see Fallacy of Composition

COMPOSITIONALITY Compositionality is the view that the
meaning of a complex expression, such as a compound statement,
is a function solely of the meaning of its constituent parts and the
manner in which those constituents are combined to form the
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complex expression – that is, its logical form. Compositionality is
often contrasted with views of meaning where additional factors
contribute to the meaning of expressions, such as contextualism or
holism.

See also: Compound Formula, Connective, Formation Rules,
Quantifier, Semantics, Truth Functionality

COMPOUND EXPRESSION see Compound Statement

COMPOUND FORMULA A compound formula (or complex
formula, or molecule) is a formula that is composed of other,
simpler formulas. Compound formulas are typically formed by
prefixing a formula with negation (~), joining two or more
statements together with a binary connective such as conjunction
(∧), disjunction (v), or material implication (→), or by prefixing
a formula with a quantifier (∃, ∀) or modal operator (▫, �).

See also: Atomic Formula, Atomic Sentence, Compound
Statement, Formation Rules, Well-Formed Formula

COMPOUND STATEMENT A compound statement (or complex
statement, or complex expression, or compound expression) is
a statement that is composed of other, simpler statements.

See also: Atomic Formula, Atomic Sentence, Compound
Formula, Formation Rules, Well-Formed Formula

COMPREHENSION SCHEMA1 The comprehension schema (or
naïve comprehension schema) states that, for any predicate
Φ(x), there exists a set that contains as members exactly the objects
that satisfy Φ(x). 

In first-order logic supplemented with the membership symbol
“∈,” we can provide the following axiom schema, which provides a
particular instance of the comprehension schema for each individual
predicate Φ not containing x as a free variable:

(∃x)(∀y)(y ∈ x ↔ Φ(y))

The set-theoretic comprehension schema is inconsistent – one
can derive the Russell paradox from it.

See also: Burali-Forti Paradox, Indefinite Extensibility,
Iterative Conception of Set, Limitation-of-Size Conception
of Set
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COMPREHENSION SCHEMA2 Within second-order logic, the
comprehension schema is an axiom schema asserting that, for every
predicate Φ(x), there is a concept that holds of exactly the objects
that satisfy Φ(x). This can be expressed formally as:

(∃X)(∀y)(X(y) ↔ Φ(y))

See also: Geach-Kaplan Sentence, Higher-order Quantifier,
Higher-order Logic, Higher-order Variable, Plural Quantifi -
cation

COMPUTABILITY THEORY see Recursive Function Theory

COMPUTABLE FUNCTION see Effectively Computable
Function, Recursive Function

COMPUTABLE SET see Effectively Computable Set, Recursive
Set

COMPUTABLY ENUMERABLE SET see Effectively Enumerable
Set, Enumerable Set, Recursively Enumerable Set

COMPUTATION A computation is any (usually finite) process that
can be represented mathematically. Alternatively, a computation is
the result of following an algorithm. Recursive function theory is
the branch of mathematical logic that studies (among other
things) which functions are computable – that is, which functions
are such that we can determine the value of that function for
particular arguments based on certain sorts of computation.

See also: Automaton, Church-Turing Thesis, Complexity
Class, Effectively Computable Function, Recursive Function

CONCEPT A concept (or attribute, or property) is either an abstract
object or a mental entity (often called an “idea”) which is, or
corresponds to, the meaning of a predicate. 

Within logic, however, concepts are more often thought of as the
referent (if there are such) of predicates (note that this latter
understanding could just be a special case of the former). Along these
lines the concept “redness” would be the referent of the predicate
“is red.” As a result, the second-order quantifiers are often
interpreted as ranging over concepts. 

See also: Comprehension Schema, Empty Concept, Higher-
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order Logic, Indefinite Extensibility

CONCLUSION In an argument, the conclusion is that statement
for which the other statements (the premises) are intended to
provide evidence or support.

See also: Deductive Argument, Double Turnstile, Inductive
Argument, Logical Form, Single Turnstile

CONCRETE OBJECT see Abstract Object

CONDITIONAL A conditional is a statement of the form:

If A then B

Within propositional logic, conditionals are usually represented as:

A → B

Or:

A ⊃ B

The term “conditional” is also used to denote, not the entire
statement:

A → B

but rather the logical operator represented by “→.”
Within classical logic the conditional (the material conditional)

has the following truth table:

See also: Antecedent, Consequent, Counterfactual Con -
ditional, Indicative Conditional, Subjunctive Conditional,
Strict Conditional

CONDITIONAL ELIMINATION see Modus Ponens

CONDITIONAL INTRODUCTION see Conditional Proof

P Q P → Q
T T T
T F F
F T T
F F T
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CONDITIONAL LOGIC Conditional logic (or the logic of
conditionals) refers to any of a number of formal systems which
attempt to eliminate the defects of the material conditional by
supplementing or replacing it with a conditional whose truth
conditions are given using possible worlds semantics. Thus,
conditional logics are a form of modal logic where, instead of using
unary sentential operators such as necessity (▫) and possibility
(�), the primary modal operator is a binary operator, the
conditional. 

See also: Alethic Modal Logic, Kripke Semantics, Kripke
Structure

CONDITIONAL PROBABILITY The conditional probability of A
given that B, where A and B are statements, is the probability that
A will occur in light of the fact that B has occurred. The conditional
probability of A given that B is usually written Pr(A/B) or P(A/B).

See also: Bayes’ Theorem, Probability Calculus, Probability
Logic, Probability Theory, Ramsey Test

CONDITIONAL PROOF Conditional proof (or conditional
introduction) is the rule of inference that allows one to infer
a conditional from a derivation whose assumption is the
antecedent, and which terminates at the consequent of that
conditional. In symbols we have:

P
:
:
Q
P → Q

where the horizontal line above P indicates that this assumptions has
been discharged – that is, that the proof no longer depends on it. 

See also: Affirming the Consequent, Deduction Theorem,
Denying the Antecedent, Introduction Rule, Modus Ponens,
Modus Tollens

CONDITIONALIZATION The conditionalization (or correspond -
ing conditional) of an argument is the conditional obtained
by taking the conjunction of the premises of the argument as
antecedent and the conclusion of the argument as consequent.
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Thus, the conditionalization of modus ponens:

A
A → B
B

is:

(A ∧ (A → B)) → B

See also: Consequence Relation, Deduction Theorem,
Exportation, Material Conditional

CONGRUENCE RELATION1 A relation R is a congruence relation
on a set of objects S with an n-ary function f if and only if R is an
equivalence relation on S and, for any members x1, x2, … xn, y1, y2,
… yn of S, if R(x1, y1), R(x2, y2), … R(xn, yn), then f(x1, x2, … xn) = f(y1,
y2, … yn).

See also: Automorphism, Elementary Equivalence, Equiv -
alence Class,  Isomorphism

CONGUENCE RELATION2 A relation R is a congruence relation
on a set of objects S with an n-ary relation P if and only if R is an
equivalence relation on S and, for any members x1, x2, … xn, y1, y2,
… yn of S, if R(x1, y1), R(x2, y2), … R(xn, yn), then P(x1, x2, … xn) is
true if and only if P(y1, y2, … yn) is true.

See also: Automorphism, Elementary Equivalence, Equiv -
alence Class,  Isomorphism

CONJUNCT The conjuncts of a conjunction are the subsentences
of that conjunction that occur to either side of the “and” (or to
either side of the formal language counterpart to “and,” e.g. “∧”).

See also: Conjunction Elimination, Conjunction Introduction,
Conjunctive Normal Form, Wedge

CONJUNCTION A conjunction is a statement of the form:

A and B

Within propositional logic, conjunctions are usually represented
as:

A ∧ B 

c o n j u n c t i o n 59

1004 02 pages 001-322:Layout 1  16/2/09  15:11  Page 59



or:

A • B
or:

A & B

The term “conjunction” is also used to denote, not the entire
statement:

A ∧ B

but the logical operator represented by “∧.”
Sometimes the term conjunction is used to designate a sequence

of formulas linked by the conjunction operator, such as:

P ∧ Q ∧ R ∧ S

Within classical logic conjunction has the following truth table:

See also: Associativity, Conjunct, Conjunction Elimination,
Conjunction Introduction, Conjunctive Normal Form, Wedge

CONJUNCTION ELIMINATION Conjuction elimination (or and
elimination, or simplification) is the rule of inference that
allows one to infer either conjunct of a conjunction from the
conjunction itself. In symbols we have:

A ∧ B
A

or:

A ∧ B
B

See also: Conjunction Introduction, Elimination Rule, Natural
Deduction

CONJUNCTION INTRODUCTION Conjuction introduction (or
and introduction, or adjunction) is the rule of inference that

P Q P ∧ Q
T T T
T F F
F T F
F F F
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allows one to infer a conjuction from both of the conjuncts
individually. In symbols we have:

A B
A ∧ B

See also: Conjunction Elimination, Introduction Rule, Natural
Deduction

CONJUNCTIVE NORMAL FORM A formula is in conjunctive
normal form if and only if it is a conjunction of disjunctions,
where each disjunct of each disjunction is either an atomic
formula or the negation of an atomic formula. For example, if A,
B, and C are atomic formulas, then:

(~ A v ~ B v C) ∧ (B v ~ C) ∧ (A v ~ C)

is in conjunctive normal form.
In classical propositional logic, every formula is logically

equivalent to one in conjunctive normal form.

See also: Disjunctive Normal Form, Negation Normal Form,
Prenex Normal Form, Skolem Normal Form

CONNECTED A relation R is connected (or complete) if and only if,
for any x and y such that:

x ≠ y 

we have either:

Rxy

or:

Ryx

See also: Strongly Connected, Trichotomy

CONNECTIVE see Logical Connective

CONNEXIVE LOGIC Connexive logic is a nonstandard logic that is
motivated, in large part, by the idea that no formula should entail,
or be entailed by, its own negation. As a result, connexive logics are
neither sublogics nor extensions of classical logic – instead, there
are theorems of each logic that fail to be theorems of the other. In
particular, both Aristotle’s thesis and Boethius’ theses are
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theorems of connexive logic, but not of classical logic.

See also: Deviant Logic

CONSEQUENCE RELATION The consequence relation is the
relation that holds between the premises and conclusion of a valid
argument. Typically, a consequence relation is thought to be both
necessary and formal: it is impossible for the premises to be true
and the conclusion to be false, and this impossibility arises merely
from the logical form of the statements involved.

The consequence relation can be formalized either deductively
or logically (i.e. semantically). Typically, a deductive formal -
ization of the consequence relation asserts that A is a consequence of
B, C, D … if and only if there is a proof of A from B, C, D … in a
particular deductive system. A semantic formalization of the
consequence relation typically asserts that A is a consequence of B,
C, D … if and only if there is no interpretation in which B, C, D
… are all true, but A fails to be true.

See also: Double Turnstile, Formal Consequence, Material
Consequence, Single Turnstile

CONSEQUENT The consequent of a conditional is the subformula
of the conditional occurring after the “then,” or, if the conditional is
not in strict “If … then …” form, then the consequent is the
subformula occurring after the “then” in the “if … then …” state -
ment logically equivalent to the original conditional.

See also: Affirming the Consequent, Antecedent, Denying the
Antecedent, Modus Ponens, Modus Tollens

CONSEQUENTIA MIRABILIS Consequentia mirabilis (from the
Latin “following as an extraordinary logical consequence;” or
Clavius’ Law) is the following theorem of classical logic:

(~ A → A) → A

Consequentia mirabilis is the conditionalization of the classical
reductio rule of inference. 

See also: Conditional, Double Negation, Negation

CONSERVATIVE EXTENSION Given a language L and an
extension of that language L*, a theory T* in L* is a conservative
extension of a theory T in L if and only if, for any statement Φ in
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L, T* entails Φ if and only if T entails Φ. In other words, a new
theory T* is a conservative extension of an old theory T if and only
if T* does not prove any statement in the language of T that T does
not already prove.

See also: Sublanguage, Sublogic, Subtheory

CONSISTENCY see Maximal Consistent Set, Negation
Consistency, Post Consistency

CONSTANT Within logic, a constant is a simple expression within a
formal language that denotes an object. Typically, within first-
order logic (and extensions of it), lower-case letters from the
beginning and middle of the alphabet are used as constants in order
to distinguish them from first-order variables (for which lower-
case letters from the end of the alphabet are typically used). Within
formalizations of mathematical theories, however, other, more
traditional symbols are often used for constants (such as “0” for zero,
“1” for one, etc.).

The word “constant” is also sometimes used to refer to logical
constants.

See also: First-order Variable, Formation Rules, Individual,
Singular Proposition, Singular Term, Variable

CONSTANT FUNCTION A function f is a constant function if and
only if it produces the same output for every argument. In other
words, f is a constant function if and only if there is some y such that,
for any x:

f(x) = y

See also: Characteristic Function, Idempotent, Identity
Function, Pairing Function, Total Function, Unary Function

CONSTRUCTIBLE SET The constructible sets are obtained as
follows: At the first stage of the construction, the class of
constructible sets is empty. At each succeeding stage, one adds to the
stock of constructible sets any set that can be defined within the
language of first-order set theory where (1) the quantifiers in the
defining formula are understood to range only over those sets that
have been added to the constructible sets in previous stages, and (2)
the formula is allowed to contain parameters denoting particular
sets that have been added to the constructible sets at previous stages.
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The class of constructible sets (the constructible universe, or L)
is an inner model of Zermelo Fraenkel set theory. Kurt Gödel
showed that the class of constructible sets also satisfies the axiom of
choice and the continuum hypothesis, demonstrating that both of
these principles are consistent with Zermelo Fraenkel set theory.

See also: Cumulative Hierarchy, Independence Result, Rank

CONSTRUCTIBLE UNIVERSE The constructible universe (often
denoted L) is the class of all constructible sets. Both the axiom of
choice and the generalized continuum hypothesis are satisfied in
the constructible universe, which demonstrates that they are both
consistent with Zermelo Fraenkel set theory.

See also: Cumulative Hierarchy, Independence Result,
Zermelo Fraenkel Set Theory

CONSTRUCTIVE CHOICES see Markov’s Principle

CONSTRUCTIVE DILEMMA Constructive dilemma is the rule of
inference which, given two conditionals and the disjunction of
the antecedents of those conditionals, allows us to infer the
disjunction of the consequents of those conditionals. In symbols:

A v B 
A → C
B → D
C v D

See also: Classical Dilemma, Destructive Dilemma, Dilemma

CONSTRUCTIVE EXISTENCE PROOF see Constructive Proof

CONSTRUCTIVE LOGIC A constructive logic is a non-standard
logic which equates the truth of a statement with its provability.
In addition, constructive logics typically require that a proof of a
disjunction:

A v B

requires an explicit proof of one or the other of the disjuncts (here,
either A or B), and that a proof of an existential generalization:

(∃x)Φ(x)

requires an explicit proof of Φ(a), for some particular instance a.
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Intuitionistic logic is the most extensively studied constructive
logic, but it should not be confused with the notion of constructive
logic more generally, since it represents just one of a number of ways
in which constructive logic can be developed.

See also: BHK-Interpretation, Constructive Mathematics,
Con structive Proof, Disjunction Property, Excluded Middle,
Logical Antirealism

CONSTRUCTIVE MATHEMATICS Constructive mathematics is a
project of reconstructing current mathematical practice (as far as is
possible) using only constructive logic. 

Constructive mathematics should be distinguished from
intuitionistic mathematics, which is merely one way among many
of developing a constructive mathematics. Intuitionistic mathematics
is characterized not only by constructive proofs, but also by a
rejection of uncountably infinite collections. Errett Bishop, on the
other hand, has developed an alternative version of constructive
mathematics which requires constructive proof, but which retains
the standard mathematical structures studied by classical mathe -
maticians (or at least their axiomatizations).

See also: BHK-Interpretation, Excluded Middle, Intuitionism,
Logical Antirealism, Markov’s Principle

CONSTRUCTIVE METHODS OF PROOF see Constructive Proof

CONSTRUCTIVE PROOF A constructive proof is a proof based on
the underlying notion that the phrase “there exists” is equivalent to
the phrase “we can construct,” and that the phrase “is true” is
equivalent to the phrase “we can know to be true.” As a result, a
constructive proof of an existential claim of the form:

(∃x)Φ(x)

will consist of either an explicit presentation of a particular object a
such that Φ(a), or of an algorithm for obtaining such an object.
Such a proof is called a constructive existence proof. Similarly, a
constructive proof of a disjunction:

A v B

will consist of either a proof that A is true, or a proof that B is true,
or an algorithm for determining which of A and B is true.

One defining characteristic of constructive proof is that it rejects
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the rule of inference classical reductio ad absurdum – in other
words, it is not enough to prove Φ that we assume that Φ is false and
obtain a contradiction.

See also: BHK-Interpretation, Constructive Logic, Con -
structive Mathematics, Excluded Middle, Intuitionistic
Logic, Logical Antirealism

CONTEXTUALISM Contextualism is the view that the meaning of
an expression is a function of more than just the meaning of its
constituent parts and the manner in which those constituents are
combined to form the complex expression – in particular, the
context within which that expression occurs contributes to its
meaning. 

See also: Pragmatics, Semantics

CONTINGENCY A statement is contingent if it is both possible
that it be true and possible that it be false. Contingent statements are
contrasted with both necessary statements, which must be true, and
impossible statements, which must be false.

Within modal logic, where possibilities are represented by
possible worlds, a contingent statement is one where there is an
accessible possible world in which it is true, and another accessible
possible world in which it is false. This can be represented in the
language of modal logic as:

�A ∧ � ~ A

See also: Accessibility Relation, Actual World, Alethic Modal
Logic, Mere Possibilia

CONTINUUM Generally speaking, a continuum is any entity that is
“smooth,” “has no gaps,” “is unbroken,” etc. Within logic, however,
a continuum is any structure that has certain properties that are
characteristic of the real numbers – in particular, density and
completeness. Additionally, the real numbers themselves are often
referred to as the continuum.

See also: c, Cantor’s Theorem, Continuum Hypothesis,
Continuum Many

CONTINUUM HYPOTHESIS George Cantor proved that the
cardinality of the powerset of any set is strictly greater than the
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cardinality of the set itself – this is Cantor’s theorem. In particular,
the cardinality of a set of natural numbers (whose cardinality is the
smallest infinite cardinal number), which we represent as a0, is
strictly less than the cardinality of the powerset of the natural
numbers, which we represent as 2

a0. 
Since a1 is the second largest infinite cardinality, that is, it is the

cardinal number of an infinite set which is bigger than the set of
natural numbers, but for which there is no set intermediate between
it and the set of natural numbers, Cantor’s result can be stated as:

2
a0 ≥ a1

Cantor’s continuum hypothesis is the claim that the cardinal number
of the powerset of the set of natural numbers is, in fact, the next
largest cardinal number, that is:

2
a0 = a1

Standard set theories, such as Zermelo Fraenkel set theory
(ZFC), do not settle the continuum hypothesis. Kurt Gödel used his
inner model method to demonstrate that one can consistently
add Cantor’s continuum hypothesis to ZFC set theory. Paul Cohen
used his forcing method, however, to show that one can consistently
add the negation of Cantor’s continuum hypothesis to ZFC set
theory. Thus, ZFC neither proves nor refutes the continuum
hypothesis, and its truth value remains one of the mysteries of
modern set theory. The question regarding the relationship between
the cardinality of the set of natural numbers and the cardinality of its
powerset (or between the cardinality of any set and the cardinality of
its powerset) has come to be called the continuum problem.

See also: b, c, Constructible Universe, Generalized Continuum
Hypothesis, Independence Result

CONTINUUM MANY A set has continuum many members if it can
be put into a one-to-one onto correspondence with the set of real
numbers. Equivalently, a set has continuum many members if and
only if its cardinal number is c or 2

a0.

See also: Cantor’s Theorem, Continuum, Continuum
Hypothesis, Transfinite Cardinal Number

CONTINUUM PROBLEM see Continuum Hypothesis, General -
ized Continuum Hypothesis
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CONTRACTION1 Contraction is the following principle of pro -
positional logic:

(A → (A → B)) → (A → B)

This law is also sometime called absorbsion.

See also: Conditional, Conditional Proof, Conditionalization

CONTRACTION2 Contraction is the following structural rule. If we
have a sequent of the form:

Δ, A, A ⇒ B, Γ

then we can write down a sequent of the form:

Δ, A ⇒ B, Γ

And if we have a sequent of the form:

Δ, A ⇒ B, B, Γ

then we can write down a sequent of the form:

Δ, A ⇒ B, Γ

In other words, contraction allows us to eliminate multiple
occurrences of a premise or conclusion.

See also: Abelian Logic, Affine Logic, Linear Logic, Permu -
tation, Weakening

CONTRADICTION1 A statement is a contradiction (or is self-
contradictory) if it is impossible that it be true. 

See also: Impossible World, Law of Non-Contradiction,
Triviality

CONTRADICTION2 A contradiction is a statement of the form:

P ∧ ~ P

In classical logic and most non-standard logics – but not in some
paraconsistent logics such as the logic of paradox – a con -
tradiction cannot be true.

See also: Dialethic Logic, Ex Falso Quodlibet, Law of Non-
Contradiction, Triviality, Truth Value Gap, Truth Value Glut

CONTRADICTORIES see Contradictory
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CONTRADICTORY A pair of statements are contradictory (or
contradictories) when it is impossible for them simultaneously to
be true, but it is also impossible for them simultaneously to be false.
Within classical logic, two statements are contradictory if and only
if each one is logically equivalent to the negation of the other.

Within categorical logic contradictory is a term of art,
expressing the relationship that holds between an A-proposi-
tion and the corresponding O-proposition, or between an
E-proposition and the corresponding I-proposition. This is just a
special case of the more general usage, however.

See also: Antilogism, Antimony, Contrary, Contradiction,
Paradox

CONTRAPOSITION Contraposition is the process of taking the
contrapositive of a categorical proposition, or of taking the
contrapositive of a conditional. It also refers to the immediate
inference, within categorical logic, where one infers, from an
A-proposition or an O-proposition, the contrapositive of that
proposition.

See also: Contradictory, Contrary, Conversion, Obversion,
Subalternation

CONTRAPOSITIVE1 Within categorical logic, the contrapositive
of a categorical proposition is obtained by switching the subject
term and predicate term of the proposition, and replacing the
subject term and the predicate term with their complements. For
example, the contrapositive of the A-proposition:

All men are mortal.

is:

All non-mortals are non-men.

In categorical logic, the contrapositive of A-propositions and
O-propositions must have the same truth values as the original
propositions, although the truth values of E-propositions and
I-propositions and their respective contrapositives are, in general,
unrelated.

See also: Contraposition, Conversion, Immediate Inference,
Obversion, Subalternation
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CONTRAPOSITIVE2 The contrapositive of a conditional is the
result of switching the antecedent and consequent of the
conditional, and replacing the antecedent and consequent of the
conditional with their negations For example, the contrapositive of:

If snow is white, then the grass is green.

is:

If grass is not green then snow is not white.

In symbols, the former is:

S → G

and its contrapositive is:

~ G → ~ S

Within classical logic, the contrapositive of a conditional has the
same truth value as the original conditional.

See also: Conditional Proof, Modus Ponens, Modus Tollens,
Transposition

CONTRARY A pair of statements are contrary (or contraries,
or mutually exclusive) when it is impossible for them to
simultaneously be true, but it is possible for them to simultaneously
be false. 

Within categorical logic contrary is a term of art, expressing
the relationship that holds between an A-proposition and the
corresponding E-proposition. This is just a special case of the more
general usage, however.

See also: Contradictory, Converse, Obverse, Subalternation,
Subcontrary

CONTRARY TO FACT CONDITIONAL see Counterfactual
Conditional

CONVENTION T Convention T (or Tarski’s Convention T) is
an adequacy condition on attempted definitions of the truth
predicate. Convention T states that a definition of a predicate
“T(x)” is an adequate definition for a language L if and only if:

(1) “T(x)” only applies to names of statements of L.

(2) For any statement A in L, and n a name of A, the definition
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allows us to prove:

T(n) ↔ P

The formula:

T(n) ↔ P

is known as the T-schema. Thus, Convention T requires that an
adequate definition of the truth predicate must allow us to prove all
instances of the T-schema. The idea that an adequate definition of
the truth predicate is one that satisfies Convention T is the semantic
conception of truth.

See also: Disquotationalism, Minimalism, Redundancy
Theory of Truth, Schema, Semantically Closed Language,
Tarski’s Indefinability Theorem

CONVERSE1 The converse of a categorical proposition is obtained
by switching the subject term and predicate term of the
proposition. For example, the converse of the A-proposition:

All men are mortal.

is:

All mortals are men.

In categorical logic, the converse of E-propositions and
I-propositions must have the same truth value as the original
proposition, although the truth values of A-propositions and
O-propositions and their respective converses are, in general,
unrelated.

See also: Contrapositive, Conversion, Immediate Inference,
Obversion, Subalternation

CONVERSE2 The converse of a conditional is the result of switching
the antecedent and consequent of the conditional. For example,
the converse of:

If snow is white, then the grass is green.

is:

If grass is green, then snow is white.

In symbols, the former is:
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S → G

and its converse is:

G → S

Within propositional logic, the truth value of a conditional and its
converse are, in general, unrelated.

See also: Contraposition, Exportation, Transposition

CONVERSE ACCIDENT see Hasty Generalization

CONVERSE BARCAN FORMULA The converse Barcan formula is
the following formula of quantified modal logic:

▫(∀x)Φ → (∀x)▫Φ

The converse Barcan formula implies that any object that exists in the
actual world exists in any possible world accessible from the
actual world – in other words, any object that actually exists must
exist in all possibilities.

See also: Barcan Formula, Mere Possibilia, Normal Modal
Logic

CONVERSE DOMAIN see Range

CONVERSE OF A RELATION see Inverse

CONVERSE-WELL-FOUNDED A relation R is converse-well-
founded if and only if, for any set X, there is an R-maximal member
of X – that is, there is a y in X such that there is no z in X such that
Ryz. In other words, a relation R is converse-well-founded if and only
if its inverse is well-founded.

See also: Well-Ordered

CONVERSION Conversion is the process of taking the converse of
a categorical proposition, or of taking the converse of a
conditional. It also refers to the immediate inference, within
categorical logic, where one infers, from an E-proposition or an
I-proposition, the converse of that proposition.

See also: Contraposition, Contrary, Obversion, Sub -
alternation, Subcontrary
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COPULA see “Is” of Predication

CO-REFERENTIAL Two expressions are co-referential if and only if
they refer to the same object.

See also: Denotation, Referential Opacity, Semantic Value,
Slingshot Argument

COREFLEXIVITY A binary relation R is coreflexive if and only if,
for any objects x and y, if:

Rxy

then:

x = y

See also: Irreflexivity, Reflexivity

COROLLARY A corollary is a result that immediately follows from, or
is easily deduced from, a main result (i.e. a theorem).

See also: Lemma

CORRESPONDENCE THEORY OF TRUTH The correspondence
theory of truth is the view that a statement is true if and only if
there is an appropriate fact to which it corresponds. Thus, the
statement “The cat is on the mat” is true if and only if there exists in
the world a fact whose structure is something like <cat, on, mat> –
that is, a complex object somehow composed of the cat, the mat, and
the “is on” relation.

See also: Coherence Theory of Truth, Disquotationalism,
Minimalism, Prosentential Theory of Truth, Redundancy
Theory of Truth, Truthmaker

CORRESPONDING CONDITIONAL see Conditionalization

COUNTABLE A set is countable (or denumerable) if and only if it
is either finite, or it is infinite and its cardinal number is a0, the
first infinite cardinal number. The term “countable” refers to the
idea that a set of this size can be counted by the natural numbers
(in a loosened sense of “count” in the case of countably infinite
sets).

See also: Absolute Infinite, Countable Cardinal, Countable
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Ordinal, Dedekind Infinite, Simply Infinite, Transfinite
Cardinal Number

COUNTABLE CARDINAL A countable cardinal is a cardinal
number of a countable set.

See also: Cardinal Successor, Countable Ordinal, Countably
Infinite, Limit Cardinal, Regular Cardinal

COUNTABLE CHOICE see Axiom of Countable Choice

COUNTABLE ORDINAL A countable ordinal is an ordinal
number that is the order type of an ordering on a countable set.

See also: Countable Cardinal, Countably Infinite, Limit
Ordinal, ω, Ordinal Successor, Regular Ordinal

COUNTABLY INFINITE A set is countably infinite (or
denumerably infinite) if its cardinal number is a0. In other
words, a countably infinite set is an infinite set that is the same size
as the natural numbers. 

See also: Countable Cardinal, Countable Ordinal, Dedekind
Infinite, Simply Infinite, Transfinite Cardinal Number,
Transfinite Ordinal Number

COUNTERDOMAIN see Range

COUNTEREXAMPLE A counterexample is a scenario, actual or
merely possible, which demonstrates the invalidity of an
argument by showing that it is possible for the premises to be true
and the conclusion false. For example, we can show that:

All grapes are fruits.
Some fruits are red.
Some grapes are red.

is invalid by imagining a possible world where red apples exist,
but where the only grapes to exist are green. As this example
demonstrates, counterexamples are critical in demonstrating that an
argument is invalid when the conclusion of the argument is true.

See also: Countermodel, Deductive Argument, Deductive
Validity, Fallacy, Formal Fallacy, Refutation
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COUNTERFACTUAL CONDITIONAL A counterfactual con -
ditional (or contrary to fact conditional) is a conditional that
expresses what would have been the case had the antecedent
been true. Counterfactual conditionals thus should be distinguished
from material conditionals and indicative conditionals which
express what is the case if, in fact, the antecedent is true. For example,
the counterfactual conditional:

If Plato had not been a philosopher, then he would have been an
accountant.

is false, since if Plato had not been a philosopher, accountancy would
not have been his next choice in careers. The similar material
conditional:

If Plato is not a philosopher, then he is an accountant.

is true, however, merely because the antecedent is false. 
Typically, counterfactual conditionals are equated with

subjunctive conditionals, although occasionally the term
counterfactual con ditional is reserved for subjunctive conditionals
with false ante cedents (i.e. those that actually are counter-factual).

See also: Conditional Logic, Conditionalization, Counter -
factual Logic, Counternecessary Conditional, Strict
Conditional

COUNTERFACTUAL LOGIC Counterfactual logic refers to any of
a number of formal systems which attempt to formalize the
notion of a counterfactual conditional using possible worlds
semantics. Thus counterfactual logics are a form of modal logic
where, instead of using unary sentential operators such as
necessity (▫) and possibility (�), the primary modal operator is
a binary operator, the conditional. Counterfactual logics differ
from other conditional logics in that they typically reject
contraposition as a valid inference.

See also: Alethic Modal Logic, Counternecessary Conditional,
Kripke Semantics, Subjunctive Conditional

COUNTERMODEL A countermodel is a model that is used to
demonstrate the invalidity of an argument in first-order
logic (or logics extending first-order logic) by providing an
interpretation that makes the premises of the argument true
in the model and the conclusion false in the model. Thus,
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countermodels are the formal analogue of counterexamples.

See also: Deductive Argument, Deductive Validity, Fallacy,
Formal Fallacy, Model Theory, Refutation

COUNTERNECESSARY CONDITIONAL A counternecessary
conditional is a counterfactual conditional with a necessarily
false antecedent. For example:

If 2 were not odd, then 2 would be even.

is a counternecessary conditional.

See also: Conditional Logic, Counterfactual Logic, Indicative
Conditional, Material Conditional, Strict Conditional,
Subjunctive Conditional

COUNTERPART see Counterpart Theory

COUNTERPART THEORY Counterpart theory is a framework that
allows us to interpret modal claims about objects as actually applying
to modal counterparts of those objects. To see the puzzle at hand,
consider the statement:

Roy is a mathematician.

This statement, while false (assuming it is about the author), is
certainly not impossible. Thus, according to possible worlds
semantics, there must be a possible world in which it is true.
Taken at face value, this would mean that, in that possible world, Roy
exists and is a mathematician. But this is absurd, since Roy exists
solely in the actual world, and cannot also exist in the possible one. 

The counterpart theorist solves this problem by denying that Roy
inhabits the possible world in question. Rather, it is a distinct object
(a counterpart of Roy) that is in that possible world, and that is a
mathematician.

See also: Mere Possibilia, Trans-World Identity

COURSE OF VALUES INDUCTION see Strong Mathematical
Induction

COURSE OF VALUES RECURSION Course of values recursion is
a method for defining functions on the natural numbers. Using
course of values recursion, we define the value of f applied to n+1
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(that is, f(n+1)) in terms of the values of f for all natural numbers less
than n+1. For example, the function g such that:

g(0) = 2

g(n+1) = g(n) × g(n-1) × … × g(1) × g(0)

(i.e. the value of g(m) is the result of multiplying together all g(i)’s
where i is less than m) is a function defined in terms of course of
values recursion, since computing the value of g(m) requires
knowing all previous values of g.

The functions that can be defined using the primitive recursive
functions plus course of values recursion are exactly those that can
be obtained using merely the primitive recursive functions.

See also: Primitive Recursion, Recursive Function, Recursive
Function Theory, Transfinite Recursion

CRAIG’S INTERPOLATION THEOREM see Interpolation
Theorem

CROSS-WORLD IDENTITY see Trans-World Identity

CUMULATIVE HIERARCHY The cumulative hierarchy (or set-
theoretic hierarchy, or V, Von Neumann hierarchy, or Von
Neumann universe) is the class of all sets. This class is divided
into a transfinite hierarchy in the following recursive manner:

V0 = ∅

Vα+1 = ℘(Vα)

Vλ = ∪ γ>λVγ

In other words, the initial stage of the hierarchy is empty. At each
successor stage, we take the powerset of the previous stage. And at
limit stages – that is, those stages indexed by limit ordinals – we
take the union of all previous stages.

The entire cumulative hierarchy can be obtained by taking the
union of all stages in the hierarchy:

V = ∪Vα

See also: Absolute Infinite, Ad Infinitum, Constructible
Universe, Iterative Conception of Set, Limitation-of-Size
Conception of Set, Rank
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CURRY PARADOX The Curry paradox (or Curry’s Paradox, or
the Löb paradox) is a variant of semantic paradox which can be
formulated without the use of negation or falsity. Consider the
statement:

If this conditional is true, then Santa Claus exists.

We can reason as follows. The conditional must be true, since, if it
were false, then its antecedent would be true, and that would
provide a contradiction. But if the conditional is true, then so is its
antecedent. Thus, by modus ponens, the consequent is true as
well, and Santa Claus exists.

This general pattern of reasoning can be used to prove any
statement A merely by considering the statement:

If this conditional is true, then A.

Moreover, the Liar paradox can be seen to be merely a special case
of the Curry paradox, since the Liar sentence:

This sentence is false.

is equivalent to:

If this statement is true, then ⊥.

where “⊥” is falsum, or any contradiction.

See also: Open Pair, Semantically Closed Language, Truth-
Teller, Yablo Paradox

CURRY’S PARADOX see Curry Paradox

CUT Cut is the following structural rule. If we have two sequents of
the following forms:

Δ ⇒ A

Γ, A ⇒ B

then we can write down a sequent of the form:

Δ, Γ ⇒ B

“cutting” A out of the argument. 
The cut rule is a generalized version of hypothetical syllogism.

See also: Contraction, Cut Elimination, Permutation, Sub -
structural Logic, Transitivity, Weakening
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CUT ELIMINATION A cut elimination proof (or haupsatz, or
hauptsatz) for a particular formal system formulated in the
sequence calculus is a demonstration that anything that can be
proven within that system can also be proven without recourse to the
cut rule. Cut elimination theorems are of central importance to many
of the interesting results obtainable using the sequent calculus,
including Gerhard Gentzen’s proof of the consistency of arith -
metic.

See also: Admissible Rule, Derivable Rule, Sequent, Sub -
structural Logic

D D is the normal modal logic whose sole additional axiom is:

D: ▫ P → � P

In possible worlds semantics, the modal logic D is valid on any
frame in which the accessibility relation is serial.

D also refers to the axiom that is characteristic of the modal logic
D. The axiom D is satisfied on any frame in which the accessibility
relation is serial.

See also: Deontic Modal Logic, Kripke Semantics, Kripke
Structure, Modality

DAGGER The dagger (or joint denial, or Peirce dagger, or Sheffer
dagger) is the binary connective represented by “↓” whose truth
table is:

Intuitively, “P ↓ Q” can be read as “neither P nor Q ,” and is known
as the NOR operation in computer science and Boolean algebra.

The dagger is an expressively complete connective – that is,
every truth table in propositional logic can be represented by an
expression containing only propositional letters, punctuation,

P Q P ↓ Q
T T F
T F F
F T F
F F T

D
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and the dagger. For example, the disjunction of P and Q (i.e.
“P ∨ Q”) can be represented as:

(P ↓ Q) ↓ (P ↓ Q)

and the negation of P (i.e. “~ P”) can be represented as:

(P ↓ P)

See also: Boolean Operator, Sheffer Stroke

DECIDABLE see Recursive Function Theory

DECIDABLE RELATION see Recursive Relation

DECIDABLE SET see Recursive Set

DECIDABLE THEORY A theory is decidable if and only if the set of
Gödel numbers of theorems of that theory is a recursive set.

See also: Church’s Theorem, Finitely Axiomatizable Theory,
Semi-Decidable Theory

DECISION PROCEDURE A decision procedure is an algorithm
that is guaranteed to compute the answer to a particular problem in
a finite number of computational steps. Typically, the question at
hand will be one whose answer is of a “yes” or “no” form (or,
equivalently, of a “0” or “1” form).

See also: Church’s Theorem, Entscheidungsproblem, Recur -
sive Function Theory, Recursively Axiomatizable Theory,
Semi-Decidable Theory

DEDEKIND FINITE see Dedekind Infinite

DEDEKIND INFINITE A set A is Dedekind infinite if and only if
there is some subset B of A such that there is a one-to-one onto
function mapping B to A. A set is Dedekind finite if and only if it
is not Dedekind infinite.

The notion of a set being Dedekind infinite should be contrasted
with the notion of a set being simply infinite, since the two are
equivalent only if one assumes the axiom of choice.

See also: Absolute Infinite, Cofinite, Complete Infinity,
Countably Infinite, Hereditarily Finite Set

80 d e c i d a b l e

1004 02 pages 001-322:Layout 1  16/2/09  15:12  Page 80



DEDEKIND-PEANO ARITHMETIC see Peano Arithmetic

DE DICTO A statement is de dicto (from the Latin, “of the word”)
with respect to a referring expression if the statement is interpreted
as being, in some sense, about that referring expression. For example,
if:

The number of planets is necessarily 9.

is interpreted as asserting that there could not have been fewer
planets, or more planets, than there actually are, then the statement
is de dicto (with respect to the phrase “number of planets”). If,
however, the statement is interpreted as asserting that the object that
is the number of planets (i.e. 9 itself ) is necessarily identical to 9, then
the statement is de re.

The de dicto/de re distinction typically arises in contexts where
modal language, or another referentially opaque language, is
being used.

See also: Denotation, Scope, Semantic Value

DEDUCTION see Derivation

DEDUCTION THEOREM The deduction theorem holds for a logic
L (containing a conditional “→”) if and only if, for any formulas Φ
and Ψ, and set of formulas Δ, we have that there is a proof of Ψ from
Φ and Δ:

Δ, Φ |- Ψ

if and only if there is a proof of Φ → Ψ from Δ:

Δ |- Φ → Ψ

See also: Conditional Proof, Conditionalization, Deductive
Implication, Metatheorem, Proof Theory

DEDUCTIVE ARGUMENT A deductive argument is an argument
where it is intended that it be impossible for the premises to be
true and the conclusion false.

See also: Abduction, Deductive Validity, Derivation, Inductive
Argument, Sound Deductive Argument

DEDUCTIVE CLOSURE see Transitive Closure
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DEDUCTIVE CONSEQUENCE A statement Φ is a deductive
consequence (or proof-theoretic consequence, or syntactic
consequence) of a set of statements Δ, relative to a formal system,
if and only if there is a derivation in that formal system whose last
line is Φ and all of whose undischarged assumptions are in Δ. 

See also: Consequence Relation, Formal Consequence,
Inference, Logical Consequence, Material Consequence,
Single Turnstile

DEDUCTIVE EQUIVALENCE see Deductively Equivalent

DEDUCTIVE IMPLICATION Deductive implication (or proof-
theoretic implication, or syntactic implication) is the relation
that holds between A and B if:

A → B 

is a theorem. The formula:

A → B 

is also said to be a deductive implication if the relation of deductive
implication holds between A and B (in that order).

See also: Conditionalization, Deductive Consequence, Logical
Implication, Material Implication, Strict Implication

DEDUCTIVE SYSTEM see Formal System

DEDUCTIVE VALIDITY An argument is deductively valid (or
proof-theoretically valid, or syntactically valid) relative to a
formal system if and only if there is a derivation within the system
whose only assumptions are the premises of the argument and
which terminates with the conclusion of the argument.

See also: Deductive Argument, Deductive Consequence,
Deductive Implication, Logical Validity, Single Turnstile

DEDUCTIVELY EQUIVALENT Two formulas A and B are
deductively equivalent (or proof-theoretically equivalent, or
syntactically equivalent) if and only if they are interderivable
(i.e. one can prove A using only B as a premise, and one can derive
B using only A as premise). In other words, A and B are deductively
equivalent if and only if:
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A ↔ B

is a theorem. The formula:

A ↔ B

is said to be a deductive equivalence, if A and B are deductively
equivalent.

See also: Deductive Consequence, Deductive Implication,
Deductive Validity, Logically Equivalent, Materially
Equivalent

DEDUCTIVISM Deductivism is the view that all arguments
appearing in natural language are best analyzed as deductive
arguments. Deductivism typically proceeds by “identifying”
additional premises that are implicit in a particular informal,
apparently inductive argument, but not explicitly stated. These
additional premises render the argument a deductive one.

See also: Consequence Relation, Derivation, Formal
Language, Formal Proof, Natural Deduction

DEFINABILISM see Combinatorialism

DEFINABLE SET A set of objects A is definable in a language L if
and only if there is some formula Φ in L (with one free variable)
such that Φ is satisfied by all and only the objects in A. A particular
object o is definable in L if and only if its singleton {o} is definable
in L in the manner described.

See also: Axiom of Constructibility, Combinatorialism,
Constructible Hierarchy, Constructible Sets, Definition,
Recursive Definition

DEFINIENDUM The definiendum of a definition is the expression
whose meaning is being provided by the definition.

See also: Definiens, Explicit Definition, Impredicative
Definition, Intensional Definition, Ostensive Definition,
Stipulative Definition

DEFINIENS The definiens of a definition is the expression used to
provide the meaning of the expression being defined.

See also: Definiendum, Explicit Definition, Impredicative
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Definition, Intensional Definition, Ostensive Definition,
Stipulative Definition

DEFINITE DESCRIPTION A definite description is a description
of the form “the Φ” where Φ is a predicate. Bertrand Russell
famously analyzed definite descriptions in terms of quanti -
ficational constructions in order to eliminate puzzles involving
expressions that fail to refer. For example, the logical form of a
statement of the form:

“The Φ is Ψ”

according to Russell is:

(∃x)(Φ(x) ∧ (∀y)(Φ(y) → y = x) ∧ Ψ(x))

In other words, “the Φ is Ψ” amounts to the existentially
quantified expression asserting that (1) there is a Φ, (2) there is at
most one Φ, and (3) the thing that is a Φ is also a Ψ.

See also: Free Logic, Indefinite Description, Plato’s Beard

DEFINITION A definition is an expression intended to provide the
meaning of a word.

See also: Explicit Definition, Implicit Definition,
Impredicative Definition, Ostensive Definition, Stipulative
Definition

DEFLATIONISM Deflationism is a family of views about truth, all of
which share the thesis that truth is not a substantial concept and that
an assertion that predicates truth to a statement does not ascribe any
property to that statement. Deflationism comes in many varieties,
including disquotationalism, the redundancy theory of truth,
and minimalism about truth.

See also: Coherence Theory of Truth, Compositionality,
Correspondence Theory of Truth, Prosentential Theory of
Truth, Revision Theory of Truth, Truthmaker

DEGREE see Adicity

DEGREE-OF-TRUTH see Verity

DEGREE-THEORETIC SEMANTICS Degree-theoretic semantics
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(or fuzzy logic) is a type of non-standard logic that assigns each
statement in a language a real number between 0 and 1 (that
statement’s verity). An assignment of 1 to a statement represents
that the statement in question is completely true, an assignment
of 0 to a statement represents that the statement in question is
completely false, and assignments of values strictly less than 1 but
strictly greater than 0 represent that the statements in question are
partially true.

There are a number of different ways in which an assignment of
degrees of truth to atomic statements can be extended to the entire
language. The simplest manner is to assign each conjunction the
minimum value of the two conjuncts:

v(Φ ∧ Ψ) = min(v(Φ), v(Ψ))

and to assign each disjunction the maximum value of the two
disjuncts:

v(Φ ∨ Ψ) = max(v(Φ), v(Ψ))

(with analogous rules for the universal and existential
quantifiers, respectively). While this method is a natural extension
of the rules for classical semantics, other methods for evaluating
compound expressions, loosely based on the rules for the
probability calculus, have been explored.

See also: Conditional Probability, Probability Theory, Sorites
Paradox, Sorites Series, Vagueness

DEMONSTRATION see Proof

DEMONSTRATIVE A demonstrative is a context-dependent
expression whose referent depends on the speaker’s actions or
intentions. Examples of demonstratives include “this,” “that,”
“him,” “her,” and “they.” It should be noted that not all occurrences
of these expressions function as demonstratives, however. Each of
these expressions can also figure in anaphora.

Demonstratives should be distinguished from indexicals, whose
reference is context-dependent but does not depend on the actions or
intentions of the speaker.

See also: Anaphora, Contextualism, Indexical, Pragmatics,
Semantics

DEMORGAN DUALITY see DeMorgan’s Rules
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DEMORGAN NEGATION DeMorgan negation is the negation
operator semantically characterized by the following rules:

~ A is true if and only if A is false.

~ A is false if and only if A is true.

DeMorgan negation is equivalent to other versions of negation
(such as Boolean negation) in classical semantics, but these
accounts of negation are non-equivalent in many-valued logics
such as First-Degree Entailment.

See also: Bottom, Choice Negation, Exclusion Negation,
Falsum, Tilde

DEMORGAN’S DUALS see DeMorgan’s Rules

DEMORGAN’S LAWS see DeMorgan’s Rules

DEMORGAN’S RULES Within propositional logic, DeMorgan’s
rules (or DeMorgan’s laws) are the rules of replacement that
allow the reasoner to replace:

~ (P ∨ Q )

with:

(~ P ∧ ~ Q )

(and vice versa), and to replace:

~ (P ∧ Q )

with:

(~ P ∨ ~ Q )

(and vice versa). The members of each of the equivalent pairs are the
duals (or DeMorgan’s duals) of each other.

See also: Conjunction, Disjunction, Negation

DENOTATION Denotation is the relation that holds between a
description and the object picked out by that description, if any.
The object so picked out is also known as the denotation of the
description.

See also: Co-Referential, Definite Description, Indefinite
Description, Reference, Semantic Value

86 d e m o r g a n  n e g a t i o n

1004 02 pages 001-322:Layout 1  16/2/09  15:12  Page 86



DENSE A relation R is dense if and only if, for any a and b if:

Rab 

then there is a c such that:

Rac

and:

Rcb

See also: Continuum, Discrete, Rational Numbers, Real
Numbers

DENUMERABLE see Countable

DENUMERABLY INFINITE see Countably Infinite

DENYING THE ANTECEDENT Denying the antecedent is the
formal fallacy that occurs when one moves from a conditional,
and the negation of the antecedent of that conditional, to the
negation of the consequent of that conditional. In symbols we have:

P → Q
~ P
~ Q

See also: Affirming the Consequent, Conditional Proof,
Hypothetical Syllogism, Modus Ponens, Modus Tollens

DENYING THE CONSEQUENT see Modus Tollens

DEONTIC LOGIC see Deontic Modal Logic

DEONTIC MODAL LOGIC Deontic modal logic (or deontic logic)
is the branch of modal logic that studies the unary modal
operators “it is obligatory that Φ,” “it is permissible that Φ,” and
“it is forbidden that Φ.” The notions are typically formalized as
“O Φ,” “P Φ,” and “F Φ” respectively.

See also: D, Kripke Semantics, Kripke Structure, Ross’s
Paradox

DEPENDENT CHOICE see Axiom of Dependent Choice
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DE RE see De Dicto

DERIVABLE RULE Within a particular deductive system, a rule of
inference is a derivable rule if and only if a schema can be provided
which demonstrates how to obtain the conclusion of the derivable
rule from the premises of the rule. For example, in any deductive
system that contains both disjunctive syllogism:

P ∨ Q
~P
Q 

and addition:

P
P ∨ Q

ex falso quodlibet is a derivable rule, as the following schema
demonstrates:

(1) P

(2) ~ P

(3) P ∨ Q From (1), Addition

(4) Q From (2) and (3), Disjunctive Syllogism

Every derivable rule is also an admissible rule, but not vice
versa. 

See also: Cut, Cut Elimination, Derivation, Sequent Calculus,
Valid

DERIVATION A derivation (or deduction) is a finite sequence of
statements within a formal system where each statement in the
sequence is either an axiom, an assumption, or the result of applying
a rule of inference to one or more preceding statements. The final
statement is the conclusion of the argument that has been derived,
and each assumption is a premise of the argument derived.

See also: Deductive Validity, Formal Proof, Natural Deduc -
tion, Proof Theory, Sequent Calculus, Single Turnstile

DESCRIPTION see Definite Description, Indefinite Description

DESCRIPTIVE SET THEORY Descriptive set theory is the branch
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of set theory dealing with certain types of “well-behaved” sets of
real numbers, such as the definable sets, the Borel sets, the analytic
sets, and the projective sets.

See also: Combinatorial Set Theory, Constructible Set,
Continuum, Continuum Hypothesis, Continuum Many,
Generalized Continuum Hypothesis

DESIGNATED VALUE In classical or many-valued logics, the
designated value or values of the logic are those truth values whose
preservation is central to the consequence relation of the logic in
question. In other words, in classical or many-valued logics, if Δ is a
set of statements and Φ is a statement, then logical consequence
is (typically) defined as:

Φ is a logical consequence of Δ if and only if, whenever all
members of Δ receive designated values, Φ receives a designated
value as well.

In classical logic the only designated value is the true. In the logic of
paradox the designated values are true and the truth value glut
“both true and false,” and in analethic logic the designated values
are true and the truth value gap “neither true nor false.”

See also: Bivalence, Law of Non-Contradiction, Non-Standard
Logic, Paraconsistent Logic

DESTRUCTIVE DILEMMA Destructive dilemma is the rule of
inference which, given two conditionals and the disjunction of
the negations of the consequents of those conditionals, allows one
to infer the disjunction of the negations of the antecedents of those
conditionals. In symbols we have:

~ C ∨ ~ D
A → C
B → D
~ A ∨ ~ B 

See also: Classical Dilemma, Constructive Dilemma,
Hypothetical Syllogism, Modus Ponens, Modus Tollens

DETERMINATENESS see Axiom of Extensionality

DETERMINER A determiner is an expression that, when attached to
a noun or other referring expression, determines the type of
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reference which the noun in question has. Determiners include
articles such as “a” and “the,” quantifiers such as “all,” “some,”
“none,” and “most,” possessives such as “my,” “your,” “their,” and
demonstratives such as “this,” “that,” and “those.”

See also: Definite Description, Existential Quantifier,
Indefinite Description, Indexical, Universal Quantifier

DETERMINISTIC POLYNOMIAL TIME A function is com -
putable in deterministic polynomial time (or is of complexity class
P) if there is a polynomial equation which takes the length of an
argument as input and provides the number of computational steps
necessary for a deterministic Turing machine to obtain the value
of the function on that argument as output.

Although deterministic Turing machines can compute any
function that non-deterministic Turing machines can compute
(and vice versa), it is not known whether every function that can
be computed in non-deterministic polynomial time can be
computed in deterministic polynomial time – in other words, even
though both types of Turing machine can compute the same
functions, it might take much longer to compute some functions on a
deterministic Turing machine than on a non-deterministic Turing
machine. Settling this issue is perhaps the most important out -
standing problem of complexity theory.

See also: Automaton, Church-Turing Thesis, NP, NP-
Complete, Recursive Function Theory

DETERMINISTIC TURING MACHINE A deterministic Turing
machine is a machine (usually conceived abstractly) which consists of
(a) an infinitely long tape containing cells, each of which contains a
symbol from some finite list (including a special symbol called the
blank symbol), (b) a head that can read, write, and erase symbols in
the cell at which it is located, and that can also move from a cell to
either adjacent cell, (c) a state register which keeps track of the
particular state the machine is in at any time, and (d) a table of
instructions (the action table) that, given a particular state and the
symbol on the cell inhabited by the head, tells the machine (d1) either
to modify the symbol on the tape or to move the head one cell left or
right, and (d2) the new state that the machine is in (which need not
be different from the previous state). It is important to note that a
deterministic Turing machine specifies a unique action for each
state/cell content combination, as this is what differentiates
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deterministic Turing machines from non-deterministic Turing
machines.

Functions which can be computed using deterministic Turing
machines are Turing computable. Deterministic Turing machines
are equivalent – that is, can compute exactly the same functions, or
solve exactly the same problems – to a number of other formal models
of computation, including non-deterministic Turing machines and
register machines.

Typically, if the phrase “Turing machine” is used without
qualification, then deterministic Turing machine is what is intended.

See also: Automaton, Effectively Computable, NP, NP-
Complete, P

DEVIANT LOGIC A deviant logic is a logic that shares a language
with some system of classical logic, but which differs from that
classical logic in its class of theorems or logical consequences.
Thus, all deviant logics are non-standard logics, although not all
non-standard logics are deviant.

See also: Dialethic Logic, Intermediate Logic, Intuitionistic
Logic, Many-Valued Logic, Paraconsistent Logic, Relevant
Logic

DIAGONAL ARGUMENT see Diagonalization

DIAGONALIZATION Given a (possibly infinite) list of (possibly
infinitely long or infinitely complex) entries, the method of
diagonalization (or diagonal argument) allows one to construct an
object (usually a number, sequence, or set) which is of the same type
as the objects on the list, but which is guaranteed not to occur
anywhere on the list. Diagonalization accomplishes this by making
the first value of the constructed entity different from the first value
of the first entry in the list, then making the second value of the
constructed entity different from the second value of the second
entry in the list, then making the third value of the constructed entity
different from the third value of the third entry on the list, and so on.
Intuitively, the construction proceeds by running through the
“diagonal” of the list, and constructing an entity that disagrees with
each value on this “diagonal.” For example, if we are presented with
a list of real numbers strictly between 0 and 1 (which can be
thought of as infinite sequences of digits between 0 and 9):
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0. 2 3 7 8 6 4 8 …
0. 8 6 9 6 8 5 8 …
0. 3 7 5 3 8 4 8 …
0. 4 8 6 5 8 9 5 …
etc.

(note that the ‘diagonal’ values are underlined) then we might adopt
the following rule for constructing our diagonal real number:

The nth value in our construction = 5 if the nth value of the
nth entry in the list is
not 5

= 6 if the nth value of
the nth entry in the
list is 5

Then the first few digits of our constructed real number are:

0. 5 5 6 6 …

Diagonal methods are immensely important in recursive function
theory and set theory, allowing for the proof of Gödel’s incom -
pleteness theorems in the former and the proof of Cantor’s
theorem in the latter.

See also: Arithmetization, Diagonalization Lemma, Fixed
Point, Gödel Sentence, Indefinite Extensibility, Russell’s
Paradox

DIAGONALIZATION LEMMA The diagonalization lemma states
that, in any sufficiently strong system of arithmetic (such as Peano
arithmetic or Robinson arithmetic), given any predicate Φ(x),
we can find a sentence Ψ such that:

Ψ ↔ Φ(<Ψ>)

is a theorem of that system of arithmetic (where <Ψ> is the Gödel
number of the sentence Ψ). 

See also: Arithmetization, Diagonalization, Fixed Point,
Knower’s Paradox, Liar Paradox, Tarski’s Indefinability
Theorem

DIALETHEISM Dialetheism is the view that some statements can be
both true and false, and thus that some contradictions can be true.
Dialetheism most often arises in discussions of paradoxes such as
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the Liar paradox or the various set theoretic paradoxes, where
the dialetheist will claim that the argument to contradiction
generated by such paradoxes is in fact valid, and as a result the
paradoxical statement in question is both true and false.

The dialetheist typically needs to adopt a paraconsistent logic,
that is, one that does not validate the rule of inference ex falso
quodlibet:

P
~ P
Q

Otherwise, dialetheism would collapse into triviality. 

See also: Dialethic Logic, First-Degree Entailment, Incon -
sistent Arithmetic, Logic of Paradox, Truth Value Glut

DIALETHIC LOGIC A dialethic logic is any many-valued logic
that allows sentences to be both true and false at the same time – in
other words, dialethic logics allow statements to have the truth value
glut as semantic value. Examples of dialetheist logics include the
logic of paradox and the four-valued logic first-degree
entailment.

See also: Designated Value, Dialetheism, Ex Falso Quodlibet,
Paraconsistent Logic, Triviality

DIFFERENCE see Relative Complement

DILEMMA1 Generally, a dilemma is a situation involving two choices,
or a problem which offers two possible solutions, called the horns of
the dilemma (usually with both solutions being inadequate in some
manner). 

See also: False Dilemma

DILEMMA2 Within formal logic, dilemmas are either disjunctions,
or the term is being used to indicate that disjunction (or something
equivalent) is at the heart of the issue at hand.

See also: Addition, Classical Dilemma, Constructive
Dilemma, Destructive Dilemma, Disjunctive Syllogism

DILUTION see Weakening
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DIRECTED A relation R is directed if and only if, for any x, y, and z,
if:

Rxy 

and:

Rxz

then there is a w such that:

Ryw

and:

Rzw

See also: Euclidean, Partial Ordering

DISCHARGE Some rules of inference allow one to discharge an
assumption, so that the derivation, after application of the rule in
question, no longer depends on the assumption.

See also: Classical Dilemma, Classical Reductio ad Absur -
dum, Conditional Proof, Reductio ad Absurdum

DISCRETE A set S is discrete, relative to an ordering R, if and only if
every member of the set, other than the largest and smallest, if there
are such endpoints, has a unique predecessor and successor
relative to the ordering R. Thus, on their standard orderings, the set
of natural numbers is discrete while the set of real numbers is
not.

See also: Dense, Integers, Rational Numbers

DISJOINT Two sets are disjoint when they have no members in
common, that is, when there is no object that is a member of both
sets.

See also: Axiom of Choice, Pairwise Disjoint, Partition,
Relative Complement, Symmetric Difference

DISJUNCT The disjuncts of a disjunction are the subsentences of
that disjunction that occur to either side of the “or” (or to either
side of the formal language counterpart to “or,” e.g. “∨”).

See also: Classical Dilemma, Constructive Dilemma, Destruc -
tive Dilemma, Dilemma, Disjunctive Syllogism, Vel
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DISJUNCTION A disjunction is a statement of the form:

A or B

Within propositional logic, conjunctions are usually represented
as:

A ∨ B 

The term “disjunction” is also used to denote, not the entire
statement:

A ∨ B

but rather the logical operator represented by “∨.”
Sometimes the term disjunction is also used to designate a

sequence of formulas linked together by the conjunction operator,
such as:

P ∨ Q ∨ R ∨ S

There are two different readings of disjunction. The first, inclusive
disjunction, takes:

A or B

to be true when one or the other or both of A and B are true, while
the second, exclusive disjunction, takes the disjunction as being
true when one or the other, but not both, of A and B are true.
Typically, unless otherwise noted, disjunction is understood in the
inclusive sense.

Within classical logic (on the inclusive understanding) dis -
junction has the following truth table:

See also: Disjunction Property, Disjunctive Normal Form,
Disjunctive Syllogism, Excluded Middle, False Dichotomy,
Vel

DISJUNCTION ELIMINATION see Disjunctive Syllogism

DISJUNCTION INTRODUCTION see Addition

P Q P ∨ Q
T T T
T F T
F T T
F F F
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DISJUNCTION PROPERTY A logic has the disjunction property if
and only if, whenever a disjunction is a theorem, then one or the
other of the disjuncts is also a theorem. In other words, if: 

|- A ∨ B

then either:

|- A

or:

|- B

See also: Classical Logic, Excluded Middle, Intuitionistic
Logic, Kreisel-Putnam Logic, Scott Logic, Weak Excluded
Middle

DISJUNCTIVE NORMAL FORM A formula is in disjunctive
normal form if and only if it is a disjunction of conjunctions,
where each conjunct of each conjunction is either an atomic
formula or the negation of an atomic formula. For example, if A,
B, and C are atomic formulas, then:

(~ A ∧ ~ B ∧ C) ∨ (B ∧ ~ C) ∨ (A ∧ ~ C)

is in disjunctive normal form.
In classical propositional logic, every formula is logically

equivalent to one in disjunctive normal form.

See also: Conjunctive Normal Form, Negation Normal Form,
Prenex Normal Form, Skolem Normal Form

DISJUNCTIVE SYLLOGISM Disjunctive syllogism (or disjunction
elimination, or or elimination) is the rule of inference which,
given a disjunction and the negation of one of the disjuncts,
allows the reasoner to infer the other disjunct. In symbols we have:

A ∨ B
~ A
B

or:

A ∨ B
~ B
A
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See also: Classical Dilemma, Constructive Dilemma,
Destructive Dilemma

DISQUOTATIONALISM Disquotationalism is the view of truth
which asserts that the truth predicate is nothing more than a device
for disquotation, allowing us to make claims about statements
without the need for mentioning those statements explicitly. 

There is no doubting that the truth predicate is useful as a tool that
allows us to say things like:

The first thing Betty says on Wednesday will be true.

when we do not yet know what Betty will say that day. Dis -
quotationalists take this insight one step further, insisting that the
only purpose of the truth predicate is to allow for roundabout
reference to statements of this sort. 

As a result, disquotationalists deny that there is a substantial
property called “truth” that attaches to statements, and thus the
view is a species of deflationism.

See also: Coherence Theory of Truth, Correspondence Theory
of Truth, Minimalism, Prosentential Theory of Truth,
Redundancy Theory of Truth, Truthmaker

DISTRIBUTION A term is distributed within a categorical
proposition if and only if that proposition says something about
all objects instantiating that term. Thus the universal categorical
propositions – that is, A-propositions and E-propositions –
distribute their subject terms, while the negative categorical
propositions – that is, E-propositions and O-propositions,
distribute their predicate terms.

See also: Categorical Logic, Quality, Quantity, Term Logic

DISTRIBUTION AXIOM The distribution axiom (or K) is the
following principle of modal logic:

▫(A → B) → (▫ A → ▫ B) 

Modal logics that satisfy both the distribution axiom and the
necessitation rule are normal modal logics.

See also: Alethic Modal Logic, Kripke Semantics, Kripke
Structure, Possible World
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DISTRIBUTIVE LAWS see Distributivity

DISTRIBUTIVE PREDICATION A predicate is applied to a group
of objects distributively if the predicate applies not only to the
objects as a group, but also to each of the objects individually. An
example of a distributive predication is:

The children ate.

since, in order for the children, as a group, to eat, it must be the case
that each individual child eats. A predicate that is applied to a group
of objects, but that does not apply to each of the objects individually,
is applied collectively. An example of a collective predication is:

The children are numerous.

since the predicate “is numerous” applies to the group of children,
but not to any individual child.

See also: Fallacy of Composition, Fallacy of Division,
Mereology, Part

DISTRIBUTIVITY1 Two functions f and g are distributive if the
following holds for any a, b, and c:

f(a, g(b, c)) = g(f(a, b), f(a, c))

g(a, f(b, c)) = f(g(a, b), g(a, c))

Any pair of functions that satisfy the above formula are said to satisfy
the distributive laws. 

See also: Absorbsion, Associativity, Boolean Algebra, Com -
mutativity, Complement, Join, Lattice, Meet

DISTRIBUTIVITY2 Within propositional logic, distributivity is the
rule of replacement that allows one to replace a formula of the
form:

(A ∧ (B ∨ C))

with:

((A ∧ B) ∨ (A ∧ C))

(or vice versa), and allows one to replace a formula of the form:

(A ∨ (B ∧ C))
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with:

((A ∨ B) ∧ (A ∨ C))

(or vice versa). 

See also: Absorbsion, Quantum Logic

DIVISION see Fallacy of Division

DOMAIN1 The domain (or left field) of a function is the set of
objects that serve as arguments (inputs) of the function. In other
words, the domain of a function f is the set A of objects such that f is
defined on A.

See also: Field, Fixed Point, Image, Range, Signature

DOMAIN2 The domain (or the domain of discourse, or the
universe of discourse) of a first-order theory is the set of objects
over which the variables of the language range. The domain of a
theory can also be thought of as the set of objects that may serve as
referents of the constants in the language or as arguments of
functions and relations in the language.

See also: Element, Finite Model Theory, Inclusive First-order
Logic, Individual, Objectual Quantifier, Substitutional
Quantifier

DOMAIN OF DISCOURSE see Domain

DOMINANT CONNECTIVE In propositional logic, the dominant
connective (or dominant operator, or main connective, or main
operator) of a formula is the connective in the formula with the
largest scope. Equivalently, the dominant connective is that
connective which, in forming the formula according to the
formation rules for the language, was added last. Parentheses are
often used to disambiguate formulas in order to indicate clearly
which is the dominant connective (and which connectives fall within
the scope of which other connectives more generally). For example,
in:

A ∧ (B ∨ C)

the dominant connective is the conjunction, since the disjunction
falls under the scope of the conjunction, as indicated by the
parentheses.
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See also: Elimination Rule, Introduction Rule

DOMINANT OPERATOR see Dominant Connective

DOUBLE NEGATION Double negation refers to the result of
prefixing a formula Φ with two instances of the negation operator,
resulting in ~ ~ Φ. 

See also: Boolean Negation, Choice Negation, DeMorgan
Negation, Exclusion Negation, Glivenko’s Theorem

DOUBLE NEGATION ELIMINATION Double negation elimi -
nation (or negation elimination) is the rule of inference that
allows one to infer a formula from the result of attaching a pair of
negations to that formula. In symbols we have:

~ ~ A
A

See also: Classical Dilemma, Classical Reductio ad
Absurdum, Double Negation Introduction, Excluded Middle,
Intuitionistic Logic, Reductio ad Absurdum

DOUBLE NEGATION INTRODUCTION Double negation
introduction (or negation introduction) is the rule of inference
that allows one to infer the result of attaching a pair of negations to
a formula from the formula itself. In symbols we have:

P
~ ~ P

See also: Classical Dilemma, Classical Reductio ad
Absurdum, Double Negation Elimination, Excluded Middle,
Reductioad Absurdum

DOUBLE TURNSTILE The double turnstile symbol |-- is used to
represent the logical consequence relation. If Δ is a set of
formulas, and Φ a single formula, we write:

Δ |-- Φ

if Φ is a logical consequence of Δ.

See also: Consequence Relation, Deductive Consequence,
Single Turnstile
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DOWNWARD LOWENHEIM-SKOLEM THEOREM The down -
ward Lowenheim-Skolem theorem states that, given any first-order
theory T and model M of T, where σ is the cardinality of the set
of primitive non-logical expressions in the language of T, κ is the
cardinality of the domain of M, and κ is infinite, then for any
infinite cardinal number δ such that σ is less than or equal to δ, which
is less than or equal to κ, there is a model of T whose domain is of
cardinality δ.

If we restrict our attention to first-order theories with a countable
number of primitive non-logical expressions, then the theorem can
be stated more simply. If such a first-order theory T has an infinite
domain whose cardinality is κ, then T has models whose domains are
of any infinite cardinality less than κ.

The downward Lowenheim-Skolem theorem is one half of what is
generally called the Lowenheim-Skolem theorem (the other half
is the upward Lowenheim-Skolem theorem).

See also: Categorical, Intended Interpretation, Limitation
Result, Non-Standard Analysis, Non-Standard Arithmetic,
Non-Standard Model, Skolem’s Paradox

DOXASTIC LOGIC see Doxastic Modal Logic

DOXASTIC MODAL LOGIC Doxastic modal logic is the branch of
modal logic that studies the unary modal operator “it is believed
that …,” which is usually formalized as “B Φ.”

See also: Epistemic Modal Logic, Provability Logic

DUAL The dual of a formula in a propositional language con -
taining only conjunction, disjunction, and negation is the result
of replacing each conjunction with a disjunction, and each dis -
junction with a conjunction. Given two logically equivalent
formulas in such a language, their duals will be logically equivalent as
well. 

See also: DeMorgan’s Laws

DYADIC FUNCTION see Binary Function

DYADIC RELATION see Binary Predicate

DYNAMIC LOGIC see Dynamic Modal Logic
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DYNAMIC MODAL LOGIC Dynamic modal logic is a branch of
modal logic that studies the unary modal operators “once a is
performed, it is necessarily the case that …” and “after performing
a, it is possible that …” (where a is any action). These are usually
formulated as “�a ” and “�a ” respectively. Since there typically will
be more than one action that can be performed, there typically will be
more than one operator of the form �a (and similarly for �a ). Thus,
dynamic logic is a multi-modal logic.

See also: Alethic Modal Logic, Causal Modal Logic,
Counterfactual Logic

E see 5

EFFECTIVE METHOD see Effective Procedure

EFFECTIVE PROCEDURE An effective procedure (or effective
method, or algorithm) is a finite list of instructions or rules
for carrying out some computation or other procedure. Various
informal notions of interest within computability theory are
formulated in terms of the existence, or non-existence, of such
effective procedures, and much of the formal work with com -
putability theory revolves around developing and studying various
formal models of effective procedures. For example, the Church-
Turing thesis states that any effective procedure in arithmetic can
be carried out by an appropriately programmed Turing machine,
or is equivalent to some recursive function. 

See also: Automaton, Complexity Theory, Deterministic
Turing Machine, Non-Deterministic Turing Machine,
Recursive Function Theory, Register Machine

EFFECTIVELY COMPUTABLE FUNCTION A function f is
effectively computable if and only if there is an effective procedure
which will, if given an appropriate argument or sequence of
arguments, allow us to compute, in a finite amount of time, the
value of that function on that argument or arguments. 

E
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See also: Automaton, Complexity Theory, Computation,
Recursive Function Theory, Register Computable, Turing
Computable Function

EFFECTIVELY DECIDABLE RELATION A relation R is
effectively decidable if and only if there is an effective procedure
for determining, of any appropriate sequence of objects, whether it
satisfies the relation. 

See also: Characteristic Function, Effectively Decidable Set,
Primitive Recursive Relation, Recursive Function Theory

EFFECTIVELY DECIDABLE SET A set A is effectively decidable if
and only if there is an effective procedure for determining, of any
object, whether or not it is a member of the set. 

See also: Characteristic Function, Effectively Decidable
Relation, Primitive Recursive Set, Recursive Function Theory

EFFECTIVELY DECIDABLE THEORY A theory is effectively
decidable if and only if there is an effective procedure for
determining, of any formula, whether or not it is a theorem of that
theory.

See also: Characteristic Function, Decidable Theory,
Effectively Decidable Set, Recursive Function Theory

EFFECTIVELY ENUMERABLE SET A set A is effectively
enumerable if and only if there is an effective procedure for placing
the set in a one-to-one onto correspondence with the natural
numbers, or with some initial segment of the natural numbers. 

See also: Arithmetic, Computation, Enumeration, Recursive
Function Theory

ELEMENT An element of a collection or structure is an object that is
contained in that collection or in the domain of that structure. If the
collection is a set, then the object in question is a member of that
set. The term “element,” however, is also used more broadly for
objects that are members of collections that are not sets, such as
proper classes, multisets, and sequences.

See also: Boolean Algebra, Individual, Ordered Pair, Ordered
N-Tuple
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ELEMENTARY EQUIVALENCE Two models are elementarily
equivalent if and only if, for any first-order formula Φ, Φ is true
in one if and only if Φ is true in the other. The compactness and
Lowenheim-Skolem theorems guarantee the existence of distinct
but elementarily equivalent models.

See also: Categorical, Downward Lowenheim-Skolem
Theorem, Intended Interpretation, κ-Categorical, Non-
Standard Model, Upward Lowenheim-Skolem Theorem.

ELIMINATION OF QUANTIFIERS Elimination of quantifiers (or
quantifier elimination) is a technique used within mathematical
logic where one demonstrates that each formula within a theory is
equivalent to a formula containing no quantifiers. The technique is
useful since in many contexts it is easier to prove that quantifier-free
formulas have some desirable property than it is to prove directly
that all formulas have the property in question.

See also: Existential Quantifier, Limitation Result, Metalogic,
Metamathematics, Universal Quantifier

ELIMINATION RULE An elimination rule for a particular logical
connective is a rule of inference that allows one to infer a
statement not containing a dominant occurrence of a particular
connective from statements that do contain that connective as a
dominant operator.

See also: Conditional Proof, Conjunction Elimination, Dis -
junctive Syllogism, Double Negation Elimination, Ex Falso
Quodlibet, Introduction Rule

EMPTY CONCEPT The empty concept is the concept that holds
of no objects – that is, the concept corresponding to the predicate
“x ≠ x.”

See also: Aristotelian Comprehension Schema, Aristotelian
Second-order Logic, Empty Set, Inclusive First-order Logic

EMPTY SET The empty set (or null set) is that set which contains no
members. It is typically denoted using the symbol “∅.” The empty
set is a subset of any set, including itself, and is thus a member of
the powerset of any set.

See also: Axiom of Empty Set, Empty Concept, Zermelo
Fraenkel Set Theory
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EMPTY SET AXIOM see Axiom of Empty Set

ENDOMORPHISM An endomorphism is a homomorphism
between a structure and itself.

See also: Automorphism, Epimorphism, Isomorphism, Mono -
morphism

ENTAILMENT see Logical Consequence

ENTHYMEME An enthymeme is an argument where one or more of
the premises is not stated explicitly. For example, the argument:

All men are mortal.
Socrates is mortal.

is an enthymeme, since its validity depends on the missing premise:

Socrates is a man.

See also: Informal Fallacy, Red Herring

ENTIRE see Seriality

ENTSCHEIDUNGSPROBLEM The Entscheidungsproblem is the
problem of finding a decision procedure for first-order logic –
that is, of finding a recursive function which, when applied to an
arbitrary formula of first-order logic, outputs 1 if the formula is a
logical truth in classical logic and outputs 0 otherwise. Church’s
Theorem shows that there is no such decision procedure.

See also: Busy Beaver Problem, Effective Procedure, Halting
Problem, Limitation Theorem, Recursive Function Theory,
Semi-Decidable Theory

ENUMERABLE SET A set A is enumerable if it can be put in a one-
to-one onto correspondence with the natural numbers, or with
some initial segment of the natural numbers. Thus, a set is
enumerable if and only if it is countable.

See also: Arithmetic, Church-Turing Thesis, Effectively
Enumerable, Enumeration Recursively Enumerable

ENUMERATION An enumeration of a set is the sequence generated
by a particular function used to show that a set is an enumerable
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set. In other words, if a set A is enumerable, then there is a function
f that maps natural numbers onto members of A. The enumer -
ation of A is then the sequence <f(0), f(1), f(2), … >

See also: Arithmetic, Church-Turing Thesis, Effectively
Enumerable, Recursively Enumerable

EPIMENIDES PARADOX see Liar Paradox

EPIMORPHISM An epimorphism is a homomorphism between two
structures that is also surjective, or onto.

See also: Automorphism, Endomorphism, Isomorphism,
Mono morphism

EPISTEMIC CONSTRAINT Epistemic constraint (or verification
constraint) is the principle stating that all truths must be in
principle knowable. The principle of epistemic constraint figures
centrally in many arguments for intuitionistic logic.

See also: BHK-Interpretation, Bivalence, Constructive Logic,
Excluded Middle, Fitch’s Paradox, Logical Antirealism

EPISTEMIC LOGIC see Epistemic Modal Logic

EPISTEMIC MODAL LOGIC Epistemic modal logic is that branch
of modal logic that studies the unary modal operators “it is
known that Φ” and “it is knowable that Φ.” Both of these notions are
typically formalized as “K Φ.”

See also: Alethic Modal Logic, Doxastic Modal Logic,
Provability Logic

EPISTEMIC PARADOX An epistemic paradox is a paradox that
arises from basic intuitions regarding knowledge, belief, or related
epistemic notions. Examples of epistemic paradoxes include Fitch’s
paradox and the knower’s paradox.

See also: Factivity, Insolubilia, Liar Paradox, Semantic
Paradox

EPISTEMICISM Epistemicism is the view that vagueness is not
caused by any imprecision in our predicates or in the world, but
is instead a result of our incomplete knowledge about the world. In
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other words, an epistemicist believes that there is an exact number of
grains of sand which marks the difference between a collection of
grains being a heap and its failing to be a heap. Our intuition that
there is no such sharp borderline is, for the epistemicist, caused by
our in-principle inability to determine exactly what this number is. 

See also: Forced March Sorites, In Rebus Vagueness, Ontic
Vagueness, Semantic Vagueness, Sorites Paradox, Sorites
Series

E-PROPOSITION Within Aristotle’s categorical logic, an
E-proposition is a categorical proposition asserting that all
objects that are members of the class designated by the subject
term are not members of the class designated by the predicate
term. In other words, an E-proposition is a proposition whose
logical structure is:

All P are not Q.

Often, E-propositions are written in the following equivalent form:

No P are Q.

The quality of an E-proposition is negative and its quantity is
universal. An E-proposition distributes both its subject term and
its predicate term.

See also: A-Proposition, I-Proposition, O-Proposition, Square
of Opposition

EQUINUMEROUS Two sets A and B are equinumerous (or
equivalent, or equipollent) if and only if they have the same
cardinal number – that is, if there is a one-to-one onto function
from A to B.

See also: a, b, Bijection, c, Co-extensive, Continuum Many

EQUIPOLLENT see Equinumerous

EQUIVALENCE see Deductively Equivalent, Logically Equiv -
alent, Materially Equivalent

EQUIVALENCE CLASS An equivalence class is any set of objects
that are related to each other by an equivalence relation. Any
equivalence relation separates the domain into one or more
disjoint equivalence classes.
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See also: Exclusive, Exhaustive, Pairwise Disjoint, Partition

EQUIVALENCE RELATION An equivalence relation is any relation
R such that R is:

Reflexive: (∀x)(Rxx)

Symmetric: (∀x)(∀y)(Rxy → Ryx)

Transitive: (∀x)(∀y)(∀z)((Rxy ∧ Ryz) → Rxz)

An equivalence relation divides up the domain into one or more
disjoint equivalence classes – that is, sets of elements – such that
any two objects in the same equivalence class are related to each other
by R, and no object in any equivalence class is related by R to any
object not in that equivalence class.

See also: Abstraction Principle, Exclusive, Exhaustive, Pair -
wise Disjoint, Partition

EQUIVALENT1 see Deductively Equivalent, Logically Equivalent,
Materially Equivalent

EQUIVALENT2 see Equinumerous

EQUIVOCATION Equivocation is an informal fallacy which occurs
when a word with more than one meaning is used within an
argument twice, with each occurrence having a different meaning. 

See also: Ambiguity, Amphiboly

EROTETIC LOGIC Erotetic logic (or the logic of questions and
answers, or interrogative logic) is the logic of reasoning about
questions and answers. In particular, erotetic logic examines issues
such as the distinction between answering a question incorrectly
versus failing to answer the question at all and the presuppositions
that underlie certain sorts of questions. 

See also: Imperative, Interrogative, Statement

EUBULIDES PARADOX see Liar Paradox

EUCLIDEAN A relation R is euclidean if and only if, for any objects
x, y, and z, if:

Rxy 
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and:

Rxz

then:

Ryz

See also: Directed, 5, S5

EXCHANGE see Permutation

EXCLUDED MIDDLE Excluded middle (or the law of excluded
middle, or the principle of excluded middle, or tertium non
datur) is the following formula of propositional logic:

A ∨ ~ A

See also: Bivalence, Classical Logic, Intermediate Logic,
Intuitionistic Logic, Law of Non-Contradiction, Weak
Excluded Middle

EXCLUSION NEGATION Within three valued logic, exclusion
negation (or external negation) is the unary logical operator
whose associated truth function outputs true if the sentence being
negated is false, outputs false if the sentence being negated is true,
and also outputs true whenever the sentence being negated takes the
third value (whatever that is, for example, the truth value gap or
truth value glut). Thus, the truth table for exclusion negation
(where N is the third value) is:

See also: Boolean Negation, Choice Negation, DeMorgan
Negation, Double Negation, Tilde

EXCLUSIVE Two sets A and B are exclusive if no object is a member
of both A and B. More generally, two properties are exclusive if no
object is an instance of both properties.

See also: Disjoint, Exhaustive, Intersection, Overlap, Pairwise
Disjoint, Partition

A ~ A
T F
N T
F T

e x c l u s i v e 109

1004 02 pages 001-322:Layout 1  16/2/09  15:12  Page 109



EXCLUSIVE DISJUNCTION Exclusive disjunction is the interpret -
ation of “or” where a disjunction of the form:

A or B

is taken to be true when exactly one of the disjuncts A and B is true.
Exclusive disjunction would, within classical logic, have the
following truth table:

Typically, unless otherwise indicated, disjunctions in logic are not
interpreted as exclusive disjunction, but are instead interpreted as
inclusive disjunction.

See also: Classical Dilemma, Constructive Dilemma, Destruc -
tive Dilemma, Disjunctive Syllogism, Vel

EXCLUSIVE OR see Exclusive Disjunction

EX FALSO QUODLIBET Ex falso quodlibet (or explosion, or the
absurdity rule, or negation elimination) is the rule of inference
that allows one to infer any formula whatsoever from a contra -
diction (that is, from a formula and its negation). In symbols we
have:

P
~ P
Q

It is the distinctive feature of paraconsistent logics that ex falso
quodlibet fails.

See also: Dialetheism, Elimination Rule, Triviality

EXHAUSTIVE Two sets A and B are exhaustive relative to a domain
D if and only if every member of D is a member of either A or B.
More generally, two properties are exhaustive if every object is an
instance of at least one of the properties.

See also: Exclusive, Partition, Underlap, Union

P Q P ∨ Q
T T F
T F T
F T T
F F F
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EXISTENCE PREDICATE An existence predicate is a predicate
that attaches to a constant to signify that the constant has a
referent. If c is a constant, then the claim that c has a referent (i.e.
that c “exists”) is typically formulated as:

E!c

Often, but not always, the existence predicate is a defined notion:

E!x =df (∃y)(y = x)

Existence predicates usually occur in free logics, since in standard
non-free logics constants are assumed to always refer.

See also: Denotation, Existential Import, Existential Quan -
tifier, Reference

EXISTENTIAL ELIMINATION see Existential Instantiation

EXISTENTIAL GENERALIZATION1 An existential generalization
is a formula of first-order logic where an existential quantifier
is the dominant operator in the formula, and the existential
quantifier in question is not a vacuous quantifier. Thus:

(∃x)Φx

is an existential generalization, while:

(∀x)(∃y)(Lxy) 

is not. Existential generalizations assert the existence of at least one
object in the domain which satisfies the predicate occurring in the
scope of the quantifier.

See also: Bound Variable, First-order Logic, First-order
Variable, Σ-Formula, Σ-Sentence, Universal Generalization

EXISTENTIAL GENERALIZATION2 Existential generalization
(or existential introduction) is the rule of inference that allows
one to move from a particular statement to an existential
generalization of that statement. In symbols we have (where Φ is
any formula, and Φ[a/x] is the result of replacing one or more
occurrences in Φ of “a” with “x”):

(Φ)
(∃x)Φ[a/x]

See also: Existential Instantiation, First-order Logic,
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Intro duction Rule, Universal Generalization

EXISTENTIAL IMPORT A universally quantified formula
whose logical form is:

(∀x)(F(x) → G(x))

(i.e. All F’s are G’s) has existential import if it is interpreted as
entailing the existence of at least one object that falls under the
subject term (i.e. F). Aristotle, in his categorical logic, treated all
universally quantified statements as having existential import,
although the modern view is that such formulas are neutral with
regard to the existence of instances of their subject terms. 

See also: A-Proposition, E-Proposition, Immediate Inference,
Subalternation, Term Logic, Universal Proposition

EXISTENTIAL INSTANTIATION Existential instantiation (or
existential elimination) is the rule of inference that allows one to
move from a existential generalization to an instantiation of that
existential generalization. In symbols we have (where Φ is any
formula, and Φ[x/a] is the result of replacing all occurrences of “x”
with “a”):

(∃x)(Φ)
Φ[x/a]

Existential generalization can be applied only if the new constant “a”
does not occur either in (∃x)(Φ) or in any assumption upon which
(∃x)(Φ) depends.

See also: Elimination Rule, Existential Generalization, First-
order Logic, Universal Instantiation

EXISTENTIAL INTRODUCTION see Existential Generalization2

EXISTENTIAL QUANTIFIER An existential quantifier is a
quantifier that allows us to assert that a predicate is satisfied by at
least one object. Existential quantifiers are typically denoted by ∃,
followed by the variable that the quantifier binds. Thus, if Φ is a
unary predicate, then:

(∃x)Φx

states that some object is a Φ, or that some object satisfies Φ.
Existential quantifiers can be used to quantify over objects, in
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which case they are called first-order quantifiers. (The variables
ranged over by first-order quantifiers are usually taken from the end
of the alphabet and written in lower case.) Existential quantifiers can
also be used to quantify over concepts, relations, properties, or
other higher-order entities, in which case they are called second-
or higher-order existential quantifiers. (The variable bound
by such a higher-order quantifier is usually written in upper case, in
order to distinguish it from first-order quantifiers and the variables
they bind.)

See also: Bound Variable, Existential Variable, Generalized
Quantifier, Σ-Formula, Σ-Sentence, Universal Quantifier

EXISTENTIAL VARIABLE An existential variable is a variable
bound by an existential quantifier.

See also: Bound Variable, First-order Variable, Higher-order
Variable, Universal Variable, Vacuous Quantifier

EXPLANANDUM The explanandum of an explanation is the
expression being explained.

See also: Definiendum, Definiens, Definition, Explanans

EXPLANANS The explanans of an explanation is the expression
used to provide the explanation.

See also: Definiendum, Definiens, Definition, Explanandum

EXPLANATION An explanation is a sequence of statements where
all but one of the statements (the explanans) are intended to
provide understanding of or insight into why the remaining state -
ment (the explanandum) is true. Explanations should be carefully
distinguished from arguments and definitions.

See also: Definiendum, Definiens

EXPLICIT DEFINITION An explicit definition is a definition that
provides a means for replacing each occurrence of the definiendum
with an appropriate instance of the definiens. Explicit definitions
typically are of the form:

Φ =df Ψ

Where Φ is the definiendum, and Ψ is the definiens. Explicit
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definitions should be contrasted with implicit definitions, which
provide an analysis of the meaning of the expression to be defined by
providing one or more principles containing occurrences of that
expression which must be true, but which do not allow for uniform
replacement of definiendum with definiens.

See also: Impredicative Definition, Intensional Definition,
Ostensive Definition, Recursive Definition, Stipulative
Definition

EXPLOSION see Ex Falso Quodlibet

EXPORTATION Within propositional logic, exportation is the rule
of replacement that allows one to replace a formula of the form:

(A ∧ B) → C

with:

A → (B → C)

and vice versa.

See also: Conditional, Conditionalization, Conjunction

EXPRESSIVE COMPLETENESS A set of logical connectives
(and the set of associated truth functions) is expressively complete
(or functionally complete) if and only if every truth function can
be expressed using some combination of those connectives. Examples
of expressively complete sets of connectives (relative to classical
truth tables) include {~, ∨}, {~, ∧} and {~, →}, while {∨, ∧, →,
↔} and {~, ↔} are not expressively complete. Both the Sheffer
stroke and the dagger are expressively complete by themselves.

See also: Boolean Algebra, Metatheorem, Propositional Logic

EXTENSION1 The extension of a predicate is the set of objects
which satisfy the predicate. Thus, the extension of “is red” is the set
of red things. More generally, the extension of an n-ary relation is
the set of n-tuples that satisfy the relation.

See also: Anti-Extension, Co-extensive, Supervaluational
Semantics

EXTENSION2 An extension of a language or logic is a language or
logic that results from adding additional resources to that logic (for
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example, additional operators or rules of inference).

See also: Conservative Extension, Sublanguage, Sublogic

EXTENSIONAL LOGIC see Intensional Logic

EXTENSIONAL MEREOLOGY Extensional mereology is the
mereological theory obtained by assuming that the parthood
relation is a partial ordering (where P is the binary parthood
relation):

Reflexive: (∀x)(Pxx)

Transitive: (∀x)(∀y)(∀z)((Pxy ∧ Pyz) → Pxz)

Antisymmetric: (∀x)(∀y)((Pxy ∧ Pyx) → x = y)

and that the strong supplementation principle:

(∀x)(∀y)( ~ Pyx → (∃z)(Pzy ∧ ~ (∃w)(Pwx ∧ Pwz)))

holds.

See also: Composition, General Extensional Mereology,
Gunk, Mereological Extensionality, Weak Supplementation
Principle

EXTENSIONALITY see Mereological Extensionality

EXTENSIONALITY AXIOM see Axiom of Extensionality

EXTERNAL NEGATION see Exclusion Negation

FACTIVITY A predicate or operator which applies to statements is
factive if and only if its holding of a statement guarantees that that
statement is true. Thus, both the truth predicate and the epistemic
modal operator for knowledge are factive, although a predicate
holding of a statement if and only if it is believed is not factive.

See also: Epistemic Paradox, Provability Predicate, Semantic
Paradox, Semantically Closed Language, Tarski’s Indefin -
ability Theorem

F
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FALLACY A fallacy is a flaw in an argument that prevents the
argument from being either valid (if the argument is a deductive
argument) or strong (if the argument is an inductive argument).
Fallacies are typically divided into formal fallacies and informal
fallacies.

See also: Counterexample, Countermodel, Refutation

FALLACY OF COMPOSITION The fallacy of composition is the
informal fallacy that occurs when the reasoner illicitly moves from
a premise asserting that the parts of an object individually have a
certain property to the conclusion that the object as a whole has
that same property

See also: Composition, Fallacy of Division, Mereology, Proper
Parthood

FALLACY OF DIVISION The fallacy of division is the informal
fallacy that occurs when the reasoner illicitly moves from a premise
asserting that some object, as a whole, has a certain property, to the
conclusion that the parts of the object have same property
individually.

See also: Composition, Fallacy of Composition, Mereology,
Proper Parthood

FALLACY OF FOUR TERMS The fallacy of four terms is the
formal fallacy that occurs when a categorical syllogism involves
four terms. Typically, the fallacy occurs because of an equivo -
cation, where a word is used twice with two distinct meanings,
producing the illusion that the argument involves only three terms. 

See also: Major Premise, Major Term, Middle Term, Minor
Premise, Minor Term

FALSE DICHOTOMY False dichotomy (or false dilemma) is the
informal fallacy that occurs when the reasoner presents her
audience with two choices, when in fact there are other, unconsidered
options. Typically, a false dichotomy resembles a valid disjunctive
syllogism, and the fallacy results from the mistaken assumption that
the disjunction involved in the argument is true.

See also: Dilemma, Horn
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FALSE DILEMMA see False Dichotomy

FALSEMAKER see Truthmaker

FALSITY see Truth

FALSUM Falsum is a primitive, necessarily false statement often
denoted by “⊥.” Typically, falsum is introduced in order to define
negation as:

~ A =df (A → ⊥)

See also: Bottom, Top, Verum

FDE see First-Degree Entailment

“FIDO”-FIDO PRINCIPLE The “Fido”-Fido principle is the
assumption that the meaning of an expression is the object that that
expression refers to.

See also: Denotation, Gödel’s Slingshot Argument, Referential
Opacity, Semantic Value, Slingshot Argument

FIELD The field of a function is the union of the domain and range
of that function.

See also: Fixed Point, Image, Signature

FIGURE see Syllogistic Figure

FINITARY A structure is finitary if and only if it does not involve
infinitely large collections or sets, infinitely many operations, etc.
For example, finitary logics prohibit proofs which are infinitely long
or rules of inference whose application involves infinitely many
premises. A structure that is not finitary is infinitary.

See also: Absolute Infinite, Ad Infinitum, Cofinite, Complete
Infinity, Dedekind Infinite, Simply Infinite

FINITARY ARITHMETIC Finitary arithmetic is the sub-system of
Peano arithmetic, which David Hilbert hoped to use to prove that
Peano arithmetic was consistent. Although characterized informally
by Hilbert, finitary arithmetic contains primitive recursive
functions and relations as well as statements containing bounded
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quantifiers. Hilbert believed that finitary arithmetic could be
interpreted in terms of operations on concrete numerals, and thus
did not involve the introduction of abstract objects or concepts.
As a result, finitary arithmetic was, according to Hilbert, epistemo -
logically secure in a sense in which Peano arithmetic was not.

See also: Finitary, Finitism, Infinitary Logic, ω-Rule,
Robinson Arithmetic

FINITARY FORMAL SYSTEM A finitary formal system (or finitary
logic) is a formal system where the vocabulary of the language is
either finite or countably infinite, the well-formed formulas are
finite in length, and all rules of inference are finite (that is, they
allow only a finite number of premises and finitely many
conclusions). A formal system that is not finitary is an infinitary
formal system, or infinitary logic.

See also: Finitary Arithmetic, Finitism

FINITARY LOGIC see Finitary Formal System

FINITE see Dedekind Infinite, Simply Infinite

FINITE CHARACTER A property has finite character if and only if
the property holds of a set S if and only if it holds of all the finite
subsets of S.

See also: Hereditary Property

FINITE MODEL THEORY Finite model theory is the study of
formal languages and formal systems when their inter -
pretations are restricted to models with finite domains. Many of
the standard theorems and limitation results regarding first-order
logic, such as the compactness theorem, fail when attention is
restricted to finite models.

See also: Finitary, Finitary Formal System, Model Theory,
Formal Semantics

FINITELY AXIOMATIZABLE A theory is finitely axiomatizable if
and only if there is some finite list of principles such that every
formula in the theory can be derived from these principles. 

See also: Recursively Axiomatizable Theory, Semi-Decidable
Theory
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FINITISM Finitism is the view that only finitely many objects exist,
and that we can only perform operations on collections or sets
that are finite. Thus, the finitist will, like the intuitionistic
mathematician or logician, reject actual infinite collections but,
unlike the intuitionist, the finitist rejects potentially infinite
collections as well.

See also: Dedekind Infinite, Finitary, Simply Infinite

FIRST-DEGREE ENTAILMENT First-degree entailment (or FDE)
is a non-standard, paraconsistent logic with four truth values:
true (T), false (F), both true and false (B, the truth value glut)
and neither true nor false (N, the truth value gap). The logic has
two designated values: true and both. One can obtain the logic
of paradox from first-degree entailment by requiring that no
statement is assigned N, and one obtains standard classical
propositional logic from first-degree entailment by requiring that
no statement is assigned either B or N.

See also: Analethic Logic, Designated Value, Dialethic Logic,
Ex Falso Quodlibet, Strong Paraconsistency, Weak Para -
consistency

FIRST-ORDER LOGIC First-order logic (or quantificational
logic, or predicate logic) is the formal logic obtained by
extending propositional logic through the addition of variables
and the universal and existential quantifiers that bind them. The
explosion in logical studies that occurred at the beginning of the
twentieth century was due in large part to the discovery of first-order
logic (and higher-order logic) by Gottlob Frege. Although Aristotle’s
categorical logic already contained quantifiers for “all” and
“some,” it was only through Frege’s systematic development of
quantificational theory that the true power of these expressions could
be harnessed. For example, categorical logic is not able to handle
either relations or quantifiers that occur in the scope of other
quantifiers. Part of the reason for this second shortcoming is that
earlier logicians had no notion of variable, and thus there was no
means for keeping track of which quantifiers governed which
argument places in compound formulas with more than one
quantifier. Thus, neither of:

Everyone loves someone. Someone loves everyone.

could be dealt with adequately using the resources of categorical
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logic. Within first-order logic, however, these can be represented as:

(∀x)(∃y)Lxy (∃x)(∀y)Lxy

These formulas make the differing logical forms of the two English
statements apparent and also illustrate the power of first-order logical
methods for studying the behavior of quantifiers within natural
language.

See also: First-order Theory, Free Logic, Inclusive First-order
Logic, Monadic First-order Logic, Pure First-order Logic,
Quantified Modal Logic

FIRST-ORDER MODAL LOGIC see Quantified Modal Logic

FIRST-ORDER THEORY A first-order theory is a set of statements
in the language of first-order logic that is closed under the
logical consequence relation. In other words, a first-order theory
is any set Σ of first-order formulas where, if Δ is a subset of Σ, and
Φ is a first-order formula that is a logical consequence of Δ, then Φ is
a member of Σ. Every first-order theory contains infinitely many
members, since every logical truth is a member of every first-order
theory.

See also: Finitely Axiomatizable Theory, Recursively
Axiomatizable Theory, Semi-Decidable Theory, Transitive
Closure

FIRST-ORDER VARIABLE A first-order variable is a variable
whose value ranges over the objects in the domain of the model in
question. First-order variables are typically represented by lower-
case letters from the end of the alphabet (“x,” “y,” “z”), and they
occur in both first-order and higher-order logics.

See also: Bound Variable, First-order Logic, First-order
Theory, Higher-order Variable, Vacuous Quantifier

FITCH PARADOX The Fitch paradox (or Fitch’s Paradox, or the
knowability paradox, or the paradox of knowability) refers to
the fact that we can derive the patently false claim that all true
statements are known from the apparently much weaker, and less
implausible, claim that all true statements are knowable. This latter
principle is the principle of epistemic constraint. The derivation,
somewhat informally, goes as follows. Assume, for reductio ad
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absurdum, that there is a statement S such that S is true but not
known to be true. Then the claim:

S, and no one knows that S

is true. So, since we are assuming that all truths can be known, it
follows that:

It is possible that someone knows that (S and no one knows
that S).

Since knowing a conjunction is equivalent to knowing each of its
conjuncts, we obtain:

It is possible that (someone knows S and knows that no one
knows S)

Knowledge is factive – that is, if a claim is known, then it is true – so
it follows that:

It is possible that (someone knows S and no one knows S).

But the contents of the parentheses is a contradiction, and thus is
not possible.

The Fitch paradox is particularly troubling to defenders of
intuitionistic logic or constructive logic (and intuitionistic
mathematics or constructive mathematics), who often motiv -
ated their rejection of classical logic in terms of their acceptance of
the view that all truths are in principle able to be known.

See also: BHK-Interpretation, Bivalence, Constructive Proof,
Excluded Middle, Intuitionism, Logical Antirealism

FITCH’S PARADOX see Fitch Paradox

5 Axiom 5 (or E) is the following principle of modal logic:

5: ◊ A → ▫ ◊ A

In possible worlds semantics, axiom 5 is satisfied on any frame in
which the accessibility relation is euclidean.

See also: Kripke Semantics, Kripke Structure, Modality, S5

FIXED POINT1 In mathematics, a fixed point of a function f is an
object a such that:

f(a) = a
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See also: Domain, Field, Image, Range, Signature

FIXED POINT2 In logic, a fixed point of a predicate Φ is a state -
ment G such that:

G ↔ Φ(<G>)

is a theorem (where <G> is the Gödel code, or some other
appropriate name, of the statement G).

See also: Gödel Sentence, Gödel’s First Incompleteness
Theorem, Gödel’s Second Incompleteness Theorem,  Liar
Paradox, Liar Sentence

FORCED MARCH SORITES A forced march Sorites is a variant of
the Sorites paradox. Given a vague predicate such as “is bald,”
the forced march Sorites asks us to imagine a competent user of the
predicate who is forced to travel down a Sorites series of men
ranging from a clear case of “is bald” to a clear case of “is not bald,”
where each adjacent pair of men differ in the amount of their hair by
some marginal amount. The competent user of the predicate is
forced, for each man in the series, to answer the question “Is this man
bald?” Even if we allow any answer whatsoever, including “sort of,”
“maybe,” “not sure,” etc., there will be a first instance where the
competent user fails to say “yes,” suggesting that vague predicates
might admit of sharp borders after all.

See also: Borderline Case, Higher-order Vagueness, In Rebus
Vagueness, Ontic Vagueness, Semantic Vagueness

FORCING Forcing is a set-theoretic technique which, given a
particular model of set theory, provides a new model containing
sets not contained in the original model (in contrast to the method of
constructing inner models). When using the method of forcing, one
obtains the new model by finding a subset G of the domain of the
original model where G does not form a set in the original model, and
where G is a generic partial filter on the model. One then constructs
a new model in terms of G. Forcing is equivalent to the technique
of Boolean-valued models, although the latter, while easier to under -
stand, is usually harder to carry out in practice.

See also: Boolean Algebra, Continuum Hypothesis, General -
ized Continuum Hypothesis, Independence Result, Large
Cardinal, Reflection Principle
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FORM see Logical Form

FORMAL CALCULUS see Formal System

FORMAL CONSEQUENCE A formal consequence is an argument
where the premises follow necessarily from the conclusion, and
this fact holds merely in terms of the formal structure of the
statements involved. Formal consequence is contrasted with the
weaker notion of material consequence, where a conclusion
follows necessarily from the premises of an argument, but this fact
depends not only on the form, but also on the content of the
statements involved. 

See also: Consequence Relation, Deductive Consequence,
Inference, Logical Consequence

FORMAL FALLACY A formal fallacy is a flaw in an argument that
depends on the logical form or grammatical form of that argument,
and not on the meanings of the non-logical expressions contained
in the argument. As a result, if an argument commits a formal
fallacy, then any argument of that same form will commit the same
fallacy.

See also: Counterexample, Countermodel, Deductive Argu -
ment, Deductive Validity, Fallacy, Informal Fallacy

FORMAL LANGUAGE A formal language is a basic vocabulary plus
a finite list of formation rules specifying which sequences of basic
symbols are well-formed formulas of the system. For example, the
language of first-order logic is a formal language. Among its basic
vocabulary are the symbols for conjunction (∧), disjunction (∨),
negation (~), and the existential and universal quantifiers
(∃, ∀), and a typical formation rule might look like:

If Φ and Ψ are well-formed formulas, then (Φ ∧ Ψ) is a well-
formed formula.

See also: Formal Logic, Formal Proof, Formal Semantics,
Formal System, Mathematical Logic

FORMAL LOGIC A formal logic is a formal language supple -
mented with a consequence relation – that is, a binary relation
holding between formulas and sets of formulas such that the
relation holds if and only if the formula is a consequence of the set of
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formulas (according to that logic). The consequence relation of a
formal logic can be either a deductive or logical (that is, semantic)
notion. Thus, all formal systems are formal logics, but not vice
versa.

See also: Deductive Consequence, Logical Consequence,
Model Theory, Natural Deduction, Sequent Calculus

FORMAL PROOF A formal proof is the codification of a (possibly
informal) proof within a particular formal system.

See also: Deductive Consequence, Derivation, Formal Logic

FORMAL SEMANTICS A formal semantics is an interpretation
of a formal language. Thus, truth value assignments to
statements of propositional logic are a formal semantics for the
language of propositional logic, and model theory provides a
formal semantics for the language of first-order logic.

See also: Double Turnstile, Logical Consequence, Logical
Truth, Logical Validity, Semantics

FORMAL SYSTEM A formal system (or calculus, or deductive
system, or formal calculus, or logistic system, or syntactic
system) is a formal language supplemented with a set of axioms
and/or rules of inference specifying which sequences of
formulas from the language are to count as derivations.

See also: Deductive Consequence, Formal Proof, Natural
Deduction, Proof Theory, Sequent Calculus, Single Turnstile

FORMATION RULES A formation rule is a rule that, given one
or more well-formed formulas of a particular language, states
that some combination of those formulas and primitive vocabulary
(such as connectives, quantifiers, and parentheses) is also a
well-formed formula. For example, a typical formation rule for
conjunction might state that:

If Φ and Ψ are well-formed formulas, then (Φ ∧ Ψ) is a well-
formed formula.

See also: Atomic Formula, Compound Formula, Propositional
Letter, Singular Proposition, Subformula, Syntax

FORMULA A formula is any sequence of symbols from the basic
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vocabulary of a formal language. A formula need not conform to
the formation rules of the language. If it does, then it is a well-
formed formula.

See also: Atomic Formula, Compound Formula, Open
Formula, Propositional Letter, Subformula

FOUNDATION see Axiom of Foundation

FOUNDATION AXIOM see Axiom of Foundation

4 Axiom 4 is the following principle of modal logic:

4: ▫ A → ▫ ▫ A

In possible worlds semantics, axiom 4 is satisfied on any frame
in which the accessibility relation is transitive.

See also: Kripke Semantics, Kripke Structure, Modality, S4

FRAME In modal logic, a frame is an ordered pair <W, R>
consisting of a set W, the set of possible worlds of the frame, and a
relation R on W × W – the accessibility relation on W. A frame is
turned into a model by the addition of a valuation providing
interpretations of the non-logical vocabulary.

See also: Kripke Semantics, Kripke Structure, Ternary
Semantics

FRAME SEMANTICS see Kripke Semantics

FREE CHOICE SEQUENCE In intuitionistic and constructivist
mathematics, the real numbers are defined by free choice
sequences (or choice sequences). As in classical mathematics,
the intuitionistic real numbers can be represented by Cauchy
sequences of rational numbers. Unlike in the classical setting,
however, where Cauchy sequences are pre-existing, arbitrary
sequences, a real number in the intuitionistic setting is a sequence of
free choices, subject to some Cauchy-style restriction. 

See also: Bivalence, Excluded Middle, Logical Antirealism,
Strong Counterexample, Weak Counterexample

FREE LOGIC A free logic is a modification of first- or higher-order
logic where constants in the language (i.e. names) need not refer to
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any object. Free logics are usually supplemented with an existence
predicate “E!,” so that:

E!r

means that r exists (i.e. that the constant r refers). 

See also: Constant, Existential Import, Existential Instan -
tiation, Existential Variable, Singular Term

FREE VARIABLE see Bound Variable

FREGE’S THEOREM Frege’s theorem states that all of the second-
order Peano axioms for arithmetic can be derived from Hume’s
Principle:

(∀P)(∀Q)(NUM(P) = NUM(Q) ↔ P ≈ Q)

A proof of Frege’s theorem was sketched by Gottlob Frege in his
Grundlagen der Arithmetik and Grundgesetze der Arithmetik, although
the details were provided by later logicians. Frege’s theorem is the
central logical result underlying mathematical abstractionism.

See also: Abstraction Principle, Bad Company Objection,
Basic Law V, Caesar Problem

FULL PREDICATE LOGIC see Polyadic First-order Logic

FUNCTION A function is a mathematical entity that takes objects, or
sequences of objects, as input (the arguments of the function) and
provides a unique object (the image of the argument or arguments)
as output. Intuitively, functions are mappings from the domain of
the function (the set of permissible arguments) to the range of the
function (the set of permissible outputs of the function). 

See also: Adicity, Composition, Field, One-to-One, Onto,
Ordered Pair, Partial Function

FUNCTIONAL COMPLETENESS see Expressive Completeness

FUSION see Mereological Fusion

FUZZY LOGIC see Degree-Theoretic Semantics
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GAMBLER’S FALLACY The gambler’s fallacy is an informal
fallacy which occurs when one draws faulty conclusions regarding
the probability of a future event based on a series of past outcomes,
all of which are independent of each other. The fallacy occurs when
the reasoner concludes that a particular outcome is more likely
because that outcome has not occurred recently, or has occurred less
frequently than other outcomes in the past. For example, when
tossing a fair coin, one is committing the gambler’s fallacy if one
concludes that “tails” is highly likely after flipping “heads” ten times
in a row. 

See also: Bayes’ Theorem, Conditional Probability, Prob -
ability Calculus, Probability Theory

GAME-THEORETIC SEMANTICS Game-theoretic semantics is a
method of assigning semantic values to formulas in terms of
idealized games played between a “verifier” and a “falsifier.” Atomic
sentences are assigned truth values as usual, and then a
compound formula receives a truth value based on playing games
with respect to the formula in question. We define game play as
follows. At each “move” in the game, a formula Φ is in play:

If Φ is atomic, then the verifier wins if Φ is true, and the
falsifier wins if Φ is false.

If Φ is a conjunction Ψ ∧ Σ, then the falsifier picks one of Ψ or
Σ and play continues on the selected formula.

If Φ is a disjunction Ψ ∨ Σ, then the verifier picks one of Ψ or
Σ and play continues on the selected formula.

If Φ is a negation ~ Ψ, then the verifier and falsifier switch
roles and play continues on Ψ.

If Φ is a universally quantified formula (∀x)Ψx, then the
falsifier picks a member of the domain b and play continues on
Ψb.

If Φ is a existentially quantified formula (∃x)Ψx, then the
verifier picks a member of the domain b and play continues on
Ψb.

A compound formula is true if and only if there is a winning strategy

G

g a m e - t h e o r e t i c  s e m a n t i c s 127

1004 02 pages 001-322:Layout 1  16/2/09  15:12  Page 127



for the verifier on that formula – that is, there is a set of moves such
that the verifier can guarantee that he will win the game on that
formula no matter what the falsifier does. Similarly, a formula is false
if and only if there is a winning strategy for the falsifier.

See also: Independence-Friendly Logic

GAP see Truth Value Gap

GEACH-KAPLAN SENTENCE The Geach-Kaplan sentence is the
statement:

Some critics admire only one another. 

This statement has no adequate paraphrase within first-order logic
– in order to capture its import, it must be formalized using set
theory, branching quantifiers, or higher-order quantifiers.
Since set theory does not seem to be involved in the informal English
version of the sentence, the Geach-Kaplan sentence, and sentences
like it, are often used as evidence in favor of branching quantifiers or
higher-order logics. 

See also: Independence-Friendly Logic, Many-Sorted Logic,
Plural Quantification, Second-order Logic

GENERAL EXTENSIONAL MEREOLOGy General extensional
mereology is the mereological theory obtained by assuming that the
parthood relation is a partial ordering (where P is the binary
parthood relation):

Reflexive: (∀x)(Pxx)

Transitive: (∀x)(∀y)(∀z)((Pxy ∧ Pyz) → Pxz)

Antisymmetric: (∀x)(∀y)((Pxy ∧ Pyx) → x = y)

and that the strong supplementation principle:

(∀x)(∀y)(~ Pyx → (∃z)(Pzy ∧ ~ (∃w)(Pwx ∧ Pwz)))

and the unrestricted fusion principle (where O is the defined
overlap relation):

(∃x)Φ(x) → (∃y)(∀z)(Ozy → (∃w)(Φ(w) ∧ Ozw) 

hold.

See also: Classical Mereology, Composition, Extensional

128 g a p

1004 02 pages 001-322:Layout 1  16/2/09  15:12  Page 128



Mereology, Ground Mereology, Minimal Mereology, Weak
Supplementation Principle

GENERAL MEREOLOGY see Classical Mereology

GENERALIZATION see Existential Generalization, Universal
Generalization

GENERALIZED CONTINUUM HYPOTHESIS George Cantor
proved that the cardinality of the powerset of any set is strictly
greater than the cardinality of the set itself. 

Since aa+1 represents the infinite cardinal number immediately
after aa, that is, it is the cardinal number of an infinite set which
is bigger than any set of size aa, but for which there is no set
intermediate cardinal number between it and aa, Cantor’s result can
be stated as:

2
aa

≥ aa+1

The generalized continuum hypothesis is the claim that the cardinal
number of the powerset of any set is, in fact, the next largest cardinal
number, that is:

2
aa

= aa+1

Standard set theories, such as Zermelo Fraenkel set theory
(ZFC), do not settle the question of how much larger the powerset
of X is relative to X. In other words, the generalized continuum
hypothesis is independent of such systems – it can be neither
proven nor disproven within them.

See also: b, Constructible Universe, Forcing, Independence
Result, Inner Model

GENERALIZED QUANTIFIER Generalized quantifiers are gener -
alizations of the standard universal and existential quantifiers
arrived at by thinking of these quantifies as denoting sets of subsets
of the domain. Thus, instead of understanding a universally
quantified phrase:

(∀x)Φx

as stating that every object has Φ, we can understand it as asserting
that the extension of Φ (that is, the set of all objects that satisfy Φ)
is a member of the set of sets denoted by the universal quantifier
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(which is the set containing the entire domain as its only element).
Similarly, an existentially quantified statement can be understood as
asserting that the extension of the predicate being quantified over is
a member of the set of sets denoted by the existential quantifier (i.e.
the set of all non-empty subsets of the domain).

Once we understand existential and universal quantifiers in this
manner, it is easy to see that this method can be generalized,
introducing new quantifiers in terms of the particular set of subsets
of the domain that they denote. For example, we can have a
numerical quantifier which, when applied to a predicate Φ,
expresses that there are exactly five Φ’s. Such a quantifier would
denote the set of all subsets of the domain of cardinality five, and
one can construct generalized quantifiers of this sort for any
cardinality, including infinite quantifiers such as “there are infinitely
many x’s such that. …”

See also: Infinitary Logic, Permutation Invariant

GL see Provability Logic

GLIVENKO’S THEOREM Glivenko’s theorem states that, for any
formula Φ in the language of propositional logic, Φ is a theorem
of classical logic if and only if ~ ~ Φ is a theorem of intuitionistic
logic.

See also: Constructive Logic, Constructive Proof, Disjunction
Property, Double Negation, Idempotent, Logical Antirealism

GLOBAL CHOICE Global choice is a stronger variant of the axiom
of choice. While the axiom of choice states that there is a choice
function on any set of non-empty sets, global choice states that there
is a choice function on any collection of non-empty sets, including
proper classes of non-empty sets. Global choice is equivalent to
global well-ordering.

See also: Reflection Principle, Trichotomy Law, Well-
Ordering, Well-Ordering Principle, Zorn’s Lemma

GLOBAL WELL-ORDERING Global well-ordering is the set-
theoretic principle stating that there is a well-ordering on the
entire set-theoretic universe. Global well-ordering implies the
axiom of choice (since the axiom of choice is equivalent to the
claim that any set can be well-ordered) but not vice versa, and global
well-ordering is equivalent to global choice.
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See also: Reflection Principle, Well-Ordering Principle, Zorn’s
Lemma

GLUT see Truth Value Glut

GÖDEL CODING see Gödel Numbering

GÖDEL LOGIC see Gödel-Dummett Logic

GÖDEL NUMBERING Gödel numbering (or Gödel coding) is a
method of arithmetization by which each symbol, sequence
of symbols (including formulas), and sequence of sequences of
symbols (i.e. sequences of formulas, or potential proofs) in a formal
language for arithmetic are assigned unique natural numbers.
These numbers are the Gödel numbers of the expressions (or
sequences of expressions). The methods used to assign such numbers
vary, but the method must be recursive. As a result of assigning each
expression a number, various claims about the syntax, proof
theory, etc. of the arithmetical theory in question can be formulated
and studied within that same theory by using the numbers assigned
to expressions as proxies for the expressions themselves. The method
was first used in Kurt Gödel’s proofs of his incompleteness
theorems for arithmetic, and has been a central tool in various areas
of mathematical logic since.

See also: Diagonalization Lemma, Gödel Sentence, Gödel’s
First Incompleteness Theorem, Gödel’s Second Incom -
pleteness Theorem, Peano Arithmetic, Recursive Function
Theory

GÖDEL SENTENCE A Gödel sentence is a statement of arith -
metic which can be shown, in the metatheory, to be neither
provable nor refutable within arithmetic. Kurt Gödel constructed
his Gödel sentence by formulating an arithmetic provability
predicate “Bew” such that “Bew(x)” was true if and only if x
was the Gödel number of a statement provable within Peano
arithmetic. He then applied the diagonalization lemma to obtain
a statement G such that:

G ↔ ~ Bew(<G>)

is provable in Peano arithmetic (where “<G>” denotes the Gödel
code of G). Loosely put, G is equivalent to the claim that G is not
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provable, so, assuming that Peano arithmetic is consistent, G is true
but not provable.

See also: Arithmetization, Gödel’s First Incompleteness
Theorem, Peano Arithmetic, Robinson Arithmetic

GÖDEL-DUMMETT LOGIC Gödel-Dummett logic (or Gödel
logic) is the intermediate logic obtained by adding all instances of:

(A → B) ∨ (B → A) 

to intuitionistic propositional logic.

See also: Constructive Logic, Disjunction Property, Excluded
Middle, Kreisel-Putnam Logic, Logic of Weak Excluded
Middle, Scott Logic

GÖDEL’S FIRST INCOMPLETENESS THEOREM Gödel’s first
incompleteness theorem states that any sufficiently strong theory of
arithmetic (e.g. Peano arithmetic or Robinson arithmetic) that
is consistent (or ω-consistent) is incomplete. That is, in any such
system there will be a statement of arithmetic where neither it nor
its negation is provable from the principles contained in the theory.
In addition, the arithmetic theory will be ω-incomplete.

See also: Arithmetization, Diagonalization Lemma, Gödel’s
Sentence, Gödel’s Second Incompleteness Theorem,
Limitation Result, Provability Predicate

GÖDEL’S INCOMPLETENESS THEOREM see Gödel’s First
Incompleteness Theorem, Gödel’s Second Incompleteness
Theorem

GÖDEL’S SECOND INCOMPLETENESS THEOREM Gödel’s
second incompleteness theorem states that any sufficiently strong
theory of arithmetic (e.g. Peano arithmetic or Robinson
arithmetic) that is consistent (or ω-consistent) cannot prove its
own consistency. It is important to note that this is not an expressive
limitation – the claim that “0 = 1” cannot be proven in the theory is
expressible in the theory – it just cannot be proven using the theory
itself.

See also: Arithmetization, Diagonalization Lemma, Gödel’s
First Incompleteness Theorem, Limitation Result,
ω-Completeness, Provability Predicate
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GÖDEL’S SLINGSHOT ARGUMENT Gödel’s slingshot argument
is an argument which purports to show that any two true
statements denote the same object. The argument depends on four
assumptions:

(a) If a constituent of a compound formula is replaced by
another expression with the same referent as the
constituent, then the denotation of the compound formula
remains unchanged.

(b) Every true statement can be treated as being in
subject/predicate (i.e. “Fa”) form.

(c) The statements “F(a)” and “a = (ιx)(Fx ∧ x = a)” denote
the same object.

(d) For any a and b, there is a predicate R such that Rab.

Given these assumptions, we can run Gödel’s reasoning as follows.
Let Φ and Ψ be the two formulas which we want to show to be co-
referential, and Fa and Gb to be their subject/predicate form
equivalents respectively. Then:

(1) Φ
(2) Fa (by (b))
(3) a = (ιx)(Fx ∧ x = a) (by (c))
(4) a = (ιx)(Rxb ∧ x = a) (by (a), (d))
(5) Rab (by (c))
(6) b = (ιx)(Rax ∧ x = b) (by (c))
(7) b = (ιx)(Gx ∧ x = a) (by (a), (d))
(8) Gb (by (c))
(9) Ψ

It is critical that one notes that (1)–(9) above is not meant to be an
argument. The move from each line to the next is stronger, since each
line is guaranteed, by one or more of (a) through (d), to denote the
same object as the line which proceeds it.

See also: Co-Referential, Denotation, Reference, Referential
Opacity, Semantic Value, Slingshot Argument

GREATEST LOWER BOUND Given a partial ordering ≤ on a set
S, if x is a member of S and A is a subset of S, then x is the greatest
lower bound (or infimum) of A if and only if x ≤ y for all y in A, and,
for any z in S such that z ≤ y for all y in A, z ≤ x. In other words, the
greatest lower bound of A is the element (if any) that is less than or
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equal to all of the members of A and is the greatest such element of
S. Greatest lower bounds, if they exist, are unique.

See also: Join, Least Upper Bound, Lower Bound, Meet, Upper
Bound

GRELLING PARADOX The Grelling paradox (or the Grelling-
Nelson paradox, or Grelling’s paradox, or the heterological
paradox) concerns predicates that apply to themselves. For
example, “short” is short, but “long” is not long. Call those
predicates that apply to themselves autological, and those that do
not heterological. “Heterological” is itself a predicate, so we can ask
if it applies to itself – in other words, is “heterological” heterological?
A moment’s reflection shows that, given the definition above,
“heterological” is heterological if and only if “heterological” is not
heterological.

See also: Liar Paradox, Liar Sentence, Russell Paradox, Russell
Set, Self-Reference

GRELLING-NELSON PARADOX see Grelling Paradox

GRELLING’S PARADOX see Grelling Paradox

GROUND MEREOLOGY Ground mereology is the mereological
theory obtained by assuming that the parthood relation is a partial
ordering:

Reflexive: (∀x)(Pxx)

Transitive: (∀x)(∀y)(∀z)((Pxy ∧ Pyz) → Pxz)

Antisymmetric: (∀x)(∀y)((Pxy ∧ Pyx) → x = y)

See also: Classical Mereology, Extensional Mereology, General
Extensional Mereology, Minimal Mereology

GUNK In mereology, gunk (or atomless gunk) refers to objects that
have proper parts, but which have no atoms as proper parts. In
other words, all of the parts of gunk have proper parts, and all of these
have further proper parts, and so on. Formally, we can express the
existence of gunk as (where “PP” is the defined proper parthood
relation):

(∃x)(∀y)(Pyx → (∃z)(PPzy))
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The stronger claim that all that exists is gunk can be expressed more
simply as:

(∀x)(∃y)(PPyx)

See also: Atom, Composition, Mereological Nihilism,
Mereology, Unrestricted Fusion

HALTING PROBLEM The halting problem concerns whether one
can describe a Turing machine that, if given as input the
description of a Turing machine and an input for that machine, will
determine whether the described Turing machine will eventually halt
if given that input, or whether it will run forever. Alan Turing proved
that no such Turing machine is possible – thus, the set of ordered
pairs where each pair consists of the description of a Turing
machine followed by an input on which it will halt is not a recursive
set.

See also: Automaton, Busy Beaver Problem, Deterministic
Turing Machine, Non-Deterministic Turing Machine, Recur -
sive Function Theory

HARMONY Harmony is a proposed constraint on rules of inference
for the logical connectives. Given a particular connective * and
an introduction and elimination rule for *, these rules are in
harmony if and only if, given a set of premises Δ and conclusion Φ,
we can obtain Φ from Δ by applying the introduction rule for * and
immediately applying the elimination rule for * only if we can obtain
Φ from Δ without such an introduction-then-elimination construc -

tion. Intuitively, the idea is that one should not be able to obtain more
content from a *-elimination than was already present prior to the
*-introduction. 

See also: Inferentialism, Natural Deduction, Proof Theory,
Tonk

HASTY GENERALIZATION Hasty generalization (or converse
accident) is the informal fallacy that occurs when one draws
a general conclusion from a sample that is too small, biased, or
otherwise unrepresentative.

H
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See also: Informal Fallacy, Universal Generalization

HAUPSATZ see Cut Elimination

HAUPTSATZ see Cut Elimination

HENKIN QUANTIFIER see Branching Quantifier

HENKIN SEMANTICS Henkin semantics is a non-standard
semantics for second-order logic. In Henkin semantics, a model
is an ordered triple <D, D2, I>, where D is the domain of objects
(those entities the first-order variables range over), and I is an
interpretation function assigning appropriate values to the non-
logical vocabulary. D2 is the domain of concepts or properties,
and is a subset of the powerset of D. Intuitively, in Henkin models
the second-order quantifiers need not range over all possible
subsets of the domain of objects as they do in standard semantics for
second-order logic. Instead, the second-order quantifiers range only
over those subsets of the domain that are contained in D2.

Unlike second-order logic with standard semantics, second-order
logic with Henkin semantics is no more expressive than first-order
logic, since on the Henkin semantics approach a second-order
language is equivalent to a many-sorted first-order language. 

See also: Branching Quantifier, Comprehension Schema,
Higher-order Quantifier, Model Theory, Plural Quantifi -
cation

HENKIN SENTENCE A statement P is a Henkin sentence for a
theory T if and only if:

P ↔ Bew(<P>)

is provable in T, where “Bew” is the provability predicate for T,
and “<P>” is the Gödel code of P.

See also: Diagonalization, Gödel Sentence, Löb’s Theorem

HEREDITARILY FINITE SET A hereditarily finite set is a set A
where there are only finitely many members of A, each of the
members of A has only finitely many members, each of the members
of the members of A has only finitely many members, and so on.
More formally, a hereditarily finite set is a finite set where the
property “has finitely many members” is a hereditary property
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on the membership relation restricted to the transitive closure
of A.

See also: Ad Infinitum, Dedekind Infinite, Finitary, Simply
Infinite

HEREDITARY PROPERTY A concept F is hereditary relative to a
relation R if and only if, whenever:

Fx 

and:

Rxy

we have:

Fy 

More formally, we can define the notion of a concept F being
hereditary relative to a relation R as:

Hered(F, R) = (∀x)(∀y)(Rxy → (Fx → Fy))

See also: Ancestral, Finite Character, Hereditarily Finite,
Inductive Set

HETEROLOGICAL see Autological

HETEROLOGICAL PARADOX see Grelling Paradox

HIERARCHY A hierarchy is any grouping of a set or proper class
of objects into levels. Although the individual objects found in a
hierarchy need not be ordered, the levels into which they are grouped
typically are linearly ordered. Important hierarchies within
philosophical logic and the philosophy of mathematics include the
arithmetic hierarchy, the cumulative hierarchy, and Tarski’s
hierarchy of metalanguages.

See also: Constructible Universe, Iterative Conception of Set,
Rank

HIGHER-ORDER LOGIC Higher-order logic is an extension of
first-order logic which allows quantifiers to bind not only
objectual variables (i.e. those variables that range over objects) but
also to bind predicate variables. Thus, in higher-order logic we can
not only infer:
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(∃x)(Px ∧ Qx)

(i.e. something is both P and Q ) from:

Pa ∧ Qa

(a is P and a is Q ), we can also infer:

(∃X)(Xa ∧ Xb)

(a and b have something in common) from:

Pa ∧ Pb

(a is P and b is P). Typically, upper-case letters from the end of the
alphabet (e.g. “X,” “Y,” “Z”) are used for higher-order variables.

See also: Aristotelian Second-order Logic, Comprehension
Schema, Henkin Semantics, Higher-order Quantifier, Plural
Quantification, Second-order Logic

HIGHER-ORDER QUANTIFIER A higher-order quantifier is a
quantifier that binds a higher-order variable – that is, a variable
that ranges over concepts, relations, or functions. Higher-order
quantifiers, like first-order quantifiers, typically come in two
varieties: existential quantifiers and universal quantifiers.

See also: Comprehension Schema, Geach-Kaplan Sentence,
Henkin Semantics, Plural Quantification, Second-order
Logic

HIGHER-ORDER VAGUENESS A predicate exhibits higher-order
vagueness if there are not only objects that are borderline cases for
the predicate (i.e. objects that are neither definite instances of the
predicate nor definite instances of the negation of the predicate), but
there are also borderline cases of borderline cases – that is, there
are objects that are neither definite cases of definite cases of the
predicate, nor definite cases of failing to be definite cases of the
predicate, and there are objects that are neither definite cases of
definite cases of the negation of the predicate, nor definite cases of
failing to be definite cases of the negation of the predicate. 

See also: Forced March Sorites, Hierarchy, In Rebus Vague -
ness, Semantic Vagueness, Sorites Paradox, Vagueness

HIGHER-ORDER VARIABLE A higher-order variable is a variable
whose value ranges over concepts, relations, or functions. Con -
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cept and relation variables are typically represented using upper-case
letters, while function variables are often lower-case letters from the
middle of the alphabet (“f,” “g,” “h”).

See also: Comprehension Schema, Henkin Semantics, Higher-
order Logic, Higher-order Quantifier, Plural Quantification,
Second-order Logic

HILBERT’S PROGRAM Hilbert’s Program was an attempt to secure
the foundations of mathematics by demonstrating the consistency
of mathematics (in particular, arithmetic) within a weak theory of
arithmetic called finitary arithmetic. Gödel’s second
incompleteness theorem is usually taken to show that Hilbert’s
Program is doomed to failure.

See also: Gödel’s First Incompleteness Theorem, Logicism,
Reverse Mathematics

HOLISM Holism is the view that the meaning of an expression is partly
or wholly a function of the semantic relations that hold between
that expression and some or all of the other expressions contained in
the language.

See also: Compositionality, Contextualism, Pragmatics,
Semantics

HOMOMORPHISM A homomorphism between two structures is a
function f from one structure to the other (plus a correlation
between functions or relations on the first structure and functions
and relations on the second structure) such that the function f is
structure-preserving. In other words, if f is a homomorphism
between two structures, then, for any relation R on the first structure,
and the corresponding relation S on the second structure, we have:

R(x, y) 

if and only if 

S(f(x), f(y))

and, for any binary function g on the first structure and
corresponding function h on the second structure, we have:

f(g(x, y)) = h(f(x), f(y))

See also: Automorphism, Endomorphism, Epimorphism,
Isomorphism, Monomorphism
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HORN A horn of a dilemma is one of the two (usually inadequate)
options presented by a dilemma.

See also: Disjunction, Disjunctive Syllogism, False Dilemma

HUME’S PRINCIPLE Hume’s Principle is the abstraction
principle:

(∀P)(∀Q)(NUM(P) = NUM(Q) ↔ P ≈ Q)

where “P ≈ Q” abbreviates the second-order formula asserting
that there is a one-to-one onto function from P to Q. Hume’s
Principle states that every concept has a cardinal number
associated with it, and two concepts receive the same cardinal number
if and only if they have the same number of instances. According to
mathematical abstractionism, Hume’s Principle provides an
implicit definition of the concept “cardinal number,” and we can
obtain a priori knowledge of the cardinal numbers merely by
stipulating the truth of Hume’s Principle and deriving the Peano
axioms (and their consequences) from it.

See also: Abstraction, Bad Company Objection, Basic Law V,
Caesar Problem, Russell Paradox

HYBRID LOGIC A hybrid logic is an extension of modal logic
obtained by adding nominals or satisfaction operators to modal
logic. A nominal is an atomic formula “a” which ‘picks out’ a world.
“a” is true at a possible world ω, relative to an assignment of
nominals to worlds, if and only if “a” is assigned to ω. A satisfaction
operator is a binary operator “:” holding between a nominal and a
formula, and is used to assert that the formula in question is true at
the world picked our by the nominal. Thus, “a:Φ” is true in at a world
ω, relative to an assignment of nominals to worlds, if and only if Φ is
true at the world assigned to “a.”

See also: Alethic Modal Logic, Kripke Semantics, Kripke
Structure

HYPERSET see Non-Well-Founded Set

HYPOTHETICAL SYLLOGISM Hypothetical syllogism is the rule
of inference that allows one to infer a conditional from two other
conditionals as premises, where the antecedent of the conclusion
is the antecedent of the first premise, the consequent of the

140 h o r n

1004 02 pages 001-322:Layout 1  16/2/09  15:12  Page 140



conclusion is the consequent of the second conditional, and the
consequent of the first premise is identical to the antecedent of the
second premise. In symbols we have:

P → Q
Q → R
P → R

See also: Affirming the Consequent, Cut, Denying the
Antecedent, Modus Ponens, Modus Tollens, Transitivity

IDEMPOTENT1 A unary function or operation is idempotent if
and only if applying that function twice to an argument produces the
same result as applying it once. In other words, a unary function f is
idempotent if and only if, for all x, we have:

f(x) = f(f(x))

See also: Fixed Point

IDEMPOTENT2 A binary function or operation is idempotent if
and only if, when we apply it to two instances of the same argument,
we receive that same argument. In other words, a binary function f is
idempotent if and only if, for all x, we have:

x = f(x, x)

In classical logic and most non-standard logics, the truth
functions corresponding to conjunction and disjunction are
idempotent.

See also: Constant Function, Fixed Point, Identity Function

IDENTITY Identity is a binary relation, usually denoted by “=,”
which only holds between an object and itself. The identity relation
is typically taken to be a logical constant within first- and higher-
order logics. Identity is typically the only such primitive logical
relation in first-order logic. Within higher-order logics identity need
not be taken as primitive, since we can define identity in terms of
indiscernibility:

x = y =df (∀Z)(Zx ↔ Zy)

I
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See also: Idempotent, Identity Function, Leibniz’s Law,
Indiscernibility of Identicals, Necessity of Identity

IDENTITY FUNCTION1 A unary function is an identity function
if and only if, for any argument, the output is identical to that
argument. In other words, an identity function maps each object to
itself, or:

f(x) = x

See also: Constant Function, Fixed Point, Idempotent

IDENTITY FUNCTION2 The identity functions (or projection
functions) are basic functions of recursive function theory. Each
identity function id n

m takes m arguments as input, and gives the nth

value as output. For example, if the arguments for id2
3 are 1, 2, 3, then

the output will be 2. 

See also: Composition, Minimization, Primitive Recursion,
Successor Function, Zero Function

IDENTITY OF INDISCERNIBLES see Leibniz’s Law

IFF “Iff ” is a common abbreviation for “if and only if,” that is, the
material biconditional.

See also: Biconditional

IF-LOGIC see Independence-Friendly Logic

IGNORATIO ELENCHI see Red Herring

IMAGE1 The image of a function is the set of objects that are values
(outputs) of the function. In other words, the image of a function f is
the set A of objects such that x is a member of A if and only if there
is a y such that f(y) = x. Note that the image of a function can be a
proper subset of the range of that function.

See also: Domain, Field, Fixed Point, Signature

IMAGE2 The image of an object under a function is the value of that
function given that object as argument. In other words, given an
object x and function f, the image of x under f is y if and only if f(x)
= y. 
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See also: Domain, Field, Fixed Point, Range, Signature

IMMEDIATE INFERENCE An immediate inference is an inference
from a statement to another statement which is logically
equivalent to it. The notion of immediate inference most commonly
occurs in discussions of categorical logic, where three types of
immediate inference are identified: conversion, obversion, and
contraposition. 

See also: Rule of Replacement, Square of Opposition,  Sub -
altern, Subalternation, Superaltern

IMPERATIVE An imperative is an expression that expresses a desire
that someone bring about some action or state of affairs. In other
words, an imperative is a command, entreaty, or request.

See also: Imperative Logic, Interrogative, Proposition, State -
ment

IMPERATIVE LOGIC Imperative logic is the logical study of
imperatives – that is, commands of the form “Do P.” Typically
within imperative logic, a command to do P is represented as P. Note
that P does not, in general, imply P, or vice versa.

See also: Alethic Modal Logic, Modal Logic

IMPLICATION see Deductive Implication, Formal Implication,
Logical Implication, Material Implication, Strict Implication

IMPLICIT DEFINITION see Explicit Definition

IMPOSSIBILITY A statement is impossible if it cannot be true.
Impossible statements are contrasted with both necessary state -
ments (which must be true) and contingent statements, which can
be true, but which can also be false.

Within modal logic, where possibilities are represented by
possible worlds, an impossible statement is one where there is no
accessible possible world in which it is true. This is represented in
the language of modal logic as:

~ � A

or:

▫ ~ A
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See also: Modality, Normal Modal Logic

IMPOSSIBLE WORLD An impossible world (or non-normal
world) is a world, within possible worlds semantics for modal
logic, where either the standard laws of logic fail to hold or where
contradictions are true. Impossible worlds are not considered in
standard semantics for normal modal logics, but some logicians
have suggested semantics which include impossible worlds in order
to deal with various paradoxes including the Liar paradox and the
Curry paradox, as well as for dealing with counternecessary
statements.

See also: Accessibility Relation, Actual World, Paraconsistent
Logic, Ternary Semantics

IMPREDICATIVE DEFINITION An impredicative definition is a
definition which quantifies over (or otherwise presupposes) the
very thing it is defining. For example, the following definition is
impredicative:

x is the smallest number in S =df for any y in S, x ≤ y

since x is one of the members of S which are quantified over in
the right-hand side of the definition. A definition which does not
quantify over or presuppose that which it is defining is a predicative
definition.

See also: Explicit Definition, Intensional Definition, Ostensive
Definition, Stipulative Definition

INACCESSIBLE CARDINAL see Strongly Inaccessible Cardinal,
Weakly Inaccessible Cardinal

INCLUSIVE DISJUNCTION Inclusive disjunction is the interpret -
ation of “or” where a disjunction of the form:

A or B

is taken to be true when one or the other or both of A and B are true.
Inclusive disjunction, within classical logic, has the following truth
table:
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Typically, unless otherwise indicated, disjunctions in logic are
interpreted as inclusive disjunctions.

See also: Classical Dilemma, Constructive Dilemma,
Destructive Dilemma, Disjunctive Syllogism, Exclusive
Disjunction, Vel

INCLUSIVE FIRST-ORDER LOGIC Inclusive first-order logic is
the logic obtained by modifying the standard semantics for first-
order logic by allowing models with empty domains (and making
analogous modifications to the deductive system).

See also: Free Logic, Monadic First-order Logic, Pure First-
order Logic

INCLUSIVE OR see Exclusive Disjunction

INCOMPLETENESS see Expressive Completeness, Maximal
Completeness, Negation Completeness, ω-Completeness,
Strong Completeness, Weak Completeness

INCOMPLETENESS THEOREM see Gödel’s First Incom -
pleteness Theorem, Gödel’s Second Incompleteness
Theorem

INCONSISTENCY see Maximal Consistency, Negation Con -
sistency, ω-Consistency, Post Consistency

INCONSISTENT ARITHMETIC An inconsistent arithmetic is a
formal system of arithmetic within which there are true
contradictions. For example, an inconsistent arithmetic might
contain all of the standard axioms for arithmetic (e.g. the axioms of
Peano arithmetic), but also contain:

(∃x)(x = x + 1)

(i.e. there is a natural number that is its own successor) as an axiom.
Inconsistent arithmetics are formulated within paraconsistent

P Q P ∨ Q
T T T
T F T
F T T
F F F
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logics in order to avoid triviality.

See also: Dialetheism, Ex Falso Quodlibet, First-Degree
Entail ment, Non-Standard Arithmetic, Strong Para -
consistency, Weak Paraconsistency

INCONSISTENT TRIAD see Antilogism

INDEFINITE DESCRIPTION An indefinite description is a
description of the form “a Φ” where Φ is a predicate. Indefinite
descriptions can usually be formalized within first-order logic in a
straightforward manner, using existential quantifiers. Thus:

A Φ is Ψ

can be formalized as:

(∃x)(Φx ∧ Ψx)

Indefinite descriptions should be carefully distinguished from
definite descriptions – that is, expressions of the form “the Φ” –
which are more difficult to analyze.

See also: Free Logic, Plato’s Beard

INDEFINITE EXTENSIBILITY A concept is indefinitely ex -
tensible if and only if, whenever we are given a definite collection (or
set) of objects falling under the concept, there is an operation that we
can perform on that collection which will provide an object falling
under the concept which is not in the collection. Concepts which are
often taken to be examples of indefinite extensibility include set,
ordinal number, and cardinal number. For example, given any
definite collection of ordinal numbers – that is, any set of ordinal
numbers – we can consider the successor of the least upper bound
of that set, which will be an ordinal number which is not in the set.

See also: Absolute Infinite, Set-Theoretic Paradox, Universal
Set, Vicious Circle Principle

INDEPENDENCE RESULT An independence result is a
metatheoretical proof that a certain principle which is expressible
in the language of some theory is independent of that theory, that
is, that the theory is sufficient neither to prove nor to refute the
principle in question. Important independence results include the
proofs that the continuum hypothesis and the axiom of choice
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are independent of Zermelo Fraenkel set theory, and Gödel’s
first and second incompleteness theorems. 

See also: Forcing, Inner Model, Limitation Result

INDEPENDENCE-FRIENDLY LOGIC Independence-friendly logic
(or IF logic) is an extension of first-order logic which contains
quantifiers equivalent in expressive power to branching quan -
tifiers. Instead of the two-dimensional branching notation, however,
independence-friendly quantifiers are written in a linear notation
which explicitly notes which variables are dependent on which
other variables. For example, the branching quantifier:

⎧(∀x)(∃y) ⎫
⎪ ⎪ Φ
⎩(∀z)(∃w) ⎭

is represented within independence-friendly logic as:

(∀x)(∀z)(∃y/∀z)(∃w/∀x)Φ

where “(∃y/∀z)” indicates that the existential variable y is
independent of the universal variable z (and likewise for
“(∃y/∀z)”).

Independence-friendly logic is usually provided with a game-
theoretic semantics.

See also: Geach-Kaplan Sentence, Henkin Semantics, Higher-
order Logic, Plural Quantification, Second-order Logic

INDEPENDENT1 A statement A is independent of a set of state -
ments S if and only if neither A nor ~ A is a logical consequence
of S.

See also: Axiom of Choice, Continuum Hypothesis, Inde -
pendence Result, ZFC

INDEPENDENT2 A set of statements S is independent if and only if
there is no statement Φ in S such that Φ is a logical consequence
of the remaining statements in S. In other words, S is independent if
and only if there is no Φ such that 

S – Φ |-- Φ

See also: Axiomatization, Independence Result
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INDETERMINACY OF TRANSLATION The thesis of the in -
determinacy of translation states that divergent translation manuals
could be set up which provide translations of statements of a
language L1 into statements of another language L2 where:
(1) both manuals are compatible with all empirical evidence, but
where (2) the two manuals translate statements of L1 as completely
different, and incompatible, statements of L2.

See also: Natural Language, Referential Opacity

INDEXICAL An indexical is a context-dependent expression whose
referent does not depend on the speaker’s actions or intentions.
Examples of indexicals include “I,” “today,” “actual,” and possibly
“here” and “now.” It should be noted that not all occurrences of these
expressions function as indexicals, however.

Indexicals should be distinguished from demonstratives, whose
referents are not only context-dependent but depend on the actions
or intentions of the speaker. Sometimes, however, the term
“indexical” is used more broadly to encompass both indexicals as
understood here and demonstratives.

See also: Anaphora, Contextualism, Demonstrative, Prag -
matics, Semantics

INDICATIVE CONDITIONAL An indicative conditional is a
statement of the form:

If A then B

which can be understood along the lines of:

If A is the case, then B is the case.

Indicative conditionals are distinguished from subjunctive or
counterfactual conditionals of the form:

If A were the case, then B would have been the case.

or:

If A had been the case, then B would have been the case. 

respectively. It is important to note that the indicative conditional is
a notion arising with respect to “if … then …” statements in natural
language, and that there is no general consensus regarding which
formal apparatus (e.g. the material conditional, conditionals in
relevance logics, etc.) best represents the indicative conditional.
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See also: Conditional, Conditional Logic, Counterfactual
Logic, Strict Conditional

INDIRECT PROOF see Reductio ad Absurdum

INDISCERNIBILITY Two objects x and y are indiscernible if and
only if exactly the same concepts or properties hold of the two
objects. In other words, x and y are indiscernible if and only if:

(∀X)(Xa ↔ Xb)

See also: Indiscernibility of Identicals, Leibniz’s Law,
Necessity of Identity, Second-order Logic

INDISCERNIBILITY OF IDENTICALS The indiscernibility of
identicals is the principle asserting that identical objects have the
same properties. The principle can be formulated within second-
order logic as:

x = y → (∀Z)(Zx ↔ Zy)

The indiscernibility of identicals is a theorem of standard second-
order logic (unless identity is defined in terms of indiscernibility,
in which case it is true by definition).

See also: Leibniz’s Law, Necessity of Identity

INDISPENSABILITY ARGUMENT The indispensability argument
(or Quine-Putnam indispensability argument), is an argument
for the existence of mathematical objects. According to the indis -
pensability argument, quantification over mathematical entities
is indispensable to our best scientific theories. Furthermore, we
should believe in those entities that our best scientific theories are
committed to. As a result, we should believe in mathematical entities
such as natural numbers, real numbers, and sets, since our best
scientific theories are committed to these entities.

See also: Abduction, Platonism, Quine’s Dictum, Set-
Theoretic Realism

INDIVIDUAL An individual is any object that is taken to fall in the
range of the quantifiers of a first-order theory.

See also: Existential Quantifier, Free Logic, Quine’s Dictum
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INDUCTION see Inductive Argument, Induction on Well-Formed
Formulas, Mathematical Induction, Strong Mathematical
Induction, Transfinite Induction, Weak Mathematical
Induction

INDUCTION ON WELL-FORMED FORMULAS Induction on
well-formed formulas (or induction on wffs) is a form of proof by
induction where one proves that a certain property holds of all
well-formed formulas in some formal language. Induction on
well-formed formulas comes in one of two forms. In either case, the
basis step amounts to proving that the property in question holds of
all atomic formulas or propositional letters. The inductive
step then consists in proving either:

If P holds of all well-formed formulas of length less than n, then
P holds of all well-formed formulas of length n.

or:

If P holds of arbitrary well-formed formulas Φ and Ψ, then P
holds of all formulas that can be obtained from Φ and Ψ through
one application of a formation rule (typically, that P holds of
Φ ∧ Ψ, Φ ∨ Ψ, Φ → Ψ, ~ Φ, and ~ Ψ if the language in
question is propositional, and that P holds of those as well as
(∀x)Φ, and (∃x)Φ if the language in question is first-order.)

See also: Inductive Hypothesis, Inductive Set, Mathematical
Induction, Transfinite Induction

INDUCTION ON WFFs see Induction on Well-Formed Formulas

INDUCTION SCHEMA see Mathematical Induction

INDUCTIVE ARGUMENT1 An inductive argument is an argument
where it is intended that it be improbable (but possible) for the
premises to be true and the conclusion false.

See also: Abduction, Cogent Inductive Argument, Deductive
Argument, Informal Fallacy, Strong Induction Argument

INDUCTIVE ARGUMENT2 see Induction Over Well-Formed
Formulas, Mathematical Induction, Strong Mathematical
Induction, Transfinite Induction, Weak Mathematical
Induction
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INDUCTIVE DEFINITION see Recursive Definition

INDUCTIVE HYPOTHESIS In a proof by induction, the inductive
hypothesis is the antecedent of the conditional proved in the
induction step of the proof. Thus, if the proof is a weak
mathematical induction, and the inductive step involves proving
that if P holds of n, then P holds of n+1, then the inductive
hypothesis is the claim that P holds of n.

See also: Basis, Induction on Well-Formed Formulas,
Mathematical Induction, Strong Mathematical Induction,
Transfinite Induction

INDUCTIVE PROOF see Inductive Argument, Induction on
Well-Formed Formulas, Mathematical Induction, Strong
Mathematical Induction, Transfinite Induction, Weak
Mathematical Induction

INDUCTIVE SET An inductive set is any set X such that, for any y
where y is a member of X, the successor of y is also a member of
X. The simplest example of an inductive set is the set of natural
numbers.

See also: Cardinal Successor, Hereditary Property, Ordinal
Successor, Strong Mathematical Induction, Transfinite
Induction, Weak Mathematical Induction

INDUCTIVE STEP In a proof by induction, the inductive step is the
step in the proof where one shows that if the property in question
holds of previous cases, then the property in question holds of the
next case. For example, if the proof is a mathematical induction,
then one shows that if the property holds of n, then it holds of n+1
(if the proof is a weak mathematical induction), or one shows that
if the property holds of all natural numbers less than n, then it
holds of n (if the proof is a strong mathematical induction). 

See also: Basis, Inductive Hypothesis, Inductive Set, Inductive
Step, Transfinite Induction

INFERENCE An inference is an action whereby the reasoner moves
from belief in the premises of an argument to belief in the
conclusion of the argument.
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See also: Consequence Relation, Fallacy, Formal Fallacy,
Informal Fallacy

INFERENCE RULE see Rule of Inference

INFERENCE TO THE BEST EXPLANATION see Abduction

INFERENTIALISM Inferentialism is the view that the meaning of
expressions in our language is constituted by the rules that govern
their use. Within logic, inferentialism amounts to the thesis that the
meaning of the logical connectives and quantifiers are given by
rules of inference and not by semantics or model theory.
Inferentialists regarding logic often ascribe particular importance to
pairs of rules for each connective or quantifier, their introduction
and elimination rules.

See also: BHK-Interpretation, Compositionality, Contextual -
ism, Harmony, Proof Theory, Tonk

INFINITARY see Finitary

INFINITARY FORMAL SYSTEM see Finitary Formal System

INFINITARY LOGIC see Finitary Formal System

INFINITE see Dedekind Infinite, Simply Infinite

INFINITESIMAL An infinitesimal is a number greater than 0, but
less than any positive rational number. Loosely speaking, an
infinitesimal is an infinitely small positive number. Non-standard
analysis involves the addition of infinitesimals to the standard real
numbers.

See also: Non-Standard Arithmetic, Non-Standard Model

INFINITY AXIOM An infinity axiom is any axiom that entails that
there are infinitely many objects in the domain. An infinity axiom
should be clearly distinguished from the axiom of infinity in set
theory, which asserts the existence of a set with infinitely many
members. An infinity axiom can be true in a model where the set
theoretic axiom of infinity fails, since there might be infinitely many
finite sets, and nothing else.
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See also: Axiom of Zermelo Infinity, Dedekind Infinite,
Pairing Function, Simply Infinite

INFIX NOTATION A function symbol, relation symbol, or logical
constant is an instance of infix notation if it occurs between two
or more of its arguments. For example, the addition function is
typically represented in infix notation, since we denote the sum of
x and y as x + y, and conjunction is typically represented in infix
notation, since we denote the conjunction of A and B as A ∧ B. 

See also: Polish Notation, Prefix Notation, Suffix Notation

INFORMAL FALLACY An informal fallacy is a flaw in an argument
that does not depend on the logical form of that argument, and is
instead traceable to the meanings of the non-logical expressions
contained in the argument. As a result, an argument can commit an
informal fallacy while other arguments of that same general form
might not be fallacious.

See also: Formal Fallacy, Inductive Argument

INJECTION An injection is an injective, or one-to-one, function.

See also: Bijection, Surjection

INJECTIVE see One-to-One

INNER MODEL An inner model of a theory is a model that is
obtained by taking a substructure of another model. Often, the
term “inner model” is used more narrowly, to refer to Kurt Gödel’s
method of constructing models of set theory using the hierarchy of
constructible sets.

See also: Axiom of Choice, Constructible Universe,
Continuum Hypothesis, Forcing, Generalized Continuum
Hypothesis, Independence Results

IN REBUS VAGUENESS Vagueness is in rebus if and only if it is a
result of indeterminacy in the world, and not due to any inadequacy
in the language we use to describe the world. For example, on might
think that the predicate “is six feet tall” is vague, not because there
is any imprecision or ‘fuzziness’ in the predicate “is six feet tall,” but
rather because the physical structure of the world is such that there
is no precise fact of the matter regarding the heights of objects. 
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See also: Borderline Case, Forced March Sorites, Higher-order
Vagueness, Ontic Vagueness, Semantic Vagueness

INSOLUBILIA During the medieval period a number of paradoxes
and puzzles similar to the Liar paradox were collected together
under the heading of insolubilia. These include the Liar paradox
itself:

This sentence is false.

as well as other variations, including:

Every sentence is false.

which is paradoxical if it is the only statement ever uttered.

See also: Open Pair, Semantic Paradox, Semantically Closed
Language, Truth-Teller, Yablo Paradox

INSTANTIATION Instantiation is the process of replacing variables
with constants (and also eliminating quantifiers that bound the
variables being eliminated). Thus:

Fa

is an instantiation of:

(∀x)Fx

and:

Gb

is an instantiation of:

(∃y)Gy

See also: Bound Variable, Existential Generalization, Sub -
stitution, Substitution Instance, Universal Generalization,
Vacuous Quantifier

INTEGERS The integers are the natural numbers and their
negatives, that is {0, 1, -1, 2, -2, 3, -3, …}

See also: Discrete, Rational Numbers, Real Numbers

INTENDED INTERPRETATION The intended interpretation of a
formal system is the structure which the formal system is meant
to describe. For example, first-order Peano arithmetic is meant
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to describe the structure of the natural numbers – that is, the
structure which contains exactly the finite cardinal numbers, and
on which addition, subtraction, exponentiation, etc. are defined
as usual. Limitation results such as the Lowenheim-Skolem
theorems show that, for the vast majority of formal systems whose
intended interpretations have an infinite domain, there are
additional, non-isomorphic (and thus unintended) structures that
will satisfy them. Such structures are non-standard models.

See also: Categorical, Downward Lowenheim-Skolem
Theorem, κ-Categorical, Non-Standard Analysis, Non-
Standard Arithmetic, Upward Lowenheim-Skolem Theorem

INTENSION The intension of an expression is the meaning of that
expression and should be distinguished from that which it refers
to or denotes. Importantly, two expressions can refer to or denote
the same entity without having the same intension. For example, the
expressions “the morning star” and “the evening star” have different
intensions, but pick out the same object.

See also: Extension, “Fido”-Fido Principle, Intensional Logic,
Sense

INTENSIONAL DEFINITION An intensional definition provides
the meaning of an expression by specifying necessary and
sufficient conditions for correct application of the expression. An
intensional definition should be distinguished from an extensional
definition, which merely provides a list of those instances in which
the expression being defined is applicable. For example, we might
provide an intensional definition of “bachelor” by specifying that
bachelors are unmarried men. An extensional definition of bachelor,
on the other hand, would consist merely of a list of those men.

See also: Explicit Definition, Impredicative Definition,
Ostensive Definition, Persuasive Definition, Recursive
Definition, Stipulative Definition

INTENSIONAL LOGIC Intensional logics are non-standard logics
that contain the resources for distinguishing between two expressions
which have different meanings even though they have the same
semantic value. For example, an intensional logic might allow us to
quantify over concepts where concepts C1 and C2 can be distinct
even though every object in the domain that is an instance of C1 is also
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an instance of C2. Logics that are not intensional are extensional
logics.

See also: Extension, Intension, Reference, Sense

INTERMEDIATE LOGIC An intermediate logic (or super -
intuitionistic logic) is any propositional logic intermediate in
strength between classical and intuitionistic propositional logic.
In other words, an intermediate logic is any propositional logic (other
than classical propositional logic and intuitionistic propositional logic
themselves) where every proof which is valid in intuitionistic logic is
also valid in the intermediate logic, and every proof valid in the inter -
mediate logic is also valid in classical logic. There are continuum-
many distinct intermediate propositional logics.

See also: Disjunction Property, Gödel-Dummett Logic,
Kreisel-Putnam Logic, Logic of Weak Excluded Middle, Scott
Logic

INTERNAL NEGATION see Choice Negation

INTERPOLATION THEOREM The interpolation theorem (or
Craig’s interpolation theorem) states that, if a conditional
A → B is a theorem of propositional logic, and if A and B share at
least one propositional letter in common, then there is a formula
C, containing only propositional letters occurring in both A and B,
such that A → C and C → B are theorems.

See also: Deduction Theorem, Metatheorem, Proof Theory

INTERPRETATION An interpretation is any mathematical con -
struction used to assign semantic values to the formulas of a
theory in a formal language. Thus, truth value assignments are
interpretations of theories in propositional logic, and models are
interpretations of theories in first-order logic.

See also: Intended Interpretation, Model, Model Theory,
Structure, Truth Table, Valuation

INTERROGATIVE An interrogative is an expression that expresses a
desire that someone supply information of some sort. In other words,
an interrogative is a question.

See also: Erotetic Logic, Imperative, Proposition, Statement
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INTERROGATIVE LOGIC see Erotetic Logic

INTERSECTION1 The intersection of two sets A and B, written
“A ∩ B,” is the set whose members are exactly the objects that are
members of both A and B. 

See also: Relative Complement, Symmetric Difference, Union

INTERSECTION2 The intersection of a set A, written “∩A,” is the
set whose members are exactly those objects that are members of
every member of A.

See also: Relative Complement, Symmetric Difference, Union

INTRODUCTION RULE An introduction rule for a particular
logical connective is a rule of inference that allows one to infer a
statement containing a dominant occurrence of that connective
from statements that do not contain that connective as a dominant
operator. 

See also: Addition, Conditional Proof, Conjunction Intro -
duction, Double Negation Introduction, Elimination Rule,
Reductio ad Absurdum

INTUITIONISM Intuitionism is a view in the philosophy of logic
and the philosophy of mathematics that is motivated by the belief
that there is an epistemic constraint on truth. In other words,
intuitionists believe that any statement that is true can, at least in
principle, be known to be true, and any structure about which we
can utter true claims is a structure which we can, in principle,
construct. As a result, intuitionism can be distinguished from other
views regarding logic and mathematics in terms of both the logic
accepted as correct and in terms of the nature of mathematical
reality: intuitionists accept intuitionistic logic, where many
classically valid theorems such as excluded middle are invalid.
In addition, intuitionists typically believe that mathematical struc -
tures are mental constructions, and, as a result, reject those
structures, such as the classical real numbers, which cannot be
viewed as the result of an idealized mental construction.

See also: BHK-Interpretation, Constructive Proof, Double
Negation, Free Choice Sequence, Intuitionistic Mathematics,
Logical Antirealism
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INTUITIONISTIC LOGIC Intuitionistic logic is a non-standard
constructive logic which does not contain either:

P ∨ ~ P

or:

~ ~ P → P 

as theorems. In addition, within intuitionistic logic, if a dis -
junction A ∨ B is provable, then one or the other of the disjuncts
is provable.

Intuitionistic logic is typically motivated by arguing that a state -
ment can only be true if it is knowable or provable – this is the
principle of epistemic constraint - and then pointing out that non-
intuitionistic principles, such as those above, are implausible on this
understanding of truth.

See also: BHK-Interpretation, Bivalence, Disjunction
Property, Double Negation, Excluded Middle, Logical
Antirealism

INTUITIONISTIC MATHEMATICS Intuitionistic mathematics is
the version of constructive mathematics obtained by requiring,
first, that only intuitionistic logic be used in derivations, and
second, that the mathematical structures being investigated be
constructible. This latter requirement, for the intuitionist, amounts
roughly to the claim that the only acceptable mathematical structures
are finite or potentially infinite ones. 

The collection of theorems in intuitionistic arithmetic is
a subcollection of the theorems of classical arithmetic. Within
analysis, however, there are intuitionistic theorems which are not
theorems of classical analysis, and in fact are false in classical
analysis.

See also: Bivalence, Excluded Middle, Free Choice Sequence,
Markov’s Principle, Strong Counterexample, Weak Counter -
example

INVALID see Valid

INVALID DEDUCTIVE ARGUMENT see Valid Deductive Argu -
ment

INVERSE The inverse (or converse) of a relation R is the relation R–1
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such that, for any x and y:

Rxy 

if and only if:

R–1yx

See also: Composition, Converse-Well-Founded

INVOLUTION A unary function or operation is an involution if
and only if, when we apply it to an argument and then apply it again
to the result, we regain the original argument. In other words, a unary
function f is an involution if and only if, for all x, we have:

x = f(f(x))

The debate between intuitionistic logic and classical logic can be
viewed, at least in part, in terms of whether one believes the truth
function corresponding to the negation operator is an involution –
that is, whether the truth value of:

Φ

is identical to that of 

~ ~ Φ

See also: Double Negation, Double Negation Elimination,
Double Negation Introduction, Fixed Point, Glivenko’s
Theorem, Idempotent

I-PROPOSITION An I-proposition is a categorical proposition
asserting that there is at least one object which is a member of the
class designated by the subject term and which is also a member
of the class designated by the predicate term. In other words, an
I-proposition is a proposition whose logical form is:

Some P are Q.

The quality of an I-proposition is affirmative, and its quantity is
particular. An I-proposition distributes neither its subject term
nor its predicate term.

See also: A-Proposition, E-Proposition, O-Proposition, Square
of Opposition

IRRATIONAL NUMBERS see Rational Numbers
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IRREFLEXIVITY A binary relation R is irreflexive if and only if, for
any object x, we have:

~ Rxx

In other words, an irreflexive relation is nowhere reflexive.

See also: Coreflexivity, T

“IS” OF IDENTITY The “is” of identity is the use of the word “is” to
assert that two objects are, in fact, the same. Thus:

Gottlob Frege is the author of the Grundgesetze der Arithmetik.

is an example of the “is” of identity, while:

Gottlob Frege is German.

is not.

See also: Identity, Indiscernibility of Identicals, “Is” of Predi -
cation, Leibniz’s Law, Necessity of Identity

“IS” OF PREDICATION The “is” of predication (or copula) is the
use of the word “is” to assert that that a concept holds of some
object. Thus:

Bertrand Russell is British.

is an example of the “is” of predication, while:

Bertrand Russell is a co-author of the Principia Mathematica.

is not.

See also: “Is” of Identity, Predicate

ISLAND OF KNIGHTS AND KNAVES The Island of Knights and
Knaves is a fictional island inhabited by two tribes, the knights and
the knaves. Knights, as a matter of necessity, can never lie, while
knaves can never tell the truth (i.e. only utter falsehoods).
Furthermore, the inhabitants of the island are forbidden to allow
themselves into situations which would force them to break these
rules. 

The island has been used by Raymond Smullyan and others
to formulate logical puzzles which illuminate various logical
principles. A simple example of such a puzzle is:

Confronted with an inhabitant of the island, what “yes” or “no”
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question can you ask him such that, after he answers, you will
know to which tribe he belongs?

See also: Diagonalization, Knower’s Paradox, Liar Paradox,
Liar Sentence, Semantic Paradox

ISOMORPHISM An isomorphism is a homomorphism between two
structures that is also bijective. In other words, if there is an
isomorphism between two structures, then they have exactly the same
formal features.

See also: Automorphism, Endomorphism, Epimorphism,
Monomorphism

ITERATION Iteration is the act of repeating. Thus, within logic,
iteration refers to any construction where one applies some function
or operation to a starting point, and then applies the function or
operation again to the result of the first application, and then applies
the function or operation again to the result of the second appli -
cation, and so on ad infinitum. 

See also: Arithmetic Successor, Cardinal Successor,
Cumulative Hierarchy, Iterative Conception of Set, Ordinal
Successor, Successor Function

ITERATION THEOREM see S-M-N Theorem

ITERATIVE CONCEPTION OF SET The iterative conception of
set is a conception of set where sets are “formed” at ranks. At the
first rank we form, into sets, all possible collections of non-sets or
urelements (if there are no urelements, then the only set formed at
this rank is the empty set). At the second rank, we form, into sets,
all possible collections of objects formed as the first rank. At the third
rank we form, into sets, all possible collections of objects formed in
the previous two ranks. And so on. After all of the finite ranks there
is an infinite rank, rank ω, where we form, as sets, all possible
collections of objects formed at one of the finite ranks. Next, there is
rank ω+1, where we form, as sets, all possible collections of objects
formed at any previous rank. And so on, ad infinitum. On the
iterative conception of set, a collection must be formed at some rank
in order to be a set. Thus, there is, on this conception, no universal
set. Collections which are not “formed” into sets at any rank are
proper classes.
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The iterative conception of set is motivated by the desire to
eliminate any circles or infinite descending chains in the set-
theoretic membership relation. In other words, when forming
sets according to the iterative conception, we will never encounter
any sequence of sets x1, x2, x3, … xn-1, xn such that x1 is a member of x2,
x2 is a member of x3, … xn-1 is a member of xn and xn is a member of x1.
Since the Russell paradox and other set-theoretic paradoxes
involve such circular, or non-well-founded collections, this
conception of set is thought to avoid the paradoxes.

See also: Burali-Forti Paradox, Limitation-of-Size Conception
of Set, Reflection Principle, Zermelo Fraenkel Set Theory

JOIN In Boolean algebra or the theory of lattices, the join of two
elements is the least upper bound of those elements. The join of
A and B is usually denoted by “A ∪ B.”

See also: Greatest Lower Bound, Lower Bound, Meet, Upper
Bound

JOINT DENIAL see Dagger

K The modal logic K is the minimal normal modal logic. In other
words, K contains the distributive axiom:

K: ▫ (A → B) → (▫ A → ▫ B)

And the necessitation rule:

If:

|- A

Then:

|- ▫ A

K

J
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In possible worlds semantics, the modal logic K is valid on any
frame.

K also refers to the axiom that is characteristic of the modal logic
K – that is, the distributive axiom. The axiom K is satisfied on
any frame. Modal logics which satisfy both the K axiom and the
necessitation rule are normal modal logics.

See also: Kripke Semantics, Kripke Structure, Modality

κ-CATEGORICAL A theory is κ-categorical (or categorical in κ) if
and only if all of its models of cardinality κ are isomorphic. 

See also: Categorical, Downward Lowenheim-Skolem
Theorem, Non-Standard Model, Upward Lowenheim-
Skolem Theorem

KELLEY-MORSE SET THEORY see Morse-Kelley Set Theory

KLEENE CONNECTIVES see Strong Kleene Connectives, Weak
Kleene Connectives

KLEENE HIERARCHY see Arithmetical Hierarchy

KM see Morse-Kelley Set Theory

KNAVES On the Island of Knights and Knaves, Knaves are a tribe
of island natives who, as a matter of necessity, can only utter
falsehoods.

See also: Knights, Knower’s Paradox, Liar Paradox

KNIGHTS On the Island of Knights and Knaves, Knights are a
tribe of island natives who, as a matter of necessity, can only utter
truths.

See also: Knaves, Knower’s Paradox, Liar Paradox

KNOWABILITY PARADOX see Fitch Paradox

KNOWER’S PARADOX The knower’s paradox (or paradox of the
knower) is a paradox that can be constructed within arithmetic
supplemented with a unary predicate “K” which applies to (the
Gödel numbers of) exactly those statements that are known.
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Utilizing the diagonalization lemma we can find a statement Φ
such that:

Φ ↔ ~ K(<Φ>)

(where <Φ> is the Gödel number of Φ) is a theorem. We need only
assume that that knowledge is factive, and that theorems are known,
in order to derive a contradiction from this statement.

See also: Epistemic Paradox, Fitch Paradox, Liar Paradox,
Semantic Paradox

KÖNIG PARADOX The König paradox is the paradox of de -
notation that arises from consideration of the expression:

The smallest ordinal number that cannot be specified
uniquely.

Since our language has a finite (or, perhaps, countably infinite)
vocabulary, there are no more than a countable infinity of expressions
that denote ordinal numbers. Thus, there must be a first ordinal
number that is not denoted by such an expression. Call that ordinal
number α. Thus, the offset expression above denotes α. But then
there is an expression that uniquely specifies α. Contradiction.

See also: Berry Paradox, Richard Paradox

KÖNIG’S LEMMA1 König’s lemma is a statement in graph theory
which asserts that if one has a graph containing no cycles where each
node is connected to finitely many other nodes, then if there are
infinitely many nodes in the graph, then there is an infinite path in
the graph – that is, an infinite sequence of nodes n1, n2, n3 … where
each of these nodes is connected to the next.

König’s lemma is equivalent to a version of the axiom of choice
called the axiom of dependent choice.

See also: Zorn’s Lemma

KÖNIG’S LEMMA2 König’s lemma is a theorem in set theory
regarding adding and multiplying (possibly infinite) collections of
(possibly infinite) cardinal numbers. If we have two sequences
of cardinal numbers m1, m2, m3 … and n1, n2, n3 … (where these
sequences can be transfinite, but are of the same length), and, for
each i, mi < ni, then the sum of the m’s is less than the product of the
n’s. The proof of König’s lemma requires the axiom of choice.

164 k ö n i g  p a r a d o x

1004 02 pages 001-322:Layout 1  16/2/09  15:12  Page 164



See also: Arithmetic, Cardinal Arithmetic, Ordinal Arithmetic

KÖNIG’S PARADOX see König Paradox

KREISEL-PUTNAM LOGIC Kreisel-Putnam logic is the inter -
mediate logic obtained by adding all instances of:

(~ A → (B ∨ C)) → ((~ A → B) ∨ (~ A → C))

to intuitionistic propositional logic. Kreisel-Putnam logic (along
with Scott logic) is one of the few intermediate logics known to
satisfy the disjunction property.

See also: Constructive Logic, Gödel-Dummett Logic, Logic of
Weak Excluded Middle

KRIPKE SEMANTICS Kripke semantics (or relational semantics,
or frame semantics, or possible worlds semantics) is a method
of formal semantics which has been used to provide semantics for
both modal logics and non-standard propositional logics. In
Kripke semantics a model is an ordered triple <W, I, R, A> (a
Kripke structure) where W is the set of nodes of the model, I is a
subset of W (the distinguished, or initial, nodes), R is the relation
between nodes, and A is a function from node/atomic formula
pairs to truth values (intuitively, A assigns each atomic formula a
truth value at each node). Truth values are then assigned to
compound formulas at each node. 

If the language contains modal vocabulary, then the con -
nectives are typically treated in the standard way on each node,
“▫P” is true at a node n if and only if “P” is true at every node related
to n by R, and “�P” is true at a node n if and only if “P” is true at
some node related to n by R.

If, on the other hand, Kripke semantics is used to interpret a
non-standard propositional logic, then different clauses will be used
to assign truth values to compound statements at a node. For
example, in the Kripke semantics for intuitionistic logic a
conditional “A → B” is true at a node n if and only if “B” is true at
every node related to n by R where “A” is true, and a negation “~ A”
is true at a node n if and only if “A” fails to be true at every node
related to n by R.

See also: Accessibility Relation, Constructive Logic, Frame,
Ternary Semantics
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KRIPKE STRUCTURE A Kripke structure is an ordered triple
<W, I, R, A> where W is a set of nodes, I is a subset of W (the
distinguished, or initial nodes), R is a relation between nodes, and A
is a function from node/atomic formula pairs to truth values.
Kripke structures are used extensively in providing the semantics
for modal logic and a number of systems of non-standard logic.

See also: Accessibility Relation, Frame, Kripke Semantics,
Ternary Semantics

KRIPKE-PLATEK SET THEORY Kripke-Platek set theory is a
formal set theory which contains the following standard set-
theoretic axioms:

Axiom of Extensionality: (∀x)(∀y)(x = y ↔ (∀z)(z ∈ x ↔
z ∈ y))

Axiom of Empty Set: (∃x)(∀y)(y ∉ x)

Axiom of Union: (∀x)(∃y)(∀z)(z ∈ y ↔ (∃w)(z ∈ w
∧ w ∈ x))

Axiom of Induction: For any predicate P, if, for any
set y, P holding of the members
of y implies that P holds of y, then
P holds of all sets.

Axiom of Σ0 Separation: Given any set x and any unary
predicate P where all quan -
tifiers in P are bounded, there
is a set containing exactly the
members of x such that P holds of
them.

Axiom of Σ0 Collection: Given any binary predicate P,
if, for every set z, there is a set w
such that Pzw, then for any set u
there is a set v such that, for any
member r of u, there is a member
s of v, such that Prs.

Kripke-Platek set theory differs from Zermelo Fraenkel set
theory in that the axiom of powerset, the axiom of infinity, and
the axiom of choice all fail.

See also: Morse-Kelley Set Theory, New Foundations, Positive
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Set Theory, Von Neumann Bernays Gödel Set Theory,
Zermelo Fraenkel Set Theory

K3 K3 (or Strong Kleene Logic) is a three-valued logic where the
third semantic value is the truth value gap “neither true nor
false” (typically denoted “N”), and the sole designated value is the
true. Compound sentences are assigned truth values based on the
truth tables for the strong Kleene connectives.

See also: Analethic Logic, Deviant Logic, Logic of Paradox,
Many-Valued Logic, Non-Standard Logic

KURATOWSKI ORDERED PAIR see Ordered Pair

KURATOWSKI-ZORN LEMMA see Zorn’s Lemma

κ-VALIDITY A statement is κ-valid (or valid in κ) if and only if it is
true on any interpretation where the cardinality of the domain
is κ.

See also: Deductive Validity, κ-Categorical, Semantic Validity

L L denotes the proper class of constructible sets.

See also: Constructible Universe, Cumulative Hierarchy,
Independence Results, Inner Model

LAMBDA-CALCULUS see λ-Calculus

LAMBEK CALCULUS The Lambek calculus was the first non-
commutative logic and has become an important tool in
computational linguistics.

See also: Sequent Calculus, Structural Rule, Substructural
Logic

LANGUAGE A language is a system of symbols used to communicate.
Typically, in order to count as a language, the system of symbols in
question must be, for the most part, arbitrary – that is, there is no
requirement that there be some “special” relationship between a

L
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symbol and what it symbolizes – and there must be grammatical rules
that distinguish between meaningful and meaningless combinations
of such symbols. Typically, but not always, these rules will imply
that the language contains infinitely many distinct meaningful
expressions.

See also: Formal Language, Metalanguage, Natural Language,
Object Language, Sublanguage, Translation

LARGE CARDINAL A large cardinal is a cardinal number whose
existence is not guaranteed by Zermelo Fraenkel set theory.
Axioms that assert the existence of various sorts of large cardinal are
of central importance to a number of areas of set theory, including
the search for extensions of set theory which might settle outstanding
questions such as the continuum hypothesis. Varieties of large
cardinal include inaccessible cardinals, compact cardinals,
Mahlo cardinals, and measurable cardinals.

See also: Forcing, Large Cardinal Axiom, Reflection Principle,
Strongly Inaccessible Cardinal, Weakly Inaccessible Cardinal

LARGE CARDINAL AXIOM A large cardinal axiom is a set-
theoretic principle that asserts the existence of one or more large
cardinals.

See also: Compact Cardinal, Mahlo Cardinal, Measurable
Cardinal, Strongly Inaccessible Cardinal, Weakly Inaccessible
Cardinal

LATTICE A lattice is any partially ordered set (A, ≤) where any two
elements x and y have both a least upper bound and a greatest
lower bound. Equivalently, a lattice is any set of objects A and
binary functions on A (typically represented by ∩ and ∪) which
satisfy the following axioms:

Associativity: A ∩ (B ∩ C) = (A ∩ B) ∩ C

A ∪ (B ∪ C) = (A ∪ B) ∪ C

Commutativity: A ∩ B = B ∩ A

A ∪ B = B ∪ A

Absorbsion: A ∩ (A ∪ B) = A

A ∪ (A ∩ B) = A
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To prove the equivalence of these two definitions, we need merely
note that ∪ and ∩ are least upper bound and greatest lower bound
respectively, and that as a result we have:

x ≤ y if and only if x = x ∪ y

and:

x ≤ y if and only if y = y ∩ x

The function ∩ is meet, and the function ∪ is join.
Boolean algebras are an important type of lattice.

See also: Complement, Distributivity

LAW OF BIVALENCE see Bivalence

LAW OF CONTRADICTION see Law of Non-Contradiction

LAW OF EXCLUDED MIDDLE see Excluded Middle

LAW OF NON-CONTRADICTION1 The law of non-contradiction
(or the law of contradiction, or the principle of non-
contradiction) is the metatheoretic claim that no statement is
both true and false. It can be expressed in the metatheory as:

(∀P) ~ (T(P) ∧ T(~P))

(assuming we read “T(~P),” that is, “the negation of P is true,” as
equivalent to “P is false”).

See also: Bivalence, Dialetheism, Semantically Closed
Language, Truth Value, Truth Value Gap, Truth Value Glut

LAW OF NON-CONTRADICTION2 The law of non-contradiction
(or the law of contradiction) is the following formula of
propositional logic:

~ (A ∧ ~ A)

See also: Bivalence, Dialethic Logic, Impossible World, Logic
of Paradox, Paraconsistent Logic

λ-CALCULUS The λ-calculus (or lambda calculus) is a formal
system used to investigate the manner in which functions are
defined and applied. λ-calculus was developed in part in an attempt
to found mathematics on functions instead of sets, although its
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mathematical and philosophical interest has long since outstripped
this initial motivation.

Within the κ-calculus every expression is a unary function. For
example:

(λx)(x+1)

is the name of the function that adds two to its argument.
Application of a function to an argument (which will also be a unary
function) is symbolized by writing the function name before the
argument. Thus:

(λx)(x+1) 2

represents the application of the “plus 1” function to two, which
yields 3.

The λ-calculus has become an important tool in recursive
function theory and complexity theory, and is also of central
importance in certain areas of computer science. 

See also: Church-Turing Thesis, Recursive Function Theory

LEAST UPPER BOUND Given a partial ordering ≤ on a set S, if x
is a member of S and A is a subset of S, then x is the least upper
bound (or supremum) of A if and only if y ≤ x for all y in A, and,
for any z such that y ≤ z for all y in A, x ≤ z. In other words, the least
upper bound of A is the element (if any) that is greater than or equal
to all of the members of A, and is the least such element of S. Least
upper bounds, if they exist, are unique.

See also: Greatest Lower Bound, Join, Lower Bound, Meet,
Upper Bound

LEFT FIELD see Domain

LEIBNIZ’S LAW Leibniz’s law (or the identity of indiscernibles)
is the principle asserting that any two objects with the exact same
properties are identical. A more intuitive way of putting this is that
there cannot be two distinct objects with exactly the same properties.
The principle can be formulated within second-order logic as:

(∀Z)(Zx ↔ Zy) → x = y

Leibniz’s law is a theorem of standard second-order logic (unless
identity is defined in terms of indiscernibility, in which case it is
true by definition).
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The term “Leibniz’s law” is also sometimes used to refer to the
conjunction of the identity of indiscernibles and the indis -
cernibility of identicals.

See also: Higher-order Logic, Necessity of Identity

LEMMA A lemma is a theorem which holds little independent interest
on its own, and is proved primarily for the sake of a later theorem
whose proof requires the lemma.

See also: Corollary

LIAR PARADOX The Liar paradox (or Epimenides paradox,
or Eubulides paradox, or paradox of the liar) results from
consideration of the Liar sentence:

This statement is false.

or, more formally:

L: Statement L is false.

The Liar sentence immediately implies:

L ↔ ~ T<L>

(where “T” is the truth predicate, and assuming that falsity is the
negation of truth). As a result, if we assume the instance of the
T-schema applied to L:

L if and only if T<L>

then we can conclude that:

T<L> ↔ ~ T<L>

a contradiction.

See also: Curry Paradox, Open Pair, Semantic Paradox,
Semantically Closed Language, Truth-Teller, Yablo Paradox

LIAR SENTENCE The liar sentence is the following statement:

This statement is false.

or, more formally:

L: Statement L is false.

The liar sentence, along with other plausible principles regarding
truth, such as the T-schema, leads to the Liar paradox.
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See also: Antinomy, Bivalence, Insolubilia, Law of Non-
Contradiction, Semantic Paradox

LIMIT CARDINAL A cardinal number κ is a limit cardinal if and
only if there is some cardinal number γ less than κ and, for all such γ
less than κ, the cardinal successor of γ is also less than κ. Loosely
put, a limit cardinal is a cardinal number other than 0 which cannot
be reached from smaller cardinals by successive application of the
cardinal successor operation. 

See also: Cardinal Arithmetic, Limit Ordinal, Regular
Cardinal

LIMIT ORDINAL An ordinal number α is a limit ordinal if and only
if there is some ordinal number β less than α and, for all such β less
than α, the ordinal successor of β is less than α. Loosely put, a
limit ordinal is an ordinal other than 0 which cannot be reached from
smaller ordinals by successive application of the ordinal successor
operation. 

See also: Limit Cardinal, ω, Ordinal Arithmetic, Regular
Ordinal

LIMITATION-OF-SIZE CONCEPTION OF SET The limitation-
of-size conception of set is a conception of set where sets are
“formed” only if the collection of objects is not too “large.”
Largeness here can be understood in a number of ways, including
there being as many objects in the collection as there are ordinal
numbers, there being as many objects in the collection as there are
sets, or there being as many objects in the collection as there are
objects in the universe. Each of these corresponds to a different
variant of the limitation-of-size conception of set. Collections which
are too large to be “formed” into sets are proper classes.

The limitation-of-size conception of set is motivated by the desire
to eliminate sets that are too large and thus somehow “badly
behaved.” Since the Russell paradox and other set-theoretic
paradoxes – in particular, the Burali-Forti paradox – involve
collections which are at least as large as the collection of ordinals, this
conception of set is thought to avoid the paradoxes.

See also: Cumulative Hierarchy, Iterative Conception of Set,
Vicious Circle Principle, Zermelo Fraenkel Set Theory
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LIMITATION RESULT A limitation result is a metatheoretical
proof that a certain formal system or other logical structure
cannot, in principle, have certain (usually desirable) properties.
Important limitation results include the upward and downward
Lowenheim-Skolem Theorems and Gödel’s first and second
incompleteness theorems.

See also: Church’s Theorem, Compactness, Tarski’s In -
definability Theorem

LINEAR LOGICS Linear logics are substructural logics within
which the structural rules weakening:

Δ ⇒ Γ
Δ, A ⇒ Γ

Δ ⇒ Γ
Δ ⇒ Γ, A

and contraction:

Δ, A, A ⇒ B, Γ
Δ, A ⇒ B, Γ

Δ, A ⇒ B, B, Γ
Δ, A ⇒ B, Γ

fail. Linear logic is motivated by the idea that a premise or
conclusion is a consumable resource, and that each occurrence of a
premise or conclusion must as a result be used exactly once in a
proof.

See also: Multiset, Sequent Calculus

LINEAR ORDER see Linear Ordering

LINEAR ORDERING A linear ordering (or linear order, or simple
ordering, or total ordering) is a binary relation R on a set of objects
S which is:

Antisymmetric: (∀x)(∀y)((Rxy ∧ Ryx) → x = y)

Transitive: (∀x)(∀y)(∀z)((Rxy ∧ Ryz) → Rxz)

Total: (∀x)(∀y)(Rxy ∨ Ryx)

Given a linear ordering, one can define a strict total ordering R* as:
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R*xy if and only if Rxy and x ≠ y.

See also: Partial Ordering, Pre-Ordering, Strict Ordering,
Well-Ordering

LÖB PARADOX see Curry Paradox

LÖB’S THEOREM Löb’s theorem states that, in any theory con -
taining arithmetic, if one can prove, for some statement A, that
the provability of A implies A, then A itself is provable. In other
words, where “Bew(x)” is the provability predicate and <A> is the
Gödel number of the statement A, Löb’s theorem states that if we
can prove:

Bew<A> → A

then we can prove A.

See also: Arithmetization, Diagonalization Lemma, Gödel’s
First Incompleteness Theorem, Gödel’s Second Incom -
pleteness Theorem

LOGIC Logic is the study of arguments, and the various methods of
logic are used to investigate the structure of arguments and to classify
them, in terms of their structure, into those that ought to be
persuasive and those that ought not to be persuasive. 

Although the primary purpose of logic is to evaluate real
arguments in natural languages, the term has grown to encompass
much more than this. The reason for this broadening of the
application of the term “logic” is not hard to isolate. Over the past
century powerful mathematical tools have been developed for
studying the structure of arguments, leading to the development of
the field of mathematical logic. These tools, however, have proven
to be useful in areas other than their original domain – in particular,
in computer science and in the foundations of mathematics.

See also: Consequence Relation, Fallacy, Logical Form,
Philosophical Logic, Philosophy of Logic

LOGIC GATE A logic gate is a mechanical or electronic device, or an
abstract representation of such a device, whose patterns of input and
output mirror one of the truth functions. For example, an AND
gate might be an electronic device with two circuits as inputs and one
circuit as output, where the device is designed in such a way that the
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output circuit has positive voltage if and only if both of the input
circuits have positive voltage.

See also: Boolean Algebra, Dagger, Logical Connective,
Sheffer Stroke

LOGIC OF ATTRIBUTES see Monadic First-Order Logic

LOGIC OF CONDITIONALS see Conditional Logic

LOGIC OF PARADOX The logic of paradox (or LP) is a three-
valued logic where the third truth value is the truth value glut
“both true nor false” (typically denoted “B”), and the designated
values are “true” and “both true nor false.” Compound sentences
are assigned truth values based on the truth tables for the strong
Kleene connectives. The logic of paradox is usually used to provide
dialethic solutions to various paradoxes including the Sorites
paradox and semantics paradoxes such as the Liar paradox.

See also: Ex Falso Quodlibet, Paraconsistent Logic, Strong
Paraconsistency, Triviality, Weak Paraconsistency

LOGIC OF QUESTIONS AND ANSWERS see Erotetic Logic

LOGIC OF RELATIONS see Polyadic First-Order Logic

LOGIC OF WEAK EXCLUDED MIDDLE The logic of weak
excluded middle is the intermediate logic obtained by adding all
instances of weak excluded middle:

~ A ∨ ~ ~ A

to intuitionistic propositional logic.

See also: Double Negation, Excluded Middle, Gödel-Dummett
Logic, Kreisel-Putnam Logic, Scott Logic

LOGICAL ANTIREALISM Logical antirealism is the view that
rejects the identification of truth with correspondence to some
external reality, and instead insists on the equation of truth and in-
principle verifiability – this type of restriction is known as epistemic
constraint. As a result, logical anti-realists reject logical laws, such
as the law of excluded middle:

P ∨ ~ P
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whose truth amounts, on their interpretation, to implausible claims
about our epistemic powers. Thus, logical antirealism is associated
with the rejection of classical logic in favor of a non-standard
logic, often intuitionistic logic.

See also: Bivalence, Constructive Logic, Intuitionism,
Intuitionistic Mathematics

LOGICAL CONNECTIVE A logical connective (or propositional
connective) is a symbol that joins one or more statements to form
a compound statement. Simply put, the logical connectives are the
subcollection of the logical constants that occur within
propositional logic. The logical connectives are typically taken to
include conjunction (∧), disjunction (∨), negation (~), the
conditional (→), and the biconditional (↔), although other
connectives, including the Sheffer stroke (|) and the dagger (↓),
have been studied. 

See also: Boolean Operator, Compound Formula, Permutation
Invariance, Truth Function, Truth Table

LOGICAL CONSEQUENCE A statement Φ is a logical con -
sequence (or model-theoretic consequence, or semantic
consequence) of a set of statements Δ (or Φ is entailed by Δ) if and
only if there is no interpretation that makes all of the statements in Δ
true while making Φ false.

See also: Consequence Relation, Deductive Consequence,
Double Turnstile, Formal Consequence, Material Con -
sequence, Semantics

LOGICAL CONSTANT A logical constant (or logical operator, or
operator, or logical operation, or operation) is an expression
which contributes to the logical form of a larger expression. There
is widespread agreement that the logical constants include the
logical connectives (conjunction, disjunction, negation, the
material conditional, the material biconditional, etc.) the
quantifiers (both universal and existential) and the identity
predicate “=.” There is no general agreement, however, on what
criteria separate the logical constants from non-logical vocabulary,
although numerous criteria have been proposed (including that the
logical constants are those expressions that require a recursive
clause in the meaning theory for a language; those expressions
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that are topic neutral; and those expressions that are invariant
under permutations of the domain of objects in a model).

See also: Boolean Operator, Compound Formula, Compound
Statement, Generalized Quantifiers, Permutation Invariant

LOGICAL EQUIVALENCE see Logically Equivalent

LOGICAL FALSEHOOD A logical falsehood is a formula for which
there is no interpretation that makes it true. In other words, a
logical falsehood is a formula that must be false, no matter what the
semantic values its constituent expressions receive. All substi -
tution instances of logical falsehoods are also logical falsehoods.

See also: Contradiction, Logical Truth, Theorem, Truth-in-a-
Model, Valid

LOGICAL FORM The logical form (or logical structure) of a
statement (or sequence of statements, such as an argument) is the
underlying structure of the statement (or sequence). Typically, two
expressions are said to have the same logical form if they have the
same syntactic or grammatical form and they contain the same
logical constants (i.e. connectives, quantifiers, etc.) playing the
same roles.

For example, consider:

(1) John is bad and Robert is good.

(2) John is bad and Mary is fair.

(3) John is bad or Robert is good.

Here, statement (1) and (2) have the same logical form, since they
have the same syntactic structure (i.e. <term, predicate, binary
connective, term, predicate>), and the logical connective (con -
junction in this case) is the same. (1) and (3), however, although of
the same syntactic structure, have different connectives joining the
two component statements.

See also: Consequence Relation, Formal Fallacy, Formal
Logic, Syllogistic Figure, Syllogistic Mood

LOGICAL IMPLICATION Logical implication is the relation that
holds between A and B if the material conditional:

A → B
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is a logical truth. The formula:

A → B

is also said to be a logical implication if the relation of logical
implication holds between A and B (in that order).

See also: Deductive Implication, Inference, Material Impli -
cation, Strict Implication

LOGICAL MONISM Logical monism is the view that there is a single
logic that correctly codifies the consequence relation. Logical
monism is contrasted with logical pluralism – the view that there
is more than one logic that correctly, or best, codifies the consequence
relation.

See also: Formal Logic, Logic, Mathematical Logic

LOGICAL OPERATOR see Logical Constant

LOGICAL PARADOX see Semantic Paradox

LOGICAL PLURALISM see Logical Monism

LOGICAL STRUCTURE see Logical Form

LOGICAL THEOREM see Logical Truth, Theorem

LOGICAL TRUTH A logical truth is a formula of that which is true
on all interpretations. In other words, a logical truth is a formula
that must be true, no matter what the semantic values its
constituent expressions receive. All substitution instances of
logical truths are also logical truths.

See also: Logical Falsehood, Tautology, Theorem, Truth-in-a-
Model, Valid

LOGICAL VALIDITY An argument is logically valid (or
semantically valid) if and only if every interpretation which
satisfies the premises of the argument is also an interpretation
which satisfies the conclusion of the argument. 

See also: Double Turnstile, Logical Consequence, Valid

LOGICALLY EQUIVALENT Two formulas A and B are logically
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equivalent (or semantically equivalent) when they are true in
exactly the same interpretations. In other words, A and B are
logically equivalent if the material biconditional:

A ↔ B

is a logical truth. The formula:

A ↔ B

is said to be a logical equivalence if A and B are logically
equivalent.

See also: Deductively Equivalent, Materially Equivalent

LOGICISM Logicism is the thesis that mathematics (and, in particular,
arithmetic) can be reduced to logic. Logicism thus consists of two
theses. First, that the central concepts of mathematics can be
defined in terms of logical vocabulary. Second, that the truths of
mathematics will turn out, given their translation into logical
vocabulary, to be logical truths. The fact that contemporary logic
has no existential commitments, while mathematics has infinitely
many existential commitments, is taken by many to doom logicism to
failure.

See also: Abstraction Principle, Basic Law V, Hume’s
Principle, Mathematical Abstractionism, Russell Paradox

LOWENHEIM-SKOLEM THEOREM see Downward Lowenheim-
Skolem Theorem, Upward Lowenheim-Skolem Theorem

LOWER BOUND Given a partial ordering ≤ on a set S, if x is a
member of S and A is a subset of S, then x is a lower bound of A if
and only if x ≤ y for all y in A.

See also: Greatest Lower Bound, Join, Least Upper Bound,
Meet, Upper Bound

LP see Logic of Paradox
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MAHLO CARDINAL A Mahlo cardinal is a type of large cardinal
number. 

See also: Large Cardinal Axiom, Strongly Inaccessible
Cardinal, Weakly Inaccessible Cardinal

MAIN CONNECTIVE see Dominant Connective

MAIN OPERATOR see Dominant Connective

MAJOR PREMISE The major premise of a categorical syllogism is
the premise that contains the major term – that is, the premise that
contains the predicate term of the conclusion.

See also: Middle Term, Minor Premise, Minor Term, Subject
Term

MAJOR TERM In categorical logic, the major term of a categorical
syllogism is the predicate term of the conclusion.

See also: Major Premise, Middle Term, Minor Premise, Minor
Term, Subject Term

MANY-SORTED LOGIC A many-sorted logic is a first-order logic
where the domain of a model is separated into two or more distinct
“universes.” Quantifiers are typically restricted to one of these
“universes” in one of two ways. First, distinct sorts of variable
might be used to range over the two “universes.” Along these lines,
we can reinterpret second-order logic as a many-sorted first-order
logic, where the lower-case variables range over one universe (the
universe of concrete objects), and the upper-case variables range
over a second universe (the universe of concepts, conceived of as a
special sort of object, on this understanding). Second, we might use
only one sort of variable, but introduce a special predicate for each
“universe” in order to distinguish between the two subcollections of
the domain.

See also: Henkin Semantics, Higher-Order Logic, Plural
Quantification, Second-Order Logic

MANY-VALUED LOGIC A many-valued logic (or multivalent

M
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logic) is a non-standard logic where statements can be assigned
semantic values other than the traditional two values true and
false. Common many-valued logics include truth value gap logics
(where statements can be neither true nor false), truth value glut
logics (where statements can be both true and false), and degree-
theoretic semantics (where statements can receive any value
between 1, representing complete truth, and 0, representing
complete falsity).

See also: Analethic Logic, Designated Value, First-Degree
Entailment, K3

MARKOV’S PRINCIPLE Markov’s principle (or the principle of
constructive choices, or constructive choices) is a logical truth
within classical first-order logic that is not valid within
intuitionistic first-order logic. Markov’s principle states that, for
any decidable predicate Φ, that:

~ ~ (∃x)Φx → (∃x)Φx

It has been argued that Markov’s principle is justifiable on
constructive grounds. If we can refute the claim that no object
has Φ, then we can “run through” all objects until we find one that
has Φ.

See also: Constructive Mathematics, Double Negation, Effec -
tive Procedure, Epistemic Constraint, Primitive Recursive
Relation, Recursive Relation

MATERIAL BICONDITIONAL A material biconditional is a state -
ment of the form:

A if and only if B

which is true if and only if A and B have the same truth value.
Within classical logic the material biconditional has the following
truth table:

Within propositional logic, material biconditionals are usually

P Q P ↔ Q
T T T
T F F
F T F
F F T
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represented as:

A ↔ B

Or as:

A ≡ B

The term “material biconditional” is also used to denote, not the
entire statement:

A ↔ B

but rather the logical connective represented by “↔.”

See also: Conditional, Iff

MATERIAL CONDITIONAL A material conditional (or Philonian
conditional) is a statement of the form:

If A then B

which is true if and only if either A is false or B is true. Thus,
it should be distinguished from subjunctive or counterfactual
conditionals, whose truth values depend on a connection between
antecedent and consequent. Within classical logic the material
conditional has the following truth table:

Within propositional logic, material conditionals are usually
represented as:

A → B

Or as:

A ⊃ B

The term “material conditional” is also used to denote, not the
entire statement:

A → B

but rather the logical connective represented by “→.”

P Q P → Q
T T T
T F F
F T T
F F T
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See also: Conditionalization, Counternecessary Conditional,
Indicative Conditional, Strict Conditional

MATERIAL CONSEQUENCE A material consequence is an
argument where the premises follow necessarily from the
conclusion, but this fact does not hold merely in terms of the
logical form of the statements involved. Thus, a material
consequence is not an instance of logical consequence (which must
also be formal). An example of a material consequence is:

Bill is the father of Alice. 
Thus, Alice is the child of Bill.

While this conclusion cannot be false if the premise is true, this fact
depends not only on the logical form of the premises and conclusion,
but on their content as well.

See also: Consequence Relation, Deductive Consequence,
Formal Consequence

MATERIAL EQUIVALENCE see Materially Equivalent

MATERIAL IMPLICATION Material implication is the relation
that holds between A and B if 

A → B

is true, where the conditional in question is the material
conditional. In other words, material implication is the relation that
holds between two statements if and only if either the first is false,
or the second is true. The formula:

A → B

is also said to be a material implication, if the relation of material
implication holds between A and B (in that order).

See also: Deductive Implication, Logical Implication, Strict
Implication

MATERIALLY EQUIVALENT Two formulas A and B are
materially equivalent when they have the same truth value. In
other words, A and B are materially equivalent if the material
biconditional:

A ↔ B
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is true. The formula:

A ↔ B

is said to be a material equivalence if A and B are materially
equivalent.

See also: Deductively Equivalent, Elementary Equivalence,
Logically Equivalent

MATHEMATICAL ABSTRACTIONISM Mathematical abstrac -
tion ism (or abstractionism, or neo-fregeanism, or neo-
logicism) is the view that we can obtain a priori knowledge of
the truths of mathematics by laying down various abstraction
principles as implicit definitions of mathematical concepts – for
example, the abstractionist claims that we can stipulate Hume’s
Principle: 

(∀P)(∀Q)(NUM(P) = NUM(Q) ↔ P ≈ Q)

as a definition of the concept cardinal number. Since the axioms
of second-order Peano arithmetic follow from Hume’s Principle,
the abstractionist claims that we can know these axioms, and their
consequences, a priori in virtue of the fact that we know the truth of
Hume’s Principle a priori.

See also: Abstraction, Bad Company Objection, Basic Law V,
Caesar Problem, Frege’s Theorem

MATHEMATICAL INDUCTION1 Mathematical induction is a
powerful method for proving that some property holds of all
elements of an infinite collection. If the collection can be viewed as
being the smallest set that contains some basis set and is closed
under one or more operations, then we can prove that a property
holds of every member of that set by proving that the property holds
of the members of the basis set, and that the property is preserved by
application of the various operations – that is, that if a number of
objects have the property, then the result of applying the operation in
question to those objects has the property as well.

See also: Induction on Well-Formed Formulas, Strong
Mathematical Induction, Transfinite Induction, Weak
Mathematical Induction

MATHEMATICAL INDUCTION2 Mathematical induction (or the
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induction schema, or the mathematical induction schema) is
the following axiom schema of arithmetic (for any predicate Φ):

(Φ(0) ∧ (∀x)(Φ(x) → Φ(S(x)))) → (∀x)Φ(x)

(where S(x) is the arithmetic successor function). Mathematical
induction is an axiom schema of Peano arithmetic, but not of many
weaker systems, including Robinson arithmetic.

See also: Inductive Set, Strong Mathematical Induction, Weak
Mathematical Induction

MATHEMATICAL INDUCTION SCHEMA see Mathematical
Induction

MATHEMATICAL LOGIC Mathematical logic is the mathematical
study of formal systems.

See also: Formal Language, Formal Logic, Formal Proof,
Formal Semantics, Model Theory, Proof Theory

MATRIX The matrix of a formula in prenex normal form is the
quantifier-free formula that results by removing the initial sequence
of quantifiers.

See also: Conjunctive Normal Form, Disjunctive Normal
Form, Negation Normal Form, Skolem Normal Form

MAXIMAL CONSISTENT SET A maximal consistent set of
formulas is a set of formulas S such that S is consistent, and there
is no formula Φ in the language in question which is not a member
of S, but for which S + Φ is consistent.

See also: Negation Consistency, ω-Consistency, Post Con -
sistency

MEASURABLE CARDINAL A measurable cardinal is type of large
cardinal number. 

See also: Large Cardinal Axiom, Strongly Inaccessible
Cardinal, Weakly Inaccessible Cardinal

MEET In Boolean algebra or the theory of lattices, the meet of two
elements is the greatest lower bound of those elements. The
meet of A and B is usually denoted by “A ∩ B.”
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See also: Join, Least Upper Bound, Lower Bound, Upper
Bound

MEINONGIANISM Meinongianism is the view that certain objects,
such as mathematical objects and non-existent possible objects, do
not exist, but rather subsist. In other words, there are some things,
such as mathematical objects and non-existent possible objects,
which do not exist, but which nevertheless in some sense are. As a
result, according to Meinongianism, existence is a property which
only applies to some of the things that are, while the remainder are
said to merely subsist.

See also: Mathematical Abstractionism, Nominalism,
Platonism, Set-Theoretic Realism

MEMBER A member of a set is an object that is contained in that set. 

See also: Axiom of Extensionality, Element, Set Theory,
Subset

MEMBERSHIP Membership is the relation that holds between a set
and any of the objects contained in that set. Membership is usually
denoted by “∈.”

See also: Axiom of Extensionality, Element, Set Theory,
Subset

MENTION see Use

MERE POSSIBILIA Mere possibilia are entities which could possibly
exist, but which do not, in fact, actually exist. The debate between
modal actualism and modal realism concerns whether or not
mere possibilia exist, and thus whether or not we can use mere
possibilia in accounting for the truth conditions of modal claims.

See also: Actual World, Contingency, Modal Agnosticism,
Modal Fictionalism, Possible World

MEREOLOGICAL EXTENSIONALITY Mereological extensional -
ity is the principle according to which, if two objects which have
proper parts have exactly the same proper parts, then they are
identical. This can be formulated as follows (where “PP” is the
defined proper parthood relation):
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(∀x)(∀y)(((∃z)(PPzx) ∧ (∃z)(PPzy)) → ((∀z)(PPzx ↔ PPzy) →
x = y))

Mereological extensionality is a theorem of extensional
mereology, but not of minimal mereology.

See also: Classical Mereology, Composition, General Exten -
sional Mereology, Ground Mereology

MEREOLOGICAL FUSION The mereological fusion (or mereo -
logical sum) of a set of objects is the unique object x such that
any object has a part in common with x if and only if it has a part
in common with at least one of the members of the set. More
intuitively, the mereological fusion of a set of objects is the object one
gets by mereologically “summing up” all of these objects into a single
object. 

Within formal mereology the mereological fusion of two objects x
and y (if it exists) is usually denoted by:

x + y

and the fusion of all objects x such that Φ(x) (again, if it exists) is
denoted by:

σxΦ

See also: Composition, Overlap, Proper Parthood, Underlap,
Unrestricted Fusion

MEREOLOGICAL NIHILISM Mereological nihilism is the view that
every object is an atom – that is, no object has any proper parts.
Mereological nihilism can be formulated by adding the following
principle to any theory with which it is consistent (where “PP” is
the defined proper parthood relation):

(∀x) ~ (∃y)(PPyx)

Although mereological nihilism is compatible with many substantial
mereological theses and theories (including general extensional
mereology), it is both philosophically and formally uninteresting
since the following is an immediate corollary (where “P” is the
parthood relation):

(∀x)(∀y)(Pxy ↔ x = y)

In other words, according to mereological nihilism, the parthood
relation is co-extensive with the identity relation.
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See also: Gunk, Mereological Fusion, Unrestricted Fusion

MEREOLOGICAL SUM see Mereological Fusion

MEREOLOGY Mereology is the formal study of the relation of part
to whole. Mereology has been suggested as a replacement for
traditional mathematics as part of a larger defense of nominalism,
but it has obtained the bulk of its notoriety as a formal tool with
which to study various metaphysical problems and puzzles.

See also: Atom, Composition, Fallacy of Composition, Fallacy
of Division, Gunk, Proper Parthood

METALANGUAGE A metalanguage is a language used when
proving theorems about formal systems. The formal system
being studied using the metalanguage is called the object language.
Typically, the object language is taken to be contained in, or a part
of, the metalanguage, although the metalanguage needs to be more
expressively powerful than the object language. Thus, the meta -
language is the language of the metatheory.

See also: Independence Results, Limitation Result, Metalogic,
Metamathematics, Metatheorem, Metatheory, Tarskian
Hierarchy

METALOGIC Metalogic is the mathematical study of formal
systems, especially those that are intended to capture correct
reasoning. Thus, metalogic can be captured, loosely, by the slogan
“reasoning about reasoning.”

See also: Metalanguage, Metamathematics, Metatheorem,
Metatheory, Tarskian Hierarchy

METAMATHEMATICS Metamathematics is the mathematical study
of formal systems of mathematics. Thus, metamathematics is
the use of mathematics itself to study mathematics, especially the
foundations of mathematics.

See also: Independence Results, Limitation Result, Meta -
theorem, Metatheory

METATHEOREM A metatheorem is a theorem about a formal
system which is proven in the metatheory.
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See also: Independence Results, Limitation Result, Meta -
mathematics

METATHEORY The metatheory is the theory within which we prove
theorems about formal systems. Thus, metalogic takes place
in the metatheory. As a result of Gödel’s first and second
incompleteness theorems, the metatheory typically has to be
stronger than the formal system being studied in order to obtain
substantial results.

See also: Independence Results, Limitation Result, Meta -
language, Tarski’s Indefinability Theorem

MIDDLE TERM The minor term of a categorical syllogism is the
term that occurs in both premises (and thus does not occur in the
conclusion).

See also: Major Premise, Major Term, Minor Premise, Minor
Term, Predicate Term, Subject Term

MINIMAL MEREOLOGY Minimal mereology is the mereological
theory obtained by assuming that the parthood relation is a partial
ordering:

Reflexive: (∀x)(Pxx)

Transitive: (∀x)(∀y)(∀z)((Pxy ∧ Pyz) → Pxz)

Antisymmetric: (∀x)(∀y)((Pxy ∧ Pyx) → x = y)

and that the weak supplementation principle:

(∀x)(∀y)((Pxy ∧ x ≠ y) → (∃z)(Pzy ∧ ~ (∃w)(Pwx ∧ Pwz)))

holds.

See also: Mereological Extensionality, Proper Parthood,
Strong Supplementation Principle, Unrestricted Fusion

MINIMALISM Minimalism about truth is the view that all instances
of Tarski’s T-schema:

Where T is the truth predicate, A is any statement, and n is
any name of A:

T(n) ↔ A

are trivially true (or are true by definition, or are true analytically)

m i n i m a l i s m 189

1004 02 pages 001-322:Layout 1  16/2/09  15:12  Page 189



and that there is nothing additional to say about truth. 
As a result, minimalists deny that there is a substantial property

called “truth” that attaches to statements, and thus the view is a
species of deflationism.

See also: Correspondence Theory of Truth, Disquotational -
ism, Prosentential Theory of Truth, Redundancy Theory of
Truth

MINIMIZATION Minimization is one of the simple function
building operations of recursive function theory. Given a
computable n+1-ary function f(x1, x2, … xn, y), the minimization of
f is the n-ary function h such that:

h(x1, x2, … xn) = the smallest y such that f(x1, x2, … xn, y) = 0,
if such a y exists.

h(x1, x2, … xn) is undefined if no such y exists.

Note that, unlike the other functions and function-building
operations of recursive function theory, minimization can be applied
to a total function and result in a partial function.

See also: Composition, Identity Function, Primitive Recur -
sion, Successor Function, Zero Function

MINOR PREMISE The minor premise of a categorical syllogism is
the premise that contains the minor term – that is, the premise that
contains the subject term of the conclusion.

See also: Major Premise, Major Term, Middle Term, Predicate
Term

MINOR TERM In categorical logic, the minor term of a
categorical syllogism is the subject term of the conclusion.

See also: Major Premise, Major Term, Middle Term, Minor
Premise, Predicate Term

MK see Morse-Kelley set theory

MODAL ACTUALISM Modal actualism is the view that the only
things that exist are actual things – in other words, there are no mere
possibilia. As a result, modal actualists attempt to explain the truth
conditions of alethic modal claims in terms of the characteristics
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of actually existing things (since those are all that exist). Modal
realism is the view that actualism is wrong and that there are objects
that exist possibly but not actually.

See also: Actual World, Contingency, Modal Agnosticism,
Modal Fictionalism, Possible World

MODAL AGNOSTICISM Modal agnosticism is the view where we
retain the common-sense interpretation of modal talk in terms of
the existence of possible worlds, but we are uncommitted regarding
the existence of such worlds – in other words, we refuse to take a
definite stand regarding whether there are possible but not actual
objects, places, etc. According to the modal agnostic, this view has
decided advantages in combining the best parts of modal actualism
and modal realism. Like the modal actualist, we need not be
committed to the existence of a multitude of worlds other than our
own. We can retain many of our intuitions regarding modal claims,
however, since many claims regarding the non-existence of particular
possible worlds will remain true regardless of whether the modal
actualist or modal realist turns out to be correct.

See also: Actual World, Contingency, Modal Fictionalism

MODAL COUNTERPART see Counterpart Theory

MODAL FICTIONALISM Modal fictionalism involves, as a part,
modal actualism: the view that there are no possible worlds – in
other words, there are no mere possibilia. Modal fictionalists differ
from traditional actualists, however, in that they nevertheless find talk
of possible worlds indispensable in explaining the truth conditions
of alethic modal claims. As a result, the fictionalist asserts that talk
of possible worlds is a useful fiction, which is helpful in explaining
our modal talk, but which need not be taken as literally true.

See also: Actual World, Contingency, Modal Agnosticism,
Modal Realism

MODAL LOGIC Modal logic is the study of logics that contain
modal operators. Modal operators are sentential operators such
as the alethic modal operators necessarily Φ (▫ Φ or L Φ),
possibly Φ (�Φ or M Φ); the deontic modal operators obligatory
Φ (O Φ), it is permissible that Φ (P Φ), it is forbidden that Φ (F Φ);
the temporal modal operators it will always be the case that Φ

m o d a l  l o g i c 191

1004 02 pages 001-322:Layout 1  16/2/09  15:12  Page 191



(G Φ), it will be the case that Φ (F Φ), it has always been the case that
Φ (H Φ), it was the case that Φ (P Φ); the epistemic modal
operators it is known that Φ (K Φ), it is knowable that Φ (K Φ); and
the doxastic modal operator it is believed that Φ (B Φ).

There are a number of important modal logics, including the
normal modal logics K, T, D, B, S4, and S5, and non-normal
modal logics. Modal logics are typically studied using possible
world semantics.

See also: Causal Modal Logic, Conditional Logic,
Counterfactual Logic, Dynamic Logic, Provability Logic,
Quantified Modal Logic

MODAL OPERATOR see Modal Logic

MODAL POSSIBILISM see Modal Realism

MODAL REALISM Modal realism (or modal possibilism) is the
view that there are possible objects that are not actual objects (i.e.
there are mere possibilia), and that there are possible worlds
distinct from the actual world. As a result, modal realists attempt to
explain the truth conditions of alethic modal claims in terms of
the characteristics of these possible but non-actual objects. Modal
actualism is the view that modal realism is wrong and that the only
objects that possibly exist are the ones that actually exist.

See also: Contingency, Modal Agnosticism, Modal Fictional -
ism.

MODALITY A modality is a sequence of “~”s, “▫”s, and “�”s
prefixed to a formula in modal logic. Many modal logics have a
finite number of distinct modalities. For example, in the modal logic
S4, any formula consisting of Φ prefixed by a modality, of any length,
is equivalent to one of:

Φ �Φ ▫Φ �▫Φ ▫�Φ ▫�▫Φ �▫�Φ
∼Φ ~�Φ ~▫Φ ~�▫Φ ∼▫�Φ ∼▫�▫Φ ∼�▫�Φ

See also: Accessibility Relation, Contingency, Impossibility,
Necessity, Possibility

MODEL A model (or structure, or Tarskian model) is a means
of assigning truth values to sentences of first- or higher-order
languages. A model consists of a set of objects (the domain of the
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model) plus an assignment of semantic values to the non-logical
vocabulary of a first- or higher-order language (usually with an eye
to making some particular theory true on the model). Thus, a model
involves designating a domain of objects for the first-order
quantifiers to range over (and for the second-order quantifiers to
range over subsets of the domain, etc.), assigning a member of the
domain to each non-logical constant, and assigning appropriate sets
of n-tuples from the domain to each predicate and relation
symbol.

See also: Formal Semantics, Interpretation, Model Theory,
Semantics

MODEL THEORETIC CONSEQUENCE see Logical Consequence

MODEL THEORY Model theory is the branch of mathematical
logic that studies the characteristics of structures (or models) that
satisfy different theories. Important results in model theory include
the upward and downward Lowenheim-Skolem theorems and
the compactness theorem.

See also: Categorical, Elementary Equivalence, Intended
Interpretation, κ-Categorical, Non-Standard Model

MODUS PONENDO PONENS see Modus Ponens

MODUS PONENS Modus ponens (or modus ponendo ponens, or
affirming the antecedent, or conditional elimination) is the
rule of inference that allows one to infer the consequent of a
conditional from that conditional and the antecedent of that
conditional. In symbols we have:

P → Q
P
Q

See also: Affirming the Consequent, Conditional Proof,
Denying the Antecedent, Modus Tollens

MODUS TOLLENDO TOLLENS see Modus Tollens

MODUS TOLLENS Modus tollens (or modus ponendo tollens, or
denying the consequence) is the rule of inference that allows one
to infer the negation of the antecedent of a conditional from that
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conditional and the negation of the consequent of that conditional.
In symbols we have:

P → Q
~ Q
~ P

See also: Affirming the Consequent, Conditional Proof,
Denying the Antecedent, Modus Ponens

MOLECULE see Compound Formula

MONADIC FIRST-ORDER LOGIC Monadic first-order logic (or
monadic predicate logic, or the logic of attributes) is the
subsystem of classical first-order logic obtained when monadic
predicates, but no polyadic predicates, are allowed into the
language. Unlike polyadic first-order logic, logical theorem -
hood in monadic first-order logic is decidable.

See also: Church’s Theorem, Entscheidungsproblem

MONADIC FUNCTION see Unary Function

MONADIC PREDICATE A monadic predicate (or unary predicate)
is a predicate that takes one argument, such as “x is red” or “x is
tall.” A predicate that takes more than one argument is a polyadic
predicate.

See also: Adicity, Monadic First-order Logic, Polyadic First-
order Logic, Unary Function, Unary Relation

MONADIC PREDICATE LOGIC see Monadic First-order Logic

MONADIC RELATION see Unary Relation

MONISM see Logical Monism

MONOMORPHISM A monomorphism is a homomorphism
between two structures that is also injective, or one-to-one.

See also: Automorphism, Endomorphism, Epimorphism, Iso -
morphism

MONOTONIC LOGIC A logic is monotonic if and only if adding
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additional statements to the premises of a valid argument
cannot make that argument invalid. In other words, a logic is
monotonic if, for any sets of statements Δ and Σ, and any statement
Φ, if:

Δ |-- Φ

then:

Δ ∪ Σ |-- Φ

A logic where this can fail is a non-monotonic logic. 

See also: Monotonicity, Substructural Logic, Weakening

MONOTONICITY A unary function f mapping a set S to itself
is monotonic relative to an ordering δ on that set if and only if, for
any a and b in S such that a ≤ b, we have f(a) ≤ f(b). More generally,
if f is an n-ary function, then f is monotonic if and only if, whenever
a1 ≤ b1, a2 ≤ b2, … an ≤ bn, we have f(a1, a2, … an) ≤ f(b1, b2, … bn). 

Many formal results regarding non-standard logics depend on
the fact that the connectives of such logics correspond to truth
functions which are monotonic with respect to a particular ordering
on the truth values. 

See also: Kleene Connectives, Monotonic Logic, Weakening

MOOD see Syllogistic Mood

MORSE-KELLEY SET THEORY Morse-Kelley set theory (or
Kelley-Morse set theory, or KM, or MK) is an extension of Von
Neumann Bernays Gödel set theory obtained by allowing arbitrary
formulas to occur in the class comprehension schema.

See also: Kripke-Platek Set Theory, Positive Set Theory,
Zermelo Fraenkel Set Theory

MULTI-MODAL LOGIC A multi-modal logic is a modal logic with
more than one primitive modal operator (standard modal logics are
not multi-modal, since ▫ and �are interdefinable, and only one needs
to be taken as primitive). Dynamic logic is an example of a multi-
modal logic, as are systems that combine epistemic and alethic
modal operators.

See also: Accessibility Relation, Fitch Paradox, Kripke
Semantics, Kripke Structure
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MULTIPLICATIVE AXIOM see Axiom of Choice

MULTISET A multiset (or bag) is a collection where members can
occur more than once. In other words, when dealing with multisets
(unlike the case with standard sets), the number of occurrences of an
element matters. Thus, if we view {a, b, b, c} and {a, b, c} as
multisets, then they are distinct, since the former contains, as
elements, two occurrences of b, while the latter contains only one.

See also: Non-Well-Founded Set, Sequence, Sequent Calculus

MULTIVALENT LOGIC see Many-Valued Logic

MUTUALLY EXCLUSIVE see Contrary

N-ADIC FUNCTION see N-ary function

N-ADIC RELATION see N-ary relation

NAÏVE COMPREHENSION SCHEMA see Comprehension
Schema

NAÏVE SET THEORY Naïve set theory is the set theory obtained by
adopting all instances of the comprehension schema:

(∃x)(∀y)(y ∈ x ↔ Φ(y))

where Φ is any formula not containing x as a free variable. Within
classical logic, naïve set theory is inconsistent, since one can
derive the Russell paradox (and other set-theoretic paradoxes)
within the theory. Consistent versions of naïve set theory within
paraconsistent logics have been explored, however.

See also: Burali-Forti Paradox, Vicious Circle Principle,
Zermelo Fraenkel Set Theory

NAND see Sheffer Stroke

N-ARY FUNCTION An n-ary function (or n-adic function) is a

N
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function which takes n arguments (where n is a natural number)
as input. Thus, a 3-ary function takes three arguments as input.

See also: Adicity, N-ary Relation

N-ARY RELATION An n-ary relation (or n-adic relation) is a
relation which takes n arguments (where n is a natural number).
Thus, a 3-ary relation takes three arguments as input.

See also: Adicity, N-ary Function

NATURAL DEDUCTION Natural deduction is a type of formal
system for logic modeled after patterns of actual reasoning.
Typically, natural deduction systems have no axioms, and instead
consist solely of rules of inference. In addition, the rules of
inference in a natural deduction system often consist of pairs of rules
for each logical connective – and introduction rule for inserting
an instance of the connective and an elimination rule for removing
an instance of the connective – plus other additional rules, such as
classical reductio ad absurdum.

See also: Sequent Calculus

NATURAL LANGUAGE A natural language is any language that is
used for general communication and that evolved naturally. Natural
languages are to be distinguished from formal languages, which
exist primarily as a tool for studying reasoning or other matters of
logical interest, and were artificially constructed with these appli -
cations in mind. Thus, English and Chinese are natural languages,
while first-order arithmetic and the λ-calculus are developed
within formal languages.

See also: Metalanguage, Translation

NATURAL NUMBERS The natural numbers are the whole counting
numbers (usually including zero), that is, {0, 1, 2, 3, …}.

See also: Arithmetic, Integers, Peano Arithmetic, Rational
Numbers, Real Numbers

NBG see Von Neuman Bernays Gödel Set Theory

NECESSARY CONDITION A is a necessary condition for B if and
only if the truth of B is enough to guarantee the truth of A. Thus,
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A is a necessary condition for B if and only if the material
conditional B → A is true. If A is a necessary condition for B, then
B is a sufficient condition for A.

See also: Material Consequence, Material Equivalence,
Material Implication

NECESSITATION see Necessitation Rule

NECESSITATION RULE Within modal logic, necessitation rule is
the rule of inference that allows one to move from the claim that A
is a theorem:

|- A

to the claim that “necessarily A” is a theorem:

|- ▫ A

Modal logics that satisfy both necessitation and the distribution
axiom are normal modal logics.

See also: K, Kripke Semantics, Kripke Structure

NECESSITY A statement is necessary if and only if it cannot be
false. Necessary statements are contrasted with both impossible
statements (which cannot be true) and contingent statements,
which can be true, but which can also be false.

Within modal logic, where possibilities are represented by
possible worlds, a necessary statement is one where there is no
accessible possible world in which it is false. This is represented in
the language of modal logic as:

▫ A

See also: Actual World, Alethic Modal Logic, Modality

NECESSITY OF IDENTITY The necessity of identity is the
following principle of quantified modal logic:

(∀x)(∀y)(x = y → (▫ x = y))

See also: Barcan Formula, Converse Barcan Formula, Identity,
Necessity

NEGATION A negation is a statement of the form:
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It is not the case that A.

or:

Not A.

Within propositional logic, negations are usually represented as:

~ A

or:

–ı A

The term “negation” is also used to denote, not the entire
statement:

~ A

but rather the logical connective represented by “~.”
Within classical logic negation has the following truth table:

See also: Boolean Negation, Choice Negation, DeMorgan
Negation, Double Negation, Exclusion Negation, Tilde

NEGATION COMPLETENESS A theory is negation complete if
and only if, for any formula A in the language of the theory, either
A is a theorem of the theory, or ~ A is a theorem. A theory that is
not negation complete is negation incomplete.

See also: Negation Consistency, ω-Completeness, Strong
Com pleteness, Weak Completeness

NEGATION CONSISTENCY A theory is negation consistent (or
simply consistent) if and only if it is not the case that there is some
formula A such that both A and ~ A are theorems of the theory. A
theory that is not negation consistent is negation inconsistent.

See also: Negation Completeness, ω-Consistency, Post Con -
sistency, Triviality

NEGATION ELIMINATION see Double Negation Elimination, Ex
Falso Quodlibet

P ~ P
T F
F T
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NEGATION INCOMPLETENESS see Negation Completeness

NEGATION INCONSISTENCY see Negation Consistency

NEGATION INTRODUCTION see Double Negation Intro -
duction, Reductio ad Absurdum

NEGATION NORMAL FORM A formula is in negation normal
form if and only if all of its negations range only over atomic
formulas and the only other logical connectives occurring in
the formula are conjunctions and disjunctions. As a result, any
formula in either conjunctive normal form or disjunctive
normal form is in negation normal form, although not vice versa.

See also: Prenex Normal Form, Skolem Normal Form

NEGATIVE PROPOSITION The quality of a categorical
proposition is negative – that is, the categorical proposition is a
negative proposition – if and only if it denies that (some or all)
members of the class denoted by the subject term are also
members of the class denoted by the predicate term. Thus
E-propositions and O-propositions are negative, while
A-propositions and I-propositions are not negative. Categorical
propositions that are not negative are affirmative.

See also: Particular Proposition, Quality, Quantity, Square of
Opposition, Universal Proposition

NEO-FREGEANISM see Mathematical Abstractionism

NEO-LOGICISM see Mathematical Abstractionism

NEUMANN BERNAYS GÖDEL SET THEORY see Von Neumann
Bernays Gödel Set Theory

NEUMANN GÖDEL BERNAYS SET THEORY see Von Neumann-
Bernays Gödel Set Theory

NEW FOUNDATIONS New Foundations (or NF) is a formal set
theory containing, as axioms:

Axiom of Extensionality: (∀x)(∀y)(x = y ↔ (∀z)(z ∈ x ↔ z
∈ y))
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Stratified Comprehension Schema: For any formula Φ
which does not contain y as a free variable, if Φ is stratified,
then there is a set y where, for all x, x is a member of y if and
only if Φx.

A formula is stratified if and only if natural numbers can be
assigned to its variables in such a way that whenever:

x ∈ y

occurs in the formula, then the number assigned to y is exactly one
greater than the number assigned to x.

See also: Kripke-Platek Set Theory, Non-Well-Founded Set
Theory, Positive Set Theory

NF see New Foundations

NGB see Von Neuman Bernays Gödel Set Theory

NOMINALISM Nominalism is the view that abstract objects,
properties, and universals do not exist. These apparent entities
only have reality within language, in terms of the predicates used
to collect together particular instances. Hence, on this view, abstract
objects or properties exist “in name only.”

See also: Mathematical Abstractionism, Meinongianism,
Platonism, Set-Theoretic Realism

NON-ALETHIC MODAL LOGIC see Alethic Modal Logic

NON-CLASSICAL LOGIC see Classical Logic, Deviant Logic,
Non-Standard Logic

NON-COMMUTATIVE LOGIC Non-commutative logics (or
ordered logics) are substructural logics within which weakening:

Δ ⇒ Γ
Δ, A ⇒ Γ

Δ ⇒ Γ
Δ ⇒ Γ, A

and permutation:

Δ, A, B ⇒ Γ
Δ, B, A ⇒ Γ
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Δ ⇒ A, B, Γ
Δ ⇒ B, A, Γ

fail.

See also: Lambek Calculus, Sequent Calculus, Substructural
Logic

NON-CONTRADICTION see Law of Non-Contradiction

NON-DETERMINISTIC POLYNOMIAL TIME A function is
computable in non-deterministic polynomial time (or is of
complexity class NP) if and only if there is a polynomial equation
which takes the length of an argument as input and provides the
number of computational steps necessary for a non-deterministic
Turing machine to obtain the value of the function on that
argument as output.

Although non-deterministic Turing machines can compute any
function that deterministic Turing machines can compute (and
vice versa), it is not known whether every function that can be
computed in non-deterministic polynomial time can be computed in
deterministic polynomial time – in other words, even though
both types of Turing machine can compute the same functions,
it might take much longer to compute some functions on a
deterministic Turing machine than on a non-deterministic Turing
machine. Settling this issue is perhaps the most important
outstanding problem of complexity theory.

See also: Automaton, Church-Turing Thesis, NP-Complete,
Recursive Function Theory, Turing Computable Function

NON-DETERMINISTIC TURING MACHINE A non-determin -
istic Turing machine is a machine (usually conceived abstractly)
which consists of (a) an infinitely long tape containing cells, each of
which contains a symbol from a finite list (including a special symbol
called the blank symbol), (b) a head that can read, write, and erase
symbols in the cell at which it is located, and that can also move from
a cell to either adjacent cell, (c) a state register which keeps track of
the particular state the machine is in at any time, and (d) a table of
instructions (sometimes called an action table or transition
function) that, given a particular state and the symbol on the cell
inhabited by the head, instructs the machine (d1) either to modify the
symbol on the tape, or to move the head one cell to the left or right,
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and (d2) the new state that the machine is in (which need not be
different from the previous state). The difference between a non-
deterministic Turing machine and a deterministic Turing
machine is that a non-deterministic Turing machine does not
uniquely specify which action is to be taken based on the state of the
machine and the symbol in the inhabited cell. Rather, the table of
instructions can provide a number of actions which the machine can
select from.

In determining which functions can be computed using non-
deterministic Turing machines, we assume that the machine always
makes the “best” choice when provided with more than one possible
action to take. In other words, a function can be computed by a non-
deterministic Turing machine if and only if, given a particular input,
there is some sequence of choices such that the machine can
compute the function on that input.

Non-deterministic Turing machines are equivalent – that is,
can compute exactly the same functions or solve exactly the same
problems – as a number of other formal models of computation,
including deterministic Turing machines, recursive functions, and
register machines.

See also: Automaton, Effectively Computable, NP, NP-
Complete, P

NON-LOGICAL CONSTANT see Logical Constant

NON-LOGICAL VOCABULARY see Logical Constant

NON-MONOTONIC LOGIC see Monotonic Logic

NON-NORMAL MODAL LOGIC see Normal Modal Logic

NON-NORMAL WORLD see Impossible World

NO-NO PARADOX see Open Pair

NON-STANDARD ANALYSIS Non-standard analysis is the study
of non-standard models of the axioms of analysis, and, in
particular, the study of such models that include infinitesimals. If
the axioms in question are the first-order axioms for analysis, then the
existence of such models is guaranteed by compactness theorem
and the Lowenheim-Skolem theorems. 
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See also: Downward Lowenheim-Skolem Theorem, Non-
Standard Arithmetic, Non-Standard Model, Upward
Lowenheim-Skolem Theorem

NON-STANDARD ARITHMETIC Non-standard arithmetic is the
study of non-standard models of the axioms of arithmetic. If
the axioms in question are the first-order Peano axioms for
arithmetic, then the existence of such models is guaranteed by the
compactness theorem and the Lowenheim-Skolem theorems. 

See also: Downward Lowenheim-Skolem Theorem, Non-
Standard Analysis, Non-Standard Model, Upward
Lowenheim-Skolem Theorem

NON-STANDARD LOGIC A non-standard logic (or alternative
logic, or non-classical logic) is any formal system that fails to
agree with classical logic. There are two ways in which such
disagreement can occur. First, there might be a disagreement over
principles – the non-standard logic might either reject some classical
logical truth, or accept some classically unacceptable principle, or
both. Intuitionistic logic is an example of this first sort of non-
standard logic. Second, there might be a disagreement over the
justification of these principles – that is, the non-standard logic might
agree with classical logic regarding which principles should be
accepted or rejected, but provide a different semantics from
standard classical formalisms in order to justify these principles.
Supervaluational semantics is an example of this second sort of
non-standard logic.

See also: Deviant Logic, Dialethic Logic, Many-Valued Logic,
Paraconsistent Logic, Relevance Logic

NON-STANDARD MODEL A non-standard model of a theory T
is a model of T which is not isomorphic to the intended
interpretation of T. The Lowenheim-Skolem theorems
guarantee that any first-order theory whose intended interpretation
has an infinite domain has non-standard models.

See also: Categorical, Downward Lowenheim-Skolem
Theorem, Non-Standard Analysis, Non-Standard Arith -
metic, Upward Lowenheim-Skolem Theorem

NON-TRIVIALITY see Triviality
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NON-WELL-FOUNDED SET A non-well-founded set (or hyper -
set) is a set whose membership relation is not well-founded. In
other words, a non-well-founded set is a set which has either loops
or infinitely descending chains in the membership relation on its
transitive closure.

The simplest non-well-founded sets are the universal set, which
has all objects as its members, and thus contains itself as a member,
and Ω, the set that is its own singleton (i.e. Ω = {Ω}).

See also: Anti-Foundation Axiom, New Foundations, Non-
Well-Founded Set Theory, Positive Set Theory

NON-WELL-FOUNDED SET THEORY A non-well-founded set
theory (or Aczel set theory) is any set theory that allows for the
existence of non-well-founded sets. Non-well-founded set theories
are most commonly obtained by replacing the axiom of foundation
in Zermelo Fraenkel set theory (which rules out the existence of
non-well-founded sets) with the anti-foundation axiom, or by
adding some variant of the anti-foundation axiom.

See also: New Foundations, Positive Set Theory, Universal Set,
Well-Founded

NOR see Dagger

NORMAL FORM see Conjunctive Normal Form, Disjunctive
Normal Form, Prenex Normal Form, Skolem Normal Form

NORMAL MODAL LOGIC A normal modal logic is any modal
logic that contains the distribution axiom K:

K: ▫ (A → B) → (▫ A → ▫ B)

and the necessitation rule: If:

|- A

then:

|- ▫ A

See also: B, D, K, S5, S4, T

NP In complexity theory, NP is the class of recursive functions
whose values can be computed in non-deterministic polynomial
time. In other words, a recursive function f is in NP if and only if
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there is a polynomial function g such that, given an input n, the
number of steps a non-deterministic Turing machine will need
in order to compute f(n) is no more than g(n).

See also: Automaton, Effectively Computable, NP-Complete,
P, Recursive Function Theory

NP-COMPLETE In complexity theory, NP-complete (or NPC) is a
subset of the set of functions whose values can be computed in
non-deterministic polynomial time. A function f is a member
of NP-complete if and only if it is in NP and every function in NP is
reducible to f. NP-complete functions play an important role in
complexity theory, because if any NP-complete function is in P (the
set of functions computable in deterministic polynomial time),
then every NP function (including all of the NP-complete functions)
is in P.

See also: Automaton, Effectively Computable, Recursive
Function Theory

NPC see NP-Complete

N-TUPLE see Ordered N-Tuple

NULL SET see Empty Set

NULL SET AXIOM see Axiom of Empty Set

NUMERAL A numeral is a singular term that refers to a natural
number.

See also: Arithmetic, Arithmetization, Gödel Numbering,
Hilbert’s Program

NUMERICAL QUANTIFIER A numerical quantifier is an expression
of one of the following three forms:

“There are at least n x’s such that …”

“There are at most n x’s such that …”

“There are exactly n x’s such that …”

where n is any (possibly infinite) cardinal number. These
quantifiers are typically represented as:
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(∃≥nx) …

(∃≤nx) …

(∃nx) …

If n is finite, then the numerical quantifiers in question can be
defined within first-order logic recursively. For example:

(∃0x)(Fx) =df ~ (∃x)(Fx)

(∃n+1x)(Fx) =df (∃y)(Fy ∧ (∃nx)(x ≠ y ∧ Fx))

Numerical quantifiers for infinite n are beyond the expressive power
of first-order logic and are usually constructed using the resources of
generalized quantifiers.

See also: Arithmetic, Bounded Quantifier, Infinitary Logic,
ω-Rule, Plural Quantification

ω ω is the first infinite ordinal number, that is, the ordinal number of
the natural numbers on their standard ordering.

See also: Cardinal Number, Transfinite, Transfinite Ordinal
Number, Well-ordering

OBJECT LANGUAGE see Metalanguage

OBJECTUAL QUANTIFIER An objectual quantifier is a quantifier
that is interpreted as ranging over objects. Consider a universally
quantified sentence (∀x)Φ(x). If we interpret the quantifier
objectually, then the sentence will be true in a model if and only if
every object in the domain of the model satisfies the open
formula Φ(x). Substitutional quantifiers offer an alternative to
the objectual interpretation of the quantifier, although the two
are equivalent if every object in the domain has a name in the
language in question. 

See also: Existential Quantifier, First-Order Logic,
Generalized Quantifier, Numerical Quantifier, Universal
Quantifier

O
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OBVERSE The obverse of a categorical proposition is obtained by
replacing the predicate term of the proposition with its comple -
ment, and changing the quality of the proposition from negative
to affirmative (or vice versa). For example, the obverse of the
A-proposition:

All men are mortal.

is:

No men are non-mortal.

In categorical logic, the obverse of a categorical proposition must
have the same truth value as the original proposition. 

See also: Contrapositive, Converse, Obversion

OBVERSION Obversion is the process of taking the obverse of a
categorical proposition. It also refers to the immediate
inference, within categorical logic, where one infers, from a
proposition, the obverse of that proposition.

See also: Contraposition, Contrary, Conversion, Sub -
alternation, Subcontrary

ω-COMPLETENESS A theory of arithmetic is ω-complete if and
only if, for any predicate Φ in the language, if for each numeral
n, we can prove Φ(n), then we can prove (∀x)Φ(x). A theory of
arithmetic that is not ω-complete is ω-incomplete.

See also: Gödel’s First Incompleteness Theorem, Gödel’s
Second Incompleteness Theorem, Limitation Result,
Negation Completeness, ω-Rule

ω-CONSISTENCY A theory of arithmetic is ω-consistent if and
only, for any predicate Φ in the language, if, for each numeral n,
we can prove Φ(n) then we cannot prove ~ (∀x)Φ(x). A theory of
arithmetic that is not ω-consistent is ω-inconsistent.

See also: Gödel’s First Incompleteness Theorem, Gödel’s
Second Incompleteness Theorem, ω-Completeness, ω-Rule,
Post Consistency

ω-INCOMPLETENESS see ω-Completeness

ω-INCONSISTENCY see ω-Consistency
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ONE-ONE see One-to-One

ONE-TO-ONE A function f is one-to-one (or one-one, or injective)
if and only if, for any two distinct members of the domain x and y,
f(x) ≠ f(y). In other words, a one-to-one function does not map two
distinct members of the domain to the same member of the range.

See also: Bijection, Injection, Onto, Permutation, Surjection

ONE-TO-ONE ONTO see Bijective

ONTIC VAGUENESS Ontic vagueness refers to the view that there
are vague objects in the world, and, as a result, there is vagueness
concerning identity claims between objects, or vagueness with
regard to whether an object exists or not. 

See also: Borderline Case, Higher-Order Vagueness, Semantic
Vagueness, Sorites Paradox, Sorites Series

ONTO A function f is onto (or surjective) if and only if, for any
member x of the range of the function, there is a member y of the
domain of the function such that f(y) = x. In other words, an onto
function “hits” every member of its range.

See also: Bijection, Injection, One-to-One, Permutation,
Surjection

OPACITY see Referential Opacity

OPEN FORMULA An open formula is a formula that contains one or
more free variables, that is, variables that are not bound by a
quantifier. A formula that is not an open formula is a closed
formula.

See also: Bound Variable, First-order Variable, Higher-order
Variable, Open Term

OPEN PAIR The open pair (or the no-no paradox) is the following
pair of statements which display a circular pattern of reference:

S1: S2 is false.
S2: S1 is false.

Given bivalence and the law of non-contradiction, one can prove
that exactly one of S1 and S2 is true, and one is false. The puzzle
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arises when we consider which of the two statements is true. Since
the two statements are semantically indistinguishable, there seems
to be no reason to prefer the claim that it is S1, and not S2, that is true
(or vice versa). Additionally, if two statements which are semantically
indistinguishable ought to have the same semantic value, then we
are faced with a genuine paradox. 

See also: Curry Paradox, Liar Paradox, Semantically Closed
Language, Truth-Teller, Yablo Paradox

OPEN TERM An open term is a term that contains one or more free
variables, that is, variables that are not bound by quantifiers. A
term that is not an open term is a closed term.

See also: Bound Variable, First-order Variable, Higher-order
Variable, Open Formula

OPERATION see Logical Constant

OPERATOR see Logical Constant

O-PROPOSITION An O-proposition is a categorical proposition
asserting that there is at least one object which is a member of the
class designated by the subject term which is not a member of
the class designated by the predicate term. In other words, an
O-proposition is a proposition whose logical form is:

Some P is not Q.

The quality of an O-proposition is negative, and its quantity is
particular. An O-proposition distributes its predicate term, but
not its subject term.

See also: A-Proposition, E-Proposition, I-Proposition, Square
of Opposition

OR see Disjunction

ORDER see Ramified Type Theory

ORDER TYPE Two partially ordered sets <A, ≤ > and <B, ∝ >
have the same order type if and only if they are order-isomorphic,
that is, there is a one-to-one onto function f from A to B such that,
for any x and y in A, x ≤ y if and only if f(x) ∝ f(y). If <A, ≤ > is a
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well-ordered set, then the order type of <A, ≤ > is an ordinal
number.

See also: Burali-Forti Paradox, Cofinality, Transfinite Ordinal
Number

ORDERED LOGIC see Non-Commutative Logic

ORDERED N-TUPLE An ordered n-tuple (or n-tuple) is a set-
theoretic construction that allows us to treat n objects as a single
“thing” without losing sight of which object is which. For example,
given three distinct objects x, y, and z, their ordered triple (i.e.
ordered 3-tuple), written <x, y, z>, is an object whose first element
is x, whose second element is y, and whose third element is z.

Given a particular set-theoretic definition of ordered pair, we
can define ordered n-tuples inductively as:

<a1, a2, a3 … , an-1, an> =df <a1, <a2, a3, …, an-1, an>>

or as:

<a1, a2, a3 …, an-1, an> =df <<a1, a2, a3, …, an-1>, an>

The notion of ordered n-tuple can be generalized to the case of
infinitely many objects using transfinite induction.

See also: Inductive Definition, Sequence, Unordered Pair

ORDERED PAIR An ordered pair is a set-theoretic construction that
allows us to treat two objects as a single “thing” without losing sight
of which object is which. For example, given distinct objects x and y,
the ordered pair of x and y, written <x, y>, is an object whose first
element is x and whose second element is y. The set-theoretic
definition of ordered pair most commonly used today is the
Kuratowski ordered pair, where:

<x, y> = {{x}, {x, y}}

See also: Axiom of Pairing, Ordered N-Tuple, Unordered Pair

ORDERED TRIPLE see Ordered N-Tuple

ORDINAL see Ordinal Number

ORDINAL ARITHMETIC Ordinal arithmetic is the theory
governing the extension of the standard functions of arithmetic,
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such as addition and multiplication, to infinite ordinal numbers.

See also: Cardinal Arithmetic, König’s Lemma

ORDINAL NUMBER An ordinal number is the number assigned to
the order type of a well-ordered set. For finite sets, the ordinal
number will be the same as the cardinal number, and is just a
natural number, for example, for three objects a, b, and c ordered
by < where a < b < c, the ordinal number is 3. 

The ordinal number of the set of natural numbers on their
standard ordering (i.e. 0 < 1 < 2 < … < n < n+1 < …) is ω. ω is the
first infinite ordinal number. If we consider the ordering on the
natural numbers that is identical to the standard ordering except
that we move 0 from the “beginning” to the “end,” then we obtain the
next ordinal number, ω + 1, the ordinal successor of ω. 

Continuing in this way, we obtain all of the countably infinite
ordinal numbers. If we consider uncountably infinite sets, we can
obtain transfinite ordinal numbers (assuming the axiom of
choice, which implies that any set can be well-ordered).

See also: Burali-Forti Paradox, Cofinality, Limit Ordinal,
Ordinal Arithmetic, Ordinal Successor

ORDINAL PREDECESSOR see Ordinal Successor

ORDINAL SUCCESSOR Within set theory, the ordinal successor of
an ordinal number α is the ordinal number occurring immediately
after α on the standard ordering. Typically, the ordinal successor of α
is defined as:

S(α) = α ∪ {α}

If n is the ordinal successor of m, then m is the ordinal predecessor
of n.

See also: Cardinal Successor, Cofinality, Limit Ordinal,
Transfinite Induction, Transfinite Recursion

OR ELIMINATION see Disjunctive Syllogism

OR INTRODUCTION see Addition

ω-RULE The ω-rule is an infinitary rule of inference for arith -
metic that allows one to conclude:
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(∀x)Φ(x)

if one has, as premises, all instances of:

Φ(n)

where n is a natural number. In other words, the ω-rule allows one
to conclude that Φ holds of all natural numbers if and only if one can
prove, of each natural number, that Φ holds of it.

See also: Infinitary Logic, ω-Completeness, ω-Consistency

OSTENSIVE DEFINITION An ostensive definition is a definition
that furnishes an expression with meaning by pointing out, or
otherwise indicating, either the referent of that expression (if the
expression is a singular term) or typical, exemplary, or para -
digmatic instances of objects that the expression applies to (if, e.g.,
the expression is a predicate). 

See also: Explicit Definition, Impredicative Definition,
Intensional Definition, Persuasive Definition, Stipulative
Definition

OVERLAP In mereology, two objects a and b overlap if and only if
there is some object c such that c is a part of both a and b. In symbols,
we have:

Oxy = (∃z)(Pzx ∧ Pzy)

See also: Composition, Intersection, Mereological Fusion,
Proper Parthood, Underlap, Unrestricted Fusion

P In complexity theory, P is the class of recursive functions whose
values can be computed in deterministic polynomial time. In
other words, a recursive function f is in P if and only if there is
a polynomial function g such that, given an input n, the number
of steps a deterministic Turing machine will need in order to
compute f(n) is no more than g(n).

See also: Automaton, Effectively Computable, NP, NP-
Complete, Recursive Function Theory

P
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PAIR see Ordered Pair, Unordered Pair

PAIRING AXIOM see Axiom of Pairing

PAIRING FUNCTION A pairing function is any binary function
that maps each distinct pair of objects in the domain onto a unique
object. In other words, a pairing function f is a total function such
that:

(∀x)(∀y)(∀z)(∀w)(f(x, y) = f(z, w) ↔ (x = z ∧ y = w))

A pairing function can exist only if the domain in question is infinite
– thus, an axiom asserting the existence of a pairing function is
equivalent to an axiom asserting the existence of infinitely many
objects.

See also: Axiom of Infinity, Infinity Axiom, Ordered Pair,
Unordered Pair

PAIRWISE DISJOINT A collection of sets is pairwise disjoint if and
only if, for any two sets A and B in the collection, there is no x such
that x is a member of A and x is a member of B. In other words, a
collection of sets is pairwise disjoint if and only if any two sets in the
collection are disjoint.

See also: Exclusive, Exhaustive, Intersection, Overlap

PARACONSISTENT LOGIC A paraconsistent logic is any non-
standard logic where ex falso quodlibet:

A
~ A
B

is not a valid rule of inference. In other words, within para -
consistent logics, contradictions do not result in triviality. 

Any non-trivial dialethic logic is also a paraconsistent logic,
although not vice versa.

See also: Dialetheism, First-Degree Entailment, Relevance
Logic, Strong Paraconsistency, Weak Paraconsistency

PARADOX A paradox is an argument that proceeds from apparently
true premises, through apparently unobjectionable reasoning, to a
patently false or even contradictory conclusion.
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See also: Antinomy, Epistemic Paradox, Insolubilia, Paradox
of Denotation, Semantic Paradox, Set-Theoretic Paradox

PARADOX OF DENOTATION A paradox of denotation is a
paradox that uses definite descriptions in an essential way. The
most widely discussed example of a paradox of denotation is the
Berry paradox, which concerns the puzzle that arises when one
attempts to determine what natural number is denoted by the
expression:

The smallest natural number that cannot be uniquely specified
in fewer than 100 characters.

Other paradoxes of denotation include the König paradox and the
Richard paradox.

See also: Epistemic Paradox, Semantic Paradox, Set-Theoretic
Paradox

PARADOX OF KNOWABILITY see Fitch Paradox

PARADOX OF THE HEAP see Sorites Paradox

PARADOX OF THE KNOWER see Knower’s Paradox

PARADOX OF THE LIAR see Liar Paradox

PARADOX OF VAGUENESS see Sorites Paradox

PARADOXES OF MATERIAL IMPLICATION The paradoxes
of material implication (or paradoxes of relevance) are not
paradoxes in the strict sense. Rather, the paradoxes of material
implication involve the puzzling nature of a number of logical
truths in classical propositional logic that involve the material
conditional. First, the claim that any truth is a material
consequence of any formula whatsoever:

A → (B → A)

Second, the claim that any falsehood has any statement whatsoever
as a material consequence:

~ A → (A → B)

Dissatisfaction with these aspects of classical logic has been one of
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the primary motivations behind the development of a number of
non-standard logics, including paraconsistent logics, relevant
logics, and conditional logics.

See also: Peirce’s Law, Strong Paraconsistency, Weak Para -
consistency

PARADOXES OF MOTION see Zeno Paradoxes

PARADOXES OF RELEVANCE see Paradoxes of Material
Implication

PARAMETER A parameter is an expression whose referent is
assumed to be fixed relative to a particular situation, but whose value
can vary across situations. Thus, parameters differ from singular
terms or constants, whose denotation is constant across
situations, and from variables, which range over all entities of the
appropriate sort within a particular situation.

See also: Axiom Schema, Constructible Sets, Schema

PARAMETER THEOREM see S-M-N Theorem

PARAMETRIZATION THEOREM see S-M-N Theorem

PART see Parthood

PARTHOOD Parthood is the central notion of mereology. An exact
definition of parthood is difficult, and thus mereologists typically
satisfy themselves with defining the notion implicitly in terms of
one or another axiomatization of mereology. Nevertheless, we can
say informally that an object x is a part of object y if and only if x is a
component of y, or x is contained in y, or y presupposes x, or x is one
of the objects that y is composed of.

In formal mereology the binary parthood relation P is generally
assumed to impose a partial ordering on objects. In other words,
the parthood relation is:

Reflexive: (∀x)(Pxx)

Transitive: (∀x)(∀y)(∀z)((Pxy ∧ Pyz) → Pxz)

Antisymmetric: (∀x)(∀y)((Pxy ∧ Pyx) → x = y)

Additional principles are often assumed.
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See also: Mereological Fusion, Overlap, Proper Parthood,
Underlap, Unrestricted Fusion

PARTIAL FUNCTION see Total Function

PARTIAL LOGIC A partial logic is a non-standard logic where
either the mapping from statements to truth values is (or can be)
a partial function (thus allowing for statements that receive no
truth value, in which case the logic in question is a gap logic), or
where the mapping from singular terms to objects in the domain
is (or can be) a partial function (thus allowing for singular terms that
do not denote, in which case the logic in question is a free logic).

See also: Existence Predicate, Many-Valued Logic, Relational
Semantics

PARTIAL ORDER see Partial Ordering

PARTIAL ORDERING A partial ordering (or partial order, or
partially ordered set, or poset) is any set A and binary relation
R on A such that R is:

Reflexive: (∀x)(Rxx)

Transitive: (∀x)(∀y)(∀z)((Rxy ∧ Ryz) → Rxz)

Antisymmetric: (∀x)(∀y)((Rxy ∧ Ryx) → x = y)

See also: Boolean Algebra, Lattice, Linear Ordering,
Mereology, Parthood, Pre-Ordering, Mereology, Strict
Ordering, Well-Ordering

PARTIALLY ORDERED SET see Partial Ordering

PARTICULAR PROPOSITION The quantity of a categorical
proposition is particular if it makes a claim about some, but not
all, of the members of the class denoted by the subject term
of the proposition. Thus I-propositions and O-propositions
are particular, while A-propositions and E-propositions are not
particular. Categorical propositions that are not particular are
universal.

See also: Affirmative Proposition, Negative Proposition,
Quality, Square of Opposition
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PARTITION A partition of a non-empty set X is a collection of non-
empty sets Y such that the sets in Y are exclusive and exhaustive
with respect to X. In other words, Y is a collection of sets such that:

(1) There is no object z and sets S, P in Y such that z is a
member of both S and P.

(2) For any object z, z is a member of X if and only if there is a
set S in Y such that z is a member of S.

More intuitively, Y consists of a “division” of X into subsets which
do not overlap and which cover all of X. Any equivalence relation
E on a set X imposes a partition on X – namely, the equivalence
classes of X relative to E.

See also: Disjoint, Pairwise Disjoint

PEANO ARITHMETIC Peano arithmetic (or Peano-Dedekind
Arithmetic, or the Peano Postulates) is the most widely studied
axiomatization of arithmetic:

(1) (∀x)S(x) ≠ 0

(2) (∀x)(∀y)(S(x) = S(y) → x = y)

(3) (∀x)(x + 0 = x)

(4) (∀x)(∀y)(x + S(y) = S(x + y))

(5) (∀x)(x • 0 = 0)

(6) (∀x)(∀y)(x • S(y) = (x • y) + x)

(7) For any predicate Φ:

(Φ(0) ∧ (∀x)(Φ(x) → Φ(S(x)))) → (∀x)Φ(x)

where S(x) is the arithmetic successor function. The final
principle is not an axiom, but is an axiom schema, coding up
infinitely many instances of mathematical induction (one for
each distinct predicate Φ).

See also: Arithmetization, Diagonalization Lemma, Gödel’s
First Incompleteness Theorem, Gödel’s Second Incom -
pleteness Theorem, Robinson Arithmetic

PEANO-DEDEKIND ARITHMETIC see Peano Arithmetic

PEANO POSTULATES see Peano Arithmetic
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PEIRCE DAGGER see Dagger

PEIRCE’S LAW Within propositional logic, Peirce’s law is the
principle:

((A → B) → A) → A

See also: Intermediate Logic, Material Implication, Paradoxes
of Material Implication

PERMUTATION1 A permutation is a bijection from a set to itself. In
other words, a permutation maps each member x of a set A onto
another member y of A; maps no two members x and y of the set A
onto the same member of A, and, for any member y of A, there is a
member x of A such that x is mapped onto y.

Given an ordering on the set in question, we can view a
permutation as providing a re-ordering of the set. Thus, if we order
the members of the set A = {x, y, z} as <x, y, z>, then the
permutation f:

f(x) = x

f(y) = z

f(z) = y

provides us with the new ordering <x, z, y>.

See also: Automorphism, Endomorphism, Epimorphism,
Homo morphism, Isomorphism

PERMUTATION2 Permutation (or exchange) is the structural rule
that allows one to exchange two formulas that are on the same side
of the arrow. Thus, by applying permutation we can move from:

Δ, A, B, Γ ⇒ Σ

to:

Δ, B, A, Γ ⇒ Σ

or we can move from:

Δ ⇒ Γ, A, B, Σ

to:

Δ ⇒ Γ, B, A, Σ
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See also: Commutativity, Non-Commutative Logic, Sequent
Calculus, Substructural Logic, Weakening

PERMUTATION INVARIANT A function or operation is
permutation invariant if and only if the result of applying it to a
domain is the same as applying it to any permutation of the
domain. For example, if R is a binary relation on a domain D, then
R is permutation invariant if and only if, for any permutation f on D,
R holds of objects x and y if and only if R holds of f(x) and f(y). 

Often, the distinction between logical constants (such as
disjunction and universal quantification) and non-logical
vocabulary is defined as follows: the logical constants are exactly the
operations and functions that are permutation invariant.

See also: First-order Logic, Generalized Quantifier, Higher-
order Logic, Logical Connective, Objectual Quantifier,
Substitutional Quantifier

PERSUASIVE DEFINITION A persuasive definition is a definition
that purports to provide the common understanding of an expression
while actually providing the meaning that the author would like the
reader to associate with the expression.

See also: Explicit Definition, Impredicative Definition,
Intensional Definition, Ostensive Definition, Stipulative
Definition

PETITIO PRINCIPII see Begging the Question

Π-FORMULA Within the arithmetical hierarchy (or Kleene
hierarchy) a Π-formula (or Π1 formula) is a formula Φ such that
Φ is logically equivalent to some formula of the form:

(∀x1)(∀x2) … (∀xm)Ψ

where Ψ is a formula containing only bounded quantifiers.

See also: Finitary Arithmetic, Π-Sentence, Σ-Formula,
Σ-Sentence

Π1-FORMULA see Π-Formula

PHILONIAN CONDITIONAL see Material Conditional
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PHILOSOPHICAL LOGIC Philosophical logic involves the use of
formal systems as a tool for solving, or contributing to the solution
of, philosophical problems (which might, or might not, involve
arguments or reasoning). Thus, it differs from philosophy of
logic, which is the philosophical study of formal systems as models
of the consequence relation.

See also: Logic, Mathematical Logic

PHILOSOPHY OF LOGIC Philosophy of logic is the philosophical
study of formal systems as models of the consequence relation.
Thus, it differs from philosophical logic, which is the use of formal
systems in attempts to solve philosophical problems.

See also: Logic, Mathematical Logic

PLATONISM Platonism is the metaphysical thesis that abstract
objects exist. In particular, in the philosophy of mathematics,
Platonism amounts to a belief in the existence of abstract objects as
the subject matter of mathematics – that is, that natural numbers,
sets, spaces, etc. exist, and are the objects referred to by working
mathematicians.

See also: Mathematical Abstractionism, Meinongianism,
Nominalism, Set-Theoretic Realism

PLATO’S BEARD Plato’s beard refers to the problem of how we can
deny the existence of some object or objects, since in order to do so,
one must apparently describe or directly refer to those things in the
denial, as a result accepting, at least implicitly, their existence.

Bertrand Russell’s method of definite descriptions is typically
taken to solve the problems posed by Plato’s beard.

See also: Free Logic, Indefinite Description

PLURAL QUANTIFICATION Plural quantification is quantifi -
cation over pluralities of objects. Thus, the statement:

There is a car in the lot.

involves singular quantification over objects, while:

There are some cars in the lot.

involves plural quantification.
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Defenders of plural quantification point out that our under -
standing of such constructions does not seem to commit us to any
entities over and above the objects involved – in other words, the
second statement above does not seem to involve sets, or concepts,
or other supposedly problematic notions any more than does the first
statement. As a result, plural quantification has been suggested as a
promising means for understanding second-order quantifiers and
perhaps higher-order quantifiers generally. 

See also: Branching Quantifier, Comprehension Schema,
Geach-Kaplan Sentence

PLURALISM see Logical Monism

POLISH NOTATION Polish notation is a notation for formulas in
propositional logic where each logical connective is written to
the left of its argument or arguments – that is, in Polish notation all
logical connectives are written in prefix notation. Thus, instead of
writing:

(A ∧ B) ∨ (C ∧ D)

we would write:

∨ ∧ A B ∧ C D

Originally, Polish notation used upper-case letters for connectives
and lower-case letters for statements instead of the modern
notation, so the above would have appeared as:

D C a b C c d

One of the main reasons why Polish notation is of technical interest
is that it eliminates the need for parentheses, since formulas in Polish
notation are unambiguous without such punctuation.

See also: Infix Notation, Suffix Notation

POLYADIC FIRST-ORDER LOGIC Polyadic first-order logic (or
polyadic predicate logic, or the logic of relations, or full
predicate logic) is the system of classical first-order logic
obtained when polyadic predicates (as opposed to only monadic
predicates) are allowed into the language. Unlike monadic first-
order logic, theoremhood in polyadic first-order logic is not
decidable.
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See also: Church’s Theorem, Entscheidungsproblem

POLYADIC PREDICATE see Monadic Predicate

POLYADIC PREDICATE LOGIC see Polyadic First-order Logic

POLYSYLLOGISM A polysyllogism (or sorites) is an argument
consisting of a sequence of syllogisms, usually categorical
syllogisms.

See also: Categorical Logic, Term Logic

POSET see Partial Ordering

POSITIVE PROPOSITION see Affirmative Proposition

POSITIVE SET THEORY Positive set theory is a formal set theory
obtained by assuming:

Axiom of Extensionality: (∀x)(∀y)(x = y ↔ (∀z)(z ∈ x ↔
z ∈ y))

Axiom of Empty Set: (∃x)(∀y)(y ∉ x)

Axiom of Infinity: (∃x)(Φ ∈ x ∧ (∀y)(y ∈ x → y ∪
{y} ∈ x))

Positive Naïve Comprehension Schema:

(∃x)(∀y)(y ∈ x ↔ Φ(y))

(where Φ can contain only the membership and identity symbols,
conjunction, disjunction, and the existential and universal
quantifiers).

In other words, positive set theory is the result of restricting the
comprehension schema to the positive formulas – those not
containing negation or the conditional.

Positive set theory differs from more standard set theories in a
number of ways, the most striking of which is that it implies the
existence of the universal set (the set containing all objects,
including itself, as members). As a result, positive set theory is a
non-well-founded set theory.

See also: New Foundations, Non-Well-Founded Set, Well-
Founded
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POSSIBILIA see Mere Possibilia

POSSIBILISM see Modal Realism

POSSIBILITY A statement is possible if it can be true. Possible
statements should be contrasted with contingent statements, which
can be true, but which can also be false. All contingent statements
are possible, but not vice versa.

Within modal logic, where possibilities are represented by
possible worlds, a possible statement is one where there is some
accessible possible world in which it is true. This is represented in
the language of modal logic as:

◊ A

See also: Actual World, Alethic Modal Logic, Impossibility,
Mere Possibilia, Necessity

POSSIBLE WORLD A possible world is, intuitively speaking, a way
the world could have been other than the way that it is. Possible
worlds are used to explain the truth conditions of modal claims.
Thus, “necessarily Φ” is true if and only if Φ is true at every
possible world, and “possibly Φ” is true if and only if Φ is true at
some possible world.

Although the need for introducing possible worlds in order to
explain the truth conditions of modal expressions is widely agreed
upon, there is vast disagreement regarding the exact nature of
possible worlds. Modal realists believe that possible worlds are
actual places, of the same sort as the actual world, whereas modal
actualists believe that possible worlds are (usually abstract) bits of
the actual world, such as maximal states of affairs.

See also: Accessibility Relation, Impossible World, Mere
Possibilia, Modal Agnosticism, Modal Fictionalism

POSSIBLE WORLDS SEMANTICS see Kripke Semantics

POST COMPLETENESS see Strong Completeness

POST CONSISTENCY A theory is Post consistent (or absolutely
consistent) if and only if there is at least one statement in the
language of the theory that is not a theorem. A theory that is not
Post consistent is Post inconsistent (or absolutely inconsistent).
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See also: Gödel’s First Incompleteness Theorem, Gödel’s
Second Incompleteness Theorem, Limitation Result, Meta -
theorem, ω-Consistency

POSTFIX NOTATION see Suffix Notation

POST HOC, ERGO PROPTER HOC Post hoc ergo propter hoc
(Latin for “after this, therefore because of this”) is an informal
fallacy which occurs when the reasoner concludes that event A
caused event B merely because event A preceded event B.

POST INCOMPLETENESS see Strong Completeness

POST INCONSISTENCY see Post Consistency

POTENTIAL INFINITY see Complete Infinity

POWER see Cardinality

POWERSET Within set theory, the powerset of a set A is the set
whose members are exactly the subsets of A. For example, if the
original set is {a, b, c}, then the powerset of this set is:

{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

See also: Axiom of Powerset, Cantor’s Theorem, Continuum
Hypothesis, Generalized Continuum Hypothesis, Rank

POWERSET AXIOM see Axiom of Powerset

Pr(A/B) see Conditional Probability

PRAGMATICS Pragmatics studies the properties of expressions and
utterances that can vary from use to use, or from context to context.
This distinguishes it from logic and semantics, which typically
study those aspects of language which are constant from use to use,
or context to context. Thus, pragmatics (as opposed to semantics)
takes into account the situation in which an assertion occurs, the
intentions of the person making the utterance, and the background
assumptions at play in the discourse within which the utterance is
embedded.

See also: Compositionality, Contextualism
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PREDECESSOR see Arithmetic Successor, Cardinal Successor,
Ordinal Successor

PREDICATE A predicate is an expression that denotes a concept, or,
alternatively, an expression that denotes a unary propositional
function.

See also: Existence Predicate, Monadic Predicate, Open
Formula, Polyadic Predicate, Predicate Functor

PREDICATE FUNCTOR A predicate functor is an expression which,
when applied to a predicate, yields another predicate. Loosely put,
predicate functors are the formal analogue of adverbs. 

See also: λ-Calculus, Monadic Predicate, Polyadic Predicate

PREDICATE FUNCTOR LOGIC Predicate functor logic is a logic
which eliminates the need for quantified variables, instead relying
on the addition of predicate functors to the language – that is,
expressions which, when applied to a predicate, yield another
predicate. Predicate functor logic is, in its standard formulation,
equivalent to first-order logic.

See also: Monadic Predicate, Polyadic Predicate

PREDICATE LOGIC see First-order Logic

PREDICATE TERM Within categorical logic, the predicate term of
a categorical proposition is the term that occurs second in the
proposition. Thus, in the A-proposition:

All men are mortal.

the predicate “is mortal” is the predicate term.

See also: Major Term, Middle Term, Minor Term, Subject
Term

PREDICATIVE DEFINITION see Impredicative Definition

PREFIX NOTATION A function symbol, relation symbol, or
logical constant is an instance of prefix notation if it occurs to the
left of its arguments. Thus, successor function is typically
represented in prefix notation, since we often denote the successor of
x as S(x), and negation is typically represented in prefix notation,
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since we denote the negation of A as ~ A.

See also: Infix Notation, Polish Notation, Suffix Notation

PRELINEARITY AXIOM Within propositional logic, the pre -
linearity axiom is the formula:

(P → Q) ∨ (Q → P)

Extending intuitionistic logic through the addition of the
prelinearity axiom results in the intermediate logic known as
Gödel-Dummett logic.

See also: Kreisel-Putnam Logic, Logic of Weak Excluded
Middle, Scott Logic

PREMISE In an argument, a premise (or premisse) is a statement
that is intended to provide evidence or support for the conclusion.
In a formal proof the premises are those statements that are assumed
at the beginning of the proof (if any), from which all later statements
follow according to rules of inference or rules of replacement.

See also: Deductive Argument, Double Turnstile, Inductive
Argument, Logical Form, Single Turnstile

PREMISSE see Premise

PRENEX NORMAL FORM A formula in the language of first-
order logic is in prenex normal form if and only if the formula
consists of a sequence of quantifiers followed by a quantifier-free
formula Φ where the scope of each quantifier is all of Φ and no
quantifier in the initial sequence is a vacuous quantifier. The
quantifier-free formula following the initial sequence of quantifiers is
the matrix of the prenex normal form formula. Thus:

(∀x)(∃y)(∀z)((Fx ∧ Gxy) ∨ Hzx)

is in prenex normal form. Every formula in classical first-order
logic is logically equivalent to one in prenex normal form.

See also: Conjunctive Normal Form, Disjunctive Normal
Form, Negation Normal Form, Skolem Normal Form

PRE-ORDER see Pre-Ordering

PRE-ORDERING A pre-ordering (or pre-order, or quasi-order, or
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quasi-ordering) is any set A and binary relation R on A such that
R is:

Reflexive: (∀x)(Rxx)

Transitive: (∀x)(∀y)(∀z)((Rxy ∧ Ryz) → Rxz)

See also: Linear Ordering, Partial Ordering, Strict Ordering,
Well-Ordering

PRIMITIVE RECURSION Primitive recursion is one of the simple
function-building operations of recursive function theory. Given
a binary recursive function f and a ternary recursive function g
the primitive recursion of f and g is the binary function h such that:

h(x, 0) = f(x)

h(x, y+1) = g(x, y, h(x, y))

See also: Composition, Identity Function, Minimization,
Successor Function, Zero Function

PRIMITIVE RECURSIVE FUNCTION A primitive recursive
function is any function that can be constructed from the basic
functions of recursive function theory (the zero function, the
successor function, and the identity functions) plus the function-
building operations composition and primitive recursion.

See also: Course of Values Recursion, Effectively Computable
Function, Recursive Function

PRIMITIVE RECURSIVE RELATION A primitive recursive
relation is any relation on the natural numbers whose
characteristic function is a primitive recursive function.

See also: Recursive Function, Recursive Function Theory,
Recursive Relation

PRIMITIVE RECURSIVE SET A primitive recursive set is any set
S of natural numbers whose characteristic function is a
primitive recursive function.

See also: Definable Set, Effectively Enumerable Set,
Enumerable Set, Enumeration, Recursively Set, Recursively
Enumerable Set
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PRINCIPLE OF BIVALENCE see Bivalence

PRINCIPLE OF EXCLUDED MIDDLE see Excluded Middle

PRINCIPLE OF CONSTRUCTIVE CHOICES see Markov’s
Principle

PRINCIPLE OF NON-CONTRADICTION see Law of Non-
Contradiction

PROBABILITY CALCULUS The probability calculus is a system of
rules providing a method for assigning probabilities to compound
statements based on the probabilities of simpler statements. In
order to assign probabilities to compound statements using the
probability calculus, one must not only know the probabilities of the
simple statements involved, but also the probabilities of conditional
probability statements of the form:

Pr(B/A)

(intuitively, the probability that B is true given that A is true). Within
the probability calculus, the rules for the propositional connectives
are as follows:

Pr(~ A) = 1 – Pr(A)

Pr(A ∧ B) = Pr (A) • Pr(B/A)

Pr(A ∨ B) = Pr(A) + Pr(B) – Pr(A ∧ B)

See also: Bayes’ Theorem, Degree-Theoretic Semantics,
Probability Logic, Probability Theory, Ramsey Test

PROBABILITY LOGIC Probability logics are formal systems
intended to capture inferences involving statements whose
probability is strictly between 0 and 1. Thus, statements in such
logics are assigned probabilities instead of truth values, and the
consequence relation of such a logic will preserve the probability
of the premises in the conclusion. Typically, probability logics
reduce to standard classical logic on the assumption that all
statements have probabilities of either 0 or 1.

See also: Bayes’ Theorem, Conditional Probability, Degree-
Theoretic Semantics, Probability Calculus, Probability
Theory, Ramsey Test
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PROBABILITY THEORY Probability theory is the branch of
mathematics that studies random events or events for which we can
only determine their likelihood, and not determine whether they
have or have not occurred with certainty. Two tools that are useful for
the philosophical study of probability are probability logics and the
probability calculus.

See also: Bayes’ Theorem, Conditional Probability, Ramsey
Test

PRODUCT see Cartesian Product

PROJECTION FUNCTION see Identity Function

PROOF A proof (or demonstration) is a finite sequence of
statements where each statement in the list is either an axiom or
the result of applying a rule of inference to one or more preceding
statements. The final statement is the conclusion of the proof. 

See also: Deductive Argument, Derivation, Formal Proof,
Natural Deduction, Rule of Replacement

PROOF BY CASES see Classical Dilemma

PROOF BY INDUCTION see Induction on Well-Formed
Functions, Mathematical Induction, Transfinite Induction

PROOF-THEORETIC CONSEQUENCE see Deductive Con -
sequence

PROOF-THEORETIC EQUIVALENCE see Deductively Equiv -
alent

PROOF-THEORETIC IMPLICATION see Deductive Implication

PROOF-THEORETIC VALIDITY see Deductive Validity

PROOF-THEORETICALLY EQUIVALENT see Deductively
Equivalent 

PROOF THEORY Proof theory is the branch of mathematical logic
that studies proofs within a formal system. Important results in
proof theory include the cut elimination theorem, Gödel’s first
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incompleteness theorem and Gödel’s second incompleteness
theorems.

See also: Deduction Theorem, Independence Result, Limi -
tation Result, Metalogic, Model Theory

PROPER CLASS A proper class is a collection that is too ill-behaved to
be a set. Different set theories posit different collections to be the
proper classes, but the Russell paradox (and related set-theoretic
paradoxes) show that some collections must not be sets.

See also: Absolute Infinite, Global Choice, Global Well-
Ordering, Set, Von Neumann Bernays Gödel Set Theory

PROPER PARTHOOD In mereology, an object x is a proper part of
an object y if and only if x is a part of y and y is not a part of x. In
symbols, we have:

PPxy = Pxy ∧ ~ Pyx

If we assume, as is typical, that the parthood relation is a partial
ordering, then this is equivalent to defining proper parthood as
parthood plus non-identity:

PPxy = Pxy ∧ x ≠ y

See also: Composition, Mereological Extensionality, Mereo -
logical Fusion, Overlap, Underlap, Unrestricted Fusion

PROPER SUBSET A set A is a proper subset of a set B if and only if
every member of A is a member of B, and there is some member of
B that is not a member of A. Equivalently, A is a proper subset of B
if and only if A is a subset of B, and A is not identical to B.

See also: Powerset, Set Theory

PROPERTY see Concept

PROPOSITION1 A proposition is any statement in propositional
logic, that is, either a propositional letter or a compound
formula built up from propositional letters and logical con -
nectives.

See also: Compound Statement, Formation Rules, Formula,
Subformula, Syntax, Well-Formed Formula
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PROPOSITION2 A proposition is the object that is the meaning, or
content, of a statement or assertion. While there is vast dis -
agreement amongst philosophers and logicians as to whether or not
propositions exist, and over the nature of propositions if they do
exist, believers in propositions typically take them to be the objects of
propositonal attitudes such as belief and desire – that is, on this
view, when we believe something, or desire for something to be true,
it is the proposition that we believe, or desire to become true.

See also: Atomic Sentence, Categorical Proposition, Propo -
sitional Function, Propositional Letter, Propositional Logic

PROPOSITIONAL ATTITUDE A propositional attitude is a relation
holding between a person and a proposition in virtue of the person
having certain attitudes towards that proposition. Thus, examples of
propositional attitudes include belief, desire, and knowledge.

See also: Referential Opacity

PROPOSITIONAL CONNECTIVE see Logical Connective

PROPOSITIONAL FUNCTION A propositional function is the
function denoted by an expression containing one or more free
variables. The domain of the function is the set of appropriate
arguments that can be substituted for the free variable (or
sequences of such arguments, if there is more than one free
variable), and the range is the set of truth values. Thus, if R
represents the predicate “is red,” then the propositional function
denoted by “Rx” is the function that maps the red objects to the true,
and maps any non-red objects to the false.

The term “propositional function” is also sometimes used to refer
to the expression containing free variables itself, instead of to the
corresponding function from arguments to truth values.

See also: Characteristic Function, Primitive Recursive
Function, Proposition, Recursive Function, Truth Function

PROPOSITIONAL LETTER A propositional letter (or atom, or
atomic letter, or sentence letter, or sentential variable) is any
(usually upper-case) letter used within propositional logic to
represent a primitive statement. Compound statements are
constructed within propositional logic by combining propositional
letters with logical connectives.
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See also: Atomic Formula, Atomic Sentence, Formation Rules,
Logical Constant, Proposition, Well-Formed Formula

PROPOSITIONAL LOGIC Propositional logic (or sentential logic)
is the logic containing propositional letters, representing simple
statements, and logical connectives, which are used to form
compound statements by combining simpler ones. Typically,
propositional logic is formulated using conjunction (∧), dis -
junction (∨), material implication (→), and negation (~),
although other connectives have been studied. Thus, if S is the
propositional letter representing the English sentence:

It is snowing.

and R is the propositional letter representing:

It is raining.

then:

R ∨ S

represents the compound statement:

Either it is raining or it is snowing.

See also: First-order Logic, Logical Consequence, Proposition,
Statement

PROSENTENTIAL An expression is prosentential if it stands in for
the name of, or a description of, a statement in the same way that
a pronoun stands in for the name of, or a description of, a noun. 

See also: Demonstrative, Indexical

PROSENTENTIAL THEORY OF TRUTH The prosentential
theory of truth is the view that, given any statement A, “A is true”
is a prosentential expression, picking out A indirectly in the same
manner that the pronoun “he” can indirectly denote a person. As a
result, prosentential theorists deny that there is a substantial
property called “truth” that attaches to statements, and thus the
view is a species of deflationism.

See also: Disquotationalism, Redundancy Theory of Truth

PROVABILITY LOGIC Provability logic (or GL) is a modal logic
that formalizes provability within first-order arithmetic (or
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within any formal system strong enough to interpret arithmetic,
and for which the Gödel incompleteness theorems hold). Within
provability logic ▫P is interpreted as “P is provable.” Provability logic
is the normal modal logic whose additional axiom is:

L: ▫ (▫A → A) → ▫A

Provability logic is valid on any frame in which the accessibility
relation is transitive and converse-well-founded. A particularly
surprising fact about provability logic is that the axiom T:

▫A → A

is not a theorem.

See also: Doxastic Modal Logic, Epistemic Modal Logic,
Provability Predicate

PROVABILITY PREDICATE Within first-order arithmetic, the
provability predicate (often written “Bew”) is the recursive
predicate that holds of a natural number if and only if that natural
number is the Gödel number of a statement that is provable
within the arithmetic system in question.

See also: Arithmetization, Diagonalization, Gödel’s Second
Incompleteness Theorem, Gödel Sentence, Löb’s Theorem

Π-SENTENCE Within the arithmetical hierarchy (or Kleene
hierarchy) a Π-sentence (or Π1 sentence) is any statement Φ such
that Φ is logically equivalent to some statement of the form:

(∀x1)(∀x2) … (∀xm)Ψ

where Ψ is a formula containing only bounded quantifiers. In
other words, a Π-sentence is a Π-formula with no free variables.

See also: Finitary Arithmetic, Σ-Formula, Σ-Sentence

Π1-SENTENCE see Π-SENTENCE

PSEUDO MODUS PONENS see Assertion

PUNCTUATION Punctuation refers to any linguistic device used to
eliminate ambiguity from expressions in a language. Within
formal systems, punctuation usually takes the form of parentheses
or other bracketing devices (for example, {. }, [, ], <, >), and is used
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to guarantee unique readability – that is, that every well-formed
formula of the system has a unique, unambiguous interpretation. 

See also: Polish Notation, Quotation

PURE FIRST-ORDER LOGIC Pure first-order logic (or pure
predicate logic) is the system of first-order logic that contains no
function symbols, relations, or constants other than the identity
relation. 

See also: Inclusive First-order Logic, Monadic First-order
Logic, Polyadic First-order Logic, Quantified Modal Logic

PURE PREDICATE LOGIC see Pure First-order Logic

PURE SET THEORY Any set theory that disallows the existence of
objects that are not sets is a pure set theory. In other words, a pure set
theory only quantifies over sets, and not over urelements.

See also: Zermelo Fraenkel Set Theory

PUTNAM’S MODEL-THEORETIC ARGUMENT Putnam’s
model-theoretic argument attempts to show that the Lowenheim-
Skolem theorems imply that there are too many models of our
language – that is, too many ways in which our expressions could
link up to the world – for there to be determinate facts about truth
and meaning. As a result Putnam argues that we must embrace a
version of antirealism regarding the connection between our
language and the world.
See also: Compactness, Downward Lowenheim Skolem
Theorem, Non-Standard Model, Upward Lowenheim Skolem
Theorem

Q see Robinson Arithmetic

QED see Quod Erat Demonstrandum

QUALITY Within categorical logic, the quality of a categorical
proposition is determined by whether or not the proposition

Q
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affirms or denies that (some or all) members of the class denoted
by the subject term are also members of the class denoted by
the predicate term. The quality of A-propositions and
I-propositions is affirmative, since they involve the claim that
some or all of the members of the class denoted by the subject term
are also members of the class denoted by the predicate term. The
quality of E-propositions and O-propositions is negative, since
they involve the claim that some or all of the members of the class
denoted by the subject term are not members of the class denoted by
the predicate term. More simply put, the quality of a categorical
proposition is negative if the proposition involves a negation, and is
affirmative otherwise.

See also: Particular Proposition, Quantity, Square of Oppo -
sition, Universal Proposition

QUANTIFIED MODAL LOGIC Quantified modal logic is the
formal system obtained either by extending propositional
modal logics with the addition of quantifiers, or by extending
first-order logic with the addition of modal operators. Quantified
modal logic is vastly more complicated than either of these
subsystems, from both a technical perspective and a philosophical
perspective. In particular, the status of the following purported
“laws” are of particular interest within quantified modal logic:

The Necessity of Identity: (∀x)(∀y)(x = y → ▫(x = y))

The Barcan Formula: ▫(∀x)Φ → (∀x)▫Φ

The Converse Barcan Formula: (∀x)▫Φ → ▫(∀x)Φ

See also: Counterpart Theory, Mere Possibilia, Transworld
Identity

QUANTIFIER A quantifier is a determiner used to express a definite
or indefinite number or amount. Within formal systems the most
common quantifiers are the existential quantifier (∃ – used to
express existential generalizations of the form “there exists
at least one object x such that …) and the universal quantifier
(∀ – used to express universal generalizations of the form “for any
object x, …”). Universal and existential quantifiers can be used
to quantify over objects, in which case they are first-order
quantifiers (the variables ranged over by first-order quantifiers
are usually taken from the end of the alphabet and written in lower
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case). Quantifiers can also be used to quantify over concepts,
relations, properties, or other higher-order entities, in which case
they are called second- or higher-order quantifiers (the variable
bound by such a higher-order quantifier is usually written in upper
case, in order to distinguish it from first-order quantifiers and the
variables they bind). Other sorts of quantifier have been studied,
including generalized quantifiers and numerical quantifiers.

See also: Bounded Quantifier, Branching Quantifier,
Objectual Quantifier, Plural Quantification, Substitutional
Quantifier, Vacuous Quantifier

QUANTIFIER ELIMINATION see Elimination of Quantifiers

QUANTIFIER SHIFT FALLACY The quantifier shift fallacy is the
formal fallacy that occurs when the reasoner mistakenly moves
from a claim of the form:

(∀x)(∃y)Φxy

to a claim of the form:

(∃y)(∀x)Φxy

The fallacy becomes evident if we let “Φ” represent the relation of
child to father. Then the first statement becomes the truth that
every person has a father, while the second statement becomes the
false claim that someone is everyone’s father.

See also: Existential Quantifier, First-order Logic, Scope,
Universal Quantifier

QUANTITY The quantity of a categorical proposition is
determined by whether or not the proposition makes a claim about
all or merely some of the members of the class denoted by the
subject term of the proposition. The quantity of A-propositions
and E-propositions is universal, since they involve the quan -
tifiers “all” and “no” respectively. The quantity of I-propositions
and O-propositions is particular, since they involve the quantifier
“some.”

See also: Affirmative Proposition, Negative Proposition,
Quality, Square of Opposition

QUANTUM LOGIC Quantum logic is a nonstandard logic whose
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development was motivated by puzzles regarding measurement and
observation within quantum physics. The most notable aspect of
quantum logic is that distributivity fails, and thus:

A ∧ (B ∨ C)

does not entail:

(A ∧ B) ∨ (A ∧ C)

See also: Absorbsion, Deviant Logic

QUASI-ORDER see Pre-Ordering

QUASI-ORDERING see Pre-Ordering

QUINE-PUTNAM INDISPENSABILITY ARGUMENT see Indis -
pensability Argument

QUINE’S DICTUM Quine’s dictum is the thesis according to which
we can determine which objects we ought to believe in merely by
determining which theory is our best theory, and then determining
what sorts of objects fall in the range of the existential quantifiers
in that theory. Quine sums up the dictum as:

“To be is to be the value of a variable.”

See also: Bound Variable, Existential Import, Existential
Variable, Objectual Quantifier, Ramsey Sentence, Sub -
stitutional Quantifier

QUOD ERAT DEMONSTRANDUM Quod erat demonstrandum
(or QED), which means “that which was to be proved” in Latin, is a
phrase that is sometimes written at the end of a proof to indicate that
the proof was successfully carried out.

See also: Corollary, Demonstration, Formal Proof, Lemma

QUOTATION Quotation is a device, usually represented using
matched pairs:

“

and

”
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used in order to speak about expressions themselves, instead of what
those expressions denote. Thus:

Red is a color.

“Red” contains three letters.

are true, and:

“Red” is a color.

Red contains three letters.

are false.

See also: Punctuation, Use

RAA see Reductio ad Absurdum

RAMIFIED THEORY OF TYPES see Ramified Type Theory

RAMIFIED TYPE THEORY A ramified type theory (or ramified
theory of types) is a type theory that divides entities into a simple
hierarchy of objects, classes of objects, classes of classes of objects,
etc. like a simple type theory, but further divides these types into
orders. For example, on the simple theory of types all collections
of individuals of type 1 are on a par, being of type 2. On the ramified
theory of types we further subdivide these collections in terms of the
resources needed to specify them. Thus, a type 2 entity (that is, a
collection of individuals) will be of order 1 if it can be defined
merely in terms of individuals and logical resources, while a type 2
entity whose definition requires reference to other type 2 entities is a
type 2 entity of order 2.

The technical difficulties associated with the ramified theory of
types led to the introduction of the axiom of reducibility, which
essentially reduces the ramified theory of types to the simple theory
of types.

See also: Type Theory, Vicious Circle Principle

RAMSEY SENTENCE A Ramsey sentence (or Carnap-Ramsey

R
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Sentence) is the statement obtained by replacing all non-logical
terms in the original statement with variables, and then binding the
resulting variables with existential quantifiers. Thus, beginning
with:

Fab

we first obtain:

Xyz

and then:

(∃X)(∃y)(∃z)Xyz

Ramsey sentences are thought to be useful in terms of isolating the
exact ontological commitments of a theory.

See also: Quine’s Dictum

RAMSEY TEST The Ramsey test is a method for connecting
conditional probabilities to the acceptability, or assertability, of
conditionals. The Ramsey test asserts that the acceptability of a
conditional

P → Q

(in situations where we lack definitive knowledge regarding the truth
conditions of P and Q) is the degree of belief we assign to the
conditional probability:

Pr(Q/P)

that is, the probability that we assign to Q given the hypothesis that
P is true.

See also: Bayes’ Theorem, Conditional Probability, Prob -
ability Calculus, Probability Logic, Probability Theory

RANGE The range of a function (or right field, or co-domain, or
converse domain, or counterdomain) is the set of objects that
may serve as values (outputs) of the function. Note that the image of
a function can be a proper subset of the range of that function – that
is, not every member of the range of a function needs to be “hit” by
that function.

See also: Domain, Field, Fixed Point, Signature
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RANK The rank (or stage) of a set is defined by transfinite
induction on sets as follows:

The rank of the empty set is 0.

The rank of a set S is the least ordinal number greater than the
rank of any member of S.

Intuitively, the rank of a set is a measure of how far up in the
cumulative hierarchy a set first appears.

See also: Ad Infinitum, Cantor’s Theorem, Iterative Con -
ception of Set

RATIONAL NUMBERS A rational number is a real number that
can be expressed as a fraction x⁄y where both x and y are integers. A
real number that is not a rational number is an irrational number.
Examples of irrational numbers include √2 and π.

See also: Dense, Natural Number, Real Number

REAL NUMBERS The real numbers are the result of closing the
rational numbers under the operation of taking least upper
bounds (or greatest lower bounds). Alternatively, the real
numbers are any numbers appearing on the number line. Thus 1, –1,
π, e, 2, etc. are all real numbers.

See also: Analysis, Integers, Natural Numbers, Non-Standard
Analysis

RECURSION see Course of Values Recursion, Primitive Re -
cursion, Recursive Definition, Recursive Function Theory,
Transfinite Recursion

RECURSION THEOREM1 The recursion theorem states that, given
any set A, any member b of A, and any function g from A to A,
there is a function f from the natural numbers to A such that:

f(0) = b

f(n+1) = g(f(n)

In other words, the recursion theorem legitimates the method of
defining a function via recursion. A variant of the recursion theorem
is particularly useful when g is a recursive function, since the
resulting function f will also be recursive.
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See also: Course of Values Recursion, Primitive Recursion,
Recursive Function Theory, Transfinite Recursion

RECURSION THEOREM2 The recursion theorem states that, if fx is
the n-ary recursive function whose Gödel code is x, and g is any
n+1-ary partial recursive function, then there exists an integer e
such that:

fe(x1, x2, … xn)

and:

g(e, x1, x2, … xn)

compute the same function.

See also: Arithmetization, Course of Values Recursion,
Primitive Recursion, Recursive Function Theory

RECURSION THEORY see Recursive Function Theory

RECURSIVE DEFINITION1 A recursive definition (or inductive
definition) of a set is a definition that proceeds in three steps. First,
some initial members of the set are identified. Second, a condition
is provided which states that certain objects are members of the set if
they have certain specified relations to objects that are members of
the set. Third, no object may be a member of the set unless its
inclusion is mandated by the previous steps.

For example, the set of Bob’s ancestors (including himself ) A can
be defined recursively as follows:

(1) Bob is in A.

(2) If x is in A, and y is a parent of x, then y is in A.

(3) A is the smallest set satisfying (1) and (2).

See also: Inductive Set, Recursion Theorem

RECURSIVE DEFINITION2 A recursive definition (or inductive
definition) of a function on the natural numbers is a function whose
value for a particular argument is determined in terms of the values
the function took for earlier arguments. For example, the Fibonacci
sequence can be defined as the range of the following recursive
function:
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f(0) = 0

f(1) = 1

f(n+2) = f(n+1) + f(n)

See also: Explicit Definition, Impredicative Definition,
Recursion Theorem

RECURSIVE FUNCTION A recursive function is any function that
can be constructed from the basic functions of recursive function
theory (the zero function, the successor function, and the
identity functions) plus the function-building operations: com -
position, primitive recursion, and minimization.

See also: Ackermann Function, Characteristic Function,
Primitive Recursive Function, Recursive Relation, Recursive
Set

RECURSIVE FUNCTION THEORY Recursive function theory (or
computability theory) is the study of the recursive functions,
and of particularly important sub-classes of these functions, such as
the primitive recursive functions. One of the central results in
recursive function theory is the proof that all functions computable
by a Turing machine are recursive functions, and vice versa. Also
important is the Church-Turing thesis, which asserts that the
functions that can be computed by finite reasoners (i.e. all effective
functions) are exactly the recursive functions.

See also: Automaton, Complexity Theory, Deterministic
Turing Machine, Non-Deterministic Turing Machine

RECURSIVE RELATION A recursive relation (or decidable
relation) is any relation on the natural numbers whose
characteristic function is a recursive function.

See also: Primitive Recursive Relation, Recursive Function
Theory, Recursive Set

RECURSIVE SET A recursive set (or decidable set) is any set of
natural numbers whose characteristic function is a recursive
function. 

See also: Primitive Recursive Set, Recursive Function Theory,
Recursive Relation
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RECURSIVE THEORY see Recursively Axiomatizable Theory

RECURSIVELY AXIOMATIZABLE THEORY A theory is a recur -
sively axiomatizable theory (or recursive theory) if and only if there
is an axiomatization of that theory such that the set of axioms is
a recursive set.

See also: Finitely Axiomatizable Set, Recursive Function
Theory, Semi-Decidable Set

RECURSIVELY ENUMERABLE SET A set of natural numbers
A is recursively enumerable (or semi-decidable set, or Turing
recognizable set) if there is a recursive unary function whose
image is A. 

See also: Definable Set, Enumerable Set, Primitive Recursive
Set, Recursive Set

RED HERRING Red herring (or ignoratio elenchi) is an informal
fallacy which occurs when the reasoner presents an argument for a
conclusion that is related to, but distinct from, the conclusion that
the reasoner is presenting himself as arguing for. Notice that in an
occurrence of the red herring fallacy the argument presented might
be valid or inductively strong – the problem is that the reasoner
has (perhaps successfully) argued for conclusion that is irrelevant to
the point at issue.

See also: Enthymeme, Informal Fallacy

REDUCIBILITY see Axiom of Reducibility

REDUCTIO see Classical Reductio ad Absurdum, Reductio ad
Absurdum

REDUCTIO ABSURDUM see Reductio ad Absurdum

REDUCTIO AD ABSURDUM Reductio ad absurdum (or RAA, or
reductio, or reductio absurdum, or indirect proof, or negation
introduction) is the rule of inference that allows one to infer the
negation of a formula from a derivation whose assumption is the
formula in question (without the negation), and which terminates in
a contradiction. In symbols we have:
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P
:
:
Q ∧ ~ Q
~ P

where the horizontal line above P indicates that this assumption has
been discharged – that is, that the proof no longer depends on it.

Reductio ad absurdum should be distinguished from the stronger
rule of inference classical reductio ad absurdum.

See also: Double Negation Elimination, Double Negation
Introduction, Excluded Middle, Introduction Rule, Natural
Deduction

REDUNDANCY THEORY OF TRUTH The redundancy theory of
truth is the view that, given any statement A, “A is true” has
the same meaning as A. Thus, redundancy theorists defend the
following schema (sometimes called the equivalency thesis):

For any statement A:

“‘A’ is true” has the same meaning as “A”

As a result, redundancy theorists deny that there is a substantial
property called “truth” that attaches to statements, and thus the
view is a species of deflationism.

See also: Convention T, Disquotationalism, Minimalism,
Prosentential Theory of Truth

REFERENCE Reference is the relation that holds between a singular
term and the object (if any) that it picks out.

See also: Co-Referential, Denotation, Free Logic, Referential
Opacity, Semantic Value, Slingshot Argument

REFERENTIAL OPACITY An expression is referentially opaque if
and only if one cannot substitute co-referential terms within the
scope of the expression while preserving the truth value of the
resulting statements. For example, “believes that” is referentially
opaque. Even assuming that “Jim” and “president of the club” are
co-referential, it does not follow that:

Bob believes that Jim is powerful.
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and:

Bob believes that the president of the club is powerful.

must have the same truth value, since Bob might be unaware of the
fact that Jim is identical to the president of the club.

See also: Denotation, Propositional Attitude, Reference,
Semantic Value

REFLECTION PRINCIPLE Within set theory, a reflection
principle states that any property holding of the entire universe of
sets also holds when restricted to some particular set. Typically,
reflection principles take the form:

Φ → (∃x)Φx

where:

Φx

is the result of restricting all of the quantifiers in Φ to members
of x.

Reflection principles are quite strong, implying the existence of
large cardinal numbers, such as inaccessible cardinals. In
addition, if one assumes the axiom of choice, then reflection
principles imply global well-ordering.

See also: Cumulative Hierarchy, Global Choice, Iterative
Conception of Set, Limitation-of-Size Conception of Set

REFLEXIVITY A binary relation R is reflexive if and only if, for any
object x, we have:

Rxx

See also: Coreflexivity, Irreflexivity T

REFUTATION A refutation of a statement Φ is a proof that takes Φ
as a premise and has a contradiction as its conclusion. Thus, a
refutation of Φ is a proof that the truth of Φ leads to a contradiction
(or, intuitively, is a proof that Φ cannot be true).

See also: Classical Reductio ad Absurdum, Counterexample,
Countermodel, Reductio ad Absurdum

REGISTER COMPUTABLE A function is register computable (or
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abacus computable) if and only if it can be computed by a
register machine. The register computable functions are exactly
the recursive functions (and thus are exactly the functions
computable by a Turing machine).

See also: Automaton, Deterministic Turing Machine, Non-
Deterministic Turing Machine, Recursive Function Theory

REGISTER MACHINE A register machine (or abacus machine) is
a machine (usually conceived abstractly) which consists of (a) an
unbounded or infinite collection of registers that can hold any
number of counters, (b) an unbounded or infinite collection of
counters, (c) a table of instructions where each instruction specifies a
particular register, specifies the arithmetic function to be performed
on that register (e.g. “add a counter,” “double the number of
counters”), and specifies the next instruction to be performed.
Register machines can compute exactly the same functions as Turing
machines.

See also: Automaton, Deterministic Turing Machine, Non-
Deterministic Turing Machine, Register Computable
Function, Recursive Function Theory

REGULAR CARDINAL A regular cardinal is cardinal number γ
where the cofinality of γ is equal to γ itself (i.e. co(γ) = γ). A cardinal
number that is not regular is a singular cardinal.

See also: Cardinal Arithmetic, Cardinal Successor, Large
Cardinal, Limit Ordinal, Strongly Inaccessible Cardinal,
Weakly Inaccessible Cardinal

REGULAR ORDINAL A regular ordinal is a limit ordinal number γ
where the cofinality of γ is equal to γ itself (i.e. co(γ) = γ). An ordinal
number that is not regular is a singular ordinal.

See also: Limit Ordinal, Order Type, Ordinal Arithmetic,
Ordinal Successor

REGULARITY see Axiom of Foundation

REGULARITY AXIOM see Axiom of Foundation

RELATIONAL SEMANTICS1 see Kripke Semantics
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RELATIONAL SEMANTICS2 A relational semantics is a semantics
that represents the semantic status of a statement in terms of a
relation holding, or not, between it and one of the truth values.
Unlike standard semantics, which are typically formulated in terms
of a function mapping each statement onto a unique truth value,
relational semantics provides a natural framework within which one
can treat truth value gaps or truth value glut logics, since a
statement might be related to neither classical truth value, or both
truth values, respectively.

See also: Analethic Logic, Dialethic Logic, First-Degree
Entailment, Many-Valued Logic, Paraconsistent Logic,
Relevance Logic

RELATIVE COMPLEMENT The relative complement of two sets
A and B (or the complement of B relative to A, or the difference
of A and B), usually written as “A \ B” or “A – B,” is the set that
contains, as members, exactly the members of A that are not
members of B. In other words, the complement of B relative to A is:

{x: x ∈ A and x ∉ B}

See also: Symmetric Difference

RELATIVE CONSISTENCY PROOF A relative consistency proof is
a proof that some formal system S is consistent which is carried
out within another formal system S*. As a result of Gödel’s second
incompleteness theorem, in most cases S* needs to be signifi -
cantly stronger than S in order to carry out a relative consistency
proof of S in S*. As a result, relative consistency proofs do not
provide us with unqualified assurance that the system in question is
consistent. Instead, a relative consistency proof of S in S* tells us that
if S* is consistent, then so is S.

See also: Forcing, Independence Result, Inner Model, Limi -
tation Result

RELEVANCE LOGIC A relevance logic (or relevant logic) is a non-
standard logic where the truth of a conditional:

P → Q

requires that the antecedent P must be relevant to the conclusion
Q. Relevance logics are primarily motivated by the paradoxes of
material implication, and their semantics are usually a variation
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of Kripke semantics. Most relevance logics are paraconsistent
logics.

See also: Dialethic Logic, First-Degree Entailment, Imposs -
ible Worlds, Relational Semantics, Strong Paraconsistency,
Weak Paraconsistency

RELEVANT LOGIC see Relevance Logic

REPLACEMENT see Axiom(s) of Replacement

REPLACEMENT AXIOM see Axiom(s) of Replacement

REPLACEMENT RULE see Rule of Replacement

REPRESENTATION A n+1-ary predicate P represents an n-ary
function f if and only if we have:

Px1, x2, … xn, y is true if and only if f(x1, x2, … xn) = y

Similarly, a unary predicate P represents a set S if and only if:

Px is true if and only if x is a member of S

See also: Definable, Primitive Recursive Function, Primitive
Recursive Set, Recursive Function, Recursive Set

RESTRICTION see Axiom of Foundation

RESTRICTION AXIOM see Axiom of Foundation

RETRODUCTION see Abduction

REVERSE MATHEMATICS Reverse mathematics is the project of
determining how much mathematics can be reduced to finitary
mathematics, in light of Gödel’s incompleteness theorems and
the failure of Hilbert’s Program to reduce all of mathematics to
finitary constructions. This is accomplished through a detailed
investigation designed to find the weakest formal systems of
arithmetic and analysis within which various classic mathematical
results can be proven.

REVISION THEORY OF TRUTH The revision theory of truth is an
account of the Liar paradox (and other semantic paradoxes)
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which avoids the contradiction by treating Tarski’s T-schema for
the truth predicate as a circular definition of truth. According to
the revision theory, such circular definitions should be treated as
rules for revising one’s initial hypothesis regarding the truth or
falsity of statements. As a result, true statements are those that
stabilize on the value true after sufficiently many revisions, while
false statements are statements that stabilize on the false.
Paradoxical statements, which never stabilize but forever oscillate
between the two values, are prevented from implying contradictions
by a sophisticated account of the correct logic for reasoning about
such definitions.

See also: Convention T, Correspondence Theory of Truth,
Semantic Paradox, Semantically Closed Language, Tarski’s
Indefinability Theorem

RICHARD PARADOX The Richard paradox (or Richard’s para -
dox) is the paradox of denotation that arises as follows. Since our
language is countably infinite, we can enumerate all expressions
which denote a unique real number. Given such an enumeration,
we can construct a real number r as follows. For the ith digit in the
decimal expansion of r, pick 5 if the ith place in the decimal expansion
of the ith entry in our list is not 5, and pick 6 otherwise. This
diagonalization construction picks out a unique real number which
is not on our list (since, for the real number denoted by the nth

expression on the list, our number disagrees with it at the nth decimal
place). Contradiction.

See also: Berry Paradox, König Paradox

RICHARD’S PARADOX see Richard Paradox

RIGHT FIELD see Range

RIGID DESIGNATOR A rigid designator is any referring expression
that refers to the same objects in every possible world in which it
refers at all. Thus, definite descriptions such as:

The tallest man on earth.

are typically not rigid designators. Singular terms, however, are
thought by many to rigidly designate.

See also: Counterpart Theory, Necessity of Identity, Refer -
ence, Transworld Identity
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ROBINSON ARITHMETIC Robinson arithmetic (or Q) is a finitely
axiomatized sub-system of Peano arithmetic. One standard
axiomatization of Robinson arithmetic consists of the following seven
axioms:

(1) (∀x)S(x) ≠ 0

(2) (∀x)(∀y)(S(x) = S(y) → x = y)

(3) (∀y)(y = 0 ∨ (∃x)(Sx = y)

(4) (∀x)(x + 0 = x)

(5) (∀x)(∀y)(x + S(y) = S(x + y))

(6) (∀x)(x • 0 = 0)

(7) (∀x)(∀y)(x • S(y) = (x • y) + x)

(where S(x) is the arithmetic successor function). Speaking
somewhat loosely, Robinson arithmetic is Peano arithmetic without
mathematical induction. 

See also: Gödel’s First Incompleteness Theorem, Gödel’s
Second Incompleteness Theorem

ROSS PARADOX The Ross paradox (or Ross’s Paradox) is a puzzle
that arises in deontic modal logic. If we assume that the deontic
obligation operator O obeys the rules for a normal modal logic,
and as a result we have the distributivity axiom K:

O(P → Q) → (O(P) → O(Q))

then we obtain:

O(P) → O(P ∨ Q)

(since P → (P ∨ Q) is a classical logical truth). Letting P be “Jon
pays the rent” and Q be “Jon burns down the building,” however, it
follows that Jon’s obligation to pay the rent entails an obligation that
he can fulfill by burning down the building.

See also: Paradox

ROSS’S PARADOX see Ross Paradox

RULE OF INFERENCE A rule of inference (or inference rule) is an
explicit rule within a formal system for generating a new line in a
derivation from previously obtained lines.
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See also: Elimination Rule, Harmony, Introduction Rule,
Natural Deduction, Rule of Replacement

RULE OF REPLACEMENT A rule of replacement (or replacement
rule) is an explicit rule within a formal system for replacing a line
in a derivation with a new line logically equivalent to the original
line.

See also: Elimination Rule, Harmony, Introduction Rule,
Natural Deduction, Rule of Inference

RUSSELL PARADOX The Russell paradox (or Russell’s paradox)
concerns the intuitive idea that sets can be members of themselves.
If we accept the comprehension schema for sets:

(∃x)(∀y)(y ∈ x ↔ Φ(y))

then we are guaranteed that, for any predicate Φ, there will be a set
that contains exactly the objects that satisfy Φ. One condition we can
plug into the comprehension schema is being a set that is not a
member of itself. The resulting instance of the comprehension
schema is:

(∃x)(∀y)(y ∈ x ↔ y ∉ y)

The set whose existence is asserted by this principle is the Russell
set, which we shall represent as R. Thus:

(∀y)(y ∈ R ↔ y ∉ y)

Now, the Russell set is itself an object, and we can thus ask whether
it is a member of itself. The principle above, however, has the
following as a logical consequence:

R ∈ R ↔ R ∉ R

In other words, the Russell set is a member of itself if and only if it
is not. This is a contradiction, and we can thus see that the
comprehension schema is inconsistent. 

See also: Absolute Infinite, Grelling Paradox, Indefinite
Extensibility, Naïve Set Theory, Vicious Circle Principle

RUSSELL SET The Russell set (or Russell’s set) is the (supposed) set
which contains, as members, any set that does not contain itself as a
member. In symbols, letting R be the Russell set, we have:
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(∀x)(x ∈ R ↔ x ∉ x)

The existence of the Russell set follows from the comprehension
schema, and also follows from Basic Law V. One need merely ask
whether the Russell set is a member of itself to see that the existence
of the Russell set leads to a contradiction (this is the Russell
paradox). 

See also: Grelling Paradox, Heterological, Indefinite Exten -
sibility, Iterative Conception of Set, Limitation-of-Size
Conception of Set, Set-Theoretic Paradox

RUSSELLIAN PROPOSITION see Singular Proposition

RUSSELL’S PARADOX see Russell Paradox

RUSSELL’S SET see Russell Set

SALVE VERITATE Salve veritate is Latin for “saving the truth.” Two
expressions are interchangeable salve veritate if and only if they can
be substituted for one another in other expressions without affecting
the truth values of those expressions.

See also: Indeterminacy of Translation, Propositional Atti -
tude, Referential Opacity, Slingshot Argument

SATISFACTION Satisfaction is the relation that holds between an
n-ary predicate and any n-tuple of objects such that the predicate
is “true” of those objects. The notion of “truth” at issue here is
spelled out in different ways in different formal semantics.

See also: Truth-in-a-Model, Variable

SATISFIABILITY A theory is satisfiable if there is some
interpretation that makes all statements in the theory true. A
theory that is not satisfiable is unsatisfiable.

See also: Interpretation, Model, Model Theory, Truth-in-a-
Model

S
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SCHEMA A schema is a formula expressed in some formal language
except for the occurrence of one or more metalinguistic variables.
These metalinguistic variables can be replaced by any expression of
the appropriate logical type from the formal language in question in
order to form an instance of the schema (sometimes additional
constraints on acceptable substitutions are imposed). As a result, the
schema typically represents infinitely many different formulas
within the formal language.

See also: Axiom(s) of Replacement, Axiom of Separation(s),
Axiom Schema, Comprehension Schema, Mathematical
Induction, T-schema

SCHEMA T see T-schema

SCOPE The scope of a logical connective occurring within a
formula is the smallest well-formed formula that contains the
logical constant in question. Intuitively, the scope of a logical
constant is the portion of the formula over which that operator has
some effect. 

The scope of a quantifier is the variable occurrences within the
formula that are bound by that quantifier.

See also: Formation Rules, Quantifier Shift Fallacy, Vacuous
Quantifier

SCOTT LOGIC Scott logic is the intermediate logic obtained by
adding all instances of:

((~ ~ A → A) → (A ∨ ~ A)) → (~ ~ A ∨ ~ A)

to intuitionistic propositional logic. Scott logic (along with
Kreisel-Putnam logic) is one of the few intermediate logics known
to satisfy the disjunction property.

See also: Gödel-Dummett Logic, Logic of Weak Excluded
Middle

SEA BATTLE see Aristotle’s Sea Battle

SECOND-ORDER LOGIC Second-order logic is the formal
system that results from extending first-order logic by adding
additional quantifiers that range over concepts or properties of
objects. Second-order logic differs from higher-order logic more
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generally in that some higher-order logics also allow quantification
over concepts of concepts, concepts of concepts of concepts, etc.

Consider the statement:

Alice is nice.

We can formalize this as:

Na

Within first-order logic, we can infer from this that something is
nice:

(∃x)Nx

Within second-order logic, however, we can also infer that there is
something – that is, some concept – that Alice has:

(∃X)Xa

See also: Aristotelian Second-order Logic, Comprehension
Schema, Geach-Kaplan Sentence, Many-Sorted Logic, Plural
Quantification

SELF-CONTRADICTORY see Contradiction

SELF-REFERENCE An expression displays self-reference if it con -
tains a singular term or other referring expression that refers to
the statement itself. The most famous instance of self-reference is the
Liar sentence:

This sentence is false.

See also: Fixed Point, Gödel Sentence, Liar Paradox, Yablo
Paradox

SEMANTIC CONCEPTION OF TRUTH see Convention T

SEMANTIC CONSEQUENCE see Logical Consequence

SEMANTIC EQUIVALENCE see Logically Equivalent

SEMANTIC IMPLICATION see Logical Implication

SEMANTIC PARADOX A semantic paradox (or logical paradox) is
a paradox that arises from basic intuitions regarding truth,
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satisfaction, reference, or related semantic notions. Examples of
semantic paradox include the Liar paradox, the Yablo paradox,
and the paradoxes of denotation.

See also: Curry Paradox, Insolubilia, Open Pair, Semantically
Closed Language, Tarski’s Indefinability Theorem, Truth-
Teller

SEMANTIC TABLEAU A semantic tableau (or truth-tree) is a
method for testing arguments for validity by constructing a
branching, tree-like structure. In essence, a tableau unpacks the
truth-conditions of the premises and the negation of the
conclusion of an argument, reducing them to their simplest
constituent parts according to a fixed set of rules. If the argument is
valid, then every branch of the tableau will contain a contradiction,
while if some branch of the tree is not closed off in this way, then this
shows that the argument is invalid.

See also: Logical Consequence, Logical Validity, Semantics

SEMANTIC VAGUENESS Vagueness is semantic if and only if it is
a result of some sort of inadequacy in the language we use to
describe the world and not due to any indeterminacy in the world
itself. For example, on might think that the predicate “is tall” is
vague, not because there is any imprecision or “fuzziness” in the
exact heights of objects, but because the rules for correctly applying
the predicate “is tall” do not specify how one is to apply it in
borderline cases.

See also: Forced March Sorites, Higher-order Vagueness, In
Rebus Vagueness, Ontic Vagueness, Sorites Paradox, Sorites
Series

SEMANTIC VALIDITY see Logical Validity

SEMANTIC VALUE The semantic value of an expression is the entity
(if any) which the formal semantics assigns to that expression.
Thus, singular terms have objects as their semantic value, and
statements have truth values as their semantic values. In some
systems predicates have sets as their semantic values and logical
connectives have functions from sequences of truth values to
truth values – that is, truth functions - as their semantic values.
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See also: Denotation, Designated Value, Reference, Slingshot
Argument

SEMANTICALLY CLOSED LANGUAGE A semantically closed
language is any language where:

(1) Every expression of the language has a name in the
language.

(2) The language contains a predicate T (a truth predicate)
which holds of (the name of) a statement if and only if
that statement is true.

(3) All instances of the T-schema:
T(<Φ>) ↔ Φ

expressible in the language are true.

Alfred Tarski proved that any semantically closed language enables
one to construct a version of the Liar paradox, and is thus
inconsistent.

See also: Bivalence, Law of Non-Contradiction, Semantic
Paradox, Tarski’s Indefinability Theorem

SEMANTICALLY EQUIVALENT see Logically Equivalent

SEMANTICS Semantics studies the properties of expressions,
utterances, and statements that do not vary from use to use, or from
context to context – this distinguishes it from pragmatics, which
takes such variation into account. Thus, semantics is concerned with
the (context-independent) meaning of expressions and statements,
and their referents, as well as with the logical connections between
expressions.

See also: Formal Semantics, Model Theory, Pragmatics

SEMI-DECIDABLE SET see Recursively Enumerable Set

SEMI-DECIDABLE THEORY A theory is semi-decidable if and
only if the set of Gödel codes of theorems of that theory is a
recursively enumerable set.

See also: Arithmetization, Effectively Enumerable Set,
Finitely Axiomatizable Theory, Recursively Axiomatizable
Theory
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SENSE Sense is one of the two aspects of the content of an expression
identified by Gottlob Frege. Frege considered cases such as:

Hesperus is identical to Phosphorus

(where both terms refer to Venus) and wondered how such
statements could be informative or significant, since the two
singular terms being equated refer to the same object. He
concluded that the content of an expression could be divided into two
aspects: its sense (i.e. its meaning, or mode of presentation) and its
referent (i.e. the object picked out). The puzzle is then solved, since
the informativeness of the identity claim above results from learning
that two expressions with different senses nevertheless refer to the
same object.

See also: Definition, Intension, Intensional Logic

SENTENCE LETTER see Propositional Letter

SENTENTIAL LOGIC see Propositional Logic

SENTENTIAL VARIABLE see Propositional Letter

SEPARATION see Axiom(s) of Separation

SEPARATION AXIOM see Axioms(s) of Separation

SEQUENCE A sequence (or string) is a set of objects along with a
linear ordering on them. Thus, unlike sets (without an ordering)
and multisets, in a sequence the order in which the elements occur
matters, and as a result, unlike sets (but like multisets), multiple
occurrences of the same element matter.

See also: Ordered N-tuple, Ordered Pair, Sequent, Sequent
Calculus

SEQUENT A sequent is an ordered triple consisting of three parts:
a sequence (or sometimes a set, or multi-set, etc.) of formulas,
followed by an arrow, followed by a second sequence (or set, or
multiset, etc.) of formulas. Thus:

A, B ⇒ A ∧ B, C

is a sequent. A sequent is meant to represent the claim that if all the
members of the first sequence (or set, or multiset, etc.) are true,
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then at least one member of the second sequence (or set, or multiset,
etc.) will be true. Thus, the above sequent represents the claim that if
both A and B are true, then at least one of A ∧ B and C will be true.

See also: Contraction, Cut, Permutation, Sequent Calculus,
Structural Rule, Weakening

SEQUENT CALCULUS Sequent calculus is a formal system
consisting of rules of inference for combining one or more
sequents into a new sequent. For example, the cut rule in the
sequent calculus tells us that if we have two sequents of the form:

Γ ⇒ Δ, A

and:

A, Π ⇒ Σ

then we can infer the new sequent:

Γ, Π ⇒ Δ, Σ

(effectively, “cutting” A out of the inference). Cut is what is known,
within the sequent calculus, as a structural rule. Other important
structural rules include weakening, contraction, and per -
mutation.

See also: Abelian Logic, Affine Logic, Cut Elimination,
Substructual Logic

SERIALITY A relation R is serial (or entire) if and only if, for any x,
there is a y, such that:

Rxy.

See also: Axiom of Choice, D, Function

SET A set is a collection of objects. In other words, the set-forming
operation allows us to combine a number of objects into a single
object: the set containing them. The objects combined in this way to
form the set are the members of the set.

Curly brackets {} are often used to denote sets. Thus, the set of
natural numbers strictly between 2 and 6 can be represented as:

{3, 4, 5}

and the set of all natural number greater than 4 can be represented as:

{x | x > 4}

s e t 259

1004 02 pages 001-322:Layout 1  16/2/09  15:12  Page 259



(This can be read as “The set of all x such that x is greater than 4.”) 

See also: Cartesian Product, Multiset, Non-Well-Founded Set,
Subset, Urelement

SET-THEORETIC HIERARCHY see Cumulative Hierarchy

SET-THEORETIC PARADOX A set-theoretic paradox is a paradox
that arises from basic intuitions regarding the nature of sets.
Examples of set-theoretic paradoxes include the Russell paradox,
the Cantor paradox, and the Burali-Forti paradox.

See also: Absolute Infinite, Indefinite Extensibility, Iterative
Conception of Set, Limitation-of-Size Conception of Set,
Naïve Set Theory, Vicious Circle Principle

SET-THEORETIC REALISM Set-theoretic realism is a version of
platonism about mathematical objects which asserts that sets
actually exist and are epistemically accessible to us.

See also: Mathematical Abstractionism, Meinongianism,
Nominalism, Platonism

SET-THEORETIC SUCCESSOR see Cardinal Successor, Ordinal
Successor

SET THEORY Set theory is the mathematical study of sets. Set theory
proceeds by formulating an axiomatization of sets, usually con -
taining “∈” as its only non-logical expression, such as Zermelo
Fraenkel set theory or Von Neumann Bernays Gödel set
theory, and then studying the formal properties of this system.
Typically, in order to be considered a set theory, the theory will need
to entail the axiom of extensionality:

(∀x)(∀y)(x = y ↔ (∀z)(z ∈ x ↔ z ∈ y))

Most of the other common axioms of set theory have been rejected
in at least one set theory, however.

See also: Kripke-Platek Set Theory, Morse-Kelley Set Theory,
Naïve Set Theory, Non-Well-Founded Set Theory, Positive Set
Theory

S5 The modal logic S5 is the normal modal logic whose additional
axioms are:
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T: ▫ A → A

5: � A → ▫ � A

The modal logic S5 is valid on any frame in which the
accessibility relation is symmetric, transitive, and reflexive.

See also: Kripke Semantics, Kripke Structure, Modality, S4

Σ-FORMULA Within the arithmetical hierarchy (or Kleene
hierarchy) a Σ-formula (or Σ1 formula) is a formula Φ such that Φ
is logically equivalent to some formula of the form:

(∃x1)(∃x2) … (∃xm) Ψ

where Ψ is a formula containing only bounded quantifiers.

See also: Finitary Arithmetic, Π-Formula, Π-Sentence,
Π-Sentence

S4 The modal logic S4 is the normal modal logic whose additional
axioms are:

T: ▫ A → A

4: ▫ A → ▫ ▫ A

The modal logic S4 is valid on any frame in which the
accessibility relation is transitive and reflexive.

See also: Kripke Semantics, Kripke Structure, Modality, S4

SHARPENING Within supervaluational semantics, a sharpening
(or admissible sharpening), relative to a predicate Φ, is any
model that assigns an extension E and anti-extension A to Φ such
that, for any object x in the domain of the model, x is either in the
extension E or in the anti-extension A. In other words, a sharpening,
relative to a predicate Φ, is a model that treats Φ classically. In
applications of supervaluational semantics to vague predicates, a
sharpening represents a way of making the application conditions of
Φ precise.

See also: Borderline Case, Sorites Paradox, Sorites Series,
Supertrue

SHEFFER DAGGER see Dagger
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SHEFFER STROKE The Sheffer stroke (or alternate denial) is the
binary logical connective represented by “|” (or sometimes “↑”)
whose truth table is:

Intuitively, “P | Q” can be read as “either not P or not Q” or “not
both P and Q” and is known as the NAND operation in computer
science and in Boolean algebra.

The Sheffer stroke is an expressively complete connective – that
is, every truth table in propositional logic can be represented by an
expression containing only propositional letters, punctuation,
and the Sheffer stroke. For example, the disjunction of P and Q
(i.e. “P ∨ Q”) can be represented as:

(P | P) | (Q | Q)

and the negation of P (i.e. “~ P”) can be represented as:

(P | P)

See also: Boolean Operator, Dagger

SIGNATURE The signature of a formal system is a formal way of
representing the non-logical vocabulary of the language of that
formal system. Typically, a signature consists of three elements: a
set of function symbols, a set of relation symbols, and a function
mapping any function symbol or relation symbol contained in these
sets onto a natural number – the adicity, or number of argu -
ments, of the function or relation.

See also: Binary Function, Binary Relation, N-ary Function,
N-ary Relation, Unary Function, Unary Relation

SIMPLE FORMULA see Atomic Formula

SIMPLE ORDERING see Linear Ordering

SIMPLE SENTENCE see Atomic Sentence

P Q P | P
T T F
T F T
F T T
F F T
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SIMPLE THEORY OF TYPES see Simple Type Theory

SIMPLE TYPE THEORY A simple type theory (or the simple
theory of types) is a type theory that divides objects into a simple
hierarchy of objects, classes of objects, classes of classes of objects,
etc. Simple type theories are contrasted with ramified type
theories, which further stratifies these simple types into orders.

See also: Axiom of Reducibility, Type Theory, Vicious Circle
Principle

SIMPLIFICATION see Conjunction Elimination

SIMPLY CONSISTENT see Negation Consistent

SIMPLY FINITE see Simply Infinite

SIMPLY INFINITE A set S is simply infinite if and only if there is no
natural number n such that there is a one-to-one onto function
from {0, 1, 2, … n-1, n} to S. A set is simply finite if there is such
an n.

A set being simply infinite should be contrasted with its being
Dedekind infinite, since the two notions are only equivalent if one
assumes the axiom of choice.

See also: Absolute Infinite, Complete Infinity, Countably
Infinite

SINGLE TURNSTILE The single turnstile symbol |- is used to
represent the deductive consequence relation. If Δ is a set of
statements, and Φ a single statement, then:

Δ |- Φ

holds if Φ is a deductive consequence of Δ.

See also: Consequence Relation, Deductive Validity, Double
Turnstile, Logical Consequence

SINGLETON Within set theory, the singleton of an object A is the
set that contains exactly A as a member. The singleton of an object
A is usually written as {A}.

See also: Axiom of Infinity, Axiom of Pairing, Axiom of
Zermelo Infinity, Ordered Pair, Unordered Pair
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SINGULAR CARDINAL see Regular Cardinal

SINGULAR ORDINAL see Regular Ordinal

SINGULAR PROPOSITION A singular proposition (or Russellian
proposition) is a proposition that involves a particular object in
virtue of that object being a constituent of the proposition. Thus,
that Bob is bald is a singular proposition involving Bob himself in this
direct manner. The proposition that the tallest man alive is tall is not
singular, since it does not involve the tallest man in this direct way.

See also: Constant, Individual, Singular Term, Statement

SINGULAR TERM A singular term is a linguistic expression that
denotes an object. Singular terms come in two varieties: constants,
each of which denotes a particular object, and first-order variables,
which, when used together with quantifiers, can range over many
objects.

See also: Bound Variable, Existential Variable, Higher-order
Variable, Individual, Open Term, Universal Variable

SITUATION A situation is a part of a world. Situations are, within
situation semantics, the analogue of models within more
traditional approaches to semantics.

See also: Mereology, Proper Parthood, Semantics, Situation
Semantics, Structure

SITUATION SEMANTICS Situation semantics is a formal
semantics which interprets statements as true or false relative to
situations. Situations are structures that are parts of the world,
and, as a result, a situation, unlike a traditional possible world, will
not always assign truth or falsity to every statement – in particular,
it will fail to assign a truth value to statements that concern aspects
of the world that are not contained in the situation. 

Situation semantics allows for the situation itself to be a
constituent of the situation, so that we can interpret statements
that concern the situation of evaluation itself. As a result, recent
formulations of situational semantics have made use of non-well-
founded set theory.

See also: Model Theory, Non-Well-Founded Set, Self-
Reference, Semantics
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SITUATIONAL SEMANTICS see Situation Semantics

SKOLEMIZATION Skolemization is the process by which a formula
in the language of first-order logic is transformed into one which
is in Skolem normal form. Skolemization is achieved by
eliminating each existential quantifier, and replacing each exist -
ential variable with a function term f(x1, x2, … xn) where f is a new
function symbol and x1, x2, … xn are the universal variables within
whose scope the eliminated existential variable occurred.

See also: Prenex Normal Form, Skolem Normal Form

SKOLEM-LOWENHEIM THEOREM see Downward Lowenheim-
Skolem Theorem, Upward Lowenheim-Skolem Theorem

SKOLEM NORMAL FORM A statement in the language of first-
order logic is in Skolem normal form if and only if it is in prenex
normal form and contains no existential quantifiers. Every
statement in the language of first-order logic can be transformed
into a statement in Skolem normal form which is satisfiable if and
only if the first is (although the two formulas might not be logically
equivalent). This process is called skolemization.

See also: Conjunctive Normal Form, Disjunctive Normal
Form, Negation Normal Form

SKOLEM PARADOX The Skolem paradox (or Skolem’s paradox) is
a direct result of the downward Lowenheim-Skolem theorem,
which states that any theory, such as set theory, that has an infinite
model, has a countably infinite model. Standard set theories (such
as Zermelo Fraenkel set theory), however, have, as a theorem,
a statement asserting the existence of uncountable sets. The
paradox thus arises when we ask how there can be a countably
infinite model of a theory that asserts the existence of uncountably
infinite sets, and thus asserts the existence of uncountably many
objects.

See also: Cantor’s Theorem, Intended Interpretation, Non-
Standard Model, Upward Lowenheim-Skolem Theorem

SKOLEM’S PARADOX see Skolem Paradox

SLINGSHOT ARGUMENT A slingshot argument is any one of a
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number of arguments whose conclusion is that all true
statements denote the same object, if they denote at all.

See also: Co-Referential, Gödel’s Slingshot Argument, Refer -
ence, Semantic Value

SLIPPERY SLOPE Slippery slope is an informal fallacy which
occurs when the reasoner attempts to support a conclusion by
appealing to a chain of inferences, or some other sort of “chain
reaction,” which is not in fact likely to hold. Note that much of the
persuasiveness of a slippery slope argument stems from the fact that
each link in the chain might be likely, even though the likelihood of
the entire chain coming about may be low.

See also: Informal Fallacy, Polysyllogism, Sorites Paradox,
Sorites Series

S-M-N THEOREM The S-M-N theorem (or iteration theorem,
or parameter theorem, or parametrization theorem, or Smn

theorem, or translation lemma) states that, given any m+n-ary
total recursive function f, each of the total recursive n-ary
functions formed by fixing the first m arguments as parameters
are also recursive, and can be effectively constructed from the
original m+n-ary function and the parameter.

See also: Effectively Computable Function, Partial Function,
Primitive Recursive Function, Recursive Function Theory

Smn THEOREM see S-M-N theorem

Σ1 FORMULA see Σ-Formula

Σ1 SENTENCE see Σ-Sentence

SOPHISM A sophism is a fallacious argument used to convince
someone of a false conclusion based on reasoning that is confusing
or is somehow likely to lead the reader astray. The notion traces to the
sophists, a group of rhetoric teachers in ancient Greece who taught
their students methods of persuasion, usually for careers in public
life.

See also: Antinomy, Formal Fallacy, Informal Fallacy,
Insolubilia, Paradox, Sophisma

266 s l i p p e r y  s l o p e

1004 02 pages 001-322:Layout 1  16/2/09  15:12  Page 266



SOPHISMA Within medieval logic, a sophisma (plural: sophismata)
was any one of a number of ambiguous, puzzling, or paradoxical
statements that were thought to need philosophical treatment and
some sort of solution. A number of the sophismata involved self-
reference and are closely related to the Liar paradox.

See also: Epistemic Paradox, Insolubilia, Semantic Paradox,
Sophism, Truth Predicate

SOPHISMATA see Sophisma

SORITES see Polysyllogism

SORITES PARADOX The Sorites paradox (or paradox of
vagueness, or paradox of the heap) concerns predicates, such as
“heap,” “bald,” or “red,” where there is some imprecision involved
in the distinction between definite instances of that predicate and
definite instances of the negation of the predicate. For example, the
predicate “bald” is tolerant: small changes to an object, such as the
addition or subtraction of a single hair, do not turn a clear instance of
a bald man into a clear instance of a non-bald man. The following
three claims are inconsistent, however:

(1) A man with 0 hairs on his head is bald.

(2) For any natural number n, if a man with n hairs on his
head is bald, then a man with n+1 hairs on his head is bald.

(3) A man with 100,000 hairs on his head is not bald.

(1) and (3) are obviously true, so the problem must lie either with (2),
or with the reasoning that leads to the contradiction. (2), however,
just expresses the idea that “bald” is tolerant.

See also: Borderline Case, Forced March Sorites, Higher-Order
Vagueness, In Rebus Vagueness, Ontic Vagueness, Semantic
Vagueness, Sorites Series

SORITES SERIES Given a particular vague predicate Φ, a Sorites
series is a sequence of objects a1, a2, a3 … an such that, for each i, the
difference between ai and ai+1 is small enough not to affect the justice
with which Φ applies, yet where a1 is a clear instance of Φ, and an is a
clear instance of ~ Φ. In other words, a Sorites series is a sequence of
objects that gives rise to the Sorites paradox.
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See also: Borderline Case, Forced March Sorites, Higher-order
Vagueness, In Rebus Vagueness, Semantic Vagueness

SOUND see Sound Deductive Argument, Soundness

SOUND DEDUCTIVE ARGUMENT A sound deductive argument
is a valid deductive argument where all the premises are true. A
valid deductive argument that is not a sound deductive argument is
an unsound deductive argument.

See also: Deductive Consequence, Logical Consequence,
Validity

SOUNDNESS A formal system is sound relative to a formal
semantics if, and only if, given a set of statements Δ and a
statement Φ, if there is a derivation of Φ from Δ:

Δ |- Φ

then Φ is a logical consequence of Δ:

Δ |-- Φ

See also: Double Turnstile, Metatheorem, Single Turnstile,
Strong Completeness, Weak Completeness

SQUARE OF OPPOSITION The square of opposition is a geo -
metrical representation of the various logical relations that hold
between the four types of categorical proposition found in
categorical logic:

The square of opposition represents the fact that corresponding
A-propositions and E-propositions are contraries, corre -
sponding I-propositions and O-propositions are sub contraries,

A

Subaltern

I

Subaltern

E

O

Contraries

Contradictories

Subcontraries
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corresponding A-propositions and O-propositions are contra -
dictories, and corresponding E-propositions and I-propositions are
also contradictories.

The square of opposition also codifies the idea that an
I-proposition is the subaltern of an A-proposition (and the
A-proposition is thus the superaltern of an I-proposition), and
that an O-proposition is the subaltern of the corresponding
E-proposition. 

See also: Categorical Logic, Existential Import, Immediate
Inference, Term Logic, Venn Diagram

Σ-SENTENCE Within the arithmetical hierarchy (or Kleene
hierarchy) a Σ-sentence (or Σ1 sentence) is any statement Φ such
that Φ is logically equivalent to some statement of the form:

(∃x1)(∃x2) … (∃xm) Ψ

where Ψ is a formula containing only bounded quantifiers. In
other words, a Σ-sentence is a Σ-formula with no free variables.

See also: Finitary Arithmetic, Π-Formula, Π-Sentence

STAGE see Rank

STAGE THEORY see Cumulative Hierarchy, Iterative Conception
of Set

STATEMENT A statement is a sentence that receives a truth value
(or, within some gap logics, is a sentence that could receive a truth
value, even if it happens not to). More informally, a statement is a
declarative sentence, as opposed, for example, to questions and
commands.

See also: Categorical Proposition, Compound Statement,
Imperative, Interrogative, Well-Formed Formula

STIPULATIVE DEFINITION A stipulative definition is a defi -
nition that provides a new meaning for a pre-existing expression
with a pre-existing meaning. Stipulative definitions are typically used
temporarily, for the sake of some argument or to give examples,
since there can be no question of the definition being correct or
incorrect. Instead, a stipulative definition, in effect, provides us with
a new expression, and a novel meaning for that expression, where the
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new expression exactly resembles, in its spelling and grammatical
role, an old, familiar expression.

See also: Explicit Definition, Impredicative Definition,
Intensional Definition, Ostensive Definition, Persuasive
Definition

STRATIFIED A formula of set theory is stratified if and only if
natural numbers can be assigned to its variables in such a way that
whenever:

x ∈ y

occurs in the formula, then the natural number assigned to y is
exactly one greater than the natural number assigned to x.

See also: New Foundations

STRAW MAN Straw man is an informal fallacy which occurs when
the reasoner, in attempting to demonstrate the inadequacy of another
person’s argument, attacks instead a misinterpreted or misleading
version of the original argument.

See also: Ad Hominem

STRICT CONDITIONAL A strict conditional is a statement of the
form:

If A then B

which is true if and only if, at every possible world, either A is false
or B is true. Letting “⊃” temporarily stand for the material
condition, a strict conditional can be defined as:

A → B  =df ▫ (A ⊃ B)

where “▫” is the necessity operator.
The term “strict conditional” is also used to denote, not the entire

statement:

A → B

but rather the logical operator represented by “→.”

See also: Counterfactual Conditional, Counternecessary
Conditional, Indicative Conditional, Subjunctive Conditional

STRICT IMPLICATION Strict implication is the relation that holds
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between statements A and B if and only if:

A → B 

is true, where the conditional in question is the strict conditional.
In other words, strict implication is the relation that holds between
two statements if and only if, at every possible world, either the first
statement is false or the second statement is true. The formula:

A → B

is also said to be a strict implication, if the relation of strict
implication holds between A and B (in that order).

See also: Deductive Implication, Logical Implication, Material
Implication

STRICT ORDER see Strict Ordering

STRICT ORDERING A strict ordering (or strict total ordering, or
strict order, or strict total order) is a binary relation R on a set of
objects S which is:

Asymmetric: (∀x)(∀y)(Rxy→ ~Ryx)

Transitive: (∀x)(∀y)(∀z)((Rxy ∧ Ryz) → Rxz)

Trichotomous: (∀x)(∀y)(Rxy ∨ Ryx ∨ x = y)

Given a strict ordering, one can define a linear ordering R* as:

R*xy if and only if Rxy or x = y

See also: Linear Ordering, Partial Ordering, Pre-Ordering,
Well-Ordering

STRICT TOTAL ORDER see Strict Ordering

STRICT TOTAL ORDERING see Strict Ordering

STRING see Sequence

STROKE see Sheffer Stroke

STRONG COMPLETENESS1 A formal system is strongly
complete relative to a formal semantics if and only if, given a set of
statements Δ and a statement Φ, if Φ is a semantic consequence
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of Δ:

Δ |-- Δ

then Φ is a deductive consequence of Δ:

Δ |- Φ

The strong completeness of a formal system implies the weak
completeness of that same formal system, although not vice versa.

See also: Deductive Consequence, Logical Consequence,
Metatheorem, Negation Completeness, ω-Completeness,
Soundness

STRONG COMPLETENESS2 A formal system is strongly
complete (or Post complete) if and only if, whenever Φ is a
statement in the language of that formal system that is not a
theorem of the formal system, the addition of all substitution
instances of Φ to the formal system renders the formal system
inconsistent. A formal system that is not strongly complete is Post
incomplete.

See also: Metatheorem, Negation Completeness, ω-Com -
pleteness, Soundness, Weak Completeness

STRONG COUNTEREXAMPLE Within intuitionistic logic and
intuitionistic mathematics, a strong counterexample is a proof of
the negation of an instance of some variant of the law of excluded
middle. The simple formulation of excluded middle, that is:

P ∨ ~ P

has no strong counterexamples in this sense (assuming intuitionistic
logic is consistent), since:

~ ~ (P ∨ ~ P)

is a theorem of intuitionistic logic. Nevertheless, intuitionists have
been able to prove theorems with a form very similar to the negation
of excluded middle, such as theorems of the form:

~ (∀x)(Px ∨ ~ Px)

within intuitionistic real analysis. 

See also: Bivalence, Free Choice Sequence, Weak Counter -
example, Weak Excluded Middle
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STRONG INDUCTIVE ARGUMENT A strong inductive argument
is an inductive argument where it is improbable (but possible)
for the premises to be true and the conclusion to be false. An
inductive argument that is not a strong inductive argument is a weak
inductive argument.

See also: Abduction, Cogent Inductive Argument, Fallacy,
Informal Fallacy

STRONG KLEENE CONNECTIVES The strong Kleene con -
nectives are logical connectives for three-valued logic which have
the following truth tables (where N is the third value):

Typically, the conditional “A → B” is, in this context, defined as
“~ A ∨ B.”

P Q P ∨ Q
T T T
T N T
T F T
N T T
N N N
N F N
F T T
F N N
F F F

P ~ P
T F
N N
F T

P Q P ∧ Q
T T T
T N N
T F F
N T N
N N N
N F F
F T F
F N F
F F F
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See also: Analethic Logic, Choice Negation, K3, Logic of
Paradox, Supervaluational Semantics

STRONG KLEENE LOGIC see K3

STRONG MATHEMATICAL INDUCTION Strong mathematical
induction (or complete induction) is a version of mathematical
induction where one proves that some property holds of all
natural numbers by (a) proving that the property holds of some
basis set (typically 0, 1, or all the natural numbers less than n for
some n), and then (b) proving that, if the property holds of all natural
numbers less than n, for an arbitrary n, then the property holds of n
itself. 

See also: Induction on Well-Formed Formulas, Transfinite
Induction, Weak Mathematical Induction

STRONG NEGATION The term “strong negation” has, at various
times, been used to refer to either exclusion negation or choice
negation.

See also: Boolean Negation, Bottom, DeMorgan Negation,
Falsum, Negation, Tilde

STRONG PARACONSISTENCY Strong paraconsistency is the view
that there are possible worlds – that is, real ways the world could be
(including perhaps the actual world) – where contradictions are
true, or where some statements are both true and false. Strong
paraconsistency should be contrasted with weak paraconsistency –
the view that true contradictions, and worlds that contain them, are
merely a formal tool used to study reasoning. Most relevant logics
are formulated from a weak paraconsistency viewpoint, while
dialethic logics such as the logic of paradox reflect a strong
paraconsistent viewpoint.

See also: Dialetheism, Impossible Worlds, Paraconsistent
Logic, Ternary Semantics, Truth Value Glut

STRONG SUPPLEMENTATION PRINCIPLE The strong supple -
mentation principle states that, given two objects such that the
second is not a part of the first, there must be a third object that is
a part of the second object but does not overlap the first object. In
symbols, with “P” representing the binary parthood relation, we
have:

274 s t r o n g  k l e e n e  l o g i c

1004 02 pages 001-322:Layout 1  16/2/09  15:12  Page 274



(∀x)(∀y)(~ Pyx → (∃z)(Pzy ∧ ~ (∃w)(Pwx ∧ Pwz)))

The strong supplementation principle implies the weak supple -
mentation principle, but not vice versa.

See also: Extensional Mereology, General Extensional
Mereology, Mereological Extensionality, Mereological
Fusion

STRONGLY CONNECTED A relation R is strongly connected (or
total) if and only if, for all x and y, either:

Rxy 

or:

Ryx

See also: Connected, Trichotomy

STRONGLY INACCESSIBLE CARDINAL A cardinal number κ
is strongly inaccessible if and only if:

(1) κ is an uncountably infinite cardinal number.

(2) κ is a regular cardinal.

(3) for all γ < κ, 2γ < κ.

Standard Zermelo Fraenkel set theory implies that all strongly
inaccessible cardinals are weakly inaccessible cardinals, and the
generalized continuum hypothesis implies that all weakly
inaccessible cardinals are strongly inaccessible cardinals.

See also: Large Cardinal, Large Cardinal Axiom, Reflection
Principle

STRUCTURAL RULE A structural rule is a rule of inference that
does not refer specifically to any logical connective or operator.
Structural rules are typically studied within sequent calculus,
although the notion has broader applicability. Examples of structural
rules include contraction, cut, weakening, and permutation.

See also: Abelian Logic, Affine Logic, Cut Elimination, Non-
Commutative Logic, Sequent, Substructual Logic

STRUCTURE see Model
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SUBALTERN Given a pair of categorical propositions standing in
the relation of subalternation – that is, a universal proposition
and the corresponding particular proposition of the same quality
– then the particular proposition is the subaltern of the pair and the
universal proposition is the superaltern.

See also: Square of Opposition, Superaltern

SUBALTERNATION In categorical logic, subalternation is the
relation that holds between a universal proposition and the
corresponding particular proposition of the same quality. Thus,
subalternation holds between the A-proposition:

All A are B.

and the I-proposition:

Some A are B.

and subalternation also holds between the E-proposition:

No A are B.

and the O-proposition:

Some A are not B.

In each of these cases, the universal proposition is the superaltern
of the pair, while the particular proposition is the subaltern.

Within categorical logic, if subalternation holds between two
categorical propositions, then the second proposition is entailed by
the first, although this inference depends on the assumption of
existential import – the idea that if all P’s are Q’s, then there is at
least one thing that is a P and also a Q. 

See also: Contraposition, Conversion, Immediate Inference,
Obversion, Square of Opposition

SUBCONTRARIES see Subcontrary

SUBCONTRARY A pair of statements are subcontrary (or sub -
contraries) when it is impossible for them simultaneously to be
false, but it is possible for them simultaneously to be true. 

Within categorical logic subcontrary is a term of art, expressing
the relationship that holds between an I-proposition and the
corresponding O-proposition. This is just a special case of the more
general usage, however.
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See also: Contradictory, Contrary, Square of Opposition

SUBFORMULA A subformula of a formula Φ is a formula Ψ such
that Ψ is a part of Φ. Typically, if Ψ is a subformula of Φ, then Φ
will have been obtained by combining Ψ with other formulas using
the formation rules of the language in question.

See also: Compound Formula, Compound Statement, Open
Formula, Syntax, Well-Formed Formula

SUBJECT TERM The subject term of a categorical proposition is
the categorical term that occurs first in the proposition. Thus, in
the A-proposition:

All men are mortal.

the predicate “is a man” is the subject term.

See also: Major Term, Middle Term, Minor Term, Predicate
Term

SUBJUNCTIVE CONDITIONAL A subjunctive conditional is a
conditional that expresses what would have been the case had the
antecedent been true. Subjunctive conditionals thus should be
distinguished from material conditionals which express what is
the case if, in fact, the antecedent is true. For example, the
subjunctive conditional:

If Archimedes had not been a mathematician, then he would
have been a pool shark.

is false, since if Archimedes had not been a mathematician, pool
shark would not have been his second choice of career. The similar
material conditional:

If Archimedes is not a mathematician, then he is a pool shark.

is true, however. 
Typically subjunctive conditionals are equated with counter -

factual conditionals, although occasionally the term counter -
factual conditional is reserved for subjunctive conditionals with false
antecedents (i.e. those that actually are counterfactual).

See also: Conditional Logic, Counterfactual Logic, Counter -
necessary Conditional, Indicative Conditional, Strict Con -
ditional
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SUBLANGUAGE A language L is a sublanguage of a language L* if
and only if the set of well-formed formulas in L is a subset of the
set of well-formed formulas of L*. If L is a sublanguage of L*, then
L* is a superlanguage of L.

See also: Metalanguage, Object Language, Sublogic, Sub -
theory

SUBLOGIC A logic L is a sublogic of a logic L* if and only if:

(1) The set of well-formed formulas in the language of L is
a subset of the set of well-formed formulas in the language
of L* (i.e. the language of L is a sublanguage of the
language of L*).

(2) For every formula Φ and set of formulas Δ, if Δ implies Φ
according to L, then Δ implies Φ according to L*.

If L is a sublogic of L*, the L* is a superlogic of L.

See also: Formal System, Intermediate Logic, Subtheory

SUBSET A set A is a subset of another set B if and only if every
member of A is also a member of B. If A is a subset of B, then B is a
superset of A.

See also: Axiom of Separation, Proper Subset

SUBSTITUTION1 Substitution is the process of replacing one or
more occurrences of a metalinguistic variable in a schema with
an object language expression of the appropriate type. The resulting
object language formula is a substitution instance of the
schema.

See also: Axiom(s) of Replacement, Axiom(s) of Separation,
Comprehension Schema, Derived Rule, Mathematical
Induction, T-schema

SUBSTITUTION2 see Axiom of Replacement

SUBSTITUTION INSTANCE see Substitution

SUBSTITUTIONAL QUANTIFIER A substitutional quantifier is a
quantifier that is interpreted as ranging over statements.
Consider a universally quantified sentence (∀x)Φ(x). If we
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interpret the quantifier substitutionally, then the sentence will be
true in a model if and only if the model satisfies every closed
formula Φ(t), where t is a term in the language. Substitutional
quantifiers offer an alternative to the objectual interpretation of the
quantifier, although the two understandings of quantification are
equivalent if every object in the domain has a name in the language
in question. 

See also: Existential Quantifier, First-Order Logic,
Generalized Quantifier, Numerical Quantifier, Objectual
Quantifier, Universal Quantifier

SUBSTRUCTURAL LOGIC Substructural logics are nonstandard
logics where one or more of the structural rules (such as cut,
contraction, weakening, and permutation) are absent. Typically,
substructural logics are formulated within sequent calculus. Many
relevant logics are substructural logics, and substructural logics are
also of interest in computability theory. 

See also: Abelian Logic, Affine Logic, Cut Elimination, Non-
Commutative Logic, Sequent

SUBTHEORY A theory T is a subtheory of a theory T* if and only
if T is a subset of T*. If T is a subtheory of T*, then T* is a
supertheory of T.

See also: Metalanguage, Object Language, Sublanguage,
Sublogic

SUCCESSOR see Arithmetic Successor, Cardinal Successor,
Ordinal Successor

SUCCESSOR CARDINAL see Cardinal Successor

SUCCESSOR FUNCTION The successor function is one of the
simple function-building operations of recursive function
theory. The successor function is the function which, when applied
to the natural number n as argument, provides n+1 as output – that
is, it maps each natural number to its arithmetic successor.

See also: Composition, Identity Function, Minimization,
Primitive Recursion, Zero Function

SUCCESSOR ORDINAL see Ordinal Successor
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SUFFICIENT CONDITION see Necessary Condition

SUFFIX NOTATION A function symbol, relation symbol, or
logical constant is an instance of suffix notation (or postfix
notation) if it occurs to the right of its arguments. For example,
within set theory one version of the notation for cardinal successor
occurs in suffix notation, since we can denote the cardinal successor
of κ as κ+.

See also: Infix Notation, Polish Notation, Prefix Notation

SUM see Union

SUMSET see Union

SUMSET AXIOM see Axiom of Union

SUPERALTERN see Subaltern

SUPERINTUITIONISTIC LOGIC see Intermediate Logic

SUPERLANGUAGE see Sublanguage

SUPERLOGIC see Sublogic

SUPERSET see Subset

SUPERTASK A supertask is a situation in which infinitely many
distinct actions are carried out in a finite amount of time.

See also: Complete Infinity, Potential Infinity, Zeno Paradoxes

SUPERTHEORY see Subtheory

SUPERTRUE Within supervaluational semantics, a statement is
supertrue in a supervaluational model M if and only if it is true
on all admissible sharpenings of that model.

See also: Anti-Extension, Extension, Sorites Paradox, Sorites
Series

SUPERVALUATIONAL SEMANTICS Supervaluational semantics
is a formal semantics used to formalize languages containing
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vague predicates. Within a supervaluational model, each predicate
is assigned an extension E and an anti-extension A where E and A
are exclusive but not necessarily exhaustive – that is, E and A
cannot overlap, and there might be objects which are members of
neither E nor A. Intuitively, the extension E of a predicate Φ is the set
of objects that Φ is definitely true of, and the anti-extension A is the
set of objects that Φ is definitely not true of. 

Truth and falsity are typically evaluated within a supervaluational
model using the truth tables for the strong Kleene connectives
where instances of a predicate falling in neither the extension or
the anti-extension are treated as having the truth value gap.
Supervaluational semantics differs from more traditional three-
valued logics, however, in that it adds a notion of supertruth to the
semantics: Given two supervaluational models M and M*, M* is an
admissible sharpening of M if and only if, for any predicate Φ, if
E and A are the extension and anti-extension of Φ in M, and E* and
A* are the extension and anti-extension of Φ in M*, then:

(1) E is a subset of E* and A is a subset of A*.

(2) E* and A* are exclusive and exhaustive – that is, every
object is in exactly one of E* and A*.

Intuitively, sharpenings are just classical models that “agree,” in
the relevant sense, with the supervaluational models that they are
sharpenings of. A statement is supertrue on a model if and only if it
is true on every sharpening of that model. If we formulate logical
consequence in terms of preservation of supertruth, then super -
valuational semantics validates classical logic.

See also: Borderline Case, Degree-Theoretic Semantics,
Epistemicism, Sorites Paradox, Sorites Series

SUPPOSITION Within medieval logic, supposition is a concept that
was used to explain troubling aspects of our language – aspects that
often resulted in paradoxes or other puzzles. Supposition is a
relation between an expression and the object or concept that the
expression is being used to talk about, where the supposition of the
expression need not be its literal reference. For example, in the
imperative:

Drink another glass.

the supposition of the word “glass” is not the actual glass (which
cannot be drunk), but the liquid that is the contents of the glass. 
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See also: Antimony, Sophism, Sophisma

SUPPRESSED EVIDENCE Suppressed evidence is an informal
fallacy which occurs when the reasoner, in attempting to support a
conclusion, ignores or is unaware of a piece of evidence that would
support the negation of the conclusion at least as well as the
argument presented supports the conclusion itself.

See also: Bias, Enthymeme, Red Herring

SUPREMUM see Least Upper Bound

SURJECTION A surjection is a surjective, or onto, function.

See also: Bijection, Injection

SURJECTIVE see Onto

SYLLOGISM A syllogism is any argument with two premises.

See also: Categorical Syllogism, Disjunctive Syllogism,
Hypothetical Syllogism, Polysyllogism

SYLLOGISTIC FIGURE The syllogistic figure (or figure) of a
categorical syllogism is the arrangement of the syllogistic terms
in the categorical syllogism. Letting A be the major term, B be the
minor term, and C be the middle term, a categorical syllogism is
in the first figure if its logical form is:

[Quantifier] C are A
[Quantifier] B are C
[Quantifier] B are A

the second figure if its logical form is:

[Quantifier] A are C
[Quantifier] B are C
[Quantifier] B are A

the third figure if its logical form is:

[Quantifier] C are A
[Quantifier] C are B
[Quantifier] B are A

and the fourth figure if its logical form is:
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[Quantifier] A are C
[Quantifier] C are B
[Quantifier] B are A

The logical form of a categorical syllogism can be specified uniquely
in terms of the syllogistic figure and syllogistic mood of the
categorical syllogism.

See also: Barbara, Major Premise, Minor Premise, Predicate
Term, Subject Term

SYLLOGISTIC MOOD The syllogistic mood (or mood) of a
categorical syllogism is the arrangement of A-propositions,
E-propositions, I-propositions, and O-propositions as the
premises and conclusion of the argument. Thus, the syllogistic
mood of the categorical syllogism Barbara:

All B’s are C’s 
All A’s are B’s
All A’s are C’s

is AAA, since both its major premise and minor premise are
A-propositions and its conclusion is also an A-proposition. Similarly,
a categorical syllogism that consisted of an O-proposition as its major
premise, an O-proposition as its minor premise, and an I-proposition
as its conclusion would have OOI as its syllogistic mood. The logical
form of a categorical syllogism can be specified uniquely in terms
of the syllogistic figure and syllogistic mood of the categorical
syllogism.

See also: Barbara, Major Term, Middle Term, Minor Term

SYLLOGISTIC TERMS see Major Term, Middle Term, Minor
Term, Predicate Term, Subject Term

SYMMETRIC DIFFERENCE The symmetric difference of two sets
A and B (written “A Δ B”) is the set that contains, as members,
exactly the objects that are members of one or the other, but not both,
of A and B. In other words, the symmetric difference of A and B is:

{x : x ∈ A and x ∉ B, or x ∈ B and x ∉ A }

See also: Complement, Relative Complement

SYMMETRY A relation R is symmetric if and only if, for any objects

s y m m e t r y 283

1004 02 pages 001-322:Layout 1  16/2/09  15:12  Page 283



x and y, if:

Rxy

then:

Ryx

See also: Antisymmetry, Asymmetry, B

SYNCATEGOREMATIC TERMS Syncategorematic terms are
expressions which, on their own, signify nothing, but contribute to
more complex expressions in which they occur by indicating how
other expressions are to be combined in order to obtain a mean -
ingful whole. Within logic, the most important syncategorematic
terms are the logical constants. Modal operators are also syn -
categorematic terms. Expressions which are not syncategorematic
(i.e. those that have independent meaning, such as predicates and
singular terms) are categorematic terms.

See also: Logical Connectives

SYNTACTIC CONSEQUENCE see Deductive Consequence

SYNTACTIC EQUIVALENCE see Deductively Equivalent

SYNTACTIC IMPLICATION see Deductive Implication

SYNTACTIC SYSTEM see Formal System

SYNTACTIC VALIDITY see Deductive Validity

SYNTACTICALLY EQUIVALENT see Deductively Equivalent

SYNTAX The syntax of a formal system is the set of rules governing
what is to count as a meaningful expression within the language of
that formal system. In other words, the syntax of a language is the
set of formation rules governing what is to count as a well-formed
formula in the language.

See also: Logical Connective, Logical Constant, Punctuation

SYNTHETIC see Analytic
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T The modal logic T is the normal modal logic whose sole
additional axiom is:

T: ▫ P → P

In possible worlds semantics, the modal logic T is valid on any
frame in which the accessibility relation is reflexive.

T also refers to the axiom that is characteristic of the modal logic
T. The axiom T is satisfied on any frame in which the accessibility
relation is reflexive.

See also: Kripke Semantics, Kripke Structure, Modality

TABLEAU see Semantic Tableau

TARSKIAN HIERARCHY The Tarskian hierarchy is a view of
language, developed to avoid the Liar paradox and related
semantic paradoxes and puzzles, based on an infinite hierarchy
of languages. Within the hierarchy, each language L has a unique
language L* “above” it – its metalanguage. No language contains a
truth predicate applying to all of the statements within that
language. Instead, for each language L in the hierarchy, the
metalanguage L* for that language contains a truth predicate that
applies to all statements in L, and satisfies the T-schema for all
statements in L.

See also: Classical Logic, Convention T, Semantic Paradox,
Semantically Closed Language, Tarski’s Indefinability
Theorem

TARSKIAN MODEL see Model

TARSKI BICONDITIONAL see T-schema

TARSKI SCHEMA see T-schema

TARSKI’S CONVENTION T see Convention T

TARSKI’S INDEFINABILITY THEOREM Tarski’s indefinability
theorem (or Tarski’s theorem) states that arithmetical truth
cannot be defined in arithmetic – that is, there is no predicate

T
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definable in arithmetic that holds of exactly the Gödel numbers of
the truths of arithmetic.

The indefinability theorem is closely related to Gödel’s
incompleteness theorems, and is also at the heart of much
research on the Liar paradox.

See also: Convention T, Semantic Paradox, Semantically
Closed Language, Truth Predicate, T-schema

TARSKI’S THEOREM see Tarski’s Indefinability Theorem

TAUTOLOGY A tautology is a statement of propositional logic
that receives all T’s on its truth table. In other words, a tautology is
a formula of propositional logic that must be true, no matter what the
truth values its constituent propositional letters are assigned. 

See also: Logical Truth, Theorem, Truth-in-a-Model, Valid

TEMPORAL LOGIC see Temporal Modal Logic

TEMPORAL MODAL LOGIC Temporal modal logic (or
chonological logic, or temporal logic, or tense logic) is that
branch of modal logic that studies the unary modal operators “it
will always be the case that Φ,” “it will be the case that Φ,” “it has
always been the case that Φ,” “it was the case that Φ.” The notions
are typically formalized as “G Φ,” “F Φ,” “H Φ,” and “P Φ,”
respectively.

See also: Alethic Modal Logic, Dynamic Logic, Normal Modal
Logic

TENSE LOGIC see Temporal Modal Logic

T-EQUIVALENCE see T-schema

TERM see Categorical Term, Singular Term

TERM LOGIC Term logic is a loose designation for categorical logic
and the various techniques that grew out of categorical logic, but
which pre-dated Gottlob Frege’s introduction of the modern notions
of quantification and variables.

See also: Categorical Proposition, Categorical Syllogism,
Polysyllogism, Square of Opposition, Venn Diagram
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TERNARY FUNCTION A ternary function (or triadic function)
is a function that takes three arguments, such as “the point
equidistant from points x, y, and z.”

See also: Adicity, Ternary Relation

TERNARY RELATION A ternary relation (or triadic relation) is a
relation that takes three arguments, such as “x is between y and z.”

See also: Adicity, Ternary Function

TERNARY SEMANTICS A ternary semantics is a possible worlds
semantics that makes use of a ternary relation on possible
worlds instead of, or in addition to, the more standard binary
accessibility relation. Ternary semantics have been most widely
applied in the development of relevant logics.

See also: Impossible World, Paraconsistent Logic, Paradoxes
of Material Implication, Strong Paraconsistency, Weak
Paraconsistency

TERTIUM NON DATUR see Excluded Middle

THEOREM1 A theorem (or logical theorem) is a statement that
can be proven within a formal system with no assumptions or
premises. In other words, a theorem is a deductive consequence
of the empty set within a formal system.

See also: Derivation, Formal Proof, Logical Truth, Tautology

THEOREM2 A theorem, relative to a theory, is a statement that can
be proven using, as assumptions, only axioms of that particular
theory. In other words, a theorem of a theory is a deductive
consequence of that theory. Since theories are, by definition,
closed under deductive implication, this is equivalent to saying
that a statement is a theorem of a particular theory if and only if it is
a member of that theory.

See also: Derivation, Formal Proof, Proof Theory, Single
Turnstile, Theory

THEORY A theory is a set of statements in a formal language
which is closed under deductive implication. In other words, if
T is a theory, and Φ is a deductive consequence of T, then Φ must
be a member of T.
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See also: Formal Proof, Proof Theory, Single Turnstile,
Theorem, Transitive Closure

THINNING see Weakening

THREE-VALUED LOGIC A three-valued logic is a many-valued
logic whose formal semantics is based on three truth values
instead of the traditional two truth values, true and false. Popular
options for the third value include “neither true nor false” – the
truth value gap – and “both true and false” – the truth value glut.

See also: Analethic Logic, K3, Logic of Paradox

TILDE “Tilde” is the name of the negation symbol “~.”

See also: Boolean Negation, Choice Negation, DeMorgan
Negation, Double Negation, Exclusion Negation

TOKEN A token of a multiply instantiated entity, like a statement, is
an individual occurrence of that entity. Tokens are distinguished
from the general entity of which they are instances – the type. Thus,
the following list contains two tokens but only one type:

Snow is white.

Snow is white.

TOLERANT A predicate Φ is tolerant if and only if small changes in
the relevant underlying properties of an object x do not affect the
justice with which Φ applies to x. Thus, the predicate “bald” is
tolerant, since one hair more or less does not transform a clear
instance of baldness into a clear instance of non-baldness.
Vagueness is often tied to the tolerance of vague predicates.

See also: Borderline Case, Forced March Sorites, Higher-Order
Vagueness, Sorites Paradox, Sorites Series

TONK Tonk is the binary logical connective which has the following
as its introduction rule and elimination rule:

A *Intro A * B *Elim

A * B B

This connective is meant to be a counterexample to
inferentialism. The supposed connective tonk is defined in terms
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of the rules of inference that govern it, yet it arguably has no
meaning, since the addition of tonk to any formal system that has a
transitive consequence relation renders that logic trivial.

See also: Harmony, Proof Theory

TOP The maximal element in a lattice or Boolean algebra is the top,
and is usually symbolized as “1” or “T.”

See also: Bottom, Falsum, Partial Ordering, Verum

TOPOI see Topos

TOPOS A topos (Greek for commonplace; plural: topoi) is an
important species of category. The formal definition of “topos” is
beyond the scope of this dictionary. Roughly speaking, however, a
topos is a category whose structure is sufficiently rich in a particular
way. The category of sets is a topos, as are many other central
mathematical structures. Topoi (sometimes “toposes”) can also be
thought of as topological spaces, which further bridges the gap
between topology and geometry on the one hand, and logic and set
theory on the other.

See also: Categorical Logic, Category Theory, Topos Theory

TOPOS THEORY Topos theory is the branch of category theory
that studies a particular type of category called a topos.

See also: Categorical Logic

TOTAL see Strongly Connected

TOTAL FUNCTION A total function is a function whose value is
defined for all arguments. In other words, a total function provides
an output for all of its possible inputs. A function that is not defined
for all arguments – that is, a function that is not total – is a partial
function.

See also: Minimization, Recursive Function Theory

TOTAL ORDER see Linear Ordering

TOTAL ORDERING see Linear Ordering
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TRANSFINITE CARDINAL NUMBER A transfinite cardinal num -
ber is a cardinal number of an infinite set.

See also: a, b, c, Dedekind Infinite, Transfinite Ordinal
Number

TRANSFINITE HIERARCHY see Cumulative Hierarchy

TRANSFINITE INDUCTION Transfinite induction is a form of
proof by induction where one proves that a certain property holds
of all elements of some well-ordered collection, such as the class
of ordinal numbers, the class of cardinal numbers, or the class of
sets. Here we will sketch the steps for applying transfinite induction
to the ordinal numbers – the case for cardinal numbers or sets is
similar. The basis step amounts to proving that the property in
question P holds of the initial elements of the well-ordered
collection, in this case the empty set. The inductive step then
consists in proving that both:

If P holds of an ordinal number α, then P holds of the ordinal
successor of α.

If P holds of all ordinal numbers less than some limit ordinal
γ, then P holds of γ.

If both claims can be demonstrated, then this is sufficient to show
that the property holds of all ordinal numbers.

See also: Cardinal Successor, Limit Cardinal, Mathematical
Induction

TRANSFINITE NUMBER see Transfinite Cardinal Number,
Transfinite Ordinal Number

TRANSFINITE ORDINAL NUMBER A transfinite ordinal number
is an ordinal number of a well-ordering on an infinite set.

See also: Dedekind Infinite, ω, Transfinite Cardinal Number

TRANSFINITE RECURSION Transfinite recursion is a set-
theoretic method of constructing a sequence of objects Xγ for each
ordinal number γ. Given a function g from sets to sets, transfinite
recursion guarantees that there is a function f from ordinal numbers
to sets such that:
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f(0) = g(0)

f(α+1) = g(f(α))

f(γ) = g({f(x) : x < γ}) [when γ a limit ordinal]

Xγ is then f(α).

See also: Limit Ordinal, Ordinal Successor, Recursive
Definition

TRANSITION FUNCTION see Action Table

TRANSITIVE CLOSURE1 The transitive closure of a relation R on
a set A is the smallest transitive relation R* on A such that R*
contains R. In other words, the transitive closure of R on A is the
smallest relation R* such that:

(1) For any x and y in A, if Rxy, then R*x, y.

(2) For any x, y, and z in A, if R*xy and R*yz, then R*xz.

See also: Ancestral, Hereditary

TRANSITIVE CLOSURE2 The transitive closure of a set A under a
relation R is the smallest set A* such that:

(1) A is a subset of A*.

(2) For any x and y, if x is a member of A* and Rxy, then y is
a member of A*.

One particularly important instance of this notion of transitive
closure is the transitive closure of a set under the membership
relation, which is sometimes called simply the transitive closure
of the set (without any mention of the relation in question). The
transitive closure of a set A, in this sense, is the smallest set A* such
that:

(1) A is a subset of A*.

(2) For any x and y, if x is a member of A*, and y is a member
of x, then y is a member of A*.

In other words, the transitive closure of a set A is the smallest set that
contains the members of A, and the members of the members of A,
and the members of the members of the members of A, and so on.

See also: Well-Formed Formula
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TRANSITIVE SET A transitive set is a set that contains each of the
members of its members. In other words, if A is transitive, and B is
a member of A, then any member of B is also a member of A.

See also: Inductive Set, ω, Ordinal Arithmetic, Ordinal
Number

TRANSITIVITY A relation R is transitive if and only if, for any
objects x, y, and z, if:

Rxy

and:

Ryz

then:

Rxz

See also: Cut, 4, Hypothetical Syllogism, S4

TRANSLATION A translation is a function from the expressions of
one language to the expressions of another language. Translations
are typically intended to preserve either the meanings or the truth
conditions of the translated expressions. 

See also: Indeterminacy of Translation, Natural Language

TRANSLATION LEMMA see S-M-N Theorem

TRANSPOSITION Within propositional logic, transposition is the
rule of replacement that allows one to replace a formula of the
form:

(P → Q)

with:

(~ Q → ~ P)

or vice versa. 

See also: Conditional Proof, Contraposition, Modus Ponens,
Modus Tollens

TRANS-WORLD IDENTITY Trans-World identity (or cross-world
identity) is a framework that allows us to interpret modal claims
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about objects. To see the puzzle at hand, consider the statement:

Roy is a mathematician.

This statement, while false (assuming it is about the author), is
certainly not impossible. Thus, according to possible worlds
semantics, there must be a possible world in which it is true.
Taken at face value, this would mean that, in that possible world, Roy
exists and is a mathematician. But this is absurd, since Roy exists
solely in the actual world and cannot also exist in a possible one. 

Trans-world identity solves this problem by arguing that Roy (and
any other object) can exist in more than one possible world and can
have different, incompatible sets of properties in different worlds. 

See also: Counterpart Theory, Mere Possibilia

TRICHOTOMY A relation R is trichotomous (or comparable) if
and only if, for any objects x and y, either: 

Rxy

or:

Ryx

or: 

x = y

See also: Connected, Strongly Connected, Trichotomy Law

TRICHOTOMY AXIOM see Trichotomy Law

TRICHOTOMY LAW The trichotomy law (or axiom of
trichotomy, or trichotomy axiom) states that, given any two
cardinal numbers a and b (including transfinite cardinal
numbers), exactly one of the following three conditions holds:

a > b

b > a

a = b

The trichotomy law is equivalent, within set theory, to the axiom of
choice.

See also: Cardinal Arithmetic, Well-Ordered, Well-Ordering
Principle, Zorn’s Lemma
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TRIVIALITY A theory is trivial if it has all statements as theorems.
In the presence of the rule of inference ex falso quodlibet
triviality is equivalent to inconsistency. A theory that is not trivial is
a non-trivial theory.

See also: Dialetheism, Dialethic Logic, Negation, Negation
Consistency, Paraconsistent Logic

TRUTH Truth is the relation that holds between a statement and the
world when what that statement says about the world is actually the
case. Typically, if a sentence fails to be true, then it is false, although
many non-standard logics allow for statements to fall into
semantic categories other than the traditional true and false.

See also: Bivalence, Designated Value, Law of Non-
Contradiction, Truth Value Gap, Truth Value Glut

TRUTH CONDITIONS The truth conditions of a statement are
what must obtain for that statement to be true. Truth conditions are
different from meanings, since two statements with distinct meanings
could have the same truth conditions (e.g. “1 + 1 = 2” and “0 = 0”).

See also: BHK-Interpretation, Formal Semantics, Model
Theory, Truthmaker, Truth Table

TRUTH FUNCTION A truth function is any function from
sequences of truth values to individual truth values. Logical
connectives often correspond to a particular truth functions, and
this fact is exemplified in their truth tables. For example,
conjunction (∧), in classical logic, corresponds to the truth
function f where:

f(<T, T>) = T 

f(<T, F>) = F 

f(<F, T>) = F 

f(<F, F>) = F 

Typically, however, not every possible truth function is codified by a
unique connective. 

See also: Boolean Algebra, Dagger, Expressive Completeness,
Propositional Function, Sheffer Stroke
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TRUTH FUNCTIONAL A logical connective is truth functional if
and only if the truth value of a compound formula containing
that connective as its main connective is a function of the truth
values of the constituent subformulas joined by that connective.
Alternatively, a connective is truth functional if and only if knowing
the truth values of the constituent formulas is enough to know the
truth value of the compound formula obtained by joining those
constituent formulas with the connective in question. All of the
connectives of classical logic are truth functional, as are the con -
nectives of most many-valued logics, although truth functionality
fails in some other types of non-standard logics.

See also: Classical Logic, Degree-theoretic Semantics

TRUTH-IN-A-MODEL A statement in the language of first-
order logic is true-in-a-model if and only if that statement is
assigned the value true by that model. A sentence that is true-in-
a-model need not be literally true, or vice versa. Instead, truth-in-
a-model is a means of modeling how truth works in natural
languages.

See also: Interpretation, Logical Consequence, Logical Truth,
Logical Validity, Model Theory

TRUTH-IN-AN-INTERPRETATION see Truth-in-a-Model

TRUTHMAKER A truthmaker for a statement is an entity in virtue
of which that statement is true. Some philosophers have argued that
any true statement requires a truthmaker – that is, that for any
expression P, P is true if and only if there is an x such that x is a
truthmaker for P.

In addition to truthmakers, some philosophers have argued that
false statements require falsemakers: entities in virtue of which the
statements are false.

See also: Correspondence Theory of Truth, Deflationism,
Truth Predicate

TRUTH PREDICATE A truth predicate is a predicate that holds
of a statement (or, in some cases, appropriate analogues of such
statements such as Gödel numbers) if and only if the statement
is true. A number of limitation results, including Tarski’s
indefinability theorem, impose limits on when a language can
contain its own truth predicate.
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See also: Convention T, Factivity, Semantic Paradox, Seman -
tically Closed Language, T-Schema

TRUTH TABLE A truth table is a chart codifying the truth function
which corresponds to a particular logical connective. For example,
the truth table for conjunction is:

This table represents the fact that conjunction corresponds to the
truth function that outputs true if both inputs are true (the top row
of the table), and outputs false if either of the inputs is false (the
other three rows).

See also: Propositional Logic, Truth Conditions, Truth
Functionality

TRUTH-TELLER The truth-teller is the self-referential state -
ment:

This statement is true.

Although not paradoxical in the traditional sense, the truth-teller is
nevertheless puzzling, since from a logical perspective it could either
be true or false – on either option the relevant T-schemas come out
true – and there seems to be no other relevant information regarding
which of the two values it actually takes.

See also: Bivalence, Liar Paradox, Open Pair, Semantically
Closed Language

TRUTH-TREE see Semantic Tableau

TRUTH VALUE A truth value is a semantic value assigned to a
statement. In classical logic the only truth values are true and
false, although many-valued logics add additional truth values,
such as neither-true-nor-false (the truth value gap) and both-true-
and-false (the truth value glut).

See also: Designated Value

P Q P ∧ Q
T T T
T F F
F T F
F F F
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TRUTH VALUE GAP A semantics for a formal language has a
truth value gap if and only if some statements do not receive a
truth value according to that semantics. From a formal perspective,
truth value gaps are often represented, for the sake of convenience, as
a third value, the gap value neither-true-nor-false. 

See also: Analethic Logic, First-Degree Entailment, K3, Strong
Kleene Connectives, Supervaluational Semantics, Weak
Kleene Connectives

TRUTH VALUE GLUT A semantics for a formal language has a
truth value glut if and only if some statements receive more than
one truth value according to that semantics; usually such statements
will receive both the value true and the value false. From a formal
perspective, truth value gluts are often represented, for the sake of
convenience, as a third value, the glut value neither-true-nor-false. 

See also: Dialethic Logic, First-Degree Entailment, Law of
Non-Contradiction, Logic of Paradox, Strong Kleene
Connectives, Weak Kleene Connectives

T-SCHEMA The T-schema (or schema T, or Tarski biconditional,
or Tarski schema, or T-equivalence) is the following schema:

Where T is the truth predicate, A is any statement, and n is
any name of A:

T(n) ↔ A

The T-schema plays a central role in a number of lines of thought
regarding truth. For example, Tarski’s Convention T asserts that
an adequacy condition on any definition of a truth predicate is that it
allows us to prove any instance of the T-schema. Minimalists about
truth argue that the T-schema is true by definition, and that there is
nothing more to say about truth. 

Particular instances of the T-schema are Tarski biconditionals.

See also: Axiom Schema, Deflationism, Semantically Closed
Language, Tarski’s Indefinability Theorem

TUPLE see N-Tuple

TU QUOQUE Tu quoque (Latin for “you as well”) is an informal
fallacy which occurs when the reasoner, in attempting to
demonstrate the inadequacy of another person’s argument, accuses
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the person presenting the argument of not acting in accordance with
their own conclusion, implying (incorrectly) that this is a reason for
rejecting the argument.

See also: Ad Hominem

TURING COMPUTABLE FUNCTION A function is Turing
computable if and only if it can be computed by a deterministic
Turing machine. The Turing computable functions are exactly the
recursive functions, and the Church-Turing thesis hypothesizes
that these are exactly the functions that are effectively computable
– that is, computable in the intuitive sense of computable.

See also: Automaton, Deterministic Polynomial Time,
Effectively Computable Function, Non-Deterministic
Polynomial Time, Non-Deterministic Turing Machine

TURING MACHINE see Deterministic Turing Machine, Non-
Deterministic Turing Machine

TURING RECOGNIZABLE SET see Recursively Enumerable Set

TURING TEST The Turing test is a test for determining whether a
machine, or automaton, can exhibit human-like intelligence. In the
test, a human judge has a typed conversation with two contestants,
one of which is human and the other is the machine. Both contestants
try to appear human to the judge. If the judge cannot reliably
determine which of his conversational partners is the human, and
which the machine, then the machine passes the Turing test.

See also: Deterministic Turing Machine, Non-Deterministic
Turing Machine, Register Machine

TURING THESIS see Church-Turing Thesis

TURNSTILE see Double Turnstile, Single Turnstile

TYPE1 see Token

TYPE2 see Ramified Theory of Types, Simple Theory of Types,
Type Theory

TYPE THEORY Type theory is a formal system developed in order
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to avoid the Russell paradox and similar problems that arise if one
accepts naïve set theory. In type theory, objects are divided into
types which occur in a hierarchy. Operations, such as the set-
forming operation, which are applied to objects at one level of the
hierarchy, result in objects that fall into a type higher up in the
hierarchy. As a result, we cannot form the set of all sets that are not
members of themselves – the Russell set – although we can form
the set of all sets of type n that are not members of themselves, for
some type n. No contradiction occurs in the latter construction,
however, since the resulting set is of a higher type, and thus not
subject to the condition which formed it out of objects of type n.

Type theories come in two main varieties: simple type theories
and ramified type theories.

See also: Axiom of Reducibility, Burali-Forti Paradox, Set-
Theoretic Paradox, Vicious Circle Principle

UNARY FUNCTION A unary function (or monadic function) is a
function which takes only one argument, such as “the father of x”
or “the successor of x.”

See also: Adicity, Unary Relation

UNARY PREDICATE see Monadic Predicate

UNARY RELATION A unary relation (or monadic relation) is
a relation which takes only one argument, such as “x is red” and
“x is large.” In other words, a unary relation is a property or
concept.

See also: Adicity, Unary Function

UNCOUNTABLE see Countable

UNDERLAP In mereology, two objects a and b are said to underlap if
there is some object c such that a and b are both parts of c. In
symbols, we have:

Uxy = (∃z)(Pxz ∧ Pyz)

U
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See also: Composition, Mereological Fusion, Overlap, Proper
Parthood, Unrestricted Fusion

UNION1 The union (or sum, or sumset) of two sets A and B, written
A ∪ B, is the set whose members are exactly the objects that are
members of either A or B. 

See also: Intersection, Relative Complement, Symmetric
Difference

UNION2 The union (or sum, or sumset) of a set A, written ∪A, is the
set whose members are exactly those objects that are members of
some member of A.

See also: Intersection, Relative Complement, Symmetric
Difference

UNION AXIOM see Axiom of Union

UNIVERSAL ELIMINATION see Universal Instantiation

UNIVERSAL GENERALIZATION1 A universal generalization is a
formula of first-order logic where a universal quantifier is the
dominant operator in the formula, and the universal quantifier in
question is not a vacuous quantifier. Thus:

(∀x)(Fx)

is a universal generalization, while:

(∃x)(∀y)(Lxy) 

is not. Universal generalizations assert that every object in the
domain satisfies the (possibly complex) predicate occurring in the
scope of the quantifier.

See also: Bound Variable, Existential Generalization, First-
order Logic, First-order Variable, Π-Formula, Π-Sentence

UNIVERSAL GENERALIZATION2 Universal generalization (or
universal introduction) is the rule of inference that allows one
to move from a particular statement to the universal
generalization of that statement. In symbols we have (where Φ is
any formula, and Φ[a/x] is the result of replacing all occurrences in
Φ of “a” with “x”):
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(Φ)
(∀x)Φ[a/x]

Universal generalization can be applied only if the variable occur -
ring in the new formula does not occur in Φ or in any assumption
upon which Φ depends. 

See also: Existential Generalization, First-order Logic, Intro -
duction Rule, Universal Instantiation

UNIVERSAL INSTANTIATION Universal instantiation (or univer -
sal elimination) is the rule of inference that allows one to move
from a universal generalization to any instantiation of that
universal generalization. In symbols we have (where Φ is any
formula, and Φ[x/a] is the result of replacing all occurrences of “x”
with “a”):

(∀x)(Φ)
Φ[x/a]

See also: Elimination Rule, Existential Instantiation, First-
order Logic, Universal Generalization

UNIVERSAL INTRODUCTION see Universal Generalization

UNIVERSAL PROPOSITION The quantity of a categorical
proposition is universal if it makes a claim about all of the
members of the class denoted by the subject term of the
proposition. Thus A-propositions and E-propositions are
universal, while I-propositions and O-propositions are not
universal. Categorical propositions that are not universal are
particular.

See also: Affirmative Proposition, Negative Proposition,
Quality, Square of Opposition

UNIVERSAL QUANTIFIER A universal quantifier is a quantifier
that allows us to assert that a predicate is satisfied by all objects
in the domain of discourse. Universal quantifiers are typically
denoted by “∀” followed by the variable that the quantifier binds
(although sometimes the upside-down “A” is omitted, and the
quantifier is just written as the variable being bound flanked by
parentheses), and the quantifier binds variables occurring with the
predicate in question in order to form statements. Thus, if Φ is a
unary predicate, then:
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(∀x)(Φx)

states that every object is a Φ, or that every object satisfies Φ.
Universal quantifiers can be used to quantify over objects, in which

case they are called first-order quantifiers (the variables ranged
over by first-order quantifiers are usually taken from the end of the
alphabet, and written in lower case). Universal quantifiers can also
be used to quantify over concepts, relations, properties, or other
higher-order entities, in which case they are called second-order or
higher-order quantifiers (the variable bound by such a higher-
order quantifier is usually written in upper case, in order to
distinguish it from first-order quantifiers and the variables they
bind).

See also: Existential Quantifier, Π-Formula, Π-Sentence,
Universal Generalization, Universal Instantiation, Universal
Variable

UNIVERSAL SET A universal set is a set that contains, as members,
all objects in the domain in question. Thus, the universal set (if it
exists) is a non-well-founded set (or hyperset), since it contains
itself as a member. 

See also: Absolute Infinite, Cantor’s Paradox, Cantor’s
Theorem, Iterative Conception of Set, Limitation-of-Size
Conception of Set, Naïve Set Theory

UNIVERSAL VARIABLE A universal variable is a variable bound
by a universal quantifier.

See also: Existential Variable, First-order Variable, Higher-
order Variable, Vacuous Quantifier

UNIVERSE OF DISCOURSE see Domain

UNORDERED PAIR Within set theory, an unordered pair is a set
that contains exactly two objects as members. The axiom of
pairing asserts that for any two objects, the unordered pair
containing those objects exists.

See also: Ordered N-tuple, Ordered Pair, Pairing Function,
Singleton

UNRESTRICTED FUSION In mereology, the unrestricted fusion
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principle states that given any class of objects, there is an object that
overlaps exactly the objects that overlap objects in the class. The
unrestricted fusion principle is intended to capture the idea that,
given a collection of objects, there is an object that is made up of
exactly those objects as parts, its mereological fusion.

Formally, the principle of unrestricted fusion can be formulated as
an axiom schema (where O is the defined overlap relation):

(∃x)Φ(x) → (∃y)(∀z)(Ozy → (∃w)(Φ(w) ∧ Ozw))

Note that the collection of objects to be “fused” must be non-empty
– thus, there is no “empty” fusion.

See also: Classical Mereology, Composition, General
Mereology, Mereological Extensionality, Proper Parthood,
Underlap

UNSOUND DEDUCTIVE ARGUMENT see Sound Deductive
Argument

UPPER BOUND Given a partial ordering ≤ on a set S, if x is a
member of S and A is a subset of S, then x is an upper bound of A
if and only if y ≤ x for all y in A.

See also: Greatest Lower Bound, Join, Least Upper Bound,
Lower Bound, Meet

UPWARD LOWENHEIM-SKOLEM THEOREM The upward
Lowenheim-Skolem theorem states that, given any first-order
theory T and model M of T, if σ is the cardinality of the set of
primitive non-logical expressions in the language of T, κ is the
cardinality of the domain of M, and κ is infinite, and then, for any
infinite cardinal δ such that κ < δ and σ < δ, there is a model of T
whose domain has cardinality δ.

If we restrict our attention to first-order theories with a countable
number of primitive non-logical expressions, then the theorem can
be stated more simply. If such a first-order theory T has a model with
an infinite domain whose cardinality is κ, then T has models whose
domains are of any infinite cardinality greater than κ.

The upward Lowenheim-Skolem theorem is one half of what is
generally called the Lowenheim-Skolem theorem (the other half
is the downward Lowenheim-Skolem theorem). 

See also: Categorical, Intended Interpretation, Limitation
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Result, Non-Standard Analysis, Non-Standard Arithmetic,
Non-Standard Model, Skolem’s Paradox

URELEMENT Within set theory, an urelement is any object that is
not a set. Pure set theory does not allow for any urelements, but
other formulations of set theory do.

See also: Abstract Object, Individual

USE An expression is used if it occurs within a more complex
statement in the normal manner. An expression is mentioned,
however, if it occurs within that statement in such a way as to refer
to the expression itself, and not its normal denotation. Thus, given:

“Red” has three letters.

and:

Red is a color.

“red” is mentioned in the first statement, and used in the second.
As this example illustrates, quotation marks are typically used to
indicate that an expression is being mentioned and not used.

See also: De Dicto, De Re, Punctuation

V see Cumulative Hierarchy

VACUOUS QUANTIFIER A quantifier occurring within a formula
is a vacuous quantifier if and only if there is no occurrence of the
variable that it binds occurring within the scope of the quantifier (in
other words, the formula contains no occurrence of the variable that
the quantifier binds other than the one occurring with the quantifier
itself ). Thus, the second quantifier (but not the first) is a vacuous
quantifier in:

(∀x)(∀y)(Rxx)

See also: Bound Variable, Open Formula, Open Term, Well-
Formed Formula

V
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VAGUENESS Vagueness is the phenomenon exhibited by vague
predicates. A vague predicate is a predicate that allows for
borderline cases or that is susceptible to the Sorites paradox. 

An object x is a borderline case of a predicate Φ if and only if x is
not a clear case of Φ and x is not a clear case of ~ Φ.

The Sorites paradox arises when a predicate Φ is tolerant – that
is, small changes to an object should not turn a clear instance of Φ
into a clear instance of ~ Φ. If Φ is tolerant, however, then we should
be able to find a series of objects a1, a2, a3 … an (i.e. a Sorites series)
such that:

(1) a1 is a clear case of Φ.

(2) For any natural number i, if ai is a clear case of Φ, then ai+1

is a clear case of Φ.

(3) an is a clear case of ~ Φ.

These three statements are inconsistent.

See also: Forced March Sorites, Higher-Order Vagueness, In
Rebus Vagueness, Ontic Vagueness, Semantic Vagueness

VALID1 see Valid Deductive Argument

VALID2 A rule of inference is valid within a particular formal
system if and only if it is either an explicit rule of inference of that
system, or its addition to the formal system does not allow one to
prove anything that could not be proved using the explicit rules of
the system.

See also: Admissible Rule, Derivable Rule, Elimination Rule,
Introduction Rule

VALID DEDUCTIVE ARGUMENT A valid deductive argument is a
deductive argument where it is impossible for the premises to
be true and the conclusion to be false. A deductive argument that
is not a valid deductive argument is an invalid deductive
argument.

See also: Deductive Consequence, Formal Consequence,
Formal Fallacy, Logical Consequence, Material Consequence

VALID IN κ see κ-Valid
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VALUATION A valuation (or assignment) is an allocation of
semantic values to primitive non-logical vocabulary. Within
propositional logic, a valuation assigns truth values to
propositional letters. Within first-order and higher-order
logics, a valuation is an assignment of appropriate parts of the
model to the non-logical vocabulary (e.g. assignment of objects to
singular terms, and sets of n-tuples to relations).

See also: Interpretation, Model Theory, Semantics, Truth
Table

VARIABLE A variable is a logical expression which receives no fixed
value, but can be used to range over all entities of the appropriate sort
within the model in question. First-order variables, usually
denoted by lower-case letters from the end of the alphabet (x, y, z …)
range over objects, while higher-order variables range over
concepts, relations, or functions. (Concept and relation variables
usually take the form of upper-case letters, while function variables
are often lower-case f, g, or h.)

See also: Bound Variable, Existential Variable, Individual,
Universal Variable, Variable Assignment

VARIABLE ASSIGNMENT A variable assignment is a function that
maps each variable onto an appropriate entity from a model - that
is, it assigns first-order variables to objects in the domain of the
model and higher-order variables to appropriate sets of n-tuples.
Variable assignments are most often used in the clauses defining
satisfaction in a model.

See also: Bound Variable, Existential Variable, Model Theory,
Universal Variable

VEL “Vel” is the name of the disjunction symbol “∨.”

See also: Exclusive Disjunction, Inclusive Disjunction, Tilde,
Wedge

VENN DIAGRAM A Venn diagram is a diagram used to test
categorical syllogisms for validity. In a Venn diagram, each term
of the syllogism is represented by a circle, and the circles overlap
so that each possible combination of the concepts involved is
represented by a region of the diagram. Thus, in a categorical
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syllogism involving three terms P, Q , and R, the Venn diagram would
take the form:

Note that all eight combinations of P, Q , and R are represented by
regions in the diagram (objects which have none of P, Q , and R are
represented by the empty space outside of all three circles).
Arguments are then tested for validity by marking up the diagram in
appropriate ways for the premises, and then determining whether or
not such markings match those that correspond to the conclusion of
the argument. 

Venn diagrams can also be adapted for reasoning about collections
or sets more generally. 

See also: Antilogism, Categorical Logic, Square of Opposition,
Syllogistic Figure, Syllogistic Mood, Term Logic

V = L see Axiom of Constructibility

VERIFICATION CONSTRAINT see Epistemic Constraint

VERITY The verity (or degree-of-truth) of a statement is the
semantic value of that statement within degree-theoretic
semantics, which assigns degrees between 0 and 1 to statements.

See also: Borderline Case, Higher-order Vagueness, In Rebus
Vagueness, Semantic Vagueness, Sorites Paradox, Sorites
Series

VERUM Verum is a primitive, necessarily true statement often
represented as “T.”

See also: Bottom, Falsum, Top

P Q

R
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VICIOUS CIRCLE PRINCIPLE The vicious circle principle,
proposed as a response to the Russell paradox and related set-
theoretic paradoxes, denies the existence of any set that cannot be
defined without making mention of, or quantifying over, the set in
question itself.

See also: Impredicative Definition, Indefinite Extensibility,
Iterative Conception of Set, Limitation-of-Size Conception
of Set

VON NEUMANN BERNAYS GÖDEL SET THEORY Von
Neumann Bernays Gödel set theory (or Bernays-Gödel set theory,
or NBG, or Neumann Bernays Gödel set theory, or Neumann
Gödel Bernays set theory, or NGB, or Von Neumann Gödel
Bernays set theory) is an axiomatization of set theory that is
characterized by the fact that it distinguishes between sets and
proper classes (intuitively, those collections too “badly behaved” to
be sets) and it allows one to quantify over both sorts of “collection.”
One obtains Von Neumann Bernays Gödel set theory by rela -
tivizing all of the axioms of Zermelo Fraenkel set theory to sets
– that is, by replacing all occurrences of:

(∀x)Φ

with:

(∀x)(Set(x) → Φ)

and all occurrences of:

(∃x)Φ

with:

(∃x)(Set(x) ∧ Φ)

and then adding the class comprehension schema:
If Φ is a formula with all quantifiers restricted to sets, and Φ

contains the variable x free, then:

(∃y)(∀x)(x ∈ y ↔ Φ)

is an axiom.

See also: Kripke-Platek Set Theory, Morse-Kelley Set Theory,
New Foundations, Positive Set Theory, Zermelo Fraenkel Set
Theory
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VON NEUMANN GÖDEL BERNAYS SET THEORY see Von
Neumann Bernays Gödel Set Theory

VON NEUMANN HIERARCHY see Cumulative Hierarchy

VON NEUMANN UNIVERSE see Cumulative Hierarchy

WEAK COMPLETENESS A formal system is weakly complete
relative to a semantics if and only if, for any formula Φ, if Φ is a
logical truth:

|-- Φ

then there is a derivation of Φ:

|- Φ

in the formal system. Classical propositional logic and
classical first-order logic can be shown to be weakly complete (and
strongly complete) relative to their standard semantics, although
classical second-order logic is not weakly complete relative to its
standard semantics.

The strong completeness of a formal system implies the weak
completeness of that same system, although not vice versa.

See also: Deductive Consequence, Logical Consequence,
Metatheorem, Soundness

WEAK COUNTEREXAMPLE Within intuitionistic logic and
intuitionistic mathematics, a weak counterexample is a situation
in which we have no positive evidence for the (intuitionistic) truth
of some instance of the law of excluded middle:

P ∨ ~ P

Although the intuitionistic logician and mathematician wish not to
assert excluded middle as a logical truth, they cannot, on pain of
contradiction, formulate any direct, or strong, counterexamples
to this formulation of excluded middle, since:

W
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~ ~ (P ∨ ~ P)

is a theorem of intuitionistic logic. 

See also: Bivalence, Constructive Mathematics, Constructive
Proof, Free Choice Sequence, Strong Counterexample, Weak
Excluded Middle

WEAK EXCLUDED MIDDLE Weak excluded middle is the
following formula of propositional logic:

~ A ∨ ~ ~ A

One obtains the intermediate logic known as the logic of weak
excluded middle by adding all instances of weak excluded middle
to intuitionistic logic.

See also: Constructive Logic, Disjunction Property, Double
Negation, Excluded Middle, Intuitionism

WEAK INDUCTIVE ARGUMENT see Strong Inductive Argument

WEAK KLEENE CONNECTIVES The weak Kleene connectives
are logical connectives for three-valued logic which have the
following truth tables (where N is the third value):

P Q P ∧ Q
T T T
T N N
T F F
N T N
N N N
N F N
F T F
F N N
F F F

P ~ P
T F
N N
F T
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Typically, the conditional “A → B” is, in this context, defined as
“~ A ∨ B.”

See also: Many-Valued Logic, Strong Kleene Connectives

WEAK MATHEMATICAL INDUCTION Weak mathematical
induction is a version of mathematical induction where one
proves that some property holds of all natural numbers by (a)
proving that the property holds of some basis set (typically 0 or 1)
and (b) proving that, if the property holds of n, for an arbitrary
natural number n, then the property holds of n+1. 

See also: Induction on Well-Formed Formulas, Strong
Mathematical Induction, Transfinite Induction

WEAK NEGATION The term “weak negation” has, at various
times, been used to refer to either exclusion negation or choice
negation.

See also: Boolean Negation, Bottom, DeMorgan Negation,
Falsum, Negation, Tilde

WEAK PARACONSISTENCY see Strong Paraconsistency

WEAK SUPPLEMENTATION PRINCIPLE In mereology the
weak supplementation principle states that, given an object and a
proper part of it, there must be a second part of the initial object
that does not overlap the first part. In symbols, with “P”
representing the binary parthood relation, we have:

(∀x)(∀y)((Pxy ∧ x ≠ y) → (∃z)(Pzy ∧ ~ (∃w)(Pwx ∧ Pwz)))

See also: Composition, Mereological Extensionality, Mereo -

P Q P ∨ Q
T T T
T N N
T F T
N T N
N N N
N F N
F T T
F N N
F F F
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logical Fusion, Minimal Mereology, Strong Supplementation
Principle

WEAKENING Within sequent calculus, weakening (or dilution, or
thinning) is the structural rule that allows us to add additional
formulas to either side of the sequent. Thus, we can replace:

Δ ⇒ Γ

with:

Δ, A ⇒ Γ

or we can replace:

Δ ⇒ Γ

with:

Δ ⇒ Γ, A

See also: Cut, Linear Logic, Monotonicity, Non-Commutative
Logic, Permutation, Substructural Logic

WEAKLY INACCESSIBLE CARDINAL A cardinal number κ is
weakly inaccessible if and only if it is a regular limit cardinal
number. Zermelo Fraenkel set theory implies that all strongly
inaccessible cardinals are weakly inaccessible cardinals, and the
generalized continuum hypothesis implies that all weakly
inaccessible cardinals are strongly inaccessible cardinals.

See also: Forcing, Large Cardinal, Large Cardinal Axiom,
Reflection Principle

WEDGE “Wedge” is the name of the conjunction symbol “∧.”

See also: Tilde, Vel

WELL-FORMED FORMULA A well-formed formula (or wff ) is a
sequence of symbols from the basic vocabulary of a formal
language which conforms to the formation rules of the language –
that is, it is in the transitive closure of the formation rules for that
language.

See also: Compound Formula, Compound Statement, Logical
Connective, Logical Constant, Subformula, Syntax
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WELL-FOUNDED A relation R is well-founded on a set X if and
only if, for any subset Y of X, there is an R-minimal element in Y
– that is, there is a y in Y such that there is no z in Y such that Rzy.

See also: Anti-foundation Axiom, Axiom of Foundation,
Converse-Well-Founded, Cumulative Hierarchy, Iterative
Conception of Set

WELL-ORDER see Well-Ordering

WELL-ORDERING A relation R is a well-ordering on a set A if and
only if:

(1) R is a linear ordering (that is, R is a transitive, anti -
symmetric total order).

(2) For any subset X of A, X contains a least member relative
to R. That is, for any such X, there is a y in X such that Ryz
for any z in X.

See also: Burali-Forti Paradox, Ordinal Number, Well-
Ordering Principle, Zermelo Fraenkel Set Theory

WELL-ORDERING PRINCIPLE Within set theory, the well-
ordering principle is the principle that asserts that every set can be
well-ordered – that is, for any set A, there is a relation R such that
R is a well-ordering on the members of A. The well-ordering
principle is equivalent to the axiom of choice.

See also: Global Well-Ordering, Trichotomy Law, Zermelo
Fraenkel Set Theory, Zorn’s Lemma

WFF see Well-Formed Formula

YABLO PARADOX The Yablo paradox is the infinite sequence of
statements:

(1) For all n > 1, statement (n) is false. 

(2) For all n > 2, statement (n) is false.

Y
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(3) For all n > 3, statement (n) is false.

:   :   :   :   :

(i) For all n > i, statement (n) is false.

:   :   :   :   :

There is no assignment of truth and falsity to the statements in the
Yablo paradox that makes all of the relevant T-schemas come out
true. 

The Yablo paradox is a purported example of a semantic
paradox which does not involve self-reference or circularity of the
sort found in the Liar paradox, since every statement only refers to
the (infinite) list of statements below it.

See also: Curry Paradox, Open Pair, Semantically Closed
Language, Tarski’s Indefinability Theorem, Truth-Teller

YABLO’S PARADOX see Yablo Paradox

Z see Zermelo Set Theory

ZENO PARADOXES The Zeno paradoxes are a group of paradoxes,
first proposed by Zeno of Elea, that purport to show that motion is
impossible. One of the paradoxes, the paradox of the runner,
suggests that a runner cannot traverse any fixed distance, since he
must first travel half that distance, and then he must travel half the
remaining distance, and then he must again travel half the remaining
distance, ad infinitum. But this means that the runner will have to
carry out infinitely many tasks in a finite amount of time, which
(Zeno thought, at least) is impossible (such a sequence of tasks is a
supertask).

This paradox takes advantage of the following odd fact of
arithmetic:

½ + ¼ + 1⁄8 + 1⁄16 … = 1

See also: Complete Infinity, Potential Infinity

ZENO’S PARADOXES see Zeno Paradoxes

Z
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ZERMELO AXIOM OF INFINITY see Axiom of Zermelo Infinity

ZERMELO FRAENKEL SET THEORY Zermelo Fraenkel set
theory (or ZF) is the set theory obtained by adopting the following
set theoretic axioms and axiom schemas:

Axiom of Empty Set: 
(∃x)(∀y)(y ∉ x)

Axiom of Extensionality: 
(∀x)(∀y)(x = y ↔ (∀z)(z ∈ x ↔ z ∈ y))

Axiom of Foundation:
(∃x)((∃y)(y ∈ x) → (∃z)(z ∈ x ∧ ~(∃w)(w ∈ z ∧ w ∈ x)))

Axiom of Infinity: 
(∃x)(∅ ∈ x ∧ (∀y)(y ∈ x → y ∪ {y} ∈ x))

Axiom of Pairing: 
(∀x)(∀y)(∃z)(∀w)(w ∈ z ↔ (w = x ∨ w = y))

Axiom of Powerset: 
(∀x)(∃y)(∀z)(z ∈ y ↔ (∀w)(w ∈ z → w ∈ x))

Axiom(s) of Replacement:
For any function f:
(∀x)(∃y)(∀z)(z ∈ y ↔ (∃w)(w ∈ x ∧ z = f(w)))

Axiom(s) of Separation:
For any predicate Φ(z):
(∀x)(∃y)(∀z)(z ∈ y ↔ (z ∈ x ∧ Φ(z)))

Axiom of Union:
(∀x)(∃y)(∀z)(z ∈ y ↔ (∃w)(z ∈ w ∧ w ∈ x))

One obtains the more powerful system ZFC by adding the:

Axiom of Choice:
(∀x)(((∀y)(y ∈ x → (∃z)(z ∈ y)) ∧ (∀y)(∀z)((y ∈ z ∧ z ∈ x) →
~ (∃w)(w ∈ y ∧ w ∈ z))) → (∃y)(∀z)(z ∈ x → (∃!t)(t ∈ z ∧ t ∈
y)))

to the axioms of Zermelo Fraenkel set theory. Zermelo Fraenkel set
theory is intended to capture the iterative conception of set. 

See also: Kripke-Platek Set Theory, Morse-Kelley Set Theory,
Von Neumann Bernays Gödel Set Theory, Zermelo Set
Theory
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ZERMELO SET THEORY Zermelo set theory (or Z) is the set theory
obtained by adopting the axiom of empty set, the axiom of
extensionality, the axiom of infinity, the axiom of pairing, the
axiom of powerset, the axiom of separation, the axiom of
union, and the axiom of choice. In other words, Zermelo set theory
is ZFC without the axiom of foundation or the axiom of
replacement. In Zermelo’s original axiomatization, the axiom of
Zermelo infinity was used, although the standard axiom of infinity
is more common now. 

See also: Kripke-Platek Set Theory, Morse-Kelley Set Theory,
Von Neumann Bernays Gödel Set Theory, Zermelo Fraenkel
Set Theory

ZERO FUNCTION The zero function is one of the basic functions of
recursive function theory. The zero function is just the function
that returns 0 for all arguments.

See also: Composition, Identity Function, Minimization,
Primitive Recursion, Successor Function

ZF see Zermelo Fraenkel Set Theory

ZFC see Zermelo Fraenkel Set Theory

ZORN-KURATOWSKI LEMMA see Zorn’s Lemma

ZORN’S LEMMA Zorn’s lemma (or the Kuratowski-Zorn lemma,
or the Zorn-Kuratowski lemma) is the following statement:

For every set P partially ordered by a relation <, if for every
subset Q of P such that < totally orders Q , there is an x in Q
such that y ≤ x for all y in Q , then there is a z in P such that for
no w in P is it the case that z < w.

More loosely, this amounts to:

For every partially ordered set P, if every chain in P has an
upper bound, then P has a maximal element.

Zorn’s lemma is equivalent to the axiom of choice.

See also: Choice Function, Choice Set, Trichotomy Law, Well-
Ordering, Well-Ordering Principle, Zermelo Fraenkel Set
Theory
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